rename isl_basic_map_lex{min,max} to isl_basic_map_partial_lex{min,max}
[isl.git] / isl_convex_hull.c
blob1980cca99838309fe52034c6a03027f75c515eb0
1 #include "isl_lp.h"
2 #include "isl_map.h"
3 #include "isl_map_private.h"
4 #include "isl_mat.h"
5 #include "isl_set.h"
6 #include "isl_seq.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
10 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
12 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
14 isl_int *t;
16 if (i != j) {
17 t = bmap->ineq[i];
18 bmap->ineq[i] = bmap->ineq[j];
19 bmap->ineq[j] = t;
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
29 isl_int *c, isl_int *opt_n, isl_int *opt_d)
31 enum isl_lp_result res;
32 unsigned total;
33 int i, j;
35 if (!bmap)
36 return -1;
38 total = isl_basic_map_total_dim(*bmap);
39 for (i = 0; i < total; ++i) {
40 int sign;
41 if (isl_int_is_zero(c[1+i]))
42 continue;
43 sign = isl_int_sgn(c[1+i]);
44 for (j = 0; j < (*bmap)->n_ineq; ++j)
45 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
46 break;
47 if (j == (*bmap)->n_ineq)
48 break;
50 if (i < total)
51 return 0;
53 res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d);
54 if (res == isl_lp_unbounded)
55 return 0;
56 if (res == isl_lp_error)
57 return -1;
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
60 return 0;
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
78 * of a facet.
80 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
82 struct isl_tab *tab;
84 if (!bmap)
85 return NULL;
87 bmap = isl_basic_map_gauss(bmap, NULL);
88 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
89 return bmap;
90 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
91 return bmap;
92 if (bmap->n_ineq <= 1)
93 return bmap;
95 tab = isl_tab_from_basic_map(bmap);
96 tab = isl_tab_detect_equalities(tab);
97 tab = isl_tab_detect_redundant(tab);
98 bmap = isl_basic_map_update_from_tab(bmap, tab);
99 isl_tab_free(tab);
100 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
101 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
102 return bmap;
105 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
107 return (struct isl_basic_set *)
108 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
117 int first;
118 int j;
119 isl_int opt;
120 isl_int opt_denom;
122 isl_int_init(opt);
123 isl_int_init(opt_denom);
124 first = 1;
125 for (j = 0; j < set->n; ++j) {
126 enum isl_lp_result res;
128 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
129 continue;
131 res = isl_solve_lp((struct isl_basic_map*)set->p[j],
132 0, c, set->ctx->one, &opt, &opt_denom);
133 if (res == isl_lp_unbounded)
134 break;
135 if (res == isl_lp_error)
136 goto error;
137 if (res == isl_lp_empty) {
138 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
139 if (!set->p[j])
140 goto error;
141 continue;
143 if (!isl_int_is_one(opt_denom))
144 isl_seq_scale(c, c, opt_denom, len);
145 if (first || isl_int_is_neg(opt))
146 isl_int_sub(c[0], c[0], opt);
147 first = 0;
149 isl_int_clear(opt);
150 isl_int_clear(opt_denom);
151 return j >= set->n;
152 error:
153 isl_int_clear(opt);
154 isl_int_clear(opt_denom);
155 return -1;
158 /* Check if "c" is a direction that is independent of the previously found "n"
159 * bounds in "dirs".
160 * If so, add it to the list, with the negative of the lower bound
161 * in the constant position, i.e., such that c corresponds to a bounding
162 * hyperplane (but not necessarily a facet).
163 * Assumes set "set" is bounded.
165 static int is_independent_bound(struct isl_set *set, isl_int *c,
166 struct isl_mat *dirs, int n)
168 int is_bound;
169 int i = 0;
171 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
172 if (n != 0) {
173 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
174 if (pos < 0)
175 return 0;
176 for (i = 0; i < n; ++i) {
177 int pos_i;
178 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
179 if (pos_i < pos)
180 continue;
181 if (pos_i > pos)
182 break;
183 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
184 dirs->n_col-1, NULL);
185 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
186 if (pos < 0)
187 return 0;
191 is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col);
192 if (is_bound != 1)
193 return is_bound;
194 if (i < n) {
195 int k;
196 isl_int *t = dirs->row[n];
197 for (k = n; k > i; --k)
198 dirs->row[k] = dirs->row[k-1];
199 dirs->row[i] = t;
201 return 1;
204 /* Compute and return a maximal set of linearly independent bounds
205 * on the set "set", based on the constraints of the basic sets
206 * in "set".
208 static struct isl_mat *independent_bounds(struct isl_set *set)
210 int i, j, n;
211 struct isl_mat *dirs = NULL;
212 unsigned dim = isl_set_n_dim(set);
214 dirs = isl_mat_alloc(set->ctx, dim, 1+dim);
215 if (!dirs)
216 goto error;
218 n = 0;
219 for (i = 0; n < dim && i < set->n; ++i) {
220 int f;
221 struct isl_basic_set *bset = set->p[i];
223 for (j = 0; n < dim && j < bset->n_eq; ++j) {
224 f = is_independent_bound(set, bset->eq[j], dirs, n);
225 if (f < 0)
226 goto error;
227 if (f)
228 ++n;
230 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
231 f = is_independent_bound(set, bset->ineq[j], dirs, n);
232 if (f < 0)
233 goto error;
234 if (f)
235 ++n;
238 dirs->n_row = n;
239 return dirs;
240 error:
241 isl_mat_free(dirs);
242 return NULL;
245 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
247 if (!bset)
248 return NULL;
250 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
251 return bset;
253 bset = isl_basic_set_cow(bset);
254 if (!bset)
255 return NULL;
257 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
259 return isl_basic_set_finalize(bset);
262 static struct isl_set *isl_set_set_rational(struct isl_set *set)
264 int i;
266 set = isl_set_cow(set);
267 if (!set)
268 return NULL;
269 for (i = 0; i < set->n; ++i) {
270 set->p[i] = isl_basic_set_set_rational(set->p[i]);
271 if (!set->p[i])
272 goto error;
274 return set;
275 error:
276 isl_set_free(set);
277 return NULL;
280 static struct isl_basic_set *isl_basic_set_add_equality(
281 struct isl_basic_set *bset, isl_int *c)
283 int i;
284 unsigned total;
285 unsigned dim;
287 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
288 return bset;
290 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
291 isl_assert(ctx, bset->n_div == 0, goto error);
292 dim = isl_basic_set_n_dim(bset);
293 bset = isl_basic_set_cow(bset);
294 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
295 i = isl_basic_set_alloc_equality(bset);
296 if (i < 0)
297 goto error;
298 isl_seq_cpy(bset->eq[i], c, 1 + dim);
299 return bset;
300 error:
301 isl_basic_set_free(bset);
302 return NULL;
305 static struct isl_set *isl_set_add_equality(struct isl_set *set, isl_int *c)
307 int i;
309 set = isl_set_cow(set);
310 if (!set)
311 return NULL;
312 for (i = 0; i < set->n; ++i) {
313 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
314 if (!set->p[i])
315 goto error;
317 return set;
318 error:
319 isl_set_free(set);
320 return NULL;
323 /* Given a union of basic sets, construct the constraints for wrapping
324 * a facet around one of its ridges.
325 * In particular, if each of n the d-dimensional basic sets i in "set"
326 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
327 * and is defined by the constraints
328 * [ 1 ]
329 * A_i [ x ] >= 0
331 * then the resulting set is of dimension n*(1+d) and has as constraints
333 * [ a_i ]
334 * A_i [ x_i ] >= 0
336 * a_i >= 0
338 * \sum_i x_{i,1} = 1
340 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
342 struct isl_basic_set *lp;
343 unsigned n_eq;
344 unsigned n_ineq;
345 int i, j, k;
346 unsigned dim, lp_dim;
348 if (!set)
349 return NULL;
351 dim = 1 + isl_set_n_dim(set);
352 n_eq = 1;
353 n_ineq = set->n;
354 for (i = 0; i < set->n; ++i) {
355 n_eq += set->p[i]->n_eq;
356 n_ineq += set->p[i]->n_ineq;
358 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
359 if (!lp)
360 return NULL;
361 lp_dim = isl_basic_set_n_dim(lp);
362 k = isl_basic_set_alloc_equality(lp);
363 isl_int_set_si(lp->eq[k][0], -1);
364 for (i = 0; i < set->n; ++i) {
365 isl_int_set_si(lp->eq[k][1+dim*i], 0);
366 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
367 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
369 for (i = 0; i < set->n; ++i) {
370 k = isl_basic_set_alloc_inequality(lp);
371 isl_seq_clr(lp->ineq[k], 1+lp_dim);
372 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
374 for (j = 0; j < set->p[i]->n_eq; ++j) {
375 k = isl_basic_set_alloc_equality(lp);
376 isl_seq_clr(lp->eq[k], 1+dim*i);
377 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
378 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
381 for (j = 0; j < set->p[i]->n_ineq; ++j) {
382 k = isl_basic_set_alloc_inequality(lp);
383 isl_seq_clr(lp->ineq[k], 1+dim*i);
384 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
385 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
388 return lp;
391 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
392 * of that facet, compute the other facet of the convex hull that contains
393 * the ridge.
395 * We first transform the set such that the facet constraint becomes
397 * x_1 >= 0
399 * I.e., the facet lies in
401 * x_1 = 0
403 * and on that facet, the constraint that defines the ridge is
405 * x_2 >= 0
407 * (This transformation is not strictly needed, all that is needed is
408 * that the ridge contains the origin.)
410 * Since the ridge contains the origin, the cone of the convex hull
411 * will be of the form
413 * x_1 >= 0
414 * x_2 >= a x_1
416 * with this second constraint defining the new facet.
417 * The constant a is obtained by settting x_1 in the cone of the
418 * convex hull to 1 and minimizing x_2.
419 * Now, each element in the cone of the convex hull is the sum
420 * of elements in the cones of the basic sets.
421 * If a_i is the dilation factor of basic set i, then the problem
422 * we need to solve is
424 * min \sum_i x_{i,2}
425 * st
426 * \sum_i x_{i,1} = 1
427 * a_i >= 0
428 * [ a_i ]
429 * A [ x_i ] >= 0
431 * with
432 * [ 1 ]
433 * A_i [ x_i ] >= 0
435 * the constraints of each (transformed) basic set.
436 * If a = n/d, then the constraint defining the new facet (in the transformed
437 * space) is
439 * -n x_1 + d x_2 >= 0
441 * In the original space, we need to take the same combination of the
442 * corresponding constraints "facet" and "ridge".
444 * Note that a is always finite, since we only apply the wrapping
445 * technique to a union of polytopes.
447 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
449 int i;
450 struct isl_mat *T = NULL;
451 struct isl_basic_set *lp = NULL;
452 struct isl_vec *obj;
453 enum isl_lp_result res;
454 isl_int num, den;
455 unsigned dim;
457 set = isl_set_copy(set);
459 dim = 1 + isl_set_n_dim(set);
460 T = isl_mat_alloc(set->ctx, 3, dim);
461 if (!T)
462 goto error;
463 isl_int_set_si(T->row[0][0], 1);
464 isl_seq_clr(T->row[0]+1, dim - 1);
465 isl_seq_cpy(T->row[1], facet, dim);
466 isl_seq_cpy(T->row[2], ridge, dim);
467 T = isl_mat_right_inverse(T);
468 set = isl_set_preimage(set, T);
469 T = NULL;
470 if (!set)
471 goto error;
472 lp = wrap_constraints(set);
473 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
474 if (!obj)
475 goto error;
476 isl_int_set_si(obj->block.data[0], 0);
477 for (i = 0; i < set->n; ++i) {
478 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
479 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
480 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
482 isl_int_init(num);
483 isl_int_init(den);
484 res = isl_solve_lp((struct isl_basic_map *)lp, 0,
485 obj->block.data, set->ctx->one, &num, &den);
486 if (res == isl_lp_ok) {
487 isl_int_neg(num, num);
488 isl_seq_combine(facet, num, facet, den, ridge, dim);
490 isl_int_clear(num);
491 isl_int_clear(den);
492 isl_vec_free(obj);
493 isl_basic_set_free(lp);
494 isl_set_free(set);
495 isl_assert(set->ctx, res == isl_lp_ok, return NULL);
496 return facet;
497 error:
498 isl_basic_set_free(lp);
499 isl_mat_free(T);
500 isl_set_free(set);
501 return NULL;
504 /* Given a set of d linearly independent bounding constraints of the
505 * convex hull of "set", compute the constraint of a facet of "set".
507 * We first compute the intersection with the first bounding hyperplane
508 * and remove the component corresponding to this hyperplane from
509 * other bounds (in homogeneous space).
510 * We then wrap around one of the remaining bounding constraints
511 * and continue the process until all bounding constraints have been
512 * taken into account.
513 * The resulting linear combination of the bounding constraints will
514 * correspond to a facet of the convex hull.
516 static struct isl_mat *initial_facet_constraint(struct isl_set *set,
517 struct isl_mat *bounds)
519 struct isl_set *slice = NULL;
520 struct isl_basic_set *face = NULL;
521 struct isl_mat *m, *U, *Q;
522 int i;
523 unsigned dim = isl_set_n_dim(set);
525 isl_assert(ctx, set->n > 0, goto error);
526 isl_assert(ctx, bounds->n_row == dim, goto error);
528 while (bounds->n_row > 1) {
529 slice = isl_set_copy(set);
530 slice = isl_set_add_equality(slice, bounds->row[0]);
531 face = isl_set_affine_hull(slice);
532 if (!face)
533 goto error;
534 if (face->n_eq == 1) {
535 isl_basic_set_free(face);
536 break;
538 m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim);
539 if (!m)
540 goto error;
541 isl_int_set_si(m->row[0][0], 1);
542 isl_seq_clr(m->row[0]+1, dim);
543 for (i = 0; i < face->n_eq; ++i)
544 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
545 U = isl_mat_right_inverse(m);
546 Q = isl_mat_right_inverse(isl_mat_copy(U));
547 U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq);
548 Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq);
549 U = isl_mat_drop_cols(U, 0, 1);
550 Q = isl_mat_drop_rows(Q, 0, 1);
551 bounds = isl_mat_product(bounds, U);
552 bounds = isl_mat_product(bounds, Q);
553 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
554 bounds->n_col) == -1) {
555 bounds->n_row--;
556 isl_assert(ctx, bounds->n_row > 1, goto error);
558 if (!wrap_facet(set, bounds->row[0],
559 bounds->row[bounds->n_row-1]))
560 goto error;
561 isl_basic_set_free(face);
562 bounds->n_row--;
564 return bounds;
565 error:
566 isl_basic_set_free(face);
567 isl_mat_free(bounds);
568 return NULL;
571 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
572 * compute a hyperplane description of the facet, i.e., compute the facets
573 * of the facet.
575 * We compute an affine transformation that transforms the constraint
577 * [ 1 ]
578 * c [ x ] = 0
580 * to the constraint
582 * z_1 = 0
584 * by computing the right inverse U of a matrix that starts with the rows
586 * [ 1 0 ]
587 * [ c ]
589 * Then
590 * [ 1 ] [ 1 ]
591 * [ x ] = U [ z ]
592 * and
593 * [ 1 ] [ 1 ]
594 * [ z ] = Q [ x ]
596 * with Q = U^{-1}
597 * Since z_1 is zero, we can drop this variable as well as the corresponding
598 * column of U to obtain
600 * [ 1 ] [ 1 ]
601 * [ x ] = U' [ z' ]
602 * and
603 * [ 1 ] [ 1 ]
604 * [ z' ] = Q' [ x ]
606 * with Q' equal to Q, but without the corresponding row.
607 * After computing the facets of the facet in the z' space,
608 * we convert them back to the x space through Q.
610 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
612 struct isl_mat *m, *U, *Q;
613 struct isl_basic_set *facet = NULL;
614 struct isl_ctx *ctx;
615 unsigned dim;
617 ctx = set->ctx;
618 set = isl_set_copy(set);
619 dim = isl_set_n_dim(set);
620 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
621 if (!m)
622 goto error;
623 isl_int_set_si(m->row[0][0], 1);
624 isl_seq_clr(m->row[0]+1, dim);
625 isl_seq_cpy(m->row[1], c, 1+dim);
626 U = isl_mat_right_inverse(m);
627 Q = isl_mat_right_inverse(isl_mat_copy(U));
628 U = isl_mat_drop_cols(U, 1, 1);
629 Q = isl_mat_drop_rows(Q, 1, 1);
630 set = isl_set_preimage(set, U);
631 facet = uset_convex_hull_wrap_bounded(set);
632 facet = isl_basic_set_preimage(facet, Q);
633 isl_assert(ctx, facet->n_eq == 0, goto error);
634 return facet;
635 error:
636 isl_basic_set_free(facet);
637 isl_set_free(set);
638 return NULL;
641 /* Given an initial facet constraint, compute the remaining facets.
642 * We do this by running through all facets found so far and computing
643 * the adjacent facets through wrapping, adding those facets that we
644 * hadn't already found before.
646 * For each facet we have found so far, we first compute its facets
647 * in the resulting convex hull. That is, we compute the ridges
648 * of the resulting convex hull contained in the facet.
649 * We also compute the corresponding facet in the current approximation
650 * of the convex hull. There is no need to wrap around the ridges
651 * in this facet since that would result in a facet that is already
652 * present in the current approximation.
654 * This function can still be significantly optimized by checking which of
655 * the facets of the basic sets are also facets of the convex hull and
656 * using all the facets so far to help in constructing the facets of the
657 * facets
658 * and/or
659 * using the technique in section "3.1 Ridge Generation" of
660 * "Extended Convex Hull" by Fukuda et al.
662 static struct isl_basic_set *extend(struct isl_basic_set *hull,
663 struct isl_set *set)
665 int i, j, f;
666 int k;
667 struct isl_basic_set *facet = NULL;
668 struct isl_basic_set *hull_facet = NULL;
669 unsigned total;
670 unsigned dim;
672 isl_assert(set->ctx, set->n > 0, goto error);
674 dim = isl_set_n_dim(set);
676 for (i = 0; i < hull->n_ineq; ++i) {
677 facet = compute_facet(set, hull->ineq[i]);
678 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
679 facet = isl_basic_set_gauss(facet, NULL);
680 facet = isl_basic_set_normalize_constraints(facet);
681 hull_facet = isl_basic_set_copy(hull);
682 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
683 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
684 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
685 if (!facet)
686 goto error;
687 hull = isl_basic_set_cow(hull);
688 hull = isl_basic_set_extend_dim(hull,
689 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
690 for (j = 0; j < facet->n_ineq; ++j) {
691 for (f = 0; f < hull_facet->n_ineq; ++f)
692 if (isl_seq_eq(facet->ineq[j],
693 hull_facet->ineq[f], 1 + dim))
694 break;
695 if (f < hull_facet->n_ineq)
696 continue;
697 k = isl_basic_set_alloc_inequality(hull);
698 if (k < 0)
699 goto error;
700 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
701 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
702 goto error;
704 isl_basic_set_free(hull_facet);
705 isl_basic_set_free(facet);
707 hull = isl_basic_set_simplify(hull);
708 hull = isl_basic_set_finalize(hull);
709 return hull;
710 error:
711 isl_basic_set_free(hull_facet);
712 isl_basic_set_free(facet);
713 isl_basic_set_free(hull);
714 return NULL;
717 /* Special case for computing the convex hull of a one dimensional set.
718 * We simply collect the lower and upper bounds of each basic set
719 * and the biggest of those.
721 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
723 struct isl_mat *c = NULL;
724 isl_int *lower = NULL;
725 isl_int *upper = NULL;
726 int i, j, k;
727 isl_int a, b;
728 struct isl_basic_set *hull;
730 for (i = 0; i < set->n; ++i) {
731 set->p[i] = isl_basic_set_simplify(set->p[i]);
732 if (!set->p[i])
733 goto error;
735 set = isl_set_remove_empty_parts(set);
736 if (!set)
737 goto error;
738 isl_assert(set->ctx, set->n > 0, goto error);
739 c = isl_mat_alloc(set->ctx, 2, 2);
740 if (!c)
741 goto error;
743 if (set->p[0]->n_eq > 0) {
744 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
745 lower = c->row[0];
746 upper = c->row[1];
747 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
748 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
749 isl_seq_neg(upper, set->p[0]->eq[0], 2);
750 } else {
751 isl_seq_neg(lower, set->p[0]->eq[0], 2);
752 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
754 } else {
755 for (j = 0; j < set->p[0]->n_ineq; ++j) {
756 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
757 lower = c->row[0];
758 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
759 } else {
760 upper = c->row[1];
761 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
766 isl_int_init(a);
767 isl_int_init(b);
768 for (i = 0; i < set->n; ++i) {
769 struct isl_basic_set *bset = set->p[i];
770 int has_lower = 0;
771 int has_upper = 0;
773 for (j = 0; j < bset->n_eq; ++j) {
774 has_lower = 1;
775 has_upper = 1;
776 if (lower) {
777 isl_int_mul(a, lower[0], bset->eq[j][1]);
778 isl_int_mul(b, lower[1], bset->eq[j][0]);
779 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
780 isl_seq_cpy(lower, bset->eq[j], 2);
781 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
782 isl_seq_neg(lower, bset->eq[j], 2);
784 if (upper) {
785 isl_int_mul(a, upper[0], bset->eq[j][1]);
786 isl_int_mul(b, upper[1], bset->eq[j][0]);
787 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
788 isl_seq_neg(upper, bset->eq[j], 2);
789 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
790 isl_seq_cpy(upper, bset->eq[j], 2);
793 for (j = 0; j < bset->n_ineq; ++j) {
794 if (isl_int_is_pos(bset->ineq[j][1]))
795 has_lower = 1;
796 if (isl_int_is_neg(bset->ineq[j][1]))
797 has_upper = 1;
798 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
799 isl_int_mul(a, lower[0], bset->ineq[j][1]);
800 isl_int_mul(b, lower[1], bset->ineq[j][0]);
801 if (isl_int_lt(a, b))
802 isl_seq_cpy(lower, bset->ineq[j], 2);
804 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
805 isl_int_mul(a, upper[0], bset->ineq[j][1]);
806 isl_int_mul(b, upper[1], bset->ineq[j][0]);
807 if (isl_int_gt(a, b))
808 isl_seq_cpy(upper, bset->ineq[j], 2);
811 if (!has_lower)
812 lower = NULL;
813 if (!has_upper)
814 upper = NULL;
816 isl_int_clear(a);
817 isl_int_clear(b);
819 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
820 hull = isl_basic_set_set_rational(hull);
821 if (!hull)
822 goto error;
823 if (lower) {
824 k = isl_basic_set_alloc_inequality(hull);
825 isl_seq_cpy(hull->ineq[k], lower, 2);
827 if (upper) {
828 k = isl_basic_set_alloc_inequality(hull);
829 isl_seq_cpy(hull->ineq[k], upper, 2);
831 hull = isl_basic_set_finalize(hull);
832 isl_set_free(set);
833 isl_mat_free(c);
834 return hull;
835 error:
836 isl_set_free(set);
837 isl_mat_free(c);
838 return NULL;
841 /* Project out final n dimensions using Fourier-Motzkin */
842 static struct isl_set *set_project_out(struct isl_ctx *ctx,
843 struct isl_set *set, unsigned n)
845 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
848 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
850 struct isl_basic_set *convex_hull;
852 if (!set)
853 return NULL;
855 if (isl_set_is_empty(set))
856 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
857 else
858 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
859 isl_set_free(set);
860 return convex_hull;
863 /* Compute the convex hull of a pair of basic sets without any parameters or
864 * integer divisions using Fourier-Motzkin elimination.
865 * The convex hull is the set of all points that can be written as
866 * the sum of points from both basic sets (in homogeneous coordinates).
867 * We set up the constraints in a space with dimensions for each of
868 * the three sets and then project out the dimensions corresponding
869 * to the two original basic sets, retaining only those corresponding
870 * to the convex hull.
872 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
873 struct isl_basic_set *bset2)
875 int i, j, k;
876 struct isl_basic_set *bset[2];
877 struct isl_basic_set *hull = NULL;
878 unsigned dim;
880 if (!bset1 || !bset2)
881 goto error;
883 dim = isl_basic_set_n_dim(bset1);
884 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
885 1 + dim + bset1->n_eq + bset2->n_eq,
886 2 + bset1->n_ineq + bset2->n_ineq);
887 bset[0] = bset1;
888 bset[1] = bset2;
889 for (i = 0; i < 2; ++i) {
890 for (j = 0; j < bset[i]->n_eq; ++j) {
891 k = isl_basic_set_alloc_equality(hull);
892 if (k < 0)
893 goto error;
894 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
895 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
896 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
897 1+dim);
899 for (j = 0; j < bset[i]->n_ineq; ++j) {
900 k = isl_basic_set_alloc_inequality(hull);
901 if (k < 0)
902 goto error;
903 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
904 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
905 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
906 bset[i]->ineq[j], 1+dim);
908 k = isl_basic_set_alloc_inequality(hull);
909 if (k < 0)
910 goto error;
911 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
912 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
914 for (j = 0; j < 1+dim; ++j) {
915 k = isl_basic_set_alloc_equality(hull);
916 if (k < 0)
917 goto error;
918 isl_seq_clr(hull->eq[k], 1+2+3*dim);
919 isl_int_set_si(hull->eq[k][j], -1);
920 isl_int_set_si(hull->eq[k][1+dim+j], 1);
921 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
923 hull = isl_basic_set_set_rational(hull);
924 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
925 hull = isl_basic_set_convex_hull(hull);
926 isl_basic_set_free(bset1);
927 isl_basic_set_free(bset2);
928 return hull;
929 error:
930 isl_basic_set_free(bset1);
931 isl_basic_set_free(bset2);
932 isl_basic_set_free(hull);
933 return NULL;
936 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
938 struct isl_tab *tab;
939 int bounded;
941 tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset);
942 bounded = isl_tab_cone_is_bounded(tab);
943 isl_tab_free(tab);
944 return bounded;
947 static int isl_set_is_bounded(struct isl_set *set)
949 int i;
951 for (i = 0; i < set->n; ++i) {
952 int bounded = isl_basic_set_is_bounded(set->p[i]);
953 if (!bounded || bounded < 0)
954 return bounded;
956 return 1;
959 /* Compute the lineality space of the convex hull of bset1 and bset2.
961 * We first compute the intersection of the recession cone of bset1
962 * with the negative of the recession cone of bset2 and then compute
963 * the linear hull of the resulting cone.
965 static struct isl_basic_set *induced_lineality_space(
966 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
968 int i, k;
969 struct isl_basic_set *lin = NULL;
970 unsigned dim;
972 if (!bset1 || !bset2)
973 goto error;
975 dim = isl_basic_set_total_dim(bset1);
976 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
977 bset1->n_eq + bset2->n_eq,
978 bset1->n_ineq + bset2->n_ineq);
979 lin = isl_basic_set_set_rational(lin);
980 if (!lin)
981 goto error;
982 for (i = 0; i < bset1->n_eq; ++i) {
983 k = isl_basic_set_alloc_equality(lin);
984 if (k < 0)
985 goto error;
986 isl_int_set_si(lin->eq[k][0], 0);
987 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
989 for (i = 0; i < bset1->n_ineq; ++i) {
990 k = isl_basic_set_alloc_inequality(lin);
991 if (k < 0)
992 goto error;
993 isl_int_set_si(lin->ineq[k][0], 0);
994 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
996 for (i = 0; i < bset2->n_eq; ++i) {
997 k = isl_basic_set_alloc_equality(lin);
998 if (k < 0)
999 goto error;
1000 isl_int_set_si(lin->eq[k][0], 0);
1001 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
1003 for (i = 0; i < bset2->n_ineq; ++i) {
1004 k = isl_basic_set_alloc_inequality(lin);
1005 if (k < 0)
1006 goto error;
1007 isl_int_set_si(lin->ineq[k][0], 0);
1008 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
1011 isl_basic_set_free(bset1);
1012 isl_basic_set_free(bset2);
1013 return isl_basic_set_affine_hull(lin);
1014 error:
1015 isl_basic_set_free(lin);
1016 isl_basic_set_free(bset1);
1017 isl_basic_set_free(bset2);
1018 return NULL;
1021 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
1023 /* Given a set and a linear space "lin" of dimension n > 0,
1024 * project the linear space from the set, compute the convex hull
1025 * and then map the set back to the original space.
1027 * Let
1029 * M x = 0
1031 * describe the linear space. We first compute the Hermite normal
1032 * form H = M U of M = H Q, to obtain
1034 * H Q x = 0
1036 * The last n rows of H will be zero, so the last n variables of x' = Q x
1037 * are the one we want to project out. We do this by transforming each
1038 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1039 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1040 * we transform the hull back to the original space as A' Q_1 x >= b',
1041 * with Q_1 all but the last n rows of Q.
1043 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1044 struct isl_basic_set *lin)
1046 unsigned total = isl_basic_set_total_dim(lin);
1047 unsigned lin_dim;
1048 struct isl_basic_set *hull;
1049 struct isl_mat *M, *U, *Q;
1051 if (!set || !lin)
1052 goto error;
1053 lin_dim = total - lin->n_eq;
1054 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1055 M = isl_mat_left_hermite(M, 0, &U, &Q);
1056 if (!M)
1057 goto error;
1058 isl_mat_free(M);
1059 isl_basic_set_free(lin);
1061 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1063 U = isl_mat_lin_to_aff(U);
1064 Q = isl_mat_lin_to_aff(Q);
1066 set = isl_set_preimage(set, U);
1067 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1068 hull = uset_convex_hull(set);
1069 hull = isl_basic_set_preimage(hull, Q);
1071 return hull;
1072 error:
1073 isl_basic_set_free(lin);
1074 isl_set_free(set);
1075 return NULL;
1078 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1079 * set up an LP for solving
1081 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1083 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1084 * The next \alpha{ij} correspond to the equalities and come in pairs.
1085 * The final \alpha{ij} correspond to the inequalities.
1087 static struct isl_basic_set *valid_direction_lp(
1088 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1090 struct isl_dim *dim;
1091 struct isl_basic_set *lp;
1092 unsigned d;
1093 int n;
1094 int i, j, k;
1096 if (!bset1 || !bset2)
1097 goto error;
1098 d = 1 + isl_basic_set_total_dim(bset1);
1099 n = 2 +
1100 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1101 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1102 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1103 if (!lp)
1104 goto error;
1105 for (i = 0; i < n; ++i) {
1106 k = isl_basic_set_alloc_inequality(lp);
1107 if (k < 0)
1108 goto error;
1109 isl_seq_clr(lp->ineq[k] + 1, n);
1110 isl_int_set_si(lp->ineq[k][0], -1);
1111 isl_int_set_si(lp->ineq[k][1 + i], 1);
1113 for (i = 0; i < d; ++i) {
1114 k = isl_basic_set_alloc_equality(lp);
1115 if (k < 0)
1116 goto error;
1117 n = 0;
1118 isl_int_set_si(lp->eq[k][n++], 0);
1119 /* positivity constraint 1 >= 0 */
1120 isl_int_set_si(lp->eq[k][n++], i == 0);
1121 for (j = 0; j < bset1->n_eq; ++j) {
1122 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1123 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1125 for (j = 0; j < bset1->n_ineq; ++j)
1126 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1127 /* positivity constraint 1 >= 0 */
1128 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1129 for (j = 0; j < bset2->n_eq; ++j) {
1130 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1131 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1133 for (j = 0; j < bset2->n_ineq; ++j)
1134 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1136 lp = isl_basic_set_gauss(lp, NULL);
1137 isl_basic_set_free(bset1);
1138 isl_basic_set_free(bset2);
1139 return lp;
1140 error:
1141 isl_basic_set_free(bset1);
1142 isl_basic_set_free(bset2);
1143 return NULL;
1146 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1147 * for all rays in the homogeneous space of the two cones that correspond
1148 * to the input polyhedra bset1 and bset2.
1150 * We compute s as a vector that satisfies
1152 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1154 * with h_{ij} the normals of the facets of polyhedron i
1155 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1156 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1157 * We first set up an LP with as variables the \alpha{ij}.
1158 * In this formulateion, for each polyhedron i,
1159 * the first constraint is the positivity constraint, followed by pairs
1160 * of variables for the equalities, followed by variables for the inequalities.
1161 * We then simply pick a feasible solution and compute s using (*).
1163 * Note that we simply pick any valid direction and make no attempt
1164 * to pick a "good" or even the "best" valid direction.
1166 static struct isl_vec *valid_direction(
1167 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1169 struct isl_basic_set *lp;
1170 struct isl_tab *tab;
1171 struct isl_vec *sample = NULL;
1172 struct isl_vec *dir;
1173 unsigned d;
1174 int i;
1175 int n;
1177 if (!bset1 || !bset2)
1178 goto error;
1179 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1180 isl_basic_set_copy(bset2));
1181 tab = isl_tab_from_basic_set(lp);
1182 sample = isl_tab_get_sample_value(tab);
1183 isl_tab_free(tab);
1184 isl_basic_set_free(lp);
1185 if (!sample)
1186 goto error;
1187 d = isl_basic_set_total_dim(bset1);
1188 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1189 if (!dir)
1190 goto error;
1191 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1192 n = 1;
1193 /* positivity constraint 1 >= 0 */
1194 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1195 for (i = 0; i < bset1->n_eq; ++i) {
1196 isl_int_sub(sample->block.data[n],
1197 sample->block.data[n], sample->block.data[n+1]);
1198 isl_seq_combine(dir->block.data,
1199 bset1->ctx->one, dir->block.data,
1200 sample->block.data[n], bset1->eq[i], 1 + d);
1202 n += 2;
1204 for (i = 0; i < bset1->n_ineq; ++i)
1205 isl_seq_combine(dir->block.data,
1206 bset1->ctx->one, dir->block.data,
1207 sample->block.data[n++], bset1->ineq[i], 1 + d);
1208 isl_vec_free(sample);
1209 isl_basic_set_free(bset1);
1210 isl_basic_set_free(bset2);
1211 isl_seq_normalize(dir->block.data + 1, dir->size - 1);
1212 return dir;
1213 error:
1214 isl_vec_free(sample);
1215 isl_basic_set_free(bset1);
1216 isl_basic_set_free(bset2);
1217 return NULL;
1220 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1221 * compute b_i' + A_i' x' >= 0, with
1223 * [ b_i A_i ] [ y' ] [ y' ]
1224 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1226 * In particular, add the "positivity constraint" and then perform
1227 * the mapping.
1229 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1230 struct isl_mat *T)
1232 int k;
1234 if (!bset)
1235 goto error;
1236 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1237 k = isl_basic_set_alloc_inequality(bset);
1238 if (k < 0)
1239 goto error;
1240 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1241 isl_int_set_si(bset->ineq[k][0], 1);
1242 bset = isl_basic_set_preimage(bset, T);
1243 return bset;
1244 error:
1245 isl_mat_free(T);
1246 isl_basic_set_free(bset);
1247 return NULL;
1250 /* Compute the convex hull of a pair of basic sets without any parameters or
1251 * integer divisions, where the convex hull is known to be pointed,
1252 * but the basic sets may be unbounded.
1254 * We turn this problem into the computation of a convex hull of a pair
1255 * _bounded_ polyhedra by "changing the direction of the homogeneous
1256 * dimension". This idea is due to Matthias Koeppe.
1258 * Consider the cones in homogeneous space that correspond to the
1259 * input polyhedra. The rays of these cones are also rays of the
1260 * polyhedra if the coordinate that corresponds to the homogeneous
1261 * dimension is zero. That is, if the inner product of the rays
1262 * with the homogeneous direction is zero.
1263 * The cones in the homogeneous space can also be considered to
1264 * correspond to other pairs of polyhedra by chosing a different
1265 * homogeneous direction. To ensure that both of these polyhedra
1266 * are bounded, we need to make sure that all rays of the cones
1267 * correspond to vertices and not to rays.
1268 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1269 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1270 * The vector s is computed in valid_direction.
1272 * Note that we need to consider _all_ rays of the cones and not just
1273 * the rays that correspond to rays in the polyhedra. If we were to
1274 * only consider those rays and turn them into vertices, then we
1275 * may inadvertently turn some vertices into rays.
1277 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1278 * We therefore transform the two polyhedra such that the selected
1279 * direction is mapped onto this standard direction and then proceed
1280 * with the normal computation.
1281 * Let S be a non-singular square matrix with s as its first row,
1282 * then we want to map the polyhedra to the space
1284 * [ y' ] [ y ] [ y ] [ y' ]
1285 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1287 * We take S to be the unimodular completion of s to limit the growth
1288 * of the coefficients in the following computations.
1290 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1291 * We first move to the homogeneous dimension
1293 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1294 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1296 * Then we change directoin
1298 * [ b_i A_i ] [ y' ] [ y' ]
1299 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1301 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1302 * resulting in b' + A' x' >= 0, which we then convert back
1304 * [ y ] [ y ]
1305 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1307 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1309 static struct isl_basic_set *convex_hull_pair_pointed(
1310 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1312 struct isl_ctx *ctx = NULL;
1313 struct isl_vec *dir = NULL;
1314 struct isl_mat *T = NULL;
1315 struct isl_mat *T2 = NULL;
1316 struct isl_basic_set *hull;
1317 struct isl_set *set;
1319 if (!bset1 || !bset2)
1320 goto error;
1321 ctx = bset1->ctx;
1322 dir = valid_direction(isl_basic_set_copy(bset1),
1323 isl_basic_set_copy(bset2));
1324 if (!dir)
1325 goto error;
1326 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1327 if (!T)
1328 goto error;
1329 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1330 T = isl_mat_unimodular_complete(T, 1);
1331 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1333 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1334 bset2 = homogeneous_map(bset2, T2);
1335 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1336 set = isl_set_add(set, bset1);
1337 set = isl_set_add(set, bset2);
1338 hull = uset_convex_hull(set);
1339 hull = isl_basic_set_preimage(hull, T);
1341 isl_vec_free(dir);
1343 return hull;
1344 error:
1345 isl_vec_free(dir);
1346 isl_basic_set_free(bset1);
1347 isl_basic_set_free(bset2);
1348 return NULL;
1351 /* Compute the convex hull of a pair of basic sets without any parameters or
1352 * integer divisions.
1354 * If the convex hull of the two basic sets would have a non-trivial
1355 * lineality space, we first project out this lineality space.
1357 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1358 struct isl_basic_set *bset2)
1360 struct isl_basic_set *lin;
1362 if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2))
1363 return convex_hull_pair_pointed(bset1, bset2);
1365 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1366 isl_basic_set_copy(bset2));
1367 if (!lin)
1368 goto error;
1369 if (isl_basic_set_is_universe(lin)) {
1370 isl_basic_set_free(bset1);
1371 isl_basic_set_free(bset2);
1372 return lin;
1374 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1375 struct isl_set *set;
1376 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1377 set = isl_set_add(set, bset1);
1378 set = isl_set_add(set, bset2);
1379 return modulo_lineality(set, lin);
1381 isl_basic_set_free(lin);
1383 return convex_hull_pair_pointed(bset1, bset2);
1384 error:
1385 isl_basic_set_free(bset1);
1386 isl_basic_set_free(bset2);
1387 return NULL;
1390 /* Compute the lineality space of a basic set.
1391 * We currently do not allow the basic set to have any divs.
1392 * We basically just drop the constants and turn every inequality
1393 * into an equality.
1395 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1397 int i, k;
1398 struct isl_basic_set *lin = NULL;
1399 unsigned dim;
1401 if (!bset)
1402 goto error;
1403 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1404 dim = isl_basic_set_total_dim(bset);
1406 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1407 if (!lin)
1408 goto error;
1409 for (i = 0; i < bset->n_eq; ++i) {
1410 k = isl_basic_set_alloc_equality(lin);
1411 if (k < 0)
1412 goto error;
1413 isl_int_set_si(lin->eq[k][0], 0);
1414 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1416 lin = isl_basic_set_gauss(lin, NULL);
1417 if (!lin)
1418 goto error;
1419 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1420 k = isl_basic_set_alloc_equality(lin);
1421 if (k < 0)
1422 goto error;
1423 isl_int_set_si(lin->eq[k][0], 0);
1424 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1425 lin = isl_basic_set_gauss(lin, NULL);
1426 if (!lin)
1427 goto error;
1429 isl_basic_set_free(bset);
1430 return lin;
1431 error:
1432 isl_basic_set_free(lin);
1433 isl_basic_set_free(bset);
1434 return NULL;
1437 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1438 * "underlying" set "set".
1440 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1442 int i;
1443 struct isl_set *lin = NULL;
1445 if (!set)
1446 return NULL;
1447 if (set->n == 0) {
1448 struct isl_dim *dim = isl_set_get_dim(set);
1449 isl_set_free(set);
1450 return isl_basic_set_empty(dim);
1453 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1454 for (i = 0; i < set->n; ++i)
1455 lin = isl_set_add(lin,
1456 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1457 isl_set_free(set);
1458 return isl_set_affine_hull(lin);
1461 /* Compute the convex hull of a set without any parameters or
1462 * integer divisions.
1463 * In each step, we combined two basic sets until only one
1464 * basic set is left.
1465 * The input basic sets are assumed not to have a non-trivial
1466 * lineality space. If any of the intermediate results has
1467 * a non-trivial lineality space, it is projected out.
1469 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1471 struct isl_basic_set *convex_hull = NULL;
1473 convex_hull = isl_set_copy_basic_set(set);
1474 set = isl_set_drop_basic_set(set, convex_hull);
1475 if (!set)
1476 goto error;
1477 while (set->n > 0) {
1478 struct isl_basic_set *t;
1479 t = isl_set_copy_basic_set(set);
1480 if (!t)
1481 goto error;
1482 set = isl_set_drop_basic_set(set, t);
1483 if (!set)
1484 goto error;
1485 convex_hull = convex_hull_pair(convex_hull, t);
1486 if (set->n == 0)
1487 break;
1488 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1489 if (!t)
1490 goto error;
1491 if (isl_basic_set_is_universe(t)) {
1492 isl_basic_set_free(convex_hull);
1493 convex_hull = t;
1494 break;
1496 if (t->n_eq < isl_basic_set_total_dim(t)) {
1497 set = isl_set_add(set, convex_hull);
1498 return modulo_lineality(set, t);
1500 isl_basic_set_free(t);
1502 isl_set_free(set);
1503 return convex_hull;
1504 error:
1505 isl_set_free(set);
1506 isl_basic_set_free(convex_hull);
1507 return NULL;
1510 /* Compute an initial hull for wrapping containing a single initial
1511 * facet by first computing bounds on the set and then using these
1512 * bounds to construct an initial facet.
1513 * This function is a remnant of an older implementation where the
1514 * bounds were also used to check whether the set was bounded.
1515 * Since this function will now only be called when we know the
1516 * set to be bounded, the initial facet should probably be constructed
1517 * by simply using the coordinate directions instead.
1519 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1520 struct isl_set *set)
1522 struct isl_mat *bounds = NULL;
1523 unsigned dim;
1524 int k;
1526 if (!hull)
1527 goto error;
1528 bounds = independent_bounds(set);
1529 if (!bounds)
1530 goto error;
1531 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1532 bounds = initial_facet_constraint(set, bounds);
1533 if (!bounds)
1534 goto error;
1535 k = isl_basic_set_alloc_inequality(hull);
1536 if (k < 0)
1537 goto error;
1538 dim = isl_set_n_dim(set);
1539 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1540 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1541 isl_mat_free(bounds);
1543 return hull;
1544 error:
1545 isl_basic_set_free(hull);
1546 isl_mat_free(bounds);
1547 return NULL;
1550 struct max_constraint {
1551 struct isl_mat *c;
1552 int count;
1553 int ineq;
1556 static int max_constraint_equal(const void *entry, const void *val)
1558 struct max_constraint *a = (struct max_constraint *)entry;
1559 isl_int *b = (isl_int *)val;
1561 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1564 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1565 isl_int *con, unsigned len, int n, int ineq)
1567 struct isl_hash_table_entry *entry;
1568 struct max_constraint *c;
1569 uint32_t c_hash;
1571 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1572 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1573 con + 1, 0);
1574 if (!entry)
1575 return;
1576 c = entry->data;
1577 if (c->count < n) {
1578 isl_hash_table_remove(ctx, table, entry);
1579 return;
1581 c->count++;
1582 if (isl_int_gt(c->c->row[0][0], con[0]))
1583 return;
1584 if (isl_int_eq(c->c->row[0][0], con[0])) {
1585 if (ineq)
1586 c->ineq = ineq;
1587 return;
1589 c->c = isl_mat_cow(c->c);
1590 isl_int_set(c->c->row[0][0], con[0]);
1591 c->ineq = ineq;
1594 /* Check whether the constraint hash table "table" constains the constraint
1595 * "con".
1597 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1598 isl_int *con, unsigned len, int n)
1600 struct isl_hash_table_entry *entry;
1601 struct max_constraint *c;
1602 uint32_t c_hash;
1604 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1605 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1606 con + 1, 0);
1607 if (!entry)
1608 return 0;
1609 c = entry->data;
1610 if (c->count < n)
1611 return 0;
1612 return isl_int_eq(c->c->row[0][0], con[0]);
1615 /* Check for inequality constraints of a basic set without equalities
1616 * such that the same or more stringent copies of the constraint appear
1617 * in all of the basic sets. Such constraints are necessarily facet
1618 * constraints of the convex hull.
1620 * If the resulting basic set is by chance identical to one of
1621 * the basic sets in "set", then we know that this basic set contains
1622 * all other basic sets and is therefore the convex hull of set.
1623 * In this case we set *is_hull to 1.
1625 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1626 struct isl_set *set, int *is_hull)
1628 int i, j, s, n;
1629 int min_constraints;
1630 int best;
1631 struct max_constraint *constraints = NULL;
1632 struct isl_hash_table *table = NULL;
1633 unsigned total;
1635 *is_hull = 0;
1637 for (i = 0; i < set->n; ++i)
1638 if (set->p[i]->n_eq == 0)
1639 break;
1640 if (i >= set->n)
1641 return hull;
1642 min_constraints = set->p[i]->n_ineq;
1643 best = i;
1644 for (i = best + 1; i < set->n; ++i) {
1645 if (set->p[i]->n_eq != 0)
1646 continue;
1647 if (set->p[i]->n_ineq >= min_constraints)
1648 continue;
1649 min_constraints = set->p[i]->n_ineq;
1650 best = i;
1652 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1653 min_constraints);
1654 if (!constraints)
1655 return hull;
1656 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1657 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1658 goto error;
1660 total = isl_dim_total(set->dim);
1661 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1662 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1663 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1664 if (!constraints[i].c)
1665 goto error;
1666 constraints[i].ineq = 1;
1668 for (i = 0; i < min_constraints; ++i) {
1669 struct isl_hash_table_entry *entry;
1670 uint32_t c_hash;
1671 c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total,
1672 isl_hash_init());
1673 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1674 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1675 if (!entry)
1676 goto error;
1677 isl_assert(hull->ctx, !entry->data, goto error);
1678 entry->data = &constraints[i];
1681 n = 0;
1682 for (s = 0; s < set->n; ++s) {
1683 if (s == best)
1684 continue;
1686 for (i = 0; i < set->p[s]->n_eq; ++i) {
1687 isl_int *eq = set->p[s]->eq[i];
1688 for (j = 0; j < 2; ++j) {
1689 isl_seq_neg(eq, eq, 1 + total);
1690 update_constraint(hull->ctx, table,
1691 eq, total, n, 0);
1694 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1695 isl_int *ineq = set->p[s]->ineq[i];
1696 update_constraint(hull->ctx, table, ineq, total, n,
1697 set->p[s]->n_eq == 0);
1699 ++n;
1702 for (i = 0; i < min_constraints; ++i) {
1703 if (constraints[i].count < n)
1704 continue;
1705 if (!constraints[i].ineq)
1706 continue;
1707 j = isl_basic_set_alloc_inequality(hull);
1708 if (j < 0)
1709 goto error;
1710 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1713 for (s = 0; s < set->n; ++s) {
1714 if (set->p[s]->n_eq)
1715 continue;
1716 if (set->p[s]->n_ineq != hull->n_ineq)
1717 continue;
1718 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1719 isl_int *ineq = set->p[s]->ineq[i];
1720 if (!has_constraint(hull->ctx, table, ineq, total, n))
1721 break;
1723 if (i == set->p[s]->n_ineq)
1724 *is_hull = 1;
1727 isl_hash_table_clear(table);
1728 for (i = 0; i < min_constraints; ++i)
1729 isl_mat_free(constraints[i].c);
1730 free(constraints);
1731 free(table);
1732 return hull;
1733 error:
1734 isl_hash_table_clear(table);
1735 free(table);
1736 if (constraints)
1737 for (i = 0; i < min_constraints; ++i)
1738 isl_mat_free(constraints[i].c);
1739 free(constraints);
1740 return hull;
1743 /* Create a template for the convex hull of "set" and fill it up
1744 * obvious facet constraints, if any. If the result happens to
1745 * be the convex hull of "set" then *is_hull is set to 1.
1747 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1749 struct isl_basic_set *hull;
1750 unsigned n_ineq;
1751 int i;
1753 n_ineq = 1;
1754 for (i = 0; i < set->n; ++i) {
1755 n_ineq += set->p[i]->n_eq;
1756 n_ineq += set->p[i]->n_ineq;
1758 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1759 hull = isl_basic_set_set_rational(hull);
1760 if (!hull)
1761 return NULL;
1762 return common_constraints(hull, set, is_hull);
1765 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1767 struct isl_basic_set *hull;
1768 int is_hull;
1770 hull = proto_hull(set, &is_hull);
1771 if (hull && !is_hull) {
1772 if (hull->n_ineq == 0)
1773 hull = initial_hull(hull, set);
1774 hull = extend(hull, set);
1776 isl_set_free(set);
1778 return hull;
1781 /* Compute the convex hull of a set without any parameters or
1782 * integer divisions. Depending on whether the set is bounded,
1783 * we pass control to the wrapping based convex hull or
1784 * the Fourier-Motzkin elimination based convex hull.
1785 * We also handle a few special cases before checking the boundedness.
1787 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1789 int i;
1790 struct isl_basic_set *convex_hull = NULL;
1791 struct isl_basic_set *lin;
1793 if (isl_set_n_dim(set) == 0)
1794 return convex_hull_0d(set);
1796 set = isl_set_coalesce(set);
1797 set = isl_set_set_rational(set);
1799 if (!set)
1800 goto error;
1801 if (!set)
1802 return NULL;
1803 if (set->n == 1) {
1804 convex_hull = isl_basic_set_copy(set->p[0]);
1805 isl_set_free(set);
1806 return convex_hull;
1808 if (isl_set_n_dim(set) == 1)
1809 return convex_hull_1d(set);
1811 if (isl_set_is_bounded(set))
1812 return uset_convex_hull_wrap(set);
1814 lin = uset_combined_lineality_space(isl_set_copy(set));
1815 if (!lin)
1816 goto error;
1817 if (isl_basic_set_is_universe(lin)) {
1818 isl_set_free(set);
1819 return lin;
1821 if (lin->n_eq < isl_basic_set_total_dim(lin))
1822 return modulo_lineality(set, lin);
1823 isl_basic_set_free(lin);
1825 return uset_convex_hull_unbounded(set);
1826 error:
1827 isl_set_free(set);
1828 isl_basic_set_free(convex_hull);
1829 return NULL;
1832 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1833 * without parameters or divs and where the convex hull of set is
1834 * known to be full-dimensional.
1836 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1838 int i;
1839 struct isl_basic_set *convex_hull = NULL;
1841 if (isl_set_n_dim(set) == 0) {
1842 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1843 isl_set_free(set);
1844 convex_hull = isl_basic_set_set_rational(convex_hull);
1845 return convex_hull;
1848 set = isl_set_set_rational(set);
1850 if (!set)
1851 goto error;
1852 set = isl_set_coalesce(set);
1853 if (!set)
1854 goto error;
1855 if (set->n == 1) {
1856 convex_hull = isl_basic_set_copy(set->p[0]);
1857 isl_set_free(set);
1858 return convex_hull;
1860 if (isl_set_n_dim(set) == 1)
1861 return convex_hull_1d(set);
1863 return uset_convex_hull_wrap(set);
1864 error:
1865 isl_set_free(set);
1866 return NULL;
1869 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1870 * We first remove the equalities (transforming the set), compute the
1871 * convex hull of the transformed set and then add the equalities back
1872 * (after performing the inverse transformation.
1874 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1875 struct isl_set *set, struct isl_basic_set *affine_hull)
1877 struct isl_mat *T;
1878 struct isl_mat *T2;
1879 struct isl_basic_set *dummy;
1880 struct isl_basic_set *convex_hull;
1882 dummy = isl_basic_set_remove_equalities(
1883 isl_basic_set_copy(affine_hull), &T, &T2);
1884 if (!dummy)
1885 goto error;
1886 isl_basic_set_free(dummy);
1887 set = isl_set_preimage(set, T);
1888 convex_hull = uset_convex_hull(set);
1889 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1890 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1891 return convex_hull;
1892 error:
1893 isl_basic_set_free(affine_hull);
1894 isl_set_free(set);
1895 return NULL;
1898 /* Compute the convex hull of a map.
1900 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1901 * specifically, the wrapping of facets to obtain new facets.
1903 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1905 struct isl_basic_set *bset;
1906 struct isl_basic_map *model = NULL;
1907 struct isl_basic_set *affine_hull = NULL;
1908 struct isl_basic_map *convex_hull = NULL;
1909 struct isl_set *set = NULL;
1910 struct isl_ctx *ctx;
1912 if (!map)
1913 goto error;
1915 ctx = map->ctx;
1916 if (map->n == 0) {
1917 convex_hull = isl_basic_map_empty_like_map(map);
1918 isl_map_free(map);
1919 return convex_hull;
1922 map = isl_map_detect_equalities(map);
1923 map = isl_map_align_divs(map);
1924 model = isl_basic_map_copy(map->p[0]);
1925 set = isl_map_underlying_set(map);
1926 if (!set)
1927 goto error;
1929 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1930 if (!affine_hull)
1931 goto error;
1932 if (affine_hull->n_eq != 0)
1933 bset = modulo_affine_hull(ctx, set, affine_hull);
1934 else {
1935 isl_basic_set_free(affine_hull);
1936 bset = uset_convex_hull(set);
1939 convex_hull = isl_basic_map_overlying_set(bset, model);
1941 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1942 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1943 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1944 return convex_hull;
1945 error:
1946 isl_set_free(set);
1947 isl_basic_map_free(model);
1948 return NULL;
1951 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1953 return (struct isl_basic_set *)
1954 isl_map_convex_hull((struct isl_map *)set);
1957 struct sh_data_entry {
1958 struct isl_hash_table *table;
1959 struct isl_tab *tab;
1962 /* Holds the data needed during the simple hull computation.
1963 * In particular,
1964 * n the number of basic sets in the original set
1965 * hull_table a hash table of already computed constraints
1966 * in the simple hull
1967 * p for each basic set,
1968 * table a hash table of the constraints
1969 * tab the tableau corresponding to the basic set
1971 struct sh_data {
1972 struct isl_ctx *ctx;
1973 unsigned n;
1974 struct isl_hash_table *hull_table;
1975 struct sh_data_entry p[0];
1978 static void sh_data_free(struct sh_data *data)
1980 int i;
1982 if (!data)
1983 return;
1984 isl_hash_table_free(data->ctx, data->hull_table);
1985 for (i = 0; i < data->n; ++i) {
1986 isl_hash_table_free(data->ctx, data->p[i].table);
1987 isl_tab_free(data->p[i].tab);
1989 free(data);
1992 struct ineq_cmp_data {
1993 unsigned len;
1994 isl_int *p;
1997 static int has_ineq(const void *entry, const void *val)
1999 isl_int *row = (isl_int *)entry;
2000 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2002 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2003 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2006 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2007 isl_int *ineq, unsigned len)
2009 uint32_t c_hash;
2010 struct ineq_cmp_data v;
2011 struct isl_hash_table_entry *entry;
2013 v.len = len;
2014 v.p = ineq;
2015 c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init());
2016 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2017 if (!entry)
2018 return - 1;
2019 entry->data = ineq;
2020 return 0;
2023 /* Fill hash table "table" with the constraints of "bset".
2024 * Equalities are added as two inequalities.
2025 * The value in the hash table is a pointer to the (in)equality of "bset".
2027 static int hash_basic_set(struct isl_hash_table *table,
2028 struct isl_basic_set *bset)
2030 int i, j;
2031 unsigned dim = isl_basic_set_total_dim(bset);
2033 for (i = 0; i < bset->n_eq; ++i) {
2034 for (j = 0; j < 2; ++j) {
2035 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2036 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2037 return -1;
2040 for (i = 0; i < bset->n_ineq; ++i) {
2041 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2042 return -1;
2044 return 0;
2047 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2049 struct sh_data *data;
2050 int i;
2052 data = isl_calloc(set->ctx, struct sh_data,
2053 sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry));
2054 if (!data)
2055 return NULL;
2056 data->ctx = set->ctx;
2057 data->n = set->n;
2058 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2059 if (!data->hull_table)
2060 goto error;
2061 for (i = 0; i < set->n; ++i) {
2062 data->p[i].table = isl_hash_table_alloc(set->ctx,
2063 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2064 if (!data->p[i].table)
2065 goto error;
2066 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2067 goto error;
2069 return data;
2070 error:
2071 sh_data_free(data);
2072 return NULL;
2075 /* Check if inequality "ineq" is a bound for basic set "j" or if
2076 * it can be relaxed (by increasing the constant term) to become
2077 * a bound for that basic set. In the latter case, the constant
2078 * term is updated.
2079 * Return 1 if "ineq" is a bound
2080 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2081 * -1 if some error occurred
2083 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2084 isl_int *ineq)
2086 enum isl_lp_result res;
2087 isl_int opt;
2089 if (!data->p[j].tab) {
2090 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2091 if (!data->p[j].tab)
2092 return -1;
2095 isl_int_init(opt);
2097 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2098 &opt, NULL, 0);
2099 if (res == isl_lp_ok && isl_int_is_neg(opt))
2100 isl_int_sub(ineq[0], ineq[0], opt);
2102 isl_int_clear(opt);
2104 return res == isl_lp_ok ? 1 :
2105 res == isl_lp_unbounded ? 0 : -1;
2108 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2109 * become a bound on the whole set. If so, add the (relaxed) inequality
2110 * to "hull".
2112 * We first check if "hull" already contains a translate of the inequality.
2113 * If so, we are done.
2114 * Then, we check if any of the previous basic sets contains a translate
2115 * of the inequality. If so, then we have already considered this
2116 * inequality and we are done.
2117 * Otherwise, for each basic set other than "i", we check if the inequality
2118 * is a bound on the basic set.
2119 * For previous basic sets, we know that they do not contain a translate
2120 * of the inequality, so we directly call is_bound.
2121 * For following basic sets, we first check if a translate of the
2122 * inequality appears in its description and if so directly update
2123 * the inequality accordingly.
2125 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2126 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2128 uint32_t c_hash;
2129 struct ineq_cmp_data v;
2130 struct isl_hash_table_entry *entry;
2131 int j, k;
2133 if (!hull)
2134 return NULL;
2136 v.len = isl_basic_set_total_dim(hull);
2137 v.p = ineq;
2138 c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init());
2140 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2141 has_ineq, &v, 0);
2142 if (entry)
2143 return hull;
2145 for (j = 0; j < i; ++j) {
2146 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2147 c_hash, has_ineq, &v, 0);
2148 if (entry)
2149 break;
2151 if (j < i)
2152 return hull;
2154 k = isl_basic_set_alloc_inequality(hull);
2155 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2156 if (k < 0)
2157 goto error;
2159 for (j = 0; j < i; ++j) {
2160 int bound;
2161 bound = is_bound(data, set, j, hull->ineq[k]);
2162 if (bound < 0)
2163 goto error;
2164 if (!bound)
2165 break;
2167 if (j < i) {
2168 isl_basic_set_free_inequality(hull, 1);
2169 return hull;
2172 for (j = i + 1; j < set->n; ++j) {
2173 int bound, neg;
2174 isl_int *ineq_j;
2175 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2176 c_hash, has_ineq, &v, 0);
2177 if (entry) {
2178 ineq_j = entry->data;
2179 neg = isl_seq_is_neg(ineq_j + 1,
2180 hull->ineq[k] + 1, v.len);
2181 if (neg)
2182 isl_int_neg(ineq_j[0], ineq_j[0]);
2183 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2184 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2185 if (neg)
2186 isl_int_neg(ineq_j[0], ineq_j[0]);
2187 continue;
2189 bound = is_bound(data, set, j, hull->ineq[k]);
2190 if (bound < 0)
2191 goto error;
2192 if (!bound)
2193 break;
2195 if (j < set->n) {
2196 isl_basic_set_free_inequality(hull, 1);
2197 return hull;
2200 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2201 has_ineq, &v, 1);
2202 if (!entry)
2203 goto error;
2204 entry->data = hull->ineq[k];
2206 return hull;
2207 error:
2208 isl_basic_set_free(hull);
2209 return NULL;
2212 /* Check if any inequality from basic set "i" can be relaxed to
2213 * become a bound on the whole set. If so, add the (relaxed) inequality
2214 * to "hull".
2216 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2217 struct sh_data *data, struct isl_set *set, int i)
2219 int j, k;
2220 unsigned dim = isl_basic_set_total_dim(bset);
2222 for (j = 0; j < set->p[i]->n_eq; ++j) {
2223 for (k = 0; k < 2; ++k) {
2224 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2225 add_bound(bset, data, set, i, set->p[i]->eq[j]);
2228 for (j = 0; j < set->p[i]->n_ineq; ++j)
2229 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2230 return bset;
2233 /* Compute a superset of the convex hull of set that is described
2234 * by only translates of the constraints in the constituents of set.
2236 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2238 struct sh_data *data = NULL;
2239 struct isl_basic_set *hull = NULL;
2240 unsigned n_ineq;
2241 int i, j;
2243 if (!set)
2244 return NULL;
2246 n_ineq = 0;
2247 for (i = 0; i < set->n; ++i) {
2248 if (!set->p[i])
2249 goto error;
2250 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2253 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2254 if (!hull)
2255 goto error;
2257 data = sh_data_alloc(set, n_ineq);
2258 if (!data)
2259 goto error;
2261 for (i = 0; i < set->n; ++i)
2262 hull = add_bounds(hull, data, set, i);
2264 sh_data_free(data);
2265 isl_set_free(set);
2267 return hull;
2268 error:
2269 sh_data_free(data);
2270 isl_basic_set_free(hull);
2271 isl_set_free(set);
2272 return NULL;
2275 /* Compute a superset of the convex hull of map that is described
2276 * by only translates of the constraints in the constituents of map.
2278 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2280 struct isl_set *set = NULL;
2281 struct isl_basic_map *model = NULL;
2282 struct isl_basic_map *hull;
2283 struct isl_basic_map *affine_hull;
2284 struct isl_basic_set *bset = NULL;
2286 if (!map)
2287 return NULL;
2288 if (map->n == 0) {
2289 hull = isl_basic_map_empty_like_map(map);
2290 isl_map_free(map);
2291 return hull;
2293 if (map->n == 1) {
2294 hull = isl_basic_map_copy(map->p[0]);
2295 isl_map_free(map);
2296 return hull;
2299 map = isl_map_detect_equalities(map);
2300 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2301 map = isl_map_align_divs(map);
2302 model = isl_basic_map_copy(map->p[0]);
2304 set = isl_map_underlying_set(map);
2306 bset = uset_simple_hull(set);
2308 hull = isl_basic_map_overlying_set(bset, model);
2310 hull = isl_basic_map_intersect(hull, affine_hull);
2311 hull = isl_basic_map_convex_hull(hull);
2312 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2313 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2315 return hull;
2318 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2320 return (struct isl_basic_set *)
2321 isl_map_simple_hull((struct isl_map *)set);
2324 /* Given a set "set", return parametric bounds on the dimension "dim".
2326 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2328 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2329 set = isl_set_copy(set);
2330 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2331 set = isl_set_eliminate_dims(set, 0, dim);
2332 return isl_set_convex_hull(set);
2335 /* Computes a "simple hull" and then check if each dimension in the
2336 * resulting hull is bounded by a symbolic constant. If not, the
2337 * hull is intersected with the corresponding bounds on the whole set.
2339 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2341 int i, j;
2342 struct isl_basic_set *hull;
2343 unsigned nparam, left;
2344 int removed_divs = 0;
2346 hull = isl_set_simple_hull(isl_set_copy(set));
2347 if (!hull)
2348 goto error;
2350 nparam = isl_basic_set_dim(hull, isl_dim_param);
2351 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2352 int lower = 0, upper = 0;
2353 struct isl_basic_set *bounds;
2355 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2356 for (j = 0; j < hull->n_eq; ++j) {
2357 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2358 continue;
2359 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2360 left) == -1)
2361 break;
2363 if (j < hull->n_eq)
2364 continue;
2366 for (j = 0; j < hull->n_ineq; ++j) {
2367 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2368 continue;
2369 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2370 left) != -1 ||
2371 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2372 i) != -1)
2373 continue;
2374 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2375 lower = 1;
2376 else
2377 upper = 1;
2378 if (lower && upper)
2379 break;
2382 if (lower && upper)
2383 continue;
2385 if (!removed_divs) {
2386 set = isl_set_remove_divs(set);
2387 if (!set)
2388 goto error;
2389 removed_divs = 1;
2391 bounds = set_bounds(set, i);
2392 hull = isl_basic_set_intersect(hull, bounds);
2393 if (!hull)
2394 goto error;
2397 isl_set_free(set);
2398 return hull;
2399 error:
2400 isl_set_free(set);
2401 return NULL;