1562 Integrate the virtio core module
[illumos-gate.git] / usr / src / uts / common / io / virtio / virtio.c
blob320dc0666ab1a060b0538a89de4e70c03f07db20
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2012 Nexenta Systems, Inc.
24 * Copyright 2012 Alexey Zaytsev <alexey.zaytsev@gmail.com>
27 /* Based on the NetBSD virtio driver by Minoura Makoto. */
29 * Copyright (c) 2010 Minoura Makoto.
30 * All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
42 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
43 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
44 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
45 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
47 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
48 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
49 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
50 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 #include <sys/conf.h>
55 #include <sys/kmem.h>
56 #include <sys/debug.h>
57 #include <sys/modctl.h>
58 #include <sys/autoconf.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/ddi.h>
61 #include <sys/sunddi.h>
62 #include <sys/sunndi.h>
63 #include <sys/avintr.h>
64 #include <sys/spl.h>
65 #include <sys/promif.h>
66 #include <sys/list.h>
67 #include <sys/bootconf.h>
68 #include <sys/bootsvcs.h>
69 #include <sys/sysmacros.h>
70 #include <sys/pci.h>
72 #include "virtiovar.h"
73 #include "virtioreg.h"
74 #define NDEVNAMES (sizeof (virtio_device_name) / sizeof (char *))
75 #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */
76 #define VIRTQUEUE_ALIGN(n) (((n)+(VIRTIO_PAGE_SIZE-1)) & \
77 ~(VIRTIO_PAGE_SIZE-1))
79 void
80 virtio_set_status(struct virtio_softc *sc, unsigned int status)
82 int old = 0;
84 if (status != 0)
85 old = ddi_get8(sc->sc_ioh,
86 (uint8_t *)(sc->sc_io_addr +
87 VIRTIO_CONFIG_DEVICE_STATUS));
89 ddi_put8(sc->sc_ioh,
90 (uint8_t *)(sc->sc_io_addr + VIRTIO_CONFIG_DEVICE_STATUS),
91 status | old);
95 * Negotiate features, save the result in sc->sc_features
97 uint32_t
98 virtio_negotiate_features(struct virtio_softc *sc, uint32_t guest_features)
100 uint32_t host_features;
101 uint32_t features;
103 host_features = ddi_get32(sc->sc_ioh,
104 /* LINTED E_BAD_PTR_CAST_ALIGN */
105 (uint32_t *)(sc->sc_io_addr + VIRTIO_CONFIG_DEVICE_FEATURES));
107 dev_debug(sc->sc_dev, CE_NOTE,
108 "host features: %x, guest features: %x",
109 host_features, guest_features);
111 features = host_features & guest_features;
112 ddi_put32(sc->sc_ioh,
113 /* LINTED E_BAD_PTR_CAST_ALIGN */
114 (uint32_t *)(sc->sc_io_addr + VIRTIO_CONFIG_GUEST_FEATURES),
115 features);
117 sc->sc_features = features;
119 return (host_features);
122 size_t
123 virtio_show_features(uint32_t features,
124 char *buf, size_t len)
126 char *orig_buf = buf;
127 char *bufend = buf + len;
129 /* LINTED E_PTRDIFF_OVERFLOW */
130 buf += snprintf(buf, bufend - buf, "Generic ( ");
131 if (features & VIRTIO_F_RING_INDIRECT_DESC)
132 /* LINTED E_PTRDIFF_OVERFLOW */
133 buf += snprintf(buf, bufend - buf, "INDIRECT_DESC ");
135 /* LINTED E_PTRDIFF_OVERFLOW */
136 buf += snprintf(buf, bufend - buf, ") ");
138 /* LINTED E_PTRDIFF_OVERFLOW */
139 return (buf - orig_buf);
142 boolean_t
143 virtio_has_feature(struct virtio_softc *sc, uint32_t feature)
145 return (sc->sc_features & feature);
149 * Device configuration registers.
151 uint8_t
152 virtio_read_device_config_1(struct virtio_softc *sc, unsigned int index)
154 ASSERT(sc->sc_config_offset);
155 return ddi_get8(sc->sc_ioh,
156 (uint8_t *)(sc->sc_io_addr + sc->sc_config_offset + index));
159 uint16_t
160 virtio_read_device_config_2(struct virtio_softc *sc, unsigned int index)
162 ASSERT(sc->sc_config_offset);
163 return ddi_get16(sc->sc_ioh,
164 /* LINTED E_BAD_PTR_CAST_ALIGN */
165 (uint16_t *)(sc->sc_io_addr + sc->sc_config_offset + index));
168 uint32_t
169 virtio_read_device_config_4(struct virtio_softc *sc, unsigned int index)
171 ASSERT(sc->sc_config_offset);
172 return ddi_get32(sc->sc_ioh,
173 /* LINTED E_BAD_PTR_CAST_ALIGN */
174 (uint32_t *)(sc->sc_io_addr + sc->sc_config_offset + index));
177 uint64_t
178 virtio_read_device_config_8(struct virtio_softc *sc, unsigned int index)
180 uint64_t r;
182 ASSERT(sc->sc_config_offset);
183 r = ddi_get32(sc->sc_ioh,
184 /* LINTED E_BAD_PTR_CAST_ALIGN */
185 (uint32_t *)(sc->sc_io_addr + sc->sc_config_offset +
186 index + sizeof (uint32_t)));
188 r <<= 32;
190 r += ddi_get32(sc->sc_ioh,
191 /* LINTED E_BAD_PTR_CAST_ALIGN */
192 (uint32_t *)(sc->sc_io_addr + sc->sc_config_offset + index));
193 return (r);
196 void
197 virtio_write_device_config_1(struct virtio_softc *sc,
198 unsigned int index, uint8_t value)
200 ASSERT(sc->sc_config_offset);
201 ddi_put8(sc->sc_ioh,
202 (uint8_t *)(sc->sc_io_addr + sc->sc_config_offset + index), value);
205 void
206 virtio_write_device_config_2(struct virtio_softc *sc,
207 unsigned int index, uint16_t value)
209 ASSERT(sc->sc_config_offset);
210 ddi_put16(sc->sc_ioh,
211 /* LINTED E_BAD_PTR_CAST_ALIGN */
212 (uint16_t *)(sc->sc_io_addr + sc->sc_config_offset + index), value);
215 void
216 virtio_write_device_config_4(struct virtio_softc *sc,
217 unsigned int index, uint32_t value)
219 ASSERT(sc->sc_config_offset);
220 ddi_put32(sc->sc_ioh,
221 /* LINTED E_BAD_PTR_CAST_ALIGN */
222 (uint32_t *)(sc->sc_io_addr + sc->sc_config_offset + index), value);
225 void
226 virtio_write_device_config_8(struct virtio_softc *sc,
227 unsigned int index, uint64_t value)
229 ASSERT(sc->sc_config_offset);
230 ddi_put32(sc->sc_ioh,
231 /* LINTED E_BAD_PTR_CAST_ALIGN */
232 (uint32_t *)(sc->sc_io_addr + sc->sc_config_offset + index),
233 value & 0xFFFFFFFF);
234 ddi_put32(sc->sc_ioh,
235 /* LINTED E_BAD_PTR_CAST_ALIGN */
236 (uint32_t *)(sc->sc_io_addr + sc->sc_config_offset +
237 index + sizeof (uint32_t)), value >> 32);
241 * Start/stop vq interrupt. No guarantee.
243 void
244 virtio_stop_vq_intr(struct virtqueue *vq)
246 vq->vq_avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
249 void
250 virtio_start_vq_intr(struct virtqueue *vq)
252 vq->vq_avail->flags &= ~VRING_AVAIL_F_NO_INTERRUPT;
255 static ddi_dma_attr_t virtio_vq_dma_attr = {
256 DMA_ATTR_V0, /* Version number */
257 0, /* low address */
259 * high address. Has to fit into 32 bits
260 * after page-shifting
262 0x00000FFFFFFFFFFF,
263 0xFFFFFFFF, /* counter register max */
264 VIRTIO_PAGE_SIZE, /* page alignment required */
265 0x3F, /* burst sizes: 1 - 32 */
266 0x1, /* minimum transfer size */
267 0xFFFFFFFF, /* max transfer size */
268 0xFFFFFFFF, /* address register max */
269 1, /* no scatter-gather */
270 1, /* device operates on bytes */
271 0, /* attr flag: set to 0 */
274 static ddi_dma_attr_t virtio_vq_indirect_dma_attr = {
275 DMA_ATTR_V0, /* Version number */
276 0, /* low address */
277 0xFFFFFFFFFFFFFFFF, /* high address */
278 0xFFFFFFFF, /* counter register max */
279 1, /* No specific alignment */
280 0x3F, /* burst sizes: 1 - 32 */
281 0x1, /* minimum transfer size */
282 0xFFFFFFFF, /* max transfer size */
283 0xFFFFFFFF, /* address register max */
284 1, /* no scatter-gather */
285 1, /* device operates on bytes */
286 0, /* attr flag: set to 0 */
289 /* Same for direct and indirect descriptors. */
290 static ddi_device_acc_attr_t virtio_vq_devattr = {
291 DDI_DEVICE_ATTR_V0,
292 DDI_NEVERSWAP_ACC,
293 DDI_STORECACHING_OK_ACC,
294 DDI_DEFAULT_ACC
297 static void
298 virtio_free_indirect(struct vq_entry *entry)
301 (void) ddi_dma_unbind_handle(entry->qe_indirect_dma_handle);
302 ddi_dma_mem_free(&entry->qe_indirect_dma_acch);
303 ddi_dma_free_handle(&entry->qe_indirect_dma_handle);
305 entry->qe_indirect_descs = NULL;
309 static int
310 virtio_alloc_indirect(struct virtio_softc *sc, struct vq_entry *entry)
312 int allocsize, num;
313 size_t len;
314 unsigned int ncookies;
315 int ret;
317 num = entry->qe_queue->vq_indirect_num;
318 ASSERT(num > 1);
320 allocsize = sizeof (struct vring_desc) * num;
322 ret = ddi_dma_alloc_handle(sc->sc_dev, &virtio_vq_indirect_dma_attr,
323 DDI_DMA_SLEEP, NULL, &entry->qe_indirect_dma_handle);
324 if (ret != DDI_SUCCESS) {
325 dev_err(sc->sc_dev, CE_WARN,
326 "Failed to allocate dma handle for indirect descriptors,"
327 " entry %d, vq %d", entry->qe_index,
328 entry->qe_queue->vq_index);
329 goto out_alloc_handle;
332 ret = ddi_dma_mem_alloc(entry->qe_indirect_dma_handle,
333 allocsize, &virtio_vq_devattr,
334 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
335 (caddr_t *)&entry->qe_indirect_descs, &len,
336 &entry->qe_indirect_dma_acch);
337 if (ret != DDI_SUCCESS) {
338 dev_err(sc->sc_dev, CE_WARN,
339 "Failed to alocate dma memory for indirect descriptors,"
340 " entry %d, vq %d,", entry->qe_index,
341 entry->qe_queue->vq_index);
342 goto out_alloc;
345 (void) memset(entry->qe_indirect_descs, 0xff, allocsize);
347 ret = ddi_dma_addr_bind_handle(entry->qe_indirect_dma_handle, NULL,
348 (caddr_t)entry->qe_indirect_descs, len,
349 DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
350 DDI_DMA_SLEEP, NULL, &entry->qe_indirect_dma_cookie, &ncookies);
351 if (ret != DDI_DMA_MAPPED) {
352 dev_err(sc->sc_dev, CE_WARN,
353 "Failed to bind dma memory for indirect descriptors,"
354 "entry %d, vq %d", entry->qe_index,
355 entry->qe_queue->vq_index);
356 goto out_bind;
359 /* We asked for a single segment */
360 ASSERT(ncookies == 1);
362 return (0);
364 out_bind:
365 ddi_dma_mem_free(&entry->qe_indirect_dma_acch);
366 out_alloc:
367 ddi_dma_free_handle(&entry->qe_indirect_dma_handle);
368 out_alloc_handle:
370 return (ret);
374 * Initialize the vq structure.
376 static int
377 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq)
379 int ret;
380 uint16_t i;
381 int vq_size = vq->vq_num;
382 int indirect_num = vq->vq_indirect_num;
384 /* free slot management */
385 list_create(&vq->vq_freelist, sizeof (struct vq_entry),
386 offsetof(struct vq_entry, qe_list));
388 for (i = 0; i < vq_size; i++) {
389 struct vq_entry *entry = &vq->vq_entries[i];
390 list_insert_tail(&vq->vq_freelist, entry);
391 entry->qe_index = i;
392 entry->qe_desc = &vq->vq_descs[i];
393 entry->qe_queue = vq;
395 if (indirect_num) {
396 ret = virtio_alloc_indirect(sc, entry);
397 if (ret)
398 goto out_indirect;
402 mutex_init(&vq->vq_freelist_lock, "virtio-freelist",
403 MUTEX_DRIVER, DDI_INTR_PRI(sc->sc_intr_prio));
404 mutex_init(&vq->vq_avail_lock, "virtio-avail",
405 MUTEX_DRIVER, DDI_INTR_PRI(sc->sc_intr_prio));
406 mutex_init(&vq->vq_used_lock, "virtio-used",
407 MUTEX_DRIVER, DDI_INTR_PRI(sc->sc_intr_prio));
409 return (0);
411 out_indirect:
412 for (i = 0; i < vq_size; i++) {
413 struct vq_entry *entry = &vq->vq_entries[i];
414 if (entry->qe_indirect_descs)
415 virtio_free_indirect(entry);
418 return (ret);
424 * Allocate/free a vq.
426 struct virtqueue *
427 virtio_alloc_vq(struct virtio_softc *sc,
428 unsigned int index,
429 unsigned int size,
430 unsigned int indirect_num,
431 const char *name)
433 int vq_size, allocsize1, allocsize2, allocsize = 0;
434 int ret;
435 unsigned int ncookies;
436 size_t len;
437 struct virtqueue *vq;
440 ddi_put16(sc->sc_ioh,
441 /* LINTED E_BAD_PTR_CAST_ALIGN */
442 (uint16_t *)(sc->sc_io_addr + VIRTIO_CONFIG_QUEUE_SELECT), index);
443 vq_size = ddi_get16(sc->sc_ioh,
444 /* LINTED E_BAD_PTR_CAST_ALIGN */
445 (uint16_t *)(sc->sc_io_addr + VIRTIO_CONFIG_QUEUE_SIZE));
446 if (vq_size == 0) {
447 dev_err(sc->sc_dev, CE_WARN,
448 "virtqueue dest not exist, index %d for %s\n", index, name);
449 goto out;
452 vq = kmem_zalloc(sizeof (struct virtqueue), KM_SLEEP);
454 /* size 0 => use native vq size, good for receive queues. */
455 if (size)
456 vq_size = MIN(vq_size, size);
458 /* allocsize1: descriptor table + avail ring + pad */
459 allocsize1 = VIRTQUEUE_ALIGN(sizeof (struct vring_desc) * vq_size +
460 sizeof (struct vring_avail) +
461 sizeof (uint16_t) * vq_size);
462 /* allocsize2: used ring + pad */
463 allocsize2 = VIRTQUEUE_ALIGN(sizeof (struct vring_used)
464 + sizeof (struct vring_used_elem) * vq_size);
466 allocsize = allocsize1 + allocsize2;
468 ret = ddi_dma_alloc_handle(sc->sc_dev, &virtio_vq_dma_attr,
469 DDI_DMA_SLEEP, NULL, &vq->vq_dma_handle);
470 if (ret != DDI_SUCCESS) {
471 dev_err(sc->sc_dev, CE_WARN,
472 "Failed to allocate dma handle for vq %d", index);
473 goto out_alloc_handle;
476 ret = ddi_dma_mem_alloc(vq->vq_dma_handle, allocsize,
477 &virtio_vq_devattr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
478 (caddr_t *)&vq->vq_vaddr, &len, &vq->vq_dma_acch);
479 if (ret != DDI_SUCCESS) {
480 dev_err(sc->sc_dev, CE_WARN,
481 "Failed to alocate dma memory for vq %d", index);
482 goto out_alloc;
486 ret = ddi_dma_addr_bind_handle(vq->vq_dma_handle, NULL,
487 (caddr_t)vq->vq_vaddr, len,
488 DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
489 DDI_DMA_SLEEP, NULL, &vq->vq_dma_cookie, &ncookies);
490 if (ret != DDI_DMA_MAPPED) {
491 dev_err(sc->sc_dev, CE_WARN,
492 "Failed to bind dma memory for vq %d", index);
493 goto out_bind;
496 /* We asked for a single segment */
497 ASSERT(ncookies == 1);
498 /* and page-ligned buffers. */
499 ASSERT(vq->vq_dma_cookie.dmac_laddress % VIRTIO_PAGE_SIZE == 0);
501 (void) memset(vq->vq_vaddr, 0, allocsize);
503 /* Make sure all zeros hit the buffer before we point the host to it */
504 membar_producer();
506 /* set the vq address */
507 ddi_put32(sc->sc_ioh,
508 /* LINTED E_BAD_PTR_CAST_ALIGN */
509 (uint32_t *)(sc->sc_io_addr + VIRTIO_CONFIG_QUEUE_ADDRESS),
510 (vq->vq_dma_cookie.dmac_laddress / VIRTIO_PAGE_SIZE));
512 /* remember addresses and offsets for later use */
513 vq->vq_owner = sc;
514 vq->vq_num = vq_size;
515 vq->vq_index = index;
516 vq->vq_descs = vq->vq_vaddr;
517 vq->vq_availoffset = sizeof (struct vring_desc)*vq_size;
518 vq->vq_avail = (void *)(((char *)vq->vq_descs) + vq->vq_availoffset);
519 vq->vq_usedoffset = allocsize1;
520 vq->vq_used = (void *)(((char *)vq->vq_descs) + vq->vq_usedoffset);
522 ASSERT(indirect_num == 0 ||
523 virtio_has_feature(sc, VIRTIO_F_RING_INDIRECT_DESC));
524 vq->vq_indirect_num = indirect_num;
526 /* free slot management */
527 vq->vq_entries = kmem_zalloc(sizeof (struct vq_entry) * vq_size,
528 KM_SLEEP);
530 ret = virtio_init_vq(sc, vq);
531 if (ret)
532 goto out_init;
534 dev_debug(sc->sc_dev, CE_NOTE,
535 "Allocated %d entries for vq %d:%s (%d incdirect descs)",
536 vq_size, index, name, indirect_num * vq_size);
538 return (vq);
540 out_init:
541 kmem_free(vq->vq_entries, sizeof (struct vq_entry) * vq_size);
542 (void) ddi_dma_unbind_handle(vq->vq_dma_handle);
543 out_bind:
544 ddi_dma_mem_free(&vq->vq_dma_acch);
545 out_alloc:
546 ddi_dma_free_handle(&vq->vq_dma_handle);
547 out_alloc_handle:
548 kmem_free(vq, sizeof (struct virtqueue));
549 out:
550 return (NULL);
554 void
555 virtio_free_vq(struct virtqueue *vq)
557 struct virtio_softc *sc = vq->vq_owner;
558 int i;
560 /* tell device that there's no virtqueue any longer */
561 ddi_put16(sc->sc_ioh,
562 /* LINTED E_BAD_PTR_CAST_ALIGN */
563 (uint16_t *)(sc->sc_io_addr + VIRTIO_CONFIG_QUEUE_SELECT),
564 vq->vq_index);
565 ddi_put32(sc->sc_ioh,
566 /* LINTED E_BAD_PTR_CAST_ALIGN */
567 (uint32_t *)(sc->sc_io_addr + VIRTIO_CONFIG_QUEUE_ADDRESS), 0);
569 /* Free the indirect descriptors, if any. */
570 for (i = 0; i < vq->vq_num; i++) {
571 struct vq_entry *entry = &vq->vq_entries[i];
572 if (entry->qe_indirect_descs)
573 virtio_free_indirect(entry);
576 kmem_free(vq->vq_entries, sizeof (struct vq_entry) * vq->vq_num);
578 (void) ddi_dma_unbind_handle(vq->vq_dma_handle);
579 ddi_dma_mem_free(&vq->vq_dma_acch);
580 ddi_dma_free_handle(&vq->vq_dma_handle);
582 mutex_destroy(&vq->vq_used_lock);
583 mutex_destroy(&vq->vq_avail_lock);
584 mutex_destroy(&vq->vq_freelist_lock);
586 kmem_free(vq, sizeof (struct virtqueue));
590 * Free descriptor management.
592 struct vq_entry *
593 vq_alloc_entry(struct virtqueue *vq)
595 struct vq_entry *qe;
597 mutex_enter(&vq->vq_freelist_lock);
598 if (list_is_empty(&vq->vq_freelist)) {
599 mutex_exit(&vq->vq_freelist_lock);
600 return (NULL);
602 qe = list_remove_head(&vq->vq_freelist);
604 ASSERT(vq->vq_used_entries >= 0);
605 vq->vq_used_entries++;
607 mutex_exit(&vq->vq_freelist_lock);
609 qe->qe_next = NULL;
610 qe->qe_indirect_next = 0;
611 (void) memset(qe->qe_desc, 0, sizeof (struct vring_desc));
613 return (qe);
616 void
617 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
619 mutex_enter(&vq->vq_freelist_lock);
621 list_insert_head(&vq->vq_freelist, qe);
622 vq->vq_used_entries--;
623 ASSERT(vq->vq_used_entries >= 0);
624 mutex_exit(&vq->vq_freelist_lock);
628 * We (intentionally) don't have a global vq mutex, so you are
629 * responsible for external locking to avoid allocting/freeing any
630 * entries before using the returned value. Have fun.
632 uint_t
633 vq_num_used(struct virtqueue *vq)
635 /* vq->vq_freelist_lock would not help here. */
636 return (vq->vq_used_entries);
639 static inline void
640 virtio_ve_set_desc(struct vring_desc *desc, uint64_t paddr, uint32_t len,
641 boolean_t write)
643 desc->addr = paddr;
644 desc->len = len;
645 desc->next = 0;
646 desc->flags = 0;
648 /* 'write' - from the driver's point of view */
649 if (!write)
650 desc->flags = VRING_DESC_F_WRITE;
655 void
656 virtio_ve_set(struct vq_entry *qe, uint64_t paddr, uint32_t len,
657 boolean_t write)
659 virtio_ve_set_desc(qe->qe_desc, paddr, len, write);
662 void
663 virtio_ve_add_indirect_buf(struct vq_entry *qe, uint64_t paddr, uint32_t len,
664 boolean_t write)
666 struct vring_desc *indirect_desc;
668 ASSERT(qe->qe_queue->vq_indirect_num);
669 ASSERT(qe->qe_indirect_next < qe->qe_queue->vq_indirect_num);
671 indirect_desc = &qe->qe_indirect_descs[qe->qe_indirect_next];
672 virtio_ve_set_desc(indirect_desc, paddr, len, write);
673 qe->qe_indirect_next++;
676 void
677 virtio_ve_add_cookie(struct vq_entry *qe, ddi_dma_handle_t dma_handle,
678 ddi_dma_cookie_t dma_cookie, unsigned int ncookies, boolean_t write)
680 int i;
682 for (i = 0; i < ncookies; i++) {
683 virtio_ve_add_indirect_buf(qe, dma_cookie.dmac_laddress,
684 dma_cookie.dmac_size, write);
685 ddi_dma_nextcookie(dma_handle, &dma_cookie);
689 void
690 virtio_sync_vq(struct virtqueue *vq)
692 struct virtio_softc *vsc = vq->vq_owner;
694 /* Make sure the avail ring update hit the buffer */
695 membar_producer();
697 vq->vq_avail->idx = vq->vq_avail_idx;
699 /* Make sure the avail idx update hits the buffer */
700 membar_producer();
702 /* Make sure we see the flags update */
703 membar_consumer();
705 if (!(vq->vq_used->flags & VRING_USED_F_NO_NOTIFY))
706 ddi_put16(vsc->sc_ioh,
707 /* LINTED E_BAD_PTR_CAST_ALIGN */
708 (uint16_t *)(vsc->sc_io_addr +
709 VIRTIO_CONFIG_QUEUE_NOTIFY),
710 vq->vq_index);
713 void
714 virtio_push_chain(struct vq_entry *qe, boolean_t sync)
716 struct virtqueue *vq = qe->qe_queue;
717 struct vq_entry *head = qe;
718 struct vring_desc *desc;
719 int idx;
721 ASSERT(qe);
724 * Bind the descs together, paddr and len should be already
725 * set with virtio_ve_set
727 do {
728 /* Bind the indirect descriptors */
729 if (qe->qe_indirect_next > 1) {
730 uint16_t i = 0;
733 * Set the pointer/flags to the
734 * first indirect descriptor
736 virtio_ve_set_desc(qe->qe_desc,
737 qe->qe_indirect_dma_cookie.dmac_laddress,
738 sizeof (struct vring_desc) * qe->qe_indirect_next,
739 B_FALSE);
740 qe->qe_desc->flags |= VRING_DESC_F_INDIRECT;
742 /* For all but the last one, add the next index/flag */
743 do {
744 desc = &qe->qe_indirect_descs[i];
745 i++;
747 desc->flags |= VRING_DESC_F_NEXT;
748 desc->next = i;
749 } while (i < qe->qe_indirect_next - 1);
753 if (qe->qe_next) {
754 qe->qe_desc->flags |= VRING_DESC_F_NEXT;
755 qe->qe_desc->next = qe->qe_next->qe_index;
758 qe = qe->qe_next;
759 } while (qe);
761 mutex_enter(&vq->vq_avail_lock);
762 idx = vq->vq_avail_idx;
763 vq->vq_avail_idx++;
765 /* Make sure the bits hit the descriptor(s) */
766 membar_producer();
767 vq->vq_avail->ring[idx % vq->vq_num] = head->qe_index;
769 /* Notify the device, if needed. */
770 if (sync)
771 virtio_sync_vq(vq);
773 mutex_exit(&vq->vq_avail_lock);
776 /* Get a chain of descriptors from the used ring, if one is available. */
777 struct vq_entry *
778 virtio_pull_chain(struct virtqueue *vq, uint32_t *len)
780 struct vq_entry *head;
781 int slot;
782 int usedidx;
784 mutex_enter(&vq->vq_used_lock);
786 /* No used entries? Bye. */
787 if (vq->vq_used_idx == vq->vq_used->idx) {
788 mutex_exit(&vq->vq_used_lock);
789 return (NULL);
792 usedidx = vq->vq_used_idx;
793 vq->vq_used_idx++;
794 mutex_exit(&vq->vq_used_lock);
796 usedidx %= vq->vq_num;
798 /* Make sure we do the next step _after_ checking the idx. */
799 membar_consumer();
801 slot = vq->vq_used->ring[usedidx].id;
802 *len = vq->vq_used->ring[usedidx].len;
804 head = &vq->vq_entries[slot];
806 return (head);
809 void
810 virtio_free_chain(struct vq_entry *qe)
812 struct vq_entry *tmp;
813 struct virtqueue *vq = qe->qe_queue;
815 ASSERT(qe);
817 do {
818 ASSERT(qe->qe_queue == vq);
819 tmp = qe->qe_next;
820 vq_free_entry(vq, qe);
821 qe = tmp;
822 } while (tmp);
825 void
826 virtio_ventry_stick(struct vq_entry *first, struct vq_entry *second)
828 first->qe_next = second;
831 static int
832 virtio_register_msi(struct virtio_softc *sc,
833 struct virtio_int_handler *config_handler,
834 struct virtio_int_handler vq_handlers[],
835 int intr_types)
837 int count, actual;
838 int int_type;
839 int i;
840 int handler_count;
841 int ret;
843 /* If both MSI and MSI-x are reported, prefer MSI-x. */
844 int_type = DDI_INTR_TYPE_MSI;
845 if (intr_types & DDI_INTR_TYPE_MSIX)
846 int_type = DDI_INTR_TYPE_MSIX;
848 /* Walk the handler table to get the number of handlers. */
849 for (handler_count = 0;
850 vq_handlers && vq_handlers[handler_count].vh_func;
851 handler_count++)
854 /* +1 if there is a config change handler. */
855 if (config_handler)
856 handler_count++;
858 /* Number of MSIs supported by the device. */
859 ret = ddi_intr_get_nintrs(sc->sc_dev, int_type, &count);
860 if (ret != DDI_SUCCESS) {
861 dev_err(sc->sc_dev, CE_WARN, "ddi_intr_get_nintrs failed");
862 return (ret);
866 * Those who try to register more handlers then the device
867 * supports shall suffer.
869 ASSERT(handler_count <= count);
871 sc->sc_intr_htable = kmem_zalloc(
872 sizeof (ddi_intr_handle_t) * handler_count, KM_SLEEP);
874 ret = ddi_intr_alloc(sc->sc_dev, sc->sc_intr_htable, int_type, 0,
875 handler_count, &actual, DDI_INTR_ALLOC_NORMAL);
876 if (ret != DDI_SUCCESS) {
877 dev_err(sc->sc_dev, CE_WARN, "Failed to allocate MSI: %d", ret);
878 goto out_msi_alloc;
881 if (actual != handler_count) {
882 dev_err(sc->sc_dev, CE_WARN,
883 "Not enough MSI available: need %d, available %d",
884 handler_count, actual);
885 goto out_msi_available;
888 sc->sc_intr_num = handler_count;
889 sc->sc_intr_config = B_FALSE;
890 if (config_handler) {
891 sc->sc_intr_config = B_TRUE;
894 /* Assume they are all same priority */
895 ret = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_prio);
896 if (ret != DDI_SUCCESS) {
897 dev_err(sc->sc_dev, CE_WARN, "ddi_intr_get_pri failed");
898 goto out_msi_prio;
901 /* Add the vq handlers */
902 for (i = 0; vq_handlers[i].vh_func; i++) {
903 ret = ddi_intr_add_handler(sc->sc_intr_htable[i],
904 vq_handlers[i].vh_func,
905 sc, vq_handlers[i].vh_priv);
906 if (ret != DDI_SUCCESS) {
907 dev_err(sc->sc_dev, CE_WARN,
908 "ddi_intr_add_handler failed");
909 /* Remove the handlers that succeeded. */
910 while (--i >= 0) {
911 (void) ddi_intr_remove_handler(
912 sc->sc_intr_htable[i]);
914 goto out_add_handlers;
918 /* Don't forget the config handler */
919 if (config_handler) {
920 ret = ddi_intr_add_handler(sc->sc_intr_htable[i],
921 config_handler->vh_func,
922 sc, config_handler->vh_priv);
923 if (ret != DDI_SUCCESS) {
924 dev_err(sc->sc_dev, CE_WARN,
925 "ddi_intr_add_handler failed");
926 /* Remove the handlers that succeeded. */
927 while (--i >= 0) {
928 (void) ddi_intr_remove_handler(
929 sc->sc_intr_htable[i]);
931 goto out_add_handlers;
935 /* We know we are using MSI, so set the config offset. */
936 sc->sc_config_offset = VIRTIO_CONFIG_DEVICE_CONFIG_MSI;
938 ret = ddi_intr_get_cap(sc->sc_intr_htable[0],
939 &sc->sc_intr_cap);
940 /* Just in case. */
941 if (ret != DDI_SUCCESS)
942 sc->sc_intr_cap = 0;
944 out_add_handlers:
945 out_msi_prio:
946 out_msi_available:
947 for (i = 0; i < actual; i++)
948 (void) ddi_intr_free(sc->sc_intr_htable[i]);
949 out_msi_alloc:
950 kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t) * count);
952 return (ret);
955 struct virtio_handler_container {
956 int nhandlers;
957 struct virtio_int_handler config_handler;
958 struct virtio_int_handler vq_handlers[];
961 uint_t
962 virtio_intx_dispatch(caddr_t arg1, caddr_t arg2)
964 struct virtio_softc *sc = (void *)arg1;
965 struct virtio_handler_container *vhc = (void *)arg2;
966 uint8_t isr_status;
967 int i;
969 isr_status = ddi_get8(sc->sc_ioh, (uint8_t *)(sc->sc_io_addr +
970 VIRTIO_CONFIG_ISR_STATUS));
972 if (!isr_status)
973 return (DDI_INTR_UNCLAIMED);
975 if ((isr_status & VIRTIO_CONFIG_ISR_CONFIG_CHANGE) &&
976 vhc->config_handler.vh_func) {
977 vhc->config_handler.vh_func((void *)sc,
978 vhc->config_handler.vh_priv);
981 /* Notify all handlers */
982 for (i = 0; i < vhc->nhandlers; i++) {
983 vhc->vq_handlers[i].vh_func((void *)sc,
984 vhc->vq_handlers[i].vh_priv);
987 return (DDI_INTR_CLAIMED);
991 * config_handler and vq_handlers may be allocated on stack.
992 * Take precautions not to loose them.
994 static int
995 virtio_register_intx(struct virtio_softc *sc,
996 struct virtio_int_handler *config_handler,
997 struct virtio_int_handler vq_handlers[])
999 int vq_handler_count;
1000 int config_handler_count = 0;
1001 int actual;
1002 struct virtio_handler_container *vhc;
1003 int ret = DDI_FAILURE;
1005 /* Walk the handler table to get the number of handlers. */
1006 for (vq_handler_count = 0;
1007 vq_handlers && vq_handlers[vq_handler_count].vh_func;
1008 vq_handler_count++)
1011 if (config_handler)
1012 config_handler_count = 1;
1014 vhc = kmem_zalloc(sizeof (struct virtio_handler_container) +
1015 sizeof (struct virtio_int_handler) * vq_handler_count,
1016 KM_SLEEP);
1018 vhc->nhandlers = vq_handler_count;
1019 (void) memcpy(vhc->vq_handlers, vq_handlers,
1020 sizeof (struct virtio_int_handler) * vq_handler_count);
1022 if (config_handler) {
1023 (void) memcpy(&vhc->config_handler, config_handler,
1024 sizeof (struct virtio_int_handler));
1027 /* Just a single entry for a single interrupt. */
1028 sc->sc_intr_htable = kmem_zalloc(sizeof (ddi_intr_handle_t), KM_SLEEP);
1030 ret = ddi_intr_alloc(sc->sc_dev, sc->sc_intr_htable,
1031 DDI_INTR_TYPE_FIXED, 0, 1, &actual,
1032 DDI_INTR_ALLOC_NORMAL);
1033 if (ret != DDI_SUCCESS) {
1034 dev_err(sc->sc_dev, CE_WARN,
1035 "Failed to allocate a fixed interrupt: %d", ret);
1036 goto out_int_alloc;
1039 ASSERT(actual == 1);
1040 sc->sc_intr_num = 1;
1042 ret = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_prio);
1043 if (ret != DDI_SUCCESS) {
1044 dev_err(sc->sc_dev, CE_WARN, "ddi_intr_get_pri failed");
1045 goto out_prio;
1048 ret = ddi_intr_add_handler(sc->sc_intr_htable[0],
1049 virtio_intx_dispatch, sc, vhc);
1050 if (ret != DDI_SUCCESS) {
1051 dev_err(sc->sc_dev, CE_WARN, "ddi_intr_add_handler failed");
1052 goto out_add_handlers;
1055 /* We know we are not using MSI, so set the config offset. */
1056 sc->sc_config_offset = VIRTIO_CONFIG_DEVICE_CONFIG_NOMSI;
1058 return (DDI_SUCCESS);
1060 out_add_handlers:
1061 out_prio:
1062 (void) ddi_intr_free(sc->sc_intr_htable[0]);
1063 out_int_alloc:
1064 kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
1065 kmem_free(vhc, sizeof (struct virtio_int_handler) *
1066 (vq_handler_count + config_handler_count));
1067 return (ret);
1071 * We find out if we support MSI during this, and the register layout
1072 * depends on the MSI (doh). Don't acces the device specific bits in
1073 * BAR 0 before calling it!
1076 virtio_register_ints(struct virtio_softc *sc,
1077 struct virtio_int_handler *config_handler,
1078 struct virtio_int_handler vq_handlers[])
1080 int ret;
1081 int intr_types;
1083 /* Determine which types of interrupts are supported */
1084 ret = ddi_intr_get_supported_types(sc->sc_dev, &intr_types);
1085 if (ret != DDI_SUCCESS) {
1086 dev_err(sc->sc_dev, CE_WARN, "Can't get supported int types");
1087 goto out_inttype;
1090 /* If we have msi, let's use them. */
1091 if (intr_types & (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) {
1092 ret = virtio_register_msi(sc, config_handler,
1093 vq_handlers, intr_types);
1094 if (!ret)
1095 return (0);
1098 /* Fall back to old-fashioned interrupts. */
1099 if (intr_types & DDI_INTR_TYPE_FIXED) {
1100 dev_debug(sc->sc_dev, CE_WARN,
1101 "Using legacy interrupts");
1103 return (virtio_register_intx(sc, config_handler, vq_handlers));
1106 dev_err(sc->sc_dev, CE_WARN,
1107 "MSI failed and fixed interrupts not supported. Giving up.");
1108 ret = DDI_FAILURE;
1110 out_inttype:
1111 return (ret);
1115 static int
1116 virtio_enable_msi(struct virtio_softc *sc)
1118 int ret, i;
1119 int vq_handler_count = sc->sc_intr_num;
1121 /* Number of handlers, not counting the counfig. */
1122 if (sc->sc_intr_config)
1123 vq_handler_count--;
1125 /* Enable the iterrupts. Either the whole block, or one by one. */
1126 if (sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) {
1127 ret = ddi_intr_block_enable(sc->sc_intr_htable,
1128 sc->sc_intr_num);
1129 if (ret != DDI_SUCCESS) {
1130 dev_err(sc->sc_dev, CE_WARN,
1131 "Failed to enable MSI, falling back to INTx");
1132 goto out_enable;
1134 } else {
1135 for (i = 0; i < sc->sc_intr_num; i++) {
1136 ret = ddi_intr_enable(sc->sc_intr_htable[i]);
1137 if (ret != DDI_SUCCESS) {
1138 dev_err(sc->sc_dev, CE_WARN,
1139 "Failed to enable MSI %d, "
1140 "falling back to INTx", i);
1142 while (--i >= 0) {
1143 (void) ddi_intr_disable(
1144 sc->sc_intr_htable[i]);
1146 goto out_enable;
1151 /* Bind the allocated MSI to the queues and config */
1152 for (i = 0; i < vq_handler_count; i++) {
1153 int check;
1154 ddi_put16(sc->sc_ioh,
1155 /* LINTED E_BAD_PTR_CAST_ALIGN */
1156 (uint16_t *)(sc->sc_io_addr +
1157 VIRTIO_CONFIG_QUEUE_SELECT), i);
1159 ddi_put16(sc->sc_ioh,
1160 /* LINTED E_BAD_PTR_CAST_ALIGN */
1161 (uint16_t *)(sc->sc_io_addr +
1162 VIRTIO_CONFIG_QUEUE_VECTOR), i);
1164 check = ddi_get16(sc->sc_ioh,
1165 /* LINTED E_BAD_PTR_CAST_ALIGN */
1166 (uint16_t *)(sc->sc_io_addr +
1167 VIRTIO_CONFIG_QUEUE_VECTOR));
1168 if (check != i) {
1169 dev_err(sc->sc_dev, CE_WARN, "Failed to bind handler"
1170 "for VQ %d, MSI %d. Check = %x", i, i, check);
1171 ret = ENODEV;
1172 goto out_bind;
1176 if (sc->sc_intr_config) {
1177 int check;
1178 ddi_put16(sc->sc_ioh,
1179 /* LINTED E_BAD_PTR_CAST_ALIGN */
1180 (uint16_t *)(sc->sc_io_addr +
1181 VIRTIO_CONFIG_CONFIG_VECTOR), i);
1183 check = ddi_get16(sc->sc_ioh,
1184 /* LINTED E_BAD_PTR_CAST_ALIGN */
1185 (uint16_t *)(sc->sc_io_addr +
1186 VIRTIO_CONFIG_CONFIG_VECTOR));
1187 if (check != i) {
1188 dev_err(sc->sc_dev, CE_WARN, "Failed to bind handler "
1189 "for Config updates, MSI %d", i);
1190 ret = ENODEV;
1191 goto out_bind;
1195 return (DDI_SUCCESS);
1197 out_bind:
1198 /* Unbind the vqs */
1199 for (i = 0; i < vq_handler_count - 1; i++) {
1200 ddi_put16(sc->sc_ioh,
1201 /* LINTED E_BAD_PTR_CAST_ALIGN */
1202 (uint16_t *)(sc->sc_io_addr +
1203 VIRTIO_CONFIG_QUEUE_SELECT), i);
1205 ddi_put16(sc->sc_ioh,
1206 /* LINTED E_BAD_PTR_CAST_ALIGN */
1207 (uint16_t *)(sc->sc_io_addr +
1208 VIRTIO_CONFIG_QUEUE_VECTOR),
1209 VIRTIO_MSI_NO_VECTOR);
1211 /* And the config */
1212 /* LINTED E_BAD_PTR_CAST_ALIGN */
1213 ddi_put16(sc->sc_ioh, (uint16_t *)(sc->sc_io_addr +
1214 VIRTIO_CONFIG_CONFIG_VECTOR), VIRTIO_MSI_NO_VECTOR);
1216 ret = DDI_FAILURE;
1218 out_enable:
1219 return (ret);
1222 static int virtio_enable_intx(struct virtio_softc *sc)
1224 int ret;
1226 ret = ddi_intr_enable(sc->sc_intr_htable[0]);
1227 if (ret != DDI_SUCCESS)
1228 dev_err(sc->sc_dev, CE_WARN,
1229 "Failed to enable interrupt: %d", ret);
1230 return (ret);
1234 * We can't enable/disable individual handlers in the INTx case so do
1235 * the whole bunch even in the msi case.
1238 virtio_enable_ints(struct virtio_softc *sc)
1241 /* See if we are using MSI. */
1242 if (sc->sc_config_offset == VIRTIO_CONFIG_DEVICE_CONFIG_MSI)
1243 return (virtio_enable_msi(sc));
1245 ASSERT(sc->sc_config_offset == VIRTIO_CONFIG_DEVICE_CONFIG_NOMSI);
1247 return (virtio_enable_intx(sc));
1250 void
1251 virtio_release_ints(struct virtio_softc *sc)
1253 int i;
1254 int ret;
1256 /* We were running with MSI, unbind them. */
1257 if (sc->sc_config_offset == VIRTIO_CONFIG_DEVICE_CONFIG_MSI) {
1258 /* Unbind all vqs */
1259 for (i = 0; i < sc->sc_nvqs; i++) {
1260 ddi_put16(sc->sc_ioh,
1261 /* LINTED E_BAD_PTR_CAST_ALIGN */
1262 (uint16_t *)(sc->sc_io_addr +
1263 VIRTIO_CONFIG_QUEUE_SELECT), i);
1265 ddi_put16(sc->sc_ioh,
1266 /* LINTED E_BAD_PTR_CAST_ALIGN */
1267 (uint16_t *)(sc->sc_io_addr +
1268 VIRTIO_CONFIG_QUEUE_VECTOR),
1269 VIRTIO_MSI_NO_VECTOR);
1271 /* And the config */
1272 /* LINTED E_BAD_PTR_CAST_ALIGN */
1273 ddi_put16(sc->sc_ioh, (uint16_t *)(sc->sc_io_addr +
1274 VIRTIO_CONFIG_CONFIG_VECTOR),
1275 VIRTIO_MSI_NO_VECTOR);
1279 /* Disable the iterrupts. Either the whole block, or one by one. */
1280 if (sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) {
1281 ret = ddi_intr_block_disable(sc->sc_intr_htable,
1282 sc->sc_intr_num);
1283 if (ret != DDI_SUCCESS) {
1284 dev_err(sc->sc_dev, CE_WARN,
1285 "Failed to disable MSIs, won't be able to"
1286 "reuse next time");
1288 } else {
1289 for (i = 0; i < sc->sc_intr_num; i++) {
1290 ret = ddi_intr_disable(sc->sc_intr_htable[i]);
1291 if (ret != DDI_SUCCESS) {
1292 dev_err(sc->sc_dev, CE_WARN,
1293 "Failed to disable interrupt %d, "
1294 "won't be able to reuse", i);
1301 for (i = 0; i < sc->sc_intr_num; i++) {
1302 (void) ddi_intr_remove_handler(sc->sc_intr_htable[i]);
1305 for (i = 0; i < sc->sc_intr_num; i++)
1306 (void) ddi_intr_free(sc->sc_intr_htable[i]);
1308 kmem_free(sc->sc_intr_htable,
1309 sizeof (ddi_intr_handle_t) * sc->sc_intr_num);
1312 /* After disabling interrupts, the config offset is non-MSI. */
1313 sc->sc_config_offset = VIRTIO_CONFIG_DEVICE_CONFIG_NOMSI;
1317 * Module linkage information for the kernel.
1319 static struct modlmisc modlmisc = {
1320 &mod_miscops, /* Type of module */
1321 "VirtIO common library module",
1324 static struct modlinkage modlinkage = {
1325 MODREV_1,
1327 (void *)&modlmisc,
1328 NULL
1333 _init(void)
1335 return (mod_install(&modlinkage));
1339 _fini(void)
1341 return (mod_remove(&modlinkage));
1345 _info(struct modinfo *modinfop)
1347 return (mod_info(&modlinkage, modinfop));