6923585 deadlock while booting OpenSolaris build 132 from mirrored rpool with removed...
[illumos-gate.git] / usr / src / uts / common / fs / zfs / dnode.c
blob64f0287f7c6e3166c19a53c63fa40317546a6ffb
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/zfs_context.h>
27 #include <sys/dbuf.h>
28 #include <sys/dnode.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/zio.h>
37 #include <sys/dmu_zfetch.h>
39 static int free_range_compar(const void *node1, const void *node2);
41 static kmem_cache_t *dnode_cache;
43 static dnode_phys_t dnode_phys_zero;
45 int zfs_default_bs = SPA_MINBLOCKSHIFT;
46 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
48 /* ARGSUSED */
49 static int
50 dnode_cons(void *arg, void *unused, int kmflag)
52 int i;
53 dnode_t *dn = arg;
54 bzero(dn, sizeof (dnode_t));
56 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
57 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
58 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
59 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
61 refcount_create(&dn->dn_holds);
62 refcount_create(&dn->dn_tx_holds);
64 for (i = 0; i < TXG_SIZE; i++) {
65 avl_create(&dn->dn_ranges[i], free_range_compar,
66 sizeof (free_range_t),
67 offsetof(struct free_range, fr_node));
68 list_create(&dn->dn_dirty_records[i],
69 sizeof (dbuf_dirty_record_t),
70 offsetof(dbuf_dirty_record_t, dr_dirty_node));
73 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
74 offsetof(dmu_buf_impl_t, db_link));
76 return (0);
79 /* ARGSUSED */
80 static void
81 dnode_dest(void *arg, void *unused)
83 int i;
84 dnode_t *dn = arg;
86 rw_destroy(&dn->dn_struct_rwlock);
87 mutex_destroy(&dn->dn_mtx);
88 mutex_destroy(&dn->dn_dbufs_mtx);
89 cv_destroy(&dn->dn_notxholds);
90 refcount_destroy(&dn->dn_holds);
91 refcount_destroy(&dn->dn_tx_holds);
93 for (i = 0; i < TXG_SIZE; i++) {
94 avl_destroy(&dn->dn_ranges[i]);
95 list_destroy(&dn->dn_dirty_records[i]);
98 list_destroy(&dn->dn_dbufs);
101 void
102 dnode_init(void)
104 dnode_cache = kmem_cache_create("dnode_t",
105 sizeof (dnode_t),
106 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
109 void
110 dnode_fini(void)
112 kmem_cache_destroy(dnode_cache);
116 #ifdef ZFS_DEBUG
117 void
118 dnode_verify(dnode_t *dn)
120 int drop_struct_lock = FALSE;
122 ASSERT(dn->dn_phys);
123 ASSERT(dn->dn_objset);
125 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
127 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
128 return;
130 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
131 rw_enter(&dn->dn_struct_rwlock, RW_READER);
132 drop_struct_lock = TRUE;
134 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
135 int i;
136 ASSERT3U(dn->dn_indblkshift, >=, 0);
137 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
138 if (dn->dn_datablkshift) {
139 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
140 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
141 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
143 ASSERT3U(dn->dn_nlevels, <=, 30);
144 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES);
145 ASSERT3U(dn->dn_nblkptr, >=, 1);
146 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
147 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
148 ASSERT3U(dn->dn_datablksz, ==,
149 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
150 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
151 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
152 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
153 for (i = 0; i < TXG_SIZE; i++) {
154 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
157 if (dn->dn_phys->dn_type != DMU_OT_NONE)
158 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
159 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
160 if (dn->dn_dbuf != NULL) {
161 ASSERT3P(dn->dn_phys, ==,
162 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
163 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
165 if (drop_struct_lock)
166 rw_exit(&dn->dn_struct_rwlock);
168 #endif
170 void
171 dnode_byteswap(dnode_phys_t *dnp)
173 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
174 int i;
176 if (dnp->dn_type == DMU_OT_NONE) {
177 bzero(dnp, sizeof (dnode_phys_t));
178 return;
181 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
182 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
183 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
184 dnp->dn_used = BSWAP_64(dnp->dn_used);
187 * dn_nblkptr is only one byte, so it's OK to read it in either
188 * byte order. We can't read dn_bouslen.
190 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
191 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
192 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
193 buf64[i] = BSWAP_64(buf64[i]);
196 * OK to check dn_bonuslen for zero, because it won't matter if
197 * we have the wrong byte order. This is necessary because the
198 * dnode dnode is smaller than a regular dnode.
200 if (dnp->dn_bonuslen != 0) {
202 * Note that the bonus length calculated here may be
203 * longer than the actual bonus buffer. This is because
204 * we always put the bonus buffer after the last block
205 * pointer (instead of packing it against the end of the
206 * dnode buffer).
208 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
209 size_t len = DN_MAX_BONUSLEN - off;
210 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES);
211 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len);
214 /* Swap SPILL block if we have one */
215 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
216 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
220 void
221 dnode_buf_byteswap(void *vbuf, size_t size)
223 dnode_phys_t *buf = vbuf;
224 int i;
226 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
227 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
229 size >>= DNODE_SHIFT;
230 for (i = 0; i < size; i++) {
231 dnode_byteswap(buf);
232 buf++;
236 static int
237 free_range_compar(const void *node1, const void *node2)
239 const free_range_t *rp1 = node1;
240 const free_range_t *rp2 = node2;
242 if (rp1->fr_blkid < rp2->fr_blkid)
243 return (-1);
244 else if (rp1->fr_blkid > rp2->fr_blkid)
245 return (1);
246 else return (0);
249 void
250 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
252 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
254 dnode_setdirty(dn, tx);
255 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
256 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
257 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
258 dn->dn_bonuslen = newsize;
259 if (newsize == 0)
260 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
261 else
262 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
263 rw_exit(&dn->dn_struct_rwlock);
266 void
267 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
269 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
270 dnode_setdirty(dn, tx);
271 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
272 dn->dn_bonustype = newtype;
273 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
274 rw_exit(&dn->dn_struct_rwlock);
277 void
278 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
280 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
281 dnode_setdirty(dn, tx);
282 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
284 dn->dn_have_spill = B_FALSE;
285 rw_exit(&dn->dn_struct_rwlock);
288 static void
289 dnode_setdblksz(dnode_t *dn, int size)
291 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
292 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
293 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
294 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
295 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
296 dn->dn_datablksz = size;
297 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
298 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
301 static dnode_t *
302 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
303 uint64_t object)
305 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
306 (void) dnode_cons(dn, NULL, 0); /* XXX */
308 dn->dn_objset = os;
309 dn->dn_object = object;
310 dn->dn_dbuf = db;
311 dn->dn_phys = dnp;
313 if (dnp->dn_datablkszsec)
314 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
315 dn->dn_indblkshift = dnp->dn_indblkshift;
316 dn->dn_nlevels = dnp->dn_nlevels;
317 dn->dn_type = dnp->dn_type;
318 dn->dn_nblkptr = dnp->dn_nblkptr;
319 dn->dn_checksum = dnp->dn_checksum;
320 dn->dn_compress = dnp->dn_compress;
321 dn->dn_bonustype = dnp->dn_bonustype;
322 dn->dn_bonuslen = dnp->dn_bonuslen;
323 dn->dn_maxblkid = dnp->dn_maxblkid;
324 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
326 dmu_zfetch_init(&dn->dn_zfetch, dn);
328 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
329 mutex_enter(&os->os_lock);
330 list_insert_head(&os->os_dnodes, dn);
331 mutex_exit(&os->os_lock);
333 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
334 return (dn);
337 static void
338 dnode_destroy(dnode_t *dn)
340 objset_t *os = dn->dn_objset;
342 #ifdef ZFS_DEBUG
343 int i;
345 for (i = 0; i < TXG_SIZE; i++) {
346 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
347 ASSERT(NULL == list_head(&dn->dn_dirty_records[i]));
348 ASSERT(0 == avl_numnodes(&dn->dn_ranges[i]));
350 ASSERT(NULL == list_head(&dn->dn_dbufs));
351 #endif
352 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
354 mutex_enter(&os->os_lock);
355 list_remove(&os->os_dnodes, dn);
356 mutex_exit(&os->os_lock);
358 if (dn->dn_dirtyctx_firstset) {
359 kmem_free(dn->dn_dirtyctx_firstset, 1);
360 dn->dn_dirtyctx_firstset = NULL;
362 dmu_zfetch_rele(&dn->dn_zfetch);
363 if (dn->dn_bonus) {
364 mutex_enter(&dn->dn_bonus->db_mtx);
365 dbuf_evict(dn->dn_bonus);
366 dn->dn_bonus = NULL;
368 kmem_cache_free(dnode_cache, dn);
369 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
372 void
373 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
374 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
376 int i;
378 if (blocksize == 0)
379 blocksize = 1 << zfs_default_bs;
380 else if (blocksize > SPA_MAXBLOCKSIZE)
381 blocksize = SPA_MAXBLOCKSIZE;
382 else
383 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
385 if (ibs == 0)
386 ibs = zfs_default_ibs;
388 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
390 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
391 dn->dn_object, tx->tx_txg, blocksize, ibs);
393 ASSERT(dn->dn_type == DMU_OT_NONE);
394 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
395 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
396 ASSERT(ot != DMU_OT_NONE);
397 ASSERT3U(ot, <, DMU_OT_NUMTYPES);
398 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
399 (bonustype == DMU_OT_SA && bonuslen == 0) ||
400 (bonustype != DMU_OT_NONE && bonuslen != 0));
401 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
402 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
403 ASSERT(dn->dn_type == DMU_OT_NONE);
404 ASSERT3U(dn->dn_maxblkid, ==, 0);
405 ASSERT3U(dn->dn_allocated_txg, ==, 0);
406 ASSERT3U(dn->dn_assigned_txg, ==, 0);
407 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
408 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
409 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
411 for (i = 0; i < TXG_SIZE; i++) {
412 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
413 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
414 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
415 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
416 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
417 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
418 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
419 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
420 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
423 dn->dn_type = ot;
424 dnode_setdblksz(dn, blocksize);
425 dn->dn_indblkshift = ibs;
426 dn->dn_nlevels = 1;
427 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
428 dn->dn_nblkptr = 1;
429 else
430 dn->dn_nblkptr = 1 +
431 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
432 dn->dn_bonustype = bonustype;
433 dn->dn_bonuslen = bonuslen;
434 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
435 dn->dn_compress = ZIO_COMPRESS_INHERIT;
436 dn->dn_dirtyctx = 0;
438 dn->dn_free_txg = 0;
439 if (dn->dn_dirtyctx_firstset) {
440 kmem_free(dn->dn_dirtyctx_firstset, 1);
441 dn->dn_dirtyctx_firstset = NULL;
444 dn->dn_allocated_txg = tx->tx_txg;
445 dn->dn_id_flags = 0;
447 dnode_setdirty(dn, tx);
448 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
449 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
450 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
451 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
454 void
455 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
456 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
458 int nblkptr;
460 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
461 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
462 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
463 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
464 ASSERT(tx->tx_txg != 0);
465 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
466 (bonustype != DMU_OT_NONE && bonuslen != 0));
467 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
468 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
470 /* clean up any unreferenced dbufs */
471 dnode_evict_dbufs(dn);
473 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
474 dnode_setdirty(dn, tx);
475 if (dn->dn_datablksz != blocksize) {
476 /* change blocksize */
477 ASSERT(dn->dn_maxblkid == 0 &&
478 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
479 dnode_block_freed(dn, 0)));
480 dnode_setdblksz(dn, blocksize);
481 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
483 if (dn->dn_bonuslen != bonuslen)
484 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
485 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
486 if (dn->dn_bonustype != bonustype)
487 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
488 if (dn->dn_nblkptr != nblkptr)
489 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
490 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
491 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
492 dn->dn_have_spill = B_FALSE;
494 rw_exit(&dn->dn_struct_rwlock);
496 /* change type */
497 dn->dn_type = ot;
499 /* change bonus size and type */
500 mutex_enter(&dn->dn_mtx);
501 dn->dn_bonustype = bonustype;
502 dn->dn_bonuslen = bonuslen;
503 dn->dn_nblkptr = nblkptr;
504 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
505 dn->dn_compress = ZIO_COMPRESS_INHERIT;
506 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
508 /* fix up the bonus db_size */
509 if (dn->dn_bonus) {
510 dn->dn_bonus->db.db_size =
511 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
512 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
515 dn->dn_allocated_txg = tx->tx_txg;
516 mutex_exit(&dn->dn_mtx);
519 void
520 dnode_special_close(dnode_t *dn)
523 * Wait for final references to the dnode to clear. This can
524 * only happen if the arc is asyncronously evicting state that
525 * has a hold on this dnode while we are trying to evict this
526 * dnode.
528 while (refcount_count(&dn->dn_holds) > 0)
529 delay(1);
530 dnode_destroy(dn);
533 dnode_t *
534 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object)
536 dnode_t *dn = dnode_create(os, dnp, NULL, object);
537 DNODE_VERIFY(dn);
538 return (dn);
541 static void
542 dnode_buf_pageout(dmu_buf_t *db, void *arg)
544 dnode_t **children_dnodes = arg;
545 int i;
546 int epb = db->db_size >> DNODE_SHIFT;
548 for (i = 0; i < epb; i++) {
549 dnode_t *dn = children_dnodes[i];
550 int n;
552 if (dn == NULL)
553 continue;
554 #ifdef ZFS_DEBUG
556 * If there are holds on this dnode, then there should
557 * be holds on the dnode's containing dbuf as well; thus
558 * it wouldn't be eligable for eviction and this function
559 * would not have been called.
561 ASSERT(refcount_is_zero(&dn->dn_holds));
562 ASSERT(list_head(&dn->dn_dbufs) == NULL);
563 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
565 for (n = 0; n < TXG_SIZE; n++)
566 ASSERT(!list_link_active(&dn->dn_dirty_link[n]));
567 #endif
568 children_dnodes[i] = NULL;
569 dnode_destroy(dn);
571 kmem_free(children_dnodes, epb * sizeof (dnode_t *));
575 * errors:
576 * EINVAL - invalid object number.
577 * EIO - i/o error.
578 * succeeds even for free dnodes.
581 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
582 void *tag, dnode_t **dnp)
584 int epb, idx, err;
585 int drop_struct_lock = FALSE;
586 int type;
587 uint64_t blk;
588 dnode_t *mdn, *dn;
589 dmu_buf_impl_t *db;
590 dnode_t **children_dnodes;
593 * If you are holding the spa config lock as writer, you shouldn't
594 * be asking the DMU to do *anything* unless it's the root pool
595 * which may require us to read from the root filesystem while
596 * holding some (not all) of the locks as writer.
598 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
599 (spa_is_root(os->os_spa) &&
600 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER) &&
601 !spa_config_held(os->os_spa, SCL_ZIO, RW_WRITER)));
603 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
604 dn = (object == DMU_USERUSED_OBJECT) ?
605 os->os_userused_dnode : os->os_groupused_dnode;
606 if (dn == NULL)
607 return (ENOENT);
608 type = dn->dn_type;
609 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
610 return (ENOENT);
611 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
612 return (EEXIST);
613 DNODE_VERIFY(dn);
614 (void) refcount_add(&dn->dn_holds, tag);
615 *dnp = dn;
616 return (0);
619 if (object == 0 || object >= DN_MAX_OBJECT)
620 return (EINVAL);
622 mdn = os->os_meta_dnode;
624 DNODE_VERIFY(mdn);
626 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
627 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
628 drop_struct_lock = TRUE;
631 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
633 db = dbuf_hold(mdn, blk, FTAG);
634 if (drop_struct_lock)
635 rw_exit(&mdn->dn_struct_rwlock);
636 if (db == NULL)
637 return (EIO);
638 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
639 if (err) {
640 dbuf_rele(db, FTAG);
641 return (err);
644 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
645 epb = db->db.db_size >> DNODE_SHIFT;
647 idx = object & (epb-1);
649 children_dnodes = dmu_buf_get_user(&db->db);
650 if (children_dnodes == NULL) {
651 dnode_t **winner;
652 children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *),
653 KM_SLEEP);
654 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
655 dnode_buf_pageout)) {
656 kmem_free(children_dnodes, epb * sizeof (dnode_t *));
657 children_dnodes = winner;
661 if ((dn = children_dnodes[idx]) == NULL) {
662 dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx;
663 dnode_t *winner;
665 dn = dnode_create(os, dnp, db, object);
666 winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn);
667 if (winner != NULL) {
668 dnode_destroy(dn);
669 dn = winner;
673 mutex_enter(&dn->dn_mtx);
674 type = dn->dn_type;
675 if (dn->dn_free_txg ||
676 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
677 ((flag & DNODE_MUST_BE_FREE) &&
678 (type != DMU_OT_NONE || (dn->dn_id_flags & DN_ID_SYNC)))) {
679 mutex_exit(&dn->dn_mtx);
680 dbuf_rele(db, FTAG);
681 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
683 if (flag & DNODE_MUST_BE_FREE) {
684 ASSERT(refcount_is_zero(&dn->dn_holds));
685 ASSERT(!(dn->dn_id_flags & DN_ID_SYNC));
687 mutex_exit(&dn->dn_mtx);
689 if (refcount_add(&dn->dn_holds, tag) == 1)
690 dbuf_add_ref(db, dn);
692 DNODE_VERIFY(dn);
693 ASSERT3P(dn->dn_dbuf, ==, db);
694 ASSERT3U(dn->dn_object, ==, object);
695 dbuf_rele(db, FTAG);
697 *dnp = dn;
698 return (0);
702 * Return held dnode if the object is allocated, NULL if not.
705 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
707 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
711 * Can only add a reference if there is already at least one
712 * reference on the dnode. Returns FALSE if unable to add a
713 * new reference.
715 boolean_t
716 dnode_add_ref(dnode_t *dn, void *tag)
718 mutex_enter(&dn->dn_mtx);
719 if (refcount_is_zero(&dn->dn_holds)) {
720 mutex_exit(&dn->dn_mtx);
721 return (FALSE);
723 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
724 mutex_exit(&dn->dn_mtx);
725 return (TRUE);
728 void
729 dnode_rele(dnode_t *dn, void *tag)
731 uint64_t refs;
733 mutex_enter(&dn->dn_mtx);
734 refs = refcount_remove(&dn->dn_holds, tag);
735 mutex_exit(&dn->dn_mtx);
736 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
737 if (refs == 0 && dn->dn_dbuf)
738 dbuf_rele(dn->dn_dbuf, dn);
741 void
742 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
744 objset_t *os = dn->dn_objset;
745 uint64_t txg = tx->tx_txg;
747 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
748 dsl_dataset_dirty(os->os_dsl_dataset, tx);
749 return;
752 DNODE_VERIFY(dn);
754 #ifdef ZFS_DEBUG
755 mutex_enter(&dn->dn_mtx);
756 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
757 /* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */
758 mutex_exit(&dn->dn_mtx);
759 #endif
762 * Determine old uid/gid when necessary
764 dmu_objset_userquota_get_ids(dn, B_TRUE);
766 mutex_enter(&os->os_lock);
769 * If we are already marked dirty, we're done.
771 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
772 mutex_exit(&os->os_lock);
773 return;
776 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
777 ASSERT(dn->dn_datablksz != 0);
778 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
779 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
780 ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);
782 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
783 dn->dn_object, txg);
785 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
786 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
787 } else {
788 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
791 mutex_exit(&os->os_lock);
794 * The dnode maintains a hold on its containing dbuf as
795 * long as there are holds on it. Each instantiated child
796 * dbuf maintaines a hold on the dnode. When the last child
797 * drops its hold, the dnode will drop its hold on the
798 * containing dbuf. We add a "dirty hold" here so that the
799 * dnode will hang around after we finish processing its
800 * children.
802 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
804 (void) dbuf_dirty(dn->dn_dbuf, tx);
806 dsl_dataset_dirty(os->os_dsl_dataset, tx);
809 void
810 dnode_free(dnode_t *dn, dmu_tx_t *tx)
812 int txgoff = tx->tx_txg & TXG_MASK;
814 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
816 /* we should be the only holder... hopefully */
817 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
819 mutex_enter(&dn->dn_mtx);
820 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
821 mutex_exit(&dn->dn_mtx);
822 return;
824 dn->dn_free_txg = tx->tx_txg;
825 mutex_exit(&dn->dn_mtx);
828 * If the dnode is already dirty, it needs to be moved from
829 * the dirty list to the free list.
831 mutex_enter(&dn->dn_objset->os_lock);
832 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
833 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
834 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
835 mutex_exit(&dn->dn_objset->os_lock);
836 } else {
837 mutex_exit(&dn->dn_objset->os_lock);
838 dnode_setdirty(dn, tx);
843 * Try to change the block size for the indicated dnode. This can only
844 * succeed if there are no blocks allocated or dirty beyond first block
847 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
849 dmu_buf_impl_t *db, *db_next;
850 int err;
852 if (size == 0)
853 size = SPA_MINBLOCKSIZE;
854 if (size > SPA_MAXBLOCKSIZE)
855 size = SPA_MAXBLOCKSIZE;
856 else
857 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
859 if (ibs == dn->dn_indblkshift)
860 ibs = 0;
862 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
863 return (0);
865 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
867 /* Check for any allocated blocks beyond the first */
868 if (dn->dn_phys->dn_maxblkid != 0)
869 goto fail;
871 mutex_enter(&dn->dn_dbufs_mtx);
872 for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
873 db_next = list_next(&dn->dn_dbufs, db);
875 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
876 db->db_blkid != DMU_SPILL_BLKID) {
877 mutex_exit(&dn->dn_dbufs_mtx);
878 goto fail;
881 mutex_exit(&dn->dn_dbufs_mtx);
883 if (ibs && dn->dn_nlevels != 1)
884 goto fail;
886 /* resize the old block */
887 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
888 if (err == 0)
889 dbuf_new_size(db, size, tx);
890 else if (err != ENOENT)
891 goto fail;
893 dnode_setdblksz(dn, size);
894 dnode_setdirty(dn, tx);
895 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
896 if (ibs) {
897 dn->dn_indblkshift = ibs;
898 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
900 /* rele after we have fixed the blocksize in the dnode */
901 if (db)
902 dbuf_rele(db, FTAG);
904 rw_exit(&dn->dn_struct_rwlock);
905 return (0);
907 fail:
908 rw_exit(&dn->dn_struct_rwlock);
909 return (ENOTSUP);
912 /* read-holding callers must not rely on the lock being continuously held */
913 void
914 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
916 uint64_t txgoff = tx->tx_txg & TXG_MASK;
917 int epbs, new_nlevels;
918 uint64_t sz;
920 ASSERT(blkid != DMU_BONUS_BLKID);
922 ASSERT(have_read ?
923 RW_READ_HELD(&dn->dn_struct_rwlock) :
924 RW_WRITE_HELD(&dn->dn_struct_rwlock));
927 * if we have a read-lock, check to see if we need to do any work
928 * before upgrading to a write-lock.
930 if (have_read) {
931 if (blkid <= dn->dn_maxblkid)
932 return;
934 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
935 rw_exit(&dn->dn_struct_rwlock);
936 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
940 if (blkid <= dn->dn_maxblkid)
941 goto out;
943 dn->dn_maxblkid = blkid;
946 * Compute the number of levels necessary to support the new maxblkid.
948 new_nlevels = 1;
949 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
950 for (sz = dn->dn_nblkptr;
951 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
952 new_nlevels++;
954 if (new_nlevels > dn->dn_nlevels) {
955 int old_nlevels = dn->dn_nlevels;
956 dmu_buf_impl_t *db;
957 list_t *list;
958 dbuf_dirty_record_t *new, *dr, *dr_next;
960 dn->dn_nlevels = new_nlevels;
962 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
963 dn->dn_next_nlevels[txgoff] = new_nlevels;
965 /* dirty the left indirects */
966 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
967 new = dbuf_dirty(db, tx);
968 dbuf_rele(db, FTAG);
970 /* transfer the dirty records to the new indirect */
971 mutex_enter(&dn->dn_mtx);
972 mutex_enter(&new->dt.di.dr_mtx);
973 list = &dn->dn_dirty_records[txgoff];
974 for (dr = list_head(list); dr; dr = dr_next) {
975 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
976 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
977 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
978 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
979 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
980 list_remove(&dn->dn_dirty_records[txgoff], dr);
981 list_insert_tail(&new->dt.di.dr_children, dr);
982 dr->dr_parent = new;
985 mutex_exit(&new->dt.di.dr_mtx);
986 mutex_exit(&dn->dn_mtx);
989 out:
990 if (have_read)
991 rw_downgrade(&dn->dn_struct_rwlock);
994 void
995 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
997 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
998 avl_index_t where;
999 free_range_t *rp;
1000 free_range_t rp_tofind;
1001 uint64_t endblk = blkid + nblks;
1003 ASSERT(MUTEX_HELD(&dn->dn_mtx));
1004 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
1006 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1007 blkid, nblks, tx->tx_txg);
1008 rp_tofind.fr_blkid = blkid;
1009 rp = avl_find(tree, &rp_tofind, &where);
1010 if (rp == NULL)
1011 rp = avl_nearest(tree, where, AVL_BEFORE);
1012 if (rp == NULL)
1013 rp = avl_nearest(tree, where, AVL_AFTER);
1015 while (rp && (rp->fr_blkid <= blkid + nblks)) {
1016 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
1017 free_range_t *nrp = AVL_NEXT(tree, rp);
1019 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
1020 /* clear this entire range */
1021 avl_remove(tree, rp);
1022 kmem_free(rp, sizeof (free_range_t));
1023 } else if (blkid <= rp->fr_blkid &&
1024 endblk > rp->fr_blkid && endblk < fr_endblk) {
1025 /* clear the beginning of this range */
1026 rp->fr_blkid = endblk;
1027 rp->fr_nblks = fr_endblk - endblk;
1028 } else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
1029 endblk >= fr_endblk) {
1030 /* clear the end of this range */
1031 rp->fr_nblks = blkid - rp->fr_blkid;
1032 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
1033 /* clear a chunk out of this range */
1034 free_range_t *new_rp =
1035 kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1037 new_rp->fr_blkid = endblk;
1038 new_rp->fr_nblks = fr_endblk - endblk;
1039 avl_insert_here(tree, new_rp, rp, AVL_AFTER);
1040 rp->fr_nblks = blkid - rp->fr_blkid;
1042 /* there may be no overlap */
1043 rp = nrp;
1047 void
1048 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1050 dmu_buf_impl_t *db;
1051 uint64_t blkoff, blkid, nblks;
1052 int blksz, blkshift, head, tail;
1053 int trunc = FALSE;
1054 int epbs;
1056 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1057 blksz = dn->dn_datablksz;
1058 blkshift = dn->dn_datablkshift;
1059 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1061 if (len == -1ULL) {
1062 len = UINT64_MAX - off;
1063 trunc = TRUE;
1067 * First, block align the region to free:
1069 if (ISP2(blksz)) {
1070 head = P2NPHASE(off, blksz);
1071 blkoff = P2PHASE(off, blksz);
1072 if ((off >> blkshift) > dn->dn_maxblkid)
1073 goto out;
1074 } else {
1075 ASSERT(dn->dn_maxblkid == 0);
1076 if (off == 0 && len >= blksz) {
1077 /* Freeing the whole block; fast-track this request */
1078 blkid = 0;
1079 nblks = 1;
1080 goto done;
1081 } else if (off >= blksz) {
1082 /* Freeing past end-of-data */
1083 goto out;
1084 } else {
1085 /* Freeing part of the block. */
1086 head = blksz - off;
1087 ASSERT3U(head, >, 0);
1089 blkoff = off;
1091 /* zero out any partial block data at the start of the range */
1092 if (head) {
1093 ASSERT3U(blkoff + head, ==, blksz);
1094 if (len < head)
1095 head = len;
1096 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1097 FTAG, &db) == 0) {
1098 caddr_t data;
1100 /* don't dirty if it isn't on disk and isn't dirty */
1101 if (db->db_last_dirty ||
1102 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1103 rw_exit(&dn->dn_struct_rwlock);
1104 dbuf_will_dirty(db, tx);
1105 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1106 data = db->db.db_data;
1107 bzero(data + blkoff, head);
1109 dbuf_rele(db, FTAG);
1111 off += head;
1112 len -= head;
1115 /* If the range was less than one block, we're done */
1116 if (len == 0)
1117 goto out;
1119 /* If the remaining range is past end of file, we're done */
1120 if ((off >> blkshift) > dn->dn_maxblkid)
1121 goto out;
1123 ASSERT(ISP2(blksz));
1124 if (trunc)
1125 tail = 0;
1126 else
1127 tail = P2PHASE(len, blksz);
1129 ASSERT3U(P2PHASE(off, blksz), ==, 0);
1130 /* zero out any partial block data at the end of the range */
1131 if (tail) {
1132 if (len < tail)
1133 tail = len;
1134 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1135 TRUE, FTAG, &db) == 0) {
1136 /* don't dirty if not on disk and not dirty */
1137 if (db->db_last_dirty ||
1138 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1139 rw_exit(&dn->dn_struct_rwlock);
1140 dbuf_will_dirty(db, tx);
1141 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1142 bzero(db->db.db_data, tail);
1144 dbuf_rele(db, FTAG);
1146 len -= tail;
1149 /* If the range did not include a full block, we are done */
1150 if (len == 0)
1151 goto out;
1153 ASSERT(IS_P2ALIGNED(off, blksz));
1154 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1155 blkid = off >> blkshift;
1156 nblks = len >> blkshift;
1157 if (trunc)
1158 nblks += 1;
1161 * Read in and mark all the level-1 indirects dirty,
1162 * so that they will stay in memory until syncing phase.
1163 * Always dirty the first and last indirect to make sure
1164 * we dirty all the partial indirects.
1166 if (dn->dn_nlevels > 1) {
1167 uint64_t i, first, last;
1168 int shift = epbs + dn->dn_datablkshift;
1170 first = blkid >> epbs;
1171 if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1172 dbuf_will_dirty(db, tx);
1173 dbuf_rele(db, FTAG);
1175 if (trunc)
1176 last = dn->dn_maxblkid >> epbs;
1177 else
1178 last = (blkid + nblks - 1) >> epbs;
1179 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1180 dbuf_will_dirty(db, tx);
1181 dbuf_rele(db, FTAG);
1183 for (i = first + 1; i < last; i++) {
1184 uint64_t ibyte = i << shift;
1185 int err;
1187 err = dnode_next_offset(dn,
1188 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1189 i = ibyte >> shift;
1190 if (err == ESRCH || i >= last)
1191 break;
1192 ASSERT(err == 0);
1193 db = dbuf_hold_level(dn, 1, i, FTAG);
1194 if (db) {
1195 dbuf_will_dirty(db, tx);
1196 dbuf_rele(db, FTAG);
1200 done:
1202 * Add this range to the dnode range list.
1203 * We will finish up this free operation in the syncing phase.
1205 mutex_enter(&dn->dn_mtx);
1206 dnode_clear_range(dn, blkid, nblks, tx);
1208 free_range_t *rp, *found;
1209 avl_index_t where;
1210 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1212 /* Add new range to dn_ranges */
1213 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1214 rp->fr_blkid = blkid;
1215 rp->fr_nblks = nblks;
1216 found = avl_find(tree, rp, &where);
1217 ASSERT(found == NULL);
1218 avl_insert(tree, rp, where);
1219 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1220 blkid, nblks, tx->tx_txg);
1222 mutex_exit(&dn->dn_mtx);
1224 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1225 dnode_setdirty(dn, tx);
1226 out:
1227 if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1228 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1230 rw_exit(&dn->dn_struct_rwlock);
1233 static boolean_t
1234 dnode_spill_freed(dnode_t *dn)
1236 int i;
1238 mutex_enter(&dn->dn_mtx);
1239 for (i = 0; i < TXG_SIZE; i++) {
1240 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1241 break;
1243 mutex_exit(&dn->dn_mtx);
1244 return (i < TXG_SIZE);
1247 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1248 uint64_t
1249 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1251 free_range_t range_tofind;
1252 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1253 int i;
1255 if (blkid == DMU_BONUS_BLKID)
1256 return (FALSE);
1259 * If we're in the process of opening the pool, dp will not be
1260 * set yet, but there shouldn't be anything dirty.
1262 if (dp == NULL)
1263 return (FALSE);
1265 if (dn->dn_free_txg)
1266 return (TRUE);
1268 if (blkid == DMU_SPILL_BLKID)
1269 return (dnode_spill_freed(dn));
1271 range_tofind.fr_blkid = blkid;
1272 mutex_enter(&dn->dn_mtx);
1273 for (i = 0; i < TXG_SIZE; i++) {
1274 free_range_t *range_found;
1275 avl_index_t idx;
1277 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1278 if (range_found) {
1279 ASSERT(range_found->fr_nblks > 0);
1280 break;
1282 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1283 if (range_found &&
1284 range_found->fr_blkid + range_found->fr_nblks > blkid)
1285 break;
1287 mutex_exit(&dn->dn_mtx);
1288 return (i < TXG_SIZE);
1291 /* call from syncing context when we actually write/free space for this dnode */
1292 void
1293 dnode_diduse_space(dnode_t *dn, int64_t delta)
1295 uint64_t space;
1296 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1297 dn, dn->dn_phys,
1298 (u_longlong_t)dn->dn_phys->dn_used,
1299 (longlong_t)delta);
1301 mutex_enter(&dn->dn_mtx);
1302 space = DN_USED_BYTES(dn->dn_phys);
1303 if (delta > 0) {
1304 ASSERT3U(space + delta, >=, space); /* no overflow */
1305 } else {
1306 ASSERT3U(space, >=, -delta); /* no underflow */
1308 space += delta;
1309 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1310 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1311 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1312 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1313 } else {
1314 dn->dn_phys->dn_used = space;
1315 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1317 mutex_exit(&dn->dn_mtx);
1321 * Call when we think we're going to write/free space in open context.
1322 * Be conservative (ie. OK to write less than this or free more than
1323 * this, but don't write more or free less).
1325 void
1326 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1328 objset_t *os = dn->dn_objset;
1329 dsl_dataset_t *ds = os->os_dsl_dataset;
1331 if (space > 0)
1332 space = spa_get_asize(os->os_spa, space);
1334 if (ds)
1335 dsl_dir_willuse_space(ds->ds_dir, space, tx);
1337 dmu_tx_willuse_space(tx, space);
1341 * This function scans a block at the indicated "level" looking for
1342 * a hole or data (depending on 'flags'). If level > 0, then we are
1343 * scanning an indirect block looking at its pointers. If level == 0,
1344 * then we are looking at a block of dnodes. If we don't find what we
1345 * are looking for in the block, we return ESRCH. Otherwise, return
1346 * with *offset pointing to the beginning (if searching forwards) or
1347 * end (if searching backwards) of the range covered by the block
1348 * pointer we matched on (or dnode).
1350 * The basic search algorithm used below by dnode_next_offset() is to
1351 * use this function to search up the block tree (widen the search) until
1352 * we find something (i.e., we don't return ESRCH) and then search back
1353 * down the tree (narrow the search) until we reach our original search
1354 * level.
1356 static int
1357 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1358 int lvl, uint64_t blkfill, uint64_t txg)
1360 dmu_buf_impl_t *db = NULL;
1361 void *data = NULL;
1362 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1363 uint64_t epb = 1ULL << epbs;
1364 uint64_t minfill, maxfill;
1365 boolean_t hole;
1366 int i, inc, error, span;
1368 dprintf("probing object %llu offset %llx level %d of %u\n",
1369 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1371 hole = ((flags & DNODE_FIND_HOLE) != 0);
1372 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1373 ASSERT(txg == 0 || !hole);
1375 if (lvl == dn->dn_phys->dn_nlevels) {
1376 error = 0;
1377 epb = dn->dn_phys->dn_nblkptr;
1378 data = dn->dn_phys->dn_blkptr;
1379 } else {
1380 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1381 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1382 if (error) {
1383 if (error != ENOENT)
1384 return (error);
1385 if (hole)
1386 return (0);
1388 * This can only happen when we are searching up
1389 * the block tree for data. We don't really need to
1390 * adjust the offset, as we will just end up looking
1391 * at the pointer to this block in its parent, and its
1392 * going to be unallocated, so we will skip over it.
1394 return (ESRCH);
1396 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1397 if (error) {
1398 dbuf_rele(db, FTAG);
1399 return (error);
1401 data = db->db.db_data;
1404 if (db && txg &&
1405 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1407 * This can only happen when we are searching up the tree
1408 * and these conditions mean that we need to keep climbing.
1410 error = ESRCH;
1411 } else if (lvl == 0) {
1412 dnode_phys_t *dnp = data;
1413 span = DNODE_SHIFT;
1414 ASSERT(dn->dn_type == DMU_OT_DNODE);
1416 for (i = (*offset >> span) & (blkfill - 1);
1417 i >= 0 && i < blkfill; i += inc) {
1418 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1419 break;
1420 *offset += (1ULL << span) * inc;
1422 if (i < 0 || i == blkfill)
1423 error = ESRCH;
1424 } else {
1425 blkptr_t *bp = data;
1426 uint64_t start = *offset;
1427 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1428 minfill = 0;
1429 maxfill = blkfill << ((lvl - 1) * epbs);
1431 if (hole)
1432 maxfill--;
1433 else
1434 minfill++;
1436 *offset = *offset >> span;
1437 for (i = BF64_GET(*offset, 0, epbs);
1438 i >= 0 && i < epb; i += inc) {
1439 if (bp[i].blk_fill >= minfill &&
1440 bp[i].blk_fill <= maxfill &&
1441 (hole || bp[i].blk_birth > txg))
1442 break;
1443 if (inc > 0 || *offset > 0)
1444 *offset += inc;
1446 *offset = *offset << span;
1447 if (inc < 0) {
1448 /* traversing backwards; position offset at the end */
1449 ASSERT3U(*offset, <=, start);
1450 *offset = MIN(*offset + (1ULL << span) - 1, start);
1451 } else if (*offset < start) {
1452 *offset = start;
1454 if (i < 0 || i >= epb)
1455 error = ESRCH;
1458 if (db)
1459 dbuf_rele(db, FTAG);
1461 return (error);
1465 * Find the next hole, data, or sparse region at or after *offset.
1466 * The value 'blkfill' tells us how many items we expect to find
1467 * in an L0 data block; this value is 1 for normal objects,
1468 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1469 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1471 * Examples:
1473 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1474 * Finds the next/previous hole/data in a file.
1475 * Used in dmu_offset_next().
1477 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1478 * Finds the next free/allocated dnode an objset's meta-dnode.
1479 * Only finds objects that have new contents since txg (ie.
1480 * bonus buffer changes and content removal are ignored).
1481 * Used in dmu_object_next().
1483 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1484 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
1485 * Used in dmu_object_alloc().
1488 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1489 int minlvl, uint64_t blkfill, uint64_t txg)
1491 uint64_t initial_offset = *offset;
1492 int lvl, maxlvl;
1493 int error = 0;
1495 if (!(flags & DNODE_FIND_HAVELOCK))
1496 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1498 if (dn->dn_phys->dn_nlevels == 0) {
1499 error = ESRCH;
1500 goto out;
1503 if (dn->dn_datablkshift == 0) {
1504 if (*offset < dn->dn_datablksz) {
1505 if (flags & DNODE_FIND_HOLE)
1506 *offset = dn->dn_datablksz;
1507 } else {
1508 error = ESRCH;
1510 goto out;
1513 maxlvl = dn->dn_phys->dn_nlevels;
1515 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1516 error = dnode_next_offset_level(dn,
1517 flags, offset, lvl, blkfill, txg);
1518 if (error != ESRCH)
1519 break;
1522 while (error == 0 && --lvl >= minlvl) {
1523 error = dnode_next_offset_level(dn,
1524 flags, offset, lvl, blkfill, txg);
1527 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1528 initial_offset < *offset : initial_offset > *offset))
1529 error = ESRCH;
1530 out:
1531 if (!(flags & DNODE_FIND_HAVELOCK))
1532 rw_exit(&dn->dn_struct_rwlock);
1534 return (error);