1 /* Copyright (C) 1991,1992,1996,1997,1999,2004 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, write to the Free
17 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 /* If you consider tuning this algorithm, you should consult first:
21 Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
22 Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
27 #include <isl_qsort.h>
29 /* Byte-wise swap two items of size SIZE. */
30 #define SWAP(a, b, size) \
33 register size_t __size = (size); \
34 register char *__a = (a), *__b = (b); \
40 } while (--__size > 0); \
43 /* Discontinue quicksort algorithm when partition gets below this size.
44 This particular magic number was chosen to work best on a Sun 4/260. */
47 /* Stack node declarations used to store unfulfilled partition obligations. */
54 /* The next 4 #defines implement a very fast in-line stack abstraction. */
55 /* The stack needs log (total_elements) entries (we could even subtract
56 log(MAX_THRESH)). Since total_elements has type size_t, we get as
57 upper bound for log (total_elements):
58 bits per byte (CHAR_BIT) * sizeof(size_t). */
59 #define STACK_SIZE (CHAR_BIT * sizeof(size_t))
60 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
61 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
62 #define STACK_NOT_EMPTY (stack < top)
65 /* Order size using quicksort. This implementation incorporates
66 four optimizations discussed in Sedgewick:
68 1. Non-recursive, using an explicit stack of pointer that store the
69 next array partition to sort. To save time, this maximum amount
70 of space required to store an array of SIZE_MAX is allocated on the
71 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
72 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
73 Pretty cheap, actually.
75 2. Chose the pivot element using a median-of-three decision tree.
76 This reduces the probability of selecting a bad pivot value and
77 eliminates certain extraneous comparisons.
79 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
80 insertion sort to order the MAX_THRESH items within each partition.
81 This is a big win, since insertion sort is faster for small, mostly
82 sorted array segments.
84 4. The larger of the two sub-partitions is always pushed onto the
85 stack first, with the algorithm then concentrating on the
86 smaller partition. This *guarantees* no more than log (total_elems)
87 stack size is needed (actually O(1) in this case)! */
89 void isl_quicksort (void *const pbase
, size_t total_elems
, size_t size
,
90 int (*cmp
)(const void *, const void *, void *arg
), void *arg
)
92 register char *base_ptr
= (char *) pbase
;
94 const size_t max_thresh
= MAX_THRESH
* size
;
97 /* Avoid lossage with unsigned arithmetic below. */
100 if (total_elems
> MAX_THRESH
)
103 char *hi
= &lo
[size
* (total_elems
- 1)];
104 stack_node stack
[STACK_SIZE
];
105 stack_node
*top
= stack
;
109 while (STACK_NOT_EMPTY
)
114 /* Select median value from among LO, MID, and HI. Rearrange
115 LO and HI so the three values are sorted. This lowers the
116 probability of picking a pathological pivot value and
117 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
120 char *mid
= lo
+ size
* ((hi
- lo
) / size
>> 1);
122 if ((*cmp
) ((void *) mid
, (void *) lo
, arg
) < 0)
123 SWAP (mid
, lo
, size
);
124 if ((*cmp
) ((void *) hi
, (void *) mid
, arg
) < 0)
125 SWAP (mid
, hi
, size
);
128 if ((*cmp
) ((void *) mid
, (void *) lo
, arg
) < 0)
129 SWAP (mid
, lo
, size
);
132 left_ptr
= lo
+ size
;
133 right_ptr
= hi
- size
;
135 /* Here's the famous ``collapse the walls'' section of quicksort.
136 Gotta like those tight inner loops! They are the main reason
137 that this algorithm runs much faster than others. */
140 while ((*cmp
) ((void *) left_ptr
, (void *) mid
, arg
) < 0)
143 while ((*cmp
) ((void *) mid
, (void *) right_ptr
, arg
) < 0)
146 if (left_ptr
< right_ptr
)
148 SWAP (left_ptr
, right_ptr
, size
);
151 else if (mid
== right_ptr
)
156 else if (left_ptr
== right_ptr
)
163 while (left_ptr
<= right_ptr
);
165 /* Set up pointers for next iteration. First determine whether
166 left and right partitions are below the threshold size. If so,
167 ignore one or both. Otherwise, push the larger partition's
168 bounds on the stack and continue sorting the smaller one. */
170 if ((size_t) (right_ptr
- lo
) <= max_thresh
)
172 if ((size_t) (hi
- left_ptr
) <= max_thresh
)
173 /* Ignore both small partitions. */
176 /* Ignore small left partition. */
179 else if ((size_t) (hi
- left_ptr
) <= max_thresh
)
180 /* Ignore small right partition. */
182 else if ((right_ptr
- lo
) > (hi
- left_ptr
))
184 /* Push larger left partition indices. */
185 PUSH (lo
, right_ptr
);
190 /* Push larger right partition indices. */
197 /* Once the BASE_PTR array is partially sorted by quicksort the rest
198 is completely sorted using insertion sort, since this is efficient
199 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
200 of the array to sort, and END_PTR points at the very last element in
201 the array (*not* one beyond it!). */
203 #define min(x, y) ((x) < (y) ? (x) : (y))
206 char *const end_ptr
= &base_ptr
[size
* (total_elems
- 1)];
207 char *tmp_ptr
= base_ptr
;
208 char *thresh
= min(end_ptr
, base_ptr
+ max_thresh
);
209 register char *run_ptr
;
211 /* Find smallest element in first threshold and place it at the
212 array's beginning. This is the smallest array element,
213 and the operation speeds up insertion sort's inner loop. */
215 for (run_ptr
= tmp_ptr
+ size
; run_ptr
<= thresh
; run_ptr
+= size
)
216 if ((*cmp
) ((void *) run_ptr
, (void *) tmp_ptr
, arg
) < 0)
219 if (tmp_ptr
!= base_ptr
)
220 SWAP (tmp_ptr
, base_ptr
, size
);
222 /* Insertion sort, running from left-hand-side up to right-hand-side. */
224 run_ptr
= base_ptr
+ size
;
225 while ((run_ptr
+= size
) <= end_ptr
)
227 tmp_ptr
= run_ptr
- size
;
228 while ((*cmp
) ((void *) run_ptr
, (void *) tmp_ptr
, arg
) < 0)
232 if (tmp_ptr
!= run_ptr
)
236 trav
= run_ptr
+ size
;
237 while (--trav
>= run_ptr
)
242 for (hi
= lo
= trav
; (lo
-= size
) >= tmp_ptr
; hi
= lo
)