3 #include "isl_map_private.h"
7 #include "isl_equalities.h"
10 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
12 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
18 bmap
->ineq
[i
] = bmap
->ineq
[j
];
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
29 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
31 enum isl_lp_result res
;
38 total
= isl_basic_map_total_dim(*bmap
);
39 for (i
= 0; i
< total
; ++i
) {
41 if (isl_int_is_zero(c
[1+i
]))
43 sign
= isl_int_sgn(c
[1+i
]);
44 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
45 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
47 if (j
== (*bmap
)->n_ineq
)
53 res
= isl_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
, opt_n
, opt_d
);
54 if (res
== isl_lp_unbounded
)
56 if (res
== isl_lp_error
)
58 if (res
== isl_lp_empty
) {
59 *bmap
= isl_basic_map_set_to_empty(*bmap
);
62 return !isl_int_is_neg(*opt_n
);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
66 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
80 struct isl_basic_map
*isl_basic_map_convex_hull(struct isl_basic_map
*bmap
)
87 bmap
= isl_basic_map_gauss(bmap
, NULL
);
88 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
90 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
92 if (bmap
->n_ineq
<= 1)
95 tab
= isl_tab_from_basic_map(bmap
);
96 tab
= isl_tab_detect_equalities(tab
);
97 tab
= isl_tab_detect_redundant(tab
);
98 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
100 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
101 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
105 struct isl_basic_set
*isl_basic_set_convex_hull(struct isl_basic_set
*bset
)
107 return (struct isl_basic_set
*)
108 isl_basic_map_convex_hull((struct isl_basic_map
*)bset
);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
123 isl_int_init(opt_denom
);
125 for (j
= 0; j
< set
->n
; ++j
) {
126 enum isl_lp_result res
;
128 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
131 res
= isl_solve_lp((struct isl_basic_map
*)set
->p
[j
],
132 0, c
, set
->ctx
->one
, &opt
, &opt_denom
);
133 if (res
== isl_lp_unbounded
)
135 if (res
== isl_lp_error
)
137 if (res
== isl_lp_empty
) {
138 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
143 if (!isl_int_is_one(opt_denom
))
144 isl_seq_scale(c
, c
, opt_denom
, len
);
145 if (first
|| isl_int_is_neg(opt
))
146 isl_int_sub(c
[0], c
[0], opt
);
150 isl_int_clear(opt_denom
);
154 isl_int_clear(opt_denom
);
158 /* Check if "c" is a direction that is independent of the previously found "n"
160 * If so, add it to the list, with the negative of the lower bound
161 * in the constant position, i.e., such that c corresponds to a bounding
162 * hyperplane (but not necessarily a facet).
163 * Assumes set "set" is bounded.
165 static int is_independent_bound(struct isl_set
*set
, isl_int
*c
,
166 struct isl_mat
*dirs
, int n
)
171 isl_seq_cpy(dirs
->row
[n
]+1, c
+1, dirs
->n_col
-1);
173 int pos
= isl_seq_first_non_zero(dirs
->row
[n
]+1, dirs
->n_col
-1);
176 for (i
= 0; i
< n
; ++i
) {
178 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
]+1, dirs
->n_col
-1);
183 isl_seq_elim(dirs
->row
[n
]+1, dirs
->row
[i
]+1, pos
,
184 dirs
->n_col
-1, NULL
);
185 pos
= isl_seq_first_non_zero(dirs
->row
[n
]+1, dirs
->n_col
-1);
191 is_bound
= uset_is_bound(set
, dirs
->row
[n
], dirs
->n_col
);
196 isl_int
*t
= dirs
->row
[n
];
197 for (k
= n
; k
> i
; --k
)
198 dirs
->row
[k
] = dirs
->row
[k
-1];
204 /* Compute and return a maximal set of linearly independent bounds
205 * on the set "set", based on the constraints of the basic sets
208 static struct isl_mat
*independent_bounds(struct isl_set
*set
)
211 struct isl_mat
*dirs
= NULL
;
212 unsigned dim
= isl_set_n_dim(set
);
214 dirs
= isl_mat_alloc(set
->ctx
, dim
, 1+dim
);
219 for (i
= 0; n
< dim
&& i
< set
->n
; ++i
) {
221 struct isl_basic_set
*bset
= set
->p
[i
];
223 for (j
= 0; n
< dim
&& j
< bset
->n_eq
; ++j
) {
224 f
= is_independent_bound(set
, bset
->eq
[j
], dirs
, n
);
230 for (j
= 0; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
231 f
= is_independent_bound(set
, bset
->ineq
[j
], dirs
, n
);
245 struct isl_basic_set
*isl_basic_set_set_rational(struct isl_basic_set
*bset
)
250 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
253 bset
= isl_basic_set_cow(bset
);
257 ISL_F_SET(bset
, ISL_BASIC_MAP_RATIONAL
);
259 return isl_basic_set_finalize(bset
);
262 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
266 set
= isl_set_cow(set
);
269 for (i
= 0; i
< set
->n
; ++i
) {
270 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
280 static struct isl_basic_set
*isl_basic_set_add_equality(
281 struct isl_basic_set
*bset
, isl_int
*c
)
287 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
290 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
291 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
292 dim
= isl_basic_set_n_dim(bset
);
293 bset
= isl_basic_set_cow(bset
);
294 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
295 i
= isl_basic_set_alloc_equality(bset
);
298 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
301 isl_basic_set_free(bset
);
305 static struct isl_set
*isl_set_add_equality(struct isl_set
*set
, isl_int
*c
)
309 set
= isl_set_cow(set
);
312 for (i
= 0; i
< set
->n
; ++i
) {
313 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
323 /* Given a union of basic sets, construct the constraints for wrapping
324 * a facet around one of its ridges.
325 * In particular, if each of n the d-dimensional basic sets i in "set"
326 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
327 * and is defined by the constraints
331 * then the resulting set is of dimension n*(1+d) and has as constraints
340 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
342 struct isl_basic_set
*lp
;
346 unsigned dim
, lp_dim
;
351 dim
= 1 + isl_set_n_dim(set
);
354 for (i
= 0; i
< set
->n
; ++i
) {
355 n_eq
+= set
->p
[i
]->n_eq
;
356 n_ineq
+= set
->p
[i
]->n_ineq
;
358 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
361 lp_dim
= isl_basic_set_n_dim(lp
);
362 k
= isl_basic_set_alloc_equality(lp
);
363 isl_int_set_si(lp
->eq
[k
][0], -1);
364 for (i
= 0; i
< set
->n
; ++i
) {
365 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
366 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
367 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
369 for (i
= 0; i
< set
->n
; ++i
) {
370 k
= isl_basic_set_alloc_inequality(lp
);
371 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
372 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
374 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
375 k
= isl_basic_set_alloc_equality(lp
);
376 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
377 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
378 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
381 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
382 k
= isl_basic_set_alloc_inequality(lp
);
383 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
384 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
385 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
391 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
392 * of that facet, compute the other facet of the convex hull that contains
395 * We first transform the set such that the facet constraint becomes
399 * I.e., the facet lies in
403 * and on that facet, the constraint that defines the ridge is
407 * (This transformation is not strictly needed, all that is needed is
408 * that the ridge contains the origin.)
410 * Since the ridge contains the origin, the cone of the convex hull
411 * will be of the form
416 * with this second constraint defining the new facet.
417 * The constant a is obtained by settting x_1 in the cone of the
418 * convex hull to 1 and minimizing x_2.
419 * Now, each element in the cone of the convex hull is the sum
420 * of elements in the cones of the basic sets.
421 * If a_i is the dilation factor of basic set i, then the problem
422 * we need to solve is
435 * the constraints of each (transformed) basic set.
436 * If a = n/d, then the constraint defining the new facet (in the transformed
439 * -n x_1 + d x_2 >= 0
441 * In the original space, we need to take the same combination of the
442 * corresponding constraints "facet" and "ridge".
444 * Note that a is always finite, since we only apply the wrapping
445 * technique to a union of polytopes.
447 static isl_int
*wrap_facet(struct isl_set
*set
, isl_int
*facet
, isl_int
*ridge
)
450 struct isl_mat
*T
= NULL
;
451 struct isl_basic_set
*lp
= NULL
;
453 enum isl_lp_result res
;
457 set
= isl_set_copy(set
);
459 dim
= 1 + isl_set_n_dim(set
);
460 T
= isl_mat_alloc(set
->ctx
, 3, dim
);
463 isl_int_set_si(T
->row
[0][0], 1);
464 isl_seq_clr(T
->row
[0]+1, dim
- 1);
465 isl_seq_cpy(T
->row
[1], facet
, dim
);
466 isl_seq_cpy(T
->row
[2], ridge
, dim
);
467 T
= isl_mat_right_inverse(T
);
468 set
= isl_set_preimage(set
, T
);
472 lp
= wrap_constraints(set
);
473 obj
= isl_vec_alloc(set
->ctx
, 1 + dim
*set
->n
);
476 isl_int_set_si(obj
->block
.data
[0], 0);
477 for (i
= 0; i
< set
->n
; ++i
) {
478 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
479 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
480 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
484 res
= isl_solve_lp((struct isl_basic_map
*)lp
, 0,
485 obj
->block
.data
, set
->ctx
->one
, &num
, &den
);
486 if (res
== isl_lp_ok
) {
487 isl_int_neg(num
, num
);
488 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
493 isl_basic_set_free(lp
);
495 isl_assert(set
->ctx
, res
== isl_lp_ok
, return NULL
);
498 isl_basic_set_free(lp
);
504 /* Given a set of d linearly independent bounding constraints of the
505 * convex hull of "set", compute the constraint of a facet of "set".
507 * We first compute the intersection with the first bounding hyperplane
508 * and remove the component corresponding to this hyperplane from
509 * other bounds (in homogeneous space).
510 * We then wrap around one of the remaining bounding constraints
511 * and continue the process until all bounding constraints have been
512 * taken into account.
513 * The resulting linear combination of the bounding constraints will
514 * correspond to a facet of the convex hull.
516 static struct isl_mat
*initial_facet_constraint(struct isl_set
*set
,
517 struct isl_mat
*bounds
)
519 struct isl_set
*slice
= NULL
;
520 struct isl_basic_set
*face
= NULL
;
521 struct isl_mat
*m
, *U
, *Q
;
523 unsigned dim
= isl_set_n_dim(set
);
525 isl_assert(ctx
, set
->n
> 0, goto error
);
526 isl_assert(ctx
, bounds
->n_row
== dim
, goto error
);
528 while (bounds
->n_row
> 1) {
529 slice
= isl_set_copy(set
);
530 slice
= isl_set_add_equality(slice
, bounds
->row
[0]);
531 face
= isl_set_affine_hull(slice
);
534 if (face
->n_eq
== 1) {
535 isl_basic_set_free(face
);
538 m
= isl_mat_alloc(set
->ctx
, 1 + face
->n_eq
, 1 + dim
);
541 isl_int_set_si(m
->row
[0][0], 1);
542 isl_seq_clr(m
->row
[0]+1, dim
);
543 for (i
= 0; i
< face
->n_eq
; ++i
)
544 isl_seq_cpy(m
->row
[1 + i
], face
->eq
[i
], 1 + dim
);
545 U
= isl_mat_right_inverse(m
);
546 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
547 U
= isl_mat_drop_cols(U
, 1 + face
->n_eq
, dim
- face
->n_eq
);
548 Q
= isl_mat_drop_rows(Q
, 1 + face
->n_eq
, dim
- face
->n_eq
);
549 U
= isl_mat_drop_cols(U
, 0, 1);
550 Q
= isl_mat_drop_rows(Q
, 0, 1);
551 bounds
= isl_mat_product(bounds
, U
);
552 bounds
= isl_mat_product(bounds
, Q
);
553 while (isl_seq_first_non_zero(bounds
->row
[bounds
->n_row
-1],
554 bounds
->n_col
) == -1) {
556 isl_assert(ctx
, bounds
->n_row
> 1, goto error
);
558 if (!wrap_facet(set
, bounds
->row
[0],
559 bounds
->row
[bounds
->n_row
-1]))
561 isl_basic_set_free(face
);
566 isl_basic_set_free(face
);
567 isl_mat_free(bounds
);
571 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
572 * compute a hyperplane description of the facet, i.e., compute the facets
575 * We compute an affine transformation that transforms the constraint
584 * by computing the right inverse U of a matrix that starts with the rows
597 * Since z_1 is zero, we can drop this variable as well as the corresponding
598 * column of U to obtain
606 * with Q' equal to Q, but without the corresponding row.
607 * After computing the facets of the facet in the z' space,
608 * we convert them back to the x space through Q.
610 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
612 struct isl_mat
*m
, *U
, *Q
;
613 struct isl_basic_set
*facet
= NULL
;
618 set
= isl_set_copy(set
);
619 dim
= isl_set_n_dim(set
);
620 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
623 isl_int_set_si(m
->row
[0][0], 1);
624 isl_seq_clr(m
->row
[0]+1, dim
);
625 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
626 U
= isl_mat_right_inverse(m
);
627 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
628 U
= isl_mat_drop_cols(U
, 1, 1);
629 Q
= isl_mat_drop_rows(Q
, 1, 1);
630 set
= isl_set_preimage(set
, U
);
631 facet
= uset_convex_hull_wrap_bounded(set
);
632 facet
= isl_basic_set_preimage(facet
, Q
);
633 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
636 isl_basic_set_free(facet
);
641 /* Given an initial facet constraint, compute the remaining facets.
642 * We do this by running through all facets found so far and computing
643 * the adjacent facets through wrapping, adding those facets that we
644 * hadn't already found before.
646 * For each facet we have found so far, we first compute its facets
647 * in the resulting convex hull. That is, we compute the ridges
648 * of the resulting convex hull contained in the facet.
649 * We also compute the corresponding facet in the current approximation
650 * of the convex hull. There is no need to wrap around the ridges
651 * in this facet since that would result in a facet that is already
652 * present in the current approximation.
654 * This function can still be significantly optimized by checking which of
655 * the facets of the basic sets are also facets of the convex hull and
656 * using all the facets so far to help in constructing the facets of the
659 * using the technique in section "3.1 Ridge Generation" of
660 * "Extended Convex Hull" by Fukuda et al.
662 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
667 struct isl_basic_set
*facet
= NULL
;
668 struct isl_basic_set
*hull_facet
= NULL
;
672 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
674 dim
= isl_set_n_dim(set
);
676 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
677 facet
= compute_facet(set
, hull
->ineq
[i
]);
678 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
679 facet
= isl_basic_set_gauss(facet
, NULL
);
680 facet
= isl_basic_set_normalize_constraints(facet
);
681 hull_facet
= isl_basic_set_copy(hull
);
682 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
683 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
684 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
687 hull
= isl_basic_set_cow(hull
);
688 hull
= isl_basic_set_extend_dim(hull
,
689 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
690 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
691 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
692 if (isl_seq_eq(facet
->ineq
[j
],
693 hull_facet
->ineq
[f
], 1 + dim
))
695 if (f
< hull_facet
->n_ineq
)
697 k
= isl_basic_set_alloc_inequality(hull
);
700 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
701 if (!wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
704 isl_basic_set_free(hull_facet
);
705 isl_basic_set_free(facet
);
707 hull
= isl_basic_set_simplify(hull
);
708 hull
= isl_basic_set_finalize(hull
);
711 isl_basic_set_free(hull_facet
);
712 isl_basic_set_free(facet
);
713 isl_basic_set_free(hull
);
717 /* Special case for computing the convex hull of a one dimensional set.
718 * We simply collect the lower and upper bounds of each basic set
719 * and the biggest of those.
721 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
723 struct isl_mat
*c
= NULL
;
724 isl_int
*lower
= NULL
;
725 isl_int
*upper
= NULL
;
728 struct isl_basic_set
*hull
;
730 for (i
= 0; i
< set
->n
; ++i
) {
731 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
735 set
= isl_set_remove_empty_parts(set
);
738 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
739 c
= isl_mat_alloc(set
->ctx
, 2, 2);
743 if (set
->p
[0]->n_eq
> 0) {
744 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
747 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
748 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
749 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
751 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
752 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
755 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
756 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
758 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
761 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
768 for (i
= 0; i
< set
->n
; ++i
) {
769 struct isl_basic_set
*bset
= set
->p
[i
];
773 for (j
= 0; j
< bset
->n_eq
; ++j
) {
777 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
778 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
779 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
780 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
781 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
782 isl_seq_neg(lower
, bset
->eq
[j
], 2);
785 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
786 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
787 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
788 isl_seq_neg(upper
, bset
->eq
[j
], 2);
789 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
790 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
793 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
794 if (isl_int_is_pos(bset
->ineq
[j
][1]))
796 if (isl_int_is_neg(bset
->ineq
[j
][1]))
798 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
799 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
800 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
801 if (isl_int_lt(a
, b
))
802 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
804 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
805 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
806 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
807 if (isl_int_gt(a
, b
))
808 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
819 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
820 hull
= isl_basic_set_set_rational(hull
);
824 k
= isl_basic_set_alloc_inequality(hull
);
825 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
828 k
= isl_basic_set_alloc_inequality(hull
);
829 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
831 hull
= isl_basic_set_finalize(hull
);
841 /* Project out final n dimensions using Fourier-Motzkin */
842 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
843 struct isl_set
*set
, unsigned n
)
845 return isl_set_remove_dims(set
, isl_set_n_dim(set
) - n
, n
);
848 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
850 struct isl_basic_set
*convex_hull
;
855 if (isl_set_is_empty(set
))
856 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
858 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
863 /* Compute the convex hull of a pair of basic sets without any parameters or
864 * integer divisions using Fourier-Motzkin elimination.
865 * The convex hull is the set of all points that can be written as
866 * the sum of points from both basic sets (in homogeneous coordinates).
867 * We set up the constraints in a space with dimensions for each of
868 * the three sets and then project out the dimensions corresponding
869 * to the two original basic sets, retaining only those corresponding
870 * to the convex hull.
872 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
873 struct isl_basic_set
*bset2
)
876 struct isl_basic_set
*bset
[2];
877 struct isl_basic_set
*hull
= NULL
;
880 if (!bset1
|| !bset2
)
883 dim
= isl_basic_set_n_dim(bset1
);
884 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
885 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
886 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
889 for (i
= 0; i
< 2; ++i
) {
890 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
891 k
= isl_basic_set_alloc_equality(hull
);
894 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
895 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
896 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
899 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
900 k
= isl_basic_set_alloc_inequality(hull
);
903 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
904 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
905 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
906 bset
[i
]->ineq
[j
], 1+dim
);
908 k
= isl_basic_set_alloc_inequality(hull
);
911 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
912 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
914 for (j
= 0; j
< 1+dim
; ++j
) {
915 k
= isl_basic_set_alloc_equality(hull
);
918 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
919 isl_int_set_si(hull
->eq
[k
][j
], -1);
920 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
921 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
923 hull
= isl_basic_set_set_rational(hull
);
924 hull
= isl_basic_set_remove_dims(hull
, dim
, 2*(1+dim
));
925 hull
= isl_basic_set_convex_hull(hull
);
926 isl_basic_set_free(bset1
);
927 isl_basic_set_free(bset2
);
930 isl_basic_set_free(bset1
);
931 isl_basic_set_free(bset2
);
932 isl_basic_set_free(hull
);
936 static int isl_basic_set_is_bounded(struct isl_basic_set
*bset
)
941 tab
= isl_tab_from_recession_cone((struct isl_basic_map
*)bset
);
942 bounded
= isl_tab_cone_is_bounded(tab
);
947 static int isl_set_is_bounded(struct isl_set
*set
)
951 for (i
= 0; i
< set
->n
; ++i
) {
952 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
953 if (!bounded
|| bounded
< 0)
959 /* Compute the lineality space of the convex hull of bset1 and bset2.
961 * We first compute the intersection of the recession cone of bset1
962 * with the negative of the recession cone of bset2 and then compute
963 * the linear hull of the resulting cone.
965 static struct isl_basic_set
*induced_lineality_space(
966 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
969 struct isl_basic_set
*lin
= NULL
;
972 if (!bset1
|| !bset2
)
975 dim
= isl_basic_set_total_dim(bset1
);
976 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
977 bset1
->n_eq
+ bset2
->n_eq
,
978 bset1
->n_ineq
+ bset2
->n_ineq
);
979 lin
= isl_basic_set_set_rational(lin
);
982 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
983 k
= isl_basic_set_alloc_equality(lin
);
986 isl_int_set_si(lin
->eq
[k
][0], 0);
987 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
989 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
990 k
= isl_basic_set_alloc_inequality(lin
);
993 isl_int_set_si(lin
->ineq
[k
][0], 0);
994 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
996 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
997 k
= isl_basic_set_alloc_equality(lin
);
1000 isl_int_set_si(lin
->eq
[k
][0], 0);
1001 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
1003 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
1004 k
= isl_basic_set_alloc_inequality(lin
);
1007 isl_int_set_si(lin
->ineq
[k
][0], 0);
1008 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
1011 isl_basic_set_free(bset1
);
1012 isl_basic_set_free(bset2
);
1013 return isl_basic_set_affine_hull(lin
);
1015 isl_basic_set_free(lin
);
1016 isl_basic_set_free(bset1
);
1017 isl_basic_set_free(bset2
);
1021 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1023 /* Given a set and a linear space "lin" of dimension n > 0,
1024 * project the linear space from the set, compute the convex hull
1025 * and then map the set back to the original space.
1031 * describe the linear space. We first compute the Hermite normal
1032 * form H = M U of M = H Q, to obtain
1036 * The last n rows of H will be zero, so the last n variables of x' = Q x
1037 * are the one we want to project out. We do this by transforming each
1038 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1039 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1040 * we transform the hull back to the original space as A' Q_1 x >= b',
1041 * with Q_1 all but the last n rows of Q.
1043 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1044 struct isl_basic_set
*lin
)
1046 unsigned total
= isl_basic_set_total_dim(lin
);
1048 struct isl_basic_set
*hull
;
1049 struct isl_mat
*M
, *U
, *Q
;
1053 lin_dim
= total
- lin
->n_eq
;
1054 M
= isl_mat_sub_alloc(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1055 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1059 isl_basic_set_free(lin
);
1061 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1063 U
= isl_mat_lin_to_aff(U
);
1064 Q
= isl_mat_lin_to_aff(Q
);
1066 set
= isl_set_preimage(set
, U
);
1067 set
= isl_set_remove_dims(set
, total
- lin_dim
, lin_dim
);
1068 hull
= uset_convex_hull(set
);
1069 hull
= isl_basic_set_preimage(hull
, Q
);
1073 isl_basic_set_free(lin
);
1078 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1079 * set up an LP for solving
1081 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1083 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1084 * The next \alpha{ij} correspond to the equalities and come in pairs.
1085 * The final \alpha{ij} correspond to the inequalities.
1087 static struct isl_basic_set
*valid_direction_lp(
1088 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1090 struct isl_dim
*dim
;
1091 struct isl_basic_set
*lp
;
1096 if (!bset1
|| !bset2
)
1098 d
= 1 + isl_basic_set_total_dim(bset1
);
1100 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1101 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1102 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1105 for (i
= 0; i
< n
; ++i
) {
1106 k
= isl_basic_set_alloc_inequality(lp
);
1109 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1110 isl_int_set_si(lp
->ineq
[k
][0], -1);
1111 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1113 for (i
= 0; i
< d
; ++i
) {
1114 k
= isl_basic_set_alloc_equality(lp
);
1118 isl_int_set_si(lp
->eq
[k
][n
++], 0);
1119 /* positivity constraint 1 >= 0 */
1120 isl_int_set_si(lp
->eq
[k
][n
++], i
== 0);
1121 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1122 isl_int_set(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1123 isl_int_neg(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1125 for (j
= 0; j
< bset1
->n_ineq
; ++j
)
1126 isl_int_set(lp
->eq
[k
][n
++], bset1
->ineq
[j
][i
]);
1127 /* positivity constraint 1 >= 0 */
1128 isl_int_set_si(lp
->eq
[k
][n
++], -(i
== 0));
1129 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1130 isl_int_neg(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1131 isl_int_set(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1133 for (j
= 0; j
< bset2
->n_ineq
; ++j
)
1134 isl_int_neg(lp
->eq
[k
][n
++], bset2
->ineq
[j
][i
]);
1136 lp
= isl_basic_set_gauss(lp
, NULL
);
1137 isl_basic_set_free(bset1
);
1138 isl_basic_set_free(bset2
);
1141 isl_basic_set_free(bset1
);
1142 isl_basic_set_free(bset2
);
1146 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1147 * for all rays in the homogeneous space of the two cones that correspond
1148 * to the input polyhedra bset1 and bset2.
1150 * We compute s as a vector that satisfies
1152 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1154 * with h_{ij} the normals of the facets of polyhedron i
1155 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1156 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1157 * We first set up an LP with as variables the \alpha{ij}.
1158 * In this formulateion, for each polyhedron i,
1159 * the first constraint is the positivity constraint, followed by pairs
1160 * of variables for the equalities, followed by variables for the inequalities.
1161 * We then simply pick a feasible solution and compute s using (*).
1163 * Note that we simply pick any valid direction and make no attempt
1164 * to pick a "good" or even the "best" valid direction.
1166 static struct isl_vec
*valid_direction(
1167 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1169 struct isl_basic_set
*lp
;
1170 struct isl_tab
*tab
;
1171 struct isl_vec
*sample
= NULL
;
1172 struct isl_vec
*dir
;
1177 if (!bset1
|| !bset2
)
1179 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1180 isl_basic_set_copy(bset2
));
1181 tab
= isl_tab_from_basic_set(lp
);
1182 sample
= isl_tab_get_sample_value(tab
);
1184 isl_basic_set_free(lp
);
1187 d
= isl_basic_set_total_dim(bset1
);
1188 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1191 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1193 /* positivity constraint 1 >= 0 */
1194 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
++]);
1195 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1196 isl_int_sub(sample
->block
.data
[n
],
1197 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1198 isl_seq_combine(dir
->block
.data
,
1199 bset1
->ctx
->one
, dir
->block
.data
,
1200 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1204 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1205 isl_seq_combine(dir
->block
.data
,
1206 bset1
->ctx
->one
, dir
->block
.data
,
1207 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1208 isl_vec_free(sample
);
1209 isl_basic_set_free(bset1
);
1210 isl_basic_set_free(bset2
);
1211 isl_seq_normalize(dir
->block
.data
+ 1, dir
->size
- 1);
1214 isl_vec_free(sample
);
1215 isl_basic_set_free(bset1
);
1216 isl_basic_set_free(bset2
);
1220 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1221 * compute b_i' + A_i' x' >= 0, with
1223 * [ b_i A_i ] [ y' ] [ y' ]
1224 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1226 * In particular, add the "positivity constraint" and then perform
1229 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1236 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1237 k
= isl_basic_set_alloc_inequality(bset
);
1240 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1241 isl_int_set_si(bset
->ineq
[k
][0], 1);
1242 bset
= isl_basic_set_preimage(bset
, T
);
1246 isl_basic_set_free(bset
);
1250 /* Compute the convex hull of a pair of basic sets without any parameters or
1251 * integer divisions, where the convex hull is known to be pointed,
1252 * but the basic sets may be unbounded.
1254 * We turn this problem into the computation of a convex hull of a pair
1255 * _bounded_ polyhedra by "changing the direction of the homogeneous
1256 * dimension". This idea is due to Matthias Koeppe.
1258 * Consider the cones in homogeneous space that correspond to the
1259 * input polyhedra. The rays of these cones are also rays of the
1260 * polyhedra if the coordinate that corresponds to the homogeneous
1261 * dimension is zero. That is, if the inner product of the rays
1262 * with the homogeneous direction is zero.
1263 * The cones in the homogeneous space can also be considered to
1264 * correspond to other pairs of polyhedra by chosing a different
1265 * homogeneous direction. To ensure that both of these polyhedra
1266 * are bounded, we need to make sure that all rays of the cones
1267 * correspond to vertices and not to rays.
1268 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1269 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1270 * The vector s is computed in valid_direction.
1272 * Note that we need to consider _all_ rays of the cones and not just
1273 * the rays that correspond to rays in the polyhedra. If we were to
1274 * only consider those rays and turn them into vertices, then we
1275 * may inadvertently turn some vertices into rays.
1277 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1278 * We therefore transform the two polyhedra such that the selected
1279 * direction is mapped onto this standard direction and then proceed
1280 * with the normal computation.
1281 * Let S be a non-singular square matrix with s as its first row,
1282 * then we want to map the polyhedra to the space
1284 * [ y' ] [ y ] [ y ] [ y' ]
1285 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1287 * We take S to be the unimodular completion of s to limit the growth
1288 * of the coefficients in the following computations.
1290 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1291 * We first move to the homogeneous dimension
1293 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1294 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1296 * Then we change directoin
1298 * [ b_i A_i ] [ y' ] [ y' ]
1299 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1301 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1302 * resulting in b' + A' x' >= 0, which we then convert back
1305 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1307 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1309 static struct isl_basic_set
*convex_hull_pair_pointed(
1310 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1312 struct isl_ctx
*ctx
= NULL
;
1313 struct isl_vec
*dir
= NULL
;
1314 struct isl_mat
*T
= NULL
;
1315 struct isl_mat
*T2
= NULL
;
1316 struct isl_basic_set
*hull
;
1317 struct isl_set
*set
;
1319 if (!bset1
|| !bset2
)
1322 dir
= valid_direction(isl_basic_set_copy(bset1
),
1323 isl_basic_set_copy(bset2
));
1326 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1329 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1330 T
= isl_mat_unimodular_complete(T
, 1);
1331 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1333 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1334 bset2
= homogeneous_map(bset2
, T2
);
1335 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1336 set
= isl_set_add(set
, bset1
);
1337 set
= isl_set_add(set
, bset2
);
1338 hull
= uset_convex_hull(set
);
1339 hull
= isl_basic_set_preimage(hull
, T
);
1346 isl_basic_set_free(bset1
);
1347 isl_basic_set_free(bset2
);
1351 /* Compute the convex hull of a pair of basic sets without any parameters or
1352 * integer divisions.
1354 * If the convex hull of the two basic sets would have a non-trivial
1355 * lineality space, we first project out this lineality space.
1357 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1358 struct isl_basic_set
*bset2
)
1360 struct isl_basic_set
*lin
;
1362 if (isl_basic_set_is_bounded(bset1
) || isl_basic_set_is_bounded(bset2
))
1363 return convex_hull_pair_pointed(bset1
, bset2
);
1365 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1366 isl_basic_set_copy(bset2
));
1369 if (isl_basic_set_is_universe(lin
)) {
1370 isl_basic_set_free(bset1
);
1371 isl_basic_set_free(bset2
);
1374 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1375 struct isl_set
*set
;
1376 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1377 set
= isl_set_add(set
, bset1
);
1378 set
= isl_set_add(set
, bset2
);
1379 return modulo_lineality(set
, lin
);
1381 isl_basic_set_free(lin
);
1383 return convex_hull_pair_pointed(bset1
, bset2
);
1385 isl_basic_set_free(bset1
);
1386 isl_basic_set_free(bset2
);
1390 /* Compute the lineality space of a basic set.
1391 * We currently do not allow the basic set to have any divs.
1392 * We basically just drop the constants and turn every inequality
1395 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1398 struct isl_basic_set
*lin
= NULL
;
1403 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1404 dim
= isl_basic_set_total_dim(bset
);
1406 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1409 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1410 k
= isl_basic_set_alloc_equality(lin
);
1413 isl_int_set_si(lin
->eq
[k
][0], 0);
1414 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1416 lin
= isl_basic_set_gauss(lin
, NULL
);
1419 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1420 k
= isl_basic_set_alloc_equality(lin
);
1423 isl_int_set_si(lin
->eq
[k
][0], 0);
1424 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1425 lin
= isl_basic_set_gauss(lin
, NULL
);
1429 isl_basic_set_free(bset
);
1432 isl_basic_set_free(lin
);
1433 isl_basic_set_free(bset
);
1437 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1438 * "underlying" set "set".
1440 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1443 struct isl_set
*lin
= NULL
;
1448 struct isl_dim
*dim
= isl_set_get_dim(set
);
1450 return isl_basic_set_empty(dim
);
1453 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1454 for (i
= 0; i
< set
->n
; ++i
)
1455 lin
= isl_set_add(lin
,
1456 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1458 return isl_set_affine_hull(lin
);
1461 /* Compute the convex hull of a set without any parameters or
1462 * integer divisions.
1463 * In each step, we combined two basic sets until only one
1464 * basic set is left.
1465 * The input basic sets are assumed not to have a non-trivial
1466 * lineality space. If any of the intermediate results has
1467 * a non-trivial lineality space, it is projected out.
1469 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1471 struct isl_basic_set
*convex_hull
= NULL
;
1473 convex_hull
= isl_set_copy_basic_set(set
);
1474 set
= isl_set_drop_basic_set(set
, convex_hull
);
1477 while (set
->n
> 0) {
1478 struct isl_basic_set
*t
;
1479 t
= isl_set_copy_basic_set(set
);
1482 set
= isl_set_drop_basic_set(set
, t
);
1485 convex_hull
= convex_hull_pair(convex_hull
, t
);
1488 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1491 if (isl_basic_set_is_universe(t
)) {
1492 isl_basic_set_free(convex_hull
);
1496 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1497 set
= isl_set_add(set
, convex_hull
);
1498 return modulo_lineality(set
, t
);
1500 isl_basic_set_free(t
);
1506 isl_basic_set_free(convex_hull
);
1510 /* Compute an initial hull for wrapping containing a single initial
1511 * facet by first computing bounds on the set and then using these
1512 * bounds to construct an initial facet.
1513 * This function is a remnant of an older implementation where the
1514 * bounds were also used to check whether the set was bounded.
1515 * Since this function will now only be called when we know the
1516 * set to be bounded, the initial facet should probably be constructed
1517 * by simply using the coordinate directions instead.
1519 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1520 struct isl_set
*set
)
1522 struct isl_mat
*bounds
= NULL
;
1528 bounds
= independent_bounds(set
);
1531 isl_assert(set
->ctx
, bounds
->n_row
== isl_set_n_dim(set
), goto error
);
1532 bounds
= initial_facet_constraint(set
, bounds
);
1535 k
= isl_basic_set_alloc_inequality(hull
);
1538 dim
= isl_set_n_dim(set
);
1539 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1540 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1541 isl_mat_free(bounds
);
1545 isl_basic_set_free(hull
);
1546 isl_mat_free(bounds
);
1550 struct max_constraint
{
1556 static int max_constraint_equal(const void *entry
, const void *val
)
1558 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1559 isl_int
*b
= (isl_int
*)val
;
1561 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1564 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1565 isl_int
*con
, unsigned len
, int n
, int ineq
)
1567 struct isl_hash_table_entry
*entry
;
1568 struct max_constraint
*c
;
1571 c_hash
= isl_seq_hash(con
+ 1, len
, isl_hash_init());
1572 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1578 isl_hash_table_remove(ctx
, table
, entry
);
1582 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1584 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1589 c
->c
= isl_mat_cow(c
->c
);
1590 isl_int_set(c
->c
->row
[0][0], con
[0]);
1594 /* Check whether the constraint hash table "table" constains the constraint
1597 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1598 isl_int
*con
, unsigned len
, int n
)
1600 struct isl_hash_table_entry
*entry
;
1601 struct max_constraint
*c
;
1604 c_hash
= isl_seq_hash(con
+ 1, len
, isl_hash_init());
1605 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1612 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1615 /* Check for inequality constraints of a basic set without equalities
1616 * such that the same or more stringent copies of the constraint appear
1617 * in all of the basic sets. Such constraints are necessarily facet
1618 * constraints of the convex hull.
1620 * If the resulting basic set is by chance identical to one of
1621 * the basic sets in "set", then we know that this basic set contains
1622 * all other basic sets and is therefore the convex hull of set.
1623 * In this case we set *is_hull to 1.
1625 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1626 struct isl_set
*set
, int *is_hull
)
1629 int min_constraints
;
1631 struct max_constraint
*constraints
= NULL
;
1632 struct isl_hash_table
*table
= NULL
;
1637 for (i
= 0; i
< set
->n
; ++i
)
1638 if (set
->p
[i
]->n_eq
== 0)
1642 min_constraints
= set
->p
[i
]->n_ineq
;
1644 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1645 if (set
->p
[i
]->n_eq
!= 0)
1647 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1649 min_constraints
= set
->p
[i
]->n_ineq
;
1652 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1656 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1657 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1660 total
= isl_dim_total(set
->dim
);
1661 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1662 constraints
[i
].c
= isl_mat_sub_alloc(hull
->ctx
,
1663 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1664 if (!constraints
[i
].c
)
1666 constraints
[i
].ineq
= 1;
1668 for (i
= 0; i
< min_constraints
; ++i
) {
1669 struct isl_hash_table_entry
*entry
;
1671 c_hash
= isl_seq_hash(constraints
[i
].c
->row
[0] + 1, total
,
1673 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1674 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1677 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1678 entry
->data
= &constraints
[i
];
1682 for (s
= 0; s
< set
->n
; ++s
) {
1686 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1687 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1688 for (j
= 0; j
< 2; ++j
) {
1689 isl_seq_neg(eq
, eq
, 1 + total
);
1690 update_constraint(hull
->ctx
, table
,
1694 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1695 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1696 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1697 set
->p
[s
]->n_eq
== 0);
1702 for (i
= 0; i
< min_constraints
; ++i
) {
1703 if (constraints
[i
].count
< n
)
1705 if (!constraints
[i
].ineq
)
1707 j
= isl_basic_set_alloc_inequality(hull
);
1710 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1713 for (s
= 0; s
< set
->n
; ++s
) {
1714 if (set
->p
[s
]->n_eq
)
1716 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1718 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1719 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1720 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1723 if (i
== set
->p
[s
]->n_ineq
)
1727 isl_hash_table_clear(table
);
1728 for (i
= 0; i
< min_constraints
; ++i
)
1729 isl_mat_free(constraints
[i
].c
);
1734 isl_hash_table_clear(table
);
1737 for (i
= 0; i
< min_constraints
; ++i
)
1738 isl_mat_free(constraints
[i
].c
);
1743 /* Create a template for the convex hull of "set" and fill it up
1744 * obvious facet constraints, if any. If the result happens to
1745 * be the convex hull of "set" then *is_hull is set to 1.
1747 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1749 struct isl_basic_set
*hull
;
1754 for (i
= 0; i
< set
->n
; ++i
) {
1755 n_ineq
+= set
->p
[i
]->n_eq
;
1756 n_ineq
+= set
->p
[i
]->n_ineq
;
1758 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1759 hull
= isl_basic_set_set_rational(hull
);
1762 return common_constraints(hull
, set
, is_hull
);
1765 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1767 struct isl_basic_set
*hull
;
1770 hull
= proto_hull(set
, &is_hull
);
1771 if (hull
&& !is_hull
) {
1772 if (hull
->n_ineq
== 0)
1773 hull
= initial_hull(hull
, set
);
1774 hull
= extend(hull
, set
);
1781 /* Compute the convex hull of a set without any parameters or
1782 * integer divisions. Depending on whether the set is bounded,
1783 * we pass control to the wrapping based convex hull or
1784 * the Fourier-Motzkin elimination based convex hull.
1785 * We also handle a few special cases before checking the boundedness.
1787 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1790 struct isl_basic_set
*convex_hull
= NULL
;
1791 struct isl_basic_set
*lin
;
1793 if (isl_set_n_dim(set
) == 0)
1794 return convex_hull_0d(set
);
1796 set
= isl_set_coalesce(set
);
1797 set
= isl_set_set_rational(set
);
1804 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1808 if (isl_set_n_dim(set
) == 1)
1809 return convex_hull_1d(set
);
1811 if (isl_set_is_bounded(set
))
1812 return uset_convex_hull_wrap(set
);
1814 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1817 if (isl_basic_set_is_universe(lin
)) {
1821 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1822 return modulo_lineality(set
, lin
);
1823 isl_basic_set_free(lin
);
1825 return uset_convex_hull_unbounded(set
);
1828 isl_basic_set_free(convex_hull
);
1832 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1833 * without parameters or divs and where the convex hull of set is
1834 * known to be full-dimensional.
1836 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1839 struct isl_basic_set
*convex_hull
= NULL
;
1841 if (isl_set_n_dim(set
) == 0) {
1842 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1844 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1848 set
= isl_set_set_rational(set
);
1852 set
= isl_set_coalesce(set
);
1856 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1860 if (isl_set_n_dim(set
) == 1)
1861 return convex_hull_1d(set
);
1863 return uset_convex_hull_wrap(set
);
1869 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1870 * We first remove the equalities (transforming the set), compute the
1871 * convex hull of the transformed set and then add the equalities back
1872 * (after performing the inverse transformation.
1874 static struct isl_basic_set
*modulo_affine_hull(struct isl_ctx
*ctx
,
1875 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1879 struct isl_basic_set
*dummy
;
1880 struct isl_basic_set
*convex_hull
;
1882 dummy
= isl_basic_set_remove_equalities(
1883 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1886 isl_basic_set_free(dummy
);
1887 set
= isl_set_preimage(set
, T
);
1888 convex_hull
= uset_convex_hull(set
);
1889 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1890 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1893 isl_basic_set_free(affine_hull
);
1898 /* Compute the convex hull of a map.
1900 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1901 * specifically, the wrapping of facets to obtain new facets.
1903 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1905 struct isl_basic_set
*bset
;
1906 struct isl_basic_map
*model
= NULL
;
1907 struct isl_basic_set
*affine_hull
= NULL
;
1908 struct isl_basic_map
*convex_hull
= NULL
;
1909 struct isl_set
*set
= NULL
;
1910 struct isl_ctx
*ctx
;
1917 convex_hull
= isl_basic_map_empty_like_map(map
);
1922 map
= isl_map_detect_equalities(map
);
1923 map
= isl_map_align_divs(map
);
1924 model
= isl_basic_map_copy(map
->p
[0]);
1925 set
= isl_map_underlying_set(map
);
1929 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1932 if (affine_hull
->n_eq
!= 0)
1933 bset
= modulo_affine_hull(ctx
, set
, affine_hull
);
1935 isl_basic_set_free(affine_hull
);
1936 bset
= uset_convex_hull(set
);
1939 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1941 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1942 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1943 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1947 isl_basic_map_free(model
);
1951 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1953 return (struct isl_basic_set
*)
1954 isl_map_convex_hull((struct isl_map
*)set
);
1957 struct sh_data_entry
{
1958 struct isl_hash_table
*table
;
1959 struct isl_tab
*tab
;
1962 /* Holds the data needed during the simple hull computation.
1964 * n the number of basic sets in the original set
1965 * hull_table a hash table of already computed constraints
1966 * in the simple hull
1967 * p for each basic set,
1968 * table a hash table of the constraints
1969 * tab the tableau corresponding to the basic set
1972 struct isl_ctx
*ctx
;
1974 struct isl_hash_table
*hull_table
;
1975 struct sh_data_entry p
[0];
1978 static void sh_data_free(struct sh_data
*data
)
1984 isl_hash_table_free(data
->ctx
, data
->hull_table
);
1985 for (i
= 0; i
< data
->n
; ++i
) {
1986 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
1987 isl_tab_free(data
->p
[i
].tab
);
1992 struct ineq_cmp_data
{
1997 static int has_ineq(const void *entry
, const void *val
)
1999 isl_int
*row
= (isl_int
*)entry
;
2000 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2002 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2003 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2006 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2007 isl_int
*ineq
, unsigned len
)
2010 struct ineq_cmp_data v
;
2011 struct isl_hash_table_entry
*entry
;
2015 c_hash
= isl_seq_hash(ineq
+ 1, len
, isl_hash_init());
2016 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2023 /* Fill hash table "table" with the constraints of "bset".
2024 * Equalities are added as two inequalities.
2025 * The value in the hash table is a pointer to the (in)equality of "bset".
2027 static int hash_basic_set(struct isl_hash_table
*table
,
2028 struct isl_basic_set
*bset
)
2031 unsigned dim
= isl_basic_set_total_dim(bset
);
2033 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2034 for (j
= 0; j
< 2; ++j
) {
2035 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2036 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2040 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2041 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2047 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2049 struct sh_data
*data
;
2052 data
= isl_calloc(set
->ctx
, struct sh_data
,
2053 sizeof(struct sh_data
) + set
->n
* sizeof(struct sh_data_entry
));
2056 data
->ctx
= set
->ctx
;
2058 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2059 if (!data
->hull_table
)
2061 for (i
= 0; i
< set
->n
; ++i
) {
2062 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2063 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2064 if (!data
->p
[i
].table
)
2066 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2075 /* Check if inequality "ineq" is a bound for basic set "j" or if
2076 * it can be relaxed (by increasing the constant term) to become
2077 * a bound for that basic set. In the latter case, the constant
2079 * Return 1 if "ineq" is a bound
2080 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2081 * -1 if some error occurred
2083 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2086 enum isl_lp_result res
;
2089 if (!data
->p
[j
].tab
) {
2090 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2091 if (!data
->p
[j
].tab
)
2097 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2099 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2100 isl_int_sub(ineq
[0], ineq
[0], opt
);
2104 return res
== isl_lp_ok
? 1 :
2105 res
== isl_lp_unbounded
? 0 : -1;
2108 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2109 * become a bound on the whole set. If so, add the (relaxed) inequality
2112 * We first check if "hull" already contains a translate of the inequality.
2113 * If so, we are done.
2114 * Then, we check if any of the previous basic sets contains a translate
2115 * of the inequality. If so, then we have already considered this
2116 * inequality and we are done.
2117 * Otherwise, for each basic set other than "i", we check if the inequality
2118 * is a bound on the basic set.
2119 * For previous basic sets, we know that they do not contain a translate
2120 * of the inequality, so we directly call is_bound.
2121 * For following basic sets, we first check if a translate of the
2122 * inequality appears in its description and if so directly update
2123 * the inequality accordingly.
2125 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2126 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2129 struct ineq_cmp_data v
;
2130 struct isl_hash_table_entry
*entry
;
2136 v
.len
= isl_basic_set_total_dim(hull
);
2138 c_hash
= isl_seq_hash(ineq
+ 1, v
.len
, isl_hash_init());
2140 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2145 for (j
= 0; j
< i
; ++j
) {
2146 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2147 c_hash
, has_ineq
, &v
, 0);
2154 k
= isl_basic_set_alloc_inequality(hull
);
2155 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2159 for (j
= 0; j
< i
; ++j
) {
2161 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2168 isl_basic_set_free_inequality(hull
, 1);
2172 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2175 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2176 c_hash
, has_ineq
, &v
, 0);
2178 ineq_j
= entry
->data
;
2179 neg
= isl_seq_is_neg(ineq_j
+ 1,
2180 hull
->ineq
[k
] + 1, v
.len
);
2182 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2183 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2184 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2186 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2189 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2196 isl_basic_set_free_inequality(hull
, 1);
2200 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2204 entry
->data
= hull
->ineq
[k
];
2208 isl_basic_set_free(hull
);
2212 /* Check if any inequality from basic set "i" can be relaxed to
2213 * become a bound on the whole set. If so, add the (relaxed) inequality
2216 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2217 struct sh_data
*data
, struct isl_set
*set
, int i
)
2220 unsigned dim
= isl_basic_set_total_dim(bset
);
2222 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2223 for (k
= 0; k
< 2; ++k
) {
2224 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2225 add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2228 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2229 add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2233 /* Compute a superset of the convex hull of set that is described
2234 * by only translates of the constraints in the constituents of set.
2236 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2238 struct sh_data
*data
= NULL
;
2239 struct isl_basic_set
*hull
= NULL
;
2247 for (i
= 0; i
< set
->n
; ++i
) {
2250 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2253 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2257 data
= sh_data_alloc(set
, n_ineq
);
2261 for (i
= 0; i
< set
->n
; ++i
)
2262 hull
= add_bounds(hull
, data
, set
, i
);
2270 isl_basic_set_free(hull
);
2275 /* Compute a superset of the convex hull of map that is described
2276 * by only translates of the constraints in the constituents of map.
2278 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2280 struct isl_set
*set
= NULL
;
2281 struct isl_basic_map
*model
= NULL
;
2282 struct isl_basic_map
*hull
;
2283 struct isl_basic_map
*affine_hull
;
2284 struct isl_basic_set
*bset
= NULL
;
2289 hull
= isl_basic_map_empty_like_map(map
);
2294 hull
= isl_basic_map_copy(map
->p
[0]);
2299 map
= isl_map_detect_equalities(map
);
2300 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2301 map
= isl_map_align_divs(map
);
2302 model
= isl_basic_map_copy(map
->p
[0]);
2304 set
= isl_map_underlying_set(map
);
2306 bset
= uset_simple_hull(set
);
2308 hull
= isl_basic_map_overlying_set(bset
, model
);
2310 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2311 hull
= isl_basic_map_convex_hull(hull
);
2312 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2313 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2318 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2320 return (struct isl_basic_set
*)
2321 isl_map_simple_hull((struct isl_map
*)set
);
2324 /* Given a set "set", return parametric bounds on the dimension "dim".
2326 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2328 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2329 set
= isl_set_copy(set
);
2330 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2331 set
= isl_set_eliminate_dims(set
, 0, dim
);
2332 return isl_set_convex_hull(set
);
2335 /* Computes a "simple hull" and then check if each dimension in the
2336 * resulting hull is bounded by a symbolic constant. If not, the
2337 * hull is intersected with the corresponding bounds on the whole set.
2339 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2342 struct isl_basic_set
*hull
;
2343 unsigned nparam
, left
;
2344 int removed_divs
= 0;
2346 hull
= isl_set_simple_hull(isl_set_copy(set
));
2350 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2351 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2352 int lower
= 0, upper
= 0;
2353 struct isl_basic_set
*bounds
;
2355 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2356 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2357 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2359 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2366 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2367 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2369 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2371 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2374 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2385 if (!removed_divs
) {
2386 set
= isl_set_remove_divs(set
);
2391 bounds
= set_bounds(set
, i
);
2392 hull
= isl_basic_set_intersect(hull
, bounds
);