6803605 should be able to offline log devices
[illumos-gate.git] / usr / src / uts / common / fs / zfs / vdev.c
blobae5fae317e19fb58710b480ee0fac0c07bd67ce7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
45 * Virtual device management.
48 static vdev_ops_t *vdev_ops_table[] = {
49 &vdev_root_ops,
50 &vdev_raidz_ops,
51 &vdev_mirror_ops,
52 &vdev_replacing_ops,
53 &vdev_spare_ops,
54 &vdev_disk_ops,
55 &vdev_file_ops,
56 &vdev_missing_ops,
57 NULL
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
64 * Given a vdev type, return the appropriate ops vector.
66 static vdev_ops_t *
67 vdev_getops(const char *type)
69 vdev_ops_t *ops, **opspp;
71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 if (strcmp(ops->vdev_op_type, type) == 0)
73 break;
75 return (ops);
79 * Default asize function: return the MAX of psize with the asize of
80 * all children. This is what's used by anything other than RAID-Z.
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 uint64_t csize;
87 uint64_t c;
89 for (c = 0; c < vd->vdev_children; c++) {
90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 asize = MAX(asize, csize);
94 return (asize);
98 * Get the replaceable or attachable device size.
99 * If the parent is a mirror or raidz, the replaceable size is the minimum
100 * psize of all its children. For the rest, just return our own psize.
102 * e.g.
103 * psize rsize
104 * root - -
105 * mirror/raidz - -
106 * disk1 20g 20g
107 * disk2 40g 20g
108 * disk3 80g 80g
110 uint64_t
111 vdev_get_rsize(vdev_t *vd)
113 vdev_t *pvd, *cvd;
114 uint64_t c, rsize;
116 pvd = vd->vdev_parent;
119 * If our parent is NULL or the root, just return our own psize.
121 if (pvd == NULL || pvd->vdev_parent == NULL)
122 return (vd->vdev_psize);
124 rsize = 0;
126 for (c = 0; c < pvd->vdev_children; c++) {
127 cvd = pvd->vdev_child[c];
128 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
131 return (rsize);
134 vdev_t *
135 vdev_lookup_top(spa_t *spa, uint64_t vdev)
137 vdev_t *rvd = spa->spa_root_vdev;
139 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
141 if (vdev < rvd->vdev_children) {
142 ASSERT(rvd->vdev_child[vdev] != NULL);
143 return (rvd->vdev_child[vdev]);
146 return (NULL);
149 vdev_t *
150 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
152 int c;
153 vdev_t *mvd;
155 if (vd->vdev_guid == guid)
156 return (vd);
158 for (c = 0; c < vd->vdev_children; c++)
159 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
160 NULL)
161 return (mvd);
163 return (NULL);
166 void
167 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
169 size_t oldsize, newsize;
170 uint64_t id = cvd->vdev_id;
171 vdev_t **newchild;
173 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
174 ASSERT(cvd->vdev_parent == NULL);
176 cvd->vdev_parent = pvd;
178 if (pvd == NULL)
179 return;
181 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
183 oldsize = pvd->vdev_children * sizeof (vdev_t *);
184 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
185 newsize = pvd->vdev_children * sizeof (vdev_t *);
187 newchild = kmem_zalloc(newsize, KM_SLEEP);
188 if (pvd->vdev_child != NULL) {
189 bcopy(pvd->vdev_child, newchild, oldsize);
190 kmem_free(pvd->vdev_child, oldsize);
193 pvd->vdev_child = newchild;
194 pvd->vdev_child[id] = cvd;
196 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
197 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
200 * Walk up all ancestors to update guid sum.
202 for (; pvd != NULL; pvd = pvd->vdev_parent)
203 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
205 if (cvd->vdev_ops->vdev_op_leaf)
206 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
209 void
210 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
212 int c;
213 uint_t id = cvd->vdev_id;
215 ASSERT(cvd->vdev_parent == pvd);
217 if (pvd == NULL)
218 return;
220 ASSERT(id < pvd->vdev_children);
221 ASSERT(pvd->vdev_child[id] == cvd);
223 pvd->vdev_child[id] = NULL;
224 cvd->vdev_parent = NULL;
226 for (c = 0; c < pvd->vdev_children; c++)
227 if (pvd->vdev_child[c])
228 break;
230 if (c == pvd->vdev_children) {
231 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
232 pvd->vdev_child = NULL;
233 pvd->vdev_children = 0;
237 * Walk up all ancestors to update guid sum.
239 for (; pvd != NULL; pvd = pvd->vdev_parent)
240 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
242 if (cvd->vdev_ops->vdev_op_leaf)
243 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
247 * Remove any holes in the child array.
249 void
250 vdev_compact_children(vdev_t *pvd)
252 vdev_t **newchild, *cvd;
253 int oldc = pvd->vdev_children;
254 int newc, c;
256 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
258 for (c = newc = 0; c < oldc; c++)
259 if (pvd->vdev_child[c])
260 newc++;
262 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
264 for (c = newc = 0; c < oldc; c++) {
265 if ((cvd = pvd->vdev_child[c]) != NULL) {
266 newchild[newc] = cvd;
267 cvd->vdev_id = newc++;
271 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272 pvd->vdev_child = newchild;
273 pvd->vdev_children = newc;
277 * Allocate and minimally initialize a vdev_t.
279 static vdev_t *
280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
282 vdev_t *vd;
284 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
286 if (spa->spa_root_vdev == NULL) {
287 ASSERT(ops == &vdev_root_ops);
288 spa->spa_root_vdev = vd;
291 if (guid == 0) {
292 if (spa->spa_root_vdev == vd) {
294 * The root vdev's guid will also be the pool guid,
295 * which must be unique among all pools.
297 while (guid == 0 || spa_guid_exists(guid, 0))
298 guid = spa_get_random(-1ULL);
299 } else {
301 * Any other vdev's guid must be unique within the pool.
303 while (guid == 0 ||
304 spa_guid_exists(spa_guid(spa), guid))
305 guid = spa_get_random(-1ULL);
307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 vd->vdev_spa = spa;
311 vd->vdev_id = id;
312 vd->vdev_guid = guid;
313 vd->vdev_guid_sum = guid;
314 vd->vdev_ops = ops;
315 vd->vdev_state = VDEV_STATE_CLOSED;
317 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
318 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
319 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
320 for (int t = 0; t < DTL_TYPES; t++) {
321 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
322 &vd->vdev_dtl_lock);
324 txg_list_create(&vd->vdev_ms_list,
325 offsetof(struct metaslab, ms_txg_node));
326 txg_list_create(&vd->vdev_dtl_list,
327 offsetof(struct vdev, vdev_dtl_node));
328 vd->vdev_stat.vs_timestamp = gethrtime();
329 vdev_queue_init(vd);
330 vdev_cache_init(vd);
332 return (vd);
336 * Allocate a new vdev. The 'alloctype' is used to control whether we are
337 * creating a new vdev or loading an existing one - the behavior is slightly
338 * different for each case.
341 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
342 int alloctype)
344 vdev_ops_t *ops;
345 char *type;
346 uint64_t guid = 0, islog, nparity;
347 vdev_t *vd;
349 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
352 return (EINVAL);
354 if ((ops = vdev_getops(type)) == NULL)
355 return (EINVAL);
358 * If this is a load, get the vdev guid from the nvlist.
359 * Otherwise, vdev_alloc_common() will generate one for us.
361 if (alloctype == VDEV_ALLOC_LOAD) {
362 uint64_t label_id;
364 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
365 label_id != id)
366 return (EINVAL);
368 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
369 return (EINVAL);
370 } else if (alloctype == VDEV_ALLOC_SPARE) {
371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372 return (EINVAL);
373 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375 return (EINVAL);
379 * The first allocated vdev must be of type 'root'.
381 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
382 return (EINVAL);
385 * Determine whether we're a log vdev.
387 islog = 0;
388 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
389 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
390 return (ENOTSUP);
393 * Set the nparity property for RAID-Z vdevs.
395 nparity = -1ULL;
396 if (ops == &vdev_raidz_ops) {
397 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
398 &nparity) == 0) {
400 * Currently, we can only support 2 parity devices.
402 if (nparity == 0 || nparity > 2)
403 return (EINVAL);
405 * Older versions can only support 1 parity device.
407 if (nparity == 2 &&
408 spa_version(spa) < SPA_VERSION_RAID6)
409 return (ENOTSUP);
410 } else {
412 * We require the parity to be specified for SPAs that
413 * support multiple parity levels.
415 if (spa_version(spa) >= SPA_VERSION_RAID6)
416 return (EINVAL);
418 * Otherwise, we default to 1 parity device for RAID-Z.
420 nparity = 1;
422 } else {
423 nparity = 0;
425 ASSERT(nparity != -1ULL);
427 vd = vdev_alloc_common(spa, id, guid, ops);
429 vd->vdev_islog = islog;
430 vd->vdev_nparity = nparity;
432 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
433 vd->vdev_path = spa_strdup(vd->vdev_path);
434 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
435 vd->vdev_devid = spa_strdup(vd->vdev_devid);
436 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
437 &vd->vdev_physpath) == 0)
438 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
439 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
440 vd->vdev_fru = spa_strdup(vd->vdev_fru);
443 * Set the whole_disk property. If it's not specified, leave the value
444 * as -1.
446 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
447 &vd->vdev_wholedisk) != 0)
448 vd->vdev_wholedisk = -1ULL;
451 * Look for the 'not present' flag. This will only be set if the device
452 * was not present at the time of import.
454 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
455 &vd->vdev_not_present);
458 * Get the alignment requirement.
460 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
463 * If we're a top-level vdev, try to load the allocation parameters.
465 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
467 &vd->vdev_ms_array);
468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
469 &vd->vdev_ms_shift);
470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
471 &vd->vdev_asize);
475 * If we're a leaf vdev, try to load the DTL object and other state.
477 if (vd->vdev_ops->vdev_op_leaf &&
478 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
479 if (alloctype == VDEV_ALLOC_LOAD) {
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
481 &vd->vdev_dtl_smo.smo_object);
482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
483 &vd->vdev_unspare);
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
486 &vd->vdev_offline);
489 * When importing a pool, we want to ignore the persistent fault
490 * state, as the diagnosis made on another system may not be
491 * valid in the current context.
493 if (spa->spa_load_state == SPA_LOAD_OPEN) {
494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
495 &vd->vdev_faulted);
496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
497 &vd->vdev_degraded);
498 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
499 &vd->vdev_removed);
504 * Add ourselves to the parent's list of children.
506 vdev_add_child(parent, vd);
508 *vdp = vd;
510 return (0);
513 void
514 vdev_free(vdev_t *vd)
516 int c;
517 spa_t *spa = vd->vdev_spa;
520 * vdev_free() implies closing the vdev first. This is simpler than
521 * trying to ensure complicated semantics for all callers.
523 vdev_close(vd);
525 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
528 * Free all children.
530 for (c = 0; c < vd->vdev_children; c++)
531 vdev_free(vd->vdev_child[c]);
533 ASSERT(vd->vdev_child == NULL);
534 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
537 * Discard allocation state.
539 if (vd == vd->vdev_top)
540 vdev_metaslab_fini(vd);
542 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
543 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
544 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
547 * Remove this vdev from its parent's child list.
549 vdev_remove_child(vd->vdev_parent, vd);
551 ASSERT(vd->vdev_parent == NULL);
554 * Clean up vdev structure.
556 vdev_queue_fini(vd);
557 vdev_cache_fini(vd);
559 if (vd->vdev_path)
560 spa_strfree(vd->vdev_path);
561 if (vd->vdev_devid)
562 spa_strfree(vd->vdev_devid);
563 if (vd->vdev_physpath)
564 spa_strfree(vd->vdev_physpath);
565 if (vd->vdev_fru)
566 spa_strfree(vd->vdev_fru);
568 if (vd->vdev_isspare)
569 spa_spare_remove(vd);
570 if (vd->vdev_isl2cache)
571 spa_l2cache_remove(vd);
573 txg_list_destroy(&vd->vdev_ms_list);
574 txg_list_destroy(&vd->vdev_dtl_list);
576 mutex_enter(&vd->vdev_dtl_lock);
577 for (int t = 0; t < DTL_TYPES; t++) {
578 space_map_unload(&vd->vdev_dtl[t]);
579 space_map_destroy(&vd->vdev_dtl[t]);
581 mutex_exit(&vd->vdev_dtl_lock);
583 mutex_destroy(&vd->vdev_dtl_lock);
584 mutex_destroy(&vd->vdev_stat_lock);
585 mutex_destroy(&vd->vdev_probe_lock);
587 if (vd == spa->spa_root_vdev)
588 spa->spa_root_vdev = NULL;
590 kmem_free(vd, sizeof (vdev_t));
594 * Transfer top-level vdev state from svd to tvd.
596 static void
597 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
599 spa_t *spa = svd->vdev_spa;
600 metaslab_t *msp;
601 vdev_t *vd;
602 int t;
604 ASSERT(tvd == tvd->vdev_top);
606 tvd->vdev_ms_array = svd->vdev_ms_array;
607 tvd->vdev_ms_shift = svd->vdev_ms_shift;
608 tvd->vdev_ms_count = svd->vdev_ms_count;
610 svd->vdev_ms_array = 0;
611 svd->vdev_ms_shift = 0;
612 svd->vdev_ms_count = 0;
614 tvd->vdev_mg = svd->vdev_mg;
615 tvd->vdev_ms = svd->vdev_ms;
617 svd->vdev_mg = NULL;
618 svd->vdev_ms = NULL;
620 if (tvd->vdev_mg != NULL)
621 tvd->vdev_mg->mg_vd = tvd;
623 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
624 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
625 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
627 svd->vdev_stat.vs_alloc = 0;
628 svd->vdev_stat.vs_space = 0;
629 svd->vdev_stat.vs_dspace = 0;
631 for (t = 0; t < TXG_SIZE; t++) {
632 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
633 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
634 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
635 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
636 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
637 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
640 if (list_link_active(&svd->vdev_config_dirty_node)) {
641 vdev_config_clean(svd);
642 vdev_config_dirty(tvd);
645 if (list_link_active(&svd->vdev_state_dirty_node)) {
646 vdev_state_clean(svd);
647 vdev_state_dirty(tvd);
650 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
651 svd->vdev_deflate_ratio = 0;
653 tvd->vdev_islog = svd->vdev_islog;
654 svd->vdev_islog = 0;
657 static void
658 vdev_top_update(vdev_t *tvd, vdev_t *vd)
660 int c;
662 if (vd == NULL)
663 return;
665 vd->vdev_top = tvd;
667 for (c = 0; c < vd->vdev_children; c++)
668 vdev_top_update(tvd, vd->vdev_child[c]);
672 * Add a mirror/replacing vdev above an existing vdev.
674 vdev_t *
675 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
677 spa_t *spa = cvd->vdev_spa;
678 vdev_t *pvd = cvd->vdev_parent;
679 vdev_t *mvd;
681 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
683 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
685 mvd->vdev_asize = cvd->vdev_asize;
686 mvd->vdev_ashift = cvd->vdev_ashift;
687 mvd->vdev_state = cvd->vdev_state;
689 vdev_remove_child(pvd, cvd);
690 vdev_add_child(pvd, mvd);
691 cvd->vdev_id = mvd->vdev_children;
692 vdev_add_child(mvd, cvd);
693 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
695 if (mvd == mvd->vdev_top)
696 vdev_top_transfer(cvd, mvd);
698 return (mvd);
702 * Remove a 1-way mirror/replacing vdev from the tree.
704 void
705 vdev_remove_parent(vdev_t *cvd)
707 vdev_t *mvd = cvd->vdev_parent;
708 vdev_t *pvd = mvd->vdev_parent;
710 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
712 ASSERT(mvd->vdev_children == 1);
713 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
714 mvd->vdev_ops == &vdev_replacing_ops ||
715 mvd->vdev_ops == &vdev_spare_ops);
716 cvd->vdev_ashift = mvd->vdev_ashift;
718 vdev_remove_child(mvd, cvd);
719 vdev_remove_child(pvd, mvd);
722 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
723 * Otherwise, we could have detached an offline device, and when we
724 * go to import the pool we'll think we have two top-level vdevs,
725 * instead of a different version of the same top-level vdev.
727 if (mvd->vdev_top == mvd) {
728 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
729 cvd->vdev_guid += guid_delta;
730 cvd->vdev_guid_sum += guid_delta;
732 cvd->vdev_id = mvd->vdev_id;
733 vdev_add_child(pvd, cvd);
734 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
736 if (cvd == cvd->vdev_top)
737 vdev_top_transfer(mvd, cvd);
739 ASSERT(mvd->vdev_children == 0);
740 vdev_free(mvd);
744 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
746 spa_t *spa = vd->vdev_spa;
747 objset_t *mos = spa->spa_meta_objset;
748 metaslab_class_t *mc;
749 uint64_t m;
750 uint64_t oldc = vd->vdev_ms_count;
751 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
752 metaslab_t **mspp;
753 int error;
755 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
756 return (0);
759 * Compute the raidz-deflation ratio. Note, we hard-code
760 * in 128k (1 << 17) because it is the current "typical" blocksize.
761 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
762 * or we will inconsistently account for existing bp's.
764 vd->vdev_deflate_ratio = (1 << 17) /
765 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
767 ASSERT(oldc <= newc);
769 if (vd->vdev_islog)
770 mc = spa->spa_log_class;
771 else
772 mc = spa->spa_normal_class;
774 if (vd->vdev_mg == NULL)
775 vd->vdev_mg = metaslab_group_create(mc, vd);
777 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
779 if (oldc != 0) {
780 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
781 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
784 vd->vdev_ms = mspp;
785 vd->vdev_ms_count = newc;
787 for (m = oldc; m < newc; m++) {
788 space_map_obj_t smo = { 0, 0, 0 };
789 if (txg == 0) {
790 uint64_t object = 0;
791 error = dmu_read(mos, vd->vdev_ms_array,
792 m * sizeof (uint64_t), sizeof (uint64_t), &object,
793 DMU_READ_PREFETCH);
794 if (error)
795 return (error);
796 if (object != 0) {
797 dmu_buf_t *db;
798 error = dmu_bonus_hold(mos, object, FTAG, &db);
799 if (error)
800 return (error);
801 ASSERT3U(db->db_size, >=, sizeof (smo));
802 bcopy(db->db_data, &smo, sizeof (smo));
803 ASSERT3U(smo.smo_object, ==, object);
804 dmu_buf_rele(db, FTAG);
807 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
808 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
811 return (0);
814 void
815 vdev_metaslab_fini(vdev_t *vd)
817 uint64_t m;
818 uint64_t count = vd->vdev_ms_count;
820 if (vd->vdev_ms != NULL) {
821 for (m = 0; m < count; m++)
822 if (vd->vdev_ms[m] != NULL)
823 metaslab_fini(vd->vdev_ms[m]);
824 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
825 vd->vdev_ms = NULL;
829 typedef struct vdev_probe_stats {
830 boolean_t vps_readable;
831 boolean_t vps_writeable;
832 int vps_flags;
833 } vdev_probe_stats_t;
835 static void
836 vdev_probe_done(zio_t *zio)
838 spa_t *spa = zio->io_spa;
839 vdev_t *vd = zio->io_vd;
840 vdev_probe_stats_t *vps = zio->io_private;
842 ASSERT(vd->vdev_probe_zio != NULL);
844 if (zio->io_type == ZIO_TYPE_READ) {
845 if (zio->io_error == 0)
846 vps->vps_readable = 1;
847 if (zio->io_error == 0 && spa_writeable(spa)) {
848 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
849 zio->io_offset, zio->io_size, zio->io_data,
850 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
851 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
852 } else {
853 zio_buf_free(zio->io_data, zio->io_size);
855 } else if (zio->io_type == ZIO_TYPE_WRITE) {
856 if (zio->io_error == 0)
857 vps->vps_writeable = 1;
858 zio_buf_free(zio->io_data, zio->io_size);
859 } else if (zio->io_type == ZIO_TYPE_NULL) {
860 zio_t *pio;
862 vd->vdev_cant_read |= !vps->vps_readable;
863 vd->vdev_cant_write |= !vps->vps_writeable;
865 if (vdev_readable(vd) &&
866 (vdev_writeable(vd) || !spa_writeable(spa))) {
867 zio->io_error = 0;
868 } else {
869 ASSERT(zio->io_error != 0);
870 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
871 spa, vd, NULL, 0, 0);
872 zio->io_error = ENXIO;
875 mutex_enter(&vd->vdev_probe_lock);
876 ASSERT(vd->vdev_probe_zio == zio);
877 vd->vdev_probe_zio = NULL;
878 mutex_exit(&vd->vdev_probe_lock);
880 while ((pio = zio_walk_parents(zio)) != NULL)
881 if (!vdev_accessible(vd, pio))
882 pio->io_error = ENXIO;
884 kmem_free(vps, sizeof (*vps));
889 * Determine whether this device is accessible by reading and writing
890 * to several known locations: the pad regions of each vdev label
891 * but the first (which we leave alone in case it contains a VTOC).
893 zio_t *
894 vdev_probe(vdev_t *vd, zio_t *zio)
896 spa_t *spa = vd->vdev_spa;
897 vdev_probe_stats_t *vps = NULL;
898 zio_t *pio;
900 ASSERT(vd->vdev_ops->vdev_op_leaf);
903 * Don't probe the probe.
905 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
906 return (NULL);
909 * To prevent 'probe storms' when a device fails, we create
910 * just one probe i/o at a time. All zios that want to probe
911 * this vdev will become parents of the probe io.
913 mutex_enter(&vd->vdev_probe_lock);
915 if ((pio = vd->vdev_probe_zio) == NULL) {
916 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
918 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
919 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
920 ZIO_FLAG_DONT_RETRY;
922 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
924 * vdev_cant_read and vdev_cant_write can only
925 * transition from TRUE to FALSE when we have the
926 * SCL_ZIO lock as writer; otherwise they can only
927 * transition from FALSE to TRUE. This ensures that
928 * any zio looking at these values can assume that
929 * failures persist for the life of the I/O. That's
930 * important because when a device has intermittent
931 * connectivity problems, we want to ensure that
932 * they're ascribed to the device (ENXIO) and not
933 * the zio (EIO).
935 * Since we hold SCL_ZIO as writer here, clear both
936 * values so the probe can reevaluate from first
937 * principles.
939 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
940 vd->vdev_cant_read = B_FALSE;
941 vd->vdev_cant_write = B_FALSE;
944 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
945 vdev_probe_done, vps,
946 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
948 if (zio != NULL) {
949 vd->vdev_probe_wanted = B_TRUE;
950 spa_async_request(spa, SPA_ASYNC_PROBE);
954 if (zio != NULL)
955 zio_add_child(zio, pio);
957 mutex_exit(&vd->vdev_probe_lock);
959 if (vps == NULL) {
960 ASSERT(zio != NULL);
961 return (NULL);
964 for (int l = 1; l < VDEV_LABELS; l++) {
965 zio_nowait(zio_read_phys(pio, vd,
966 vdev_label_offset(vd->vdev_psize, l,
967 offsetof(vdev_label_t, vl_pad2)),
968 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
969 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
970 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
973 if (zio == NULL)
974 return (pio);
976 zio_nowait(pio);
977 return (NULL);
981 * Prepare a virtual device for access.
984 vdev_open(vdev_t *vd)
986 spa_t *spa = vd->vdev_spa;
987 int error;
988 int c;
989 uint64_t osize = 0;
990 uint64_t asize, psize;
991 uint64_t ashift = 0;
993 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
995 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
996 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
997 vd->vdev_state == VDEV_STATE_OFFLINE);
999 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1000 vd->vdev_cant_read = B_FALSE;
1001 vd->vdev_cant_write = B_FALSE;
1003 if (!vd->vdev_removed && vd->vdev_faulted) {
1004 ASSERT(vd->vdev_children == 0);
1005 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1006 VDEV_AUX_ERR_EXCEEDED);
1007 return (ENXIO);
1008 } else if (vd->vdev_offline) {
1009 ASSERT(vd->vdev_children == 0);
1010 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1011 return (ENXIO);
1014 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1016 if (zio_injection_enabled && error == 0)
1017 error = zio_handle_device_injection(vd, ENXIO);
1019 if (error) {
1020 if (vd->vdev_removed &&
1021 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1022 vd->vdev_removed = B_FALSE;
1024 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1025 vd->vdev_stat.vs_aux);
1026 return (error);
1029 vd->vdev_removed = B_FALSE;
1031 if (vd->vdev_degraded) {
1032 ASSERT(vd->vdev_children == 0);
1033 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1034 VDEV_AUX_ERR_EXCEEDED);
1035 } else {
1036 vd->vdev_state = VDEV_STATE_HEALTHY;
1039 for (c = 0; c < vd->vdev_children; c++)
1040 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1041 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1042 VDEV_AUX_NONE);
1043 break;
1046 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1048 if (vd->vdev_children == 0) {
1049 if (osize < SPA_MINDEVSIZE) {
1050 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1051 VDEV_AUX_TOO_SMALL);
1052 return (EOVERFLOW);
1054 psize = osize;
1055 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1056 } else {
1057 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1058 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1059 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1060 VDEV_AUX_TOO_SMALL);
1061 return (EOVERFLOW);
1063 psize = 0;
1064 asize = osize;
1067 vd->vdev_psize = psize;
1069 if (vd->vdev_asize == 0) {
1071 * This is the first-ever open, so use the computed values.
1072 * For testing purposes, a higher ashift can be requested.
1074 vd->vdev_asize = asize;
1075 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1076 } else {
1078 * Make sure the alignment requirement hasn't increased.
1080 if (ashift > vd->vdev_top->vdev_ashift) {
1081 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1082 VDEV_AUX_BAD_LABEL);
1083 return (EINVAL);
1087 * Make sure the device hasn't shrunk.
1089 if (asize < vd->vdev_asize) {
1090 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1091 VDEV_AUX_BAD_LABEL);
1092 return (EINVAL);
1096 * If all children are healthy and the asize has increased,
1097 * then we've experienced dynamic LUN growth.
1099 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1100 asize > vd->vdev_asize) {
1101 vd->vdev_asize = asize;
1106 * Ensure we can issue some IO before declaring the
1107 * vdev open for business.
1109 if (vd->vdev_ops->vdev_op_leaf &&
1110 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1111 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1112 VDEV_AUX_IO_FAILURE);
1113 return (error);
1117 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1118 * resilver. But don't do this if we are doing a reopen for a scrub,
1119 * since this would just restart the scrub we are already doing.
1121 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1122 vdev_resilver_needed(vd, NULL, NULL))
1123 spa_async_request(spa, SPA_ASYNC_RESILVER);
1125 return (0);
1129 * Called once the vdevs are all opened, this routine validates the label
1130 * contents. This needs to be done before vdev_load() so that we don't
1131 * inadvertently do repair I/Os to the wrong device.
1133 * This function will only return failure if one of the vdevs indicates that it
1134 * has since been destroyed or exported. This is only possible if
1135 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1136 * will be updated but the function will return 0.
1139 vdev_validate(vdev_t *vd)
1141 spa_t *spa = vd->vdev_spa;
1142 int c;
1143 nvlist_t *label;
1144 uint64_t guid, top_guid;
1145 uint64_t state;
1147 for (c = 0; c < vd->vdev_children; c++)
1148 if (vdev_validate(vd->vdev_child[c]) != 0)
1149 return (EBADF);
1152 * If the device has already failed, or was marked offline, don't do
1153 * any further validation. Otherwise, label I/O will fail and we will
1154 * overwrite the previous state.
1156 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1158 if ((label = vdev_label_read_config(vd)) == NULL) {
1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 VDEV_AUX_BAD_LABEL);
1161 return (0);
1164 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1165 &guid) != 0 || guid != spa_guid(spa)) {
1166 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1167 VDEV_AUX_CORRUPT_DATA);
1168 nvlist_free(label);
1169 return (0);
1173 * If this vdev just became a top-level vdev because its
1174 * sibling was detached, it will have adopted the parent's
1175 * vdev guid -- but the label may or may not be on disk yet.
1176 * Fortunately, either version of the label will have the
1177 * same top guid, so if we're a top-level vdev, we can
1178 * safely compare to that instead.
1180 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1181 &guid) != 0 ||
1182 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1183 &top_guid) != 0 ||
1184 (vd->vdev_guid != guid &&
1185 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1186 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1187 VDEV_AUX_CORRUPT_DATA);
1188 nvlist_free(label);
1189 return (0);
1192 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1193 &state) != 0) {
1194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1195 VDEV_AUX_CORRUPT_DATA);
1196 nvlist_free(label);
1197 return (0);
1200 nvlist_free(label);
1202 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1203 state != POOL_STATE_ACTIVE)
1204 return (EBADF);
1207 * If we were able to open and validate a vdev that was
1208 * previously marked permanently unavailable, clear that state
1209 * now.
1211 if (vd->vdev_not_present)
1212 vd->vdev_not_present = 0;
1215 return (0);
1219 * Close a virtual device.
1221 void
1222 vdev_close(vdev_t *vd)
1224 spa_t *spa = vd->vdev_spa;
1226 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1228 vd->vdev_ops->vdev_op_close(vd);
1230 vdev_cache_purge(vd);
1233 * We record the previous state before we close it, so that if we are
1234 * doing a reopen(), we don't generate FMA ereports if we notice that
1235 * it's still faulted.
1237 vd->vdev_prevstate = vd->vdev_state;
1239 if (vd->vdev_offline)
1240 vd->vdev_state = VDEV_STATE_OFFLINE;
1241 else
1242 vd->vdev_state = VDEV_STATE_CLOSED;
1243 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1246 void
1247 vdev_reopen(vdev_t *vd)
1249 spa_t *spa = vd->vdev_spa;
1251 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1253 vdev_close(vd);
1254 (void) vdev_open(vd);
1257 * Call vdev_validate() here to make sure we have the same device.
1258 * Otherwise, a device with an invalid label could be successfully
1259 * opened in response to vdev_reopen().
1261 if (vd->vdev_aux) {
1262 (void) vdev_validate_aux(vd);
1263 if (vdev_readable(vd) && vdev_writeable(vd) &&
1264 vd->vdev_aux == &spa->spa_l2cache &&
1265 !l2arc_vdev_present(vd)) {
1266 uint64_t size = vdev_get_rsize(vd);
1267 l2arc_add_vdev(spa, vd,
1268 VDEV_LABEL_START_SIZE,
1269 size - VDEV_LABEL_START_SIZE);
1271 } else {
1272 (void) vdev_validate(vd);
1276 * Reassess parent vdev's health.
1278 vdev_propagate_state(vd);
1282 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1284 int error;
1287 * Normally, partial opens (e.g. of a mirror) are allowed.
1288 * For a create, however, we want to fail the request if
1289 * there are any components we can't open.
1291 error = vdev_open(vd);
1293 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1294 vdev_close(vd);
1295 return (error ? error : ENXIO);
1299 * Recursively initialize all labels.
1301 if ((error = vdev_label_init(vd, txg, isreplacing ?
1302 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1303 vdev_close(vd);
1304 return (error);
1307 return (0);
1311 * The is the latter half of vdev_create(). It is distinct because it
1312 * involves initiating transactions in order to do metaslab creation.
1313 * For creation, we want to try to create all vdevs at once and then undo it
1314 * if anything fails; this is much harder if we have pending transactions.
1316 void
1317 vdev_init(vdev_t *vd, uint64_t txg)
1320 * Aim for roughly 200 metaslabs per vdev.
1322 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1323 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1326 * Initialize the vdev's metaslabs. This can't fail because
1327 * there's nothing to read when creating all new metaslabs.
1329 VERIFY(vdev_metaslab_init(vd, txg) == 0);
1332 void
1333 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1335 ASSERT(vd == vd->vdev_top);
1336 ASSERT(ISP2(flags));
1338 if (flags & VDD_METASLAB)
1339 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1341 if (flags & VDD_DTL)
1342 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1344 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1348 * DTLs.
1350 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1351 * the vdev has less than perfect replication. There are three kinds of DTL:
1353 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1355 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1357 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1358 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1359 * txgs that was scrubbed.
1361 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1362 * persistent errors or just some device being offline.
1363 * Unlike the other three, the DTL_OUTAGE map is not generally
1364 * maintained; it's only computed when needed, typically to
1365 * determine whether a device can be detached.
1367 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1368 * either has the data or it doesn't.
1370 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1371 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1372 * if any child is less than fully replicated, then so is its parent.
1373 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1374 * comprising only those txgs which appear in 'maxfaults' or more children;
1375 * those are the txgs we don't have enough replication to read. For example,
1376 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1377 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1378 * two child DTL_MISSING maps.
1380 * It should be clear from the above that to compute the DTLs and outage maps
1381 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1382 * Therefore, that is all we keep on disk. When loading the pool, or after
1383 * a configuration change, we generate all other DTLs from first principles.
1385 void
1386 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1388 space_map_t *sm = &vd->vdev_dtl[t];
1390 ASSERT(t < DTL_TYPES);
1391 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1393 mutex_enter(sm->sm_lock);
1394 if (!space_map_contains(sm, txg, size))
1395 space_map_add(sm, txg, size);
1396 mutex_exit(sm->sm_lock);
1399 boolean_t
1400 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1402 space_map_t *sm = &vd->vdev_dtl[t];
1403 boolean_t dirty = B_FALSE;
1405 ASSERT(t < DTL_TYPES);
1406 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1408 mutex_enter(sm->sm_lock);
1409 if (sm->sm_space != 0)
1410 dirty = space_map_contains(sm, txg, size);
1411 mutex_exit(sm->sm_lock);
1413 return (dirty);
1416 boolean_t
1417 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1419 space_map_t *sm = &vd->vdev_dtl[t];
1420 boolean_t empty;
1422 mutex_enter(sm->sm_lock);
1423 empty = (sm->sm_space == 0);
1424 mutex_exit(sm->sm_lock);
1426 return (empty);
1430 * Reassess DTLs after a config change or scrub completion.
1432 void
1433 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1435 spa_t *spa = vd->vdev_spa;
1436 avl_tree_t reftree;
1437 int minref;
1439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1441 for (int c = 0; c < vd->vdev_children; c++)
1442 vdev_dtl_reassess(vd->vdev_child[c], txg,
1443 scrub_txg, scrub_done);
1445 if (vd == spa->spa_root_vdev)
1446 return;
1448 if (vd->vdev_ops->vdev_op_leaf) {
1449 mutex_enter(&vd->vdev_dtl_lock);
1450 if (scrub_txg != 0 &&
1451 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1452 /* XXX should check scrub_done? */
1454 * We completed a scrub up to scrub_txg. If we
1455 * did it without rebooting, then the scrub dtl
1456 * will be valid, so excise the old region and
1457 * fold in the scrub dtl. Otherwise, leave the
1458 * dtl as-is if there was an error.
1460 * There's little trick here: to excise the beginning
1461 * of the DTL_MISSING map, we put it into a reference
1462 * tree and then add a segment with refcnt -1 that
1463 * covers the range [0, scrub_txg). This means
1464 * that each txg in that range has refcnt -1 or 0.
1465 * We then add DTL_SCRUB with a refcnt of 2, so that
1466 * entries in the range [0, scrub_txg) will have a
1467 * positive refcnt -- either 1 or 2. We then convert
1468 * the reference tree into the new DTL_MISSING map.
1470 space_map_ref_create(&reftree);
1471 space_map_ref_add_map(&reftree,
1472 &vd->vdev_dtl[DTL_MISSING], 1);
1473 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1474 space_map_ref_add_map(&reftree,
1475 &vd->vdev_dtl[DTL_SCRUB], 2);
1476 space_map_ref_generate_map(&reftree,
1477 &vd->vdev_dtl[DTL_MISSING], 1);
1478 space_map_ref_destroy(&reftree);
1480 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1481 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1482 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1483 if (scrub_done)
1484 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1485 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1486 if (!vdev_readable(vd))
1487 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1488 else
1489 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1490 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1491 mutex_exit(&vd->vdev_dtl_lock);
1493 if (txg != 0)
1494 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1495 return;
1498 mutex_enter(&vd->vdev_dtl_lock);
1499 for (int t = 0; t < DTL_TYPES; t++) {
1500 if (t == DTL_SCRUB)
1501 continue; /* leaf vdevs only */
1502 if (t == DTL_PARTIAL)
1503 minref = 1; /* i.e. non-zero */
1504 else if (vd->vdev_nparity != 0)
1505 minref = vd->vdev_nparity + 1; /* RAID-Z */
1506 else
1507 minref = vd->vdev_children; /* any kind of mirror */
1508 space_map_ref_create(&reftree);
1509 for (int c = 0; c < vd->vdev_children; c++) {
1510 vdev_t *cvd = vd->vdev_child[c];
1511 mutex_enter(&cvd->vdev_dtl_lock);
1512 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1513 mutex_exit(&cvd->vdev_dtl_lock);
1515 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1516 space_map_ref_destroy(&reftree);
1518 mutex_exit(&vd->vdev_dtl_lock);
1521 static int
1522 vdev_dtl_load(vdev_t *vd)
1524 spa_t *spa = vd->vdev_spa;
1525 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1526 objset_t *mos = spa->spa_meta_objset;
1527 dmu_buf_t *db;
1528 int error;
1530 ASSERT(vd->vdev_children == 0);
1532 if (smo->smo_object == 0)
1533 return (0);
1535 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1536 return (error);
1538 ASSERT3U(db->db_size, >=, sizeof (*smo));
1539 bcopy(db->db_data, smo, sizeof (*smo));
1540 dmu_buf_rele(db, FTAG);
1542 mutex_enter(&vd->vdev_dtl_lock);
1543 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1544 NULL, SM_ALLOC, smo, mos);
1545 mutex_exit(&vd->vdev_dtl_lock);
1547 return (error);
1550 void
1551 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1553 spa_t *spa = vd->vdev_spa;
1554 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1555 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1556 objset_t *mos = spa->spa_meta_objset;
1557 space_map_t smsync;
1558 kmutex_t smlock;
1559 dmu_buf_t *db;
1560 dmu_tx_t *tx;
1562 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1564 if (vd->vdev_detached) {
1565 if (smo->smo_object != 0) {
1566 int err = dmu_object_free(mos, smo->smo_object, tx);
1567 ASSERT3U(err, ==, 0);
1568 smo->smo_object = 0;
1570 dmu_tx_commit(tx);
1571 return;
1574 if (smo->smo_object == 0) {
1575 ASSERT(smo->smo_objsize == 0);
1576 ASSERT(smo->smo_alloc == 0);
1577 smo->smo_object = dmu_object_alloc(mos,
1578 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1579 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1580 ASSERT(smo->smo_object != 0);
1581 vdev_config_dirty(vd->vdev_top);
1584 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1586 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1587 &smlock);
1589 mutex_enter(&smlock);
1591 mutex_enter(&vd->vdev_dtl_lock);
1592 space_map_walk(sm, space_map_add, &smsync);
1593 mutex_exit(&vd->vdev_dtl_lock);
1595 space_map_truncate(smo, mos, tx);
1596 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1598 space_map_destroy(&smsync);
1600 mutex_exit(&smlock);
1601 mutex_destroy(&smlock);
1603 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1604 dmu_buf_will_dirty(db, tx);
1605 ASSERT3U(db->db_size, >=, sizeof (*smo));
1606 bcopy(smo, db->db_data, sizeof (*smo));
1607 dmu_buf_rele(db, FTAG);
1609 dmu_tx_commit(tx);
1613 * Determine whether the specified vdev can be offlined/detached/removed
1614 * without losing data.
1616 boolean_t
1617 vdev_dtl_required(vdev_t *vd)
1619 spa_t *spa = vd->vdev_spa;
1620 vdev_t *tvd = vd->vdev_top;
1621 uint8_t cant_read = vd->vdev_cant_read;
1622 boolean_t required;
1624 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1626 if (vd == spa->spa_root_vdev || vd == tvd)
1627 return (B_TRUE);
1630 * Temporarily mark the device as unreadable, and then determine
1631 * whether this results in any DTL outages in the top-level vdev.
1632 * If not, we can safely offline/detach/remove the device.
1634 vd->vdev_cant_read = B_TRUE;
1635 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1636 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1637 vd->vdev_cant_read = cant_read;
1638 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1640 return (required);
1644 * Determine if resilver is needed, and if so the txg range.
1646 boolean_t
1647 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1649 boolean_t needed = B_FALSE;
1650 uint64_t thismin = UINT64_MAX;
1651 uint64_t thismax = 0;
1653 if (vd->vdev_children == 0) {
1654 mutex_enter(&vd->vdev_dtl_lock);
1655 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1656 vdev_writeable(vd)) {
1657 space_seg_t *ss;
1659 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1660 thismin = ss->ss_start - 1;
1661 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1662 thismax = ss->ss_end;
1663 needed = B_TRUE;
1665 mutex_exit(&vd->vdev_dtl_lock);
1666 } else {
1667 for (int c = 0; c < vd->vdev_children; c++) {
1668 vdev_t *cvd = vd->vdev_child[c];
1669 uint64_t cmin, cmax;
1671 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1672 thismin = MIN(thismin, cmin);
1673 thismax = MAX(thismax, cmax);
1674 needed = B_TRUE;
1679 if (needed && minp) {
1680 *minp = thismin;
1681 *maxp = thismax;
1683 return (needed);
1686 void
1687 vdev_load(vdev_t *vd)
1690 * Recursively load all children.
1692 for (int c = 0; c < vd->vdev_children; c++)
1693 vdev_load(vd->vdev_child[c]);
1696 * If this is a top-level vdev, initialize its metaslabs.
1698 if (vd == vd->vdev_top &&
1699 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1700 vdev_metaslab_init(vd, 0) != 0))
1701 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1702 VDEV_AUX_CORRUPT_DATA);
1705 * If this is a leaf vdev, load its DTL.
1707 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1708 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1709 VDEV_AUX_CORRUPT_DATA);
1713 * The special vdev case is used for hot spares and l2cache devices. Its
1714 * sole purpose it to set the vdev state for the associated vdev. To do this,
1715 * we make sure that we can open the underlying device, then try to read the
1716 * label, and make sure that the label is sane and that it hasn't been
1717 * repurposed to another pool.
1720 vdev_validate_aux(vdev_t *vd)
1722 nvlist_t *label;
1723 uint64_t guid, version;
1724 uint64_t state;
1726 if (!vdev_readable(vd))
1727 return (0);
1729 if ((label = vdev_label_read_config(vd)) == NULL) {
1730 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1731 VDEV_AUX_CORRUPT_DATA);
1732 return (-1);
1735 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1736 version > SPA_VERSION ||
1737 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1738 guid != vd->vdev_guid ||
1739 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1740 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1741 VDEV_AUX_CORRUPT_DATA);
1742 nvlist_free(label);
1743 return (-1);
1747 * We don't actually check the pool state here. If it's in fact in
1748 * use by another pool, we update this fact on the fly when requested.
1750 nvlist_free(label);
1751 return (0);
1754 void
1755 vdev_sync_done(vdev_t *vd, uint64_t txg)
1757 metaslab_t *msp;
1759 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1760 metaslab_sync_done(msp, txg);
1763 void
1764 vdev_sync(vdev_t *vd, uint64_t txg)
1766 spa_t *spa = vd->vdev_spa;
1767 vdev_t *lvd;
1768 metaslab_t *msp;
1769 dmu_tx_t *tx;
1771 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1772 ASSERT(vd == vd->vdev_top);
1773 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1774 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1775 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1776 ASSERT(vd->vdev_ms_array != 0);
1777 vdev_config_dirty(vd);
1778 dmu_tx_commit(tx);
1781 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1782 metaslab_sync(msp, txg);
1783 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1786 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1787 vdev_dtl_sync(lvd, txg);
1789 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1792 uint64_t
1793 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1795 return (vd->vdev_ops->vdev_op_asize(vd, psize));
1799 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
1800 * not be opened, and no I/O is attempted.
1803 vdev_fault(spa_t *spa, uint64_t guid)
1805 vdev_t *vd;
1807 spa_vdev_state_enter(spa);
1809 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1810 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1812 if (!vd->vdev_ops->vdev_op_leaf)
1813 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1816 * Faulted state takes precedence over degraded.
1818 vd->vdev_faulted = 1ULL;
1819 vd->vdev_degraded = 0ULL;
1820 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1823 * If marking the vdev as faulted cause the top-level vdev to become
1824 * unavailable, then back off and simply mark the vdev as degraded
1825 * instead.
1827 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1828 vd->vdev_degraded = 1ULL;
1829 vd->vdev_faulted = 0ULL;
1832 * If we reopen the device and it's not dead, only then do we
1833 * mark it degraded.
1835 vdev_reopen(vd);
1837 if (vdev_readable(vd)) {
1838 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1839 VDEV_AUX_ERR_EXCEEDED);
1843 return (spa_vdev_state_exit(spa, vd, 0));
1847 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
1848 * user that something is wrong. The vdev continues to operate as normal as far
1849 * as I/O is concerned.
1852 vdev_degrade(spa_t *spa, uint64_t guid)
1854 vdev_t *vd;
1856 spa_vdev_state_enter(spa);
1858 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1859 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1861 if (!vd->vdev_ops->vdev_op_leaf)
1862 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1865 * If the vdev is already faulted, then don't do anything.
1867 if (vd->vdev_faulted || vd->vdev_degraded)
1868 return (spa_vdev_state_exit(spa, NULL, 0));
1870 vd->vdev_degraded = 1ULL;
1871 if (!vdev_is_dead(vd))
1872 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1873 VDEV_AUX_ERR_EXCEEDED);
1875 return (spa_vdev_state_exit(spa, vd, 0));
1879 * Online the given vdev. If 'unspare' is set, it implies two things. First,
1880 * any attached spare device should be detached when the device finishes
1881 * resilvering. Second, the online should be treated like a 'test' online case,
1882 * so no FMA events are generated if the device fails to open.
1885 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1887 vdev_t *vd;
1889 spa_vdev_state_enter(spa);
1891 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1892 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1894 if (!vd->vdev_ops->vdev_op_leaf)
1895 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1897 vd->vdev_offline = B_FALSE;
1898 vd->vdev_tmpoffline = B_FALSE;
1899 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1900 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1901 vdev_reopen(vd->vdev_top);
1902 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1904 if (newstate)
1905 *newstate = vd->vdev_state;
1906 if ((flags & ZFS_ONLINE_UNSPARE) &&
1907 !vdev_is_dead(vd) && vd->vdev_parent &&
1908 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1909 vd->vdev_parent->vdev_child[0] == vd)
1910 vd->vdev_unspare = B_TRUE;
1912 return (spa_vdev_state_exit(spa, vd, 0));
1916 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1918 vdev_t *vd, *tvd;
1919 int error;
1921 spa_vdev_state_enter(spa);
1923 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1924 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1926 if (!vd->vdev_ops->vdev_op_leaf)
1927 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1929 tvd = vd->vdev_top;
1932 * If the device isn't already offline, try to offline it.
1934 if (!vd->vdev_offline) {
1936 * If this device has the only valid copy of some data,
1937 * don't allow it to be offlined. Log devices are always
1938 * expendable.
1940 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1941 vdev_dtl_required(vd))
1942 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1945 * Offline this device and reopen its top-level vdev.
1946 * If the top-level vdev is a log device then just offline
1947 * it. Otherwise, if this action results in the top-level
1948 * vdev becoming unusable, undo it and fail the request.
1950 vd->vdev_offline = B_TRUE;
1951 vdev_reopen(tvd);
1953 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1954 vdev_is_dead(tvd)) {
1955 vd->vdev_offline = B_FALSE;
1956 vdev_reopen(tvd);
1957 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1961 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1963 if (!tvd->vdev_islog || !vdev_is_dead(tvd))
1964 return (spa_vdev_state_exit(spa, vd, 0));
1966 (void) spa_vdev_state_exit(spa, vd, 0);
1968 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1969 NULL, DS_FIND_CHILDREN);
1970 if (error) {
1971 (void) vdev_online(spa, guid, 0, NULL);
1972 return (error);
1975 * If we successfully offlined the log device then we need to
1976 * sync out the current txg so that the "stubby" block can be
1977 * removed by zil_sync().
1979 txg_wait_synced(spa->spa_dsl_pool, 0);
1980 return (0);
1984 * Clear the error counts associated with this vdev. Unlike vdev_online() and
1985 * vdev_offline(), we assume the spa config is locked. We also clear all
1986 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
1988 void
1989 vdev_clear(spa_t *spa, vdev_t *vd)
1991 vdev_t *rvd = spa->spa_root_vdev;
1993 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1995 if (vd == NULL)
1996 vd = rvd;
1998 vd->vdev_stat.vs_read_errors = 0;
1999 vd->vdev_stat.vs_write_errors = 0;
2000 vd->vdev_stat.vs_checksum_errors = 0;
2002 for (int c = 0; c < vd->vdev_children; c++)
2003 vdev_clear(spa, vd->vdev_child[c]);
2006 * If we're in the FAULTED state or have experienced failed I/O, then
2007 * clear the persistent state and attempt to reopen the device. We
2008 * also mark the vdev config dirty, so that the new faulted state is
2009 * written out to disk.
2011 if (vd->vdev_faulted || vd->vdev_degraded ||
2012 !vdev_readable(vd) || !vdev_writeable(vd)) {
2014 vd->vdev_faulted = vd->vdev_degraded = 0;
2015 vd->vdev_cant_read = B_FALSE;
2016 vd->vdev_cant_write = B_FALSE;
2018 vdev_reopen(vd);
2020 if (vd != rvd)
2021 vdev_state_dirty(vd->vdev_top);
2023 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2024 spa_async_request(spa, SPA_ASYNC_RESILVER);
2026 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2030 boolean_t
2031 vdev_is_dead(vdev_t *vd)
2033 return (vd->vdev_state < VDEV_STATE_DEGRADED);
2036 boolean_t
2037 vdev_readable(vdev_t *vd)
2039 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2042 boolean_t
2043 vdev_writeable(vdev_t *vd)
2045 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2048 boolean_t
2049 vdev_allocatable(vdev_t *vd)
2051 uint64_t state = vd->vdev_state;
2054 * We currently allow allocations from vdevs which may be in the
2055 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2056 * fails to reopen then we'll catch it later when we're holding
2057 * the proper locks. Note that we have to get the vdev state
2058 * in a local variable because although it changes atomically,
2059 * we're asking two separate questions about it.
2061 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2062 !vd->vdev_cant_write);
2065 boolean_t
2066 vdev_accessible(vdev_t *vd, zio_t *zio)
2068 ASSERT(zio->io_vd == vd);
2070 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2071 return (B_FALSE);
2073 if (zio->io_type == ZIO_TYPE_READ)
2074 return (!vd->vdev_cant_read);
2076 if (zio->io_type == ZIO_TYPE_WRITE)
2077 return (!vd->vdev_cant_write);
2079 return (B_TRUE);
2083 * Get statistics for the given vdev.
2085 void
2086 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2088 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2090 mutex_enter(&vd->vdev_stat_lock);
2091 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2092 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2093 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2094 vs->vs_state = vd->vdev_state;
2095 vs->vs_rsize = vdev_get_rsize(vd);
2096 mutex_exit(&vd->vdev_stat_lock);
2099 * If we're getting stats on the root vdev, aggregate the I/O counts
2100 * over all top-level vdevs (i.e. the direct children of the root).
2102 if (vd == rvd) {
2103 for (int c = 0; c < rvd->vdev_children; c++) {
2104 vdev_t *cvd = rvd->vdev_child[c];
2105 vdev_stat_t *cvs = &cvd->vdev_stat;
2107 mutex_enter(&vd->vdev_stat_lock);
2108 for (int t = 0; t < ZIO_TYPES; t++) {
2109 vs->vs_ops[t] += cvs->vs_ops[t];
2110 vs->vs_bytes[t] += cvs->vs_bytes[t];
2112 vs->vs_scrub_examined += cvs->vs_scrub_examined;
2113 mutex_exit(&vd->vdev_stat_lock);
2118 void
2119 vdev_clear_stats(vdev_t *vd)
2121 mutex_enter(&vd->vdev_stat_lock);
2122 vd->vdev_stat.vs_space = 0;
2123 vd->vdev_stat.vs_dspace = 0;
2124 vd->vdev_stat.vs_alloc = 0;
2125 mutex_exit(&vd->vdev_stat_lock);
2128 void
2129 vdev_stat_update(zio_t *zio, uint64_t psize)
2131 spa_t *spa = zio->io_spa;
2132 vdev_t *rvd = spa->spa_root_vdev;
2133 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2134 vdev_t *pvd;
2135 uint64_t txg = zio->io_txg;
2136 vdev_stat_t *vs = &vd->vdev_stat;
2137 zio_type_t type = zio->io_type;
2138 int flags = zio->io_flags;
2141 * If this i/o is a gang leader, it didn't do any actual work.
2143 if (zio->io_gang_tree)
2144 return;
2146 if (zio->io_error == 0) {
2148 * If this is a root i/o, don't count it -- we've already
2149 * counted the top-level vdevs, and vdev_get_stats() will
2150 * aggregate them when asked. This reduces contention on
2151 * the root vdev_stat_lock and implicitly handles blocks
2152 * that compress away to holes, for which there is no i/o.
2153 * (Holes never create vdev children, so all the counters
2154 * remain zero, which is what we want.)
2156 * Note: this only applies to successful i/o (io_error == 0)
2157 * because unlike i/o counts, errors are not additive.
2158 * When reading a ditto block, for example, failure of
2159 * one top-level vdev does not imply a root-level error.
2161 if (vd == rvd)
2162 return;
2164 ASSERT(vd == zio->io_vd);
2166 if (flags & ZIO_FLAG_IO_BYPASS)
2167 return;
2169 mutex_enter(&vd->vdev_stat_lock);
2171 if (flags & ZIO_FLAG_IO_REPAIR) {
2172 if (flags & ZIO_FLAG_SCRUB_THREAD)
2173 vs->vs_scrub_repaired += psize;
2174 if (flags & ZIO_FLAG_SELF_HEAL)
2175 vs->vs_self_healed += psize;
2178 vs->vs_ops[type]++;
2179 vs->vs_bytes[type] += psize;
2181 mutex_exit(&vd->vdev_stat_lock);
2182 return;
2185 if (flags & ZIO_FLAG_SPECULATIVE)
2186 return;
2188 mutex_enter(&vd->vdev_stat_lock);
2189 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2190 if (zio->io_error == ECKSUM)
2191 vs->vs_checksum_errors++;
2192 else
2193 vs->vs_read_errors++;
2195 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2196 vs->vs_write_errors++;
2197 mutex_exit(&vd->vdev_stat_lock);
2199 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2200 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2201 (flags & ZIO_FLAG_SCRUB_THREAD))) {
2203 * This is either a normal write (not a repair), or it's a
2204 * repair induced by the scrub thread. In the normal case,
2205 * we commit the DTL change in the same txg as the block
2206 * was born. In the scrub-induced repair case, we know that
2207 * scrubs run in first-pass syncing context, so we commit
2208 * the DTL change in spa->spa_syncing_txg.
2210 * We currently do not make DTL entries for failed spontaneous
2211 * self-healing writes triggered by normal (non-scrubbing)
2212 * reads, because we have no transactional context in which to
2213 * do so -- and it's not clear that it'd be desirable anyway.
2215 if (vd->vdev_ops->vdev_op_leaf) {
2216 uint64_t commit_txg = txg;
2217 if (flags & ZIO_FLAG_SCRUB_THREAD) {
2218 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2219 ASSERT(spa_sync_pass(spa) == 1);
2220 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2221 commit_txg = spa->spa_syncing_txg;
2223 ASSERT(commit_txg >= spa->spa_syncing_txg);
2224 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2225 return;
2226 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2227 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2228 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2230 if (vd != rvd)
2231 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2235 void
2236 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2238 int c;
2239 vdev_stat_t *vs = &vd->vdev_stat;
2241 for (c = 0; c < vd->vdev_children; c++)
2242 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2244 mutex_enter(&vd->vdev_stat_lock);
2246 if (type == POOL_SCRUB_NONE) {
2248 * Update completion and end time. Leave everything else alone
2249 * so we can report what happened during the previous scrub.
2251 vs->vs_scrub_complete = complete;
2252 vs->vs_scrub_end = gethrestime_sec();
2253 } else {
2254 vs->vs_scrub_type = type;
2255 vs->vs_scrub_complete = 0;
2256 vs->vs_scrub_examined = 0;
2257 vs->vs_scrub_repaired = 0;
2258 vs->vs_scrub_start = gethrestime_sec();
2259 vs->vs_scrub_end = 0;
2262 mutex_exit(&vd->vdev_stat_lock);
2266 * Update the in-core space usage stats for this vdev and the root vdev.
2268 void
2269 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2270 boolean_t update_root)
2272 int64_t dspace_delta = space_delta;
2273 spa_t *spa = vd->vdev_spa;
2274 vdev_t *rvd = spa->spa_root_vdev;
2276 ASSERT(vd == vd->vdev_top);
2279 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2280 * factor. We must calculate this here and not at the root vdev
2281 * because the root vdev's psize-to-asize is simply the max of its
2282 * childrens', thus not accurate enough for us.
2284 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2285 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2286 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2287 vd->vdev_deflate_ratio;
2289 mutex_enter(&vd->vdev_stat_lock);
2290 vd->vdev_stat.vs_space += space_delta;
2291 vd->vdev_stat.vs_alloc += alloc_delta;
2292 vd->vdev_stat.vs_dspace += dspace_delta;
2293 mutex_exit(&vd->vdev_stat_lock);
2295 if (update_root) {
2296 ASSERT(rvd == vd->vdev_parent);
2297 ASSERT(vd->vdev_ms_count != 0);
2300 * Don't count non-normal (e.g. intent log) space as part of
2301 * the pool's capacity.
2303 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2304 return;
2306 mutex_enter(&rvd->vdev_stat_lock);
2307 rvd->vdev_stat.vs_space += space_delta;
2308 rvd->vdev_stat.vs_alloc += alloc_delta;
2309 rvd->vdev_stat.vs_dspace += dspace_delta;
2310 mutex_exit(&rvd->vdev_stat_lock);
2315 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2316 * so that it will be written out next time the vdev configuration is synced.
2317 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2319 void
2320 vdev_config_dirty(vdev_t *vd)
2322 spa_t *spa = vd->vdev_spa;
2323 vdev_t *rvd = spa->spa_root_vdev;
2324 int c;
2327 * If this is an aux vdev (as with l2cache and spare devices), then we
2328 * update the vdev config manually and set the sync flag.
2330 if (vd->vdev_aux != NULL) {
2331 spa_aux_vdev_t *sav = vd->vdev_aux;
2332 nvlist_t **aux;
2333 uint_t naux;
2335 for (c = 0; c < sav->sav_count; c++) {
2336 if (sav->sav_vdevs[c] == vd)
2337 break;
2340 if (c == sav->sav_count) {
2342 * We're being removed. There's nothing more to do.
2344 ASSERT(sav->sav_sync == B_TRUE);
2345 return;
2348 sav->sav_sync = B_TRUE;
2350 if (nvlist_lookup_nvlist_array(sav->sav_config,
2351 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2352 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2353 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2356 ASSERT(c < naux);
2359 * Setting the nvlist in the middle if the array is a little
2360 * sketchy, but it will work.
2362 nvlist_free(aux[c]);
2363 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2365 return;
2369 * The dirty list is protected by the SCL_CONFIG lock. The caller
2370 * must either hold SCL_CONFIG as writer, or must be the sync thread
2371 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2372 * so this is sufficient to ensure mutual exclusion.
2374 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2375 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2376 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2378 if (vd == rvd) {
2379 for (c = 0; c < rvd->vdev_children; c++)
2380 vdev_config_dirty(rvd->vdev_child[c]);
2381 } else {
2382 ASSERT(vd == vd->vdev_top);
2384 if (!list_link_active(&vd->vdev_config_dirty_node))
2385 list_insert_head(&spa->spa_config_dirty_list, vd);
2389 void
2390 vdev_config_clean(vdev_t *vd)
2392 spa_t *spa = vd->vdev_spa;
2394 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2395 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2396 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2398 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2399 list_remove(&spa->spa_config_dirty_list, vd);
2403 * Mark a top-level vdev's state as dirty, so that the next pass of
2404 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2405 * the state changes from larger config changes because they require
2406 * much less locking, and are often needed for administrative actions.
2408 void
2409 vdev_state_dirty(vdev_t *vd)
2411 spa_t *spa = vd->vdev_spa;
2413 ASSERT(vd == vd->vdev_top);
2416 * The state list is protected by the SCL_STATE lock. The caller
2417 * must either hold SCL_STATE as writer, or must be the sync thread
2418 * (which holds SCL_STATE as reader). There's only one sync thread,
2419 * so this is sufficient to ensure mutual exclusion.
2421 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2422 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2423 spa_config_held(spa, SCL_STATE, RW_READER)));
2425 if (!list_link_active(&vd->vdev_state_dirty_node))
2426 list_insert_head(&spa->spa_state_dirty_list, vd);
2429 void
2430 vdev_state_clean(vdev_t *vd)
2432 spa_t *spa = vd->vdev_spa;
2434 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2435 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2436 spa_config_held(spa, SCL_STATE, RW_READER)));
2438 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2439 list_remove(&spa->spa_state_dirty_list, vd);
2443 * Propagate vdev state up from children to parent.
2445 void
2446 vdev_propagate_state(vdev_t *vd)
2448 spa_t *spa = vd->vdev_spa;
2449 vdev_t *rvd = spa->spa_root_vdev;
2450 int degraded = 0, faulted = 0;
2451 int corrupted = 0;
2452 int c;
2453 vdev_t *child;
2455 if (vd->vdev_children > 0) {
2456 for (c = 0; c < vd->vdev_children; c++) {
2457 child = vd->vdev_child[c];
2459 if (!vdev_readable(child) ||
2460 (!vdev_writeable(child) && spa_writeable(spa))) {
2462 * Root special: if there is a top-level log
2463 * device, treat the root vdev as if it were
2464 * degraded.
2466 if (child->vdev_islog && vd == rvd)
2467 degraded++;
2468 else
2469 faulted++;
2470 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2471 degraded++;
2474 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2475 corrupted++;
2478 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2481 * Root special: if there is a top-level vdev that cannot be
2482 * opened due to corrupted metadata, then propagate the root
2483 * vdev's aux state as 'corrupt' rather than 'insufficient
2484 * replicas'.
2486 if (corrupted && vd == rvd &&
2487 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2488 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2489 VDEV_AUX_CORRUPT_DATA);
2492 if (vd->vdev_parent)
2493 vdev_propagate_state(vd->vdev_parent);
2497 * Set a vdev's state. If this is during an open, we don't update the parent
2498 * state, because we're in the process of opening children depth-first.
2499 * Otherwise, we propagate the change to the parent.
2501 * If this routine places a device in a faulted state, an appropriate ereport is
2502 * generated.
2504 void
2505 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2507 uint64_t save_state;
2508 spa_t *spa = vd->vdev_spa;
2510 if (state == vd->vdev_state) {
2511 vd->vdev_stat.vs_aux = aux;
2512 return;
2515 save_state = vd->vdev_state;
2517 vd->vdev_state = state;
2518 vd->vdev_stat.vs_aux = aux;
2521 * If we are setting the vdev state to anything but an open state, then
2522 * always close the underlying device. Otherwise, we keep accessible
2523 * but invalid devices open forever. We don't call vdev_close() itself,
2524 * because that implies some extra checks (offline, etc) that we don't
2525 * want here. This is limited to leaf devices, because otherwise
2526 * closing the device will affect other children.
2528 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2529 vd->vdev_ops->vdev_op_close(vd);
2531 if (vd->vdev_removed &&
2532 state == VDEV_STATE_CANT_OPEN &&
2533 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2535 * If the previous state is set to VDEV_STATE_REMOVED, then this
2536 * device was previously marked removed and someone attempted to
2537 * reopen it. If this failed due to a nonexistent device, then
2538 * keep the device in the REMOVED state. We also let this be if
2539 * it is one of our special test online cases, which is only
2540 * attempting to online the device and shouldn't generate an FMA
2541 * fault.
2543 vd->vdev_state = VDEV_STATE_REMOVED;
2544 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2545 } else if (state == VDEV_STATE_REMOVED) {
2547 * Indicate to the ZFS DE that this device has been removed, and
2548 * any recent errors should be ignored.
2550 zfs_post_remove(spa, vd);
2551 vd->vdev_removed = B_TRUE;
2552 } else if (state == VDEV_STATE_CANT_OPEN) {
2554 * If we fail to open a vdev during an import, we mark it as
2555 * "not available", which signifies that it was never there to
2556 * begin with. Failure to open such a device is not considered
2557 * an error.
2559 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2560 vd->vdev_ops->vdev_op_leaf)
2561 vd->vdev_not_present = 1;
2564 * Post the appropriate ereport. If the 'prevstate' field is
2565 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2566 * that this is part of a vdev_reopen(). In this case, we don't
2567 * want to post the ereport if the device was already in the
2568 * CANT_OPEN state beforehand.
2570 * If the 'checkremove' flag is set, then this is an attempt to
2571 * online the device in response to an insertion event. If we
2572 * hit this case, then we have detected an insertion event for a
2573 * faulted or offline device that wasn't in the removed state.
2574 * In this scenario, we don't post an ereport because we are
2575 * about to replace the device, or attempt an online with
2576 * vdev_forcefault, which will generate the fault for us.
2578 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2579 !vd->vdev_not_present && !vd->vdev_checkremove &&
2580 vd != spa->spa_root_vdev) {
2581 const char *class;
2583 switch (aux) {
2584 case VDEV_AUX_OPEN_FAILED:
2585 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2586 break;
2587 case VDEV_AUX_CORRUPT_DATA:
2588 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2589 break;
2590 case VDEV_AUX_NO_REPLICAS:
2591 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2592 break;
2593 case VDEV_AUX_BAD_GUID_SUM:
2594 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2595 break;
2596 case VDEV_AUX_TOO_SMALL:
2597 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2598 break;
2599 case VDEV_AUX_BAD_LABEL:
2600 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2601 break;
2602 case VDEV_AUX_IO_FAILURE:
2603 class = FM_EREPORT_ZFS_IO_FAILURE;
2604 break;
2605 default:
2606 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2609 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2612 /* Erase any notion of persistent removed state */
2613 vd->vdev_removed = B_FALSE;
2614 } else {
2615 vd->vdev_removed = B_FALSE;
2618 if (!isopen && vd->vdev_parent)
2619 vdev_propagate_state(vd->vdev_parent);
2623 * Check the vdev configuration to ensure that it's capable of supporting
2624 * a root pool. Currently, we do not support RAID-Z or partial configuration.
2625 * In addition, only a single top-level vdev is allowed and none of the leaves
2626 * can be wholedisks.
2628 boolean_t
2629 vdev_is_bootable(vdev_t *vd)
2631 int c;
2633 if (!vd->vdev_ops->vdev_op_leaf) {
2634 char *vdev_type = vd->vdev_ops->vdev_op_type;
2636 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2637 vd->vdev_children > 1) {
2638 return (B_FALSE);
2639 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2640 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2641 return (B_FALSE);
2643 } else if (vd->vdev_wholedisk == 1) {
2644 return (B_FALSE);
2647 for (c = 0; c < vd->vdev_children; c++) {
2648 if (!vdev_is_bootable(vd->vdev_child[c]))
2649 return (B_FALSE);
2651 return (B_TRUE);
2654 void
2655 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2657 uint_t c, children;
2658 nvlist_t **child;
2659 uint64_t val;
2660 spa_t *spa = vd->vdev_spa;
2662 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2663 &child, &children) == 0) {
2664 for (c = 0; c < children; c++)
2665 vdev_load_log_state(vd->vdev_child[c], child[c]);
2668 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2669 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2672 * It would be nice to call vdev_offline()
2673 * directly but the pool isn't fully loaded and
2674 * the txg threads have not been started yet.
2676 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2677 vd->vdev_offline = val;
2678 vdev_reopen(vd->vdev_top);
2679 spa_config_exit(spa, SCL_STATE_ALL, FTAG);