clean up isl_basic_set_variable_compression_with_id
[isl.git] / isl_ast_build_expr.c
blob34a23036904e9d474da31ed24edd7a01e874bd1b
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/id.h>
14 #include <isl/space.h>
15 #include <isl/constraint.h>
16 #include <isl/ilp.h>
17 #include <isl/val.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
21 #include <isl_sort.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
28 * -aff + (d - 1)
30 static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
31 __isl_take isl_val *d)
33 aff = isl_aff_neg(aff);
34 aff = isl_aff_add_constant_val(aff, d);
35 aff = isl_aff_add_constant_si(aff, -1);
37 return aff;
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "cst" is the constant term of the expression in which the added term
44 * appears. It may be modified by isl_ast_expr_add_term.
46 * "v" is the coefficient of the term that is being constructed and
47 * is set internally by isl_ast_expr_add_term.
49 struct isl_ast_add_term_data {
50 isl_ast_build *build;
51 isl_val *cst;
52 isl_val *v;
55 /* Given the numerator "aff" of the argument of an integer division
56 * with denominator "d", check if it can be made non-negative over
57 * data->build->domain by stealing part of the constant term of
58 * the expression in which the integer division appears.
60 * In particular, the outer expression is of the form
62 * v * floor(aff/d) + cst
64 * We already know that "aff" itself may attain negative values.
65 * Here we check if aff + d*floor(cst/v) is non-negative, such
66 * that we could rewrite the expression to
68 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
70 * Note that aff + d*floor(cst/v) can only possibly be non-negative
71 * if data->cst and data->v have the same sign.
72 * Similarly, if floor(cst/v) is zero, then there is no point in
73 * checking again.
75 static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
76 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
78 isl_aff *shifted;
79 isl_val *shift;
80 int is_zero;
81 int non_neg;
83 if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
84 return 0;
86 shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
87 shift = isl_val_floor(shift);
88 is_zero = isl_val_is_zero(shift);
89 if (is_zero < 0 || is_zero) {
90 isl_val_free(shift);
91 return is_zero < 0 ? -1 : 0;
93 shift = isl_val_mul(shift, isl_val_copy(d));
94 shifted = isl_aff_copy(aff);
95 shifted = isl_aff_add_constant_val(shifted, shift);
96 non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
97 isl_aff_free(shifted);
99 return non_neg;
102 /* Given the numerator "aff' of the argument of an integer division
103 * with denominator "d", steal part of the constant term of
104 * the expression in which the integer division appears to make it
105 * non-negative over data->build->domain.
107 * In particular, the outer expression is of the form
109 * v * floor(aff/d) + cst
111 * We know that "aff" itself may attain negative values,
112 * but that aff + d*floor(cst/v) is non-negative.
113 * Find the minimal positive value that we need to add to "aff"
114 * to make it positive and adjust data->cst accordingly.
115 * That is, compute the minimal value "m" of "aff" over
116 * data->build->domain and take
118 * s = ceil(m/d)
120 * such that
122 * aff + d * s >= 0
124 * and rewrite the expression to
126 * v * floor((aff + s*d)/d) + (cst - v*s)
128 static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
129 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
131 isl_set *domain;
132 isl_val *shift, *t;
134 domain = isl_ast_build_get_domain(data->build);
135 shift = isl_set_min_val(domain, aff);
136 isl_set_free(domain);
138 shift = isl_val_neg(shift);
139 shift = isl_val_div(shift, isl_val_copy(d));
140 shift = isl_val_ceil(shift);
142 t = isl_val_copy(shift);
143 t = isl_val_mul(t, isl_val_copy(data->v));
144 data->cst = isl_val_sub(data->cst, t);
146 shift = isl_val_mul(shift, isl_val_copy(d));
147 return isl_aff_add_constant_val(aff, shift);
150 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
151 * The result is simplified in terms of data->build->domain.
152 * This function may change (the sign of) data->v.
154 * "ls" is known to be non-NULL.
156 * Let the div be of the form floor(e/d).
157 * If the ast_build_prefer_pdiv option is set then we check if "e"
158 * is non-negative, so that we can generate
160 * (pdiv_q, expr(e), expr(d))
162 * instead of
164 * (fdiv_q, expr(e), expr(d))
166 * If the ast_build_prefer_pdiv option is set and
167 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
168 * If so, we can rewrite
170 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
172 * and still use pdiv_q, while changing the sign of data->v.
174 * Otherwise, we check if
176 * e + d*floor(cst/v)
178 * is non-negative and if so, replace floor(e/d) by
180 * floor((e + s*d)/d) - s
182 * with s the minimal shift that makes the argument non-negative.
184 static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
185 __isl_keep isl_local_space *ls, int pos)
187 isl_ctx *ctx = isl_local_space_get_ctx(ls);
188 isl_aff *aff;
189 isl_ast_expr *num, *den;
190 isl_val *d;
191 enum isl_ast_op_type type;
193 aff = isl_local_space_get_div(ls, pos);
194 d = isl_aff_get_denominator_val(aff);
195 aff = isl_aff_scale_val(aff, isl_val_copy(d));
196 den = isl_ast_expr_from_val(isl_val_copy(d));
198 type = isl_ast_op_fdiv_q;
199 if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
200 int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
201 if (non_neg >= 0 && !non_neg) {
202 isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
203 isl_val_copy(d));
204 non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
205 if (non_neg >= 0 && non_neg) {
206 data->v = isl_val_neg(data->v);
207 isl_aff_free(aff);
208 aff = opp;
209 } else
210 isl_aff_free(opp);
212 if (non_neg >= 0 && !non_neg) {
213 non_neg = is_non_neg_after_stealing(aff, d, data);
214 if (non_neg >= 0 && non_neg)
215 aff = steal_from_cst(aff, d, data);
217 if (non_neg < 0)
218 aff = isl_aff_free(aff);
219 else if (non_neg)
220 type = isl_ast_op_pdiv_q;
223 isl_val_free(d);
224 num = isl_ast_expr_from_aff(aff, data->build);
225 return isl_ast_expr_alloc_binary(type, num, den);
228 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
229 * The result is simplified in terms of data->build->domain.
230 * This function may change (the sign of) data->v.
232 * The isl_ast_expr is constructed based on the type of the dimension.
233 * - divs are constructed by var_div
234 * - set variables are constructed from the iterator isl_ids in data->build
235 * - parameters are constructed from the isl_ids in "ls"
237 static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
238 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
240 isl_ctx *ctx = isl_local_space_get_ctx(ls);
241 isl_id *id;
243 if (type == isl_dim_div)
244 return var_div(data, ls, pos);
246 if (type == isl_dim_set) {
247 id = isl_ast_build_get_iterator_id(data->build, pos);
248 return isl_ast_expr_from_id(id);
251 if (!isl_local_space_has_dim_id(ls, type, pos))
252 isl_die(ctx, isl_error_internal, "unnamed dimension",
253 return NULL);
254 id = isl_local_space_get_dim_id(ls, type, pos);
255 return isl_ast_expr_from_id(id);
258 /* Does "expr" represent the zero integer?
260 static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
262 if (!expr)
263 return -1;
264 if (expr->type != isl_ast_expr_int)
265 return 0;
266 return isl_val_is_zero(expr->u.v);
269 /* Create an expression representing the sum of "expr1" and "expr2",
270 * provided neither of the two expressions is identically zero.
272 static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
273 __isl_take isl_ast_expr *expr2)
275 if (!expr1 || !expr2)
276 goto error;
278 if (ast_expr_is_zero(expr1)) {
279 isl_ast_expr_free(expr1);
280 return expr2;
283 if (ast_expr_is_zero(expr2)) {
284 isl_ast_expr_free(expr2);
285 return expr1;
288 return isl_ast_expr_add(expr1, expr2);
289 error:
290 isl_ast_expr_free(expr1);
291 isl_ast_expr_free(expr2);
292 return NULL;
295 /* Subtract expr2 from expr1.
297 * If expr2 is zero, we simply return expr1.
298 * If expr1 is zero, we return
300 * (isl_ast_op_minus, expr2)
302 * Otherwise, we return
304 * (isl_ast_op_sub, expr1, expr2)
306 static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
307 __isl_take isl_ast_expr *expr2)
309 if (!expr1 || !expr2)
310 goto error;
312 if (ast_expr_is_zero(expr2)) {
313 isl_ast_expr_free(expr2);
314 return expr1;
317 if (ast_expr_is_zero(expr1)) {
318 isl_ast_expr_free(expr1);
319 return isl_ast_expr_neg(expr2);
322 return isl_ast_expr_sub(expr1, expr2);
323 error:
324 isl_ast_expr_free(expr1);
325 isl_ast_expr_free(expr2);
326 return NULL;
329 /* Return an isl_ast_expr that represents
331 * v * (aff mod d)
333 * v is assumed to be non-negative.
334 * The result is simplified in terms of build->domain.
336 static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
337 __isl_keep isl_aff *aff, __isl_keep isl_val *d,
338 __isl_keep isl_ast_build *build)
340 isl_ast_expr *expr;
341 isl_ast_expr *c;
343 if (!aff)
344 return NULL;
346 expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
348 c = isl_ast_expr_from_val(isl_val_copy(d));
349 expr = isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r, expr, c);
351 if (!isl_val_is_one(v)) {
352 c = isl_ast_expr_from_val(isl_val_copy(v));
353 expr = isl_ast_expr_mul(c, expr);
356 return expr;
359 /* Create an isl_ast_expr that scales "expr" by "v".
361 * If v is 1, we simply return expr.
362 * If v is -1, we return
364 * (isl_ast_op_minus, expr)
366 * Otherwise, we return
368 * (isl_ast_op_mul, expr(v), expr)
370 static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
371 __isl_take isl_val *v)
373 isl_ast_expr *c;
375 if (!expr || !v)
376 goto error;
377 if (isl_val_is_one(v)) {
378 isl_val_free(v);
379 return expr;
382 if (isl_val_is_negone(v)) {
383 isl_val_free(v);
384 expr = isl_ast_expr_neg(expr);
385 } else {
386 c = isl_ast_expr_from_val(v);
387 expr = isl_ast_expr_mul(c, expr);
390 return expr;
391 error:
392 isl_val_free(v);
393 isl_ast_expr_free(expr);
394 return NULL;
397 /* Add an expression for "*v" times the specified dimension of "ls"
398 * to expr.
399 * If the dimension is an integer division, then this function
400 * may modify data->cst in order to make the numerator non-negative.
401 * The result is simplified in terms of data->build->domain.
403 * Let e be the expression for the specified dimension,
404 * multiplied by the absolute value of "*v".
405 * If "*v" is negative, we create
407 * (isl_ast_op_sub, expr, e)
409 * except when expr is trivially zero, in which case we create
411 * (isl_ast_op_minus, e)
413 * instead.
415 * If "*v" is positive, we simply create
417 * (isl_ast_op_add, expr, e)
420 static __isl_give isl_ast_expr *isl_ast_expr_add_term(
421 __isl_take isl_ast_expr *expr,
422 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
423 __isl_take isl_val *v, struct isl_ast_add_term_data *data)
425 isl_ast_expr *term;
427 if (!expr)
428 return NULL;
430 data->v = v;
431 term = var(data, ls, type, pos);
432 v = data->v;
434 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
435 v = isl_val_neg(v);
436 term = scale(term, v);
437 return ast_expr_sub(expr, term);
438 } else {
439 term = scale(term, v);
440 return ast_expr_add(expr, term);
444 /* Add an expression for "v" to expr.
446 static __isl_give isl_ast_expr *isl_ast_expr_add_int(
447 __isl_take isl_ast_expr *expr, __isl_take isl_val *v)
449 isl_ast_expr *expr_int;
451 if (!expr || !v)
452 goto error;
454 if (isl_val_is_zero(v)) {
455 isl_val_free(v);
456 return expr;
459 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
460 v = isl_val_neg(v);
461 expr_int = isl_ast_expr_from_val(v);
462 return ast_expr_sub(expr, expr_int);
463 } else {
464 expr_int = isl_ast_expr_from_val(v);
465 return ast_expr_add(expr, expr_int);
467 error:
468 isl_ast_expr_free(expr);
469 isl_val_free(v);
470 return NULL;
473 /* Internal data structure used inside extract_modulos.
475 * If any modulo expressions are detected in "aff", then the
476 * expression is removed from "aff" and added to either "pos" or "neg"
477 * depending on the sign of the coefficient of the modulo expression
478 * inside "aff".
480 * "add" is an expression that needs to be added to "aff" at the end of
481 * the computation. It is NULL as long as no modulos have been extracted.
483 * "i" is the position in "aff" of the div under investigation
484 * "v" is the coefficient in "aff" of the div
485 * "div" is the argument of the div, with the denominator removed
486 * "d" is the original denominator of the argument of the div
488 * "nonneg" is an affine expression that is non-negative over "build"
489 * and that can be used to extract a modulo expression from "div".
490 * In particular, if "sign" is 1, then the coefficients of "nonneg"
491 * are equal to those of "div" modulo "d". If "sign" is -1, then
492 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
493 * If "sign" is 0, then no such affine expression has been found (yet).
495 struct isl_extract_mod_data {
496 isl_ast_build *build;
497 isl_aff *aff;
499 isl_ast_expr *pos;
500 isl_ast_expr *neg;
502 isl_aff *add;
504 int i;
505 isl_val *v;
506 isl_val *d;
507 isl_aff *div;
509 isl_aff *nonneg;
510 int sign;
513 /* Given that data->v * div_i in data->aff is equal to
515 * f * (term - (arg mod d))
517 * with data->d * f = data->v, add
519 * f * term
521 * to data->add and
523 * abs(f) * (arg mod d)
525 * to data->neg or data->pos depending on the sign of -f.
527 static int extract_term_and_mod(struct isl_extract_mod_data *data,
528 __isl_take isl_aff *term, __isl_take isl_aff *arg)
530 isl_ast_expr *expr;
531 int s;
533 data->v = isl_val_div(data->v, isl_val_copy(data->d));
534 s = isl_val_sgn(data->v);
535 data->v = isl_val_abs(data->v);
536 expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
537 isl_aff_free(arg);
538 if (s > 0)
539 data->neg = ast_expr_add(data->neg, expr);
540 else
541 data->pos = ast_expr_add(data->pos, expr);
542 data->aff = isl_aff_set_coefficient_si(data->aff,
543 isl_dim_div, data->i, 0);
544 if (s < 0)
545 data->v = isl_val_neg(data->v);
546 term = isl_aff_scale_val(term, isl_val_copy(data->v));
548 if (!data->add)
549 data->add = term;
550 else
551 data->add = isl_aff_add(data->add, term);
552 if (!data->add)
553 return -1;
555 return 0;
558 /* Given that data->v * div_i in data->aff is of the form
560 * f * d * floor(div/d)
562 * with div nonnegative on data->build, rewrite it as
564 * f * (div - (div mod d)) = f * div - f * (div mod d)
566 * and add
568 * f * div
570 * to data->add and
572 * abs(f) * (div mod d)
574 * to data->neg or data->pos depending on the sign of -f.
576 static int extract_mod(struct isl_extract_mod_data *data)
578 return extract_term_and_mod(data, isl_aff_copy(data->div),
579 isl_aff_copy(data->div));
582 /* Given that data->v * div_i in data->aff is of the form
584 * f * d * floor(div/d) (1)
586 * check if div is non-negative on data->build and, if so,
587 * extract the corresponding modulo from data->aff.
588 * If not, then check if
590 * -div + d - 1
592 * is non-negative on data->build. If so, replace (1) by
594 * -f * d * floor((-div + d - 1)/d)
596 * and extract the corresponding modulo from data->aff.
598 * This function may modify data->div.
600 static int extract_nonneg_mod(struct isl_extract_mod_data *data)
602 int mod;
604 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
605 if (mod < 0)
606 goto error;
607 if (mod)
608 return extract_mod(data);
610 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
611 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
612 if (mod < 0)
613 goto error;
614 if (mod) {
615 data->v = isl_val_neg(data->v);
616 return extract_mod(data);
619 return 0;
620 error:
621 data->aff = isl_aff_free(data->aff);
622 return -1;
625 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
626 * for use in extracting a modulo expression?
628 * We currently only consider the constant term of the affine expression.
629 * In particular, we prefer the affine expression with the smallest constant
630 * term.
631 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
632 * then we would pick x >= 0
634 * More detailed heuristics could be used if it turns out that there is a need.
636 static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
637 __isl_keep isl_constraint *c)
639 isl_val *v1, *v2;
640 int simpler;
642 if (!data->nonneg)
643 return 1;
645 v1 = isl_val_abs(isl_constraint_get_constant_val(c));
646 v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
647 simpler = isl_val_lt(v1, v2);
648 isl_val_free(v1);
649 isl_val_free(v2);
651 return simpler;
654 /* Check if the coefficients of "c" are either equal or opposite to those
655 * of data->div modulo data->d. If so, and if "c" is "simpler" than
656 * data->nonneg, then replace data->nonneg by the affine expression of "c"
657 * and set data->sign accordingly.
659 * Both "c" and data->div are assumed not to involve any integer divisions.
661 * Before we start the actual comparison, we first quickly check if
662 * "c" and data->div have the same non-zero coefficients.
663 * If not, then we assume that "c" is not of the desired form.
664 * Note that while the coefficients of data->div can be reasonably expected
665 * not to involve any coefficients that are multiples of d, "c" may
666 * very well involve such coefficients. This means that we may actually
667 * miss some cases.
669 * If the constant term is "too large", then the constraint is rejected,
670 * where "too large" is fairly arbitrarily set to 1 << 15.
671 * We do this to avoid picking up constraints that bound a variable
672 * by a very large number, say the largest or smallest possible
673 * variable in the representation of some integer type.
675 static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
676 void *user)
678 struct isl_extract_mod_data *data = user;
679 enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
680 enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
681 int i, t;
682 isl_size n[2];
683 int parallel = 1, opposite = 1;
685 for (t = 0; t < 2; ++t) {
686 n[t] = isl_constraint_dim(c, c_type[t]);
687 if (n[t] < 0)
688 return isl_stat_error;
689 for (i = 0; i < n[t]; ++i) {
690 int a, b;
692 a = isl_constraint_involves_dims(c, c_type[t], i, 1);
693 b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
694 if (a != b)
695 parallel = opposite = 0;
699 if (parallel || opposite) {
700 isl_val *v;
702 v = isl_val_abs(isl_constraint_get_constant_val(c));
703 if (isl_val_cmp_si(v, 1 << 15) > 0)
704 parallel = opposite = 0;
705 isl_val_free(v);
708 for (t = 0; t < 2; ++t) {
709 for (i = 0; i < n[t]; ++i) {
710 isl_val *v1, *v2;
712 if (!parallel && !opposite)
713 break;
714 v1 = isl_constraint_get_coefficient_val(c,
715 c_type[t], i);
716 v2 = isl_aff_get_coefficient_val(data->div,
717 a_type[t], i);
718 if (parallel) {
719 v1 = isl_val_sub(v1, isl_val_copy(v2));
720 parallel = isl_val_is_divisible_by(v1, data->d);
721 v1 = isl_val_add(v1, isl_val_copy(v2));
723 if (opposite) {
724 v1 = isl_val_add(v1, isl_val_copy(v2));
725 opposite = isl_val_is_divisible_by(v1, data->d);
727 isl_val_free(v1);
728 isl_val_free(v2);
732 if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
733 isl_aff_free(data->nonneg);
734 data->nonneg = isl_constraint_get_aff(c);
735 data->sign = parallel ? 1 : -1;
738 isl_constraint_free(c);
740 if (data->sign != 0 && data->nonneg == NULL)
741 return isl_stat_error;
743 return isl_stat_ok;
746 /* Given that data->v * div_i in data->aff is of the form
748 * f * d * floor(div/d) (1)
750 * see if we can find an expression div' that is non-negative over data->build
751 * and that is related to div through
753 * div' = div + d * e
755 * or
757 * div' = -div + d - 1 + d * e
759 * with e some affine expression.
760 * If so, we write (1) as
762 * f * div + f * (div' mod d)
764 * or
766 * -f * (-div + d - 1) - f * (div' mod d)
768 * exploiting (in the second case) the fact that
770 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
773 * We first try to find an appropriate expression for div'
774 * from the constraints of data->build->domain (which is therefore
775 * guaranteed to be non-negative on data->build), where we remove
776 * any integer divisions from the constraints and skip this step
777 * if "div" itself involves any integer divisions.
778 * If we cannot find an appropriate expression this way, then
779 * we pass control to extract_nonneg_mod where check
780 * if div or "-div + d -1" themselves happen to be
781 * non-negative on data->build.
783 * While looking for an appropriate constraint in data->build->domain,
784 * we ignore the constant term, so after finding such a constraint,
785 * we still need to fix up the constant term.
786 * In particular, if a is the constant term of "div"
787 * (or d - 1 - the constant term of "div" if data->sign < 0)
788 * and b is the constant term of the constraint, then we need to find
789 * a non-negative constant c such that
791 * b + c \equiv a mod d
793 * We therefore take
795 * c = (a - b) mod d
797 * and add it to b to obtain the constant term of div'.
798 * If this constant term is "too negative", then we add an appropriate
799 * multiple of d to make it positive.
802 * Note that the above is a only a very simple heuristic for finding an
803 * appropriate expression. We could try a bit harder by also considering
804 * sums of constraints that involve disjoint sets of variables or
805 * we could consider arbitrary linear combinations of constraints,
806 * although that could potentially be much more expensive as it involves
807 * the solution of an LP problem.
809 * In particular, if v_i is a column vector representing constraint i,
810 * w represents div and e_i is the i-th unit vector, then we are looking
811 * for a solution of the constraints
813 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
815 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
816 * If we are not just interested in a non-negative expression, but
817 * also in one with a minimal range, then we don't just want
818 * c = \sum_i lambda_i v_i to be non-negative over the domain,
819 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
820 * that we want to minimize and we now also have to take into account
821 * the constant terms of the constraints.
822 * Alternatively, we could first compute the dual of the domain
823 * and plug in the constraints on the coefficients.
825 static int try_extract_mod(struct isl_extract_mod_data *data)
827 isl_basic_set *hull;
828 isl_val *v1, *v2;
829 isl_stat r;
830 isl_size n;
832 if (!data->build)
833 goto error;
835 n = isl_aff_dim(data->div, isl_dim_div);
836 if (n < 0)
837 goto error;
839 if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
840 return extract_nonneg_mod(data);
842 hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
843 hull = isl_basic_set_remove_divs(hull);
844 data->sign = 0;
845 data->nonneg = NULL;
846 r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
847 data);
848 isl_basic_set_free(hull);
850 if (!data->sign || r < 0) {
851 isl_aff_free(data->nonneg);
852 if (r < 0)
853 goto error;
854 return extract_nonneg_mod(data);
857 v1 = isl_aff_get_constant_val(data->div);
858 v2 = isl_aff_get_constant_val(data->nonneg);
859 if (data->sign < 0) {
860 v1 = isl_val_neg(v1);
861 v1 = isl_val_add(v1, isl_val_copy(data->d));
862 v1 = isl_val_sub_ui(v1, 1);
864 v1 = isl_val_sub(v1, isl_val_copy(v2));
865 v1 = isl_val_mod(v1, isl_val_copy(data->d));
866 v1 = isl_val_add(v1, v2);
867 v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
868 v2 = isl_val_ceil(v2);
869 if (isl_val_is_neg(v2)) {
870 v2 = isl_val_mul(v2, isl_val_copy(data->d));
871 v1 = isl_val_sub(v1, isl_val_copy(v2));
873 data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
874 isl_val_free(v2);
876 if (data->sign < 0) {
877 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
878 data->v = isl_val_neg(data->v);
881 return extract_term_and_mod(data,
882 isl_aff_copy(data->div), data->nonneg);
883 error:
884 data->aff = isl_aff_free(data->aff);
885 return -1;
888 /* Check if "data->aff" involves any (implicit) modulo computations based
889 * on div "data->i".
890 * If so, remove them from aff and add expressions corresponding
891 * to those modulo computations to data->pos and/or data->neg.
893 * "aff" is assumed to be an integer affine expression.
895 * In particular, check if (v * div_j) is of the form
897 * f * m * floor(a / m)
899 * and, if so, rewrite it as
901 * f * (a - (a mod m)) = f * a - f * (a mod m)
903 * and extract out -f * (a mod m).
904 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
905 * If f < 0, we add ((-f) * (a mod m)) to *pos.
907 * Note that in order to represent "a mod m" as
909 * (isl_ast_op_pdiv_r, a, m)
911 * we need to make sure that a is non-negative.
912 * If not, we check if "-a + m - 1" is non-negative.
913 * If so, we can rewrite
915 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
917 * and still extract a modulo.
919 static int extract_modulo(struct isl_extract_mod_data *data)
921 data->div = isl_aff_get_div(data->aff, data->i);
922 data->d = isl_aff_get_denominator_val(data->div);
923 if (isl_val_is_divisible_by(data->v, data->d)) {
924 data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
925 if (try_extract_mod(data) < 0)
926 data->aff = isl_aff_free(data->aff);
928 isl_aff_free(data->div);
929 isl_val_free(data->d);
930 return 0;
933 /* Check if "aff" involves any (implicit) modulo computations.
934 * If so, remove them from aff and add expressions corresponding
935 * to those modulo computations to *pos and/or *neg.
936 * We only do this if the option ast_build_prefer_pdiv is set.
938 * "aff" is assumed to be an integer affine expression.
940 * A modulo expression is of the form
942 * a mod m = a - m * floor(a / m)
944 * To detect them in aff, we look for terms of the form
946 * f * m * floor(a / m)
948 * rewrite them as
950 * f * (a - (a mod m)) = f * a - f * (a mod m)
952 * and extract out -f * (a mod m).
953 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
954 * If f < 0, we add ((-f) * (a mod m)) to *pos.
956 static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
957 __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
958 __isl_keep isl_ast_build *build)
960 struct isl_extract_mod_data data = { build, aff, *pos, *neg };
961 isl_ctx *ctx;
962 isl_size n;
964 if (!aff)
965 return NULL;
967 ctx = isl_aff_get_ctx(aff);
968 if (!isl_options_get_ast_build_prefer_pdiv(ctx))
969 return aff;
971 n = isl_aff_dim(data.aff, isl_dim_div);
972 if (n < 0)
973 return isl_aff_free(aff);
974 for (data.i = 0; data.i < n; ++data.i) {
975 data.v = isl_aff_get_coefficient_val(data.aff,
976 isl_dim_div, data.i);
977 if (!data.v)
978 return isl_aff_free(aff);
979 if (isl_val_is_zero(data.v) ||
980 isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
981 isl_val_free(data.v);
982 continue;
984 if (extract_modulo(&data) < 0)
985 data.aff = isl_aff_free(data.aff);
986 isl_val_free(data.v);
987 if (!data.aff)
988 break;
991 if (data.add)
992 data.aff = isl_aff_add(data.aff, data.add);
994 *pos = data.pos;
995 *neg = data.neg;
996 return data.aff;
999 /* Check if aff involves any non-integer coefficients.
1000 * If so, split aff into
1002 * aff = aff1 + (aff2 / d)
1004 * with both aff1 and aff2 having only integer coefficients.
1005 * Return aff1 and add (aff2 / d) to *expr.
1007 static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
1008 __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
1010 int i, j;
1011 isl_size n;
1012 isl_aff *rat = NULL;
1013 isl_local_space *ls = NULL;
1014 isl_ast_expr *rat_expr;
1015 isl_val *v, *d;
1016 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1017 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1019 if (!aff)
1020 return NULL;
1021 d = isl_aff_get_denominator_val(aff);
1022 if (!d)
1023 goto error;
1024 if (isl_val_is_one(d)) {
1025 isl_val_free(d);
1026 return aff;
1029 aff = isl_aff_scale_val(aff, isl_val_copy(d));
1031 ls = isl_aff_get_domain_local_space(aff);
1032 rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1034 for (i = 0; i < 3; ++i) {
1035 n = isl_aff_dim(aff, t[i]);
1036 if (n < 0)
1037 goto error;
1038 for (j = 0; j < n; ++j) {
1039 isl_aff *rat_j;
1041 v = isl_aff_get_coefficient_val(aff, t[i], j);
1042 if (!v)
1043 goto error;
1044 if (isl_val_is_divisible_by(v, d)) {
1045 isl_val_free(v);
1046 continue;
1048 rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
1049 l[i], j);
1050 rat_j = isl_aff_scale_val(rat_j, v);
1051 rat = isl_aff_add(rat, rat_j);
1055 v = isl_aff_get_constant_val(aff);
1056 if (isl_val_is_divisible_by(v, d)) {
1057 isl_val_free(v);
1058 } else {
1059 isl_aff *rat_0;
1061 rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
1062 rat = isl_aff_add(rat, rat_0);
1065 isl_local_space_free(ls);
1067 aff = isl_aff_sub(aff, isl_aff_copy(rat));
1068 aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
1070 rat_expr = isl_ast_expr_from_aff(rat, build);
1071 rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
1072 *expr = ast_expr_add(*expr, rat_expr);
1074 return aff;
1075 error:
1076 isl_aff_free(rat);
1077 isl_local_space_free(ls);
1078 isl_aff_free(aff);
1079 isl_val_free(d);
1080 return NULL;
1083 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1084 * The result is simplified in terms of build->domain.
1086 * We first extract hidden modulo computations from the affine expression
1087 * and then add terms for each variable with a non-zero coefficient.
1088 * Finally, if the affine expression has a non-trivial denominator,
1089 * we divide the resulting isl_ast_expr by this denominator.
1091 __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
1092 __isl_keep isl_ast_build *build)
1094 int i, j;
1095 isl_size n;
1096 isl_val *v;
1097 isl_ctx *ctx = isl_aff_get_ctx(aff);
1098 isl_ast_expr *expr, *expr_neg;
1099 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1100 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1101 isl_local_space *ls;
1102 struct isl_ast_add_term_data data;
1104 if (!aff)
1105 return NULL;
1107 expr = isl_ast_expr_alloc_int_si(ctx, 0);
1108 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1110 aff = extract_rational(aff, &expr, build);
1112 aff = extract_modulos(aff, &expr, &expr_neg, build);
1113 expr = ast_expr_sub(expr, expr_neg);
1115 ls = isl_aff_get_domain_local_space(aff);
1117 data.build = build;
1118 data.cst = isl_aff_get_constant_val(aff);
1119 for (i = 0; i < 3; ++i) {
1120 n = isl_aff_dim(aff, t[i]);
1121 if (n < 0)
1122 expr = isl_ast_expr_free(expr);
1123 for (j = 0; j < n; ++j) {
1124 v = isl_aff_get_coefficient_val(aff, t[i], j);
1125 if (!v)
1126 expr = isl_ast_expr_free(expr);
1127 if (isl_val_is_zero(v)) {
1128 isl_val_free(v);
1129 continue;
1131 expr = isl_ast_expr_add_term(expr,
1132 ls, l[i], j, v, &data);
1136 expr = isl_ast_expr_add_int(expr, data.cst);
1138 isl_local_space_free(ls);
1139 isl_aff_free(aff);
1140 return expr;
1143 /* Add terms to "expr" for each variable in "aff" with a coefficient
1144 * with sign equal to "sign".
1145 * The result is simplified in terms of data->build->domain.
1147 static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
1148 __isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
1150 int i, j;
1151 isl_val *v;
1152 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1153 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1154 isl_local_space *ls;
1156 ls = isl_aff_get_domain_local_space(aff);
1158 for (i = 0; i < 3; ++i) {
1159 isl_size n = isl_aff_dim(aff, t[i]);
1160 if (n < 0)
1161 expr = isl_ast_expr_free(expr);
1162 for (j = 0; j < n; ++j) {
1163 v = isl_aff_get_coefficient_val(aff, t[i], j);
1164 if (sign * isl_val_sgn(v) <= 0) {
1165 isl_val_free(v);
1166 continue;
1168 v = isl_val_abs(v);
1169 expr = isl_ast_expr_add_term(expr,
1170 ls, l[i], j, v, data);
1174 isl_local_space_free(ls);
1176 return expr;
1179 /* Should the constant term "v" be considered positive?
1181 * A positive constant will be added to "pos" by the caller,
1182 * while a negative constant will be added to "neg".
1183 * If either "pos" or "neg" is exactly zero, then we prefer
1184 * to add the constant "v" to that side, irrespective of the sign of "v".
1185 * This results in slightly shorter expressions and may reduce the risk
1186 * of overflows.
1188 static int constant_is_considered_positive(__isl_keep isl_val *v,
1189 __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
1191 if (ast_expr_is_zero(pos))
1192 return 1;
1193 if (ast_expr_is_zero(neg))
1194 return 0;
1195 return isl_val_is_pos(v);
1198 /* Check if the equality
1200 * aff = 0
1202 * represents a stride constraint on the integer division "pos".
1204 * In particular, if the integer division "pos" is equal to
1206 * floor(e/d)
1208 * then check if aff is equal to
1210 * e - d floor(e/d)
1212 * or its opposite.
1214 * If so, the equality is exactly
1216 * e mod d = 0
1218 * Note that in principle we could also accept
1220 * e - d floor(e'/d)
1222 * where e and e' differ by a constant.
1224 static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
1226 isl_aff *div;
1227 isl_val *c, *d;
1228 int eq;
1230 div = isl_aff_get_div(aff, pos);
1231 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1232 d = isl_aff_get_denominator_val(div);
1233 eq = isl_val_abs_eq(c, d);
1234 if (eq >= 0 && eq) {
1235 aff = isl_aff_copy(aff);
1236 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1237 div = isl_aff_scale_val(div, d);
1238 if (isl_val_is_pos(c))
1239 div = isl_aff_neg(div);
1240 eq = isl_aff_plain_is_equal(div, aff);
1241 isl_aff_free(aff);
1242 } else
1243 isl_val_free(d);
1244 isl_val_free(c);
1245 isl_aff_free(div);
1247 return eq;
1250 /* Are all coefficients of "aff" (zero or) negative?
1252 static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
1254 int i;
1255 isl_size n;
1257 n = isl_aff_dim(aff, isl_dim_param);
1258 if (n < 0)
1259 return isl_bool_error;
1260 for (i = 0; i < n; ++i)
1261 if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
1262 return isl_bool_false;
1264 n = isl_aff_dim(aff, isl_dim_in);
1265 if (n < 0)
1266 return isl_bool_error;
1267 for (i = 0; i < n; ++i)
1268 if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
1269 return isl_bool_false;
1271 return isl_bool_true;
1274 /* Give an equality of the form
1276 * aff = e - d floor(e/d) = 0
1278 * or
1280 * aff = -e + d floor(e/d) = 0
1282 * with the integer division "pos" equal to floor(e/d),
1283 * construct the AST expression
1285 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1287 * If e only has negative coefficients, then construct
1289 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1291 * instead.
1293 static __isl_give isl_ast_expr *extract_stride_constraint(
1294 __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
1296 isl_bool all_neg;
1297 isl_ctx *ctx;
1298 isl_val *c;
1299 isl_ast_expr *expr, *cst;
1301 if (!aff)
1302 return NULL;
1304 ctx = isl_aff_get_ctx(aff);
1306 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1307 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1309 all_neg = all_negative_coefficients(aff);
1310 if (all_neg < 0)
1311 aff = isl_aff_free(aff);
1312 else if (all_neg)
1313 aff = isl_aff_neg(aff);
1315 cst = isl_ast_expr_from_val(isl_val_abs(c));
1316 expr = isl_ast_expr_from_aff(aff, build);
1318 expr = isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r, expr, cst);
1319 cst = isl_ast_expr_alloc_int_si(ctx, 0);
1320 expr = isl_ast_expr_alloc_binary(isl_ast_op_eq, expr, cst);
1322 return expr;
1325 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1326 * The result is simplified in terms of build->domain.
1328 * We first check if the constraint is an equality of the form
1330 * e - d floor(e/d) = 0
1332 * i.e.,
1334 * e mod d = 0
1336 * If so, we convert it to
1338 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1340 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1341 * We first extract hidden modulo computations from "a"
1342 * and then collect all the terms with a positive coefficient in cons_pos
1343 * and the terms with a negative coefficient in cons_neg.
1345 * The result is then of the form
1347 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1349 * or
1351 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1353 * However, if the first expression is an integer constant (and the second
1354 * is not), then we swap the two expressions. This ensures that we construct,
1355 * e.g., "i <= 5" rather than "5 >= i".
1357 * Furthermore, is there are no terms with positive coefficients (or no terms
1358 * with negative coefficients), then the constant term is added to "pos"
1359 * (or "neg"), ignoring the sign of the constant term.
1361 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
1362 __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
1364 int i;
1365 isl_size n;
1366 isl_ctx *ctx;
1367 isl_ast_expr *expr_pos;
1368 isl_ast_expr *expr_neg;
1369 isl_ast_expr *expr;
1370 isl_aff *aff;
1371 int eq;
1372 enum isl_ast_op_type type;
1373 struct isl_ast_add_term_data data;
1375 if (!constraint)
1376 return NULL;
1378 aff = isl_constraint_get_aff(constraint);
1379 eq = isl_constraint_is_equality(constraint);
1380 isl_constraint_free(constraint);
1382 n = isl_aff_dim(aff, isl_dim_div);
1383 if (n < 0)
1384 aff = isl_aff_free(aff);
1385 if (eq && n > 0)
1386 for (i = 0; i < n; ++i) {
1387 int is_stride;
1388 is_stride = is_stride_constraint(aff, i);
1389 if (is_stride < 0)
1390 goto error;
1391 if (is_stride)
1392 return extract_stride_constraint(aff, i, build);
1395 ctx = isl_aff_get_ctx(aff);
1396 expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
1397 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1399 aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
1401 data.build = build;
1402 data.cst = isl_aff_get_constant_val(aff);
1403 expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
1404 data.cst = isl_val_neg(data.cst);
1405 expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
1406 data.cst = isl_val_neg(data.cst);
1408 if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
1409 expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
1410 } else {
1411 data.cst = isl_val_neg(data.cst);
1412 expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
1415 if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
1416 isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
1417 type = eq ? isl_ast_op_eq : isl_ast_op_le;
1418 expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
1419 } else {
1420 type = eq ? isl_ast_op_eq : isl_ast_op_ge;
1421 expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
1424 isl_aff_free(aff);
1425 return expr;
1426 error:
1427 isl_aff_free(aff);
1428 return NULL;
1431 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1432 * as a callback to isl_constraint_list_sort.
1433 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1434 * apart, then use isl_constraint_plain_cmp instead.
1436 static int cmp_constraint(__isl_keep isl_constraint *a,
1437 __isl_keep isl_constraint *b, void *user)
1439 int cmp;
1441 cmp = isl_constraint_cmp_last_non_zero(a, b);
1442 if (cmp != 0)
1443 return cmp;
1444 return isl_constraint_plain_cmp(a, b);
1447 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1448 * The result is simplified in terms of build->domain.
1450 * If "bset" is not bounded by any constraint, then we construct
1451 * the expression "1", i.e., "true".
1453 * Otherwise, we sort the constraints, putting constraints that involve
1454 * integer divisions after those that do not, and construct an "and"
1455 * of the ast expressions of the individual constraints.
1457 * Each constraint is added to the generated constraints of the build
1458 * after it has been converted to an AST expression so that it can be used
1459 * to simplify the following constraints. This may change the truth value
1460 * of subsequent constraints that do not satisfy the earlier constraints,
1461 * but this does not affect the outcome of the conjunction as it is
1462 * only true if all the conjuncts are true (no matter in what order
1463 * they are evaluated). In particular, the constraints that do not
1464 * involve integer divisions may serve to simplify some constraints
1465 * that do involve integer divisions.
1467 __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
1468 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
1470 int i;
1471 isl_size n;
1472 isl_constraint *c;
1473 isl_constraint_list *list;
1474 isl_ast_expr *res;
1475 isl_set *set;
1477 list = isl_basic_set_get_constraint_list(bset);
1478 isl_basic_set_free(bset);
1479 list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
1480 n = isl_constraint_list_n_constraint(list);
1481 if (n < 0)
1482 build = NULL;
1483 if (n == 0) {
1484 isl_ctx *ctx = isl_constraint_list_get_ctx(list);
1485 isl_constraint_list_free(list);
1486 return isl_ast_expr_alloc_int_si(ctx, 1);
1489 build = isl_ast_build_copy(build);
1491 c = isl_constraint_list_get_constraint(list, 0);
1492 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1493 set = isl_set_from_basic_set(bset);
1494 res = isl_ast_expr_from_constraint(c, build);
1495 build = isl_ast_build_restrict_generated(build, set);
1497 for (i = 1; i < n; ++i) {
1498 isl_ast_expr *expr;
1500 c = isl_constraint_list_get_constraint(list, i);
1501 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1502 set = isl_set_from_basic_set(bset);
1503 expr = isl_ast_expr_from_constraint(c, build);
1504 build = isl_ast_build_restrict_generated(build, set);
1505 res = isl_ast_expr_and(res, expr);
1508 isl_constraint_list_free(list);
1509 isl_ast_build_free(build);
1510 return res;
1513 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1514 * The result is simplified in terms of build->domain.
1516 * If "set" is an (obviously) empty set, then return the expression "0".
1518 * If there are multiple disjuncts in the description of the set,
1519 * then subsequent disjuncts are simplified in a context where
1520 * the previous disjuncts have been removed from build->domain.
1521 * In particular, constraints that ensure that there is no overlap
1522 * with these previous disjuncts, can be removed.
1523 * This is mostly useful for disjuncts that are only defined by
1524 * a single constraint (relative to the build domain) as the opposite
1525 * of that single constraint can then be removed from the other disjuncts.
1526 * In order not to increase the number of disjuncts in the build domain
1527 * after subtracting the previous disjuncts of "set", the simple hull
1528 * is computed after taking the difference with each of these disjuncts.
1529 * This means that constraints that prevent overlap with a union
1530 * of multiple previous disjuncts are not removed.
1532 * "set" lives in the internal schedule space.
1534 __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
1535 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1537 int i;
1538 isl_size n;
1539 isl_basic_set *bset;
1540 isl_basic_set_list *list;
1541 isl_set *domain;
1542 isl_ast_expr *res;
1544 list = isl_set_get_basic_set_list(set);
1545 isl_set_free(set);
1547 n = isl_basic_set_list_n_basic_set(list);
1548 if (n < 0)
1549 build = NULL;
1550 if (n == 0) {
1551 isl_ctx *ctx = isl_ast_build_get_ctx(build);
1552 isl_basic_set_list_free(list);
1553 return isl_ast_expr_from_val(isl_val_zero(ctx));
1556 domain = isl_ast_build_get_domain(build);
1558 bset = isl_basic_set_list_get_basic_set(list, 0);
1559 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1560 res = isl_ast_build_expr_from_basic_set(build, bset);
1562 for (i = 1; i < n; ++i) {
1563 isl_ast_expr *expr;
1564 isl_set *rest;
1566 rest = isl_set_subtract(isl_set_copy(domain), set);
1567 rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
1568 domain = isl_set_intersect(domain, rest);
1569 bset = isl_basic_set_list_get_basic_set(list, i);
1570 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1571 bset = isl_basic_set_gist(bset,
1572 isl_set_simple_hull(isl_set_copy(domain)));
1573 expr = isl_ast_build_expr_from_basic_set(build, bset);
1574 res = isl_ast_expr_or(res, expr);
1577 isl_set_free(domain);
1578 isl_set_free(set);
1579 isl_basic_set_list_free(list);
1580 return res;
1583 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1584 * The result is simplified in terms of build->domain.
1586 * If "set" is an (obviously) empty set, then return the expression "0".
1588 * "set" lives in the external schedule space.
1590 * The internal AST expression generation assumes that there are
1591 * no unknown divs, so make sure an explicit representation is available.
1592 * Since the set comes from the outside, it may have constraints that
1593 * are redundant with respect to the build domain. Remove them first.
1595 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
1596 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1598 isl_bool needs_map;
1600 needs_map = isl_ast_build_need_schedule_map(build);
1601 if (needs_map < 0) {
1602 set = isl_set_free(set);
1603 } else if (needs_map) {
1604 isl_multi_aff *ma;
1605 ma = isl_ast_build_get_schedule_map_multi_aff(build);
1606 set = isl_set_preimage_multi_aff(set, ma);
1609 set = isl_set_compute_divs(set);
1610 set = isl_ast_build_compute_gist(build, set);
1611 return isl_ast_build_expr_from_set_internal(build, set);
1614 /* State of data about previous pieces in
1615 * isl_ast_build_expr_from_pw_aff_internal.
1617 * isl_state_none: no data about previous pieces
1618 * isl_state_single: data about a single previous piece
1619 * isl_state_min: data represents minimum of several pieces
1620 * isl_state_max: data represents maximum of several pieces
1622 enum isl_from_pw_aff_state {
1623 isl_state_none,
1624 isl_state_single,
1625 isl_state_min,
1626 isl_state_max
1629 /* Internal date structure representing a single piece in the input of
1630 * isl_ast_build_expr_from_pw_aff_internal.
1632 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1633 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1634 * single previous subpiece.
1635 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1636 * a sequence of several previous subpieces that are equal to the minimum
1637 * of the entries in "aff_list" over the union of "set_list"
1638 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1639 * a sequence of several previous subpieces that are equal to the maximum
1640 * of the entries in "aff_list" over the union of "set_list"
1642 * During the construction of the pieces, "set" is NULL.
1643 * After the construction, "set" is set to the union of the elements
1644 * in "set_list", at which point "set_list" is set to NULL.
1646 struct isl_from_pw_aff_piece {
1647 enum isl_from_pw_aff_state state;
1648 isl_set *set;
1649 isl_set_list *set_list;
1650 isl_aff_list *aff_list;
1653 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1655 * "build" specifies the domain against which the result is simplified.
1656 * "dom" is the domain of the entire isl_pw_aff.
1658 * "n" is the number of pieces constructed already.
1659 * In particular, during the construction of the pieces, "n" points to
1660 * the piece that is being constructed. After the construction of the
1661 * pieces, "n" is set to the total number of pieces.
1662 * "max" is the total number of allocated entries.
1663 * "p" contains the individual pieces.
1665 struct isl_from_pw_aff_data {
1666 isl_ast_build *build;
1667 isl_set *dom;
1669 int n;
1670 int max;
1671 struct isl_from_pw_aff_piece *p;
1674 /* Initialize "data" based on "build" and "pa".
1676 static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
1677 __isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
1679 isl_size n;
1680 isl_ctx *ctx;
1682 ctx = isl_pw_aff_get_ctx(pa);
1683 n = isl_pw_aff_n_piece(pa);
1684 if (n < 0)
1685 return isl_stat_error;
1686 if (n == 0)
1687 isl_die(ctx, isl_error_invalid,
1688 "cannot handle void expression", return isl_stat_error);
1689 data->max = n;
1690 data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
1691 if (!data->p)
1692 return isl_stat_error;
1693 data->build = build;
1694 data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1695 data->n = 0;
1697 return isl_stat_ok;
1700 /* Free all memory allocated for "data".
1702 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
1704 int i;
1706 isl_set_free(data->dom);
1707 if (!data->p)
1708 return;
1710 for (i = 0; i < data->max; ++i) {
1711 isl_set_free(data->p[i].set);
1712 isl_set_list_free(data->p[i].set_list);
1713 isl_aff_list_free(data->p[i].aff_list);
1715 free(data->p);
1718 /* Initialize the current entry of "data" to an unused piece.
1720 static void set_none(struct isl_from_pw_aff_data *data)
1722 data->p[data->n].state = isl_state_none;
1723 data->p[data->n].set_list = NULL;
1724 data->p[data->n].aff_list = NULL;
1727 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1729 static void set_single(struct isl_from_pw_aff_data *data,
1730 __isl_take isl_set *set, __isl_take isl_aff *aff)
1732 data->p[data->n].state = isl_state_single;
1733 data->p[data->n].set_list = isl_set_list_from_set(set);
1734 data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
1737 /* Extend the current entry of "data" with "set" and "aff"
1738 * as a minimum expression.
1740 static isl_stat extend_min(struct isl_from_pw_aff_data *data,
1741 __isl_take isl_set *set, __isl_take isl_aff *aff)
1743 int n = data->n;
1744 data->p[n].state = isl_state_min;
1745 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
1746 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
1748 if (!data->p[n].set_list || !data->p[n].aff_list)
1749 return isl_stat_error;
1750 return isl_stat_ok;
1753 /* Extend the current entry of "data" with "set" and "aff"
1754 * as a maximum expression.
1756 static isl_stat extend_max(struct isl_from_pw_aff_data *data,
1757 __isl_take isl_set *set, __isl_take isl_aff *aff)
1759 int n = data->n;
1760 data->p[n].state = isl_state_max;
1761 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
1762 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
1764 if (!data->p[n].set_list || !data->p[n].aff_list)
1765 return isl_stat_error;
1766 return isl_stat_ok;
1769 /* Extend the domain of the current entry of "data", which is assumed
1770 * to contain a single subpiece, with "set". If "replace" is set,
1771 * then also replace the affine function by "aff". Otherwise,
1772 * simply free "aff".
1774 static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
1775 __isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
1777 int n = data->n;
1778 isl_set *set_n;
1780 set_n = isl_set_list_get_set(data->p[n].set_list, 0);
1781 set_n = isl_set_union(set_n, set);
1782 data->p[n].set_list =
1783 isl_set_list_set_set(data->p[n].set_list, 0, set_n);
1785 if (replace)
1786 data->p[n].aff_list =
1787 isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
1788 else
1789 isl_aff_free(aff);
1791 if (!data->p[n].set_list || !data->p[n].aff_list)
1792 return isl_stat_error;
1793 return isl_stat_ok;
1796 /* Construct an isl_ast_expr from "list" within "build".
1797 * If "state" is isl_state_single, then "list" contains a single entry and
1798 * an isl_ast_expr is constructed for that entry.
1799 * Otherwise a min or max expression is constructed from "list"
1800 * depending on "state".
1802 static __isl_give isl_ast_expr *ast_expr_from_aff_list(
1803 __isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
1804 __isl_keep isl_ast_build *build)
1806 int i;
1807 isl_size n;
1808 isl_aff *aff;
1809 isl_ast_expr *expr = NULL;
1810 enum isl_ast_op_type op_type;
1812 if (state == isl_state_single) {
1813 aff = isl_aff_list_get_aff(list, 0);
1814 isl_aff_list_free(list);
1815 return isl_ast_expr_from_aff(aff, build);
1817 n = isl_aff_list_n_aff(list);
1818 if (n < 0)
1819 goto error;
1820 op_type = state == isl_state_min ? isl_ast_op_min : isl_ast_op_max;
1821 expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
1822 if (!expr)
1823 goto error;
1825 for (i = 0; i < n; ++i) {
1826 isl_ast_expr *expr_i;
1828 aff = isl_aff_list_get_aff(list, i);
1829 expr_i = isl_ast_expr_from_aff(aff, build);
1830 if (!expr_i)
1831 goto error;
1832 expr->u.op.args[i] = expr_i;
1835 isl_aff_list_free(list);
1836 return expr;
1837 error:
1838 isl_aff_list_free(list);
1839 isl_ast_expr_free(expr);
1840 return NULL;
1843 /* Extend the expression in "next" to take into account
1844 * the piece at position "pos" in "data", allowing for a further extension
1845 * for the next piece(s).
1846 * In particular, "next" is set to a select operation that selects
1847 * an isl_ast_expr corresponding to data->aff_list on data->set and
1848 * to an expression that will be filled in by later calls.
1849 * Return a pointer to this location.
1850 * Afterwards, the state of "data" is set to isl_state_none.
1852 * The constraints of data->set are added to the generated
1853 * constraints of the build such that they can be exploited to simplify
1854 * the AST expression constructed from data->aff_list.
1856 static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
1857 int pos, isl_ast_expr **next)
1859 isl_ctx *ctx;
1860 isl_ast_build *build;
1861 isl_ast_expr *ternary, *arg;
1862 isl_set *set, *gist;
1864 set = data->p[pos].set;
1865 data->p[pos].set = NULL;
1866 ctx = isl_ast_build_get_ctx(data->build);
1867 ternary = isl_ast_expr_alloc_op(ctx, isl_ast_op_select, 3);
1868 gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
1869 arg = isl_ast_build_expr_from_set_internal(data->build, gist);
1870 ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
1871 build = isl_ast_build_copy(data->build);
1872 build = isl_ast_build_restrict_generated(build, set);
1873 arg = ast_expr_from_aff_list(data->p[pos].aff_list,
1874 data->p[pos].state, build);
1875 data->p[pos].aff_list = NULL;
1876 isl_ast_build_free(build);
1877 ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
1878 data->p[pos].state = isl_state_none;
1879 if (!ternary)
1880 return NULL;
1882 *next = ternary;
1883 return &ternary->u.op.args[2];
1886 /* Extend the expression in "next" to take into account
1887 * the final piece, located at position "pos" in "data".
1888 * In particular, "next" is set to evaluate data->aff_list
1889 * and the domain is ignored.
1890 * Return isl_stat_ok on success and isl_stat_error on failure.
1892 * The constraints of data->set are however added to the generated
1893 * constraints of the build such that they can be exploited to simplify
1894 * the AST expression constructed from data->aff_list.
1896 static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
1897 int pos, isl_ast_expr **next)
1899 isl_ast_build *build;
1901 if (data->p[pos].state == isl_state_none)
1902 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
1903 "cannot handle void expression", return isl_stat_error);
1905 build = isl_ast_build_copy(data->build);
1906 build = isl_ast_build_restrict_generated(build, data->p[pos].set);
1907 data->p[pos].set = NULL;
1908 *next = ast_expr_from_aff_list(data->p[pos].aff_list,
1909 data->p[pos].state, build);
1910 data->p[pos].aff_list = NULL;
1911 isl_ast_build_free(build);
1912 data->p[pos].state = isl_state_none;
1913 if (!*next)
1914 return isl_stat_error;
1916 return isl_stat_ok;
1919 /* Return -1 if the piece "p1" should be sorted before "p2"
1920 * and 1 if it should be sorted after "p2".
1921 * Return 0 if they do not need to be sorted in a specific order.
1923 * Pieces are sorted according to the number of disjuncts
1924 * in their domains.
1926 static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
1928 const struct isl_from_pw_aff_piece *piece1 = p1;
1929 const struct isl_from_pw_aff_piece *piece2 = p2;
1930 isl_size n1, n2;
1932 n1 = isl_set_n_basic_set(piece1->set);
1933 n2 = isl_set_n_basic_set(piece2->set);
1935 return n1 - n2;
1938 /* Construct an isl_ast_expr from the pieces in "data".
1939 * Return the result or NULL on failure.
1941 * When this function is called, data->n points to the current piece.
1942 * If this is an effective piece, then first increment data->n such
1943 * that data->n contains the number of pieces.
1944 * The "set_list" fields are subsequently replaced by the corresponding
1945 * "set" fields, after which the pieces are sorted according to
1946 * the number of disjuncts in these "set" fields.
1948 * Construct intermediate AST expressions for the initial pieces and
1949 * finish off with the final pieces.
1951 static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
1953 int i;
1954 isl_ast_expr *res = NULL;
1955 isl_ast_expr **next = &res;
1957 if (data->p[data->n].state != isl_state_none)
1958 data->n++;
1959 if (data->n == 0)
1960 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
1961 "cannot handle void expression", return NULL);
1963 for (i = 0; i < data->n; ++i) {
1964 data->p[i].set = isl_set_list_union(data->p[i].set_list);
1965 if (data->p[i].state != isl_state_single)
1966 data->p[i].set = isl_set_coalesce(data->p[i].set);
1967 data->p[i].set_list = NULL;
1970 if (isl_sort(data->p, data->n, sizeof(data->p[0]),
1971 &sort_pieces_cmp, NULL) < 0)
1972 return isl_ast_expr_free(res);
1974 for (i = 0; i + 1 < data->n; ++i) {
1975 next = add_intermediate_piece(data, i, next);
1976 if (!next)
1977 return isl_ast_expr_free(res);
1980 if (add_last_piece(data, data->n - 1, next) < 0)
1981 return isl_ast_expr_free(res);
1983 return res;
1986 /* Is the domain of the current entry of "data", which is assumed
1987 * to contain a single subpiece, a subset of "set"?
1989 static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
1990 __isl_keep isl_set *set)
1992 isl_bool subset;
1993 isl_set *set_n;
1995 set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
1996 subset = isl_set_is_subset(set_n, set);
1997 isl_set_free(set_n);
1999 return subset;
2002 /* Is "aff" a rational expression, i.e., does it have a denominator
2003 * different from one?
2005 static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
2007 isl_bool rational;
2008 isl_val *den;
2010 den = isl_aff_get_denominator_val(aff);
2011 rational = isl_bool_not(isl_val_is_one(den));
2012 isl_val_free(den);
2014 return rational;
2017 /* Does "list" consist of a single rational affine expression?
2019 static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
2021 isl_size n;
2022 isl_bool rational;
2023 isl_aff *aff;
2025 n = isl_aff_list_n_aff(list);
2026 if (n < 0)
2027 return isl_bool_error;
2028 if (n != 1)
2029 return isl_bool_false;
2030 aff = isl_aff_list_get_aff(list, 0);
2031 rational = aff_is_rational(aff);
2032 isl_aff_free(aff);
2034 return rational;
2037 /* Can the list of subpieces in the last piece of "data" be extended with
2038 * "set" and "aff" based on "test"?
2039 * In particular, is it the case for each entry (set_i, aff_i) that
2041 * test(aff, aff_i) holds on set_i, and
2042 * test(aff_i, aff) holds on set?
2044 * "test" returns the set of elements where the tests holds, meaning
2045 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2047 * This function is used to detect min/max expressions.
2048 * If the ast_build_detect_min_max option is turned off, then
2049 * do not even try and perform any detection and return false instead.
2051 * Rational affine expressions are not considered for min/max expressions
2052 * since the combined expression will be defined on the union of the domains,
2053 * while a rational expression may only yield integer values
2054 * on its own definition domain.
2056 static isl_bool extends(struct isl_from_pw_aff_data *data,
2057 __isl_keep isl_set *set, __isl_keep isl_aff *aff,
2058 __isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
2059 __isl_take isl_aff *aff2))
2061 int i;
2062 isl_size n;
2063 isl_bool is_rational;
2064 isl_ctx *ctx;
2065 isl_set *dom;
2067 is_rational = aff_is_rational(aff);
2068 if (is_rational >= 0 && !is_rational)
2069 is_rational = is_single_rational_aff(data->p[data->n].aff_list);
2070 if (is_rational < 0 || is_rational)
2071 return isl_bool_not(is_rational);
2073 ctx = isl_ast_build_get_ctx(data->build);
2074 if (!isl_options_get_ast_build_detect_min_max(ctx))
2075 return isl_bool_false;
2077 n = isl_set_list_n_set(data->p[data->n].set_list);
2078 if (n < 0)
2079 return isl_bool_error;
2081 dom = isl_ast_build_get_domain(data->build);
2082 set = isl_set_intersect(dom, isl_set_copy(set));
2084 for (i = 0; i < n ; ++i) {
2085 isl_aff *aff_i;
2086 isl_set *valid;
2087 isl_set *dom, *required;
2088 isl_bool is_valid;
2090 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2091 valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
2092 required = isl_set_list_get_set(data->p[data->n].set_list, i);
2093 dom = isl_ast_build_get_domain(data->build);
2094 required = isl_set_intersect(dom, required);
2095 is_valid = isl_set_is_subset(required, valid);
2096 isl_set_free(required);
2097 isl_set_free(valid);
2098 if (is_valid < 0 || !is_valid) {
2099 isl_set_free(set);
2100 return is_valid;
2103 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2104 valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
2105 is_valid = isl_set_is_subset(set, valid);
2106 isl_set_free(valid);
2107 if (is_valid < 0 || !is_valid) {
2108 isl_set_free(set);
2109 return is_valid;
2113 isl_set_free(set);
2114 return isl_bool_true;
2117 /* Can the list of pieces in "data" be extended with "set" and "aff"
2118 * to form/preserve a minimum expression?
2119 * In particular, is it the case for each entry (set_i, aff_i) that
2121 * aff >= aff_i on set_i, and
2122 * aff_i >= aff on set?
2124 static isl_bool extends_min(struct isl_from_pw_aff_data *data,
2125 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2127 return extends(data, set, aff, &isl_aff_ge_basic_set);
2130 /* Can the list of pieces in "data" be extended with "set" and "aff"
2131 * to form/preserve a maximum expression?
2132 * In particular, is it the case for each entry (set_i, aff_i) that
2134 * aff <= aff_i on set_i, and
2135 * aff_i <= aff on set?
2137 static isl_bool extends_max(struct isl_from_pw_aff_data *data,
2138 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2140 return extends(data, set, aff, &isl_aff_le_basic_set);
2143 /* This function is called during the construction of an isl_ast_expr
2144 * that evaluates an isl_pw_aff.
2145 * If the last piece of "data" contains a single subpiece and
2146 * if its affine function is equal to "aff" on a part of the domain
2147 * that includes either "set" or the domain of that single subpiece,
2148 * then extend the domain of that single subpiece with "set".
2149 * If it was the original domain of the single subpiece where
2150 * the two affine functions are equal, then also replace
2151 * the affine function of the single subpiece by "aff".
2152 * If the last piece of "data" contains either a single subpiece
2153 * or a minimum, then check if this minimum expression can be extended
2154 * with (set, aff).
2155 * If so, extend the sequence and return.
2156 * Perform the same operation for maximum expressions.
2157 * If no such extension can be performed, then move to the next piece
2158 * in "data" (if the current piece contains any data), and then store
2159 * the current subpiece in the current piece of "data" for later handling.
2161 static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
2162 __isl_take isl_aff *aff, void *user)
2164 struct isl_from_pw_aff_data *data = user;
2165 isl_bool test;
2166 enum isl_from_pw_aff_state state;
2168 state = data->p[data->n].state;
2169 if (state == isl_state_single) {
2170 isl_aff *aff0;
2171 isl_set *eq;
2172 isl_bool subset1, subset2 = isl_bool_false;
2173 aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
2174 eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
2175 subset1 = isl_set_is_subset(set, eq);
2176 if (subset1 >= 0 && !subset1)
2177 subset2 = single_is_subset(data, eq);
2178 isl_set_free(eq);
2179 if (subset1 < 0 || subset2 < 0)
2180 goto error;
2181 if (subset1)
2182 return extend_domain(data, set, aff, 0);
2183 if (subset2)
2184 return extend_domain(data, set, aff, 1);
2186 if (state == isl_state_single || state == isl_state_min) {
2187 test = extends_min(data, set, aff);
2188 if (test < 0)
2189 goto error;
2190 if (test)
2191 return extend_min(data, set, aff);
2193 if (state == isl_state_single || state == isl_state_max) {
2194 test = extends_max(data, set, aff);
2195 if (test < 0)
2196 goto error;
2197 if (test)
2198 return extend_max(data, set, aff);
2200 if (state != isl_state_none)
2201 data->n++;
2202 set_single(data, set, aff);
2204 return isl_stat_ok;
2205 error:
2206 isl_set_free(set);
2207 isl_aff_free(aff);
2208 return isl_stat_error;
2211 /* Construct an isl_ast_expr that evaluates "pa".
2212 * The result is simplified in terms of build->domain.
2214 * The domain of "pa" lives in the internal schedule space.
2216 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
2217 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2219 struct isl_from_pw_aff_data data = { NULL };
2220 isl_ast_expr *res = NULL;
2222 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
2223 pa = isl_pw_aff_coalesce(pa);
2224 if (!pa)
2225 return NULL;
2227 if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
2228 goto error;
2229 set_none(&data);
2231 if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
2232 res = build_pieces(&data);
2234 isl_pw_aff_free(pa);
2235 isl_from_pw_aff_data_clear(&data);
2236 return res;
2237 error:
2238 isl_pw_aff_free(pa);
2239 isl_from_pw_aff_data_clear(&data);
2240 return NULL;
2243 /* Construct an isl_ast_expr that evaluates "pa".
2244 * The result is simplified in terms of build->domain.
2246 * The domain of "pa" lives in the external schedule space.
2248 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
2249 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2251 isl_ast_expr *expr;
2252 isl_bool needs_map;
2254 needs_map = isl_ast_build_need_schedule_map(build);
2255 if (needs_map < 0) {
2256 pa = isl_pw_aff_free(pa);
2257 } else if (needs_map) {
2258 isl_multi_aff *ma;
2259 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2260 pa = isl_pw_aff_pullback_multi_aff(pa, ma);
2262 expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2263 return expr;
2266 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2267 * of "build".
2269 * The domain of "mpa" is assumed to live in the internal schedule domain.
2271 static __isl_give isl_multi_pw_aff *set_iterator_names(
2272 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2274 int i;
2275 isl_size n;
2277 n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
2278 if (n < 0)
2279 return isl_multi_pw_aff_free(mpa);
2280 for (i = 0; i < n; ++i) {
2281 isl_id *id;
2283 id = isl_ast_build_get_iterator_id(build, i);
2284 mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
2287 return mpa;
2290 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2291 * the remaining arguments derived from "mpa".
2292 * That is, construct a call or access expression that calls/accesses "arg0"
2293 * with arguments/indices specified by "mpa".
2295 static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
2296 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
2297 __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
2299 int i;
2300 isl_size n;
2301 isl_ctx *ctx;
2302 isl_ast_expr *expr;
2304 ctx = isl_ast_build_get_ctx(build);
2306 n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
2307 expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
2308 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2309 for (i = 0; i < n; ++i) {
2310 isl_pw_aff *pa;
2311 isl_ast_expr *arg;
2313 pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
2314 arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2315 expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
2318 isl_multi_pw_aff_free(mpa);
2319 return expr;
2322 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2323 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
2324 __isl_take isl_multi_pw_aff *mpa);
2326 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2327 * The range of "mpa" is assumed to be wrapped relation.
2328 * The domain of this wrapped relation specifies the structure being
2329 * accessed, while the range of this wrapped relation spacifies the
2330 * member of the structure being accessed.
2332 * The domain of "mpa" is assumed to live in the internal schedule domain.
2334 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
2335 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2337 isl_id *id;
2338 isl_multi_pw_aff *domain;
2339 isl_ast_expr *domain_expr, *expr;
2340 enum isl_ast_op_type type = isl_ast_op_access;
2342 domain = isl_multi_pw_aff_copy(mpa);
2343 domain = isl_multi_pw_aff_range_factor_domain(domain);
2344 domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
2345 type, domain);
2346 mpa = isl_multi_pw_aff_range_factor_range(mpa);
2347 if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2348 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2349 "missing field name", goto error);
2350 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2351 expr = isl_ast_expr_from_id(id);
2352 expr = isl_ast_expr_alloc_binary(isl_ast_op_member, domain_expr, expr);
2353 return isl_ast_build_with_arguments(build, type, expr, mpa);
2354 error:
2355 isl_multi_pw_aff_free(mpa);
2356 return NULL;
2359 /* Construct an isl_ast_expr of type "type" that calls or accesses
2360 * the element specified by "mpa".
2361 * The first argument is obtained from the output tuple name.
2362 * The remaining arguments are given by the piecewise affine expressions.
2364 * If the range of "mpa" is a mapped relation, then we assume it
2365 * represents an access to a member of a structure.
2367 * The domain of "mpa" is assumed to live in the internal schedule domain.
2369 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2370 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
2371 __isl_take isl_multi_pw_aff *mpa)
2373 isl_ctx *ctx;
2374 isl_id *id;
2375 isl_ast_expr *expr;
2377 if (!mpa)
2378 goto error;
2380 if (type == isl_ast_op_access &&
2381 isl_multi_pw_aff_range_is_wrapping(mpa))
2382 return isl_ast_build_from_multi_pw_aff_member(build, mpa);
2384 mpa = set_iterator_names(build, mpa);
2385 if (!build || !mpa)
2386 goto error;
2388 ctx = isl_ast_build_get_ctx(build);
2390 if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2391 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2392 else
2393 id = isl_id_alloc(ctx, "", NULL);
2395 expr = isl_ast_expr_from_id(id);
2396 return isl_ast_build_with_arguments(build, type, expr, mpa);
2397 error:
2398 isl_multi_pw_aff_free(mpa);
2399 return NULL;
2402 /* Construct an isl_ast_expr of type "type" that calls or accesses
2403 * the element specified by "pma".
2404 * The first argument is obtained from the output tuple name.
2405 * The remaining arguments are given by the piecewise affine expressions.
2407 * The domain of "pma" is assumed to live in the internal schedule domain.
2409 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
2410 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
2411 __isl_take isl_pw_multi_aff *pma)
2413 isl_multi_pw_aff *mpa;
2415 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2416 return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2419 /* Construct an isl_ast_expr of type "type" that calls or accesses
2420 * the element specified by "mpa".
2421 * The first argument is obtained from the output tuple name.
2422 * The remaining arguments are given by the piecewise affine expressions.
2424 * The domain of "mpa" is assumed to live in the external schedule domain.
2426 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
2427 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
2428 __isl_take isl_multi_pw_aff *mpa)
2430 isl_bool is_domain;
2431 isl_bool needs_map;
2432 isl_ast_expr *expr;
2433 isl_space *space_build, *space_mpa;
2435 space_build = isl_ast_build_get_space(build, 0);
2436 space_mpa = isl_multi_pw_aff_get_space(mpa);
2437 is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
2438 space_mpa, isl_dim_in);
2439 isl_space_free(space_build);
2440 isl_space_free(space_mpa);
2441 if (is_domain < 0)
2442 goto error;
2443 if (!is_domain)
2444 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2445 "spaces don't match", goto error);
2447 needs_map = isl_ast_build_need_schedule_map(build);
2448 if (needs_map < 0)
2449 goto error;
2450 if (needs_map) {
2451 isl_multi_aff *ma;
2452 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2453 mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
2456 expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2457 return expr;
2458 error:
2459 isl_multi_pw_aff_free(mpa);
2460 return NULL;
2463 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2464 * The name of the function is obtained from the output tuple name.
2465 * The arguments are given by the piecewise affine expressions.
2467 * The domain of "mpa" is assumed to live in the external schedule domain.
2469 __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
2470 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2472 return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_call, mpa);
2475 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2476 * The name of the array is obtained from the output tuple name.
2477 * The index expressions are given by the piecewise affine expressions.
2479 * The domain of "mpa" is assumed to live in the external schedule domain.
2481 __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
2482 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2484 return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_access, mpa);
2487 /* Construct an isl_ast_expr of type "type" that calls or accesses
2488 * the element specified by "pma".
2489 * The first argument is obtained from the output tuple name.
2490 * The remaining arguments are given by the piecewise affine expressions.
2492 * The domain of "pma" is assumed to live in the external schedule domain.
2494 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
2495 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
2496 __isl_take isl_pw_multi_aff *pma)
2498 isl_multi_pw_aff *mpa;
2500 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2501 return isl_ast_build_from_multi_pw_aff(build, type, mpa);
2504 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2505 * The name of the function is obtained from the output tuple name.
2506 * The arguments are given by the piecewise affine expressions.
2508 * The domain of "pma" is assumed to live in the external schedule domain.
2510 __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
2511 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2513 return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_call, pma);
2516 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2517 * The name of the array is obtained from the output tuple name.
2518 * The index expressions are given by the piecewise affine expressions.
2520 * The domain of "pma" is assumed to live in the external schedule domain.
2522 __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
2523 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2525 return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_access, pma);
2528 /* Construct an isl_ast_expr that calls the domain element
2529 * specified by "executed".
2531 * "executed" is assumed to be single-valued, with a domain that lives
2532 * in the internal schedule space.
2534 __isl_give isl_ast_node *isl_ast_build_call_from_executed(
2535 __isl_keep isl_ast_build *build, __isl_take isl_map *executed)
2537 isl_pw_multi_aff *iteration;
2538 isl_ast_expr *expr;
2540 iteration = isl_pw_multi_aff_from_map(executed);
2541 iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
2542 iteration = isl_pw_multi_aff_intersect_domain(iteration,
2543 isl_ast_build_get_domain(build));
2544 expr = isl_ast_build_from_pw_multi_aff_internal(build, isl_ast_op_call,
2545 iteration);
2546 return isl_ast_node_alloc_user(expr);