4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2011 Joyent, Inc. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
28 #include <sys/types.h>
29 #include <sys/callb.h>
31 #include <sys/strsubr.h>
32 #include <sys/strsun.h>
34 #include <sys/stack.h>
35 #include <sys/archsystm.h>
36 #include <inet/ipsec_impl.h>
37 #include <inet/ip_impl.h>
38 #include <inet/sadb.h>
39 #include <inet/ipsecesp.h>
40 #include <inet/ipsecah.h>
43 #include <sys/mac_impl.h>
44 #include <sys/mac_client_impl.h>
45 #include <sys/mac_client_priv.h>
46 #include <sys/mac_soft_ring.h>
47 #include <sys/mac_flow_impl.h>
49 static mac_tx_cookie_t
mac_tx_single_ring_mode(mac_soft_ring_set_t
*, mblk_t
*,
50 uintptr_t, uint16_t, mblk_t
**);
51 static mac_tx_cookie_t
mac_tx_serializer_mode(mac_soft_ring_set_t
*, mblk_t
*,
52 uintptr_t, uint16_t, mblk_t
**);
53 static mac_tx_cookie_t
mac_tx_fanout_mode(mac_soft_ring_set_t
*, mblk_t
*,
54 uintptr_t, uint16_t, mblk_t
**);
55 static mac_tx_cookie_t
mac_tx_bw_mode(mac_soft_ring_set_t
*, mblk_t
*,
56 uintptr_t, uint16_t, mblk_t
**);
57 static mac_tx_cookie_t
mac_tx_aggr_mode(mac_soft_ring_set_t
*, mblk_t
*,
58 uintptr_t, uint16_t, mblk_t
**);
60 typedef struct mac_tx_mode_s
{
61 mac_tx_srs_mode_t mac_tx_mode
;
62 mac_tx_func_t mac_tx_func
;
66 * There are seven modes of operation on the Tx side. These modes get set
67 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
68 * none of the other modes are user configurable. They get selected by
69 * the system depending upon whether the link (or flow) has multiple Tx
70 * rings or a bandwidth configured, or if the link is an aggr, etc.
72 * When the Tx SRS is operating in aggr mode (st_mode) or if there are
73 * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
74 * otherwise) will have a soft ring associated with it. These soft rings
75 * are stored in srs_tx_soft_rings[] array.
77 * Additionally in the case of aggr, there is the st_soft_rings[] array
78 * in the mac_srs_tx_t structure. This array is used to store the same
79 * set of soft rings that are present in srs_tx_soft_rings[] array but
80 * in a different manner. The soft ring associated with the pseudo Tx
81 * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
82 * array. This helps in quickly getting the soft ring associated with the
83 * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
84 * be used for transmit.
86 mac_tx_mode_t mac_tx_mode_list
[] = {
87 {SRS_TX_DEFAULT
, mac_tx_single_ring_mode
},
88 {SRS_TX_SERIALIZE
, mac_tx_serializer_mode
},
89 {SRS_TX_FANOUT
, mac_tx_fanout_mode
},
90 {SRS_TX_BW
, mac_tx_bw_mode
},
91 {SRS_TX_BW_FANOUT
, mac_tx_bw_mode
},
92 {SRS_TX_AGGR
, mac_tx_aggr_mode
},
93 {SRS_TX_BW_AGGR
, mac_tx_bw_mode
}
97 * Soft Ring Set (SRS) - The Run time code that deals with
98 * dynamic polling from the hardware, bandwidth enforcement,
101 * We try to use H/W classification on NIC and assign traffic for
102 * a MAC address to a particular Rx ring or ring group. There is a
103 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
104 * switches the underlying Rx ring between interrupt and
105 * polling mode and enforces any specified B/W control.
107 * There is always a SRS created and tied to each H/W and S/W rule.
108 * Whenever we create a H/W rule, we always add the the same rule to
109 * S/W classifier and tie a SRS to it.
111 * In case a B/W control is specified, it is broken into bytes
112 * per ticks and as soon as the quota for a tick is exhausted,
113 * the underlying Rx ring is forced into poll mode for remainder of
114 * the tick. The SRS poll thread only polls for bytes that are
115 * allowed to come in the SRS. We typically let 4x the configured
116 * B/W worth of packets to come in the SRS (to prevent unnecessary
117 * drops due to bursts) but only process the specified amount.
119 * A MAC client (e.g. a VNIC or aggr) can have 1 or more
120 * Rx rings (and corresponding SRSs) assigned to it. The SRS
121 * in turn can have softrings to do protocol level fanout or
122 * softrings to do S/W based fanout or both. In case the NIC
123 * has no Rx rings, we do S/W classification to respective SRS.
124 * The S/W classification rule is always setup and ready. This
125 * allows the MAC layer to reassign Rx rings whenever needed
126 * but packets still continue to flow via the default path and
127 * getting S/W classified to correct SRS.
129 * The SRS's are used on both Tx and Rx side. They use the same
130 * data structure but the processing routines have slightly different
131 * semantics due to the fact that Rx side needs to do dynamic
134 * Dynamic Polling Notes
135 * =====================
137 * Each Soft ring set is capable of switching its Rx ring between
138 * interrupt and poll mode and actively 'polls' for packets in
139 * poll mode. If the SRS is implementing a B/W limit, it makes
140 * sure that only Max allowed packets are pulled in poll mode
141 * and goes to poll mode as soon as B/W limit is exceeded. As
142 * such, there are no overheads to implement B/W limits.
144 * In poll mode, its better to keep the pipeline going where the
145 * SRS worker thread keeps processing packets and poll thread
146 * keeps bringing more packets (specially if they get to run
147 * on different CPUs). This also prevents the overheads associated
148 * by excessive signalling (on NUMA machines, this can be
149 * pretty devastating). The exception is latency optimized case
150 * where worker thread does no work and interrupt and poll thread
151 * are allowed to do their own drain.
153 * We use the following policy to control Dynamic Polling:
154 * 1) We switch to poll mode anytime the processing
155 * thread causes a backlog to build up in SRS and
156 * its associated Soft Rings (sr_poll_pkt_cnt > 0).
157 * 2) As long as the backlog stays under the low water
158 * mark (sr_lowat), we poll the H/W for more packets.
159 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
160 * water mark, we stay in poll mode but don't poll
161 * the H/W for more packets.
162 * 4) Anytime in polling mode, if we poll the H/W for
163 * packets and find nothing plus we have an existing
164 * backlog (sr_poll_pkt_cnt > 0), we stay in polling
165 * mode but don't poll the H/W for packets anymore
166 * (let the polling thread go to sleep).
167 * 5) Once the backlog is relived (packets are processed)
168 * we reenable polling (by signalling the poll thread)
169 * only when the backlog dips below sr_poll_thres.
170 * 6) sr_hiwat is used exclusively when we are not
171 * polling capable and is used to decide when to
172 * drop packets so the SRS queue length doesn't grow
175 * NOTE: Also see the block level comment on top of mac_soft_ring.c
179 * mac_latency_optimize
181 * Controls whether the poll thread can process the packets inline
182 * or let the SRS worker thread do the processing. This applies if
183 * the SRS was not being processed. For latency sensitive traffic,
184 * this needs to be true to allow inline processing. For throughput
185 * under load, this should be false.
187 * This (and other similar) tunable should be rolled into a link
188 * or flow specific workload hint that can be set using dladm
189 * linkprop (instead of multiple such tunables).
191 boolean_t mac_latency_optimize
= B_TRUE
;
194 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
196 * queue a mp or chain in soft ring set and increment the
197 * local count (srs_count) for the SRS and the shared counter
198 * (srs_poll_pkt_cnt - shared between SRS and its soft rings
199 * to track the total unprocessed packets for polling to work
202 * The size (total bytes queued) counters are incremented only
203 * if we are doing B/W control.
205 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
206 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
207 if ((mac_srs)->srs_last != NULL) \
208 (mac_srs)->srs_last->b_next = (head); \
210 (mac_srs)->srs_first = (head); \
211 (mac_srs)->srs_last = (tail); \
212 (mac_srs)->srs_count += count; \
215 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
216 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
218 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
219 srs_rx->sr_poll_pkt_cnt += count; \
220 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \
221 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
222 (mac_srs)->srs_size += (sz); \
223 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \
224 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
225 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \
229 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
230 mac_srs->srs_state |= SRS_ENQUEUED; \
231 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
232 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
233 (mac_srs)->srs_size += (sz); \
234 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
239 * Turn polling on routines
241 #define MAC_SRS_POLLING_ON(mac_srs) { \
242 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
243 if (((mac_srs)->srs_state & \
244 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \
245 (mac_srs)->srs_state |= SRS_POLLING; \
246 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
247 (mac_srs)->srs_ring); \
248 (mac_srs)->srs_rx.sr_poll_on++; \
252 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \
253 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
254 if (((mac_srs)->srs_state & \
255 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \
256 (SRS_POLLING_CAPAB|SRS_WORKER)) { \
257 (mac_srs)->srs_state |= SRS_POLLING; \
258 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
259 (mac_srs)->srs_ring); \
260 (mac_srs)->srs_rx.sr_worker_poll_on++; \
267 * Signal the SRS poll thread to poll the underlying H/W ring
268 * provided it wasn't already polling (SRS_GET_PKTS was set).
270 * Poll thread gets to run only from mac_rx_srs_drain() and only
271 * if the drain was being done by the worker thread.
273 #define MAC_SRS_POLL_RING(mac_srs) { \
274 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
276 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
277 srs_rx->sr_poll_thr_sig++; \
278 if (((mac_srs)->srs_state & \
279 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \
280 (SRS_WORKER|SRS_POLLING_CAPAB)) { \
281 (mac_srs)->srs_state |= SRS_GET_PKTS; \
282 cv_signal(&(mac_srs)->srs_cv); \
284 srs_rx->sr_poll_thr_busy++; \
289 * MAC_SRS_CHECK_BW_CONTROL
291 * Check to see if next tick has started so we can reset the
292 * SRS_BW_ENFORCED flag and allow more packets to come in the
295 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \
296 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
297 ASSERT(((mac_srs)->srs_type & SRST_TX) || \
298 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \
299 clock_t now = ddi_get_lbolt(); \
300 if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \
301 (mac_srs)->srs_bw->mac_bw_curr_time = now; \
302 (mac_srs)->srs_bw->mac_bw_used = 0; \
303 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \
304 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
309 * MAC_SRS_WORKER_WAKEUP
311 * Wake up the SRS worker thread to process the queue as long as
312 * no one else is processing the queue. If we are optimizing for
313 * latency, we wake up the worker thread immediately or else we
314 * wait mac_srs_worker_wakeup_ticks before worker thread gets
317 int mac_srs_worker_wakeup_ticks
= 0;
318 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \
319 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
320 if (!((mac_srs)->srs_state & SRS_PROC) && \
321 (mac_srs)->srs_tid == NULL) { \
322 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \
323 (mac_srs_worker_wakeup_ticks == 0)) \
324 cv_signal(&(mac_srs)->srs_async); \
326 (mac_srs)->srs_tid = \
327 timeout(mac_srs_fire, (mac_srs), \
328 mac_srs_worker_wakeup_ticks); \
332 #define TX_BANDWIDTH_MODE(mac_srs) \
333 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \
334 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \
335 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
337 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \
338 if (tx_mode == SRS_TX_BW_FANOUT) \
339 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
341 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL); \
347 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
348 * will be set only if srs_tx_woken_up is FALSE. If
349 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
350 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
351 * attempt to transmit again and not setting SRS_TX_BLOCKED does
354 #define MAC_TX_SRS_BLOCK(srs, mp) { \
355 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \
356 if ((srs)->srs_tx.st_woken_up) { \
357 (srs)->srs_tx.st_woken_up = B_FALSE; \
359 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \
360 (srs)->srs_state |= SRS_TX_BLOCKED; \
361 (srs)->srs_tx.st_stat.mts_blockcnt++; \
366 * MAC_TX_SRS_TEST_HIWAT
368 * Called before queueing a packet onto Tx SRS to test and set
369 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
371 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \
372 boolean_t enqueue = 1; \
374 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \
376 * flow-controlled. Store srs in cookie so that it \
377 * can be returned as mac_tx_cookie_t to client \
379 (srs)->srs_state |= SRS_TX_HIWAT; \
380 cookie = (mac_tx_cookie_t)srs; \
381 (srs)->srs_tx.st_hiwat_cnt++; \
382 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \
383 /* increment freed stats */ \
384 (srs)->srs_tx.st_stat.mts_sdrops += cnt; \
386 * b_prev may be set to the fanout hint \
387 * hence can't use freemsg directly \
389 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \
390 DTRACE_PROBE1(tx_queued_hiwat, \
391 mac_soft_ring_set_t *, srs); \
396 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \
399 /* Some utility macros */
400 #define MAC_SRS_BW_LOCK(srs) \
401 if (!(srs->srs_type & SRST_TX)) \
402 mutex_enter(&srs->srs_bw->mac_bw_lock);
404 #define MAC_SRS_BW_UNLOCK(srs) \
405 if (!(srs->srs_type & SRST_TX)) \
406 mutex_exit(&srs->srs_bw->mac_bw_lock);
408 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \
409 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \
410 /* increment freed stats */ \
411 mac_srs->srs_tx.st_stat.mts_sdrops++; \
412 cookie = (mac_tx_cookie_t)srs; \
415 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \
416 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \
417 cookie = (mac_tx_cookie_t)srs; \
418 *ret_mp = mp_chain; \
424 * Macro called as part of receive-side processing to determine if handling
425 * can occur in situ (in the interrupt thread) or if it should be left to a
426 * worker thread. Note that the constant used to make this determination is
427 * not entirely made-up, and is a result of some emprical validation. That
428 * said, the constant is left as a static variable to allow it to be
429 * dynamically tuned in the field if and as needed.
431 static uintptr_t mac_rx_srs_stack_needed
= 10240;
432 static uint_t mac_rx_srs_stack_toodeep
;
434 #ifndef STACK_GROWTH_DOWN
435 #error Downward stack growth assumed.
438 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \
439 (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \
440 ++mac_rx_srs_stack_toodeep)
444 * Drop the rx packet and advance to the next one in the chain.
447 mac_rx_drop_pkt(mac_soft_ring_set_t
*srs
, mblk_t
*mp
)
449 mac_srs_rx_t
*srs_rx
= &srs
->srs_rx
;
451 ASSERT(mp
->b_next
== NULL
);
452 mutex_enter(&srs
->srs_lock
);
453 MAC_UPDATE_SRS_COUNT_LOCKED(srs
, 1);
454 MAC_UPDATE_SRS_SIZE_LOCKED(srs
, msgdsize(mp
));
455 mutex_exit(&srs
->srs_lock
);
457 srs_rx
->sr_stat
.mrs_sdrops
++;
461 /* DATAPATH RUNTIME ROUTINES */
466 * Timer callback routine for waking up the SRS worker thread.
469 mac_srs_fire(void *arg
)
471 mac_soft_ring_set_t
*mac_srs
= (mac_soft_ring_set_t
*)arg
;
473 mutex_enter(&mac_srs
->srs_lock
);
474 if (mac_srs
->srs_tid
== 0) {
475 mutex_exit(&mac_srs
->srs_lock
);
479 mac_srs
->srs_tid
= 0;
480 if (!(mac_srs
->srs_state
& SRS_PROC
))
481 cv_signal(&mac_srs
->srs_async
);
483 mutex_exit(&mac_srs
->srs_lock
);
487 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
488 * and it is used on the TX path.
490 #define HASH_HINT(hint) \
491 ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
495 * hash based on the src address, dst address and the port information.
497 #define HASH_ADDR(src, dst, ports) \
498 (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
499 ((ports) >> 8) ^ (ports))
501 #define COMPUTE_INDEX(key, sz) (key % sz)
503 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \
504 if ((tail) != NULL) { \
505 ASSERT((tail)->b_next == NULL); \
506 (tail)->b_next = (mp); \
508 ASSERT((head) == NULL); \
517 #define MAC_FANOUT_DEFAULT 0
518 #define MAC_FANOUT_RND_ROBIN 1
519 int mac_fanout_type
= MAC_FANOUT_DEFAULT
;
521 #define MAX_SR_TYPES 3
522 /* fanout types for port based hashing */
531 * Pair of local and remote ports in the transport header
536 * mac_rx_srs_proto_fanout
538 * This routine delivers packets destined to an SRS into one of the
539 * protocol soft rings.
541 * Given a chain of packets we need to split it up into multiple sub chains
542 * destined into TCP, UDP or OTH soft ring. Instead of entering
543 * the soft ring one packet at a time, we want to enter it in the form of a
544 * chain otherwise we get this start/stop behaviour where the worker thread
545 * goes to sleep and then next packets comes in forcing it to wake up etc.
548 mac_rx_srs_proto_fanout(mac_soft_ring_set_t
*mac_srs
, mblk_t
*head
)
550 struct ether_header
*ehp
;
551 struct ether_vlan_header
*evhp
;
557 mblk_t
*headmp
[MAX_SR_TYPES
];
558 mblk_t
*tailmp
[MAX_SR_TYPES
];
559 int cnt
[MAX_SR_TYPES
];
560 size_t sz
[MAX_SR_TYPES
];
563 boolean_t hw_classified
;
564 boolean_t dls_bypass
;
566 boolean_t is_unicast
;
568 mac_client_impl_t
*mcip
= mac_srs
->srs_mcip
;
570 is_ether
= (mcip
->mci_mip
->mi_info
.mi_nativemedia
== DL_ETHER
);
571 bw_ctl
= ((mac_srs
->srs_type
& SRST_BW_CONTROL
) != 0);
574 * If we don't have a Rx ring, S/W classification would have done
575 * its job and its a packet meant for us. If we were polling on
576 * the default ring (i.e. there was a ring assigned to this SRS),
577 * then we need to make sure that the mac address really belongs
580 hw_classified
= mac_srs
->srs_ring
!= NULL
&&
581 mac_srs
->srs_ring
->mr_classify_type
== MAC_HW_CLASSIFIER
;
584 * Special clients (eg. VLAN, non ether, etc) need DLS
585 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
586 * such SRSs. Another way of disabling bypass is to set the
587 * MCIS_RX_BYPASS_DISABLE flag.
589 dls_bypass
= ((mac_srs
->srs_type
& SRST_DLS_BYPASS
) != 0) &&
590 ((mcip
->mci_state_flags
& MCIS_RX_BYPASS_DISABLE
) == 0);
592 bzero(headmp
, MAX_SR_TYPES
* sizeof (mblk_t
*));
593 bzero(tailmp
, MAX_SR_TYPES
* sizeof (mblk_t
*));
594 bzero(cnt
, MAX_SR_TYPES
* sizeof (int));
595 bzero(sz
, MAX_SR_TYPES
* sizeof (size_t));
598 * We got a chain from SRS that we need to send to the soft rings.
599 * Since squeues for TCP & IPv4 sap poll their soft rings (for
600 * performance reasons), we need to separate out v4_tcp, v4_udp
601 * and the rest goes in other.
603 while (head
!= NULL
) {
609 sz1
= (mp
->b_cont
== NULL
) ? MBLKL(mp
) : msgdsize(mp
);
613 * At this point we can be sure the packet at least
614 * has an ether header.
616 if (sz1
< sizeof (struct ether_header
)) {
617 mac_rx_drop_pkt(mac_srs
, mp
);
620 ehp
= (struct ether_header
*)mp
->b_rptr
;
623 * Determine if this is a VLAN or non-VLAN packet.
625 if ((sap
= ntohs(ehp
->ether_type
)) == VLAN_TPID
) {
626 evhp
= (struct ether_vlan_header
*)mp
->b_rptr
;
627 sap
= ntohs(evhp
->ether_type
);
628 hdrsize
= sizeof (struct ether_vlan_header
);
630 * Check if the VID of the packet, if any,
631 * belongs to this client.
633 if (!mac_client_check_flow_vid(mcip
,
634 VLAN_ID(ntohs(evhp
->ether_tci
)))) {
635 mac_rx_drop_pkt(mac_srs
, mp
);
639 hdrsize
= sizeof (struct ether_header
);
642 ((((uint8_t *)&ehp
->ether_dhost
)[0] & 0x01) == 0);
643 dstaddr
= (uint8_t *)&ehp
->ether_dhost
;
645 mac_header_info_t mhi
;
647 if (mac_header_info((mac_handle_t
)mcip
->mci_mip
,
649 mac_rx_drop_pkt(mac_srs
, mp
);
652 hdrsize
= mhi
.mhi_hdrsize
;
653 sap
= mhi
.mhi_bindsap
;
654 is_unicast
= (mhi
.mhi_dsttype
== MAC_ADDRTYPE_UNICAST
);
655 dstaddr
= (uint8_t *)mhi
.mhi_daddr
;
659 FANOUT_ENQUEUE_MP(headmp
[type
], tailmp
[type
],
660 cnt
[type
], bw_ctl
, sz
[type
], sz1
, mp
);
664 if (sap
== ETHERTYPE_IP
) {
666 * If we are H/W classified, but we have promisc
667 * on, then we need to check for the unicast address.
669 if (hw_classified
&& mcip
->mci_promisc_list
!= NULL
) {
672 rw_enter(&mcip
->mci_rw_lock
, RW_READER
);
673 map
= mcip
->mci_unicast
;
674 if (bcmp(dstaddr
, map
->ma_addr
,
677 rw_exit(&mcip
->mci_rw_lock
);
678 } else if (is_unicast
) {
684 * This needs to become a contract with the driver for
687 * In the normal case the packet will have at least the L2
688 * header and the IP + Transport header in the same mblk.
689 * This is usually the case when the NIC driver sends up
690 * the packet. This is also true when the stack generates
691 * a packet that is looped back and when the stack uses the
692 * fastpath mechanism. The normal case is optimized for
693 * performance and may bypass DLS. All other cases go through
694 * the 'OTH' type path without DLS bypass.
697 ipha
= (ipha_t
*)(mp
->b_rptr
+ hdrsize
);
698 if ((type
!= OTH
) && MBLK_RX_FANOUT_SLOWPATH(mp
, ipha
))
702 FANOUT_ENQUEUE_MP(headmp
[type
], tailmp
[type
],
703 cnt
[type
], bw_ctl
, sz
[type
], sz1
, mp
);
707 ASSERT(type
== UNDEF
);
709 * We look for at least 4 bytes past the IP header to get
710 * the port information. If we get an IP fragment, we don't
711 * have the port information, and we use just the protocol
714 switch (ipha
->ipha_protocol
) {
717 mp
->b_rptr
+= hdrsize
;
721 mp
->b_rptr
+= hdrsize
;
728 FANOUT_ENQUEUE_MP(headmp
[type
], tailmp
[type
], cnt
[type
],
729 bw_ctl
, sz
[type
], sz1
, mp
);
732 for (type
= V4_TCP
; type
< UNDEF
; type
++) {
733 if (headmp
[type
] != NULL
) {
734 mac_soft_ring_t
*softring
;
736 ASSERT(tailmp
[type
]->b_next
== NULL
);
739 softring
= mac_srs
->srs_tcp_soft_rings
[0];
742 softring
= mac_srs
->srs_udp_soft_rings
[0];
745 softring
= mac_srs
->srs_oth_soft_rings
[0];
747 mac_rx_soft_ring_process(mcip
, softring
,
748 headmp
[type
], tailmp
[type
], cnt
[type
], sz
[type
]);
753 int fanout_unaligned
= 0;
756 * mac_rx_srs_long_fanout
758 * The fanout routine for VLANs, and for anything else that isn't performing
759 * explicit dls bypass. Returns -1 on an error (drop the packet due to a
760 * malformed packet), 0 on success, with values written in *indx and *type.
763 mac_rx_srs_long_fanout(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp
,
764 uint32_t sap
, size_t hdrsize
, enum pkt_type
*type
, uint_t
*indx
)
773 uint32_t src_val
, dst_val
;
774 boolean_t modifiable
= B_TRUE
;
777 ASSERT(MBLKL(mp
) >= hdrsize
);
779 if (sap
== ETHERTYPE_IPV6
) {
781 hdr_len
= IPV6_HDR_LEN
;
782 } else if (sap
== ETHERTYPE_IP
) {
784 hdr_len
= IP_SIMPLE_HDR_LENGTH
;
791 ip6h
= (ip6_t
*)(mp
->b_rptr
+ hdrsize
);
792 ipha
= (ipha_t
*)ip6h
;
794 if ((uint8_t *)ip6h
== mp
->b_wptr
) {
796 * The first mblk_t only includes the mac header.
797 * Note that it is safe to change the mp pointer here,
798 * as the subsequent operation does not assume mp
799 * points to the start of the mac header.
804 * Make sure the IP header points to an entire one.
809 if (MBLKL(mp
) < hdr_len
) {
810 modifiable
= (DB_REF(mp
) == 1);
812 if (modifiable
&& !pullupmsg(mp
, hdr_len
))
816 ip6h
= (ip6_t
*)mp
->b_rptr
;
817 ipha
= (ipha_t
*)ip6h
;
820 if (!modifiable
|| !(OK_32PTR((char *)ip6h
)) ||
821 ((uint8_t *)ip6h
+ hdr_len
> mp
->b_wptr
)) {
823 * If either the IP header is not aligned, or it does not hold
824 * the complete simple structure (a pullupmsg() is not an
825 * option since it would result in an unaligned IP header),
826 * fanout to the default ring.
828 * Note that this may cause packet reordering.
837 * Extract next-header, full header length, and source-hash value
838 * using v4/v6 specific fields.
841 remlen
= ntohs(ip6h
->ip6_plen
);
842 nexthdr
= ip6h
->ip6_nxt
;
843 src_val
= V4_PART_OF_V6(ip6h
->ip6_src
);
844 dst_val
= V4_PART_OF_V6(ip6h
->ip6_dst
);
846 * Do src based fanout if below tunable is set to B_TRUE or
847 * when mac_ip_hdr_length_v6() fails because of malformed
848 * packets or because mblks need to be concatenated using
851 if (!mac_ip_hdr_length_v6(ip6h
, mp
->b_wptr
, &hdr_len
, &nexthdr
,
853 goto src_dst_based_fanout
;
856 hdr_len
= IPH_HDR_LENGTH(ipha
);
857 remlen
= ntohs(ipha
->ipha_length
) - hdr_len
;
858 nexthdr
= ipha
->ipha_protocol
;
859 src_val
= (uint32_t)ipha
->ipha_src
;
860 dst_val
= (uint32_t)ipha
->ipha_dst
;
862 * Catch IPv4 fragment case here. IPv6 has nexthdr == FRAG
863 * for its equivalent case.
865 if ((ntohs(ipha
->ipha_fragment_offset_and_flags
) &
866 (IPH_MF
| IPH_OFFSET
)) != 0) {
867 goto src_dst_based_fanout
;
870 if (remlen
< MIN_EHDR_LEN
)
872 whereptr
= (uint8_t *)ip6h
+ hdr_len
;
874 /* If the transport is one of below, we do port/SPI based fanout */
881 * If the ports or SPI in the transport header is not part of
882 * the mblk, do src_based_fanout, instead of calling
885 if (mp
->b_cont
== NULL
|| whereptr
+ PORTS_SIZE
<= mp
->b_wptr
)
886 break; /* out of switch... */
889 goto src_dst_based_fanout
;
894 hash
= HASH_ADDR(src_val
, dst_val
, *(uint32_t *)whereptr
);
895 *indx
= COMPUTE_INDEX(hash
, mac_srs
->srs_tcp_ring_count
);
901 if (mac_fanout_type
== MAC_FANOUT_DEFAULT
) {
902 hash
= HASH_ADDR(src_val
, dst_val
,
903 *(uint32_t *)whereptr
);
904 *indx
= COMPUTE_INDEX(hash
,
905 mac_srs
->srs_udp_ring_count
);
907 *indx
= mac_srs
->srs_ind
% mac_srs
->srs_udp_ring_count
;
915 src_dst_based_fanout
:
916 hash
= HASH_ADDR(src_val
, dst_val
, (uint32_t)0);
917 *indx
= COMPUTE_INDEX(hash
, mac_srs
->srs_oth_ring_count
);
925 * This routine delivers packets destined to an SRS into a soft ring member
928 * Given a chain of packets we need to split it up into multiple sub chains
929 * destined for one of the TCP, UDP or OTH soft rings. Instead of entering
930 * the soft ring one packet at a time, we want to enter it in the form of a
931 * chain otherwise we get this start/stop behaviour where the worker thread
932 * goes to sleep and then next packets comes in forcing it to wake up etc.
935 * Since we know what is the maximum fanout possible, we create a 2D array
936 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
937 * variables so that we can enter the softrings with chain. We need the
938 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
939 * for each packet would be expensive). If we ever want to have the
940 * ability to have unlimited fanout, we should probably declare a head,
941 * tail, cnt, sz with each soft ring (a data struct which contains a softring
942 * along with these members) and create an array of this uber struct so we
943 * don't have to do kmem_alloc.
952 mac_rx_srs_fanout(mac_soft_ring_set_t
*mac_srs
, mblk_t
*head
)
954 struct ether_header
*ehp
;
955 struct ether_vlan_header
*evhp
;
965 mblk_t
*headmp
[MAX_SR_TYPES
][MAX_SR_FANOUT
];
966 mblk_t
*tailmp
[MAX_SR_TYPES
][MAX_SR_FANOUT
];
967 int cnt
[MAX_SR_TYPES
][MAX_SR_FANOUT
];
968 size_t sz
[MAX_SR_TYPES
][MAX_SR_FANOUT
];
971 boolean_t hw_classified
;
972 boolean_t dls_bypass
;
974 boolean_t is_unicast
;
977 mac_client_impl_t
*mcip
= mac_srs
->srs_mcip
;
979 is_ether
= (mcip
->mci_mip
->mi_info
.mi_nativemedia
== DL_ETHER
);
980 bw_ctl
= ((mac_srs
->srs_type
& SRST_BW_CONTROL
) != 0);
983 * If we don't have a Rx ring, S/W classification would have done
984 * its job and its a packet meant for us. If we were polling on
985 * the default ring (i.e. there was a ring assigned to this SRS),
986 * then we need to make sure that the mac address really belongs
989 hw_classified
= mac_srs
->srs_ring
!= NULL
&&
990 mac_srs
->srs_ring
->mr_classify_type
== MAC_HW_CLASSIFIER
;
993 * Special clients (eg. VLAN, non ether, etc) need DLS
994 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
995 * such SRSs. Another way of disabling bypass is to set the
996 * MCIS_RX_BYPASS_DISABLE flag.
998 dls_bypass
= ((mac_srs
->srs_type
& SRST_DLS_BYPASS
) != 0) &&
999 ((mcip
->mci_state_flags
& MCIS_RX_BYPASS_DISABLE
) == 0);
1002 * Since the softrings are never destroyed and we always
1003 * create equal number of softrings for TCP, UDP and rest,
1004 * its OK to check one of them for count and use it without
1005 * any lock. In future, if soft rings get destroyed because
1006 * of reduction in fanout, we will need to ensure that happens
1007 * behind the SRS_PROC.
1009 fanout_cnt
= mac_srs
->srs_tcp_ring_count
;
1011 bzero(headmp
, MAX_SR_TYPES
* MAX_SR_FANOUT
* sizeof (mblk_t
*));
1012 bzero(tailmp
, MAX_SR_TYPES
* MAX_SR_FANOUT
* sizeof (mblk_t
*));
1013 bzero(cnt
, MAX_SR_TYPES
* MAX_SR_FANOUT
* sizeof (int));
1014 bzero(sz
, MAX_SR_TYPES
* MAX_SR_FANOUT
* sizeof (size_t));
1017 * We got a chain from SRS that we need to send to the soft rings.
1018 * Since squeues for TCP & IPv4 sap poll their soft rings (for
1019 * performance reasons), we need to separate out v4_tcp, v4_udp
1020 * and the rest goes in other.
1022 while (head
!= NULL
) {
1024 head
= head
->b_next
;
1028 sz1
= (mp
->b_cont
== NULL
) ? MBLKL(mp
) : msgdsize(mp
);
1032 * At this point we can be sure the packet at least
1033 * has an ether header.
1035 if (sz1
< sizeof (struct ether_header
)) {
1036 mac_rx_drop_pkt(mac_srs
, mp
);
1039 ehp
= (struct ether_header
*)mp
->b_rptr
;
1042 * Determine if this is a VLAN or non-VLAN packet.
1044 if ((sap
= ntohs(ehp
->ether_type
)) == VLAN_TPID
) {
1045 evhp
= (struct ether_vlan_header
*)mp
->b_rptr
;
1046 sap
= ntohs(evhp
->ether_type
);
1047 hdrsize
= sizeof (struct ether_vlan_header
);
1049 * Check if the VID of the packet, if any,
1050 * belongs to this client.
1052 if (!mac_client_check_flow_vid(mcip
,
1053 VLAN_ID(ntohs(evhp
->ether_tci
)))) {
1054 mac_rx_drop_pkt(mac_srs
, mp
);
1058 hdrsize
= sizeof (struct ether_header
);
1061 ((((uint8_t *)&ehp
->ether_dhost
)[0] & 0x01) == 0);
1062 dstaddr
= (uint8_t *)&ehp
->ether_dhost
;
1064 mac_header_info_t mhi
;
1066 if (mac_header_info((mac_handle_t
)mcip
->mci_mip
,
1068 mac_rx_drop_pkt(mac_srs
, mp
);
1071 hdrsize
= mhi
.mhi_hdrsize
;
1072 sap
= mhi
.mhi_bindsap
;
1073 is_unicast
= (mhi
.mhi_dsttype
== MAC_ADDRTYPE_UNICAST
);
1074 dstaddr
= (uint8_t *)mhi
.mhi_daddr
;
1078 if (mac_rx_srs_long_fanout(mac_srs
, mp
, sap
,
1079 hdrsize
, &type
, &indx
) == -1) {
1080 mac_rx_drop_pkt(mac_srs
, mp
);
1084 FANOUT_ENQUEUE_MP(headmp
[type
][indx
],
1085 tailmp
[type
][indx
], cnt
[type
][indx
], bw_ctl
,
1086 sz
[type
][indx
], sz1
, mp
);
1092 * If we are using the default Rx ring where H/W or S/W
1093 * classification has not happened, we need to verify if
1094 * this unicast packet really belongs to us.
1096 if (sap
== ETHERTYPE_IP
) {
1098 * If we are H/W classified, but we have promisc
1099 * on, then we need to check for the unicast address.
1101 if (hw_classified
&& mcip
->mci_promisc_list
!= NULL
) {
1104 rw_enter(&mcip
->mci_rw_lock
, RW_READER
);
1105 map
= mcip
->mci_unicast
;
1106 if (bcmp(dstaddr
, map
->ma_addr
,
1109 rw_exit(&mcip
->mci_rw_lock
);
1110 } else if (is_unicast
) {
1116 * This needs to become a contract with the driver for
1120 ipha
= (ipha_t
*)(mp
->b_rptr
+ hdrsize
);
1121 if ((type
!= OTH
) && MBLK_RX_FANOUT_SLOWPATH(mp
, ipha
)) {
1127 uint16_t frag_offset_flags
;
1129 switch (ipha
->ipha_protocol
) {
1134 ipha_len
= IPH_HDR_LENGTH(ipha
);
1135 if ((uchar_t
*)ipha
+ ipha_len
+ PORTS_SIZE
>
1141 ntohs(ipha
->ipha_fragment_offset_and_flags
);
1142 if ((frag_offset_flags
&
1143 (IPH_MF
| IPH_OFFSET
)) != 0) {
1148 ports_offset
= hdrsize
+ ipha_len
;
1158 if (mac_rx_srs_long_fanout(mac_srs
, mp
, sap
,
1159 hdrsize
, &type
, &indx
) == -1) {
1160 mac_rx_drop_pkt(mac_srs
, mp
);
1164 FANOUT_ENQUEUE_MP(headmp
[type
][indx
],
1165 tailmp
[type
][indx
], cnt
[type
][indx
], bw_ctl
,
1166 sz
[type
][indx
], sz1
, mp
);
1170 ASSERT(type
== UNDEF
);
1173 * XXX-Sunay: We should hold srs_lock since ring_count
1174 * below can change. But if we are always called from
1175 * mac_rx_srs_drain and SRS_PROC is set, then we can
1176 * enforce that ring_count can't be changed i.e.
1177 * to change fanout type or ring count, the calling
1178 * thread needs to be behind SRS_PROC.
1180 switch (ipha
->ipha_protocol
) {
1183 * Note that for ESP, we fanout on SPI and it is at the
1184 * same offset as the 2x16-bit ports. So it is clumped
1185 * along with TCP, UDP and SCTP.
1187 hash
= HASH_ADDR(ipha
->ipha_src
, ipha
->ipha_dst
,
1188 *(uint32_t *)(mp
->b_rptr
+ ports_offset
));
1189 indx
= COMPUTE_INDEX(hash
, mac_srs
->srs_tcp_ring_count
);
1191 mp
->b_rptr
+= hdrsize
;
1196 if (mac_fanout_type
== MAC_FANOUT_DEFAULT
) {
1197 hash
= HASH_ADDR(ipha
->ipha_src
, ipha
->ipha_dst
,
1198 *(uint32_t *)(mp
->b_rptr
+ ports_offset
));
1199 indx
= COMPUTE_INDEX(hash
,
1200 mac_srs
->srs_udp_ring_count
);
1202 indx
= mac_srs
->srs_ind
%
1203 mac_srs
->srs_udp_ring_count
;
1207 mp
->b_rptr
+= hdrsize
;
1214 FANOUT_ENQUEUE_MP(headmp
[type
][indx
], tailmp
[type
][indx
],
1215 cnt
[type
][indx
], bw_ctl
, sz
[type
][indx
], sz1
, mp
);
1218 for (type
= V4_TCP
; type
< UNDEF
; type
++) {
1221 for (i
= 0; i
< fanout_cnt
; i
++) {
1222 if (headmp
[type
][i
] != NULL
) {
1223 mac_soft_ring_t
*softring
;
1225 ASSERT(tailmp
[type
][i
]->b_next
== NULL
);
1229 mac_srs
->srs_tcp_soft_rings
[i
];
1233 mac_srs
->srs_udp_soft_rings
[i
];
1237 mac_srs
->srs_oth_soft_rings
[i
];
1240 mac_rx_soft_ring_process(mcip
,
1241 softring
, headmp
[type
][i
], tailmp
[type
][i
],
1242 cnt
[type
][i
], sz
[type
][i
]);
1248 #define SRS_BYTES_TO_PICKUP 150000
1249 ssize_t max_bytes_to_pickup
= SRS_BYTES_TO_PICKUP
;
1252 * mac_rx_srs_poll_ring
1254 * This SRS Poll thread uses this routine to poll the underlying hardware
1255 * Rx ring to get a chain of packets. It can inline process that chain
1256 * if mac_latency_optimize is set (default) or signal the SRS worker thread
1257 * to do the remaining processing.
1259 * Since packets come in the system via interrupt or poll path, we also
1260 * update the stats and deal with promiscous clients here.
1263 mac_rx_srs_poll_ring(mac_soft_ring_set_t
*mac_srs
)
1265 kmutex_t
*lock
= &mac_srs
->srs_lock
;
1266 kcondvar_t
*async
= &mac_srs
->srs_cv
;
1267 mac_srs_rx_t
*srs_rx
= &mac_srs
->srs_rx
;
1268 mblk_t
*head
, *tail
, *mp
;
1269 callb_cpr_t cprinfo
;
1270 ssize_t bytes_to_pickup
;
1273 mac_client_impl_t
*smcip
;
1275 CALLB_CPR_INIT(&cprinfo
, lock
, callb_generic_cpr
, "mac_srs_poll");
1280 if (mac_srs
->srs_state
& SRS_PAUSE
)
1283 CALLB_CPR_SAFE_BEGIN(&cprinfo
);
1284 cv_wait(async
, lock
);
1285 CALLB_CPR_SAFE_END(&cprinfo
, lock
);
1287 if (mac_srs
->srs_state
& SRS_PAUSE
)
1291 if (mac_srs
->srs_type
& SRST_BW_CONTROL
) {
1293 * We pick as many bytes as we are allowed to queue.
1294 * Its possible that we will exceed the total
1295 * packets queued in case this SRS is part of the
1296 * Rx ring group since > 1 poll thread can be pulling
1297 * upto the max allowed packets at the same time
1298 * but that should be OK.
1300 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
1302 mac_srs
->srs_bw
->mac_bw_drop_threshold
-
1303 mac_srs
->srs_bw
->mac_bw_sz
;
1305 * We shouldn't have been signalled if we
1306 * have 0 or less bytes to pick but since
1307 * some of the bytes accounting is driver
1308 * dependant, we do the safety check.
1310 if (bytes_to_pickup
< 0)
1311 bytes_to_pickup
= 0;
1312 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1315 * ToDO: Need to change the polling API
1316 * to add a packet count and a flag which
1317 * tells the driver whether we want packets
1318 * based on a count, or bytes, or all the
1319 * packets queued in the driver/HW. This
1320 * way, we never have to check the limits
1321 * on poll path. We truly let only as many
1322 * packets enter the system as we are willing
1323 * to process or queue.
1325 * Something along the lines of
1326 * pkts_to_pickup = mac_soft_ring_max_q_cnt -
1327 * mac_srs->srs_poll_pkt_cnt
1331 * Since we are not doing B/W control, pick
1332 * as many packets as allowed.
1334 bytes_to_pickup
= max_bytes_to_pickup
;
1337 /* Poll the underlying Hardware */
1339 head
= MAC_HWRING_POLL(mac_srs
->srs_ring
, (int)bytes_to_pickup
);
1342 ASSERT((mac_srs
->srs_state
& SRS_POLL_THR_OWNER
) ==
1343 SRS_POLL_THR_OWNER
);
1348 while (mp
!= NULL
) {
1356 tail
->b_next
= NULL
;
1357 smcip
= mac_srs
->srs_mcip
;
1359 SRS_RX_STAT_UPDATE(mac_srs
, pollbytes
, sz
);
1360 SRS_RX_STAT_UPDATE(mac_srs
, pollcnt
, count
);
1363 * If there are any promiscuous mode callbacks
1364 * defined for this MAC client, pass them a copy
1365 * if appropriate and also update the counters.
1367 if (smcip
!= NULL
) {
1368 if (smcip
->mci_mip
->mi_promisc_list
!= NULL
) {
1370 mac_promisc_dispatch(smcip
->mci_mip
,
1375 if (mac_srs
->srs_type
& SRST_BW_CONTROL
) {
1376 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
1377 mac_srs
->srs_bw
->mac_bw_polled
+= sz
;
1378 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1380 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs
, head
, tail
,
1383 srs_rx
->sr_stat
.mrs_chaincntundr10
++;
1384 else if (count
> 10 && count
<= 50)
1385 srs_rx
->sr_stat
.mrs_chaincnt10to50
++;
1387 srs_rx
->sr_stat
.mrs_chaincntover50
++;
1391 * We are guaranteed that SRS_PROC will be set if we
1392 * are here. Also, poll thread gets to run only if
1393 * the drain was being done by a worker thread although
1394 * its possible that worker thread is still running
1395 * and poll thread was sent down to keep the pipeline
1396 * going instead of doing a complete drain and then
1397 * trying to poll the NIC.
1399 * So we need to check SRS_WORKER flag to make sure
1400 * that the worker thread is not processing the queue
1401 * in parallel to us. The flags and conditions are
1402 * protected by the srs_lock to prevent any race. We
1403 * ensure that we don't drop the srs_lock from now
1404 * till the end and similarly we don't drop the srs_lock
1405 * in mac_rx_srs_drain() till similar condition check
1406 * are complete. The mac_rx_srs_drain() needs to ensure
1407 * that SRS_WORKER flag remains set as long as its
1408 * processing the queue.
1410 if (!(mac_srs
->srs_state
& SRS_WORKER
) &&
1411 (mac_srs
->srs_first
!= NULL
)) {
1413 * We have packets to process and worker thread
1414 * is not running. Check to see if poll thread is
1415 * allowed to process.
1417 if (mac_srs
->srs_state
& SRS_LATENCY_OPT
) {
1418 mac_srs
->srs_drain_func(mac_srs
, SRS_POLL_PROC
);
1419 if (!(mac_srs
->srs_state
& SRS_PAUSE
) &&
1420 srs_rx
->sr_poll_pkt_cnt
<=
1422 srs_rx
->sr_poll_again
++;
1426 * We are already above low water mark
1427 * so stay in the polling mode but no
1428 * need to poll. Once we dip below
1429 * the polling threshold, the processing
1430 * thread (soft ring) will signal us
1431 * to poll again (MAC_UPDATE_SRS_COUNT)
1433 srs_rx
->sr_poll_drain_no_poll
++;
1434 mac_srs
->srs_state
&= ~(SRS_PROC
|SRS_GET_PKTS
);
1436 * In B/W control case, its possible
1437 * that the backlog built up due to
1438 * B/W limit being reached and packets
1439 * are queued only in SRS. In this case,
1440 * we should schedule worker thread
1441 * since no one else will wake us up.
1443 if ((mac_srs
->srs_type
& SRST_BW_CONTROL
) &&
1444 (mac_srs
->srs_tid
== NULL
)) {
1446 timeout(mac_srs_fire
, mac_srs
, 1);
1447 srs_rx
->sr_poll_worker_wakeup
++;
1451 * Wakeup the worker thread for more processing.
1452 * We optimize for throughput in this case.
1454 mac_srs
->srs_state
&= ~(SRS_PROC
|SRS_GET_PKTS
);
1455 MAC_SRS_WORKER_WAKEUP(mac_srs
);
1456 srs_rx
->sr_poll_sig_worker
++;
1458 } else if ((mac_srs
->srs_first
== NULL
) &&
1459 !(mac_srs
->srs_state
& SRS_WORKER
)) {
1461 * There is nothing queued in SRS and
1462 * no worker thread running. Plus we
1463 * didn't get anything from the H/W
1464 * as well (head == NULL);
1466 ASSERT(head
== NULL
);
1467 mac_srs
->srs_state
&=
1468 ~(SRS_PROC
|SRS_GET_PKTS
);
1471 * If we have a packets in soft ring, don't allow
1472 * more packets to come into this SRS by keeping the
1473 * interrupts off but not polling the H/W. The
1474 * poll thread will get signaled as soon as
1475 * srs_poll_pkt_cnt dips below poll threshold.
1477 if (srs_rx
->sr_poll_pkt_cnt
== 0) {
1478 srs_rx
->sr_poll_intr_enable
++;
1479 MAC_SRS_POLLING_OFF(mac_srs
);
1482 * We know nothing is queued in SRS
1483 * since we are here after checking
1484 * srs_first is NULL. The backlog
1485 * is entirely due to packets queued
1486 * in Soft ring which will wake us up
1487 * and get the interface out of polling
1488 * mode once the backlog dips below
1491 srs_rx
->sr_poll_no_poll
++;
1495 * Worker thread is already running.
1496 * Nothing much to do. If the polling
1497 * was enabled, worker thread will deal
1500 mac_srs
->srs_state
&= ~SRS_GET_PKTS
;
1501 srs_rx
->sr_poll_goto_sleep
++;
1505 mac_srs
->srs_state
|= SRS_POLL_THR_QUIESCED
;
1506 cv_signal(&mac_srs
->srs_async
);
1508 * If this is a temporary quiesce then wait for the restart signal
1509 * from the srs worker. Then clear the flags and signal the srs worker
1510 * to ensure a positive handshake and go back to start.
1512 while (!(mac_srs
->srs_state
& (SRS_CONDEMNED
| SRS_POLL_THR_RESTART
)))
1513 cv_wait(async
, lock
);
1514 if (mac_srs
->srs_state
& SRS_POLL_THR_RESTART
) {
1515 ASSERT(!(mac_srs
->srs_state
& SRS_CONDEMNED
));
1516 mac_srs
->srs_state
&=
1517 ~(SRS_POLL_THR_QUIESCED
| SRS_POLL_THR_RESTART
);
1518 cv_signal(&mac_srs
->srs_async
);
1521 mac_srs
->srs_state
|= SRS_POLL_THR_EXITED
;
1522 cv_signal(&mac_srs
->srs_async
);
1523 CALLB_CPR_EXIT(&cprinfo
);
1529 * mac_srs_pick_chain
1531 * In Bandwidth control case, checks how many packets can be processed
1532 * and return them in a sub chain.
1535 mac_srs_pick_chain(mac_soft_ring_set_t
*mac_srs
, mblk_t
**chain_tail
,
1536 size_t *chain_sz
, int *chain_cnt
)
1538 mblk_t
*head
= NULL
;
1539 mblk_t
*tail
= NULL
;
1545 ASSERT(MUTEX_HELD(&mac_srs
->srs_lock
));
1546 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
1547 if (((mac_srs
->srs_bw
->mac_bw_used
+ mac_srs
->srs_size
) <=
1548 mac_srs
->srs_bw
->mac_bw_limit
) ||
1549 (mac_srs
->srs_bw
->mac_bw_limit
== 0)) {
1550 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1551 head
= mac_srs
->srs_first
;
1552 mac_srs
->srs_first
= NULL
;
1553 *chain_tail
= mac_srs
->srs_last
;
1554 mac_srs
->srs_last
= NULL
;
1555 *chain_sz
= mac_srs
->srs_size
;
1556 *chain_cnt
= mac_srs
->srs_count
;
1557 mac_srs
->srs_count
= 0;
1558 mac_srs
->srs_size
= 0;
1563 * Can't clear the entire backlog.
1564 * Need to find how many packets to pick
1566 ASSERT(MUTEX_HELD(&mac_srs
->srs_bw
->mac_bw_lock
));
1567 while ((mp
= mac_srs
->srs_first
) != NULL
) {
1569 if ((tsz
+ sz
+ mac_srs
->srs_bw
->mac_bw_used
) >
1570 mac_srs
->srs_bw
->mac_bw_limit
) {
1571 if (!(mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
))
1572 mac_srs
->srs_bw
->mac_bw_state
|=
1578 * The _size & cnt is decremented from the softrings
1579 * when they send up the packet for polling to work
1584 mac_srs
->srs_count
--;
1585 mac_srs
->srs_size
-= sz
;
1591 mac_srs
->srs_first
= mac_srs
->srs_first
->b_next
;
1593 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1594 if (mac_srs
->srs_first
== NULL
)
1595 mac_srs
->srs_last
= NULL
;
1598 tail
->b_next
= NULL
;
1609 * The SRS drain routine. Gets to run to clear the queue. Any thread
1610 * (worker, interrupt, poll) can call this based on processing model.
1611 * The first thing we do is disable interrupts if possible and then
1612 * drain the queue. we also try to poll the underlying hardware if
1613 * there is a dedicated hardware Rx ring assigned to this SRS.
1615 * There is a equivalent drain routine in bandwidth control mode
1616 * mac_rx_srs_drain_bw. There is some code duplication between the two
1617 * routines but they are highly performance sensitive and are easier
1618 * to read/debug if they stay separate. Any code changes here might
1619 * also apply to mac_rx_srs_drain_bw as well.
1622 mac_rx_srs_drain(mac_soft_ring_set_t
*mac_srs
, uint_t proc_type
)
1628 mac_client_impl_t
*mcip
= mac_srs
->srs_mcip
;
1629 mac_srs_rx_t
*srs_rx
= &mac_srs
->srs_rx
;
1631 ASSERT(MUTEX_HELD(&mac_srs
->srs_lock
));
1632 ASSERT(!(mac_srs
->srs_type
& SRST_BW_CONTROL
));
1634 /* If we are blanked i.e. can't do upcalls, then we are done */
1635 if (mac_srs
->srs_state
& (SRS_BLANK
| SRS_PAUSE
)) {
1636 ASSERT((mac_srs
->srs_type
& SRST_NO_SOFT_RINGS
) ||
1637 (mac_srs
->srs_state
& SRS_PAUSE
));
1641 if (mac_srs
->srs_first
== NULL
)
1644 if (!(mac_srs
->srs_state
& SRS_LATENCY_OPT
) &&
1645 (srs_rx
->sr_poll_pkt_cnt
<= srs_rx
->sr_lowat
)) {
1647 * In the normal case, the SRS worker thread does no
1648 * work and we wait for a backlog to build up before
1649 * we switch into polling mode. In case we are
1650 * optimizing for throughput, we use the worker thread
1651 * as well. The goal is to let worker thread process
1652 * the queue and poll thread to feed packets into
1653 * the queue. As such, we should signal the poll
1654 * thread to try and get more packets.
1656 * We could have pulled this check in the POLL_RING
1657 * macro itself but keeping it explicit here makes
1658 * the architecture more human understandable.
1660 MAC_SRS_POLL_RING(mac_srs
);
1664 head
= mac_srs
->srs_first
;
1665 mac_srs
->srs_first
= NULL
;
1666 tail
= mac_srs
->srs_last
;
1667 mac_srs
->srs_last
= NULL
;
1668 cnt
= mac_srs
->srs_count
;
1669 mac_srs
->srs_count
= 0;
1671 ASSERT(head
!= NULL
);
1672 ASSERT(tail
!= NULL
);
1674 if ((tid
= mac_srs
->srs_tid
) != 0)
1675 mac_srs
->srs_tid
= 0;
1677 mac_srs
->srs_state
|= (SRS_PROC
|proc_type
);
1681 * mcip is NULL for broadcast and multicast flows. The promisc
1682 * callbacks for broadcast and multicast packets are delivered from
1683 * mac_rx() and we don't need to worry about that case in this path
1686 if (mcip
->mci_promisc_list
!= NULL
) {
1687 mutex_exit(&mac_srs
->srs_lock
);
1688 mac_promisc_client_dispatch(mcip
, head
);
1689 mutex_enter(&mac_srs
->srs_lock
);
1691 if (MAC_PROTECT_ENABLED(mcip
, MPT_IPNOSPOOF
)) {
1692 mutex_exit(&mac_srs
->srs_lock
);
1693 mac_protect_intercept_dhcp(mcip
, head
);
1694 mutex_enter(&mac_srs
->srs_lock
);
1699 * Check if SRS itself is doing the processing
1700 * This direct path does not apply when subflows are present. In this
1701 * case, packets need to be dispatched to a soft ring according to the
1702 * flow's bandwidth and other resources contraints.
1704 if (mac_srs
->srs_type
& SRST_NO_SOFT_RINGS
) {
1705 mac_direct_rx_t proc
;
1707 mac_resource_handle_t arg2
;
1710 * This is the case when a Rx is directly
1711 * assigned and we have a fully classified
1712 * protocol chain. We can deal with it in
1715 proc
= srs_rx
->sr_func
;
1716 arg1
= srs_rx
->sr_arg1
;
1717 arg2
= srs_rx
->sr_arg2
;
1719 mac_srs
->srs_state
|= SRS_CLIENT_PROC
;
1720 mutex_exit(&mac_srs
->srs_lock
);
1722 (void) untimeout(tid
);
1726 proc(arg1
, arg2
, head
, NULL
);
1728 * Decrement the size and count here itelf
1729 * since the packet has been processed.
1731 mutex_enter(&mac_srs
->srs_lock
);
1732 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs
, cnt
);
1733 if (mac_srs
->srs_state
& SRS_CLIENT_WAIT
)
1734 cv_signal(&mac_srs
->srs_client_cv
);
1735 mac_srs
->srs_state
&= ~SRS_CLIENT_PROC
;
1737 /* Some kind of softrings based fanout is required */
1738 mutex_exit(&mac_srs
->srs_lock
);
1740 (void) untimeout(tid
);
1745 * Since the fanout routines can deal with chains,
1746 * shoot the entire chain up.
1748 if (mac_srs
->srs_type
& SRST_FANOUT_SRC_IP
)
1749 mac_rx_srs_fanout(mac_srs
, head
);
1751 mac_rx_srs_proto_fanout(mac_srs
, head
);
1752 mutex_enter(&mac_srs
->srs_lock
);
1755 if (!(mac_srs
->srs_state
& (SRS_BLANK
|SRS_PAUSE
)) &&
1756 (mac_srs
->srs_first
!= NULL
)) {
1758 * More packets arrived while we were clearing the
1759 * SRS. This can be possible because of one of
1760 * three conditions below:
1761 * 1) The driver is using multiple worker threads
1762 * to send the packets to us.
1763 * 2) The driver has a race in switching
1764 * between interrupt and polling mode or
1765 * 3) Packets are arriving in this SRS via the
1766 * S/W classification as well.
1768 * We should switch to polling mode and see if we
1769 * need to send the poll thread down. Also, signal
1770 * the worker thread to process whats just arrived.
1772 MAC_SRS_POLLING_ON(mac_srs
);
1773 if (srs_rx
->sr_poll_pkt_cnt
<= srs_rx
->sr_lowat
) {
1774 srs_rx
->sr_drain_poll_sig
++;
1775 MAC_SRS_POLL_RING(mac_srs
);
1779 * If we didn't signal the poll thread, we need
1780 * to deal with the pending packets ourselves.
1782 if (proc_type
== SRS_WORKER
) {
1783 srs_rx
->sr_drain_again
++;
1786 srs_rx
->sr_drain_worker_sig
++;
1787 cv_signal(&mac_srs
->srs_async
);
1792 if (mac_srs
->srs_state
& SRS_GET_PKTS
) {
1794 * Poll thread is already running. Leave the
1795 * SRS_RPOC set and hand over the control to
1798 mac_srs
->srs_state
&= ~proc_type
;
1799 srs_rx
->sr_drain_poll_running
++;
1804 * Even if there are no packets queued in SRS, we
1805 * need to make sure that the shared counter is
1806 * clear and any associated softrings have cleared
1807 * all the backlog. Otherwise, leave the interface
1808 * in polling mode and the poll thread will get
1809 * signalled once the count goes down to zero.
1811 * If someone is already draining the queue (SRS_PROC is
1812 * set) when the srs_poll_pkt_cnt goes down to zero,
1813 * then it means that drain is already running and we
1814 * will turn off polling at that time if there is
1817 * As long as there are packets queued either
1818 * in soft ring set or its soft rings, we will leave
1819 * the interface in polling mode (even if the drain
1820 * was done being the interrupt thread). We signal
1821 * the poll thread as well if we have dipped below
1824 * NOTE: We can't use the MAC_SRS_POLLING_ON macro
1825 * since that turn polling on only for worker thread.
1826 * Its not worth turning polling on for interrupt
1827 * thread (since NIC will not issue another interrupt)
1828 * unless a backlog builds up.
1830 if ((srs_rx
->sr_poll_pkt_cnt
> 0) &&
1831 (mac_srs
->srs_state
& SRS_POLLING_CAPAB
)) {
1832 mac_srs
->srs_state
&= ~(SRS_PROC
|proc_type
);
1833 srs_rx
->sr_drain_keep_polling
++;
1834 MAC_SRS_POLLING_ON(mac_srs
);
1835 if (srs_rx
->sr_poll_pkt_cnt
<= srs_rx
->sr_lowat
)
1836 MAC_SRS_POLL_RING(mac_srs
);
1840 /* Nothing else to do. Get out of poll mode */
1841 MAC_SRS_POLLING_OFF(mac_srs
);
1842 mac_srs
->srs_state
&= ~(SRS_PROC
|proc_type
);
1843 srs_rx
->sr_drain_finish_intr
++;
1847 * mac_rx_srs_drain_bw
1849 * The SRS BW drain routine. Gets to run to clear the queue. Any thread
1850 * (worker, interrupt, poll) can call this based on processing model.
1851 * The first thing we do is disable interrupts if possible and then
1852 * drain the queue. we also try to poll the underlying hardware if
1853 * there is a dedicated hardware Rx ring assigned to this SRS.
1855 * There is a equivalent drain routine in non bandwidth control mode
1856 * mac_rx_srs_drain. There is some code duplication between the two
1857 * routines but they are highly performance sensitive and are easier
1858 * to read/debug if they stay separate. Any code changes here might
1859 * also apply to mac_rx_srs_drain as well.
1862 mac_rx_srs_drain_bw(mac_soft_ring_set_t
*mac_srs
, uint_t proc_type
)
1869 mac_client_impl_t
*mcip
= mac_srs
->srs_mcip
;
1870 mac_srs_rx_t
*srs_rx
= &mac_srs
->srs_rx
;
1873 ASSERT(MUTEX_HELD(&mac_srs
->srs_lock
));
1874 ASSERT(mac_srs
->srs_type
& SRST_BW_CONTROL
);
1876 /* Check if we are doing B/W control */
1877 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
1878 now
= ddi_get_lbolt();
1879 if (mac_srs
->srs_bw
->mac_bw_curr_time
!= now
) {
1880 mac_srs
->srs_bw
->mac_bw_curr_time
= now
;
1881 mac_srs
->srs_bw
->mac_bw_used
= 0;
1882 if (mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
)
1883 mac_srs
->srs_bw
->mac_bw_state
&= ~SRS_BW_ENFORCED
;
1884 } else if (mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
) {
1885 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1887 } else if (mac_srs
->srs_bw
->mac_bw_used
>
1888 mac_srs
->srs_bw
->mac_bw_limit
) {
1889 mac_srs
->srs_bw
->mac_bw_state
|= SRS_BW_ENFORCED
;
1890 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1893 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1895 /* If we are blanked i.e. can't do upcalls, then we are done */
1896 if (mac_srs
->srs_state
& (SRS_BLANK
| SRS_PAUSE
)) {
1897 ASSERT((mac_srs
->srs_type
& SRST_NO_SOFT_RINGS
) ||
1898 (mac_srs
->srs_state
& SRS_PAUSE
));
1904 if ((head
= mac_srs_pick_chain(mac_srs
, &tail
, &sz
, &cnt
)) == NULL
) {
1906 * We couldn't pick up a single packet.
1908 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
1909 if ((mac_srs
->srs_bw
->mac_bw_used
== 0) &&
1910 (mac_srs
->srs_size
!= 0) &&
1911 !(mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
)) {
1913 * Seems like configured B/W doesn't
1914 * even allow processing of 1 packet
1917 * XXX: raise the limit to processing
1918 * at least 1 packet per tick.
1920 mac_srs
->srs_bw
->mac_bw_limit
+=
1921 mac_srs
->srs_bw
->mac_bw_limit
;
1922 mac_srs
->srs_bw
->mac_bw_drop_threshold
+=
1923 mac_srs
->srs_bw
->mac_bw_drop_threshold
;
1924 cmn_err(CE_NOTE
, "mac_rx_srs_drain: srs(%p) "
1925 "raised B/W limit to %d since not even a "
1926 "single packet can be processed per "
1927 "tick %d\n", (void *)mac_srs
,
1928 (int)mac_srs
->srs_bw
->mac_bw_limit
,
1929 (int)msgdsize(mac_srs
->srs_first
));
1931 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1935 ASSERT(head
!= NULL
);
1936 ASSERT(tail
!= NULL
);
1938 /* zero bandwidth: drop all and return to interrupt mode */
1939 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
1940 if (mac_srs
->srs_bw
->mac_bw_limit
== 0) {
1941 srs_rx
->sr_stat
.mrs_sdrops
+= cnt
;
1942 ASSERT(mac_srs
->srs_bw
->mac_bw_sz
>= sz
);
1943 mac_srs
->srs_bw
->mac_bw_sz
-= sz
;
1944 mac_srs
->srs_bw
->mac_bw_drop_bytes
+= sz
;
1945 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1946 mac_pkt_drop(NULL
, NULL
, head
, B_FALSE
);
1949 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
1952 if ((tid
= mac_srs
->srs_tid
) != 0)
1953 mac_srs
->srs_tid
= 0;
1955 mac_srs
->srs_state
|= (SRS_PROC
|proc_type
);
1956 MAC_SRS_WORKER_POLLING_ON(mac_srs
);
1959 * mcip is NULL for broadcast and multicast flows. The promisc
1960 * callbacks for broadcast and multicast packets are delivered from
1961 * mac_rx() and we don't need to worry about that case in this path
1964 if (mcip
->mci_promisc_list
!= NULL
) {
1965 mutex_exit(&mac_srs
->srs_lock
);
1966 mac_promisc_client_dispatch(mcip
, head
);
1967 mutex_enter(&mac_srs
->srs_lock
);
1969 if (MAC_PROTECT_ENABLED(mcip
, MPT_IPNOSPOOF
)) {
1970 mutex_exit(&mac_srs
->srs_lock
);
1971 mac_protect_intercept_dhcp(mcip
, head
);
1972 mutex_enter(&mac_srs
->srs_lock
);
1977 * Check if SRS itself is doing the processing
1978 * This direct path does not apply when subflows are present. In this
1979 * case, packets need to be dispatched to a soft ring according to the
1980 * flow's bandwidth and other resources contraints.
1982 if (mac_srs
->srs_type
& SRST_NO_SOFT_RINGS
) {
1983 mac_direct_rx_t proc
;
1985 mac_resource_handle_t arg2
;
1988 * This is the case when a Rx is directly
1989 * assigned and we have a fully classified
1990 * protocol chain. We can deal with it in
1993 proc
= srs_rx
->sr_func
;
1994 arg1
= srs_rx
->sr_arg1
;
1995 arg2
= srs_rx
->sr_arg2
;
1997 mac_srs
->srs_state
|= SRS_CLIENT_PROC
;
1998 mutex_exit(&mac_srs
->srs_lock
);
2000 (void) untimeout(tid
);
2004 proc(arg1
, arg2
, head
, NULL
);
2006 * Decrement the size and count here itelf
2007 * since the packet has been processed.
2009 mutex_enter(&mac_srs
->srs_lock
);
2010 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs
, cnt
);
2011 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs
, sz
);
2013 if (mac_srs
->srs_state
& SRS_CLIENT_WAIT
)
2014 cv_signal(&mac_srs
->srs_client_cv
);
2015 mac_srs
->srs_state
&= ~SRS_CLIENT_PROC
;
2017 /* Some kind of softrings based fanout is required */
2018 mutex_exit(&mac_srs
->srs_lock
);
2020 (void) untimeout(tid
);
2025 * Since the fanout routines can deal with chains,
2026 * shoot the entire chain up.
2028 if (mac_srs
->srs_type
& SRST_FANOUT_SRC_IP
)
2029 mac_rx_srs_fanout(mac_srs
, head
);
2031 mac_rx_srs_proto_fanout(mac_srs
, head
);
2032 mutex_enter(&mac_srs
->srs_lock
);
2036 * Send the poll thread to pick up any packets arrived
2037 * so far. This also serves as the last check in case
2038 * nothing else is queued in the SRS. The poll thread
2039 * is signalled only in the case the drain was done
2040 * by the worker thread and SRS_WORKER is set. The
2041 * worker thread can run in parallel as long as the
2042 * SRS_WORKER flag is set. We we have nothing else to
2043 * process, we can exit while leaving SRS_PROC set
2044 * which gives the poll thread control to process and
2045 * cleanup once it returns from the NIC.
2047 * If we have nothing else to process, we need to
2048 * ensure that we keep holding the srs_lock till
2049 * all the checks below are done and control is
2050 * handed to the poll thread if it was running.
2052 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
2053 if (!(mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
)) {
2054 if (mac_srs
->srs_first
!= NULL
) {
2055 if (proc_type
== SRS_WORKER
) {
2056 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
2057 if (srs_rx
->sr_poll_pkt_cnt
<=
2059 MAC_SRS_POLL_RING(mac_srs
);
2062 cv_signal(&mac_srs
->srs_async
);
2066 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
2070 if (mac_srs
->srs_state
& SRS_GET_PKTS
) {
2072 * Poll thread is already running. Leave the
2073 * SRS_RPOC set and hand over the control to
2076 mac_srs
->srs_state
&= ~proc_type
;
2081 * If we can't process packets because we have exceeded
2082 * B/W limit for this tick, just set the timeout
2085 * Even if there are no packets queued in SRS, we
2086 * need to make sure that the shared counter is
2087 * clear and any associated softrings have cleared
2088 * all the backlog. Otherwise, leave the interface
2089 * in polling mode and the poll thread will get
2090 * signalled once the count goes down to zero.
2092 * If someone is already draining the queue (SRS_PROC is
2093 * set) when the srs_poll_pkt_cnt goes down to zero,
2094 * then it means that drain is already running and we
2095 * will turn off polling at that time if there is
2096 * no backlog. As long as there are packets queued either
2097 * is soft ring set or its soft rings, we will leave
2098 * the interface in polling mode.
2100 mutex_enter(&mac_srs
->srs_bw
->mac_bw_lock
);
2101 if ((mac_srs
->srs_state
& SRS_POLLING_CAPAB
) &&
2102 ((mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
) ||
2103 (srs_rx
->sr_poll_pkt_cnt
> 0))) {
2104 MAC_SRS_POLLING_ON(mac_srs
);
2105 mac_srs
->srs_state
&= ~(SRS_PROC
|proc_type
);
2106 if ((mac_srs
->srs_first
!= NULL
) &&
2107 (mac_srs
->srs_tid
== NULL
))
2108 mac_srs
->srs_tid
= timeout(mac_srs_fire
,
2110 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
2113 mutex_exit(&mac_srs
->srs_bw
->mac_bw_lock
);
2117 /* Nothing else to do. Get out of poll mode */
2118 MAC_SRS_POLLING_OFF(mac_srs
);
2119 mac_srs
->srs_state
&= ~(SRS_PROC
|proc_type
);
2125 * The SRS worker routine. Drains the queue when no one else is
2129 mac_srs_worker(mac_soft_ring_set_t
*mac_srs
)
2131 kmutex_t
*lock
= &mac_srs
->srs_lock
;
2132 kcondvar_t
*async
= &mac_srs
->srs_async
;
2133 callb_cpr_t cprinfo
;
2134 boolean_t bw_ctl_flag
;
2136 CALLB_CPR_INIT(&cprinfo
, lock
, callb_generic_cpr
, "srs_worker");
2141 bw_ctl_flag
= B_FALSE
;
2142 if (mac_srs
->srs_type
& SRST_BW_CONTROL
) {
2143 MAC_SRS_BW_LOCK(mac_srs
);
2144 MAC_SRS_CHECK_BW_CONTROL(mac_srs
);
2145 if (mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
)
2146 bw_ctl_flag
= B_TRUE
;
2147 MAC_SRS_BW_UNLOCK(mac_srs
);
2150 * The SRS_BW_ENFORCED flag may change since we have dropped
2151 * the mac_bw_lock. However the drain function can handle both
2152 * a drainable SRS or a bandwidth controlled SRS, and the
2153 * effect of scheduling a timeout is to wakeup the worker
2154 * thread which in turn will call the drain function. Since
2155 * we release the srs_lock atomically only in the cv_wait there
2156 * isn't a fear of waiting for ever.
2158 while (((mac_srs
->srs_state
& SRS_PROC
) ||
2159 (mac_srs
->srs_first
== NULL
) || bw_ctl_flag
||
2160 (mac_srs
->srs_state
& SRS_TX_BLOCKED
)) &&
2161 !(mac_srs
->srs_state
& SRS_PAUSE
)) {
2163 * If we have packets queued and we are here
2164 * because B/W control is in place, we better
2165 * schedule the worker wakeup after 1 tick
2166 * to see if bandwidth control can be relaxed.
2168 if (bw_ctl_flag
&& mac_srs
->srs_tid
== NULL
) {
2170 * We need to ensure that a timer is already
2171 * scheduled or we force schedule one for
2172 * later so that we can continue processing
2173 * after this quanta is over.
2175 mac_srs
->srs_tid
= timeout(mac_srs_fire
,
2179 CALLB_CPR_SAFE_BEGIN(&cprinfo
);
2180 cv_wait(async
, lock
);
2181 CALLB_CPR_SAFE_END(&cprinfo
, lock
);
2183 if (mac_srs
->srs_state
& SRS_PAUSE
)
2185 if (mac_srs
->srs_state
& SRS_PROC
)
2188 if (mac_srs
->srs_first
!= NULL
&&
2189 mac_srs
->srs_type
& SRST_BW_CONTROL
) {
2190 MAC_SRS_BW_LOCK(mac_srs
);
2191 if (mac_srs
->srs_bw
->mac_bw_state
&
2193 MAC_SRS_CHECK_BW_CONTROL(mac_srs
);
2195 bw_ctl_flag
= mac_srs
->srs_bw
->mac_bw_state
&
2197 MAC_SRS_BW_UNLOCK(mac_srs
);
2201 if (mac_srs
->srs_state
& SRS_PAUSE
)
2203 mac_srs
->srs_drain_func(mac_srs
, SRS_WORKER
);
2207 * The Rx SRS quiesce logic first cuts off packet supply to the SRS
2208 * from both hard and soft classifications and waits for such threads
2209 * to finish before signaling the worker. So at this point the only
2210 * thread left that could be competing with the worker is the poll
2211 * thread. In the case of Tx, there shouldn't be any thread holding
2212 * SRS_PROC at this point.
2214 if (!(mac_srs
->srs_state
& SRS_PROC
)) {
2215 mac_srs
->srs_state
|= SRS_PROC
;
2217 ASSERT((mac_srs
->srs_type
& SRST_TX
) == 0);
2219 * Poll thread still owns the SRS and is still running
2221 ASSERT((mac_srs
->srs_poll_thr
== NULL
) ||
2222 ((mac_srs
->srs_state
& SRS_POLL_THR_OWNER
) ==
2223 SRS_POLL_THR_OWNER
));
2225 mac_srs_worker_quiesce(mac_srs
);
2227 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
2228 * of the quiesce operation
2230 while (!(mac_srs
->srs_state
& (SRS_CONDEMNED
| SRS_RESTART
)))
2231 cv_wait(&mac_srs
->srs_async
, &mac_srs
->srs_lock
);
2233 if (mac_srs
->srs_state
& SRS_RESTART
) {
2234 ASSERT(!(mac_srs
->srs_state
& SRS_CONDEMNED
));
2235 mac_srs_worker_restart(mac_srs
);
2236 mac_srs
->srs_state
&= ~SRS_PROC
;
2240 if (!(mac_srs
->srs_state
& SRS_CONDEMNED_DONE
))
2241 mac_srs_worker_quiesce(mac_srs
);
2243 mac_srs
->srs_state
&= ~SRS_PROC
;
2244 /* The macro drops the srs_lock */
2245 CALLB_CPR_EXIT(&cprinfo
);
2250 * mac_rx_srs_subflow_process
2252 * Receive side routine called from interrupt path when there are
2253 * sub flows present on this SRS.
2257 mac_rx_srs_subflow_process(void *arg
, mac_resource_handle_t srs
,
2258 mblk_t
*mp_chain
, boolean_t loopback
)
2260 flow_entry_t
*flent
= NULL
;
2261 flow_entry_t
*prev_flent
= NULL
;
2263 mblk_t
*tail
= NULL
;
2264 mac_soft_ring_set_t
*mac_srs
= (mac_soft_ring_set_t
*)srs
;
2265 mac_client_impl_t
*mcip
;
2267 mcip
= mac_srs
->srs_mcip
;
2268 ASSERT(mcip
!= NULL
);
2271 * We need to determine the SRS for every packet
2272 * by walking the flow table, if we don't get any,
2273 * then we proceed using the SRS we came with.
2275 mp
= tail
= mp_chain
;
2276 while (mp
!= NULL
) {
2279 * We will increment the stats for the mactching subflow.
2280 * when we get the bytes/pkt count for the classified packets
2281 * later in mac_rx_srs_process.
2283 (void) mac_flow_lookup(mcip
->mci_subflow_tab
, mp
,
2284 FLOW_INBOUND
, &flent
);
2286 if (mp
== mp_chain
|| flent
== prev_flent
) {
2287 if (prev_flent
!= NULL
)
2288 FLOW_REFRELE(prev_flent
);
2295 tail
->b_next
= NULL
;
2297 * A null indicates, this is for the mac_srs itself.
2298 * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
2300 if (prev_flent
== NULL
|| prev_flent
->fe_rx_srs_cnt
== 0) {
2301 mac_rx_srs_process(arg
,
2302 (mac_resource_handle_t
)mac_srs
, mp_chain
,
2305 (prev_flent
->fe_cb_fn
)(prev_flent
->fe_cb_arg1
,
2306 prev_flent
->fe_cb_arg2
, mp_chain
, loopback
);
2307 FLOW_REFRELE(prev_flent
);
2316 ASSERT(mp_chain
!= NULL
);
2317 if (prev_flent
== NULL
|| prev_flent
->fe_rx_srs_cnt
== 0) {
2318 mac_rx_srs_process(arg
,
2319 (mac_resource_handle_t
)mac_srs
, mp_chain
, loopback
);
2321 (prev_flent
->fe_cb_fn
)(prev_flent
->fe_cb_arg1
,
2322 prev_flent
->fe_cb_arg2
, mp_chain
, loopback
);
2323 FLOW_REFRELE(prev_flent
);
2328 * mac_rx_srs_process
2330 * Receive side routine called from the interrupt path.
2332 * loopback is set to force a context switch on the loopback
2333 * path between MAC clients.
2337 mac_rx_srs_process(void *arg
, mac_resource_handle_t srs
, mblk_t
*mp_chain
,
2340 mac_soft_ring_set_t
*mac_srs
= (mac_soft_ring_set_t
*)srs
;
2341 mblk_t
*mp
, *tail
, *head
;
2345 size_t chain_sz
, sz1
;
2346 mac_bw_ctl_t
*mac_bw
;
2347 mac_srs_rx_t
*srs_rx
= &mac_srs
->srs_rx
;
2350 * Set the tail, count and sz. We set the sz irrespective
2351 * of whether we are doing B/W control or not for the
2352 * purpose of updating the stats.
2354 mp
= tail
= mp_chain
;
2355 while (mp
!= NULL
) {
2362 mutex_enter(&mac_srs
->srs_lock
);
2365 SRS_RX_STAT_UPDATE(mac_srs
, lclbytes
, sz
);
2366 SRS_RX_STAT_UPDATE(mac_srs
, lclcnt
, count
);
2369 SRS_RX_STAT_UPDATE(mac_srs
, intrbytes
, sz
);
2370 SRS_RX_STAT_UPDATE(mac_srs
, intrcnt
, count
);
2374 * If the SRS in already being processed; has been blanked;
2375 * can be processed by worker thread only; or the B/W limit
2376 * has been reached, then queue the chain and check if
2377 * worker thread needs to be awakend.
2379 if (mac_srs
->srs_type
& SRST_BW_CONTROL
) {
2380 mac_bw
= mac_srs
->srs_bw
;
2381 ASSERT(mac_bw
!= NULL
);
2382 mutex_enter(&mac_bw
->mac_bw_lock
);
2383 mac_bw
->mac_bw_intr
+= sz
;
2384 if (mac_bw
->mac_bw_limit
== 0) {
2385 /* zero bandwidth: drop all */
2386 srs_rx
->sr_stat
.mrs_sdrops
+= count
;
2387 mac_bw
->mac_bw_drop_bytes
+= sz
;
2388 mutex_exit(&mac_bw
->mac_bw_lock
);
2389 mutex_exit(&mac_srs
->srs_lock
);
2390 mac_pkt_drop(NULL
, NULL
, mp_chain
, B_FALSE
);
2393 if ((mac_bw
->mac_bw_sz
+ sz
) <=
2394 mac_bw
->mac_bw_drop_threshold
) {
2395 mutex_exit(&mac_bw
->mac_bw_lock
);
2396 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs
, mp_chain
,
2404 while (mp
!= NULL
) {
2406 if (mac_bw
->mac_bw_sz
+ chain_sz
+ sz1
>
2407 mac_bw
->mac_bw_drop_threshold
)
2414 mutex_exit(&mac_bw
->mac_bw_lock
);
2416 head
= tail
->b_next
;
2417 tail
->b_next
= NULL
;
2418 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs
,
2419 mp_chain
, tail
, count1
, chain_sz
);
2423 /* Can't pick up any */
2427 /* Drop any packet over the threshold */
2428 srs_rx
->sr_stat
.mrs_sdrops
+= count
;
2429 mutex_enter(&mac_bw
->mac_bw_lock
);
2430 mac_bw
->mac_bw_drop_bytes
+= sz
;
2431 mutex_exit(&mac_bw
->mac_bw_lock
);
2435 MAC_SRS_WORKER_WAKEUP(mac_srs
);
2436 mutex_exit(&mac_srs
->srs_lock
);
2442 * If the total number of packets queued in the SRS and
2443 * its associated soft rings exceeds the max allowed,
2444 * then drop the chain. If we are polling capable, this
2445 * shouldn't be happening.
2447 if (!(mac_srs
->srs_type
& SRST_BW_CONTROL
) &&
2448 (srs_rx
->sr_poll_pkt_cnt
> srs_rx
->sr_hiwat
)) {
2449 mac_bw
= mac_srs
->srs_bw
;
2450 srs_rx
->sr_stat
.mrs_sdrops
+= count
;
2451 mutex_enter(&mac_bw
->mac_bw_lock
);
2452 mac_bw
->mac_bw_drop_bytes
+= sz
;
2453 mutex_exit(&mac_bw
->mac_bw_lock
);
2454 freemsgchain(mp_chain
);
2455 mutex_exit(&mac_srs
->srs_lock
);
2459 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs
, mp_chain
, tail
, count
, sz
);
2461 if (!(mac_srs
->srs_state
& SRS_PROC
)) {
2463 * If we are coming via loopback, if we are not optimizing for
2464 * latency, or if our stack is running deep, we should signal
2465 * the worker thread.
2467 if (loopback
|| !(mac_srs
->srs_state
& SRS_LATENCY_OPT
) ||
2468 MAC_RX_SRS_TOODEEP()) {
2470 * For loopback, We need to let the worker take
2471 * over as we don't want to continue in the same
2472 * thread even if we can. This could lead to stack
2473 * overflows and may also end up using
2474 * resources (cpu) incorrectly.
2476 cv_signal(&mac_srs
->srs_async
);
2479 * Seems like no one is processing the SRS and
2480 * there is no backlog. We also inline process
2481 * our packet if its a single packet in non
2482 * latency optimized case (in latency optimized
2483 * case, we inline process chains of any size).
2485 mac_srs
->srs_drain_func(mac_srs
, SRS_PROC_FAST
);
2488 mutex_exit(&mac_srs
->srs_lock
);
2491 /* TX SIDE ROUTINES (RUNTIME) */
2494 * mac_tx_srs_no_desc
2496 * This routine is called by Tx single ring default mode
2497 * when Tx ring runs out of descs.
2500 mac_tx_srs_no_desc(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
2501 uint16_t flag
, mblk_t
**ret_mp
)
2503 mac_tx_cookie_t cookie
= NULL
;
2504 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
2505 boolean_t wakeup_worker
= B_TRUE
;
2506 uint32_t tx_mode
= srs_tx
->st_mode
;
2510 ASSERT(tx_mode
== SRS_TX_DEFAULT
|| tx_mode
== SRS_TX_BW
);
2511 if (flag
& MAC_DROP_ON_NO_DESC
) {
2512 MAC_TX_SRS_DROP_MESSAGE(mac_srs
, mp_chain
, cookie
);
2514 if (mac_srs
->srs_first
!= NULL
)
2515 wakeup_worker
= B_FALSE
;
2516 MAC_COUNT_CHAIN(mac_srs
, mp_chain
, tail
, cnt
, sz
);
2517 if (flag
& MAC_TX_NO_ENQUEUE
) {
2519 * If TX_QUEUED is not set, queue the
2520 * packet and let mac_tx_srs_drain()
2521 * set the TX_BLOCKED bit for the
2522 * reasons explained above. Otherwise,
2525 if (wakeup_worker
) {
2526 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs
,
2527 mp_chain
, tail
, cnt
, sz
);
2529 MAC_TX_SET_NO_ENQUEUE(mac_srs
,
2530 mp_chain
, ret_mp
, cookie
);
2533 MAC_TX_SRS_TEST_HIWAT(mac_srs
, mp_chain
,
2534 tail
, cnt
, sz
, cookie
);
2537 cv_signal(&mac_srs
->srs_async
);
2543 * mac_tx_srs_enqueue
2545 * This routine is called when Tx SRS is operating in either serializer
2546 * or bandwidth mode. In serializer mode, a packet will get enqueued
2547 * when a thread cannot enter SRS exclusively. In bandwidth mode,
2548 * packets gets queued if allowed byte-count limit for a tick is
2549 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
2550 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
2551 * the default mode or fanout mode. Here packets get dropped or
2552 * returned back to the caller only after hi-watermark worth of data
2555 static mac_tx_cookie_t
2556 mac_tx_srs_enqueue(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
2557 uint16_t flag
, uintptr_t fanout_hint
, mblk_t
**ret_mp
)
2559 mac_tx_cookie_t cookie
= NULL
;
2562 boolean_t wakeup_worker
= B_TRUE
;
2565 * Ignore fanout hint if we don't have multiple tx rings.
2567 if (!MAC_TX_SOFT_RINGS(mac_srs
))
2570 if (mac_srs
->srs_first
!= NULL
)
2571 wakeup_worker
= B_FALSE
;
2572 MAC_COUNT_CHAIN(mac_srs
, mp_chain
, tail
, cnt
, sz
);
2573 if (flag
& MAC_DROP_ON_NO_DESC
) {
2574 if (mac_srs
->srs_count
> mac_srs
->srs_tx
.st_hiwat
) {
2575 MAC_TX_SRS_DROP_MESSAGE(mac_srs
, mp_chain
, cookie
);
2577 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs
,
2578 mp_chain
, tail
, cnt
, sz
);
2580 } else if (flag
& MAC_TX_NO_ENQUEUE
) {
2581 if ((mac_srs
->srs_count
> mac_srs
->srs_tx
.st_hiwat
) ||
2582 (mac_srs
->srs_state
& SRS_TX_WAKEUP_CLIENT
)) {
2583 MAC_TX_SET_NO_ENQUEUE(mac_srs
, mp_chain
,
2586 mp_chain
->b_prev
= (mblk_t
*)fanout_hint
;
2587 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs
,
2588 mp_chain
, tail
, cnt
, sz
);
2592 * If you are BW_ENFORCED, just enqueue the
2593 * packet. srs_worker will drain it at the
2594 * prescribed rate. Before enqueueing, save
2597 mp_chain
->b_prev
= (mblk_t
*)fanout_hint
;
2598 MAC_TX_SRS_TEST_HIWAT(mac_srs
, mp_chain
,
2599 tail
, cnt
, sz
, cookie
);
2602 cv_signal(&mac_srs
->srs_async
);
2607 * There are seven tx modes:
2609 * 1) Default mode (SRS_TX_DEFAULT)
2610 * 2) Serialization mode (SRS_TX_SERIALIZE)
2611 * 3) Fanout mode (SRS_TX_FANOUT)
2612 * 4) Bandwdith mode (SRS_TX_BW)
2613 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
2614 * 6) aggr Tx mode (SRS_TX_AGGR)
2615 * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
2617 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
2618 * based on the number of Tx rings requested for an SRS and whether
2619 * bandwidth control is requested or not.
2621 * The default mode (i.e., no fanout/no bandwidth) is used when the
2622 * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
2623 * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
2624 * When the underlying Tx ring runs out of Tx descs, it starts queueing up
2625 * packets in SRS. When flow-control is relieved, the srs_worker drains
2626 * the queued packets and informs blocked clients to restart sending
2629 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
2630 * mode is used when the link has no Tx rings or only one Tx ring.
2632 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
2633 * Tx rings. Each Tx ring will have a soft ring associated with it.
2634 * These soft rings will be hung off the Tx SRS. Queueing if it happens
2635 * due to lack of Tx desc will be in individual soft ring (and not srs)
2636 * associated with Tx ring.
2638 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
2639 * only if bw is available. Otherwise the packets will be queued in
2640 * SRS. If fanout to multiple Tx rings is configured, the packets will
2641 * be fanned out among the soft rings associated with the Tx rings.
2643 * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
2644 * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
2645 * belonging to a port on which the packet has to be sent. Aggr will
2646 * always have a pseudo Tx ring associated with it even when it is an
2647 * aggregation over a single NIC that has no Tx rings. Even in such a
2648 * case, the single pseudo Tx ring will have a soft ring associated with
2649 * it and the soft ring will hang off the SRS.
2651 * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
2652 * In this mode, the bandwidth is first applied on the outgoing packets
2653 * and later mac_tx_addr_mode() function is called to send the packet out
2654 * of one of the pseudo Tx rings.
2656 * Four flags are used in srs_state for indicating flow control
2657 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
2658 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
2660 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
2661 * and flow-control pressure is applied back to clients. The clients expect
2662 * wakeup when flow-control is relieved.
2663 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
2664 * got returned back to client either due to lack of Tx descs or due to bw
2665 * control reasons. The clients expect a wakeup when condition is relieved.
2667 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
2668 * some clients set the following values too: MAC_DROP_ON_NO_DESC,
2670 * Mac clients that do not want packets to be enqueued in the mac layer set
2671 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
2672 * Tx soft rings but instead get dropped when the NIC runs out of desc. The
2673 * behaviour of this flag is different when the Tx is running in serializer
2674 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
2675 * get dropped when Tx high watermark is reached.
2676 * There are some mac clients like vsw, aggr that want the mblks to be
2677 * returned back to clients instead of being queued in Tx SRS (or Tx soft
2678 * rings) under flow-control (i.e., out of desc or exceeding bw limits)
2679 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
2680 * In the default and Tx fanout mode, the un-transmitted mblks will be
2681 * returned back to the clients when the driver runs out of Tx descs.
2682 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
2683 * soft ring) so that the clients can be woken up when Tx desc become
2684 * available. When running in serializer or bandwidth mode mode,
2685 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
2689 mac_tx_get_func(uint32_t mode
)
2691 return (mac_tx_mode_list
[mode
].mac_tx_func
);
2695 static mac_tx_cookie_t
2696 mac_tx_single_ring_mode(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
2697 uintptr_t fanout_hint
, uint16_t flag
, mblk_t
**ret_mp
)
2699 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
2700 mac_tx_stats_t stats
;
2701 mac_tx_cookie_t cookie
= NULL
;
2703 ASSERT(srs_tx
->st_mode
== SRS_TX_DEFAULT
);
2705 /* Regular case with a single Tx ring */
2707 * SRS_TX_BLOCKED is set when underlying NIC runs
2708 * out of Tx descs and messages start getting
2709 * queued. It won't get reset until
2710 * tx_srs_drain() completely drains out the
2713 if ((mac_srs
->srs_state
& SRS_ENQUEUED
) != 0) {
2714 /* Tx descs/resources not available */
2715 mutex_enter(&mac_srs
->srs_lock
);
2716 if ((mac_srs
->srs_state
& SRS_ENQUEUED
) != 0) {
2717 cookie
= mac_tx_srs_no_desc(mac_srs
, mp_chain
,
2719 mutex_exit(&mac_srs
->srs_lock
);
2723 * While we were computing mblk count, the
2724 * flow control condition got relieved.
2725 * Continue with the transmission.
2727 mutex_exit(&mac_srs
->srs_lock
);
2730 mp_chain
= mac_tx_send(srs_tx
->st_arg1
, srs_tx
->st_arg2
,
2734 * Multiple threads could be here sending packets.
2735 * Under such conditions, it is not possible to
2736 * automically set SRS_TX_BLOCKED bit to indicate
2737 * out of tx desc condition. To atomically set
2738 * this, we queue the returned packet and do
2739 * the setting of SRS_TX_BLOCKED in
2740 * mac_tx_srs_drain().
2742 if (mp_chain
!= NULL
) {
2743 mutex_enter(&mac_srs
->srs_lock
);
2744 cookie
= mac_tx_srs_no_desc(mac_srs
, mp_chain
, flag
, ret_mp
);
2745 mutex_exit(&mac_srs
->srs_lock
);
2748 SRS_TX_STATS_UPDATE(mac_srs
, &stats
);
2754 * mac_tx_serialize_mode
2756 * This is an experimental mode implemented as per the request of PAE.
2757 * In this mode, all callers attempting to send a packet to the NIC
2758 * will get serialized. Only one thread at any time will access the
2759 * NIC to send the packet out.
2762 static mac_tx_cookie_t
2763 mac_tx_serializer_mode(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
2764 uintptr_t fanout_hint
, uint16_t flag
, mblk_t
**ret_mp
)
2766 mac_tx_stats_t stats
;
2767 mac_tx_cookie_t cookie
= NULL
;
2768 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
2770 /* Single ring, serialize below */
2771 ASSERT(srs_tx
->st_mode
== SRS_TX_SERIALIZE
);
2772 mutex_enter(&mac_srs
->srs_lock
);
2773 if ((mac_srs
->srs_first
!= NULL
) ||
2774 (mac_srs
->srs_state
& SRS_PROC
)) {
2776 * In serialization mode, queue all packets until
2778 * If drop bit is set, drop if TX_HIWAT is set.
2779 * If no_enqueue is set, still enqueue until hiwat
2780 * is set and return mblks after TX_HIWAT is set.
2782 cookie
= mac_tx_srs_enqueue(mac_srs
, mp_chain
,
2783 flag
, NULL
, ret_mp
);
2784 mutex_exit(&mac_srs
->srs_lock
);
2788 * No packets queued, nothing on proc and no flow
2789 * control condition. Fast-path, ok. Do inline
2792 mac_srs
->srs_state
|= SRS_PROC
;
2793 mutex_exit(&mac_srs
->srs_lock
);
2795 mp_chain
= mac_tx_send(srs_tx
->st_arg1
, srs_tx
->st_arg2
,
2798 mutex_enter(&mac_srs
->srs_lock
);
2799 mac_srs
->srs_state
&= ~SRS_PROC
;
2800 if (mp_chain
!= NULL
) {
2801 cookie
= mac_tx_srs_enqueue(mac_srs
,
2802 mp_chain
, flag
, NULL
, ret_mp
);
2804 if (mac_srs
->srs_first
!= NULL
) {
2806 * We processed inline our packet and a new
2807 * packet/s got queued while we were
2808 * processing. Wakeup srs worker
2810 cv_signal(&mac_srs
->srs_async
);
2812 mutex_exit(&mac_srs
->srs_lock
);
2815 SRS_TX_STATS_UPDATE(mac_srs
, &stats
);
2821 * mac_tx_fanout_mode
2823 * In this mode, the SRS will have access to multiple Tx rings to send
2824 * the packet out. The fanout hint that is passed as an argument is
2825 * used to find an appropriate ring to fanout the traffic. Each Tx
2826 * ring, in turn, will have a soft ring associated with it. If a Tx
2827 * ring runs out of Tx desc's the returned packet will be queued in
2828 * the soft ring associated with that Tx ring. The srs itself will not
2829 * queue any packets.
2832 #define MAC_TX_SOFT_RING_PROCESS(chain) { \
2833 index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count), \
2834 softring = mac_srs->srs_tx_soft_rings[index]; \
2835 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
2836 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \
2839 static mac_tx_cookie_t
2840 mac_tx_fanout_mode(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
2841 uintptr_t fanout_hint
, uint16_t flag
, mblk_t
**ret_mp
)
2843 mac_soft_ring_t
*softring
;
2846 mac_tx_cookie_t cookie
= NULL
;
2848 ASSERT(mac_srs
->srs_tx
.st_mode
== SRS_TX_FANOUT
||
2849 mac_srs
->srs_tx
.st_mode
== SRS_TX_BW_FANOUT
);
2850 if (fanout_hint
!= 0) {
2852 * The hint is specified by the caller, simply pass the
2853 * whole chain to the soft ring.
2855 hash
= HASH_HINT(fanout_hint
);
2856 MAC_TX_SOFT_RING_PROCESS(mp_chain
);
2858 mblk_t
*last_mp
, *cur_mp
, *sub_chain
;
2859 uint64_t last_hash
= 0;
2860 uint_t media
= mac_srs
->srs_mcip
->mci_mip
->mi_info
.mi_media
;
2863 * Compute the hash from the contents (headers) of the
2864 * packets of the mblk chain. Split the chains into
2865 * subchains of the same conversation.
2867 * Since there may be more than one ring used for
2868 * sub-chains of the same call, and since the caller
2869 * does not maintain per conversation state since it
2870 * passed a zero hint, unsent subchains will be
2874 flag
|= MAC_DROP_ON_NO_DESC
;
2877 ASSERT(ret_mp
== NULL
);
2882 for (cur_mp
= mp_chain
; cur_mp
!= NULL
;
2883 cur_mp
= cur_mp
->b_next
) {
2884 hash
= mac_pkt_hash(media
, cur_mp
, MAC_PKT_HASH_L4
,
2886 if (last_hash
!= 0 && hash
!= last_hash
) {
2888 * Starting a different subchain, send current
2891 ASSERT(last_mp
!= NULL
);
2892 last_mp
->b_next
= NULL
;
2893 MAC_TX_SOFT_RING_PROCESS(sub_chain
);
2897 /* add packet to subchain */
2898 if (sub_chain
== NULL
)
2904 if (sub_chain
!= NULL
) {
2905 /* send last subchain */
2906 ASSERT(last_mp
!= NULL
);
2907 last_mp
->b_next
= NULL
;
2908 MAC_TX_SOFT_RING_PROCESS(sub_chain
);
2920 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
2921 * only if bw is available. Otherwise the packets will be queued in
2922 * SRS. If the SRS has multiple Tx rings, then packets will get fanned
2923 * out to a Tx rings.
2925 static mac_tx_cookie_t
2926 mac_tx_bw_mode(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
2927 uintptr_t fanout_hint
, uint16_t flag
, mblk_t
**ret_mp
)
2931 mac_tx_cookie_t cookie
= NULL
;
2932 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
2935 ASSERT(TX_BANDWIDTH_MODE(mac_srs
));
2936 ASSERT(mac_srs
->srs_type
& SRST_BW_CONTROL
);
2937 mutex_enter(&mac_srs
->srs_lock
);
2938 if (mac_srs
->srs_bw
->mac_bw_limit
== 0) {
2940 * zero bandwidth, no traffic is sent: drop the packets,
2941 * or return the whole chain if the caller requests all
2942 * unsent packets back.
2944 if (flag
& MAC_TX_NO_ENQUEUE
) {
2945 cookie
= (mac_tx_cookie_t
)mac_srs
;
2948 MAC_TX_SRS_DROP_MESSAGE(mac_srs
, mp_chain
, cookie
);
2950 mutex_exit(&mac_srs
->srs_lock
);
2952 } else if ((mac_srs
->srs_first
!= NULL
) ||
2953 (mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
)) {
2954 cookie
= mac_tx_srs_enqueue(mac_srs
, mp_chain
, flag
,
2955 fanout_hint
, ret_mp
);
2956 mutex_exit(&mac_srs
->srs_lock
);
2959 MAC_COUNT_CHAIN(mac_srs
, mp_chain
, tail
, cnt
, sz
);
2960 now
= ddi_get_lbolt();
2961 if (mac_srs
->srs_bw
->mac_bw_curr_time
!= now
) {
2962 mac_srs
->srs_bw
->mac_bw_curr_time
= now
;
2963 mac_srs
->srs_bw
->mac_bw_used
= 0;
2964 } else if (mac_srs
->srs_bw
->mac_bw_used
>
2965 mac_srs
->srs_bw
->mac_bw_limit
) {
2966 mac_srs
->srs_bw
->mac_bw_state
|= SRS_BW_ENFORCED
;
2967 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs
,
2968 mp_chain
, tail
, cnt
, sz
);
2970 * Wakeup worker thread. Note that worker
2971 * thread has to be woken up so that it
2972 * can fire up the timer to be woken up
2973 * on the next tick. Also once
2974 * BW_ENFORCED is set, it can only be
2975 * reset by srs_worker thread. Until then
2976 * all packets will get queued up in SRS
2977 * and hence this this code path won't be
2978 * entered until BW_ENFORCED is reset.
2980 cv_signal(&mac_srs
->srs_async
);
2981 mutex_exit(&mac_srs
->srs_lock
);
2985 mac_srs
->srs_bw
->mac_bw_used
+= sz
;
2986 mutex_exit(&mac_srs
->srs_lock
);
2988 if (srs_tx
->st_mode
== SRS_TX_BW_FANOUT
) {
2989 mac_soft_ring_t
*softring
;
2992 hash
= HASH_HINT(fanout_hint
);
2993 indx
= COMPUTE_INDEX(hash
,
2994 mac_srs
->srs_tx_ring_count
);
2995 softring
= mac_srs
->srs_tx_soft_rings
[indx
];
2996 return (mac_tx_soft_ring_process(softring
, mp_chain
, flag
,
2998 } else if (srs_tx
->st_mode
== SRS_TX_BW_AGGR
) {
2999 return (mac_tx_aggr_mode(mac_srs
, mp_chain
,
3000 fanout_hint
, flag
, ret_mp
));
3002 mac_tx_stats_t stats
;
3004 mp_chain
= mac_tx_send(srs_tx
->st_arg1
, srs_tx
->st_arg2
,
3007 if (mp_chain
!= NULL
) {
3008 mutex_enter(&mac_srs
->srs_lock
);
3009 MAC_COUNT_CHAIN(mac_srs
, mp_chain
, tail
, cnt
, sz
);
3010 if (mac_srs
->srs_bw
->mac_bw_used
> sz
)
3011 mac_srs
->srs_bw
->mac_bw_used
-= sz
;
3013 mac_srs
->srs_bw
->mac_bw_used
= 0;
3014 cookie
= mac_tx_srs_enqueue(mac_srs
, mp_chain
, flag
,
3015 fanout_hint
, ret_mp
);
3016 mutex_exit(&mac_srs
->srs_lock
);
3019 SRS_TX_STATS_UPDATE(mac_srs
, &stats
);
3028 * This routine invokes an aggr function, aggr_find_tx_ring(), to find
3029 * a (pseudo) Tx ring belonging to a port on which the packet has to
3030 * be sent. aggr_find_tx_ring() first finds the outgoing port based on
3031 * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
3032 * a Tx ring from the selected port.
3034 * Note that a port can be deleted from the aggregation. In such a case,
3035 * the aggregation layer first separates the port from the rest of the
3036 * ports making sure that port (and thus any Tx rings associated with
3037 * it) won't get selected in the call to aggr_find_tx_ring() function.
3038 * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
3039 * handles one by one which in turn will quiesce the Tx SRS and remove
3040 * the soft ring associated with the pseudo Tx ring. Unlike Rx side
3041 * where a cookie is used to protect against mac_rx_ring() calls on
3042 * rings that have been removed, no such cookie is needed on the Tx
3043 * side as the pseudo Tx ring won't be available anymore to
3044 * aggr_find_tx_ring() once the port has been removed.
3046 static mac_tx_cookie_t
3047 mac_tx_aggr_mode(mac_soft_ring_set_t
*mac_srs
, mblk_t
*mp_chain
,
3048 uintptr_t fanout_hint
, uint16_t flag
, mblk_t
**ret_mp
)
3050 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
3051 mac_tx_ring_fn_t find_tx_ring_fn
;
3052 mac_ring_handle_t ring
= NULL
;
3054 mac_soft_ring_t
*sringp
;
3056 find_tx_ring_fn
= srs_tx
->st_capab_aggr
.mca_find_tx_ring_fn
;
3057 arg
= srs_tx
->st_capab_aggr
.mca_arg
;
3058 if (find_tx_ring_fn(arg
, mp_chain
, fanout_hint
, &ring
) == NULL
)
3060 sringp
= srs_tx
->st_soft_rings
[((mac_ring_t
*)ring
)->mr_index
];
3061 return (mac_tx_soft_ring_process(sringp
, mp_chain
, flag
, ret_mp
));
3065 mac_tx_invoke_callbacks(mac_client_impl_t
*mcip
, mac_tx_cookie_t cookie
)
3068 mac_tx_notify_cb_t
*mtnfp
;
3070 /* Wakeup callback registered clients */
3071 MAC_CALLBACK_WALKER_INC(&mcip
->mci_tx_notify_cb_info
);
3072 for (mcb
= mcip
->mci_tx_notify_cb_list
; mcb
!= NULL
;
3073 mcb
= mcb
->mcb_nextp
) {
3074 mtnfp
= (mac_tx_notify_cb_t
*)mcb
->mcb_objp
;
3075 mtnfp
->mtnf_fn(mtnfp
->mtnf_arg
, cookie
);
3077 MAC_CALLBACK_WALKER_DCR(&mcip
->mci_tx_notify_cb_info
,
3078 &mcip
->mci_tx_notify_cb_list
);
3083 mac_tx_srs_drain(mac_soft_ring_set_t
*mac_srs
, uint_t proc_type
)
3085 mblk_t
*head
, *tail
;
3088 uint_t saved_pkt_count
;
3089 mac_tx_stats_t stats
;
3090 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
3093 saved_pkt_count
= 0;
3094 ASSERT(mutex_owned(&mac_srs
->srs_lock
));
3095 ASSERT(!(mac_srs
->srs_state
& SRS_PROC
));
3097 mac_srs
->srs_state
|= SRS_PROC
;
3099 tx_mode
= srs_tx
->st_mode
;
3100 if (tx_mode
== SRS_TX_DEFAULT
|| tx_mode
== SRS_TX_SERIALIZE
) {
3101 if (mac_srs
->srs_first
!= NULL
) {
3102 head
= mac_srs
->srs_first
;
3103 tail
= mac_srs
->srs_last
;
3104 saved_pkt_count
= mac_srs
->srs_count
;
3105 mac_srs
->srs_first
= NULL
;
3106 mac_srs
->srs_last
= NULL
;
3107 mac_srs
->srs_count
= 0;
3108 mutex_exit(&mac_srs
->srs_lock
);
3110 head
= mac_tx_send(srs_tx
->st_arg1
, srs_tx
->st_arg2
,
3113 mutex_enter(&mac_srs
->srs_lock
);
3115 /* Device out of tx desc, set block */
3116 if (head
->b_next
== NULL
)
3117 VERIFY(head
== tail
);
3118 tail
->b_next
= mac_srs
->srs_first
;
3119 mac_srs
->srs_first
= head
;
3120 mac_srs
->srs_count
+=
3121 (saved_pkt_count
- stats
.mts_opackets
);
3122 if (mac_srs
->srs_last
== NULL
)
3123 mac_srs
->srs_last
= tail
;
3124 MAC_TX_SRS_BLOCK(mac_srs
, head
);
3126 srs_tx
->st_woken_up
= B_FALSE
;
3127 SRS_TX_STATS_UPDATE(mac_srs
, &stats
);
3130 } else if (tx_mode
== SRS_TX_BW
) {
3132 * We are here because the timer fired and we have some data
3133 * to tranmit. Also mac_tx_srs_worker should have reset
3134 * SRS_BW_ENFORCED flag
3136 ASSERT(!(mac_srs
->srs_bw
->mac_bw_state
& SRS_BW_ENFORCED
));
3137 head
= tail
= mac_srs
->srs_first
;
3138 while (mac_srs
->srs_first
!= NULL
) {
3139 tail
= mac_srs
->srs_first
;
3140 tail
->b_prev
= NULL
;
3141 mac_srs
->srs_first
= tail
->b_next
;
3142 if (mac_srs
->srs_first
== NULL
)
3143 mac_srs
->srs_last
= NULL
;
3144 mac_srs
->srs_count
--;
3145 sz
= msgdsize(tail
);
3146 mac_srs
->srs_size
-= sz
;
3148 MAC_TX_UPDATE_BW_INFO(mac_srs
, sz
);
3150 if (mac_srs
->srs_bw
->mac_bw_used
<
3151 mac_srs
->srs_bw
->mac_bw_limit
)
3154 now
= ddi_get_lbolt();
3155 if (mac_srs
->srs_bw
->mac_bw_curr_time
!= now
) {
3156 mac_srs
->srs_bw
->mac_bw_curr_time
= now
;
3157 mac_srs
->srs_bw
->mac_bw_used
= sz
;
3160 mac_srs
->srs_bw
->mac_bw_state
|= SRS_BW_ENFORCED
;
3164 ASSERT((head
== NULL
&& tail
== NULL
) ||
3165 (head
!= NULL
&& tail
!= NULL
));
3167 tail
->b_next
= NULL
;
3168 mutex_exit(&mac_srs
->srs_lock
);
3170 head
= mac_tx_send(srs_tx
->st_arg1
, srs_tx
->st_arg2
,
3173 mutex_enter(&mac_srs
->srs_lock
);
3177 /* Device out of tx desc, set block */
3178 if (head
->b_next
== NULL
)
3179 VERIFY(head
== tail
);
3180 tail
->b_next
= mac_srs
->srs_first
;
3181 mac_srs
->srs_first
= head
;
3182 mac_srs
->srs_count
+=
3183 (saved_pkt_count
- stats
.mts_opackets
);
3184 if (mac_srs
->srs_last
== NULL
)
3185 mac_srs
->srs_last
= tail
;
3186 size_sent
= sz
- stats
.mts_obytes
;
3187 mac_srs
->srs_size
+= size_sent
;
3188 mac_srs
->srs_bw
->mac_bw_sz
+= size_sent
;
3189 if (mac_srs
->srs_bw
->mac_bw_used
> size_sent
) {
3190 mac_srs
->srs_bw
->mac_bw_used
-=
3193 mac_srs
->srs_bw
->mac_bw_used
= 0;
3195 MAC_TX_SRS_BLOCK(mac_srs
, head
);
3197 srs_tx
->st_woken_up
= B_FALSE
;
3198 SRS_TX_STATS_UPDATE(mac_srs
, &stats
);
3201 } else if (tx_mode
== SRS_TX_BW_FANOUT
|| tx_mode
== SRS_TX_BW_AGGR
) {
3206 * We are here because the timer fired and we
3207 * have some quota to tranmit.
3210 head
= tail
= mac_srs
->srs_first
;
3211 while (mac_srs
->srs_first
!= NULL
) {
3212 tail
= mac_srs
->srs_first
;
3213 mac_srs
->srs_first
= tail
->b_next
;
3214 if (mac_srs
->srs_first
== NULL
)
3215 mac_srs
->srs_last
= NULL
;
3216 mac_srs
->srs_count
--;
3217 sz
= msgdsize(tail
);
3218 mac_srs
->srs_size
-= sz
;
3219 mac_srs
->srs_bw
->mac_bw_used
+= sz
;
3221 hint
= (ulong_t
)tail
->b_prev
;
3222 if (hint
!= (ulong_t
)tail
->b_prev
) {
3223 prev
->b_next
= NULL
;
3224 mutex_exit(&mac_srs
->srs_lock
);
3225 TX_SRS_TO_SOFT_RING(mac_srs
, head
, hint
);
3227 hint
= (ulong_t
)tail
->b_prev
;
3228 mutex_enter(&mac_srs
->srs_lock
);
3232 tail
->b_prev
= NULL
;
3233 if (mac_srs
->srs_bw
->mac_bw_used
<
3234 mac_srs
->srs_bw
->mac_bw_limit
)
3237 now
= ddi_get_lbolt();
3238 if (mac_srs
->srs_bw
->mac_bw_curr_time
!= now
) {
3239 mac_srs
->srs_bw
->mac_bw_curr_time
= now
;
3240 mac_srs
->srs_bw
->mac_bw_used
= 0;
3243 mac_srs
->srs_bw
->mac_bw_state
|= SRS_BW_ENFORCED
;
3246 ASSERT((head
== NULL
&& tail
== NULL
) ||
3247 (head
!= NULL
&& tail
!= NULL
));
3249 tail
->b_next
= NULL
;
3250 mutex_exit(&mac_srs
->srs_lock
);
3251 TX_SRS_TO_SOFT_RING(mac_srs
, head
, hint
);
3252 mutex_enter(&mac_srs
->srs_lock
);
3256 * SRS_TX_FANOUT case not considered here because packets
3257 * won't be queued in the SRS for this case. Packets will
3258 * be sent directly to soft rings underneath and if there
3259 * is any queueing at all, it would be in Tx side soft
3264 * When srs_count becomes 0, reset SRS_TX_HIWAT and
3265 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
3267 if (mac_srs
->srs_count
== 0 && (mac_srs
->srs_state
&
3268 (SRS_TX_HIWAT
| SRS_TX_WAKEUP_CLIENT
| SRS_ENQUEUED
))) {
3269 mac_client_impl_t
*mcip
= mac_srs
->srs_mcip
;
3270 boolean_t wakeup_required
= B_FALSE
;
3272 if (mac_srs
->srs_state
&
3273 (SRS_TX_HIWAT
|SRS_TX_WAKEUP_CLIENT
)) {
3274 wakeup_required
= B_TRUE
;
3276 mac_srs
->srs_state
&= ~(SRS_TX_HIWAT
|
3277 SRS_TX_WAKEUP_CLIENT
| SRS_ENQUEUED
);
3278 mutex_exit(&mac_srs
->srs_lock
);
3279 if (wakeup_required
) {
3280 mac_tx_invoke_callbacks(mcip
, (mac_tx_cookie_t
)mac_srs
);
3282 * If the client is not the primary MAC client, then we
3283 * need to send the notification to the clients upper
3284 * MAC, i.e. mci_upper_mip.
3286 mac_tx_notify(mcip
->mci_upper_mip
!= NULL
?
3287 mcip
->mci_upper_mip
: mcip
->mci_mip
);
3289 mutex_enter(&mac_srs
->srs_lock
);
3291 mac_srs
->srs_state
&= ~SRS_PROC
;
3295 * Given a packet, get the flow_entry that identifies the flow
3296 * to which that packet belongs. The flow_entry will contain
3297 * the transmit function to be used to send the packet. If the
3298 * function returns NULL, the packet should be sent using the
3301 static flow_entry_t
*
3302 mac_tx_classify(mac_impl_t
*mip
, mblk_t
*mp
)
3304 flow_entry_t
*flent
= NULL
;
3305 mac_client_impl_t
*mcip
;
3309 * Do classification on the packet.
3311 err
= mac_flow_lookup(mip
->mi_flow_tab
, mp
, FLOW_OUTBOUND
, &flent
);
3316 * This flent might just be an additional one on the MAC client,
3317 * i.e. for classification purposes (different fdesc), however
3318 * the resources, SRS et. al., are in the mci_flent, so if
3319 * this isn't the mci_flent, we need to get it.
3321 if ((mcip
= flent
->fe_mcip
) != NULL
&& mcip
->mci_flent
!= flent
) {
3322 FLOW_REFRELE(flent
);
3323 flent
= mcip
->mci_flent
;
3324 FLOW_TRY_REFHOLD(flent
, err
);
3333 * This macro is only meant to be used by mac_tx_send().
3335 #define CHECK_VID_AND_ADD_TAG(mp) { \
3339 MAC_VID_CHECK(src_mcip, (mp), err); \
3348 (mp) = mac_add_vlan_tag((mp), 0, vid); \
3349 if ((mp) == NULL) { \
3358 mac_tx_send(mac_client_handle_t mch
, mac_ring_handle_t ring
, mblk_t
*mp_chain
,
3359 mac_tx_stats_t
*stats
)
3361 mac_client_impl_t
*src_mcip
= (mac_client_impl_t
*)mch
;
3362 mac_impl_t
*mip
= src_mcip
->mci_mip
;
3363 uint_t obytes
= 0, opackets
= 0, oerrors
= 0;
3364 mblk_t
*mp
= NULL
, *next
;
3365 boolean_t vid_check
, add_tag
;
3368 if (mip
->mi_nclients
> 1) {
3369 vid_check
= MAC_VID_CHECK_NEEDED(src_mcip
);
3370 add_tag
= MAC_TAG_NEEDED(src_mcip
);
3372 vid
= mac_client_vid(mch
);
3374 ASSERT(mip
->mi_nclients
== 1);
3375 vid_check
= add_tag
= B_FALSE
;
3379 * Fastpath: if there's only one client, we simply send
3380 * the packet down to the underlying NIC.
3382 if (mip
->mi_nactiveclients
== 1) {
3383 DTRACE_PROBE2(fastpath
,
3384 mac_client_impl_t
*, src_mcip
, mblk_t
*, mp_chain
);
3387 while (mp
!= NULL
) {
3391 obytes
+= (mp
->b_cont
== NULL
? MBLKL(mp
) :
3394 CHECK_VID_AND_ADD_TAG(mp
);
3395 MAC_TX(mip
, ring
, mp
, src_mcip
);
3398 * If the driver is out of descriptors and does a
3399 * partial send it will return a chain of unsent
3400 * mblks. Adjust the accounting stats.
3404 obytes
-= msgdsize(mp
);
3414 * No fastpath, we either have more than one MAC client
3415 * defined on top of the same MAC, or one or more MAC
3416 * client promiscuous callbacks.
3418 DTRACE_PROBE3(slowpath
, mac_client_impl_t
*,
3419 src_mcip
, int, mip
->mi_nclients
, mblk_t
*, mp_chain
);
3422 while (mp
!= NULL
) {
3423 flow_entry_t
*dst_flow_ent
;
3431 pkt_size
= (mp
->b_cont
== NULL
? MBLKL(mp
) : msgdsize(mp
));
3433 CHECK_VID_AND_ADD_TAG(mp
);
3436 * Find the destination.
3438 dst_flow_ent
= mac_tx_classify(mip
, mp
);
3440 if (dst_flow_ent
!= NULL
) {
3444 if (mip
->mi_info
.mi_nativemedia
== DL_ETHER
) {
3445 struct ether_vlan_header
*evhp
=
3446 (struct ether_vlan_header
*)mp
->b_rptr
;
3448 if (ntohs(evhp
->ether_tpid
) == ETHERTYPE_VLAN
)
3449 hdrsize
= sizeof (*evhp
);
3451 hdrsize
= sizeof (struct ether_header
);
3453 mac_header_info_t mhi
;
3455 err
= mac_header_info((mac_handle_t
)mip
,
3458 hdrsize
= mhi
.mhi_hdrsize
;
3462 * Got a matching flow. It's either another
3463 * MAC client, or a broadcast/multicast flow.
3464 * Make sure the packet size is within the
3465 * allowed size. If not drop the packet and
3466 * move to next packet.
3469 (pkt_size
- hdrsize
) > mip
->mi_sdu_max
) {
3471 DTRACE_PROBE2(loopback__drop
, size_t, pkt_size
,
3475 FLOW_REFRELE(dst_flow_ent
);
3478 flow_cookie
= mac_flow_get_client_cookie(dst_flow_ent
);
3479 if (flow_cookie
!= NULL
) {
3481 * The vnic_bcast_send function expects
3482 * to receive the sender MAC client
3483 * as value for arg2.
3485 mac_bcast_send(flow_cookie
, src_mcip
, mp
,
3489 * loopback the packet to a local MAC
3490 * client. We force a context switch
3491 * if both source and destination MAC
3492 * clients are used by IP, i.e.
3495 boolean_t do_switch
;
3496 mac_client_impl_t
*dst_mcip
=
3497 dst_flow_ent
->fe_mcip
;
3500 * Check if there are promiscuous mode
3501 * callbacks defined. This check is
3502 * done here in the 'else' case and
3503 * not in other cases because this
3504 * path is for local loopback
3505 * communication which does not go
3506 * through MAC_TX(). For paths that go
3507 * through MAC_TX(), the promisc_list
3508 * check is done inside the MAC_TX()
3511 if (mip
->mi_promisc_list
!= NULL
)
3512 mac_promisc_dispatch(mip
, mp
, src_mcip
);
3514 do_switch
= ((src_mcip
->mci_state_flags
&
3515 dst_mcip
->mci_state_flags
&
3516 MCIS_CLIENT_POLL_CAPABLE
) != 0);
3518 if ((mp1
= mac_fix_cksum(mp
)) != NULL
) {
3519 (dst_flow_ent
->fe_cb_fn
)(
3520 dst_flow_ent
->fe_cb_arg1
,
3521 dst_flow_ent
->fe_cb_arg2
,
3525 FLOW_REFRELE(dst_flow_ent
);
3528 * Unknown destination, send via the underlying
3531 MAC_TX(mip
, ring
, mp
, src_mcip
);
3534 * Adjust for the last packet that
3535 * could not be transmitted
3547 stats
->mts_obytes
= obytes
;
3548 stats
->mts_opackets
= opackets
;
3549 stats
->mts_oerrors
= oerrors
;
3554 * mac_tx_srs_ring_present
3556 * Returns whether the specified ring is part of the specified SRS.
3559 mac_tx_srs_ring_present(mac_soft_ring_set_t
*srs
, mac_ring_t
*tx_ring
)
3562 mac_soft_ring_t
*soft_ring
;
3564 if (srs
->srs_tx
.st_arg2
== tx_ring
)
3567 for (i
= 0; i
< srs
->srs_tx_ring_count
; i
++) {
3568 soft_ring
= srs
->srs_tx_soft_rings
[i
];
3569 if (soft_ring
->s_ring_tx_arg2
== tx_ring
)
3577 * mac_tx_srs_get_soft_ring
3579 * Returns the TX soft ring associated with the given ring, if present.
3582 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t
*srs
, mac_ring_t
*tx_ring
)
3585 mac_soft_ring_t
*soft_ring
;
3587 if (srs
->srs_tx
.st_arg2
== tx_ring
)
3590 for (i
= 0; i
< srs
->srs_tx_ring_count
; i
++) {
3591 soft_ring
= srs
->srs_tx_soft_rings
[i
];
3592 if (soft_ring
->s_ring_tx_arg2
== tx_ring
)
3602 * Called when Tx desc become available. Wakeup the appropriate worker
3603 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
3607 mac_tx_srs_wakeup(mac_soft_ring_set_t
*mac_srs
, mac_ring_handle_t ring
)
3610 mac_soft_ring_t
*sringp
;
3611 mac_srs_tx_t
*srs_tx
= &mac_srs
->srs_tx
;
3613 mutex_enter(&mac_srs
->srs_lock
);
3615 * srs_tx_ring_count == 0 is the single ring mode case. In
3616 * this mode, there will not be Tx soft rings associated
3619 if (!MAC_TX_SOFT_RINGS(mac_srs
)) {
3620 if (srs_tx
->st_arg2
== ring
&&
3621 mac_srs
->srs_state
& SRS_TX_BLOCKED
) {
3622 mac_srs
->srs_state
&= ~SRS_TX_BLOCKED
;
3623 srs_tx
->st_stat
.mts_unblockcnt
++;
3624 cv_signal(&mac_srs
->srs_async
);
3627 * A wakeup can come before tx_srs_drain() could
3628 * grab srs lock and set SRS_TX_BLOCKED. So
3629 * always set woken_up flag when we come here.
3631 srs_tx
->st_woken_up
= B_TRUE
;
3632 mutex_exit(&mac_srs
->srs_lock
);
3637 * If you are here, it is for FANOUT, BW_FANOUT,
3638 * AGGR_MODE or AGGR_BW_MODE case
3640 for (i
= 0; i
< mac_srs
->srs_tx_ring_count
; i
++) {
3641 sringp
= mac_srs
->srs_tx_soft_rings
[i
];
3642 mutex_enter(&sringp
->s_ring_lock
);
3643 if (sringp
->s_ring_tx_arg2
== ring
) {
3644 if (sringp
->s_ring_state
& S_RING_BLOCK
) {
3645 sringp
->s_ring_state
&= ~S_RING_BLOCK
;
3646 sringp
->s_st_stat
.mts_unblockcnt
++;
3647 cv_signal(&sringp
->s_ring_async
);
3649 sringp
->s_ring_tx_woken_up
= B_TRUE
;
3651 mutex_exit(&sringp
->s_ring_lock
);
3653 mutex_exit(&mac_srs
->srs_lock
);
3657 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
3658 * the blocked clients again.
3661 mac_tx_notify(mac_impl_t
*mip
)
3663 i_mac_notify(mip
, MAC_NOTE_TX
);
3667 * RX SOFTRING RELATED FUNCTIONS
3669 * These functions really belong in mac_soft_ring.c and here for
3673 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
3675 * Enqueue our mblk chain. \
3677 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \
3679 if ((ringp)->s_ring_last != NULL) \
3680 (ringp)->s_ring_last->b_next = (mp); \
3682 (ringp)->s_ring_first = (mp); \
3683 (ringp)->s_ring_last = (tail); \
3684 (ringp)->s_ring_count += (cnt); \
3685 ASSERT((ringp)->s_ring_count > 0); \
3686 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \
3687 (ringp)->s_ring_size += sz; \
3692 * Default entry point to deliver a packet chain to a MAC client.
3693 * If the MAC client has flows, do the classification with these
3698 mac_rx_deliver(void *arg1
, mac_resource_handle_t mrh
, mblk_t
*mp_chain
,
3699 mac_header_info_t
*arg3
)
3701 mac_client_impl_t
*mcip
= arg1
;
3703 if (mcip
->mci_nvids
== 1 &&
3704 !(mcip
->mci_state_flags
& MCIS_STRIP_DISABLE
)) {
3706 * If the client has exactly one VID associated with it
3707 * and striping of VLAN header is not disabled,
3708 * remove the VLAN tag from the packet before
3709 * passing it on to the client's receive callback.
3710 * Note that this needs to be done after we dispatch
3711 * the packet to the promiscuous listeners of the
3712 * client, since they expect to see the whole
3713 * frame including the VLAN headers.
3715 mp_chain
= mac_strip_vlan_tag_chain(mp_chain
);
3718 mcip
->mci_rx_fn(mcip
->mci_rx_arg
, mrh
, mp_chain
, B_FALSE
);
3722 * mac_rx_soft_ring_process
3724 * process a chain for a given soft ring. The number of packets queued
3725 * in the SRS and its associated soft rings (including this one) is
3726 * very small (tracked by srs_poll_pkt_cnt), then allow the entering
3727 * thread (interrupt or poll thread) to do inline processing. This
3728 * helps keep the latency down under low load.
3730 * The proc and arg for each mblk is already stored in the mblk in
3731 * appropriate places.
3735 mac_rx_soft_ring_process(mac_client_impl_t
*mcip
, mac_soft_ring_t
*ringp
,
3736 mblk_t
*mp_chain
, mblk_t
*tail
, int cnt
, size_t sz
)
3738 mac_direct_rx_t proc
;
3740 mac_resource_handle_t arg2
;
3741 mac_soft_ring_set_t
*mac_srs
= ringp
->s_ring_set
;
3743 ASSERT(ringp
!= NULL
);
3744 ASSERT(mp_chain
!= NULL
);
3745 ASSERT(tail
!= NULL
);
3746 ASSERT(MUTEX_NOT_HELD(&ringp
->s_ring_lock
));
3748 mutex_enter(&ringp
->s_ring_lock
);
3749 ringp
->s_ring_total_inpkt
+= cnt
;
3750 ringp
->s_ring_total_rbytes
+= sz
;
3751 if ((mac_srs
->srs_rx
.sr_poll_pkt_cnt
<= 1) &&
3752 !(ringp
->s_ring_type
& ST_RING_WORKER_ONLY
)) {
3753 /* If on processor or blanking on, then enqueue and return */
3754 if (ringp
->s_ring_state
& S_RING_BLANK
||
3755 ringp
->s_ring_state
& S_RING_PROC
) {
3756 SOFT_RING_ENQUEUE_CHAIN(ringp
, mp_chain
, tail
, cnt
, sz
);
3757 mutex_exit(&ringp
->s_ring_lock
);
3760 proc
= ringp
->s_ring_rx_func
;
3761 arg1
= ringp
->s_ring_rx_arg1
;
3762 arg2
= ringp
->s_ring_rx_arg2
;
3764 * See if anything is already queued. If we are the
3765 * first packet, do inline processing else queue the
3766 * packet and do the drain.
3768 if (ringp
->s_ring_first
== NULL
) {
3770 * Fast-path, ok to process and nothing queued.
3772 ringp
->s_ring_run
= curthread
;
3773 ringp
->s_ring_state
|= (S_RING_PROC
);
3775 mutex_exit(&ringp
->s_ring_lock
);
3778 * We are the chain of 1 packet so
3779 * go through this fast path.
3781 ASSERT(mp_chain
->b_next
== NULL
);
3783 (*proc
)(arg1
, arg2
, mp_chain
, NULL
);
3785 ASSERT(MUTEX_NOT_HELD(&ringp
->s_ring_lock
));
3787 * If we have a soft ring set which is doing
3788 * bandwidth control, we need to decrement
3789 * srs_size and count so it the SRS can have a
3790 * accurate idea of what is the real data
3791 * queued between SRS and its soft rings. We
3792 * decrement the counters only when the packet
3793 * gets processed by both SRS and the soft ring.
3795 mutex_enter(&mac_srs
->srs_lock
);
3796 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs
, cnt
);
3797 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs
, sz
);
3798 mutex_exit(&mac_srs
->srs_lock
);
3800 mutex_enter(&ringp
->s_ring_lock
);
3801 ringp
->s_ring_run
= NULL
;
3802 ringp
->s_ring_state
&= ~S_RING_PROC
;
3803 if (ringp
->s_ring_state
& S_RING_CLIENT_WAIT
)
3804 cv_signal(&ringp
->s_ring_client_cv
);
3806 if ((ringp
->s_ring_first
== NULL
) ||
3807 (ringp
->s_ring_state
& S_RING_BLANK
)) {
3809 * We processed inline our packet and
3810 * nothing new has arrived or our
3811 * receiver doesn't want to receive
3812 * any packets. We are done.
3814 mutex_exit(&ringp
->s_ring_lock
);
3818 SOFT_RING_ENQUEUE_CHAIN(ringp
,
3819 mp_chain
, tail
, cnt
, sz
);
3823 * We are here because either we couldn't do inline
3824 * processing (because something was already
3825 * queued), or we had a chain of more than one
3826 * packet, or something else arrived after we were
3827 * done with inline processing.
3829 ASSERT(MUTEX_HELD(&ringp
->s_ring_lock
));
3830 ASSERT(ringp
->s_ring_first
!= NULL
);
3832 ringp
->s_ring_drain_func(ringp
);
3833 mutex_exit(&ringp
->s_ring_lock
);
3836 /* ST_RING_WORKER_ONLY case */
3837 SOFT_RING_ENQUEUE_CHAIN(ringp
, mp_chain
, tail
, cnt
, sz
);
3838 mac_soft_ring_worker_wakeup(ringp
);
3839 mutex_exit(&ringp
->s_ring_lock
);
3844 * TX SOFTRING RELATED FUNCTIONS
3846 * These functions really belong in mac_soft_ring.c and here for
3850 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
3851 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \
3852 ringp->s_ring_state |= S_RING_ENQUEUED; \
3853 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \
3857 * mac_tx_sring_queued
3859 * When we are out of transmit descriptors and we already have a
3860 * queue that exceeds hiwat (or the client called us with
3861 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
3862 * soft ring pointer as the opaque cookie for the client enable
3865 static mac_tx_cookie_t
3866 mac_tx_sring_enqueue(mac_soft_ring_t
*ringp
, mblk_t
*mp_chain
, uint16_t flag
,
3872 mac_soft_ring_set_t
*mac_srs
= ringp
->s_ring_set
;
3873 mac_tx_cookie_t cookie
= NULL
;
3874 boolean_t wakeup_worker
= B_TRUE
;
3876 ASSERT(MUTEX_HELD(&ringp
->s_ring_lock
));
3877 MAC_COUNT_CHAIN(mac_srs
, mp_chain
, tail
, cnt
, sz
);
3878 if (flag
& MAC_DROP_ON_NO_DESC
) {
3879 mac_pkt_drop(NULL
, NULL
, mp_chain
, B_FALSE
);
3880 /* increment freed stats */
3881 ringp
->s_ring_drops
+= cnt
;
3882 cookie
= (mac_tx_cookie_t
)ringp
;
3884 if (ringp
->s_ring_first
!= NULL
)
3885 wakeup_worker
= B_FALSE
;
3887 if (flag
& MAC_TX_NO_ENQUEUE
) {
3889 * If QUEUED is not set, queue the packet
3890 * and let mac_tx_soft_ring_drain() set
3891 * the TX_BLOCKED bit for the reasons
3892 * explained above. Otherwise, return the
3895 if (wakeup_worker
) {
3896 TX_SOFT_RING_ENQUEUE_CHAIN(ringp
,
3897 mp_chain
, tail
, cnt
, sz
);
3899 ringp
->s_ring_state
|= S_RING_WAKEUP_CLIENT
;
3900 cookie
= (mac_tx_cookie_t
)ringp
;
3904 boolean_t enqueue
= B_TRUE
;
3906 if (ringp
->s_ring_count
> ringp
->s_ring_tx_hiwat
) {
3908 * flow-controlled. Store ringp in cookie
3909 * so that it can be returned as
3910 * mac_tx_cookie_t to client
3912 ringp
->s_ring_state
|= S_RING_TX_HIWAT
;
3913 cookie
= (mac_tx_cookie_t
)ringp
;
3914 ringp
->s_ring_hiwat_cnt
++;
3915 if (ringp
->s_ring_count
>
3916 ringp
->s_ring_tx_max_q_cnt
) {
3917 /* increment freed stats */
3918 ringp
->s_ring_drops
+= cnt
;
3920 * b_prev may be set to the fanout hint
3921 * hence can't use freemsg directly
3923 mac_pkt_drop(NULL
, NULL
,
3925 DTRACE_PROBE1(tx_queued_hiwat
,
3926 mac_soft_ring_t
*, ringp
);
3931 TX_SOFT_RING_ENQUEUE_CHAIN(ringp
, mp_chain
,
3936 cv_signal(&ringp
->s_ring_async
);
3943 * mac_tx_soft_ring_process
3945 * This routine is called when fanning out outgoing traffic among
3947 * Note that a soft ring is associated with a h/w Tx ring.
3950 mac_tx_soft_ring_process(mac_soft_ring_t
*ringp
, mblk_t
*mp_chain
,
3951 uint16_t flag
, mblk_t
**ret_mp
)
3953 mac_soft_ring_set_t
*mac_srs
= ringp
->s_ring_set
;
3957 mac_tx_cookie_t cookie
= NULL
;
3959 ASSERT(ringp
!= NULL
);
3960 ASSERT(mp_chain
!= NULL
);
3961 ASSERT(MUTEX_NOT_HELD(&ringp
->s_ring_lock
));
3963 * The following modes can come here: SRS_TX_BW_FANOUT,
3964 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
3966 ASSERT(MAC_TX_SOFT_RINGS(mac_srs
));
3967 ASSERT(mac_srs
->srs_tx
.st_mode
== SRS_TX_FANOUT
||
3968 mac_srs
->srs_tx
.st_mode
== SRS_TX_BW_FANOUT
||
3969 mac_srs
->srs_tx
.st_mode
== SRS_TX_AGGR
||
3970 mac_srs
->srs_tx
.st_mode
== SRS_TX_BW_AGGR
);
3972 if (ringp
->s_ring_type
& ST_RING_WORKER_ONLY
) {
3973 /* Serialization mode */
3975 mutex_enter(&ringp
->s_ring_lock
);
3976 if (ringp
->s_ring_count
> ringp
->s_ring_tx_hiwat
) {
3977 cookie
= mac_tx_sring_enqueue(ringp
, mp_chain
,
3979 mutex_exit(&ringp
->s_ring_lock
);
3982 MAC_COUNT_CHAIN(mac_srs
, mp_chain
, tail
, cnt
, sz
);
3983 TX_SOFT_RING_ENQUEUE_CHAIN(ringp
, mp_chain
, tail
, cnt
, sz
);
3984 if (ringp
->s_ring_state
& (S_RING_BLOCK
| S_RING_PROC
)) {
3986 * If ring is blocked due to lack of Tx
3987 * descs, just return. Worker thread
3988 * will get scheduled when Tx desc's
3991 mutex_exit(&ringp
->s_ring_lock
);
3994 mac_soft_ring_worker_wakeup(ringp
);
3995 mutex_exit(&ringp
->s_ring_lock
);
3998 /* Default fanout mode */
4000 * S_RING_BLOCKED is set when underlying NIC runs
4001 * out of Tx descs and messages start getting
4002 * queued. It won't get reset until
4003 * tx_srs_drain() completely drains out the
4006 mac_tx_stats_t stats
;
4008 if (ringp
->s_ring_state
& S_RING_ENQUEUED
) {
4009 /* Tx descs/resources not available */
4010 mutex_enter(&ringp
->s_ring_lock
);
4011 if (ringp
->s_ring_state
& S_RING_ENQUEUED
) {
4012 cookie
= mac_tx_sring_enqueue(ringp
, mp_chain
,
4014 mutex_exit(&ringp
->s_ring_lock
);
4018 * While we were computing mblk count, the
4019 * flow control condition got relieved.
4020 * Continue with the transmission.
4022 mutex_exit(&ringp
->s_ring_lock
);
4025 mp_chain
= mac_tx_send(ringp
->s_ring_tx_arg1
,
4026 ringp
->s_ring_tx_arg2
, mp_chain
, &stats
);
4029 * Multiple threads could be here sending packets.
4030 * Under such conditions, it is not possible to
4031 * automically set S_RING_BLOCKED bit to indicate
4032 * out of tx desc condition. To atomically set
4033 * this, we queue the returned packet and do
4034 * the setting of S_RING_BLOCKED in
4035 * mac_tx_soft_ring_drain().
4037 if (mp_chain
!= NULL
) {
4038 mutex_enter(&ringp
->s_ring_lock
);
4040 mac_tx_sring_enqueue(ringp
, mp_chain
, flag
, ret_mp
);
4041 mutex_exit(&ringp
->s_ring_lock
);
4044 SRS_TX_STATS_UPDATE(mac_srs
, &stats
);
4045 SOFTRING_TX_STATS_UPDATE(ringp
, &stats
);