6760006 Clustering-inspired sadb_buf_pkt() should be called from AH/ESP instead of IP.
[illumos-gate.git] / usr / src / uts / common / inet / ip / sadb.c
bloba34c2e7ff992ee7113aeda7cdf1dd834bcffe2e5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/stropts.h>
29 #include <sys/errno.h>
30 #include <sys/ddi.h>
31 #include <sys/debug.h>
32 #include <sys/cmn_err.h>
33 #include <sys/stream.h>
34 #include <sys/strlog.h>
35 #include <sys/kmem.h>
36 #include <sys/sunddi.h>
37 #include <sys/tihdr.h>
38 #include <sys/atomic.h>
39 #include <sys/socket.h>
40 #include <sys/sysmacros.h>
41 #include <sys/crypto/common.h>
42 #include <sys/crypto/api.h>
43 #include <sys/zone.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #include <net/pfkeyv2.h>
47 #include <inet/common.h>
48 #include <netinet/ip6.h>
49 #include <inet/ip.h>
50 #include <inet/ip_ire.h>
51 #include <inet/ip6.h>
52 #include <inet/ipsec_info.h>
53 #include <inet/tcp.h>
54 #include <inet/sadb.h>
55 #include <inet/ipsec_impl.h>
56 #include <inet/ipsecah.h>
57 #include <inet/ipsecesp.h>
58 #include <sys/random.h>
59 #include <sys/dlpi.h>
60 #include <sys/iphada.h>
61 #include <inet/ip_if.h>
62 #include <inet/ipdrop.h>
63 #include <inet/ipclassifier.h>
64 #include <inet/sctp_ip.h>
65 #include <inet/tun.h>
68 * This source file contains Security Association Database (SADB) common
69 * routines. They are linked in with the AH module. Since AH has no chance
70 * of falling under export control, it was safe to link it in there.
73 static mblk_t *sadb_extended_acquire(ipsec_selector_t *, ipsec_policy_t *,
74 ipsec_action_t *, boolean_t, uint32_t, uint32_t, netstack_t *);
75 static void sadb_ill_df(ill_t *, mblk_t *, isaf_t *, int, boolean_t);
76 static ipsa_t *sadb_torch_assoc(isaf_t *, ipsa_t *, boolean_t, mblk_t **);
77 static void sadb_drain_torchq(queue_t *, mblk_t *);
78 static void sadb_destroy_acqlist(iacqf_t **, uint_t, boolean_t,
79 netstack_t *);
80 static void sadb_destroy(sadb_t *, netstack_t *);
81 static mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *);
83 static time_t sadb_add_time(time_t, uint64_t);
84 static void lifetime_fuzz(ipsa_t *);
85 static void age_pair_peer_list(templist_t *, sadb_t *, boolean_t);
86 static void ipsa_set_replay(ipsa_t *ipsa, uint32_t offset);
88 extern void (*cl_inet_getspi)(uint8_t protocol, uint8_t *ptr, size_t len);
89 extern int (*cl_inet_checkspi)(uint8_t protocol, uint32_t spi);
90 extern void (*cl_inet_deletespi)(uint8_t protocol, uint32_t spi);
93 * ipsacq_maxpackets is defined here to make it tunable
94 * from /etc/system.
96 extern uint64_t ipsacq_maxpackets;
98 #define SET_EXPIRE(sa, delta, exp) { \
99 if (((sa)->ipsa_ ## delta) != 0) { \
100 (sa)->ipsa_ ## exp = sadb_add_time((sa)->ipsa_addtime, \
101 (sa)->ipsa_ ## delta); \
105 #define UPDATE_EXPIRE(sa, delta, exp) { \
106 if (((sa)->ipsa_ ## delta) != 0) { \
107 time_t tmp = sadb_add_time((sa)->ipsa_usetime, \
108 (sa)->ipsa_ ## delta); \
109 if (((sa)->ipsa_ ## exp) == 0) \
110 (sa)->ipsa_ ## exp = tmp; \
111 else \
112 (sa)->ipsa_ ## exp = \
113 MIN((sa)->ipsa_ ## exp, tmp); \
118 /* wrap the macro so we can pass it as a function pointer */
119 void
120 sadb_sa_refrele(void *target)
122 IPSA_REFRELE(((ipsa_t *)target));
126 * We presume that sizeof (long) == sizeof (time_t) and that time_t is
127 * a signed type.
129 #define TIME_MAX LONG_MAX
132 * PF_KEY gives us lifetimes in uint64_t seconds. We presume that
133 * time_t is defined to be a signed type with the same range as
134 * "long". On ILP32 systems, we thus run the risk of wrapping around
135 * at end of time, as well as "overwrapping" the clock back around
136 * into a seemingly valid but incorrect future date earlier than the
137 * desired expiration.
139 * In order to avoid odd behavior (either negative lifetimes or loss
140 * of high order bits) when someone asks for bizarrely long SA
141 * lifetimes, we do a saturating add for expire times.
143 * We presume that ILP32 systems will be past end of support life when
144 * the 32-bit time_t overflows (a dangerous assumption, mind you..).
146 * On LP64, 2^64 seconds are about 5.8e11 years, at which point we
147 * will hopefully have figured out clever ways to avoid the use of
148 * fixed-sized integers in computation.
150 static time_t
151 sadb_add_time(time_t base, uint64_t delta)
153 time_t sum;
156 * Clip delta to the maximum possible time_t value to
157 * prevent "overwrapping" back into a shorter-than-desired
158 * future time.
160 if (delta > TIME_MAX)
161 delta = TIME_MAX;
163 * This sum may still overflow.
165 sum = base + delta;
168 * .. so if the result is less than the base, we overflowed.
170 if (sum < base)
171 sum = TIME_MAX;
173 return (sum);
177 * Callers of this function have already created a working security
178 * association, and have found the appropriate table & hash chain. All this
179 * function does is check duplicates, and insert the SA. The caller needs to
180 * hold the hash bucket lock and increment the refcnt before insertion.
182 * Return 0 if success, EEXIST if collision.
184 #define SA_UNIQUE_MATCH(sa1, sa2) \
185 (((sa1)->ipsa_unique_id & (sa1)->ipsa_unique_mask) == \
186 ((sa2)->ipsa_unique_id & (sa2)->ipsa_unique_mask))
189 sadb_insertassoc(ipsa_t *ipsa, isaf_t *bucket)
191 ipsa_t **ptpn = NULL;
192 ipsa_t *walker;
193 boolean_t unspecsrc;
195 ASSERT(MUTEX_HELD(&bucket->isaf_lock));
197 unspecsrc = IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_srcaddr, ipsa->ipsa_addrfam);
199 walker = bucket->isaf_ipsa;
200 ASSERT(walker == NULL || ipsa->ipsa_addrfam == walker->ipsa_addrfam);
203 * Find insertion point (pointed to with **ptpn). Insert at the head
204 * of the list unless there's an unspecified source address, then
205 * insert it after the last SA with a specified source address.
207 * BTW, you'll have to walk the whole chain, matching on {DST, SPI}
208 * checking for collisions.
211 while (walker != NULL) {
212 if (IPSA_ARE_ADDR_EQUAL(walker->ipsa_dstaddr,
213 ipsa->ipsa_dstaddr, ipsa->ipsa_addrfam)) {
214 if (walker->ipsa_spi == ipsa->ipsa_spi)
215 return (EEXIST);
217 mutex_enter(&walker->ipsa_lock);
218 if (ipsa->ipsa_state == IPSA_STATE_MATURE &&
219 (walker->ipsa_flags & IPSA_F_USED) &&
220 SA_UNIQUE_MATCH(walker, ipsa)) {
221 walker->ipsa_flags |= IPSA_F_CINVALID;
223 mutex_exit(&walker->ipsa_lock);
226 if (ptpn == NULL && unspecsrc) {
227 if (IPSA_IS_ADDR_UNSPEC(walker->ipsa_srcaddr,
228 walker->ipsa_addrfam))
229 ptpn = walker->ipsa_ptpn;
230 else if (walker->ipsa_next == NULL)
231 ptpn = &walker->ipsa_next;
234 walker = walker->ipsa_next;
237 if (ptpn == NULL)
238 ptpn = &bucket->isaf_ipsa;
239 ipsa->ipsa_next = *ptpn;
240 ipsa->ipsa_ptpn = ptpn;
241 if (ipsa->ipsa_next != NULL)
242 ipsa->ipsa_next->ipsa_ptpn = &ipsa->ipsa_next;
243 *ptpn = ipsa;
244 ipsa->ipsa_linklock = &bucket->isaf_lock;
246 return (0);
248 #undef SA_UNIQUE_MATCH
251 * Free a security association. Its reference count is 0, which means
252 * I must free it. The SA must be unlocked and must not be linked into
253 * any fanout list.
255 static void
256 sadb_freeassoc(ipsa_t *ipsa)
258 ipsec_stack_t *ipss = ipsa->ipsa_netstack->netstack_ipsec;
260 ASSERT(ipss != NULL);
261 ASSERT(MUTEX_NOT_HELD(&ipsa->ipsa_lock));
262 ASSERT(ipsa->ipsa_refcnt == 0);
263 ASSERT(ipsa->ipsa_next == NULL);
264 ASSERT(ipsa->ipsa_ptpn == NULL);
266 ip_drop_packet(sadb_clear_lpkt(ipsa), B_TRUE, NULL, NULL,
267 DROPPER(ipss, ipds_sadb_inlarval_timeout),
268 &ipss->ipsec_sadb_dropper);
270 mutex_enter(&ipsa->ipsa_lock);
271 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_AUTH);
272 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_ENCR);
273 mutex_exit(&ipsa->ipsa_lock);
275 /* bzero() these fields for paranoia's sake. */
276 if (ipsa->ipsa_authkey != NULL) {
277 bzero(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen);
278 kmem_free(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen);
280 if (ipsa->ipsa_encrkey != NULL) {
281 bzero(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen);
282 kmem_free(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen);
284 if (ipsa->ipsa_src_cid != NULL) {
285 IPSID_REFRELE(ipsa->ipsa_src_cid);
287 if (ipsa->ipsa_dst_cid != NULL) {
288 IPSID_REFRELE(ipsa->ipsa_dst_cid);
290 if (ipsa->ipsa_integ != NULL)
291 kmem_free(ipsa->ipsa_integ, ipsa->ipsa_integlen);
292 if (ipsa->ipsa_sens != NULL)
293 kmem_free(ipsa->ipsa_sens, ipsa->ipsa_senslen);
295 mutex_destroy(&ipsa->ipsa_lock);
296 kmem_free(ipsa, sizeof (*ipsa));
300 * Unlink a security association from a hash bucket. Assume the hash bucket
301 * lock is held, but the association's lock is not.
303 * Note that we do not bump the bucket's generation number here because
304 * we might not be making a visible change to the set of visible SA's.
305 * All callers MUST bump the bucket's generation number before they unlock
306 * the bucket if they use sadb_unlinkassoc to permanetly remove an SA which
307 * was present in the bucket at the time it was locked.
309 void
310 sadb_unlinkassoc(ipsa_t *ipsa)
312 ASSERT(ipsa->ipsa_linklock != NULL);
313 ASSERT(MUTEX_HELD(ipsa->ipsa_linklock));
315 /* These fields are protected by the link lock. */
316 *(ipsa->ipsa_ptpn) = ipsa->ipsa_next;
317 if (ipsa->ipsa_next != NULL) {
318 ipsa->ipsa_next->ipsa_ptpn = ipsa->ipsa_ptpn;
319 ipsa->ipsa_next = NULL;
322 ipsa->ipsa_ptpn = NULL;
324 /* This may destroy the SA. */
325 IPSA_REFRELE(ipsa);
328 void
329 sadb_delete_cluster(ipsa_t *assoc)
331 uint8_t protocol;
333 if (cl_inet_deletespi &&
334 ((assoc->ipsa_state == IPSA_STATE_LARVAL) ||
335 (assoc->ipsa_state == IPSA_STATE_MATURE))) {
336 protocol = (assoc->ipsa_type == SADB_SATYPE_AH) ?
337 IPPROTO_AH : IPPROTO_ESP;
338 cl_inet_deletespi(protocol, assoc->ipsa_spi);
343 * Create a larval security association with the specified SPI. All other
344 * fields are zeroed.
346 static ipsa_t *
347 sadb_makelarvalassoc(uint32_t spi, uint32_t *src, uint32_t *dst, int addrfam,
348 netstack_t *ns)
350 ipsa_t *newbie;
353 * Allocate...
356 newbie = (ipsa_t *)kmem_zalloc(sizeof (ipsa_t), KM_NOSLEEP);
357 if (newbie == NULL) {
358 /* Can't make new larval SA. */
359 return (NULL);
362 /* Assigned requested SPI, assume caller does SPI allocation magic. */
363 newbie->ipsa_spi = spi;
364 newbie->ipsa_netstack = ns; /* No netstack_hold */
367 * Copy addresses...
370 IPSA_COPY_ADDR(newbie->ipsa_srcaddr, src, addrfam);
371 IPSA_COPY_ADDR(newbie->ipsa_dstaddr, dst, addrfam);
373 newbie->ipsa_addrfam = addrfam;
376 * Set common initialization values, including refcnt.
378 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL);
379 newbie->ipsa_state = IPSA_STATE_LARVAL;
380 newbie->ipsa_refcnt = 1;
381 newbie->ipsa_freefunc = sadb_freeassoc;
384 * There aren't a lot of other common initialization values, as
385 * they are copied in from the PF_KEY message.
388 return (newbie);
392 * Call me to initialize a security association fanout.
394 static int
395 sadb_init_fanout(isaf_t **tablep, uint_t size, int kmflag)
397 isaf_t *table;
398 int i;
400 table = (isaf_t *)kmem_alloc(size * sizeof (*table), kmflag);
401 *tablep = table;
403 if (table == NULL)
404 return (ENOMEM);
406 for (i = 0; i < size; i++) {
407 mutex_init(&(table[i].isaf_lock), NULL, MUTEX_DEFAULT, NULL);
408 table[i].isaf_ipsa = NULL;
409 table[i].isaf_gen = 0;
412 return (0);
416 * Call me to initialize an acquire fanout
418 static int
419 sadb_init_acfanout(iacqf_t **tablep, uint_t size, int kmflag)
421 iacqf_t *table;
422 int i;
424 table = (iacqf_t *)kmem_alloc(size * sizeof (*table), kmflag);
425 *tablep = table;
427 if (table == NULL)
428 return (ENOMEM);
430 for (i = 0; i < size; i++) {
431 mutex_init(&(table[i].iacqf_lock), NULL, MUTEX_DEFAULT, NULL);
432 table[i].iacqf_ipsacq = NULL;
435 return (0);
439 * Attempt to initialize an SADB instance. On failure, return ENOMEM;
440 * caller must clean up partial allocations.
442 static int
443 sadb_init_trial(sadb_t *sp, uint_t size, int kmflag)
445 ASSERT(sp->sdb_of == NULL);
446 ASSERT(sp->sdb_if == NULL);
447 ASSERT(sp->sdb_acq == NULL);
449 sp->sdb_hashsize = size;
450 if (sadb_init_fanout(&sp->sdb_of, size, kmflag) != 0)
451 return (ENOMEM);
452 if (sadb_init_fanout(&sp->sdb_if, size, kmflag) != 0)
453 return (ENOMEM);
454 if (sadb_init_acfanout(&sp->sdb_acq, size, kmflag) != 0)
455 return (ENOMEM);
457 return (0);
461 * Call me to initialize an SADB instance; fall back to default size on failure.
463 static void
464 sadb_init(const char *name, sadb_t *sp, uint_t size, uint_t ver,
465 netstack_t *ns)
467 ASSERT(sp->sdb_of == NULL);
468 ASSERT(sp->sdb_if == NULL);
469 ASSERT(sp->sdb_acq == NULL);
471 if (size < IPSEC_DEFAULT_HASH_SIZE)
472 size = IPSEC_DEFAULT_HASH_SIZE;
474 if (sadb_init_trial(sp, size, KM_NOSLEEP) != 0) {
476 cmn_err(CE_WARN,
477 "Unable to allocate %u entry IPv%u %s SADB hash table",
478 size, ver, name);
480 sadb_destroy(sp, ns);
481 size = IPSEC_DEFAULT_HASH_SIZE;
482 cmn_err(CE_WARN, "Falling back to %d entries", size);
483 (void) sadb_init_trial(sp, size, KM_SLEEP);
489 * Initialize an SADB-pair.
491 void
492 sadbp_init(const char *name, sadbp_t *sp, int type, int size, netstack_t *ns)
494 sadb_init(name, &sp->s_v4, size, 4, ns);
495 sadb_init(name, &sp->s_v6, size, 6, ns);
497 sp->s_satype = type;
499 ASSERT((type == SADB_SATYPE_AH) || (type == SADB_SATYPE_ESP));
500 if (type == SADB_SATYPE_AH) {
501 ipsec_stack_t *ipss = ns->netstack_ipsec;
503 ip_drop_register(&ipss->ipsec_sadb_dropper, "IPsec SADB");
504 sp->s_addflags = AH_ADD_SETTABLE_FLAGS;
505 sp->s_updateflags = AH_UPDATE_SETTABLE_FLAGS;
506 } else {
507 sp->s_addflags = ESP_ADD_SETTABLE_FLAGS;
508 sp->s_updateflags = ESP_UPDATE_SETTABLE_FLAGS;
513 * Deliver a single SADB_DUMP message representing a single SA. This is
514 * called many times by sadb_dump().
516 * If the return value of this is ENOBUFS (not the same as ENOMEM), then
517 * the caller should take that as a hint that dupb() on the "original answer"
518 * failed, and that perhaps the caller should try again with a copyb()ed
519 * "original answer".
521 static int
522 sadb_dump_deliver(queue_t *pfkey_q, mblk_t *original_answer, ipsa_t *ipsa,
523 sadb_msg_t *samsg)
525 mblk_t *answer;
527 answer = dupb(original_answer);
528 if (answer == NULL)
529 return (ENOBUFS);
530 answer->b_cont = sadb_sa2msg(ipsa, samsg);
531 if (answer->b_cont == NULL) {
532 freeb(answer);
533 return (ENOMEM);
536 /* Just do a putnext, and let keysock deal with flow control. */
537 putnext(pfkey_q, answer);
538 return (0);
542 * Common function to allocate and prepare a keysock_out_t M_CTL message.
544 mblk_t *
545 sadb_keysock_out(minor_t serial)
547 mblk_t *mp;
548 keysock_out_t *kso;
550 mp = allocb(sizeof (ipsec_info_t), BPRI_HI);
551 if (mp != NULL) {
552 mp->b_datap->db_type = M_CTL;
553 mp->b_wptr += sizeof (ipsec_info_t);
554 kso = (keysock_out_t *)mp->b_rptr;
555 kso->ks_out_type = KEYSOCK_OUT;
556 kso->ks_out_len = sizeof (*kso);
557 kso->ks_out_serial = serial;
560 return (mp);
564 * Perform an SADB_DUMP, spewing out every SA in an array of SA fanouts
565 * to keysock.
567 static int
568 sadb_dump_fanout(queue_t *pfkey_q, mblk_t *mp, minor_t serial, isaf_t *fanout,
569 int num_entries, boolean_t do_peers, time_t active_time)
571 int i, error = 0;
572 mblk_t *original_answer;
573 ipsa_t *walker;
574 sadb_msg_t *samsg;
575 time_t current;
578 * For each IPSA hash bucket do:
579 * - Hold the mutex
580 * - Walk each entry, doing an sadb_dump_deliver() on it.
582 ASSERT(mp->b_cont != NULL);
583 samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
585 original_answer = sadb_keysock_out(serial);
586 if (original_answer == NULL)
587 return (ENOMEM);
589 current = gethrestime_sec();
590 for (i = 0; i < num_entries; i++) {
591 mutex_enter(&fanout[i].isaf_lock);
592 for (walker = fanout[i].isaf_ipsa; walker != NULL;
593 walker = walker->ipsa_next) {
594 if (!do_peers && walker->ipsa_haspeer)
595 continue;
596 if ((active_time != 0) &&
597 ((current - walker->ipsa_lastuse) > active_time))
598 continue;
599 error = sadb_dump_deliver(pfkey_q, original_answer,
600 walker, samsg);
601 if (error == ENOBUFS) {
602 mblk_t *new_original_answer;
604 /* Ran out of dupb's. Try a copyb. */
605 new_original_answer = copyb(original_answer);
606 if (new_original_answer == NULL) {
607 error = ENOMEM;
608 } else {
609 freeb(original_answer);
610 original_answer = new_original_answer;
611 error = sadb_dump_deliver(pfkey_q,
612 original_answer, walker, samsg);
615 if (error != 0)
616 break; /* out of for loop. */
618 mutex_exit(&fanout[i].isaf_lock);
619 if (error != 0)
620 break; /* out of for loop. */
623 freeb(original_answer);
624 return (error);
628 * Dump an entire SADB; outbound first, then inbound.
632 sadb_dump(queue_t *pfkey_q, mblk_t *mp, keysock_in_t *ksi, sadb_t *sp)
634 int error;
635 time_t active_time = 0;
636 sadb_x_edump_t *edump =
637 (sadb_x_edump_t *)ksi->ks_in_extv[SADB_X_EXT_EDUMP];
639 if (edump != NULL) {
640 active_time = edump->sadb_x_edump_timeout;
643 /* Dump outbound */
644 error = sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_of,
645 sp->sdb_hashsize, B_TRUE, active_time);
646 if (error)
647 return (error);
649 /* Dump inbound */
650 return sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_if,
651 sp->sdb_hashsize, B_FALSE, active_time);
655 * Generic sadb table walker.
657 * Call "walkfn" for each SA in each bucket in "table"; pass the
658 * bucket, the entry and "cookie" to the callback function.
659 * Take care to ensure that walkfn can delete the SA without screwing
660 * up our traverse.
662 * The bucket is locked for the duration of the callback, both so that the
663 * callback can just call sadb_unlinkassoc() when it wants to delete something,
664 * and so that no new entries are added while we're walking the list.
666 static void
667 sadb_walker(isaf_t *table, uint_t numentries,
668 void (*walkfn)(isaf_t *head, ipsa_t *entry, void *cookie),
669 void *cookie)
671 int i;
672 for (i = 0; i < numentries; i++) {
673 ipsa_t *entry, *next;
675 mutex_enter(&table[i].isaf_lock);
677 for (entry = table[i].isaf_ipsa; entry != NULL;
678 entry = next) {
679 next = entry->ipsa_next;
680 (*walkfn)(&table[i], entry, cookie);
682 mutex_exit(&table[i].isaf_lock);
687 * From the given SA, construct a dl_ct_ipsec_key and
688 * a dl_ct_ipsec structures to be sent to the adapter as part
689 * of a DL_CONTROL_REQ.
691 * ct_sa must point to the storage allocated for the key
692 * structure and must be followed by storage allocated
693 * for the SA information that must be sent to the driver
694 * as part of the DL_CONTROL_REQ request.
696 * The is_inbound boolean indicates whether the specified
697 * SA is part of an inbound SA table.
699 * Returns B_TRUE if the corresponding SA must be passed to
700 * a provider, B_FALSE otherwise; frees *mp if it returns B_FALSE.
702 static boolean_t
703 sadb_req_from_sa(ipsa_t *sa, mblk_t *mp, boolean_t is_inbound)
705 dl_ct_ipsec_key_t *keyp;
706 dl_ct_ipsec_t *sap;
707 void *ct_sa = mp->b_wptr;
709 ASSERT(MUTEX_HELD(&sa->ipsa_lock));
711 keyp = (dl_ct_ipsec_key_t *)(ct_sa);
712 sap = (dl_ct_ipsec_t *)(keyp + 1);
714 IPSECHW_DEBUG(IPSECHW_CAPAB, ("sadb_req_from_sa: "
715 "is_inbound = %d\n", is_inbound));
717 /* initialize flag */
718 sap->sadb_sa_flags = 0;
719 if (is_inbound) {
720 sap->sadb_sa_flags |= DL_CT_IPSEC_INBOUND;
722 * If an inbound SA has a peer, then mark it has being
723 * an outbound SA as well.
725 if (sa->ipsa_haspeer)
726 sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND;
727 } else {
729 * If an outbound SA has a peer, then don't send it,
730 * since we will send the copy from the inbound table.
732 if (sa->ipsa_haspeer) {
733 freemsg(mp);
734 return (B_FALSE);
736 sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND;
739 keyp->dl_key_spi = sa->ipsa_spi;
740 bcopy(sa->ipsa_dstaddr, keyp->dl_key_dest_addr,
741 DL_CTL_IPSEC_ADDR_LEN);
742 keyp->dl_key_addr_family = sa->ipsa_addrfam;
744 sap->sadb_sa_auth = sa->ipsa_auth_alg;
745 sap->sadb_sa_encrypt = sa->ipsa_encr_alg;
747 sap->sadb_key_len_a = sa->ipsa_authkeylen;
748 sap->sadb_key_bits_a = sa->ipsa_authkeybits;
749 bcopy(sa->ipsa_authkey,
750 sap->sadb_key_data_a, sap->sadb_key_len_a);
752 sap->sadb_key_len_e = sa->ipsa_encrkeylen;
753 sap->sadb_key_bits_e = sa->ipsa_encrkeybits;
754 bcopy(sa->ipsa_encrkey,
755 sap->sadb_key_data_e, sap->sadb_key_len_e);
757 mp->b_wptr += sizeof (dl_ct_ipsec_t) + sizeof (dl_ct_ipsec_key_t);
758 return (B_TRUE);
762 * Called from AH or ESP to format a message which will be used to inform
763 * IPsec-acceleration-capable ills of a SADB change.
764 * (It is not possible to send the message to IP directly from this function
765 * since the SA, if any, is locked during the call).
767 * dl_operation: DL_CONTROL_REQ operation (add, delete, update, etc)
768 * sa_type: identifies whether the operation applies to AH or ESP
769 * (must be one of SADB_SATYPE_AH or SADB_SATYPE_ESP)
770 * sa: Pointer to an SA. Must be non-NULL and locked
771 * for ADD, DELETE, GET, and UPDATE operations.
772 * This function returns an mblk chain that must be passed to IP
773 * for forwarding to the IPsec capable providers.
775 mblk_t *
776 sadb_fmt_sa_req(uint_t dl_operation, uint_t sa_type, ipsa_t *sa,
777 boolean_t is_inbound)
779 mblk_t *mp;
780 dl_control_req_t *ctrl;
781 boolean_t need_key = B_FALSE;
782 mblk_t *ctl_mp = NULL;
783 ipsec_ctl_t *ctl;
786 * 1 allocate and initialize DL_CONTROL_REQ M_PROTO
787 * 2 if a key is needed for the operation
788 * 2.1 initialize key
789 * 2.2 if a full SA is needed for the operation
790 * 2.2.1 initialize full SA info
791 * 3 return message; caller will call ill_ipsec_capab_send_all()
792 * to send the resulting message to IPsec capable ills.
795 ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP);
798 * Allocate DL_CONTROL_REQ M_PROTO
799 * We allocate room for the SA even if it's not needed
800 * by some of the operations (for example flush)
802 mp = allocb(sizeof (dl_control_req_t) +
803 sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI);
804 if (mp == NULL)
805 return (NULL);
806 mp->b_datap->db_type = M_PROTO;
808 /* initialize dl_control_req_t */
809 ctrl = (dl_control_req_t *)mp->b_wptr;
810 ctrl->dl_primitive = DL_CONTROL_REQ;
811 ctrl->dl_operation = dl_operation;
812 ctrl->dl_type = sa_type == SADB_SATYPE_AH ? DL_CT_IPSEC_AH :
813 DL_CT_IPSEC_ESP;
814 ctrl->dl_key_offset = sizeof (dl_control_req_t);
815 ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t);
816 ctrl->dl_data_offset = sizeof (dl_control_req_t) +
817 sizeof (dl_ct_ipsec_key_t);
818 ctrl->dl_data_length = sizeof (dl_ct_ipsec_t);
819 mp->b_wptr += sizeof (dl_control_req_t);
821 if ((dl_operation == DL_CO_SET) || (dl_operation == DL_CO_DELETE)) {
822 ASSERT(sa != NULL);
823 ASSERT(MUTEX_HELD(&sa->ipsa_lock));
825 need_key = B_TRUE;
828 * Initialize key and SA data. Note that for some
829 * operations the SA data is ignored by the provider
830 * (delete, etc.)
832 if (!sadb_req_from_sa(sa, mp, is_inbound))
833 return (NULL);
836 /* construct control message */
837 ctl_mp = allocb(sizeof (ipsec_ctl_t), BPRI_HI);
838 if (ctl_mp == NULL) {
839 cmn_err(CE_WARN, "sadb_fmt_sa_req: allocb failed\n");
840 freemsg(mp);
841 return (NULL);
844 ctl_mp->b_datap->db_type = M_CTL;
845 ctl_mp->b_wptr += sizeof (ipsec_ctl_t);
846 ctl_mp->b_cont = mp;
848 ctl = (ipsec_ctl_t *)ctl_mp->b_rptr;
849 ctl->ipsec_ctl_type = IPSEC_CTL;
850 ctl->ipsec_ctl_len = sizeof (ipsec_ctl_t);
851 ctl->ipsec_ctl_sa_type = sa_type;
853 if (need_key) {
855 * Keep an additional reference on SA, since it will be
856 * needed by IP to send control messages corresponding
857 * to that SA from its perimeter. IP will do a
858 * IPSA_REFRELE when done with the request.
860 ASSERT(MUTEX_HELD(&sa->ipsa_lock));
861 IPSA_REFHOLD(sa);
862 ctl->ipsec_ctl_sa = sa;
863 } else
864 ctl->ipsec_ctl_sa = NULL;
866 return (ctl_mp);
871 * Called by sadb_ill_download() to dump the entries for a specific
872 * fanout table. For each SA entry in the table passed as argument,
873 * use mp as a template and constructs a full DL_CONTROL message, and
874 * call ill_dlpi_send(), provided by IP, to send the resulting
875 * messages to the ill.
877 static void
878 sadb_ill_df(ill_t *ill, mblk_t *mp, isaf_t *fanout, int num_entries,
879 boolean_t is_inbound)
881 ipsa_t *walker;
882 mblk_t *nmp, *salist;
883 int i, error = 0;
884 ip_stack_t *ipst = ill->ill_ipst;
885 netstack_t *ns = ipst->ips_netstack;
887 IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_ill_df: fanout at 0x%p ne=%d\n",
888 (void *)fanout, num_entries));
890 * For each IPSA hash bucket do:
891 * - Hold the mutex
892 * - Walk each entry, sending a corresponding request to IP
893 * for it.
895 ASSERT(mp->b_datap->db_type == M_PROTO);
897 for (i = 0; i < num_entries; i++) {
898 mutex_enter(&fanout[i].isaf_lock);
899 salist = NULL;
901 for (walker = fanout[i].isaf_ipsa; walker != NULL;
902 walker = walker->ipsa_next) {
903 IPSECHW_DEBUG(IPSECHW_SADB,
904 ("sadb_ill_df: sending SA to ill via IP \n"));
906 * Duplicate the template mp passed and
907 * complete DL_CONTROL_REQ data.
908 * To be more memory efficient, we could use
909 * dupb() for the M_CTL and copyb() for the M_PROTO
910 * as the M_CTL, since the M_CTL is the same for
911 * every SA entry passed down to IP for the same ill.
913 * Note that copymsg/copyb ensure that the new mblk
914 * is at least as large as the source mblk even if it's
915 * not using all its storage -- therefore, nmp
916 * has trailing space for sadb_req_from_sa to add
917 * the SA-specific bits.
919 mutex_enter(&walker->ipsa_lock);
920 if (ipsec_capab_match(ill,
921 ill->ill_phyint->phyint_ifindex, ill->ill_isv6,
922 walker, ns)) {
923 nmp = copymsg(mp);
924 if (nmp == NULL) {
925 IPSECHW_DEBUG(IPSECHW_SADB,
926 ("sadb_ill_df: alloc error\n"));
927 error = ENOMEM;
928 mutex_exit(&walker->ipsa_lock);
929 break;
931 if (sadb_req_from_sa(walker, nmp, is_inbound)) {
932 nmp->b_next = salist;
933 salist = nmp;
936 mutex_exit(&walker->ipsa_lock);
938 mutex_exit(&fanout[i].isaf_lock);
939 while (salist != NULL) {
940 nmp = salist;
941 salist = nmp->b_next;
942 nmp->b_next = NULL;
943 ill_dlpi_send(ill, nmp);
945 if (error != 0)
946 break; /* out of for loop. */
951 * Called by ill_ipsec_capab_add(). Sends a copy of the SADB of
952 * the type specified by sa_type to the specified ill.
954 * We call for each fanout table defined by the SADB (one per
955 * protocol). sadb_ill_df() finally calls ill_dlpi_send() for
956 * each SADB entry in order to send a corresponding DL_CONTROL_REQ
957 * message to the ill.
959 void
960 sadb_ill_download(ill_t *ill, uint_t sa_type)
962 mblk_t *protomp; /* prototype message */
963 dl_control_req_t *ctrl;
964 sadbp_t *spp;
965 sadb_t *sp;
966 int dlt;
967 ip_stack_t *ipst = ill->ill_ipst;
968 netstack_t *ns = ipst->ips_netstack;
970 ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP);
973 * Allocate and initialize prototype answer. A duplicate for
974 * each SA is sent down to the interface.
977 /* DL_CONTROL_REQ M_PROTO mblk_t */
978 protomp = allocb(sizeof (dl_control_req_t) +
979 sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI);
980 if (protomp == NULL)
981 return;
982 protomp->b_datap->db_type = M_PROTO;
984 dlt = (sa_type == SADB_SATYPE_AH) ? DL_CT_IPSEC_AH : DL_CT_IPSEC_ESP;
985 if (sa_type == SADB_SATYPE_ESP) {
986 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
988 spp = &espstack->esp_sadb;
989 } else {
990 ipsecah_stack_t *ahstack = ns->netstack_ipsecah;
992 spp = &ahstack->ah_sadb;
995 ctrl = (dl_control_req_t *)protomp->b_wptr;
996 ctrl->dl_primitive = DL_CONTROL_REQ;
997 ctrl->dl_operation = DL_CO_SET;
998 ctrl->dl_type = dlt;
999 ctrl->dl_key_offset = sizeof (dl_control_req_t);
1000 ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t);
1001 ctrl->dl_data_offset = sizeof (dl_control_req_t) +
1002 sizeof (dl_ct_ipsec_key_t);
1003 ctrl->dl_data_length = sizeof (dl_ct_ipsec_t);
1004 protomp->b_wptr += sizeof (dl_control_req_t);
1007 * then for each SADB entry, we fill out the dl_ct_ipsec_key_t
1008 * and dl_ct_ipsec_t
1010 sp = ill->ill_isv6 ? &(spp->s_v6) : &(spp->s_v4);
1011 sadb_ill_df(ill, protomp, sp->sdb_of, sp->sdb_hashsize, B_FALSE);
1012 sadb_ill_df(ill, protomp, sp->sdb_if, sp->sdb_hashsize, B_TRUE);
1013 freemsg(protomp);
1017 * Call me to free up a security association fanout. Use the forever
1018 * variable to indicate freeing up the SAs (forever == B_FALSE, e.g.
1019 * an SADB_FLUSH message), or destroying everything (forever == B_TRUE,
1020 * when a module is unloaded).
1022 static void
1023 sadb_destroyer(isaf_t **tablep, uint_t numentries, boolean_t forever,
1024 boolean_t inbound)
1026 int i;
1027 isaf_t *table = *tablep;
1028 uint8_t protocol;
1030 if (table == NULL)
1031 return;
1033 for (i = 0; i < numentries; i++) {
1034 mutex_enter(&table[i].isaf_lock);
1035 while (table[i].isaf_ipsa != NULL) {
1036 if (inbound && cl_inet_deletespi &&
1037 (table[i].isaf_ipsa->ipsa_state !=
1038 IPSA_STATE_ACTIVE_ELSEWHERE) &&
1039 (table[i].isaf_ipsa->ipsa_state !=
1040 IPSA_STATE_IDLE)) {
1041 protocol = (table[i].isaf_ipsa->ipsa_type ==
1042 SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP;
1043 cl_inet_deletespi(protocol,
1044 table[i].isaf_ipsa->ipsa_spi);
1046 sadb_unlinkassoc(table[i].isaf_ipsa);
1048 table[i].isaf_gen++;
1049 mutex_exit(&table[i].isaf_lock);
1050 if (forever)
1051 mutex_destroy(&(table[i].isaf_lock));
1054 if (forever) {
1055 *tablep = NULL;
1056 kmem_free(table, numentries * sizeof (*table));
1061 * Entry points to sadb_destroyer().
1063 static void
1064 sadb_flush(sadb_t *sp, netstack_t *ns)
1067 * Flush out each bucket, one at a time. Were it not for keysock's
1068 * enforcement, there would be a subtlety where I could add on the
1069 * heels of a flush. With keysock's enforcement, however, this
1070 * makes ESP's job easy.
1072 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_FALSE, B_FALSE);
1073 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_FALSE, B_TRUE);
1075 /* For each acquire, destroy it; leave the bucket mutex alone. */
1076 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_FALSE, ns);
1079 static void
1080 sadb_destroy(sadb_t *sp, netstack_t *ns)
1082 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_TRUE, B_FALSE);
1083 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_TRUE, B_TRUE);
1085 /* For each acquire, destroy it, including the bucket mutex. */
1086 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_TRUE, ns);
1088 ASSERT(sp->sdb_of == NULL);
1089 ASSERT(sp->sdb_if == NULL);
1090 ASSERT(sp->sdb_acq == NULL);
1093 static void
1094 sadb_send_flush_req(sadbp_t *spp)
1096 mblk_t *ctl_mp;
1099 * we've been unplumbed, or never were plumbed; don't go there.
1101 if (spp->s_ip_q == NULL)
1102 return;
1104 /* have IP send a flush msg to the IPsec accelerators */
1105 ctl_mp = sadb_fmt_sa_req(DL_CO_FLUSH, spp->s_satype, NULL, B_TRUE);
1106 if (ctl_mp != NULL)
1107 putnext(spp->s_ip_q, ctl_mp);
1110 void
1111 sadbp_flush(sadbp_t *spp, netstack_t *ns)
1113 sadb_flush(&spp->s_v4, ns);
1114 sadb_flush(&spp->s_v6, ns);
1116 sadb_send_flush_req(spp);
1119 void
1120 sadbp_destroy(sadbp_t *spp, netstack_t *ns)
1122 sadb_destroy(&spp->s_v4, ns);
1123 sadb_destroy(&spp->s_v6, ns);
1125 sadb_send_flush_req(spp);
1126 if (spp->s_satype == SADB_SATYPE_AH) {
1127 ipsec_stack_t *ipss = ns->netstack_ipsec;
1129 ip_drop_unregister(&ipss->ipsec_sadb_dropper);
1135 * Check hard vs. soft lifetimes. If there's a reality mismatch (e.g.
1136 * soft lifetimes > hard lifetimes) return an appropriate diagnostic for
1137 * EINVAL.
1140 sadb_hardsoftchk(sadb_lifetime_t *hard, sadb_lifetime_t *soft,
1141 sadb_lifetime_t *idle)
1143 if (hard == NULL || soft == NULL)
1144 return (0);
1146 if (hard->sadb_lifetime_allocations != 0 &&
1147 soft->sadb_lifetime_allocations != 0 &&
1148 hard->sadb_lifetime_allocations < soft->sadb_lifetime_allocations)
1149 return (SADB_X_DIAGNOSTIC_ALLOC_HSERR);
1151 if (hard->sadb_lifetime_bytes != 0 &&
1152 soft->sadb_lifetime_bytes != 0 &&
1153 hard->sadb_lifetime_bytes < soft->sadb_lifetime_bytes)
1154 return (SADB_X_DIAGNOSTIC_BYTES_HSERR);
1156 if (hard->sadb_lifetime_addtime != 0 &&
1157 soft->sadb_lifetime_addtime != 0 &&
1158 hard->sadb_lifetime_addtime < soft->sadb_lifetime_addtime)
1159 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR);
1161 if (hard->sadb_lifetime_usetime != 0 &&
1162 soft->sadb_lifetime_usetime != 0 &&
1163 hard->sadb_lifetime_usetime < soft->sadb_lifetime_usetime)
1164 return (SADB_X_DIAGNOSTIC_USETIME_HSERR);
1166 if (idle != NULL) {
1167 if (hard->sadb_lifetime_addtime != 0 &&
1168 idle->sadb_lifetime_addtime != 0 &&
1169 hard->sadb_lifetime_addtime < idle->sadb_lifetime_addtime)
1170 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR);
1172 if (soft->sadb_lifetime_addtime != 0 &&
1173 idle->sadb_lifetime_addtime != 0 &&
1174 soft->sadb_lifetime_addtime < idle->sadb_lifetime_addtime)
1175 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR);
1177 if (hard->sadb_lifetime_usetime != 0 &&
1178 idle->sadb_lifetime_usetime != 0 &&
1179 hard->sadb_lifetime_usetime < idle->sadb_lifetime_usetime)
1180 return (SADB_X_DIAGNOSTIC_USETIME_HSERR);
1182 if (soft->sadb_lifetime_usetime != 0 &&
1183 idle->sadb_lifetime_usetime != 0 &&
1184 soft->sadb_lifetime_usetime < idle->sadb_lifetime_usetime)
1185 return (SADB_X_DIAGNOSTIC_USETIME_HSERR);
1188 return (0);
1192 * Clone a security association for the purposes of inserting a single SA
1193 * into inbound and outbound tables respectively. This function should only
1194 * be called from sadb_common_add().
1196 static ipsa_t *
1197 sadb_cloneassoc(ipsa_t *ipsa)
1199 ipsa_t *newbie;
1200 boolean_t error = B_FALSE;
1202 ASSERT(MUTEX_NOT_HELD(&(ipsa->ipsa_lock)));
1204 newbie = kmem_alloc(sizeof (ipsa_t), KM_NOSLEEP);
1205 if (newbie == NULL)
1206 return (NULL);
1208 /* Copy over what we can. */
1209 *newbie = *ipsa;
1211 /* bzero and initialize locks, in case *_init() allocates... */
1212 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL);
1215 * While somewhat dain-bramaged, the most graceful way to
1216 * recover from errors is to keep plowing through the
1217 * allocations, and getting what I can. It's easier to call
1218 * sadb_freeassoc() on the stillborn clone when all the
1219 * pointers aren't pointing to the parent's data.
1222 if (ipsa->ipsa_authkey != NULL) {
1223 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen,
1224 KM_NOSLEEP);
1225 if (newbie->ipsa_authkey == NULL) {
1226 error = B_TRUE;
1227 } else {
1228 bcopy(ipsa->ipsa_authkey, newbie->ipsa_authkey,
1229 newbie->ipsa_authkeylen);
1231 newbie->ipsa_kcfauthkey.ck_data =
1232 newbie->ipsa_authkey;
1235 if (newbie->ipsa_amech.cm_param != NULL) {
1236 newbie->ipsa_amech.cm_param =
1237 (char *)&newbie->ipsa_mac_len;
1241 if (ipsa->ipsa_encrkey != NULL) {
1242 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen,
1243 KM_NOSLEEP);
1244 if (newbie->ipsa_encrkey == NULL) {
1245 error = B_TRUE;
1246 } else {
1247 bcopy(ipsa->ipsa_encrkey, newbie->ipsa_encrkey,
1248 newbie->ipsa_encrkeylen);
1250 newbie->ipsa_kcfencrkey.ck_data =
1251 newbie->ipsa_encrkey;
1255 newbie->ipsa_authtmpl = NULL;
1256 newbie->ipsa_encrtmpl = NULL;
1257 newbie->ipsa_haspeer = B_TRUE;
1259 if (ipsa->ipsa_integ != NULL) {
1260 newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen,
1261 KM_NOSLEEP);
1262 if (newbie->ipsa_integ == NULL) {
1263 error = B_TRUE;
1264 } else {
1265 bcopy(ipsa->ipsa_integ, newbie->ipsa_integ,
1266 newbie->ipsa_integlen);
1270 if (ipsa->ipsa_sens != NULL) {
1271 newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen,
1272 KM_NOSLEEP);
1273 if (newbie->ipsa_sens == NULL) {
1274 error = B_TRUE;
1275 } else {
1276 bcopy(ipsa->ipsa_sens, newbie->ipsa_sens,
1277 newbie->ipsa_senslen);
1281 if (ipsa->ipsa_src_cid != NULL) {
1282 newbie->ipsa_src_cid = ipsa->ipsa_src_cid;
1283 IPSID_REFHOLD(ipsa->ipsa_src_cid);
1286 if (ipsa->ipsa_dst_cid != NULL) {
1287 newbie->ipsa_dst_cid = ipsa->ipsa_dst_cid;
1288 IPSID_REFHOLD(ipsa->ipsa_dst_cid);
1291 if (error) {
1292 sadb_freeassoc(newbie);
1293 return (NULL);
1296 return (newbie);
1300 * Initialize a SADB address extension at the address specified by addrext.
1301 * Return a pointer to the end of the new address extension.
1303 static uint8_t *
1304 sadb_make_addr_ext(uint8_t *start, uint8_t *end, uint16_t exttype,
1305 sa_family_t af, uint32_t *addr, uint16_t port, uint8_t proto, int prefix)
1307 struct sockaddr_in *sin;
1308 struct sockaddr_in6 *sin6;
1309 uint8_t *cur = start;
1310 int addrext_len;
1311 int sin_len;
1312 sadb_address_t *addrext = (sadb_address_t *)cur;
1314 if (cur == NULL)
1315 return (NULL);
1317 cur += sizeof (*addrext);
1318 if (cur > end)
1319 return (NULL);
1321 addrext->sadb_address_proto = proto;
1322 addrext->sadb_address_prefixlen = prefix;
1323 addrext->sadb_address_reserved = 0;
1324 addrext->sadb_address_exttype = exttype;
1326 switch (af) {
1327 case AF_INET:
1328 sin = (struct sockaddr_in *)cur;
1329 sin_len = sizeof (*sin);
1330 cur += sin_len;
1331 if (cur > end)
1332 return (NULL);
1334 sin->sin_family = af;
1335 bzero(sin->sin_zero, sizeof (sin->sin_zero));
1336 sin->sin_port = port;
1337 IPSA_COPY_ADDR(&sin->sin_addr, addr, af);
1338 break;
1339 case AF_INET6:
1340 sin6 = (struct sockaddr_in6 *)cur;
1341 sin_len = sizeof (*sin6);
1342 cur += sin_len;
1343 if (cur > end)
1344 return (NULL);
1346 bzero(sin6, sizeof (*sin6));
1347 sin6->sin6_family = af;
1348 sin6->sin6_port = port;
1349 IPSA_COPY_ADDR(&sin6->sin6_addr, addr, af);
1350 break;
1353 addrext_len = roundup(cur - start, sizeof (uint64_t));
1354 addrext->sadb_address_len = SADB_8TO64(addrext_len);
1356 cur = start + addrext_len;
1357 if (cur > end)
1358 cur = NULL;
1360 return (cur);
1364 * Construct a key management cookie extension.
1367 static uint8_t *
1368 sadb_make_kmc_ext(uint8_t *cur, uint8_t *end, uint32_t kmp, uint32_t kmc)
1370 sadb_x_kmc_t *kmcext = (sadb_x_kmc_t *)cur;
1372 if (cur == NULL)
1373 return (NULL);
1375 cur += sizeof (*kmcext);
1377 if (cur > end)
1378 return (NULL);
1380 kmcext->sadb_x_kmc_len = SADB_8TO64(sizeof (*kmcext));
1381 kmcext->sadb_x_kmc_exttype = SADB_X_EXT_KM_COOKIE;
1382 kmcext->sadb_x_kmc_proto = kmp;
1383 kmcext->sadb_x_kmc_cookie = kmc;
1384 kmcext->sadb_x_kmc_reserved = 0;
1386 return (cur);
1390 * Given an original message header with sufficient space following it, and an
1391 * SA, construct a full PF_KEY message with all of the relevant extensions.
1392 * This is mostly used for SADB_GET, and SADB_DUMP.
1394 static mblk_t *
1395 sadb_sa2msg(ipsa_t *ipsa, sadb_msg_t *samsg)
1397 int alloclen, addrsize, paddrsize, authsize, encrsize;
1398 int srcidsize, dstidsize;
1399 sa_family_t fam, pfam; /* Address family for SADB_EXT_ADDRESS */
1400 /* src/dst and proxy sockaddrs. */
1402 * The following are pointers into the PF_KEY message this PF_KEY
1403 * message creates.
1405 sadb_msg_t *newsamsg;
1406 sadb_sa_t *assoc;
1407 sadb_lifetime_t *lt;
1408 sadb_key_t *key;
1409 sadb_ident_t *ident;
1410 sadb_sens_t *sens;
1411 sadb_ext_t *walker; /* For when we need a generic ext. pointer. */
1412 sadb_x_replay_ctr_t *repl_ctr;
1413 sadb_x_pair_t *pair_ext;
1415 mblk_t *mp;
1416 uint64_t *bitmap;
1417 uint8_t *cur, *end;
1418 /* These indicate the presence of the above extension fields. */
1419 boolean_t soft, hard, isrc, idst, auth, encr, sensinteg, srcid, dstid;
1420 boolean_t idle;
1421 boolean_t paired;
1422 uint32_t otherspi;
1424 /* First off, figure out the allocation length for this message. */
1427 * Constant stuff. This includes base, SA, address (src, dst),
1428 * and lifetime (current).
1430 alloclen = sizeof (sadb_msg_t) + sizeof (sadb_sa_t) +
1431 sizeof (sadb_lifetime_t);
1433 fam = ipsa->ipsa_addrfam;
1434 switch (fam) {
1435 case AF_INET:
1436 addrsize = roundup(sizeof (struct sockaddr_in) +
1437 sizeof (sadb_address_t), sizeof (uint64_t));
1438 break;
1439 case AF_INET6:
1440 addrsize = roundup(sizeof (struct sockaddr_in6) +
1441 sizeof (sadb_address_t), sizeof (uint64_t));
1442 break;
1443 default:
1444 return (NULL);
1447 * Allocate TWO address extensions, for source and destination.
1448 * (Thus, the * 2.)
1450 alloclen += addrsize * 2;
1451 if (ipsa->ipsa_flags & IPSA_F_NATT_REM)
1452 alloclen += addrsize;
1453 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC)
1454 alloclen += addrsize;
1456 if (ipsa->ipsa_flags & IPSA_F_PAIRED) {
1457 paired = B_TRUE;
1458 alloclen += sizeof (sadb_x_pair_t);
1459 otherspi = ipsa->ipsa_otherspi;
1460 } else {
1461 paired = B_FALSE;
1464 /* How 'bout other lifetimes? */
1465 if (ipsa->ipsa_softaddlt != 0 || ipsa->ipsa_softuselt != 0 ||
1466 ipsa->ipsa_softbyteslt != 0 || ipsa->ipsa_softalloc != 0) {
1467 alloclen += sizeof (sadb_lifetime_t);
1468 soft = B_TRUE;
1469 } else {
1470 soft = B_FALSE;
1473 if (ipsa->ipsa_hardaddlt != 0 || ipsa->ipsa_harduselt != 0 ||
1474 ipsa->ipsa_hardbyteslt != 0 || ipsa->ipsa_hardalloc != 0) {
1475 alloclen += sizeof (sadb_lifetime_t);
1476 hard = B_TRUE;
1477 } else {
1478 hard = B_FALSE;
1481 if (ipsa->ipsa_idleaddlt != 0 || ipsa->ipsa_idleuselt != 0) {
1482 alloclen += sizeof (sadb_lifetime_t);
1483 idle = B_TRUE;
1484 } else {
1485 idle = B_FALSE;
1488 /* Inner addresses. */
1489 if (ipsa->ipsa_innerfam == 0) {
1490 isrc = B_FALSE;
1491 idst = B_FALSE;
1492 } else {
1493 pfam = ipsa->ipsa_innerfam;
1494 switch (pfam) {
1495 case AF_INET6:
1496 paddrsize = roundup(sizeof (struct sockaddr_in6) +
1497 sizeof (sadb_address_t), sizeof (uint64_t));
1498 break;
1499 case AF_INET:
1500 paddrsize = roundup(sizeof (struct sockaddr_in) +
1501 sizeof (sadb_address_t), sizeof (uint64_t));
1502 break;
1503 default:
1504 cmn_err(CE_PANIC,
1505 "IPsec SADB: Proxy length failure.\n");
1506 break;
1508 isrc = B_TRUE;
1509 idst = B_TRUE;
1510 alloclen += 2 * paddrsize;
1513 /* For the following fields, assume that length != 0 ==> stuff */
1514 if (ipsa->ipsa_authkeylen != 0) {
1515 authsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_authkeylen,
1516 sizeof (uint64_t));
1517 alloclen += authsize;
1518 auth = B_TRUE;
1519 } else {
1520 auth = B_FALSE;
1523 if (ipsa->ipsa_encrkeylen != 0) {
1524 encrsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_encrkeylen,
1525 sizeof (uint64_t));
1526 alloclen += encrsize;
1527 encr = B_TRUE;
1528 } else {
1529 encr = B_FALSE;
1532 /* No need for roundup on sens and integ. */
1533 if (ipsa->ipsa_integlen != 0 || ipsa->ipsa_senslen != 0) {
1534 alloclen += sizeof (sadb_key_t) + ipsa->ipsa_integlen +
1535 ipsa->ipsa_senslen;
1536 sensinteg = B_TRUE;
1537 } else {
1538 sensinteg = B_FALSE;
1542 * Must use strlen() here for lengths. Identities use NULL
1543 * pointers to indicate their nonexistence.
1545 if (ipsa->ipsa_src_cid != NULL) {
1546 srcidsize = roundup(sizeof (sadb_ident_t) +
1547 strlen(ipsa->ipsa_src_cid->ipsid_cid) + 1,
1548 sizeof (uint64_t));
1549 alloclen += srcidsize;
1550 srcid = B_TRUE;
1551 } else {
1552 srcid = B_FALSE;
1555 if (ipsa->ipsa_dst_cid != NULL) {
1556 dstidsize = roundup(sizeof (sadb_ident_t) +
1557 strlen(ipsa->ipsa_dst_cid->ipsid_cid) + 1,
1558 sizeof (uint64_t));
1559 alloclen += dstidsize;
1560 dstid = B_TRUE;
1561 } else {
1562 dstid = B_FALSE;
1565 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0))
1566 alloclen += sizeof (sadb_x_kmc_t);
1568 if (ipsa->ipsa_replay != 0) {
1569 alloclen += sizeof (sadb_x_replay_ctr_t);
1572 /* Make sure the allocation length is a multiple of 8 bytes. */
1573 ASSERT((alloclen & 0x7) == 0);
1575 /* XXX Possibly make it esballoc, with a bzero-ing free_ftn. */
1576 mp = allocb(alloclen, BPRI_HI);
1577 if (mp == NULL)
1578 return (NULL);
1580 mp->b_wptr += alloclen;
1581 end = mp->b_wptr;
1582 newsamsg = (sadb_msg_t *)mp->b_rptr;
1583 *newsamsg = *samsg;
1584 newsamsg->sadb_msg_len = (uint16_t)SADB_8TO64(alloclen);
1586 mutex_enter(&ipsa->ipsa_lock); /* Since I'm grabbing SA fields... */
1588 newsamsg->sadb_msg_satype = ipsa->ipsa_type;
1590 assoc = (sadb_sa_t *)(newsamsg + 1);
1591 assoc->sadb_sa_len = SADB_8TO64(sizeof (*assoc));
1592 assoc->sadb_sa_exttype = SADB_EXT_SA;
1593 assoc->sadb_sa_spi = ipsa->ipsa_spi;
1594 assoc->sadb_sa_replay = ipsa->ipsa_replay_wsize;
1595 assoc->sadb_sa_state = ipsa->ipsa_state;
1596 assoc->sadb_sa_auth = ipsa->ipsa_auth_alg;
1597 assoc->sadb_sa_encrypt = ipsa->ipsa_encr_alg;
1598 assoc->sadb_sa_flags = ipsa->ipsa_flags;
1600 lt = (sadb_lifetime_t *)(assoc + 1);
1601 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1602 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
1603 /* We do not support the concept. */
1604 lt->sadb_lifetime_allocations = 0;
1605 lt->sadb_lifetime_bytes = ipsa->ipsa_bytes;
1606 lt->sadb_lifetime_addtime = ipsa->ipsa_addtime;
1607 lt->sadb_lifetime_usetime = ipsa->ipsa_usetime;
1609 if (hard) {
1610 lt++;
1611 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1612 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
1613 lt->sadb_lifetime_allocations = ipsa->ipsa_hardalloc;
1614 lt->sadb_lifetime_bytes = ipsa->ipsa_hardbyteslt;
1615 lt->sadb_lifetime_addtime = ipsa->ipsa_hardaddlt;
1616 lt->sadb_lifetime_usetime = ipsa->ipsa_harduselt;
1619 if (soft) {
1620 lt++;
1621 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
1623 lt->sadb_lifetime_allocations = ipsa->ipsa_softalloc;
1624 lt->sadb_lifetime_bytes = ipsa->ipsa_softbyteslt;
1625 lt->sadb_lifetime_addtime = ipsa->ipsa_softaddlt;
1626 lt->sadb_lifetime_usetime = ipsa->ipsa_softuselt;
1629 if (idle) {
1630 lt++;
1631 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1632 lt->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE;
1633 lt->sadb_lifetime_addtime = ipsa->ipsa_idleaddlt;
1634 lt->sadb_lifetime_usetime = ipsa->ipsa_idleuselt;
1637 cur = (uint8_t *)(lt + 1);
1639 /* NOTE: Don't fill in ports here if we are a tunnel-mode SA. */
1640 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, fam,
1641 ipsa->ipsa_srcaddr, (!isrc && !idst) ? SA_SRCPORT(ipsa) : 0,
1642 SA_PROTO(ipsa), 0);
1643 if (cur == NULL) {
1644 freemsg(mp);
1645 mp = NULL;
1646 goto bail;
1649 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, fam,
1650 ipsa->ipsa_dstaddr, (!isrc && !idst) ? SA_DSTPORT(ipsa) : 0,
1651 SA_PROTO(ipsa), 0);
1652 if (cur == NULL) {
1653 freemsg(mp);
1654 mp = NULL;
1655 goto bail;
1658 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) {
1659 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_LOC,
1660 fam, &ipsa->ipsa_natt_addr_loc, ipsa->ipsa_local_nat_port,
1661 IPPROTO_UDP, 0);
1662 if (cur == NULL) {
1663 freemsg(mp);
1664 mp = NULL;
1665 goto bail;
1669 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) {
1670 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_REM,
1671 fam, &ipsa->ipsa_natt_addr_rem, ipsa->ipsa_remote_nat_port,
1672 IPPROTO_UDP, 0);
1673 if (cur == NULL) {
1674 freemsg(mp);
1675 mp = NULL;
1676 goto bail;
1680 /* If we are a tunnel-mode SA, fill in the inner-selectors. */
1681 if (isrc) {
1682 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC,
1683 pfam, ipsa->ipsa_innersrc, SA_SRCPORT(ipsa),
1684 SA_IPROTO(ipsa), ipsa->ipsa_innersrcpfx);
1685 if (cur == NULL) {
1686 freemsg(mp);
1687 mp = NULL;
1688 goto bail;
1692 if (idst) {
1693 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST,
1694 pfam, ipsa->ipsa_innerdst, SA_DSTPORT(ipsa),
1695 SA_IPROTO(ipsa), ipsa->ipsa_innerdstpfx);
1696 if (cur == NULL) {
1697 freemsg(mp);
1698 mp = NULL;
1699 goto bail;
1703 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) {
1704 cur = sadb_make_kmc_ext(cur, end,
1705 ipsa->ipsa_kmp, ipsa->ipsa_kmc);
1706 if (cur == NULL) {
1707 freemsg(mp);
1708 mp = NULL;
1709 goto bail;
1713 walker = (sadb_ext_t *)cur;
1714 if (auth) {
1715 key = (sadb_key_t *)walker;
1716 key->sadb_key_len = SADB_8TO64(authsize);
1717 key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
1718 key->sadb_key_bits = ipsa->ipsa_authkeybits;
1719 key->sadb_key_reserved = 0;
1720 bcopy(ipsa->ipsa_authkey, key + 1, ipsa->ipsa_authkeylen);
1721 walker = (sadb_ext_t *)((uint64_t *)walker +
1722 walker->sadb_ext_len);
1725 if (encr) {
1726 key = (sadb_key_t *)walker;
1727 key->sadb_key_len = SADB_8TO64(encrsize);
1728 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
1729 key->sadb_key_bits = ipsa->ipsa_encrkeybits;
1730 key->sadb_key_reserved = 0;
1731 bcopy(ipsa->ipsa_encrkey, key + 1, ipsa->ipsa_encrkeylen);
1732 walker = (sadb_ext_t *)((uint64_t *)walker +
1733 walker->sadb_ext_len);
1736 if (srcid) {
1737 ident = (sadb_ident_t *)walker;
1738 ident->sadb_ident_len = SADB_8TO64(srcidsize);
1739 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_SRC;
1740 ident->sadb_ident_type = ipsa->ipsa_src_cid->ipsid_type;
1741 ident->sadb_ident_id = 0;
1742 ident->sadb_ident_reserved = 0;
1743 (void) strcpy((char *)(ident + 1),
1744 ipsa->ipsa_src_cid->ipsid_cid);
1745 walker = (sadb_ext_t *)((uint64_t *)walker +
1746 walker->sadb_ext_len);
1749 if (dstid) {
1750 ident = (sadb_ident_t *)walker;
1751 ident->sadb_ident_len = SADB_8TO64(dstidsize);
1752 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_DST;
1753 ident->sadb_ident_type = ipsa->ipsa_dst_cid->ipsid_type;
1754 ident->sadb_ident_id = 0;
1755 ident->sadb_ident_reserved = 0;
1756 (void) strcpy((char *)(ident + 1),
1757 ipsa->ipsa_dst_cid->ipsid_cid);
1758 walker = (sadb_ext_t *)((uint64_t *)walker +
1759 walker->sadb_ext_len);
1762 if (sensinteg) {
1763 sens = (sadb_sens_t *)walker;
1764 sens->sadb_sens_len = SADB_8TO64(sizeof (sadb_sens_t *) +
1765 ipsa->ipsa_senslen + ipsa->ipsa_integlen);
1766 sens->sadb_sens_dpd = ipsa->ipsa_dpd;
1767 sens->sadb_sens_sens_level = ipsa->ipsa_senslevel;
1768 sens->sadb_sens_integ_level = ipsa->ipsa_integlevel;
1769 sens->sadb_sens_sens_len = SADB_8TO64(ipsa->ipsa_senslen);
1770 sens->sadb_sens_integ_len = SADB_8TO64(ipsa->ipsa_integlen);
1771 sens->sadb_sens_reserved = 0;
1772 bitmap = (uint64_t *)(sens + 1);
1773 if (ipsa->ipsa_sens != NULL) {
1774 bcopy(ipsa->ipsa_sens, bitmap, ipsa->ipsa_senslen);
1775 bitmap += sens->sadb_sens_sens_len;
1777 if (ipsa->ipsa_integ != NULL)
1778 bcopy(ipsa->ipsa_integ, bitmap, ipsa->ipsa_integlen);
1779 walker = (sadb_ext_t *)((uint64_t *)walker +
1780 walker->sadb_ext_len);
1783 if (paired) {
1784 pair_ext = (sadb_x_pair_t *)walker;
1786 pair_ext->sadb_x_pair_len = SADB_8TO64(sizeof (sadb_x_pair_t));
1787 pair_ext->sadb_x_pair_exttype = SADB_X_EXT_PAIR;
1788 pair_ext->sadb_x_pair_spi = otherspi;
1790 walker = (sadb_ext_t *)((uint64_t *)walker +
1791 walker->sadb_ext_len);
1794 if (ipsa->ipsa_replay != 0) {
1795 repl_ctr = (sadb_x_replay_ctr_t *)walker;
1796 repl_ctr->sadb_x_rc_len = SADB_8TO64(sizeof (*repl_ctr));
1797 repl_ctr->sadb_x_rc_exttype = SADB_X_EXT_REPLAY_VALUE;
1798 repl_ctr->sadb_x_rc_replay32 = ipsa->ipsa_replay;
1799 repl_ctr->sadb_x_rc_replay64 = 0;
1800 walker = (sadb_ext_t *)(repl_ctr + 1);
1803 bail:
1804 /* Pardon any delays... */
1805 mutex_exit(&ipsa->ipsa_lock);
1807 return (mp);
1811 * Strip out key headers or unmarked headers (SADB_EXT_KEY_*, SADB_EXT_UNKNOWN)
1812 * and adjust base message accordingly.
1814 * Assume message is pulled up in one piece of contiguous memory.
1816 * Say if we start off with:
1818 * +------+----+-------------+-----------+---------------+---------------+
1819 * | base | SA | source addr | dest addr | rsrvd. or key | soft lifetime |
1820 * +------+----+-------------+-----------+---------------+---------------+
1822 * we will end up with
1824 * +------+----+-------------+-----------+---------------+
1825 * | base | SA | source addr | dest addr | soft lifetime |
1826 * +------+----+-------------+-----------+---------------+
1828 static void
1829 sadb_strip(sadb_msg_t *samsg)
1831 sadb_ext_t *ext;
1832 uint8_t *target = NULL;
1833 uint8_t *msgend;
1834 int sofar = SADB_8TO64(sizeof (*samsg));
1835 int copylen;
1837 ext = (sadb_ext_t *)(samsg + 1);
1838 msgend = (uint8_t *)samsg;
1839 msgend += SADB_64TO8(samsg->sadb_msg_len);
1840 while ((uint8_t *)ext < msgend) {
1841 if (ext->sadb_ext_type == SADB_EXT_RESERVED ||
1842 ext->sadb_ext_type == SADB_EXT_KEY_AUTH ||
1843 ext->sadb_ext_type == SADB_X_EXT_EDUMP ||
1844 ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) {
1846 * Aha! I found a header to be erased.
1849 if (target != NULL) {
1851 * If I had a previous header to be erased,
1852 * copy over it. I can get away with just
1853 * copying backwards because the target will
1854 * always be 8 bytes behind the source.
1856 copylen = ((uint8_t *)ext) - (target +
1857 SADB_64TO8(
1858 ((sadb_ext_t *)target)->sadb_ext_len));
1859 ovbcopy(((uint8_t *)ext - copylen), target,
1860 copylen);
1861 target += copylen;
1862 ((sadb_ext_t *)target)->sadb_ext_len =
1863 SADB_8TO64(((uint8_t *)ext) - target +
1864 SADB_64TO8(ext->sadb_ext_len));
1865 } else {
1866 target = (uint8_t *)ext;
1868 } else {
1869 sofar += ext->sadb_ext_len;
1872 ext = (sadb_ext_t *)(((uint64_t *)ext) + ext->sadb_ext_len);
1875 ASSERT((uint8_t *)ext == msgend);
1877 if (target != NULL) {
1878 copylen = ((uint8_t *)ext) - (target +
1879 SADB_64TO8(((sadb_ext_t *)target)->sadb_ext_len));
1880 if (copylen != 0)
1881 ovbcopy(((uint8_t *)ext - copylen), target, copylen);
1884 /* Adjust samsg. */
1885 samsg->sadb_msg_len = (uint16_t)sofar;
1887 /* Assume all of the rest is cleared by caller in sadb_pfkey_echo(). */
1891 * AH needs to send an error to PF_KEY. Assume mp points to an M_CTL
1892 * followed by an M_DATA with a PF_KEY message in it. The serial of
1893 * the sending keysock instance is included.
1895 void
1896 sadb_pfkey_error(queue_t *pfkey_q, mblk_t *mp, int error, int diagnostic,
1897 uint_t serial)
1899 mblk_t *msg = mp->b_cont;
1900 sadb_msg_t *samsg;
1901 keysock_out_t *kso;
1904 * Enough functions call this to merit a NULL queue check.
1906 if (pfkey_q == NULL) {
1907 freemsg(mp);
1908 return;
1911 ASSERT(msg != NULL);
1912 ASSERT((mp->b_wptr - mp->b_rptr) == sizeof (ipsec_info_t));
1913 ASSERT((msg->b_wptr - msg->b_rptr) >= sizeof (sadb_msg_t));
1914 samsg = (sadb_msg_t *)msg->b_rptr;
1915 kso = (keysock_out_t *)mp->b_rptr;
1917 kso->ks_out_type = KEYSOCK_OUT;
1918 kso->ks_out_len = sizeof (*kso);
1919 kso->ks_out_serial = serial;
1922 * Only send the base message up in the event of an error.
1923 * Don't worry about bzero()-ing, because it was probably bogus
1924 * anyway.
1926 msg->b_wptr = msg->b_rptr + sizeof (*samsg);
1927 samsg = (sadb_msg_t *)msg->b_rptr;
1928 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
1929 samsg->sadb_msg_errno = (uint8_t)error;
1930 if (diagnostic != SADB_X_DIAGNOSTIC_PRESET)
1931 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic;
1933 putnext(pfkey_q, mp);
1937 * Send a successful return packet back to keysock via the queue in pfkey_q.
1939 * Often, an SA is associated with the reply message, it's passed in if needed,
1940 * and NULL if not. BTW, that ipsa will have its refcnt appropriately held,
1941 * and the caller will release said refcnt.
1943 void
1944 sadb_pfkey_echo(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg,
1945 keysock_in_t *ksi, ipsa_t *ipsa)
1947 keysock_out_t *kso;
1948 mblk_t *mp1;
1949 sadb_msg_t *newsamsg;
1950 uint8_t *oldend;
1952 ASSERT((mp->b_cont != NULL) &&
1953 ((void *)samsg == (void *)mp->b_cont->b_rptr) &&
1954 ((void *)mp->b_rptr == (void *)ksi));
1956 switch (samsg->sadb_msg_type) {
1957 case SADB_ADD:
1958 case SADB_UPDATE:
1959 case SADB_X_UPDATEPAIR:
1960 case SADB_X_DELPAIR_STATE:
1961 case SADB_FLUSH:
1962 case SADB_DUMP:
1964 * I have all of the message already. I just need to strip
1965 * out the keying material and echo the message back.
1967 * NOTE: for SADB_DUMP, the function sadb_dump() did the
1968 * work. When DUMP reaches here, it should only be a base
1969 * message.
1971 justecho:
1972 if (ksi->ks_in_extv[SADB_EXT_KEY_AUTH] != NULL ||
1973 ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL ||
1974 ksi->ks_in_extv[SADB_X_EXT_EDUMP] != NULL) {
1975 sadb_strip(samsg);
1976 /* Assume PF_KEY message is contiguous. */
1977 ASSERT(mp->b_cont->b_cont == NULL);
1978 oldend = mp->b_cont->b_wptr;
1979 mp->b_cont->b_wptr = mp->b_cont->b_rptr +
1980 SADB_64TO8(samsg->sadb_msg_len);
1981 bzero(mp->b_cont->b_wptr, oldend - mp->b_cont->b_wptr);
1983 break;
1984 case SADB_GET:
1986 * Do a lot of work here, because of the ipsa I just found.
1987 * First construct the new PF_KEY message, then abandon
1988 * the old one.
1990 mp1 = sadb_sa2msg(ipsa, samsg);
1991 if (mp1 == NULL) {
1992 sadb_pfkey_error(pfkey_q, mp, ENOMEM,
1993 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1994 return;
1996 freemsg(mp->b_cont);
1997 mp->b_cont = mp1;
1998 break;
1999 case SADB_DELETE:
2000 case SADB_X_DELPAIR:
2001 if (ipsa == NULL)
2002 goto justecho;
2004 * Because listening KMds may require more info, treat
2005 * DELETE like a special case of GET.
2007 mp1 = sadb_sa2msg(ipsa, samsg);
2008 if (mp1 == NULL) {
2009 sadb_pfkey_error(pfkey_q, mp, ENOMEM,
2010 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
2011 return;
2013 newsamsg = (sadb_msg_t *)mp1->b_rptr;
2014 sadb_strip(newsamsg);
2015 oldend = mp1->b_wptr;
2016 mp1->b_wptr = mp1->b_rptr + SADB_64TO8(newsamsg->sadb_msg_len);
2017 bzero(mp1->b_wptr, oldend - mp1->b_wptr);
2018 freemsg(mp->b_cont);
2019 mp->b_cont = mp1;
2020 break;
2021 default:
2022 if (mp != NULL)
2023 freemsg(mp);
2024 return;
2027 /* ksi is now null and void. */
2028 kso = (keysock_out_t *)ksi;
2029 kso->ks_out_type = KEYSOCK_OUT;
2030 kso->ks_out_len = sizeof (*kso);
2031 kso->ks_out_serial = ksi->ks_in_serial;
2032 /* We're ready to send... */
2033 putnext(pfkey_q, mp);
2037 * Set up a global pfkey_q instance for AH, ESP, or some other consumer.
2039 void
2040 sadb_keysock_hello(queue_t **pfkey_qp, queue_t *q, mblk_t *mp,
2041 void (*ager)(void *), void *agerarg, timeout_id_t *top, int satype)
2043 keysock_hello_ack_t *kha;
2044 queue_t *oldq;
2046 ASSERT(OTHERQ(q) != NULL);
2049 * First, check atomically that I'm the first and only keysock
2050 * instance.
2052 * Use OTHERQ(q), because qreply(q, mp) == putnext(OTHERQ(q), mp),
2053 * and I want this module to say putnext(*_pfkey_q, mp) for PF_KEY
2054 * messages.
2057 oldq = casptr((void **)pfkey_qp, NULL, OTHERQ(q));
2058 if (oldq != NULL) {
2059 ASSERT(oldq != q);
2060 cmn_err(CE_WARN, "Danger! Multiple keysocks on top of %s.\n",
2061 (satype == SADB_SATYPE_ESP)? "ESP" : "AH or other");
2062 freemsg(mp);
2063 return;
2066 kha = (keysock_hello_ack_t *)mp->b_rptr;
2067 kha->ks_hello_len = sizeof (keysock_hello_ack_t);
2068 kha->ks_hello_type = KEYSOCK_HELLO_ACK;
2069 kha->ks_hello_satype = (uint8_t)satype;
2072 * If we made it past the casptr, then we have "exclusive" access
2073 * to the timeout handle. Fire it off in 4 seconds, because it
2074 * just seems like a good interval.
2076 *top = qtimeout(*pfkey_qp, ager, agerarg, drv_usectohz(4000000));
2078 putnext(*pfkey_qp, mp);
2082 * Normalize IPv4-mapped IPv6 addresses (and prefixes) as appropriate.
2084 * Check addresses themselves for wildcard or multicast.
2085 * Check ire table for local/non-local/broadcast.
2088 sadb_addrcheck(queue_t *pfkey_q, mblk_t *mp, sadb_ext_t *ext, uint_t serial,
2089 netstack_t *ns)
2091 sadb_address_t *addr = (sadb_address_t *)ext;
2092 struct sockaddr_in *sin;
2093 struct sockaddr_in6 *sin6;
2094 ire_t *ire;
2095 int diagnostic, type;
2096 boolean_t normalized = B_FALSE;
2098 ASSERT(ext != NULL);
2099 ASSERT((ext->sadb_ext_type == SADB_EXT_ADDRESS_SRC) ||
2100 (ext->sadb_ext_type == SADB_EXT_ADDRESS_DST) ||
2101 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ||
2102 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) ||
2103 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_LOC) ||
2104 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_REM));
2106 /* Assign both sockaddrs, the compiler will do the right thing. */
2107 sin = (struct sockaddr_in *)(addr + 1);
2108 sin6 = (struct sockaddr_in6 *)(addr + 1);
2110 if (sin6->sin6_family == AF_INET6) {
2111 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
2113 * Convert to an AF_INET sockaddr. This means the
2114 * return messages will have the extra space, but have
2115 * AF_INET sockaddrs instead of AF_INET6.
2117 * Yes, RFC 2367 isn't clear on what to do here w.r.t.
2118 * mapped addresses, but since AF_INET6 ::ffff:<v4> is
2119 * equal to AF_INET <v4>, it shouldnt be a huge
2120 * problem.
2122 sin->sin_family = AF_INET;
2123 IN6_V4MAPPED_TO_INADDR(&sin6->sin6_addr,
2124 &sin->sin_addr);
2125 bzero(&sin->sin_zero, sizeof (sin->sin_zero));
2126 normalized = B_TRUE;
2128 } else if (sin->sin_family != AF_INET) {
2129 switch (ext->sadb_ext_type) {
2130 case SADB_EXT_ADDRESS_SRC:
2131 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC_AF;
2132 break;
2133 case SADB_EXT_ADDRESS_DST:
2134 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF;
2135 break;
2136 case SADB_X_EXT_ADDRESS_INNER_SRC:
2137 diagnostic = SADB_X_DIAGNOSTIC_BAD_PROXY_AF;
2138 break;
2139 case SADB_X_EXT_ADDRESS_INNER_DST:
2140 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_DST_AF;
2141 break;
2142 case SADB_X_EXT_ADDRESS_NATT_LOC:
2143 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF;
2144 break;
2145 case SADB_X_EXT_ADDRESS_NATT_REM:
2146 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF;
2147 break;
2148 /* There is no default, see above ASSERT. */
2150 bail:
2151 if (pfkey_q != NULL) {
2152 sadb_pfkey_error(pfkey_q, mp, EINVAL, diagnostic,
2153 serial);
2154 } else {
2156 * Scribble in sadb_msg that we got passed in.
2157 * Overload "mp" to be an sadb_msg pointer.
2159 sadb_msg_t *samsg = (sadb_msg_t *)mp;
2161 samsg->sadb_msg_errno = EINVAL;
2162 samsg->sadb_x_msg_diagnostic = diagnostic;
2164 return (KS_IN_ADDR_UNKNOWN);
2167 if (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC ||
2168 ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) {
2170 * We need only check for prefix issues.
2173 /* Set diagnostic now, in case we need it later. */
2174 diagnostic =
2175 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ?
2176 SADB_X_DIAGNOSTIC_PREFIX_INNER_SRC :
2177 SADB_X_DIAGNOSTIC_PREFIX_INNER_DST;
2179 if (normalized)
2180 addr->sadb_address_prefixlen -= 96;
2183 * Verify and mask out inner-addresses based on prefix length.
2185 if (sin->sin_family == AF_INET) {
2186 if (addr->sadb_address_prefixlen > 32)
2187 goto bail;
2188 sin->sin_addr.s_addr &=
2189 ip_plen_to_mask(addr->sadb_address_prefixlen);
2190 } else {
2191 in6_addr_t mask;
2193 ASSERT(sin->sin_family == AF_INET6);
2195 * ip_plen_to_mask_v6() returns NULL if the value in
2196 * question is out of range.
2198 if (ip_plen_to_mask_v6(addr->sadb_address_prefixlen,
2199 &mask) == NULL)
2200 goto bail;
2201 sin6->sin6_addr.s6_addr32[0] &= mask.s6_addr32[0];
2202 sin6->sin6_addr.s6_addr32[1] &= mask.s6_addr32[1];
2203 sin6->sin6_addr.s6_addr32[2] &= mask.s6_addr32[2];
2204 sin6->sin6_addr.s6_addr32[3] &= mask.s6_addr32[3];
2207 /* We don't care in these cases. */
2208 return (KS_IN_ADDR_DONTCARE);
2211 if (sin->sin_family == AF_INET6) {
2212 /* Check the easy ones now. */
2213 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
2214 return (KS_IN_ADDR_MBCAST);
2215 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
2216 return (KS_IN_ADDR_UNSPEC);
2218 * At this point, we're a unicast IPv6 address.
2220 * A ctable lookup for local is sufficient here. If we're
2221 * local, return KS_IN_ADDR_ME, otherwise KS_IN_ADDR_NOTME.
2223 * XXX Zones alert -> me/notme decision needs to be tempered
2224 * by what zone we're in when we go to zone-aware IPsec.
2226 ire = ire_ctable_lookup_v6(&sin6->sin6_addr, NULL,
2227 IRE_LOCAL, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE,
2228 ns->netstack_ip);
2229 if (ire != NULL) {
2230 /* Hey hey, it's local. */
2231 IRE_REFRELE(ire);
2232 return (KS_IN_ADDR_ME);
2234 } else {
2235 ASSERT(sin->sin_family == AF_INET);
2236 if (sin->sin_addr.s_addr == INADDR_ANY)
2237 return (KS_IN_ADDR_UNSPEC);
2238 if (CLASSD(sin->sin_addr.s_addr))
2239 return (KS_IN_ADDR_MBCAST);
2241 * At this point we're a unicast or broadcast IPv4 address.
2243 * Lookup on the ctable for IRE_BROADCAST or IRE_LOCAL.
2244 * A NULL return value is NOTME, otherwise, look at the
2245 * returned ire for broadcast or not and return accordingly.
2247 * XXX Zones alert -> me/notme decision needs to be tempered
2248 * by what zone we're in when we go to zone-aware IPsec.
2250 ire = ire_ctable_lookup(sin->sin_addr.s_addr, 0,
2251 IRE_LOCAL | IRE_BROADCAST, NULL, ALL_ZONES, NULL,
2252 MATCH_IRE_TYPE, ns->netstack_ip);
2253 if (ire != NULL) {
2254 /* Check for local or broadcast */
2255 type = ire->ire_type;
2256 IRE_REFRELE(ire);
2257 ASSERT(type == IRE_LOCAL || type == IRE_BROADCAST);
2258 return ((type == IRE_LOCAL) ? KS_IN_ADDR_ME :
2259 KS_IN_ADDR_MBCAST);
2263 return (KS_IN_ADDR_NOTME);
2267 * Address normalizations and reality checks for inbound PF_KEY messages.
2269 * For the case of src == unspecified AF_INET6, and dst == AF_INET, convert
2270 * the source to AF_INET. Do the same for the inner sources.
2272 boolean_t
2273 sadb_addrfix(keysock_in_t *ksi, queue_t *pfkey_q, mblk_t *mp, netstack_t *ns)
2275 struct sockaddr_in *src, *isrc;
2276 struct sockaddr_in6 *dst, *idst;
2277 sadb_address_t *srcext, *dstext;
2278 uint16_t sport;
2279 sadb_ext_t **extv = ksi->ks_in_extv;
2280 int rc;
2282 if (extv[SADB_EXT_ADDRESS_SRC] != NULL) {
2283 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_SRC],
2284 ksi->ks_in_serial, ns);
2285 if (rc == KS_IN_ADDR_UNKNOWN)
2286 return (B_FALSE);
2287 if (rc == KS_IN_ADDR_MBCAST) {
2288 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2289 SADB_X_DIAGNOSTIC_BAD_SRC, ksi->ks_in_serial);
2290 return (B_FALSE);
2292 ksi->ks_in_srctype = rc;
2295 if (extv[SADB_EXT_ADDRESS_DST] != NULL) {
2296 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_DST],
2297 ksi->ks_in_serial, ns);
2298 if (rc == KS_IN_ADDR_UNKNOWN)
2299 return (B_FALSE);
2300 if (rc == KS_IN_ADDR_UNSPEC) {
2301 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2302 SADB_X_DIAGNOSTIC_BAD_DST, ksi->ks_in_serial);
2303 return (B_FALSE);
2305 ksi->ks_in_dsttype = rc;
2309 * NAT-Traversal addrs are simple enough to not require all of
2310 * the checks in sadb_addrcheck(). Just normalize or reject if not
2311 * AF_INET.
2313 if (extv[SADB_X_EXT_ADDRESS_NATT_LOC] != NULL) {
2314 rc = sadb_addrcheck(pfkey_q, mp,
2315 extv[SADB_X_EXT_ADDRESS_NATT_LOC], ksi->ks_in_serial, ns);
2318 * Local NAT-T addresses never use an IRE_LOCAL, so it should
2319 * always be NOTME, or UNSPEC (to handle both tunnel mode
2320 * AND local-port flexibility).
2322 if (rc != KS_IN_ADDR_NOTME && rc != KS_IN_ADDR_UNSPEC) {
2323 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2324 SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC,
2325 ksi->ks_in_serial);
2326 return (B_FALSE);
2328 src = (struct sockaddr_in *)
2329 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_LOC]) + 1);
2330 if (src->sin_family != AF_INET) {
2331 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2332 SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF,
2333 ksi->ks_in_serial);
2334 return (B_FALSE);
2338 if (extv[SADB_X_EXT_ADDRESS_NATT_REM] != NULL) {
2339 rc = sadb_addrcheck(pfkey_q, mp,
2340 extv[SADB_X_EXT_ADDRESS_NATT_REM], ksi->ks_in_serial, ns);
2343 * Remote NAT-T addresses never use an IRE_LOCAL, so it should
2344 * always be NOTME, or UNSPEC if it's a tunnel-mode SA.
2346 if (rc != KS_IN_ADDR_NOTME &&
2347 !(extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL &&
2348 rc == KS_IN_ADDR_UNSPEC)) {
2349 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2350 SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM,
2351 ksi->ks_in_serial);
2352 return (B_FALSE);
2354 src = (struct sockaddr_in *)
2355 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_REM]) + 1);
2356 if (src->sin_family != AF_INET) {
2357 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2358 SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF,
2359 ksi->ks_in_serial);
2360 return (B_FALSE);
2364 if (extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL) {
2365 if (extv[SADB_X_EXT_ADDRESS_INNER_DST] == NULL) {
2366 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2367 SADB_X_DIAGNOSTIC_MISSING_INNER_DST,
2368 ksi->ks_in_serial);
2369 return (B_FALSE);
2372 if (sadb_addrcheck(pfkey_q, mp,
2373 extv[SADB_X_EXT_ADDRESS_INNER_DST], ksi->ks_in_serial, ns)
2374 == KS_IN_ADDR_UNKNOWN ||
2375 sadb_addrcheck(pfkey_q, mp,
2376 extv[SADB_X_EXT_ADDRESS_INNER_SRC], ksi->ks_in_serial, ns)
2377 == KS_IN_ADDR_UNKNOWN)
2378 return (B_FALSE);
2380 isrc = (struct sockaddr_in *)
2381 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC]) +
2383 idst = (struct sockaddr_in6 *)
2384 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]) +
2386 if (isrc->sin_family != idst->sin6_family) {
2387 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2388 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH,
2389 ksi->ks_in_serial);
2390 return (B_FALSE);
2392 } else if (extv[SADB_X_EXT_ADDRESS_INNER_DST] != NULL) {
2393 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2394 SADB_X_DIAGNOSTIC_MISSING_INNER_SRC,
2395 ksi->ks_in_serial);
2396 return (B_FALSE);
2397 } else {
2398 isrc = NULL; /* For inner/outer port check below. */
2401 dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST];
2402 srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC];
2404 if (dstext == NULL || srcext == NULL)
2405 return (B_TRUE);
2407 dst = (struct sockaddr_in6 *)(dstext + 1);
2408 src = (struct sockaddr_in *)(srcext + 1);
2410 if (isrc != NULL &&
2411 (isrc->sin_port != 0 || idst->sin6_port != 0) &&
2412 (src->sin_port != 0 || dst->sin6_port != 0)) {
2413 /* Can't set inner and outer ports in one SA. */
2414 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2415 SADB_X_DIAGNOSTIC_DUAL_PORT_SETS,
2416 ksi->ks_in_serial);
2417 return (B_FALSE);
2420 if (dst->sin6_family == src->sin_family)
2421 return (B_TRUE);
2423 if (srcext->sadb_address_proto != dstext->sadb_address_proto) {
2424 if (srcext->sadb_address_proto == 0) {
2425 srcext->sadb_address_proto = dstext->sadb_address_proto;
2426 } else if (dstext->sadb_address_proto == 0) {
2427 dstext->sadb_address_proto = srcext->sadb_address_proto;
2428 } else {
2429 /* Inequal protocols, neither were 0. Report error. */
2430 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2431 SADB_X_DIAGNOSTIC_PROTO_MISMATCH,
2432 ksi->ks_in_serial);
2433 return (B_FALSE);
2438 * With the exception of an unspec IPv6 source and an IPv4
2439 * destination, address families MUST me matched.
2441 if (src->sin_family == AF_INET ||
2442 ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) {
2443 sadb_pfkey_error(pfkey_q, mp, EINVAL,
2444 SADB_X_DIAGNOSTIC_AF_MISMATCH, ksi->ks_in_serial);
2445 return (B_FALSE);
2449 * Convert "src" to AF_INET INADDR_ANY. We rely on sin_port being
2450 * in the same place for sockaddr_in and sockaddr_in6.
2452 sport = src->sin_port;
2453 bzero(src, sizeof (*src));
2454 src->sin_family = AF_INET;
2455 src->sin_port = sport;
2457 return (B_TRUE);
2461 * Set the results in "addrtype", given an IRE as requested by
2462 * sadb_addrcheck().
2465 sadb_addrset(ire_t *ire)
2467 if ((ire->ire_type & IRE_BROADCAST) ||
2468 (ire->ire_ipversion == IPV4_VERSION && CLASSD(ire->ire_addr)) ||
2469 (ire->ire_ipversion == IPV6_VERSION &&
2470 IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))))
2471 return (KS_IN_ADDR_MBCAST);
2472 if (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK))
2473 return (KS_IN_ADDR_ME);
2474 return (KS_IN_ADDR_NOTME);
2479 * Walker callback function to delete sa's based on src/dst address.
2480 * Assumes that we're called with *head locked, no other locks held;
2481 * Conveniently, and not coincidentally, this is both what sadb_walker
2482 * gives us and also what sadb_unlinkassoc expects.
2485 struct sadb_purge_state
2487 uint32_t *src;
2488 uint32_t *dst;
2489 sa_family_t af;
2490 boolean_t inbnd;
2491 char *sidstr;
2492 char *didstr;
2493 uint16_t sidtype;
2494 uint16_t didtype;
2495 uint32_t kmproto;
2496 uint8_t sadb_sa_state;
2497 mblk_t *mq;
2498 sadb_t *sp;
2501 static void
2502 sadb_purge_cb(isaf_t *head, ipsa_t *entry, void *cookie)
2504 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie;
2506 ASSERT(MUTEX_HELD(&head->isaf_lock));
2508 mutex_enter(&entry->ipsa_lock);
2510 if ((entry->ipsa_state == IPSA_STATE_LARVAL) ||
2511 (ps->src != NULL &&
2512 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, ps->src, ps->af)) ||
2513 (ps->dst != NULL &&
2514 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_dstaddr, ps->dst, ps->af)) ||
2515 (ps->didstr != NULL && (entry->ipsa_dst_cid != NULL) &&
2516 !(ps->didtype == entry->ipsa_dst_cid->ipsid_type &&
2517 strcmp(ps->didstr, entry->ipsa_dst_cid->ipsid_cid) == 0)) ||
2518 (ps->sidstr != NULL && (entry->ipsa_src_cid != NULL) &&
2519 !(ps->sidtype == entry->ipsa_src_cid->ipsid_type &&
2520 strcmp(ps->sidstr, entry->ipsa_src_cid->ipsid_cid) == 0)) ||
2521 (ps->kmproto <= SADB_X_KMP_MAX && ps->kmproto != entry->ipsa_kmp)) {
2522 mutex_exit(&entry->ipsa_lock);
2523 return;
2526 if (ps->inbnd) {
2527 sadb_delete_cluster(entry);
2529 entry->ipsa_state = IPSA_STATE_DEAD;
2530 (void) sadb_torch_assoc(head, entry, ps->inbnd, &ps->mq);
2534 * Common code to purge an SA with a matching src or dst address.
2535 * Don't kill larval SA's in such a purge.
2538 sadb_purge_sa(mblk_t *mp, keysock_in_t *ksi, sadb_t *sp, queue_t *pfkey_q,
2539 queue_t *ip_q)
2541 sadb_address_t *dstext =
2542 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2543 sadb_address_t *srcext =
2544 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
2545 sadb_ident_t *dstid =
2546 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST];
2547 sadb_ident_t *srcid =
2548 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC];
2549 sadb_x_kmc_t *kmc =
2550 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
2551 struct sockaddr_in *src, *dst;
2552 struct sockaddr_in6 *src6, *dst6;
2553 struct sadb_purge_state ps;
2556 * Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck()
2557 * takes care of them.
2560 /* enforced by caller */
2561 ASSERT((dstext != NULL) || (srcext != NULL));
2563 ps.src = NULL;
2564 ps.dst = NULL;
2565 #ifdef DEBUG
2566 ps.af = (sa_family_t)-1;
2567 #endif
2568 ps.mq = NULL;
2569 ps.sidstr = NULL;
2570 ps.didstr = NULL;
2571 ps.kmproto = SADB_X_KMP_MAX + 1;
2573 if (dstext != NULL) {
2574 dst = (struct sockaddr_in *)(dstext + 1);
2575 ps.af = dst->sin_family;
2576 if (dst->sin_family == AF_INET6) {
2577 dst6 = (struct sockaddr_in6 *)dst;
2578 ps.dst = (uint32_t *)&dst6->sin6_addr;
2579 } else {
2580 ps.dst = (uint32_t *)&dst->sin_addr;
2584 if (srcext != NULL) {
2585 src = (struct sockaddr_in *)(srcext + 1);
2586 ps.af = src->sin_family;
2587 if (src->sin_family == AF_INET6) {
2588 src6 = (struct sockaddr_in6 *)(srcext + 1);
2589 ps.src = (uint32_t *)&src6->sin6_addr;
2590 } else {
2591 ps.src = (uint32_t *)&src->sin_addr;
2593 ASSERT(dstext == NULL || src->sin_family == dst->sin_family);
2596 ASSERT(ps.af != (sa_family_t)-1);
2598 if (dstid != NULL) {
2600 * NOTE: May need to copy string in the future
2601 * if the inbound keysock message disappears for some strange
2602 * reason.
2604 ps.didstr = (char *)(dstid + 1);
2605 ps.didtype = dstid->sadb_ident_type;
2608 if (srcid != NULL) {
2610 * NOTE: May need to copy string in the future
2611 * if the inbound keysock message disappears for some strange
2612 * reason.
2614 ps.sidstr = (char *)(srcid + 1);
2615 ps.sidtype = srcid->sadb_ident_type;
2618 if (kmc != NULL)
2619 ps.kmproto = kmc->sadb_x_kmc_proto;
2622 * This is simple, crude, and effective.
2623 * Unimplemented optimizations (TBD):
2624 * - we can limit how many places we search based on where we
2625 * think the SA is filed.
2626 * - if we get a dst address, we can hash based on dst addr to find
2627 * the correct bucket in the outbound table.
2629 ps.inbnd = B_TRUE;
2630 sadb_walker(sp->sdb_if, sp->sdb_hashsize, sadb_purge_cb, &ps);
2631 ps.inbnd = B_FALSE;
2632 sadb_walker(sp->sdb_of, sp->sdb_hashsize, sadb_purge_cb, &ps);
2634 if (ps.mq != NULL)
2635 sadb_drain_torchq(ip_q, ps.mq);
2637 ASSERT(mp->b_cont != NULL);
2638 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
2639 NULL);
2640 return (0);
2643 static void
2644 sadb_delpair_state(isaf_t *head, ipsa_t *entry, void *cookie)
2646 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie;
2647 isaf_t *inbound_bucket;
2648 ipsa_t *peer_assoc;
2650 ASSERT(MUTEX_HELD(&head->isaf_lock));
2652 mutex_enter(&entry->ipsa_lock);
2654 if ((entry->ipsa_state != ps->sadb_sa_state) ||
2655 ((ps->src != NULL) &&
2656 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, ps->src, ps->af))) {
2657 mutex_exit(&entry->ipsa_lock);
2658 return;
2662 * The isaf_t *, which is passed in , is always an outbound bucket,
2663 * and we are preserving the outbound-then-inbound hash-bucket lock
2664 * ordering. The sadb_walker() which triggers this function is called
2665 * only on the outbound fanout, and the corresponding inbound bucket
2666 * lock is safe to acquire here.
2669 if (entry->ipsa_haspeer) {
2670 inbound_bucket = INBOUND_BUCKET(ps->sp, entry->ipsa_spi);
2671 mutex_enter(&inbound_bucket->isaf_lock);
2672 peer_assoc = ipsec_getassocbyspi(inbound_bucket,
2673 entry->ipsa_spi, entry->ipsa_srcaddr,
2674 entry->ipsa_dstaddr, entry->ipsa_addrfam);
2675 } else {
2676 inbound_bucket = INBOUND_BUCKET(ps->sp, entry->ipsa_otherspi);
2677 mutex_enter(&inbound_bucket->isaf_lock);
2678 peer_assoc = ipsec_getassocbyspi(inbound_bucket,
2679 entry->ipsa_otherspi, entry->ipsa_dstaddr,
2680 entry->ipsa_srcaddr, entry->ipsa_addrfam);
2683 entry->ipsa_state = IPSA_STATE_DEAD;
2684 (void) sadb_torch_assoc(head, entry, B_FALSE, &ps->mq);
2685 if (peer_assoc != NULL) {
2686 mutex_enter(&peer_assoc->ipsa_lock);
2687 peer_assoc->ipsa_state = IPSA_STATE_DEAD;
2688 (void) sadb_torch_assoc(inbound_bucket, peer_assoc,
2689 B_FALSE, &ps->mq);
2691 mutex_exit(&inbound_bucket->isaf_lock);
2695 * Common code to delete/get an SA.
2698 sadb_delget_sa(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp,
2699 int *diagnostic, queue_t *pfkey_q, uint8_t sadb_msg_type)
2701 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
2702 sadb_address_t *srcext =
2703 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
2704 sadb_address_t *dstext =
2705 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2706 ipsa_t *echo_target = NULL;
2707 ipsap_t *ipsapp;
2708 mblk_t *torchq = NULL;
2709 uint_t error = 0;
2711 if (assoc == NULL) {
2712 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
2713 return (EINVAL);
2716 if (sadb_msg_type == SADB_X_DELPAIR_STATE) {
2717 struct sockaddr_in *src;
2718 struct sockaddr_in6 *src6;
2719 struct sadb_purge_state ps;
2721 if (srcext == NULL) {
2722 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
2723 return (EINVAL);
2725 ps.src = NULL;
2726 ps.mq = NULL;
2727 src = (struct sockaddr_in *)(srcext + 1);
2728 ps.af = src->sin_family;
2729 if (src->sin_family == AF_INET6) {
2730 src6 = (struct sockaddr_in6 *)(srcext + 1);
2731 ps.src = (uint32_t *)&src6->sin6_addr;
2732 ps.sp = &spp->s_v6;
2733 } else {
2734 ps.src = (uint32_t *)&src->sin_addr;
2735 ps.sp = &spp->s_v4;
2737 ps.inbnd = B_FALSE;
2738 ps.sadb_sa_state = assoc->sadb_sa_state;
2739 sadb_walker(ps.sp->sdb_of, ps.sp->sdb_hashsize,
2740 sadb_delpair_state, &ps);
2742 if (ps.mq != NULL)
2743 sadb_drain_torchq(pfkey_q, ps.mq);
2745 ASSERT(mp->b_cont != NULL);
2746 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr,
2747 ksi, NULL);
2748 return (0);
2751 if (dstext == NULL) {
2752 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
2753 return (EINVAL);
2756 ipsapp = get_ipsa_pair(assoc, srcext, dstext, spp);
2757 if (ipsapp == NULL) {
2758 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND;
2759 return (ESRCH);
2762 echo_target = ipsapp->ipsap_sa_ptr;
2763 if (echo_target == NULL)
2764 echo_target = ipsapp->ipsap_psa_ptr;
2766 if (sadb_msg_type == SADB_DELETE || sadb_msg_type == SADB_X_DELPAIR) {
2768 * Bucket locks will be required if SA is actually unlinked.
2769 * get_ipsa_pair() returns valid hash bucket pointers even
2770 * if it can't find a pair SA pointer.
2772 mutex_enter(&ipsapp->ipsap_bucket->isaf_lock);
2773 mutex_enter(&ipsapp->ipsap_pbucket->isaf_lock);
2775 if (ipsapp->ipsap_sa_ptr != NULL) {
2776 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock);
2777 if (ipsapp->ipsap_sa_ptr->ipsa_flags & IPSA_F_INBOUND) {
2778 sadb_delete_cluster(ipsapp->ipsap_sa_ptr);
2780 ipsapp->ipsap_sa_ptr->ipsa_state = IPSA_STATE_DEAD;
2781 (void) sadb_torch_assoc(ipsapp->ipsap_bucket,
2782 ipsapp->ipsap_sa_ptr, B_FALSE, &torchq);
2784 * sadb_torch_assoc() releases the ipsa_lock
2785 * and calls sadb_unlinkassoc() which does a
2786 * IPSA_REFRELE.
2789 if (ipsapp->ipsap_psa_ptr != NULL) {
2790 mutex_enter(&ipsapp->ipsap_psa_ptr->ipsa_lock);
2791 if (sadb_msg_type == SADB_X_DELPAIR) {
2792 if (ipsapp->ipsap_psa_ptr->ipsa_flags &
2793 IPSA_F_INBOUND) {
2794 sadb_delete_cluster(
2795 ipsapp->ipsap_psa_ptr);
2797 ipsapp->ipsap_psa_ptr->ipsa_state =
2798 IPSA_STATE_DEAD;
2799 (void) sadb_torch_assoc(ipsapp->ipsap_pbucket,
2800 ipsapp->ipsap_psa_ptr, B_FALSE, &torchq);
2801 } else {
2803 * Only half of the "pair" has been deleted.
2804 * Update the remaining SA and remove references
2805 * to its pair SA, which is now gone.
2807 ipsapp->ipsap_psa_ptr->ipsa_otherspi = 0;
2808 ipsapp->ipsap_psa_ptr->ipsa_flags &=
2809 ~IPSA_F_PAIRED;
2810 mutex_exit(&ipsapp->ipsap_psa_ptr->ipsa_lock);
2812 } else if (sadb_msg_type == SADB_X_DELPAIR) {
2813 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND;
2814 error = ESRCH;
2816 mutex_exit(&ipsapp->ipsap_bucket->isaf_lock);
2817 mutex_exit(&ipsapp->ipsap_pbucket->isaf_lock);
2820 if (torchq != NULL)
2821 sadb_drain_torchq(spp->s_ip_q, torchq);
2823 ASSERT(mp->b_cont != NULL);
2825 if (error == 0)
2826 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)
2827 mp->b_cont->b_rptr, ksi, echo_target);
2829 destroy_ipsa_pair(ipsapp);
2831 return (error);
2835 * This function takes a sadb_sa_t and finds the ipsa_t structure
2836 * and the isaf_t (hash bucket) that its stored under. If the security
2837 * association has a peer, the ipsa_t structure and bucket for that security
2838 * association are also searched for. The "pair" of ipsa_t's and isaf_t's
2839 * are returned as a ipsap_t.
2841 * Note that a "pair" is defined as one (but not both) of the following:
2843 * A security association which has a soft reference to another security
2844 * association via its SPI.
2846 * A security association that is not obviously "inbound" or "outbound" so
2847 * it appears in both hash tables, the "peer" being the same security
2848 * association in the other hash table.
2850 * This function will return NULL if the ipsa_t can't be found in the
2851 * inbound or outbound hash tables (not found). If only one ipsa_t is
2852 * found, the pair ipsa_t will be NULL. Both isaf_t values are valid
2853 * provided at least one ipsa_t is found.
2855 ipsap_t *
2856 get_ipsa_pair(sadb_sa_t *assoc, sadb_address_t *srcext, sadb_address_t *dstext,
2857 sadbp_t *spp)
2859 struct sockaddr_in *src, *dst;
2860 struct sockaddr_in6 *src6, *dst6;
2861 sadb_t *sp;
2862 uint32_t *srcaddr, *dstaddr;
2863 isaf_t *outbound_bucket, *inbound_bucket;
2864 boolean_t in_inbound_table = B_FALSE;
2865 ipsap_t *ipsapp;
2866 sa_family_t af;
2868 uint32_t pair_srcaddr[IPSA_MAX_ADDRLEN];
2869 uint32_t pair_dstaddr[IPSA_MAX_ADDRLEN];
2870 uint32_t pair_spi;
2872 ipsapp = kmem_zalloc(sizeof (*ipsapp), KM_NOSLEEP);
2873 if (ipsapp == NULL)
2874 return (NULL);
2877 * Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck()
2878 * takes care of them.
2881 dst = (struct sockaddr_in *)(dstext + 1);
2882 af = dst->sin_family;
2883 if (af == AF_INET6) {
2884 sp = &spp->s_v6;
2885 dst6 = (struct sockaddr_in6 *)dst;
2886 dstaddr = (uint32_t *)&dst6->sin6_addr;
2887 if (srcext != NULL) {
2888 src6 = (struct sockaddr_in6 *)(srcext + 1);
2889 srcaddr = (uint32_t *)&src6->sin6_addr;
2890 ASSERT(src6->sin6_family == af);
2891 ASSERT(src6->sin6_family == AF_INET6);
2892 } else {
2893 srcaddr = ALL_ZEROES_PTR;
2895 outbound_bucket = OUTBOUND_BUCKET_V6(sp,
2896 *(uint32_t *)dstaddr);
2897 } else {
2898 sp = &spp->s_v4;
2899 dstaddr = (uint32_t *)&dst->sin_addr;
2900 if (srcext != NULL) {
2901 src = (struct sockaddr_in *)(srcext + 1);
2902 srcaddr = (uint32_t *)&src->sin_addr;
2903 ASSERT(src->sin_family == af);
2904 ASSERT(src->sin_family == AF_INET);
2905 } else {
2906 srcaddr = ALL_ZEROES_PTR;
2908 outbound_bucket = OUTBOUND_BUCKET_V4(sp,
2909 *(uint32_t *)dstaddr);
2912 inbound_bucket = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
2914 /* Lock down both buckets. */
2915 mutex_enter(&outbound_bucket->isaf_lock);
2916 mutex_enter(&inbound_bucket->isaf_lock);
2918 if (assoc->sadb_sa_flags & IPSA_F_INBOUND) {
2919 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(inbound_bucket,
2920 assoc->sadb_sa_spi, srcaddr, dstaddr, af);
2921 if (ipsapp->ipsap_sa_ptr != NULL) {
2922 ipsapp->ipsap_bucket = inbound_bucket;
2923 ipsapp->ipsap_pbucket = outbound_bucket;
2924 in_inbound_table = B_TRUE;
2925 } else {
2926 ipsapp->ipsap_sa_ptr =
2927 ipsec_getassocbyspi(outbound_bucket,
2928 assoc->sadb_sa_spi, srcaddr, dstaddr, af);
2929 ipsapp->ipsap_bucket = outbound_bucket;
2930 ipsapp->ipsap_pbucket = inbound_bucket;
2932 } else {
2933 /* IPSA_F_OUTBOUND is set *or* no directions flags set. */
2934 ipsapp->ipsap_sa_ptr =
2935 ipsec_getassocbyspi(outbound_bucket,
2936 assoc->sadb_sa_spi, srcaddr, dstaddr, af);
2937 if (ipsapp->ipsap_sa_ptr != NULL) {
2938 ipsapp->ipsap_bucket = outbound_bucket;
2939 ipsapp->ipsap_pbucket = inbound_bucket;
2940 } else {
2941 ipsapp->ipsap_sa_ptr =
2942 ipsec_getassocbyspi(inbound_bucket,
2943 assoc->sadb_sa_spi, srcaddr, dstaddr, af);
2944 ipsapp->ipsap_bucket = inbound_bucket;
2945 ipsapp->ipsap_pbucket = outbound_bucket;
2946 if (ipsapp->ipsap_sa_ptr != NULL)
2947 in_inbound_table = B_TRUE;
2951 if (ipsapp->ipsap_sa_ptr == NULL) {
2952 mutex_exit(&outbound_bucket->isaf_lock);
2953 mutex_exit(&inbound_bucket->isaf_lock);
2954 kmem_free(ipsapp, sizeof (*ipsapp));
2955 return (NULL);
2958 if ((ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) &&
2959 in_inbound_table) {
2960 mutex_exit(&outbound_bucket->isaf_lock);
2961 mutex_exit(&inbound_bucket->isaf_lock);
2962 return (ipsapp);
2965 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock);
2966 if (ipsapp->ipsap_sa_ptr->ipsa_haspeer) {
2968 * haspeer implies no sa_pairing, look for same spi
2969 * in other hashtable.
2971 ipsapp->ipsap_psa_ptr =
2972 ipsec_getassocbyspi(ipsapp->ipsap_pbucket,
2973 assoc->sadb_sa_spi, srcaddr, dstaddr, af);
2974 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock);
2975 mutex_exit(&outbound_bucket->isaf_lock);
2976 mutex_exit(&inbound_bucket->isaf_lock);
2977 return (ipsapp);
2979 pair_spi = ipsapp->ipsap_sa_ptr->ipsa_otherspi;
2980 IPSA_COPY_ADDR(&pair_srcaddr,
2981 ipsapp->ipsap_sa_ptr->ipsa_srcaddr, af);
2982 IPSA_COPY_ADDR(&pair_dstaddr,
2983 ipsapp->ipsap_sa_ptr->ipsa_dstaddr, af);
2984 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock);
2985 mutex_exit(&outbound_bucket->isaf_lock);
2986 mutex_exit(&inbound_bucket->isaf_lock);
2988 if (pair_spi == 0) {
2989 ASSERT(ipsapp->ipsap_bucket != NULL);
2990 ASSERT(ipsapp->ipsap_pbucket != NULL);
2991 return (ipsapp);
2994 /* found sa in outbound sadb, peer should be inbound */
2996 if (in_inbound_table) {
2997 /* Found SA in inbound table, pair will be in outbound. */
2998 if (af == AF_INET6) {
2999 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V6(sp,
3000 *(uint32_t *)pair_srcaddr);
3001 } else {
3002 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V4(sp,
3003 *(uint32_t *)pair_srcaddr);
3005 } else {
3006 ipsapp->ipsap_pbucket = INBOUND_BUCKET(sp, pair_spi);
3008 mutex_enter(&ipsapp->ipsap_pbucket->isaf_lock);
3009 ipsapp->ipsap_psa_ptr = ipsec_getassocbyspi(ipsapp->ipsap_pbucket,
3010 pair_spi, pair_dstaddr, pair_srcaddr, af);
3011 mutex_exit(&ipsapp->ipsap_pbucket->isaf_lock);
3012 ASSERT(ipsapp->ipsap_bucket != NULL);
3013 ASSERT(ipsapp->ipsap_pbucket != NULL);
3014 return (ipsapp);
3018 * Initialize the mechanism parameters associated with an SA.
3019 * These parameters can be shared by multiple packets, which saves
3020 * us from the overhead of consulting the algorithm table for
3021 * each packet.
3023 static void
3024 sadb_init_alginfo(ipsa_t *sa)
3026 ipsec_alginfo_t *alg;
3027 ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec;
3029 mutex_enter(&ipss->ipsec_alg_lock);
3031 if (sa->ipsa_encrkey != NULL) {
3032 alg = ipss->ipsec_alglists[IPSEC_ALG_ENCR][sa->ipsa_encr_alg];
3033 if (alg != NULL && ALG_VALID(alg)) {
3034 sa->ipsa_emech.cm_type = alg->alg_mech_type;
3035 sa->ipsa_emech.cm_param = NULL;
3036 sa->ipsa_emech.cm_param_len = 0;
3037 sa->ipsa_iv_len = alg->alg_datalen;
3038 } else
3039 sa->ipsa_emech.cm_type = CRYPTO_MECHANISM_INVALID;
3042 if (sa->ipsa_authkey != NULL) {
3043 alg = ipss->ipsec_alglists[IPSEC_ALG_AUTH][sa->ipsa_auth_alg];
3044 if (alg != NULL && ALG_VALID(alg)) {
3045 sa->ipsa_amech.cm_type = alg->alg_mech_type;
3046 sa->ipsa_amech.cm_param = (char *)&sa->ipsa_mac_len;
3047 sa->ipsa_amech.cm_param_len = sizeof (size_t);
3048 sa->ipsa_mac_len = (size_t)alg->alg_datalen;
3049 } else
3050 sa->ipsa_amech.cm_type = CRYPTO_MECHANISM_INVALID;
3053 mutex_exit(&ipss->ipsec_alg_lock);
3057 * Perform NAT-traversal cached checksum offset calculations here.
3059 static void
3060 sadb_nat_calculations(ipsa_t *newbie, sadb_address_t *natt_loc_ext,
3061 sadb_address_t *natt_rem_ext, uint32_t *src_addr_ptr,
3062 uint32_t *dst_addr_ptr)
3064 struct sockaddr_in *natt_loc, *natt_rem;
3065 uint32_t *natt_loc_ptr = NULL, *natt_rem_ptr = NULL;
3066 uint32_t running_sum = 0;
3068 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16)
3070 if (natt_rem_ext != NULL) {
3071 uint32_t l_src;
3072 uint32_t l_rem;
3074 natt_rem = (struct sockaddr_in *)(natt_rem_ext + 1);
3076 /* Ensured by sadb_addrfix(). */
3077 ASSERT(natt_rem->sin_family == AF_INET);
3079 natt_rem_ptr = (uint32_t *)(&natt_rem->sin_addr);
3080 newbie->ipsa_remote_nat_port = natt_rem->sin_port;
3081 l_src = *src_addr_ptr;
3082 l_rem = *natt_rem_ptr;
3084 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */
3085 newbie->ipsa_natt_addr_rem = *natt_rem_ptr;
3087 l_src = ntohl(l_src);
3088 DOWN_SUM(l_src);
3089 DOWN_SUM(l_src);
3090 l_rem = ntohl(l_rem);
3091 DOWN_SUM(l_rem);
3092 DOWN_SUM(l_rem);
3095 * We're 1's complement for checksums, so check for wraparound
3096 * here.
3098 if (l_rem > l_src)
3099 l_src--;
3101 running_sum += l_src - l_rem;
3103 DOWN_SUM(running_sum);
3104 DOWN_SUM(running_sum);
3107 if (natt_loc_ext != NULL) {
3108 natt_loc = (struct sockaddr_in *)(natt_loc_ext + 1);
3110 /* Ensured by sadb_addrfix(). */
3111 ASSERT(natt_loc->sin_family == AF_INET);
3113 natt_loc_ptr = (uint32_t *)(&natt_loc->sin_addr);
3114 newbie->ipsa_local_nat_port = natt_loc->sin_port;
3116 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */
3117 newbie->ipsa_natt_addr_loc = *natt_loc_ptr;
3120 * NAT-T port agility means we may have natt_loc_ext, but
3121 * only for a local-port change.
3123 if (natt_loc->sin_addr.s_addr != INADDR_ANY) {
3124 uint32_t l_dst = ntohl(*dst_addr_ptr);
3125 uint32_t l_loc = ntohl(*natt_loc_ptr);
3127 DOWN_SUM(l_loc);
3128 DOWN_SUM(l_loc);
3129 DOWN_SUM(l_dst);
3130 DOWN_SUM(l_dst);
3133 * We're 1's complement for checksums, so check for
3134 * wraparound here.
3136 if (l_loc > l_dst)
3137 l_dst--;
3139 running_sum += l_dst - l_loc;
3140 DOWN_SUM(running_sum);
3141 DOWN_SUM(running_sum);
3145 newbie->ipsa_inbound_cksum = running_sum;
3146 #undef DOWN_SUM
3150 * This function is called from consumers that need to insert a fully-grown
3151 * security association into its tables. This function takes into account that
3152 * SAs can be "inbound", "outbound", or "both". The "primary" and "secondary"
3153 * hash bucket parameters are set in order of what the SA will be most of the
3154 * time. (For example, an SA with an unspecified source, and a multicast
3155 * destination will primarily be an outbound SA. OTOH, if that destination
3156 * is unicast for this node, then the SA will primarily be inbound.)
3158 * It takes a lot of parameters because even if clone is B_FALSE, this needs
3159 * to check both buckets for purposes of collision.
3161 * Return 0 upon success. Return various errnos (ENOMEM, EEXIST) for
3162 * various error conditions. We may need to set samsg->sadb_x_msg_diagnostic
3163 * with additional diagnostic information because there is at least one EINVAL
3164 * case here.
3167 sadb_common_add(queue_t *ip_q, queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg,
3168 keysock_in_t *ksi, isaf_t *primary, isaf_t *secondary,
3169 ipsa_t *newbie, boolean_t clone, boolean_t is_inbound, int *diagnostic,
3170 netstack_t *ns, sadbp_t *spp)
3172 ipsa_t *newbie_clone = NULL, *scratch;
3173 ipsap_t *ipsapp = NULL;
3174 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3175 sadb_address_t *srcext =
3176 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3177 sadb_address_t *dstext =
3178 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3179 sadb_address_t *isrcext =
3180 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
3181 sadb_address_t *idstext =
3182 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
3183 sadb_x_kmc_t *kmcext =
3184 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
3185 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
3186 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
3187 sadb_x_pair_t *pair_ext =
3188 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR];
3189 sadb_x_replay_ctr_t *replayext =
3190 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE];
3191 uint8_t protocol =
3192 (samsg->sadb_msg_satype == SADB_SATYPE_AH) ? IPPROTO_AH:IPPROTO_ESP;
3193 #if 0
3195 * XXXMLS - When Trusted Solaris or Multi-Level Secure functionality
3196 * comes to ON, examine these if 0'ed fragments. Look for XXXMLS.
3198 sadb_sens_t *sens = (sadb_sens_t *);
3199 #endif
3200 struct sockaddr_in *src, *dst, *isrc, *idst;
3201 struct sockaddr_in6 *src6, *dst6, *isrc6, *idst6;
3202 sadb_lifetime_t *soft =
3203 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
3204 sadb_lifetime_t *hard =
3205 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
3206 sadb_lifetime_t *idle =
3207 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE];
3208 sa_family_t af;
3209 int error = 0;
3210 boolean_t isupdate = (newbie != NULL);
3211 uint32_t *src_addr_ptr, *dst_addr_ptr, *isrc_addr_ptr, *idst_addr_ptr;
3212 mblk_t *ctl_mp = NULL;
3213 ipsec_stack_t *ipss = ns->netstack_ipsec;
3214 int rcode;
3216 if (srcext == NULL) {
3217 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
3218 return (EINVAL);
3220 if (dstext == NULL) {
3221 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3222 return (EINVAL);
3224 if (assoc == NULL) {
3225 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3226 return (EINVAL);
3229 src = (struct sockaddr_in *)(srcext + 1);
3230 src6 = (struct sockaddr_in6 *)(srcext + 1);
3231 dst = (struct sockaddr_in *)(dstext + 1);
3232 dst6 = (struct sockaddr_in6 *)(dstext + 1);
3233 if (isrcext != NULL) {
3234 isrc = (struct sockaddr_in *)(isrcext + 1);
3235 isrc6 = (struct sockaddr_in6 *)(isrcext + 1);
3236 ASSERT(idstext != NULL);
3237 idst = (struct sockaddr_in *)(idstext + 1);
3238 idst6 = (struct sockaddr_in6 *)(idstext + 1);
3239 } else {
3240 isrc = NULL;
3241 isrc6 = NULL;
3244 af = src->sin_family;
3246 if (af == AF_INET) {
3247 src_addr_ptr = (uint32_t *)&src->sin_addr;
3248 dst_addr_ptr = (uint32_t *)&dst->sin_addr;
3249 } else {
3250 ASSERT(af == AF_INET6);
3251 src_addr_ptr = (uint32_t *)&src6->sin6_addr;
3252 dst_addr_ptr = (uint32_t *)&dst6->sin6_addr;
3255 if (!isupdate && (clone == B_TRUE || is_inbound == B_TRUE) &&
3256 cl_inet_checkspi &&
3257 (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) {
3258 rcode = cl_inet_checkspi(protocol, assoc->sadb_sa_spi);
3259 if (rcode == -1) {
3260 return (EEXIST);
3265 * Check to see if the new SA will be cloned AND paired. The
3266 * reason a SA will be cloned is the source or destination addresses
3267 * are not specific enough to determine if the SA goes in the outbound
3268 * or the inbound hash table, so its cloned and put in both. If
3269 * the SA is paired, it's soft linked to another SA for the other
3270 * direction. Keeping track and looking up SA's that are direction
3271 * unspecific and linked is too hard.
3273 if (clone && (pair_ext != NULL)) {
3274 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE;
3275 return (EINVAL);
3278 if (!isupdate) {
3279 newbie = sadb_makelarvalassoc(assoc->sadb_sa_spi,
3280 src_addr_ptr, dst_addr_ptr, af, ns);
3281 if (newbie == NULL)
3282 return (ENOMEM);
3285 mutex_enter(&newbie->ipsa_lock);
3287 if (isrc != NULL) {
3288 if (isrc->sin_family == AF_INET) {
3289 if (srcext->sadb_address_proto != IPPROTO_ENCAP) {
3290 if (srcext->sadb_address_proto != 0) {
3292 * Mismatched outer-packet protocol
3293 * and inner-packet address family.
3295 mutex_exit(&newbie->ipsa_lock);
3296 error = EPROTOTYPE;
3297 goto error;
3298 } else {
3299 /* Fill in with explicit protocol. */
3300 srcext->sadb_address_proto =
3301 IPPROTO_ENCAP;
3302 dstext->sadb_address_proto =
3303 IPPROTO_ENCAP;
3306 isrc_addr_ptr = (uint32_t *)&isrc->sin_addr;
3307 idst_addr_ptr = (uint32_t *)&idst->sin_addr;
3308 } else {
3309 ASSERT(isrc->sin_family == AF_INET6);
3310 if (srcext->sadb_address_proto != IPPROTO_IPV6) {
3311 if (srcext->sadb_address_proto != 0) {
3313 * Mismatched outer-packet protocol
3314 * and inner-packet address family.
3316 mutex_exit(&newbie->ipsa_lock);
3317 error = EPROTOTYPE;
3318 goto error;
3319 } else {
3320 /* Fill in with explicit protocol. */
3321 srcext->sadb_address_proto =
3322 IPPROTO_IPV6;
3323 dstext->sadb_address_proto =
3324 IPPROTO_IPV6;
3327 isrc_addr_ptr = (uint32_t *)&isrc6->sin6_addr;
3328 idst_addr_ptr = (uint32_t *)&idst6->sin6_addr;
3330 newbie->ipsa_innerfam = isrc->sin_family;
3332 IPSA_COPY_ADDR(newbie->ipsa_innersrc, isrc_addr_ptr,
3333 newbie->ipsa_innerfam);
3334 IPSA_COPY_ADDR(newbie->ipsa_innerdst, idst_addr_ptr,
3335 newbie->ipsa_innerfam);
3336 newbie->ipsa_innersrcpfx = isrcext->sadb_address_prefixlen;
3337 newbie->ipsa_innerdstpfx = idstext->sadb_address_prefixlen;
3339 /* Unique value uses inner-ports for Tunnel Mode... */
3340 newbie->ipsa_unique_id = SA_UNIQUE_ID(isrc->sin_port,
3341 idst->sin_port, dstext->sadb_address_proto,
3342 idstext->sadb_address_proto);
3343 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(isrc->sin_port,
3344 idst->sin_port, dstext->sadb_address_proto,
3345 idstext->sadb_address_proto);
3346 } else {
3347 /* ... and outer-ports for Transport Mode. */
3348 newbie->ipsa_unique_id = SA_UNIQUE_ID(src->sin_port,
3349 dst->sin_port, dstext->sadb_address_proto, 0);
3350 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(src->sin_port,
3351 dst->sin_port, dstext->sadb_address_proto, 0);
3353 if (newbie->ipsa_unique_mask != (uint64_t)0)
3354 newbie->ipsa_flags |= IPSA_F_UNIQUE;
3356 sadb_nat_calculations(newbie,
3357 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC],
3358 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM],
3359 src_addr_ptr, dst_addr_ptr);
3361 newbie->ipsa_type = samsg->sadb_msg_satype;
3362 ASSERT((assoc->sadb_sa_state == SADB_SASTATE_MATURE) ||
3363 (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE));
3364 newbie->ipsa_auth_alg = assoc->sadb_sa_auth;
3365 newbie->ipsa_encr_alg = assoc->sadb_sa_encrypt;
3367 newbie->ipsa_flags |= assoc->sadb_sa_flags;
3368 if ((newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_LOC &&
3369 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC] == NULL) ||
3370 (newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_REM &&
3371 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM] == NULL) ||
3372 (newbie->ipsa_flags & SADB_X_SAFLAGS_TUNNEL &&
3373 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC] == NULL)) {
3374 mutex_exit(&newbie->ipsa_lock);
3375 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
3376 error = EINVAL;
3377 goto error;
3380 * If unspecified source address, force replay_wsize to 0.
3381 * This is because an SA that has multiple sources of secure
3382 * traffic cannot enforce a replay counter w/o synchronizing the
3383 * senders.
3385 if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC)
3386 newbie->ipsa_replay_wsize = assoc->sadb_sa_replay;
3387 else
3388 newbie->ipsa_replay_wsize = 0;
3390 newbie->ipsa_addtime = gethrestime_sec();
3392 if (kmcext != NULL) {
3393 newbie->ipsa_kmp = kmcext->sadb_x_kmc_proto;
3394 newbie->ipsa_kmc = kmcext->sadb_x_kmc_cookie;
3398 * XXX CURRENT lifetime checks MAY BE needed for an UPDATE.
3399 * The spec says that one can update current lifetimes, but
3400 * that seems impractical, especially in the larval-to-mature
3401 * update that this function performs.
3403 if (soft != NULL) {
3404 newbie->ipsa_softaddlt = soft->sadb_lifetime_addtime;
3405 newbie->ipsa_softuselt = soft->sadb_lifetime_usetime;
3406 newbie->ipsa_softbyteslt = soft->sadb_lifetime_bytes;
3407 newbie->ipsa_softalloc = soft->sadb_lifetime_allocations;
3408 SET_EXPIRE(newbie, softaddlt, softexpiretime);
3410 if (hard != NULL) {
3411 newbie->ipsa_hardaddlt = hard->sadb_lifetime_addtime;
3412 newbie->ipsa_harduselt = hard->sadb_lifetime_usetime;
3413 newbie->ipsa_hardbyteslt = hard->sadb_lifetime_bytes;
3414 newbie->ipsa_hardalloc = hard->sadb_lifetime_allocations;
3415 SET_EXPIRE(newbie, hardaddlt, hardexpiretime);
3417 if (idle != NULL) {
3418 newbie->ipsa_idleaddlt = idle->sadb_lifetime_addtime;
3419 newbie->ipsa_idleuselt = idle->sadb_lifetime_usetime;
3420 newbie->ipsa_idleexpiretime = newbie->ipsa_addtime +
3421 newbie->ipsa_idleaddlt;
3422 newbie->ipsa_idletime = newbie->ipsa_idleaddlt;
3425 newbie->ipsa_authtmpl = NULL;
3426 newbie->ipsa_encrtmpl = NULL;
3428 if (akey != NULL) {
3429 newbie->ipsa_authkeybits = akey->sadb_key_bits;
3430 newbie->ipsa_authkeylen = SADB_1TO8(akey->sadb_key_bits);
3431 /* In case we have to round up to the next byte... */
3432 if ((akey->sadb_key_bits & 0x7) != 0)
3433 newbie->ipsa_authkeylen++;
3434 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen,
3435 KM_NOSLEEP);
3436 if (newbie->ipsa_authkey == NULL) {
3437 error = ENOMEM;
3438 mutex_exit(&newbie->ipsa_lock);
3439 goto error;
3441 bcopy(akey + 1, newbie->ipsa_authkey, newbie->ipsa_authkeylen);
3442 bzero(akey + 1, newbie->ipsa_authkeylen);
3445 * Pre-initialize the kernel crypto framework key
3446 * structure.
3448 newbie->ipsa_kcfauthkey.ck_format = CRYPTO_KEY_RAW;
3449 newbie->ipsa_kcfauthkey.ck_length = newbie->ipsa_authkeybits;
3450 newbie->ipsa_kcfauthkey.ck_data = newbie->ipsa_authkey;
3452 mutex_enter(&ipss->ipsec_alg_lock);
3453 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_AUTH);
3454 mutex_exit(&ipss->ipsec_alg_lock);
3455 if (error != 0) {
3456 mutex_exit(&newbie->ipsa_lock);
3457 goto error;
3461 if (ekey != NULL) {
3462 newbie->ipsa_encrkeybits = ekey->sadb_key_bits;
3463 newbie->ipsa_encrkeylen = SADB_1TO8(ekey->sadb_key_bits);
3464 /* In case we have to round up to the next byte... */
3465 if ((ekey->sadb_key_bits & 0x7) != 0)
3466 newbie->ipsa_encrkeylen++;
3467 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen,
3468 KM_NOSLEEP);
3469 if (newbie->ipsa_encrkey == NULL) {
3470 error = ENOMEM;
3471 mutex_exit(&newbie->ipsa_lock);
3472 goto error;
3474 bcopy(ekey + 1, newbie->ipsa_encrkey, newbie->ipsa_encrkeylen);
3475 /* XXX is this safe w.r.t db_ref, etc? */
3476 bzero(ekey + 1, newbie->ipsa_encrkeylen);
3479 * Pre-initialize the kernel crypto framework key
3480 * structure.
3482 newbie->ipsa_kcfencrkey.ck_format = CRYPTO_KEY_RAW;
3483 newbie->ipsa_kcfencrkey.ck_length = newbie->ipsa_encrkeybits;
3484 newbie->ipsa_kcfencrkey.ck_data = newbie->ipsa_encrkey;
3486 mutex_enter(&ipss->ipsec_alg_lock);
3487 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_ENCR);
3488 mutex_exit(&ipss->ipsec_alg_lock);
3489 if (error != 0) {
3490 mutex_exit(&newbie->ipsa_lock);
3491 goto error;
3495 sadb_init_alginfo(newbie);
3498 * Ptrs to processing functions.
3500 if (newbie->ipsa_type == SADB_SATYPE_ESP)
3501 ipsecesp_init_funcs(newbie);
3502 else
3503 ipsecah_init_funcs(newbie);
3504 ASSERT(newbie->ipsa_output_func != NULL &&
3505 newbie->ipsa_input_func != NULL);
3508 * Certificate ID stuff.
3510 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC] != NULL) {
3511 sadb_ident_t *id =
3512 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC];
3515 * Can assume strlen() will return okay because ext_check() in
3516 * keysock.c prepares the string for us.
3518 newbie->ipsa_src_cid = ipsid_lookup(id->sadb_ident_type,
3519 (char *)(id+1), ns);
3520 if (newbie->ipsa_src_cid == NULL) {
3521 error = ENOMEM;
3522 mutex_exit(&newbie->ipsa_lock);
3523 goto error;
3527 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_DST] != NULL) {
3528 sadb_ident_t *id =
3529 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST];
3532 * Can assume strlen() will return okay because ext_check() in
3533 * keysock.c prepares the string for us.
3535 newbie->ipsa_dst_cid = ipsid_lookup(id->sadb_ident_type,
3536 (char *)(id+1), ns);
3537 if (newbie->ipsa_dst_cid == NULL) {
3538 error = ENOMEM;
3539 mutex_exit(&newbie->ipsa_lock);
3540 goto error;
3544 #if 0
3545 /* XXXMLS SENSITIVITY handling code. */
3546 if (sens != NULL) {
3547 int i;
3548 uint64_t *bitmap = (uint64_t *)(sens + 1);
3550 newbie->ipsa_dpd = sens->sadb_sens_dpd;
3551 newbie->ipsa_senslevel = sens->sadb_sens_sens_level;
3552 newbie->ipsa_integlevel = sens->sadb_sens_integ_level;
3553 newbie->ipsa_senslen = SADB_64TO8(sens->sadb_sens_sens_len);
3554 newbie->ipsa_integlen = SADB_64TO8(sens->sadb_sens_integ_len);
3555 newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen,
3556 KM_NOSLEEP);
3557 if (newbie->ipsa_integ == NULL) {
3558 error = ENOMEM;
3559 mutex_exit(&newbie->ipsa_lock);
3560 goto error;
3562 newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen,
3563 KM_NOSLEEP);
3564 if (newbie->ipsa_sens == NULL) {
3565 error = ENOMEM;
3566 mutex_exit(&newbie->ipsa_lock);
3567 goto error;
3569 for (i = 0; i < sens->sadb_sens_sens_len; i++) {
3570 newbie->ipsa_sens[i] = *bitmap;
3571 bitmap++;
3573 for (i = 0; i < sens->sadb_sens_integ_len; i++) {
3574 newbie->ipsa_integ[i] = *bitmap;
3575 bitmap++;
3579 #endif
3581 if (replayext != NULL) {
3582 if ((replayext->sadb_x_rc_replay32 == 0) &&
3583 (replayext->sadb_x_rc_replay64 != 0)) {
3584 error = EOPNOTSUPP;
3585 mutex_exit(&newbie->ipsa_lock);
3586 goto error;
3588 newbie->ipsa_replay = replayext->sadb_x_rc_replay32;
3591 /* now that the SA has been updated, set its new state */
3592 newbie->ipsa_state = assoc->sadb_sa_state;
3594 if (clone) {
3595 newbie->ipsa_haspeer = B_TRUE;
3596 } else {
3597 if (!is_inbound) {
3598 lifetime_fuzz(newbie);
3602 * The less locks I hold when doing an insertion and possible cloning,
3603 * the better!
3605 mutex_exit(&newbie->ipsa_lock);
3607 if (clone) {
3608 newbie_clone = sadb_cloneassoc(newbie);
3610 if (newbie_clone == NULL) {
3611 error = ENOMEM;
3612 goto error;
3617 * Enter the bucket locks. The order of entry is outbound,
3618 * inbound. We map "primary" and "secondary" into outbound and inbound
3619 * based on the destination address type. If the destination address
3620 * type is for a node that isn't mine (or potentially mine), the
3621 * "primary" bucket is the outbound one.
3623 if (!is_inbound) {
3624 /* primary == outbound */
3625 mutex_enter(&primary->isaf_lock);
3626 mutex_enter(&secondary->isaf_lock);
3627 } else {
3628 /* primary == inbound */
3629 mutex_enter(&secondary->isaf_lock);
3630 mutex_enter(&primary->isaf_lock);
3633 IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_common_add: spi = 0x%x\n",
3634 newbie->ipsa_spi));
3637 * sadb_insertassoc() doesn't increment the reference
3638 * count. We therefore have to increment the
3639 * reference count one more time to reflect the
3640 * pointers of the table that reference this SA.
3642 IPSA_REFHOLD(newbie);
3644 if (isupdate) {
3646 * Unlink from larval holding cell in the "inbound" fanout.
3648 ASSERT(newbie->ipsa_linklock == &primary->isaf_lock ||
3649 newbie->ipsa_linklock == &secondary->isaf_lock);
3650 sadb_unlinkassoc(newbie);
3653 mutex_enter(&newbie->ipsa_lock);
3654 error = sadb_insertassoc(newbie, primary);
3655 if (error == 0) {
3656 ctl_mp = sadb_fmt_sa_req(DL_CO_SET, newbie->ipsa_type, newbie,
3657 is_inbound);
3659 mutex_exit(&newbie->ipsa_lock);
3661 if (error != 0) {
3663 * Since sadb_insertassoc() failed, we must decrement the
3664 * refcount again so the cleanup code will actually free
3665 * the offending SA.
3667 IPSA_REFRELE(newbie);
3668 goto error_unlock;
3671 if (newbie_clone != NULL) {
3672 mutex_enter(&newbie_clone->ipsa_lock);
3673 error = sadb_insertassoc(newbie_clone, secondary);
3674 mutex_exit(&newbie_clone->ipsa_lock);
3675 if (error != 0) {
3676 /* Collision in secondary table. */
3677 sadb_unlinkassoc(newbie); /* This does REFRELE. */
3678 goto error_unlock;
3680 IPSA_REFHOLD(newbie_clone);
3681 } else {
3682 ASSERT(primary != secondary);
3683 scratch = ipsec_getassocbyspi(secondary, newbie->ipsa_spi,
3684 ALL_ZEROES_PTR, newbie->ipsa_dstaddr, af);
3685 if (scratch != NULL) {
3686 /* Collision in secondary table. */
3687 sadb_unlinkassoc(newbie); /* This does REFRELE. */
3688 /* Set the error, since ipsec_getassocbyspi() can't. */
3689 error = EEXIST;
3690 goto error_unlock;
3694 /* OKAY! So let's do some reality check assertions. */
3696 ASSERT(MUTEX_NOT_HELD(&newbie->ipsa_lock));
3697 ASSERT(newbie_clone == NULL ||
3698 (MUTEX_NOT_HELD(&newbie_clone->ipsa_lock)));
3700 * If hardware acceleration could happen, send it.
3702 if (ctl_mp != NULL) {
3703 putnext(ip_q, ctl_mp);
3704 ctl_mp = NULL;
3707 error_unlock:
3710 * We can exit the locks in any order. Only entrance needs to
3711 * follow any protocol.
3713 mutex_exit(&secondary->isaf_lock);
3714 mutex_exit(&primary->isaf_lock);
3716 if (pair_ext != NULL && error == 0) {
3717 /* update pair_spi if it exists. */
3718 ipsapp = get_ipsa_pair(assoc, srcext, dstext, spp);
3719 if (ipsapp == NULL) {
3720 error = ESRCH;
3721 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND;
3722 } else if (ipsapp->ipsap_psa_ptr != NULL) {
3723 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY;
3724 error = EINVAL;
3725 } else {
3726 /* update_pairing() sets diagnostic */
3727 error = update_pairing(ipsapp, ksi, diagnostic, spp);
3730 /* Common error point for this routine. */
3731 error:
3732 if (newbie != NULL) {
3733 if (error != 0) {
3734 /* This SA is broken, let the reaper clean up. */
3735 mutex_enter(&newbie->ipsa_lock);
3736 newbie->ipsa_state = IPSA_STATE_DEAD;
3737 newbie->ipsa_hardexpiretime = 1;
3738 mutex_exit(&newbie->ipsa_lock);
3740 IPSA_REFRELE(newbie);
3742 if (newbie_clone != NULL) {
3743 IPSA_REFRELE(newbie_clone);
3745 if (ctl_mp != NULL)
3746 freemsg(ctl_mp);
3748 if (error == 0) {
3750 * Construct favorable PF_KEY return message and send to
3751 * keysock. Update the flags in the original keysock message
3752 * to reflect the actual flags in the new SA.
3753 * (Q: Do I need to pass "newbie"? If I do,
3754 * make sure to REFHOLD, call, then REFRELE.)
3756 assoc->sadb_sa_flags = newbie->ipsa_flags;
3757 sadb_pfkey_echo(pfkey_q, mp, samsg, ksi, NULL);
3760 destroy_ipsa_pair(ipsapp);
3761 return (error);
3765 * Set the time of first use for a security association. Update any
3766 * expiration times as a result.
3768 void
3769 sadb_set_usetime(ipsa_t *assoc)
3771 time_t snapshot = gethrestime_sec();
3773 mutex_enter(&assoc->ipsa_lock);
3774 assoc->ipsa_lastuse = snapshot;
3775 assoc->ipsa_idleexpiretime = snapshot + assoc->ipsa_idletime;
3778 * Caller does check usetime before calling me usually, and
3779 * double-checking is better than a mutex_enter/exit hit.
3781 if (assoc->ipsa_usetime == 0) {
3783 * This is redundant for outbound SA's, as
3784 * ipsec_getassocbyconn() sets the IPSA_F_USED flag already.
3785 * Inbound SAs, however, have no such protection.
3787 assoc->ipsa_flags |= IPSA_F_USED;
3788 assoc->ipsa_usetime = snapshot;
3791 * After setting the use time, see if we have a use lifetime
3792 * that would cause the actual SA expiration time to shorten.
3794 UPDATE_EXPIRE(assoc, softuselt, softexpiretime);
3795 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime);
3797 mutex_exit(&assoc->ipsa_lock);
3801 * Send up a PF_KEY expire message for this association.
3803 static void
3804 sadb_expire_assoc(queue_t *pfkey_q, ipsa_t *assoc)
3806 mblk_t *mp, *mp1;
3807 int alloclen, af;
3808 sadb_msg_t *samsg;
3809 sadb_lifetime_t *current, *expire;
3810 sadb_sa_t *saext;
3811 uint8_t *end;
3812 boolean_t tunnel_mode;
3814 ASSERT(MUTEX_HELD(&assoc->ipsa_lock));
3816 /* Don't bother sending if there's no queue. */
3817 if (pfkey_q == NULL)
3818 return;
3820 /* If the SA is one of a pair, only SOFT expire the OUTBOUND SA */
3821 if (assoc->ipsa_state == IPSA_STATE_DYING &&
3822 (assoc->ipsa_flags & IPSA_F_PAIRED) &&
3823 !(assoc->ipsa_flags & IPSA_F_OUTBOUND)) {
3824 return;
3827 mp = sadb_keysock_out(0);
3828 if (mp == NULL) {
3829 /* cmn_err(CE_WARN, */
3830 /* "sadb_expire_assoc: Can't allocate KEYSOCK_OUT.\n"); */
3831 return;
3834 alloclen = sizeof (*samsg) + sizeof (*current) + sizeof (*expire) +
3835 2 * sizeof (sadb_address_t) + sizeof (*saext);
3837 af = assoc->ipsa_addrfam;
3838 switch (af) {
3839 case AF_INET:
3840 alloclen += 2 * sizeof (struct sockaddr_in);
3841 break;
3842 case AF_INET6:
3843 alloclen += 2 * sizeof (struct sockaddr_in6);
3844 break;
3845 default:
3846 /* Won't happen unless there's a kernel bug. */
3847 freeb(mp);
3848 cmn_err(CE_WARN,
3849 "sadb_expire_assoc: Unknown address length.\n");
3850 return;
3853 tunnel_mode = (assoc->ipsa_flags & IPSA_F_TUNNEL);
3854 if (tunnel_mode) {
3855 alloclen += 2 * sizeof (sadb_address_t);
3856 switch (assoc->ipsa_innerfam) {
3857 case AF_INET:
3858 alloclen += 2 * sizeof (struct sockaddr_in);
3859 break;
3860 case AF_INET6:
3861 alloclen += 2 * sizeof (struct sockaddr_in6);
3862 break;
3863 default:
3864 /* Won't happen unless there's a kernel bug. */
3865 freeb(mp);
3866 cmn_err(CE_WARN, "sadb_expire_assoc: "
3867 "Unknown inner address length.\n");
3868 return;
3872 mp->b_cont = allocb(alloclen, BPRI_HI);
3873 if (mp->b_cont == NULL) {
3874 freeb(mp);
3875 /* cmn_err(CE_WARN, */
3876 /* "sadb_expire_assoc: Can't allocate message.\n"); */
3877 return;
3880 mp1 = mp;
3881 mp = mp->b_cont;
3882 end = mp->b_wptr + alloclen;
3884 samsg = (sadb_msg_t *)mp->b_wptr;
3885 mp->b_wptr += sizeof (*samsg);
3886 samsg->sadb_msg_version = PF_KEY_V2;
3887 samsg->sadb_msg_type = SADB_EXPIRE;
3888 samsg->sadb_msg_errno = 0;
3889 samsg->sadb_msg_satype = assoc->ipsa_type;
3890 samsg->sadb_msg_len = SADB_8TO64(alloclen);
3891 samsg->sadb_msg_reserved = 0;
3892 samsg->sadb_msg_seq = 0;
3893 samsg->sadb_msg_pid = 0;
3895 saext = (sadb_sa_t *)mp->b_wptr;
3896 mp->b_wptr += sizeof (*saext);
3897 saext->sadb_sa_len = SADB_8TO64(sizeof (*saext));
3898 saext->sadb_sa_exttype = SADB_EXT_SA;
3899 saext->sadb_sa_spi = assoc->ipsa_spi;
3900 saext->sadb_sa_replay = assoc->ipsa_replay_wsize;
3901 saext->sadb_sa_state = assoc->ipsa_state;
3902 saext->sadb_sa_auth = assoc->ipsa_auth_alg;
3903 saext->sadb_sa_encrypt = assoc->ipsa_encr_alg;
3904 saext->sadb_sa_flags = assoc->ipsa_flags;
3906 current = (sadb_lifetime_t *)mp->b_wptr;
3907 mp->b_wptr += sizeof (sadb_lifetime_t);
3908 current->sadb_lifetime_len = SADB_8TO64(sizeof (*current));
3909 current->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3910 /* We do not support the concept. */
3911 current->sadb_lifetime_allocations = 0;
3912 current->sadb_lifetime_bytes = assoc->ipsa_bytes;
3913 current->sadb_lifetime_addtime = assoc->ipsa_addtime;
3914 current->sadb_lifetime_usetime = assoc->ipsa_usetime;
3916 expire = (sadb_lifetime_t *)mp->b_wptr;
3917 mp->b_wptr += sizeof (*expire);
3918 expire->sadb_lifetime_len = SADB_8TO64(sizeof (*expire));
3920 if (assoc->ipsa_state == IPSA_STATE_DEAD) {
3921 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3922 expire->sadb_lifetime_allocations = assoc->ipsa_hardalloc;
3923 expire->sadb_lifetime_bytes = assoc->ipsa_hardbyteslt;
3924 expire->sadb_lifetime_addtime = assoc->ipsa_hardaddlt;
3925 expire->sadb_lifetime_usetime = assoc->ipsa_harduselt;
3926 } else if (assoc->ipsa_state == IPSA_STATE_DYING) {
3927 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
3928 expire->sadb_lifetime_allocations = assoc->ipsa_softalloc;
3929 expire->sadb_lifetime_bytes = assoc->ipsa_softbyteslt;
3930 expire->sadb_lifetime_addtime = assoc->ipsa_softaddlt;
3931 expire->sadb_lifetime_usetime = assoc->ipsa_softuselt;
3932 } else {
3933 ASSERT(assoc->ipsa_state == IPSA_STATE_MATURE);
3934 expire->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE;
3935 expire->sadb_lifetime_allocations = 0;
3936 expire->sadb_lifetime_bytes = 0;
3937 expire->sadb_lifetime_addtime = assoc->ipsa_idleaddlt;
3938 expire->sadb_lifetime_usetime = assoc->ipsa_idleuselt;
3941 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_SRC,
3942 af, assoc->ipsa_srcaddr, tunnel_mode ? 0 : SA_SRCPORT(assoc),
3943 SA_PROTO(assoc), 0);
3944 ASSERT(mp->b_wptr != NULL);
3946 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_DST,
3947 af, assoc->ipsa_dstaddr, tunnel_mode ? 0 : SA_DSTPORT(assoc),
3948 SA_PROTO(assoc), 0);
3949 ASSERT(mp->b_wptr != NULL);
3951 if (tunnel_mode) {
3952 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end,
3953 SADB_X_EXT_ADDRESS_INNER_SRC, assoc->ipsa_innerfam,
3954 assoc->ipsa_innersrc, SA_SRCPORT(assoc), SA_IPROTO(assoc),
3955 assoc->ipsa_innersrcpfx);
3956 ASSERT(mp->b_wptr != NULL);
3957 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end,
3958 SADB_X_EXT_ADDRESS_INNER_DST, assoc->ipsa_innerfam,
3959 assoc->ipsa_innerdst, SA_DSTPORT(assoc), SA_IPROTO(assoc),
3960 assoc->ipsa_innerdstpfx);
3961 ASSERT(mp->b_wptr != NULL);
3964 /* Can just putnext, we're ready to go! */
3965 putnext(pfkey_q, mp1);
3969 * "Age" the SA with the number of bytes that was used to protect traffic.
3970 * Send an SADB_EXPIRE message if appropriate. Return B_TRUE if there was
3971 * enough "charge" left in the SA to protect the data. Return B_FALSE
3972 * otherwise. (If B_FALSE is returned, the association either was, or became
3973 * DEAD.)
3975 boolean_t
3976 sadb_age_bytes(queue_t *pfkey_q, ipsa_t *assoc, uint64_t bytes,
3977 boolean_t sendmsg)
3979 boolean_t rc = B_TRUE;
3980 uint64_t newtotal;
3982 mutex_enter(&assoc->ipsa_lock);
3983 newtotal = assoc->ipsa_bytes + bytes;
3984 if (assoc->ipsa_hardbyteslt != 0 &&
3985 newtotal >= assoc->ipsa_hardbyteslt) {
3986 if (assoc->ipsa_state != IPSA_STATE_DEAD) {
3987 sadb_delete_cluster(assoc);
3989 * Send EXPIRE message to PF_KEY. May wish to pawn
3990 * this off on another non-interrupt thread. Also
3991 * unlink this SA immediately.
3993 assoc->ipsa_state = IPSA_STATE_DEAD;
3994 if (sendmsg)
3995 sadb_expire_assoc(pfkey_q, assoc);
3997 * Set non-zero expiration time so sadb_age_assoc()
3998 * will work when reaping.
4000 assoc->ipsa_hardexpiretime = (time_t)1;
4001 } /* Else someone beat me to it! */
4002 rc = B_FALSE;
4003 } else if (assoc->ipsa_softbyteslt != 0 &&
4004 (newtotal >= assoc->ipsa_softbyteslt)) {
4005 if (assoc->ipsa_state < IPSA_STATE_DYING) {
4007 * Send EXPIRE message to PF_KEY. May wish to pawn
4008 * this off on another non-interrupt thread.
4010 assoc->ipsa_state = IPSA_STATE_DYING;
4011 assoc->ipsa_bytes = newtotal;
4012 if (sendmsg)
4013 sadb_expire_assoc(pfkey_q, assoc);
4014 } /* Else someone beat me to it! */
4016 if (rc == B_TRUE)
4017 assoc->ipsa_bytes = newtotal;
4018 mutex_exit(&assoc->ipsa_lock);
4019 return (rc);
4023 * Push one or more DL_CO_DELETE messages queued up by
4024 * sadb_torch_assoc down to the underlying driver now that it's a
4025 * convenient time for it (i.e., ipsa bucket locks not held).
4027 static void
4028 sadb_drain_torchq(queue_t *q, mblk_t *mp)
4030 while (mp != NULL) {
4031 mblk_t *next = mp->b_next;
4032 mp->b_next = NULL;
4033 if (q != NULL)
4034 putnext(q, mp);
4035 else
4036 freemsg(mp);
4037 mp = next;
4042 * "Torch" an individual SA. Returns NULL, so it can be tail-called from
4043 * sadb_age_assoc().
4045 * If SA is hardware-accelerated, and we can't allocate the mblk
4046 * containing the DL_CO_DELETE, just return; it will remain in the
4047 * table and be swept up by sadb_ager() in a subsequent pass.
4049 static ipsa_t *
4050 sadb_torch_assoc(isaf_t *head, ipsa_t *sa, boolean_t inbnd, mblk_t **mq)
4052 mblk_t *mp;
4054 ASSERT(MUTEX_HELD(&head->isaf_lock));
4055 ASSERT(MUTEX_HELD(&sa->ipsa_lock));
4056 ASSERT(sa->ipsa_state == IPSA_STATE_DEAD);
4059 * Force cached SAs to be revalidated..
4061 head->isaf_gen++;
4063 if (sa->ipsa_flags & IPSA_F_HW) {
4064 mp = sadb_fmt_sa_req(DL_CO_DELETE, sa->ipsa_type, sa, inbnd);
4065 if (mp == NULL) {
4066 mutex_exit(&sa->ipsa_lock);
4067 return (NULL);
4069 mp->b_next = *mq;
4070 *mq = mp;
4072 mutex_exit(&sa->ipsa_lock);
4073 sadb_unlinkassoc(sa);
4075 return (NULL);
4079 * Do various SA-is-idle activities depending on delta (the number of idle
4080 * seconds on the SA) and/or other properties of the SA.
4082 * Return B_TRUE if I've sent a packet, because I have to drop the
4083 * association's mutex before sending a packet out the wire.
4085 /* ARGSUSED */
4086 static boolean_t
4087 sadb_idle_activities(ipsa_t *assoc, time_t delta, boolean_t inbound)
4089 ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp;
4090 int nat_t_interval = espstack->ipsecesp_nat_keepalive_interval;
4092 ASSERT(MUTEX_HELD(&assoc->ipsa_lock));
4094 if (!inbound && (assoc->ipsa_flags & IPSA_F_NATT_LOC) &&
4095 delta >= nat_t_interval &&
4096 gethrestime_sec() - assoc->ipsa_last_nat_t_ka >= nat_t_interval) {
4097 ASSERT(assoc->ipsa_type == SADB_SATYPE_ESP);
4098 assoc->ipsa_last_nat_t_ka = gethrestime_sec();
4099 mutex_exit(&assoc->ipsa_lock);
4100 ipsecesp_send_keepalive(assoc);
4101 return (B_TRUE);
4103 return (B_FALSE);
4107 * Return "assoc" if haspeer is true and I send an expire. This allows
4108 * the consumers' aging functions to tidy up an expired SA's peer.
4110 static ipsa_t *
4111 sadb_age_assoc(isaf_t *head, queue_t *pfkey_q, ipsa_t *assoc,
4112 time_t current, int reap_delay, boolean_t inbound, mblk_t **mq)
4114 ipsa_t *retval = NULL;
4115 boolean_t dropped_mutex = B_FALSE;
4117 ASSERT(MUTEX_HELD(&head->isaf_lock));
4119 mutex_enter(&assoc->ipsa_lock);
4121 if (((assoc->ipsa_state == IPSA_STATE_LARVAL) ||
4122 ((assoc->ipsa_state == IPSA_STATE_IDLE) ||
4123 (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) &&
4124 (assoc->ipsa_hardexpiretime != 0))) &&
4125 (assoc->ipsa_hardexpiretime <= current)) {
4126 assoc->ipsa_state = IPSA_STATE_DEAD;
4127 return (sadb_torch_assoc(head, assoc, inbound, mq));
4131 * Check lifetimes. Fortunately, SA setup is done
4132 * such that there are only two times to look at,
4133 * softexpiretime, and hardexpiretime.
4135 * Check hard first.
4138 if (assoc->ipsa_hardexpiretime != 0 &&
4139 assoc->ipsa_hardexpiretime <= current) {
4140 if (assoc->ipsa_state == IPSA_STATE_DEAD)
4141 return (sadb_torch_assoc(head, assoc, inbound, mq));
4143 if (inbound) {
4144 sadb_delete_cluster(assoc);
4148 * Send SADB_EXPIRE with hard lifetime, delay for unlinking.
4150 assoc->ipsa_state = IPSA_STATE_DEAD;
4151 if (assoc->ipsa_haspeer || assoc->ipsa_otherspi != 0) {
4153 * If the SA is paired or peered with another, put
4154 * a copy on a list which can be processed later, the
4155 * pair/peer SA needs to be updated so the both die
4156 * at the same time.
4158 * If I return assoc, I have to bump up its reference
4159 * count to keep with the ipsa_t reference count
4160 * semantics.
4162 IPSA_REFHOLD(assoc);
4163 retval = assoc;
4165 sadb_expire_assoc(pfkey_q, assoc);
4166 assoc->ipsa_hardexpiretime = current + reap_delay;
4167 } else if (assoc->ipsa_softexpiretime != 0 &&
4168 assoc->ipsa_softexpiretime <= current &&
4169 assoc->ipsa_state < IPSA_STATE_DYING) {
4171 * Send EXPIRE message to PF_KEY. May wish to pawn
4172 * this off on another non-interrupt thread.
4174 assoc->ipsa_state = IPSA_STATE_DYING;
4175 if (assoc->ipsa_haspeer) {
4177 * If the SA has a peer, update the peer's state
4178 * on SOFT_EXPIRE, this is mostly to prevent two
4179 * expire messages from effectively the same SA.
4181 * Don't care about paired SA's, then can (and should)
4182 * be able to soft expire at different times.
4184 * If I return assoc, I have to bump up its
4185 * reference count to keep with the ipsa_t reference
4186 * count semantics.
4188 IPSA_REFHOLD(assoc);
4189 retval = assoc;
4191 sadb_expire_assoc(pfkey_q, assoc);
4192 } else if (assoc->ipsa_idletime != 0 &&
4193 assoc->ipsa_idleexpiretime <= current) {
4194 if (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) {
4195 assoc->ipsa_state = IPSA_STATE_IDLE;
4199 * Need to handle Mature case
4201 if (assoc->ipsa_state == IPSA_STATE_MATURE && !inbound) {
4202 sadb_expire_assoc(pfkey_q, assoc);
4204 } else {
4205 /* Check idle time activities. */
4206 dropped_mutex = sadb_idle_activities(assoc,
4207 current - assoc->ipsa_lastuse, inbound);
4210 if (!dropped_mutex)
4211 mutex_exit(&assoc->ipsa_lock);
4212 return (retval);
4216 * Called by a consumer protocol to do ther dirty work of reaping dead
4217 * Security Associations.
4219 * NOTE: sadb_age_assoc() marks expired SA's as DEAD but only removed
4220 * SA's that are already marked DEAD, so expired SA's are only reaped
4221 * the second time sadb_ager() runs.
4223 void
4224 sadb_ager(sadb_t *sp, queue_t *pfkey_q, queue_t *ip_q, int reap_delay,
4225 netstack_t *ns)
4227 int i;
4228 isaf_t *bucket;
4229 ipsa_t *assoc, *spare;
4230 iacqf_t *acqlist;
4231 ipsacq_t *acqrec, *spareacq;
4232 templist_t *haspeerlist, *newbie;
4233 /* Snapshot current time now. */
4234 time_t current = gethrestime_sec();
4235 mblk_t *mq = NULL;
4236 haspeerlist = NULL;
4239 * Do my dirty work. This includes aging real entries, aging
4240 * larvals, and aging outstanding ACQUIREs.
4242 * I hope I don't tie up resources for too long.
4245 /* Age acquires. */
4247 for (i = 0; i < sp->sdb_hashsize; i++) {
4248 acqlist = &sp->sdb_acq[i];
4249 mutex_enter(&acqlist->iacqf_lock);
4250 for (acqrec = acqlist->iacqf_ipsacq; acqrec != NULL;
4251 acqrec = spareacq) {
4252 spareacq = acqrec->ipsacq_next;
4253 if (current > acqrec->ipsacq_expire)
4254 sadb_destroy_acquire(acqrec, ns);
4256 mutex_exit(&acqlist->iacqf_lock);
4259 /* Age inbound associations. */
4260 for (i = 0; i < sp->sdb_hashsize; i++) {
4261 bucket = &(sp->sdb_if[i]);
4262 mutex_enter(&bucket->isaf_lock);
4263 for (assoc = bucket->isaf_ipsa; assoc != NULL;
4264 assoc = spare) {
4265 spare = assoc->ipsa_next;
4266 if (sadb_age_assoc(bucket, pfkey_q, assoc, current,
4267 reap_delay, B_TRUE, &mq) != NULL) {
4269 * Put SA's which have a peer or SA's which
4270 * are paired on a list for processing after
4271 * all the hash tables have been walked.
4273 * sadb_age_assoc() increments the refcnt,
4274 * effectively doing an IPSA_REFHOLD().
4276 newbie = kmem_alloc(sizeof (*newbie),
4277 KM_NOSLEEP);
4278 if (newbie == NULL) {
4280 * Don't forget to REFRELE().
4282 IPSA_REFRELE(assoc);
4283 continue; /* for loop... */
4285 newbie->next = haspeerlist;
4286 newbie->ipsa = assoc;
4287 haspeerlist = newbie;
4290 mutex_exit(&bucket->isaf_lock);
4293 if (mq != NULL) {
4294 sadb_drain_torchq(ip_q, mq);
4295 mq = NULL;
4297 age_pair_peer_list(haspeerlist, sp, B_FALSE);
4298 haspeerlist = NULL;
4300 /* Age outbound associations. */
4301 for (i = 0; i < sp->sdb_hashsize; i++) {
4302 bucket = &(sp->sdb_of[i]);
4303 mutex_enter(&bucket->isaf_lock);
4304 for (assoc = bucket->isaf_ipsa; assoc != NULL;
4305 assoc = spare) {
4306 spare = assoc->ipsa_next;
4307 if (sadb_age_assoc(bucket, pfkey_q, assoc, current,
4308 reap_delay, B_FALSE, &mq) != NULL) {
4310 * sadb_age_assoc() increments the refcnt,
4311 * effectively doing an IPSA_REFHOLD().
4313 newbie = kmem_alloc(sizeof (*newbie),
4314 KM_NOSLEEP);
4315 if (newbie == NULL) {
4317 * Don't forget to REFRELE().
4319 IPSA_REFRELE(assoc);
4320 continue; /* for loop... */
4322 newbie->next = haspeerlist;
4323 newbie->ipsa = assoc;
4324 haspeerlist = newbie;
4327 mutex_exit(&bucket->isaf_lock);
4329 if (mq != NULL) {
4330 sadb_drain_torchq(ip_q, mq);
4331 mq = NULL;
4334 age_pair_peer_list(haspeerlist, sp, B_TRUE);
4337 * Run a GC pass to clean out dead identities.
4339 ipsid_gc(ns);
4343 * Figure out when to reschedule the ager.
4345 timeout_id_t
4346 sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *),
4347 void *agerarg, uint_t *intp, uint_t intmax, short mid)
4349 hrtime_t end = gethrtime();
4350 uint_t interval = *intp;
4353 * See how long this took. If it took too long, increase the
4354 * aging interval.
4356 if ((end - begin) > interval * 1000000) {
4357 if (interval >= intmax) {
4358 /* XXX Rate limit this? Or recommend flush? */
4359 (void) strlog(mid, 0, 0, SL_ERROR | SL_WARN,
4360 "Too many SA's to age out in %d msec.\n",
4361 intmax);
4362 } else {
4363 /* Double by shifting by one bit. */
4364 interval <<= 1;
4365 interval = min(interval, intmax);
4367 } else if ((end - begin) <= interval * 500000 &&
4368 interval > SADB_AGE_INTERVAL_DEFAULT) {
4370 * If I took less than half of the interval, then I should
4371 * ratchet the interval back down. Never automatically
4372 * shift below the default aging interval.
4374 * NOTE:This even overrides manual setting of the age
4375 * interval using NDD.
4377 /* Halve by shifting one bit. */
4378 interval >>= 1;
4379 interval = max(interval, SADB_AGE_INTERVAL_DEFAULT);
4381 *intp = interval;
4382 return (qtimeout(pfkey_q, ager, agerarg,
4383 interval * drv_usectohz(1000)));
4388 * Update the lifetime values of an SA. This is the path an SADB_UPDATE
4389 * message takes when updating a MATURE or DYING SA.
4391 static void
4392 sadb_update_lifetimes(ipsa_t *assoc, sadb_lifetime_t *hard,
4393 sadb_lifetime_t *soft, sadb_lifetime_t *idle, boolean_t outbound)
4395 mutex_enter(&assoc->ipsa_lock);
4398 * XXX RFC 2367 mentions how an SADB_EXT_LIFETIME_CURRENT can be
4399 * passed in during an update message. We currently don't handle
4400 * these.
4403 if (hard != NULL) {
4404 if (hard->sadb_lifetime_bytes != 0)
4405 assoc->ipsa_hardbyteslt = hard->sadb_lifetime_bytes;
4406 if (hard->sadb_lifetime_usetime != 0)
4407 assoc->ipsa_harduselt = hard->sadb_lifetime_usetime;
4408 if (hard->sadb_lifetime_addtime != 0)
4409 assoc->ipsa_hardaddlt = hard->sadb_lifetime_addtime;
4410 if (assoc->ipsa_hardaddlt != 0) {
4411 assoc->ipsa_hardexpiretime =
4412 assoc->ipsa_addtime + assoc->ipsa_hardaddlt;
4414 if (assoc->ipsa_harduselt != 0 &&
4415 assoc->ipsa_flags & IPSA_F_USED) {
4416 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime);
4418 if (hard->sadb_lifetime_allocations != 0)
4419 assoc->ipsa_hardalloc = hard->sadb_lifetime_allocations;
4422 if (soft != NULL) {
4423 if (soft->sadb_lifetime_bytes != 0) {
4424 if (soft->sadb_lifetime_bytes >
4425 assoc->ipsa_hardbyteslt) {
4426 assoc->ipsa_softbyteslt =
4427 assoc->ipsa_hardbyteslt;
4428 } else {
4429 assoc->ipsa_softbyteslt =
4430 soft->sadb_lifetime_bytes;
4433 if (soft->sadb_lifetime_usetime != 0) {
4434 if (soft->sadb_lifetime_usetime >
4435 assoc->ipsa_harduselt) {
4436 assoc->ipsa_softuselt =
4437 assoc->ipsa_harduselt;
4438 } else {
4439 assoc->ipsa_softuselt =
4440 soft->sadb_lifetime_usetime;
4443 if (soft->sadb_lifetime_addtime != 0) {
4444 if (soft->sadb_lifetime_addtime >
4445 assoc->ipsa_hardexpiretime) {
4446 assoc->ipsa_softexpiretime =
4447 assoc->ipsa_hardexpiretime;
4448 } else {
4449 assoc->ipsa_softaddlt =
4450 soft->sadb_lifetime_addtime;
4453 if (assoc->ipsa_softaddlt != 0) {
4454 assoc->ipsa_softexpiretime =
4455 assoc->ipsa_addtime + assoc->ipsa_softaddlt;
4457 if (assoc->ipsa_softuselt != 0 &&
4458 assoc->ipsa_flags & IPSA_F_USED) {
4459 UPDATE_EXPIRE(assoc, softuselt, softexpiretime);
4461 if (outbound && assoc->ipsa_softexpiretime != 0) {
4462 if (assoc->ipsa_state == IPSA_STATE_MATURE)
4463 lifetime_fuzz(assoc);
4466 if (soft->sadb_lifetime_allocations != 0)
4467 assoc->ipsa_softalloc = soft->sadb_lifetime_allocations;
4470 if (idle != NULL) {
4471 time_t current = gethrestime_sec();
4472 if ((assoc->ipsa_idleexpiretime <= current) &&
4473 (assoc->ipsa_idleaddlt == idle->sadb_lifetime_addtime)) {
4474 assoc->ipsa_idleexpiretime =
4475 current + assoc->ipsa_idleaddlt;
4477 if (idle->sadb_lifetime_addtime != 0)
4478 assoc->ipsa_idleaddlt = idle->sadb_lifetime_addtime;
4479 if (idle->sadb_lifetime_usetime != 0)
4480 assoc->ipsa_idleuselt = idle->sadb_lifetime_usetime;
4481 if (assoc->ipsa_idleaddlt != 0) {
4482 assoc->ipsa_idleexpiretime =
4483 current + idle->sadb_lifetime_addtime;
4484 assoc->ipsa_idletime = idle->sadb_lifetime_addtime;
4486 if (assoc->ipsa_idleuselt != 0) {
4487 if (assoc->ipsa_idletime != 0) {
4488 assoc->ipsa_idletime = min(assoc->ipsa_idletime,
4489 assoc->ipsa_idleuselt);
4490 assoc->ipsa_idleexpiretime =
4491 current + assoc->ipsa_idletime;
4492 } else {
4493 assoc->ipsa_idleexpiretime =
4494 current + assoc->ipsa_idleuselt;
4495 assoc->ipsa_idletime = assoc->ipsa_idleuselt;
4499 mutex_exit(&assoc->ipsa_lock);
4502 static int
4503 sadb_update_state(ipsa_t *assoc, uint_t new_state, mblk_t **ipkt_lst)
4505 int rcode = 0;
4506 time_t current = gethrestime_sec();
4508 mutex_enter(&assoc->ipsa_lock);
4510 switch (new_state) {
4511 case SADB_X_SASTATE_ACTIVE_ELSEWHERE:
4512 if (assoc->ipsa_state == SADB_X_SASTATE_IDLE) {
4513 assoc->ipsa_state = IPSA_STATE_ACTIVE_ELSEWHERE;
4514 assoc->ipsa_idleexpiretime =
4515 current + assoc->ipsa_idletime;
4517 break;
4518 case SADB_X_SASTATE_IDLE:
4519 if (assoc->ipsa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) {
4520 assoc->ipsa_state = IPSA_STATE_IDLE;
4521 assoc->ipsa_idleexpiretime =
4522 current + assoc->ipsa_idletime;
4523 } else {
4524 rcode = EINVAL;
4526 break;
4528 case SADB_X_SASTATE_ACTIVE:
4529 if (assoc->ipsa_state != SADB_X_SASTATE_IDLE) {
4530 rcode = EINVAL;
4531 break;
4533 assoc->ipsa_state = IPSA_STATE_MATURE;
4534 assoc->ipsa_idleexpiretime = current + assoc->ipsa_idletime;
4536 if (ipkt_lst == NULL) {
4537 break;
4540 if (assoc->ipsa_bpkt_head != NULL) {
4541 *ipkt_lst = assoc->ipsa_bpkt_head;
4542 assoc->ipsa_bpkt_head = assoc->ipsa_bpkt_tail = NULL;
4543 assoc->ipsa_mblkcnt = 0;
4544 } else {
4545 *ipkt_lst = NULL;
4547 break;
4548 default:
4549 rcode = EINVAL;
4550 break;
4553 mutex_exit(&assoc->ipsa_lock);
4554 return (rcode);
4558 * Common code to update an SA.
4562 sadb_update_sa(mblk_t *mp, keysock_in_t *ksi, mblk_t **ipkt_lst,
4563 sadbp_t *spp, int *diagnostic, queue_t *pfkey_q,
4564 int (*add_sa_func)(mblk_t *, keysock_in_t *, int *, netstack_t *),
4565 netstack_t *ns, uint8_t sadb_msg_type)
4567 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
4568 sadb_address_t *srcext =
4569 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
4570 sadb_address_t *dstext =
4571 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
4572 sadb_x_kmc_t *kmcext =
4573 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
4574 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
4575 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
4576 sadb_x_replay_ctr_t *replext =
4577 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE];
4578 sadb_lifetime_t *soft =
4579 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
4580 sadb_lifetime_t *hard =
4581 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
4582 sadb_lifetime_t *idle =
4583 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE];
4584 sadb_x_pair_t *pair_ext =
4585 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR];
4586 ipsa_t *echo_target = NULL;
4587 int error = 0;
4588 ipsap_t *ipsapp = NULL;
4589 uint32_t kmp = 0, kmc = 0;
4590 time_t current = gethrestime_sec();
4593 /* I need certain extensions present for either UPDATE message. */
4594 if (srcext == NULL) {
4595 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
4596 return (EINVAL);
4598 if (dstext == NULL) {
4599 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
4600 return (EINVAL);
4602 if (assoc == NULL) {
4603 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
4604 return (EINVAL);
4607 if (kmcext != NULL) {
4608 kmp = kmcext->sadb_x_kmc_proto;
4609 kmc = kmcext->sadb_x_kmc_cookie;
4612 ipsapp = get_ipsa_pair(assoc, srcext, dstext, spp);
4613 if (ipsapp == NULL) {
4614 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND;
4615 return (ESRCH);
4618 if (ipsapp->ipsap_psa_ptr == NULL && ipsapp->ipsap_sa_ptr != NULL) {
4619 if (ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) {
4621 * REFRELE the target and let the add_sa_func()
4622 * deal with updating a larval SA.
4624 destroy_ipsa_pair(ipsapp);
4625 return (add_sa_func(mp, ksi, diagnostic, ns));
4629 if (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) {
4630 if (ipsapp->ipsap_sa_ptr != NULL &&
4631 ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_IDLE) {
4632 if ((error = sadb_update_state(ipsapp->ipsap_sa_ptr,
4633 assoc->sadb_sa_state, NULL)) != 0) {
4634 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
4635 goto bail;
4638 if (ipsapp->ipsap_psa_ptr != NULL &&
4639 ipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_IDLE) {
4640 if ((error = sadb_update_state(ipsapp->ipsap_psa_ptr,
4641 assoc->sadb_sa_state, NULL)) != 0) {
4642 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
4643 goto bail;
4647 if (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE) {
4648 if (ipsapp->ipsap_sa_ptr != NULL) {
4649 error = sadb_update_state(ipsapp->ipsap_sa_ptr,
4650 assoc->sadb_sa_state,
4651 (ipsapp->ipsap_sa_ptr->ipsa_flags &
4652 IPSA_F_INBOUND) ? ipkt_lst : NULL);
4653 if (error) {
4654 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
4655 goto bail;
4658 if (ipsapp->ipsap_psa_ptr != NULL) {
4659 error = sadb_update_state(ipsapp->ipsap_psa_ptr,
4660 assoc->sadb_sa_state,
4661 (ipsapp->ipsap_psa_ptr->ipsa_flags &
4662 IPSA_F_INBOUND) ? ipkt_lst : NULL);
4663 if (error) {
4664 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
4665 goto bail;
4668 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr,
4669 ksi, echo_target);
4670 goto bail;
4674 * Reality checks for updates of active associations.
4675 * Sundry first-pass UPDATE-specific reality checks.
4676 * Have to do the checks here, because it's after the add_sa code.
4677 * XXX STATS : logging/stats here?
4680 if (!((assoc->sadb_sa_state == SADB_SASTATE_MATURE) ||
4681 (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE))) {
4682 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
4683 error = EINVAL;
4684 goto bail;
4687 if (assoc->sadb_sa_flags & ~spp->s_updateflags) {
4688 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
4689 error = EINVAL;
4690 goto bail;
4693 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL) {
4694 error = EOPNOTSUPP;
4695 goto bail;
4698 if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) {
4699 error = EINVAL;
4700 goto bail;
4702 if (akey != NULL) {
4703 *diagnostic = SADB_X_DIAGNOSTIC_AKEY_PRESENT;
4704 error = EINVAL;
4705 goto bail;
4707 if (ekey != NULL) {
4708 *diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT;
4709 error = EINVAL;
4710 goto bail;
4713 if (ipsapp->ipsap_sa_ptr != NULL) {
4714 if (ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_DEAD) {
4715 error = ESRCH; /* DEAD == Not there, in this case. */
4716 *diagnostic = SADB_X_DIAGNOSTIC_SA_EXPIRED;
4717 goto bail;
4719 if ((kmp != 0) &&
4720 ((ipsapp->ipsap_sa_ptr->ipsa_kmp != 0) ||
4721 (ipsapp->ipsap_sa_ptr->ipsa_kmp != kmp))) {
4722 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP;
4723 error = EINVAL;
4724 goto bail;
4726 if ((kmc != 0) &&
4727 ((ipsapp->ipsap_sa_ptr->ipsa_kmc != 0) ||
4728 (ipsapp->ipsap_sa_ptr->ipsa_kmc != kmc))) {
4729 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC;
4730 error = EINVAL;
4731 goto bail;
4734 * Do not allow replay value change for MATURE or LARVAL SA.
4737 if ((replext != NULL) &&
4738 ((ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) ||
4739 (ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_MATURE))) {
4740 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
4741 error = EINVAL;
4742 goto bail;
4746 if (ipsapp->ipsap_psa_ptr != NULL) {
4747 if (ipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_DEAD) {
4748 *diagnostic = SADB_X_DIAGNOSTIC_SA_EXPIRED;
4749 error = ESRCH; /* DEAD == Not there, in this case. */
4750 goto bail;
4752 if ((kmp != 0) &&
4753 ((ipsapp->ipsap_psa_ptr->ipsa_kmp != 0) ||
4754 (ipsapp->ipsap_psa_ptr->ipsa_kmp != kmp))) {
4755 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP;
4756 error = EINVAL;
4757 goto bail;
4759 if ((kmc != 0) &&
4760 ((ipsapp->ipsap_psa_ptr->ipsa_kmc != 0) ||
4761 (ipsapp->ipsap_psa_ptr->ipsa_kmc != kmc))) {
4762 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC;
4763 error = EINVAL;
4764 goto bail;
4768 if (ipsapp->ipsap_sa_ptr != NULL) {
4769 sadb_update_lifetimes(ipsapp->ipsap_sa_ptr, hard, soft,
4770 idle, B_TRUE);
4771 if (kmp != 0)
4772 ipsapp->ipsap_sa_ptr->ipsa_kmp = kmp;
4773 if (kmc != 0)
4774 ipsapp->ipsap_sa_ptr->ipsa_kmc = kmc;
4775 if ((replext != NULL) &&
4776 (ipsapp->ipsap_sa_ptr->ipsa_replay_wsize != 0)) {
4778 * If an inbound SA, update the replay counter
4779 * and check off all the other sequence number
4781 if (ksi->ks_in_dsttype == KS_IN_ADDR_ME) {
4782 if (!sadb_replay_check(ipsapp->ipsap_sa_ptr,
4783 replext->sadb_x_rc_replay32)) {
4784 error = EINVAL;
4785 goto bail;
4787 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4788 ipsapp->ipsap_sa_ptr->ipsa_idleexpiretime =
4789 current +
4790 ipsapp->ipsap_sa_ptr->ipsa_idletime;
4791 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4792 } else {
4793 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4794 ipsapp->ipsap_sa_ptr->ipsa_replay =
4795 replext->sadb_x_rc_replay32;
4796 ipsapp->ipsap_sa_ptr->ipsa_idleexpiretime =
4797 current +
4798 ipsapp->ipsap_sa_ptr->ipsa_idletime;
4799 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4804 if (sadb_msg_type == SADB_X_UPDATEPAIR) {
4805 if (ipsapp->ipsap_psa_ptr != NULL) {
4806 sadb_update_lifetimes(ipsapp->ipsap_psa_ptr, hard, soft,
4807 idle, B_FALSE);
4808 if (kmp != 0)
4809 ipsapp->ipsap_psa_ptr->ipsa_kmp = kmp;
4810 if (kmc != 0)
4811 ipsapp->ipsap_psa_ptr->ipsa_kmc = kmc;
4812 } else {
4813 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND;
4814 error = ESRCH;
4815 goto bail;
4819 if (pair_ext != NULL)
4820 error = update_pairing(ipsapp, ksi, diagnostic, spp);
4822 if (error == 0)
4823 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr,
4824 ksi, echo_target);
4825 bail:
4827 destroy_ipsa_pair(ipsapp);
4829 return (error);
4834 update_pairing(ipsap_t *ipsapp, keysock_in_t *ksi, int *diagnostic,
4835 sadbp_t *spp)
4837 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
4838 sadb_address_t *srcext =
4839 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
4840 sadb_address_t *dstext =
4841 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
4842 sadb_x_pair_t *pair_ext =
4843 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR];
4844 int error = 0;
4845 ipsap_t *oipsapp = NULL;
4846 boolean_t undo_pair = B_FALSE;
4847 uint32_t ipsa_flags;
4849 if (pair_ext->sadb_x_pair_spi == 0 || pair_ext->sadb_x_pair_spi ==
4850 assoc->sadb_sa_spi) {
4851 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE;
4852 return (EINVAL);
4856 * Assume for now that the spi value provided in the SADB_UPDATE
4857 * message was valid, update the SA with its pair spi value.
4858 * If the spi turns out to be bogus or the SA no longer exists
4859 * then this will be detected when the reverse update is made
4860 * below.
4862 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4863 ipsapp->ipsap_sa_ptr->ipsa_flags |= IPSA_F_PAIRED;
4864 ipsapp->ipsap_sa_ptr->ipsa_otherspi = pair_ext->sadb_x_pair_spi;
4865 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4868 * After updating the ipsa_otherspi element of the SA, get_ipsa_pair()
4869 * should now return pointers to the SA *AND* its pair, if this is not
4870 * the case, the "otherspi" either did not exist or was deleted. Also
4871 * check that "otherspi" is not already paired. If everything looks
4872 * good, complete the update. IPSA_REFRELE the first pair_pointer
4873 * after this update to ensure its not deleted until we are done.
4875 oipsapp = get_ipsa_pair(assoc, srcext, dstext, spp);
4876 if (oipsapp == NULL) {
4878 * This should never happen, calling function still has
4879 * IPSA_REFHELD on the SA we just updated.
4881 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND;
4882 return (EINVAL);
4885 if (oipsapp->ipsap_psa_ptr == NULL) {
4886 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE;
4887 undo_pair = B_TRUE;
4888 } else {
4889 ipsa_flags = oipsapp->ipsap_psa_ptr->ipsa_flags;
4890 if ((oipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_DEAD) ||
4891 (oipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_DYING)) {
4892 /* Its dead Jim! */
4893 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE;
4894 undo_pair = B_TRUE;
4895 } else if ((ipsa_flags & (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) ==
4896 (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) {
4897 /* This SA is in both hashtables. */
4898 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE;
4899 undo_pair = B_TRUE;
4900 } else if (ipsa_flags & IPSA_F_PAIRED) {
4901 /* This SA is already paired with another. */
4902 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY;
4903 undo_pair = B_TRUE;
4907 if (undo_pair) {
4908 /* The pair SA does not exist. */
4909 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4910 ipsapp->ipsap_sa_ptr->ipsa_flags &= ~IPSA_F_PAIRED;
4911 ipsapp->ipsap_sa_ptr->ipsa_otherspi = 0;
4912 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock);
4913 error = EINVAL;
4914 } else {
4915 mutex_enter(&oipsapp->ipsap_psa_ptr->ipsa_lock);
4916 oipsapp->ipsap_psa_ptr->ipsa_otherspi = assoc->sadb_sa_spi;
4917 oipsapp->ipsap_psa_ptr->ipsa_flags |= IPSA_F_PAIRED;
4918 mutex_exit(&oipsapp->ipsap_psa_ptr->ipsa_lock);
4921 destroy_ipsa_pair(oipsapp);
4922 return (error);
4926 * The following functions deal with ACQUIRE LISTS. An ACQUIRE list is
4927 * a list of outstanding SADB_ACQUIRE messages. If ipsec_getassocbyconn() fails
4928 * for an outbound datagram, that datagram is queued up on an ACQUIRE record,
4929 * and an SADB_ACQUIRE message is sent up. Presumably, a user-space key
4930 * management daemon will process the ACQUIRE, use a SADB_GETSPI to reserve
4931 * an SPI value and a larval SA, then SADB_UPDATE the larval SA, and ADD the
4932 * other direction's SA.
4936 * Check the ACQUIRE lists. If there's an existing ACQUIRE record,
4937 * grab it, lock it, and return it. Otherwise return NULL.
4939 static ipsacq_t *
4940 sadb_checkacquire(iacqf_t *bucket, ipsec_action_t *ap, ipsec_policy_t *pp,
4941 uint32_t *src, uint32_t *dst, uint32_t *isrc, uint32_t *idst,
4942 uint64_t unique_id)
4944 ipsacq_t *walker;
4945 sa_family_t fam;
4946 uint32_t blank_address[4] = {0, 0, 0, 0};
4948 if (isrc == NULL) {
4949 ASSERT(idst == NULL);
4950 isrc = idst = blank_address;
4954 * Scan list for duplicates. Check for UNIQUE, src/dest, policy.
4956 * XXX May need search for duplicates based on other things too!
4958 for (walker = bucket->iacqf_ipsacq; walker != NULL;
4959 walker = walker->ipsacq_next) {
4960 mutex_enter(&walker->ipsacq_lock);
4961 fam = walker->ipsacq_addrfam;
4962 if (IPSA_ARE_ADDR_EQUAL(dst, walker->ipsacq_dstaddr, fam) &&
4963 IPSA_ARE_ADDR_EQUAL(src, walker->ipsacq_srcaddr, fam) &&
4964 ip_addr_match((uint8_t *)isrc, walker->ipsacq_innersrcpfx,
4965 (in6_addr_t *)walker->ipsacq_innersrc) &&
4966 ip_addr_match((uint8_t *)idst, walker->ipsacq_innerdstpfx,
4967 (in6_addr_t *)walker->ipsacq_innerdst) &&
4968 (ap == walker->ipsacq_act) &&
4969 (pp == walker->ipsacq_policy) &&
4970 /* XXX do deep compares of ap/pp? */
4971 (unique_id == walker->ipsacq_unique_id))
4972 break; /* everything matched */
4973 mutex_exit(&walker->ipsacq_lock);
4976 return (walker);
4980 * For this mblk, insert a new acquire record. Assume bucket contains addrs
4981 * of all of the same length. Give up (and drop) if memory
4982 * cannot be allocated for a new one; otherwise, invoke callback to
4983 * send the acquire up..
4985 * In cases where we need both AH and ESP, add the SA to the ESP ACQUIRE
4986 * list. The ah_add_sa_finish() routines can look at the packet's ipsec_out_t
4987 * and handle this case specially.
4989 void
4990 sadb_acquire(mblk_t *mp, ipsec_out_t *io, boolean_t need_ah, boolean_t need_esp)
4992 sadbp_t *spp;
4993 sadb_t *sp;
4994 ipsacq_t *newbie;
4995 iacqf_t *bucket;
4996 mblk_t *datamp = mp->b_cont;
4997 mblk_t *extended;
4998 ipha_t *ipha = (ipha_t *)datamp->b_rptr;
4999 ip6_t *ip6h = (ip6_t *)datamp->b_rptr;
5000 uint32_t *src, *dst, *isrc, *idst;
5001 ipsec_policy_t *pp = io->ipsec_out_policy;
5002 ipsec_action_t *ap = io->ipsec_out_act;
5003 sa_family_t af;
5004 int hashoffset;
5005 uint32_t seq;
5006 uint64_t unique_id = 0;
5007 ipsec_selector_t sel;
5008 boolean_t tunnel_mode = io->ipsec_out_tunnel;
5009 netstack_t *ns = io->ipsec_out_ns;
5010 ipsec_stack_t *ipss = ns->netstack_ipsec;
5012 ASSERT((pp != NULL) || (ap != NULL));
5014 ASSERT(need_ah != NULL || need_esp != NULL);
5015 /* Assign sadb pointers */
5016 if (need_esp) { /* ESP for AH+ESP */
5017 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
5019 spp = &espstack->esp_sadb;
5020 } else {
5021 ipsecah_stack_t *ahstack = ns->netstack_ipsecah;
5023 spp = &ahstack->ah_sadb;
5025 sp = io->ipsec_out_v4 ? &spp->s_v4 : &spp->s_v6;
5027 if (ap == NULL)
5028 ap = pp->ipsp_act;
5030 ASSERT(ap != NULL);
5032 if (ap->ipa_act.ipa_apply.ipp_use_unique || tunnel_mode)
5033 unique_id = SA_FORM_UNIQUE_ID(io);
5036 * Set up an ACQUIRE record.
5038 * Immediately, make sure the ACQUIRE sequence number doesn't slip
5039 * below the lowest point allowed in the kernel. (In other words,
5040 * make sure the high bit on the sequence number is set.)
5043 seq = keysock_next_seq(ns) | IACQF_LOWEST_SEQ;
5045 if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
5046 src = (uint32_t *)&ipha->ipha_src;
5047 dst = (uint32_t *)&ipha->ipha_dst;
5048 af = AF_INET;
5049 hashoffset = OUTBOUND_HASH_V4(sp, ipha->ipha_dst);
5050 ASSERT(io->ipsec_out_v4 == B_TRUE);
5051 } else {
5052 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
5053 src = (uint32_t *)&ip6h->ip6_src;
5054 dst = (uint32_t *)&ip6h->ip6_dst;
5055 af = AF_INET6;
5056 hashoffset = OUTBOUND_HASH_V6(sp, ip6h->ip6_dst);
5057 ASSERT(io->ipsec_out_v4 == B_FALSE);
5060 if (tunnel_mode) {
5061 /* Snag inner addresses. */
5062 isrc = io->ipsec_out_insrc;
5063 idst = io->ipsec_out_indst;
5064 } else {
5065 isrc = idst = NULL;
5069 * Check buckets to see if there is an existing entry. If so,
5070 * grab it. sadb_checkacquire locks newbie if found.
5072 bucket = &(sp->sdb_acq[hashoffset]);
5073 mutex_enter(&bucket->iacqf_lock);
5074 newbie = sadb_checkacquire(bucket, ap, pp, src, dst, isrc, idst,
5075 unique_id);
5077 if (newbie == NULL) {
5079 * Otherwise, allocate a new one.
5081 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
5082 if (newbie == NULL) {
5083 mutex_exit(&bucket->iacqf_lock);
5084 ip_drop_packet(mp, B_FALSE, NULL, NULL,
5085 DROPPER(ipss, ipds_sadb_acquire_nomem),
5086 &ipss->ipsec_sadb_dropper);
5087 return;
5089 newbie->ipsacq_policy = pp;
5090 if (pp != NULL) {
5091 IPPOL_REFHOLD(pp);
5093 IPACT_REFHOLD(ap);
5094 newbie->ipsacq_act = ap;
5095 newbie->ipsacq_linklock = &bucket->iacqf_lock;
5096 newbie->ipsacq_next = bucket->iacqf_ipsacq;
5097 newbie->ipsacq_ptpn = &bucket->iacqf_ipsacq;
5098 if (newbie->ipsacq_next != NULL)
5099 newbie->ipsacq_next->ipsacq_ptpn = &newbie->ipsacq_next;
5100 bucket->iacqf_ipsacq = newbie;
5101 mutex_init(&newbie->ipsacq_lock, NULL, MUTEX_DEFAULT, NULL);
5102 mutex_enter(&newbie->ipsacq_lock);
5105 mutex_exit(&bucket->iacqf_lock);
5108 * This assert looks silly for now, but we may need to enter newbie's
5109 * mutex during a search.
5111 ASSERT(MUTEX_HELD(&newbie->ipsacq_lock));
5113 mp->b_next = NULL;
5114 /* Queue up packet. Use b_next. */
5115 if (newbie->ipsacq_numpackets == 0) {
5116 /* First one. */
5117 newbie->ipsacq_mp = mp;
5118 newbie->ipsacq_numpackets = 1;
5119 newbie->ipsacq_expire = gethrestime_sec();
5121 * Extended ACQUIRE with both AH+ESP will use ESP's timeout
5122 * value.
5124 newbie->ipsacq_expire += *spp->s_acquire_timeout;
5125 newbie->ipsacq_seq = seq;
5126 newbie->ipsacq_addrfam = af;
5128 newbie->ipsacq_srcport = io->ipsec_out_src_port;
5129 newbie->ipsacq_dstport = io->ipsec_out_dst_port;
5130 newbie->ipsacq_icmp_type = io->ipsec_out_icmp_type;
5131 newbie->ipsacq_icmp_code = io->ipsec_out_icmp_code;
5132 if (tunnel_mode) {
5133 newbie->ipsacq_inneraddrfam = io->ipsec_out_inaf;
5134 newbie->ipsacq_proto = io->ipsec_out_inaf == AF_INET6 ?
5135 IPPROTO_IPV6 : IPPROTO_ENCAP;
5136 newbie->ipsacq_innersrcpfx = io->ipsec_out_insrcpfx;
5137 newbie->ipsacq_innerdstpfx = io->ipsec_out_indstpfx;
5138 IPSA_COPY_ADDR(newbie->ipsacq_innersrc,
5139 io->ipsec_out_insrc, io->ipsec_out_inaf);
5140 IPSA_COPY_ADDR(newbie->ipsacq_innerdst,
5141 io->ipsec_out_indst, io->ipsec_out_inaf);
5142 } else {
5143 newbie->ipsacq_proto = io->ipsec_out_proto;
5145 newbie->ipsacq_unique_id = unique_id;
5146 } else {
5147 /* Scan to the end of the list & insert. */
5148 mblk_t *lastone = newbie->ipsacq_mp;
5150 while (lastone->b_next != NULL)
5151 lastone = lastone->b_next;
5152 lastone->b_next = mp;
5153 if (newbie->ipsacq_numpackets++ == ipsacq_maxpackets) {
5154 newbie->ipsacq_numpackets = ipsacq_maxpackets;
5155 lastone = newbie->ipsacq_mp;
5156 newbie->ipsacq_mp = lastone->b_next;
5157 lastone->b_next = NULL;
5158 ip_drop_packet(lastone, B_FALSE, NULL, NULL,
5159 DROPPER(ipss, ipds_sadb_acquire_toofull),
5160 &ipss->ipsec_sadb_dropper);
5161 } else {
5162 IP_ACQUIRE_STAT(ipss, qhiwater,
5163 newbie->ipsacq_numpackets);
5168 * Reset addresses. Set them to the most recently added mblk chain,
5169 * so that the address pointers in the acquire record will point
5170 * at an mblk still attached to the acquire list.
5173 newbie->ipsacq_srcaddr = src;
5174 newbie->ipsacq_dstaddr = dst;
5177 * If the acquire record has more than one queued packet, we've
5178 * already sent an ACQUIRE, and don't need to repeat ourself.
5180 if (newbie->ipsacq_seq != seq || newbie->ipsacq_numpackets > 1) {
5181 /* I have an acquire outstanding already! */
5182 mutex_exit(&newbie->ipsacq_lock);
5183 return;
5186 if (keysock_extended_reg(ns)) {
5188 * Construct an extended ACQUIRE. There are logging
5189 * opportunities here in failure cases.
5192 (void) memset(&sel, 0, sizeof (sel));
5193 sel.ips_isv4 = io->ipsec_out_v4;
5194 if (tunnel_mode) {
5195 sel.ips_protocol = (io->ipsec_out_inaf == AF_INET) ?
5196 IPPROTO_ENCAP : IPPROTO_IPV6;
5197 } else {
5198 sel.ips_protocol = io->ipsec_out_proto;
5199 sel.ips_local_port = io->ipsec_out_src_port;
5200 sel.ips_remote_port = io->ipsec_out_dst_port;
5202 sel.ips_icmp_type = io->ipsec_out_icmp_type;
5203 sel.ips_icmp_code = io->ipsec_out_icmp_code;
5204 sel.ips_is_icmp_inv_acq = 0;
5205 if (af == AF_INET) {
5206 sel.ips_local_addr_v4 = ipha->ipha_src;
5207 sel.ips_remote_addr_v4 = ipha->ipha_dst;
5208 } else {
5209 sel.ips_local_addr_v6 = ip6h->ip6_src;
5210 sel.ips_remote_addr_v6 = ip6h->ip6_dst;
5213 extended = sadb_keysock_out(0);
5214 if (extended != NULL) {
5215 extended->b_cont = sadb_extended_acquire(&sel, pp, ap,
5216 tunnel_mode, seq, 0, ns);
5217 if (extended->b_cont == NULL) {
5218 freeb(extended);
5219 extended = NULL;
5222 } else
5223 extended = NULL;
5226 * Send an ACQUIRE message (and possible an extended ACQUIRE) based on
5227 * this new record. The send-acquire callback assumes that acqrec is
5228 * already locked.
5230 (*spp->s_acqfn)(newbie, extended, ns);
5234 * Unlink and free an acquire record.
5236 void
5237 sadb_destroy_acquire(ipsacq_t *acqrec, netstack_t *ns)
5239 mblk_t *mp;
5240 ipsec_stack_t *ipss = ns->netstack_ipsec;
5242 ASSERT(MUTEX_HELD(acqrec->ipsacq_linklock));
5244 if (acqrec->ipsacq_policy != NULL) {
5245 IPPOL_REFRELE(acqrec->ipsacq_policy, ns);
5247 if (acqrec->ipsacq_act != NULL) {
5248 IPACT_REFRELE(acqrec->ipsacq_act);
5251 /* Unlink */
5252 *(acqrec->ipsacq_ptpn) = acqrec->ipsacq_next;
5253 if (acqrec->ipsacq_next != NULL)
5254 acqrec->ipsacq_next->ipsacq_ptpn = acqrec->ipsacq_ptpn;
5257 * Free hanging mp's.
5259 * XXX Instead of freemsg(), perhaps use IPSEC_REQ_FAILED.
5262 mutex_enter(&acqrec->ipsacq_lock);
5263 while (acqrec->ipsacq_mp != NULL) {
5264 mp = acqrec->ipsacq_mp;
5265 acqrec->ipsacq_mp = mp->b_next;
5266 mp->b_next = NULL;
5267 ip_drop_packet(mp, B_FALSE, NULL, NULL,
5268 DROPPER(ipss, ipds_sadb_acquire_timeout),
5269 &ipss->ipsec_sadb_dropper);
5271 mutex_exit(&acqrec->ipsacq_lock);
5273 /* Free */
5274 mutex_destroy(&acqrec->ipsacq_lock);
5275 kmem_free(acqrec, sizeof (*acqrec));
5279 * Destroy an acquire list fanout.
5281 static void
5282 sadb_destroy_acqlist(iacqf_t **listp, uint_t numentries, boolean_t forever,
5283 netstack_t *ns)
5285 int i;
5286 iacqf_t *list = *listp;
5288 if (list == NULL)
5289 return;
5291 for (i = 0; i < numentries; i++) {
5292 mutex_enter(&(list[i].iacqf_lock));
5293 while (list[i].iacqf_ipsacq != NULL)
5294 sadb_destroy_acquire(list[i].iacqf_ipsacq, ns);
5295 mutex_exit(&(list[i].iacqf_lock));
5296 if (forever)
5297 mutex_destroy(&(list[i].iacqf_lock));
5300 if (forever) {
5301 *listp = NULL;
5302 kmem_free(list, numentries * sizeof (*list));
5307 * Create an algorithm descriptor for an extended ACQUIRE. Filter crypto
5308 * framework's view of reality vs. IPsec's. EF's wins, BTW.
5310 static uint8_t *
5311 sadb_new_algdesc(uint8_t *start, uint8_t *limit,
5312 sadb_x_ecomb_t *ecomb, uint8_t satype, uint8_t algtype,
5313 uint8_t alg, uint16_t minbits, uint16_t maxbits, ipsec_stack_t *ipss)
5315 uint8_t *cur = start;
5316 ipsec_alginfo_t *algp;
5317 sadb_x_algdesc_t *algdesc = (sadb_x_algdesc_t *)cur;
5319 cur += sizeof (*algdesc);
5320 if (cur >= limit)
5321 return (NULL);
5323 ecomb->sadb_x_ecomb_numalgs++;
5326 * Normalize vs. crypto framework's limits. This way, you can specify
5327 * a stronger policy, and when the framework loads a stronger version,
5328 * you can just keep plowing w/o rewhacking your SPD.
5330 mutex_enter(&ipss->ipsec_alg_lock);
5331 algp = ipss->ipsec_alglists[(algtype == SADB_X_ALGTYPE_AUTH) ?
5332 IPSEC_ALG_AUTH : IPSEC_ALG_ENCR][alg];
5333 if (algp == NULL) {
5334 mutex_exit(&ipss->ipsec_alg_lock);
5335 return (NULL); /* Algorithm doesn't exist. Fail gracefully. */
5337 if (minbits < algp->alg_ef_minbits)
5338 minbits = algp->alg_ef_minbits;
5339 if (maxbits > algp->alg_ef_maxbits)
5340 maxbits = algp->alg_ef_maxbits;
5341 mutex_exit(&ipss->ipsec_alg_lock);
5343 algdesc->sadb_x_algdesc_satype = satype;
5344 algdesc->sadb_x_algdesc_algtype = algtype;
5345 algdesc->sadb_x_algdesc_alg = alg;
5346 algdesc->sadb_x_algdesc_minbits = minbits;
5347 algdesc->sadb_x_algdesc_maxbits = maxbits;
5348 algdesc->sadb_x_algdesc_reserved = 0;
5349 return (cur);
5353 * Convert the given ipsec_action_t into an ecomb starting at *ecomb
5354 * which must fit before *limit
5356 * return NULL if we ran out of room or a pointer to the end of the ecomb.
5358 static uint8_t *
5359 sadb_action_to_ecomb(uint8_t *start, uint8_t *limit, ipsec_action_t *act,
5360 netstack_t *ns)
5362 uint8_t *cur = start;
5363 sadb_x_ecomb_t *ecomb = (sadb_x_ecomb_t *)cur;
5364 ipsec_prot_t *ipp;
5365 ipsec_stack_t *ipss = ns->netstack_ipsec;
5367 cur += sizeof (*ecomb);
5368 if (cur >= limit)
5369 return (NULL);
5371 ASSERT(act->ipa_act.ipa_type == IPSEC_ACT_APPLY);
5373 ipp = &act->ipa_act.ipa_apply;
5375 ecomb->sadb_x_ecomb_numalgs = 0;
5376 ecomb->sadb_x_ecomb_reserved = 0;
5377 ecomb->sadb_x_ecomb_reserved2 = 0;
5379 * No limits on allocations, since we really don't support that
5380 * concept currently.
5382 ecomb->sadb_x_ecomb_soft_allocations = 0;
5383 ecomb->sadb_x_ecomb_hard_allocations = 0;
5386 * XXX TBD: Policy or global parameters will eventually be
5387 * able to fill in some of these.
5389 ecomb->sadb_x_ecomb_flags = 0;
5390 ecomb->sadb_x_ecomb_soft_bytes = 0;
5391 ecomb->sadb_x_ecomb_hard_bytes = 0;
5392 ecomb->sadb_x_ecomb_soft_addtime = 0;
5393 ecomb->sadb_x_ecomb_hard_addtime = 0;
5394 ecomb->sadb_x_ecomb_soft_usetime = 0;
5395 ecomb->sadb_x_ecomb_hard_usetime = 0;
5397 if (ipp->ipp_use_ah) {
5398 cur = sadb_new_algdesc(cur, limit, ecomb,
5399 SADB_SATYPE_AH, SADB_X_ALGTYPE_AUTH, ipp->ipp_auth_alg,
5400 ipp->ipp_ah_minbits, ipp->ipp_ah_maxbits, ipss);
5401 if (cur == NULL)
5402 return (NULL);
5403 ipsecah_fill_defs(ecomb, ns);
5406 if (ipp->ipp_use_esp) {
5407 if (ipp->ipp_use_espa) {
5408 cur = sadb_new_algdesc(cur, limit, ecomb,
5409 SADB_SATYPE_ESP, SADB_X_ALGTYPE_AUTH,
5410 ipp->ipp_esp_auth_alg,
5411 ipp->ipp_espa_minbits,
5412 ipp->ipp_espa_maxbits, ipss);
5413 if (cur == NULL)
5414 return (NULL);
5417 cur = sadb_new_algdesc(cur, limit, ecomb,
5418 SADB_SATYPE_ESP, SADB_X_ALGTYPE_CRYPT,
5419 ipp->ipp_encr_alg,
5420 ipp->ipp_espe_minbits,
5421 ipp->ipp_espe_maxbits, ipss);
5422 if (cur == NULL)
5423 return (NULL);
5424 /* Fill in lifetimes if and only if AH didn't already... */
5425 if (!ipp->ipp_use_ah)
5426 ipsecesp_fill_defs(ecomb, ns);
5429 return (cur);
5433 * Construct an extended ACQUIRE message based on a selector and the resulting
5434 * IPsec action.
5436 * NOTE: This is used by both inverse ACQUIRE and actual ACQUIRE
5437 * generation. As a consequence, expect this function to evolve
5438 * rapidly.
5440 static mblk_t *
5441 sadb_extended_acquire(ipsec_selector_t *sel, ipsec_policy_t *pol,
5442 ipsec_action_t *act, boolean_t tunnel_mode, uint32_t seq, uint32_t pid,
5443 netstack_t *ns)
5445 mblk_t *mp;
5446 sadb_msg_t *samsg;
5447 uint8_t *start, *cur, *end;
5448 uint32_t *saddrptr, *daddrptr;
5449 sa_family_t af;
5450 sadb_prop_t *eprop;
5451 ipsec_action_t *ap, *an;
5452 ipsec_selkey_t *ipsl;
5453 uint8_t proto, pfxlen;
5454 uint16_t lport, rport;
5455 uint32_t kmp, kmc;
5458 * Find the action we want sooner rather than later..
5460 an = NULL;
5461 if (pol == NULL) {
5462 ap = act;
5463 } else {
5464 ap = pol->ipsp_act;
5466 if (ap != NULL)
5467 an = ap->ipa_next;
5471 * Just take a swag for the allocation for now. We can always
5472 * alter it later.
5474 #define SADB_EXTENDED_ACQUIRE_SIZE 4096
5475 mp = allocb(SADB_EXTENDED_ACQUIRE_SIZE, BPRI_HI);
5476 if (mp == NULL)
5477 return (NULL);
5479 start = mp->b_rptr;
5480 end = start + SADB_EXTENDED_ACQUIRE_SIZE;
5482 cur = start;
5484 samsg = (sadb_msg_t *)cur;
5485 cur += sizeof (*samsg);
5487 samsg->sadb_msg_version = PF_KEY_V2;
5488 samsg->sadb_msg_type = SADB_ACQUIRE;
5489 samsg->sadb_msg_errno = 0;
5490 samsg->sadb_msg_reserved = 0;
5491 samsg->sadb_msg_satype = 0;
5492 samsg->sadb_msg_seq = seq;
5493 samsg->sadb_msg_pid = pid;
5495 if (tunnel_mode) {
5497 * Form inner address extensions based NOT on the inner
5498 * selectors (i.e. the packet data), but on the policy's
5499 * selector key (i.e. the policy's selector information).
5501 * NOTE: The position of IPv4 and IPv6 addresses is the
5502 * same in ipsec_selkey_t (unless the compiler does very
5503 * strange things with unions, consult your local C language
5504 * lawyer for details).
5506 ipsl = &(pol->ipsp_sel->ipsl_key);
5507 if (ipsl->ipsl_valid & IPSL_IPV4) {
5508 af = AF_INET;
5509 ASSERT(sel->ips_protocol == IPPROTO_ENCAP);
5510 ASSERT(!(ipsl->ipsl_valid & IPSL_IPV6));
5511 } else {
5512 af = AF_INET6;
5513 ASSERT(sel->ips_protocol == IPPROTO_IPV6);
5514 ASSERT(ipsl->ipsl_valid & IPSL_IPV6);
5517 if (ipsl->ipsl_valid & IPSL_LOCAL_ADDR) {
5518 saddrptr = (uint32_t *)(&ipsl->ipsl_local);
5519 pfxlen = ipsl->ipsl_local_pfxlen;
5520 } else {
5521 saddrptr = (uint32_t *)(&ipv6_all_zeros);
5522 pfxlen = 0;
5524 /* XXX What about ICMP type/code? */
5525 lport = (ipsl->ipsl_valid & IPSL_LOCAL_PORT) ?
5526 ipsl->ipsl_lport : 0;
5527 proto = (ipsl->ipsl_valid & IPSL_PROTOCOL) ?
5528 ipsl->ipsl_proto : 0;
5530 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC,
5531 af, saddrptr, lport, proto, pfxlen);
5532 if (cur == NULL) {
5533 freeb(mp);
5534 return (NULL);
5537 if (ipsl->ipsl_valid & IPSL_REMOTE_ADDR) {
5538 daddrptr = (uint32_t *)(&ipsl->ipsl_remote);
5539 pfxlen = ipsl->ipsl_remote_pfxlen;
5540 } else {
5541 daddrptr = (uint32_t *)(&ipv6_all_zeros);
5542 pfxlen = 0;
5544 /* XXX What about ICMP type/code? */
5545 rport = (ipsl->ipsl_valid & IPSL_REMOTE_PORT) ?
5546 ipsl->ipsl_rport : 0;
5548 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST,
5549 af, daddrptr, rport, proto, pfxlen);
5550 if (cur == NULL) {
5551 freeb(mp);
5552 return (NULL);
5555 * TODO - if we go to 3408's dream of transport mode IP-in-IP
5556 * _with_ inner-packet address selectors, we'll need to further
5557 * distinguish tunnel mode here. For now, having inner
5558 * addresses and/or ports is sufficient.
5560 * Meanwhile, whack proto/ports to reflect IP-in-IP for the
5561 * outer addresses.
5563 proto = sel->ips_protocol; /* Either _ENCAP or _IPV6 */
5564 lport = rport = 0;
5565 } else if ((ap != NULL) && (!ap->ipa_want_unique)) {
5566 proto = 0;
5567 lport = 0;
5568 rport = 0;
5569 if (pol != NULL) {
5570 ipsl = &(pol->ipsp_sel->ipsl_key);
5571 if (ipsl->ipsl_valid & IPSL_PROTOCOL)
5572 proto = ipsl->ipsl_proto;
5573 if (ipsl->ipsl_valid & IPSL_REMOTE_PORT)
5574 rport = ipsl->ipsl_rport;
5575 if (ipsl->ipsl_valid & IPSL_LOCAL_PORT)
5576 lport = ipsl->ipsl_lport;
5578 } else {
5579 proto = sel->ips_protocol;
5580 lport = sel->ips_local_port;
5581 rport = sel->ips_remote_port;
5584 af = sel->ips_isv4 ? AF_INET : AF_INET6;
5587 * NOTE: The position of IPv4 and IPv6 addresses is the same in
5588 * ipsec_selector_t.
5590 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af,
5591 (uint32_t *)(&sel->ips_local_addr_v6), lport, proto, 0);
5593 if (cur == NULL) {
5594 freeb(mp);
5595 return (NULL);
5598 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af,
5599 (uint32_t *)(&sel->ips_remote_addr_v6), rport, proto, 0);
5601 if (cur == NULL) {
5602 freeb(mp);
5603 return (NULL);
5607 * This section will change a lot as policy evolves.
5608 * For now, it'll be relatively simple.
5610 eprop = (sadb_prop_t *)cur;
5611 cur += sizeof (*eprop);
5612 if (cur > end) {
5613 /* no space left */
5614 freeb(mp);
5615 return (NULL);
5618 eprop->sadb_prop_exttype = SADB_X_EXT_EPROP;
5619 eprop->sadb_x_prop_ereserved = 0;
5620 eprop->sadb_x_prop_numecombs = 0;
5621 eprop->sadb_prop_replay = 32; /* default */
5623 kmc = kmp = 0;
5625 for (; ap != NULL; ap = an) {
5626 an = (pol != NULL) ? ap->ipa_next : NULL;
5629 * Skip non-IPsec policies
5631 if (ap->ipa_act.ipa_type != IPSEC_ACT_APPLY)
5632 continue;
5634 if (ap->ipa_act.ipa_apply.ipp_km_proto)
5635 kmp = ap->ipa_act.ipa_apply.ipp_km_proto;
5636 if (ap->ipa_act.ipa_apply.ipp_km_cookie)
5637 kmc = ap->ipa_act.ipa_apply.ipp_km_cookie;
5638 if (ap->ipa_act.ipa_apply.ipp_replay_depth) {
5639 eprop->sadb_prop_replay =
5640 ap->ipa_act.ipa_apply.ipp_replay_depth;
5643 cur = sadb_action_to_ecomb(cur, end, ap, ns);
5644 if (cur == NULL) { /* no space */
5645 freeb(mp);
5646 return (NULL);
5648 eprop->sadb_x_prop_numecombs++;
5651 if (eprop->sadb_x_prop_numecombs == 0) {
5653 * This will happen if we fail to find a policy
5654 * allowing for IPsec processing.
5655 * Construct an error message.
5657 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
5658 samsg->sadb_msg_errno = ENOENT;
5659 samsg->sadb_x_msg_diagnostic = 0;
5660 return (mp);
5663 if ((kmp != 0) || (kmc != 0)) {
5664 cur = sadb_make_kmc_ext(cur, end, kmp, kmc);
5665 if (cur == NULL) {
5666 freeb(mp);
5667 return (NULL);
5671 eprop->sadb_prop_len = SADB_8TO64(cur - (uint8_t *)eprop);
5672 samsg->sadb_msg_len = SADB_8TO64(cur - start);
5673 mp->b_wptr = cur;
5675 return (mp);
5679 * Generic setup of an RFC 2367 ACQUIRE message. Caller sets satype.
5681 * NOTE: This function acquires alg_lock as a side-effect if-and-only-if we
5682 * succeed (i.e. return non-NULL). Caller MUST release it. This is to
5683 * maximize code consolidation while preventing algorithm changes from messing
5684 * with the callers finishing touches on the ACQUIRE itself.
5686 mblk_t *
5687 sadb_setup_acquire(ipsacq_t *acqrec, uint8_t satype, ipsec_stack_t *ipss)
5689 uint_t allocsize;
5690 mblk_t *pfkeymp, *msgmp;
5691 sa_family_t af;
5692 uint8_t *cur, *end;
5693 sadb_msg_t *samsg;
5694 uint16_t sport_typecode;
5695 uint16_t dport_typecode;
5696 uint8_t check_proto;
5697 boolean_t tunnel_mode = (acqrec->ipsacq_inneraddrfam != 0);
5699 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
5701 pfkeymp = sadb_keysock_out(0);
5702 if (pfkeymp == NULL)
5703 return (NULL);
5706 * First, allocate a basic ACQUIRE message
5708 allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) +
5709 sizeof (sadb_address_t) + sizeof (sadb_prop_t);
5711 /* Make sure there's enough to cover both AF_INET and AF_INET6. */
5712 allocsize += 2 * sizeof (struct sockaddr_in6);
5714 mutex_enter(&ipss->ipsec_alg_lock);
5715 /* NOTE: The lock is now held through to this function's return. */
5716 allocsize += ipss->ipsec_nalgs[IPSEC_ALG_AUTH] *
5717 ipss->ipsec_nalgs[IPSEC_ALG_ENCR] * sizeof (sadb_comb_t);
5719 if (tunnel_mode) {
5720 /* Tunnel mode! */
5721 allocsize += 2 * sizeof (sadb_address_t);
5722 /* Enough to cover both AF_INET and AF_INET6. */
5723 allocsize += 2 * sizeof (struct sockaddr_in6);
5726 msgmp = allocb(allocsize, BPRI_HI);
5727 if (msgmp == NULL) {
5728 freeb(pfkeymp);
5729 mutex_exit(&ipss->ipsec_alg_lock);
5730 return (NULL);
5733 pfkeymp->b_cont = msgmp;
5734 cur = msgmp->b_rptr;
5735 end = cur + allocsize;
5736 samsg = (sadb_msg_t *)cur;
5737 cur += sizeof (sadb_msg_t);
5739 af = acqrec->ipsacq_addrfam;
5740 switch (af) {
5741 case AF_INET:
5742 check_proto = IPPROTO_ICMP;
5743 break;
5744 case AF_INET6:
5745 check_proto = IPPROTO_ICMPV6;
5746 break;
5747 default:
5748 /* This should never happen unless we have kernel bugs. */
5749 cmn_err(CE_WARN,
5750 "sadb_setup_acquire: corrupt ACQUIRE record.\n");
5751 ASSERT(0);
5752 mutex_exit(&ipss->ipsec_alg_lock);
5753 return (NULL);
5756 samsg->sadb_msg_version = PF_KEY_V2;
5757 samsg->sadb_msg_type = SADB_ACQUIRE;
5758 samsg->sadb_msg_satype = satype;
5759 samsg->sadb_msg_errno = 0;
5760 samsg->sadb_msg_pid = 0;
5761 samsg->sadb_msg_reserved = 0;
5762 samsg->sadb_msg_seq = acqrec->ipsacq_seq;
5764 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
5766 if ((acqrec->ipsacq_proto == check_proto) || tunnel_mode) {
5767 sport_typecode = dport_typecode = 0;
5768 } else {
5769 sport_typecode = acqrec->ipsacq_srcport;
5770 dport_typecode = acqrec->ipsacq_dstport;
5773 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af,
5774 acqrec->ipsacq_srcaddr, sport_typecode, acqrec->ipsacq_proto, 0);
5776 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af,
5777 acqrec->ipsacq_dstaddr, dport_typecode, acqrec->ipsacq_proto, 0);
5779 if (tunnel_mode) {
5780 sport_typecode = acqrec->ipsacq_srcport;
5781 dport_typecode = acqrec->ipsacq_dstport;
5782 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC,
5783 acqrec->ipsacq_inneraddrfam, acqrec->ipsacq_innersrc,
5784 sport_typecode, acqrec->ipsacq_inner_proto,
5785 acqrec->ipsacq_innersrcpfx);
5786 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST,
5787 acqrec->ipsacq_inneraddrfam, acqrec->ipsacq_innerdst,
5788 dport_typecode, acqrec->ipsacq_inner_proto,
5789 acqrec->ipsacq_innerdstpfx);
5792 /* XXX Insert identity information here. */
5794 /* XXXMLS Insert sensitivity information here. */
5796 if (cur != NULL)
5797 samsg->sadb_msg_len = SADB_8TO64(cur - msgmp->b_rptr);
5798 else
5799 mutex_exit(&ipss->ipsec_alg_lock);
5801 return (pfkeymp);
5805 * Given an SADB_GETSPI message, find an appropriately ranged SA and
5806 * allocate an SA. If there are message improprieties, return (ipsa_t *)-1.
5807 * If there was a memory allocation error, return NULL. (Assume NULL !=
5808 * (ipsa_t *)-1).
5810 * master_spi is passed in host order.
5812 ipsa_t *
5813 sadb_getspi(keysock_in_t *ksi, uint32_t master_spi, int *diagnostic,
5814 netstack_t *ns, uint_t sa_type)
5816 sadb_address_t *src =
5817 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC],
5818 *dst = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
5819 sadb_spirange_t *range =
5820 (sadb_spirange_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
5821 struct sockaddr_in *ssa, *dsa;
5822 struct sockaddr_in6 *ssa6, *dsa6;
5823 uint32_t *srcaddr, *dstaddr;
5824 sa_family_t af;
5825 uint32_t add, min, max;
5826 uint8_t protocol =
5827 (sa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP;
5829 if (src == NULL) {
5830 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
5831 return ((ipsa_t *)-1);
5833 if (dst == NULL) {
5834 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
5835 return ((ipsa_t *)-1);
5837 if (range == NULL) {
5838 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_RANGE;
5839 return ((ipsa_t *)-1);
5842 min = ntohl(range->sadb_spirange_min);
5843 max = ntohl(range->sadb_spirange_max);
5844 dsa = (struct sockaddr_in *)(dst + 1);
5845 dsa6 = (struct sockaddr_in6 *)dsa;
5847 ssa = (struct sockaddr_in *)(src + 1);
5848 ssa6 = (struct sockaddr_in6 *)ssa;
5849 ASSERT(dsa->sin_family == ssa->sin_family);
5851 srcaddr = ALL_ZEROES_PTR;
5852 af = dsa->sin_family;
5853 switch (af) {
5854 case AF_INET:
5855 if (src != NULL)
5856 srcaddr = (uint32_t *)(&ssa->sin_addr);
5857 dstaddr = (uint32_t *)(&dsa->sin_addr);
5858 break;
5859 case AF_INET6:
5860 if (src != NULL)
5861 srcaddr = (uint32_t *)(&ssa6->sin6_addr);
5862 dstaddr = (uint32_t *)(&dsa6->sin6_addr);
5863 break;
5864 default:
5865 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF;
5866 return ((ipsa_t *)-1);
5869 if (master_spi < min || master_spi > max) {
5870 /* Return a random value in the range. */
5871 if (cl_inet_getspi) {
5872 cl_inet_getspi(protocol, (uint8_t *)&add, sizeof (add));
5873 } else {
5874 (void) random_get_pseudo_bytes((uint8_t *)&add,
5875 sizeof (add));
5877 master_spi = min + (add % (max - min + 1));
5881 * Since master_spi is passed in host order, we need to htonl() it
5882 * for the purposes of creating a new SA.
5884 return (sadb_makelarvalassoc(htonl(master_spi), srcaddr, dstaddr, af,
5885 ns));
5890 * Locate an ACQUIRE and nuke it. If I have an samsg that's larger than the
5891 * base header, just ignore it. Otherwise, lock down the whole ACQUIRE list
5892 * and scan for the sequence number in question. I may wish to accept an
5893 * address pair with it, for easier searching.
5895 * Caller frees the message, so we don't have to here.
5897 * NOTE: The ip_q parameter may be used in the future for ACQUIRE
5898 * failures.
5900 /* ARGSUSED */
5901 void
5902 sadb_in_acquire(sadb_msg_t *samsg, sadbp_t *sp, queue_t *ip_q, netstack_t *ns)
5904 int i;
5905 ipsacq_t *acqrec;
5906 iacqf_t *bucket;
5909 * I only accept the base header for this!
5910 * Though to be honest, requiring the dst address would help
5911 * immensely.
5913 * XXX There are already cases where I can get the dst address.
5915 if (samsg->sadb_msg_len > SADB_8TO64(sizeof (*samsg)))
5916 return;
5919 * Using the samsg->sadb_msg_seq, find the ACQUIRE record, delete it,
5920 * (and in the future send a message to IP with the appropriate error
5921 * number).
5923 * Q: Do I want to reject if pid != 0?
5926 for (i = 0; i < sp->s_v4.sdb_hashsize; i++) {
5927 bucket = &sp->s_v4.sdb_acq[i];
5928 mutex_enter(&bucket->iacqf_lock);
5929 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL;
5930 acqrec = acqrec->ipsacq_next) {
5931 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq)
5932 break; /* for acqrec... loop. */
5934 if (acqrec != NULL)
5935 break; /* for i = 0... loop. */
5937 mutex_exit(&bucket->iacqf_lock);
5940 if (acqrec == NULL) {
5941 for (i = 0; i < sp->s_v6.sdb_hashsize; i++) {
5942 bucket = &sp->s_v6.sdb_acq[i];
5943 mutex_enter(&bucket->iacqf_lock);
5944 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL;
5945 acqrec = acqrec->ipsacq_next) {
5946 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq)
5947 break; /* for acqrec... loop. */
5949 if (acqrec != NULL)
5950 break; /* for i = 0... loop. */
5952 mutex_exit(&bucket->iacqf_lock);
5957 if (acqrec == NULL)
5958 return;
5961 * What do I do with the errno and IP? I may need mp's services a
5962 * little more. See sadb_destroy_acquire() for future directions
5963 * beyond free the mblk chain on the acquire record.
5966 ASSERT(&bucket->iacqf_lock == acqrec->ipsacq_linklock);
5967 sadb_destroy_acquire(acqrec, ns);
5968 /* Have to exit mutex here, because of breaking out of for loop. */
5969 mutex_exit(&bucket->iacqf_lock);
5973 * The following functions work with the replay windows of an SA. They assume
5974 * the ipsa->ipsa_replay_arr is an array of uint64_t, and that the bit vector
5975 * represents the highest sequence number packet received, and back
5976 * (ipsa->ipsa_replay_wsize) packets.
5980 * Is the replay bit set?
5982 static boolean_t
5983 ipsa_is_replay_set(ipsa_t *ipsa, uint32_t offset)
5985 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63);
5987 return ((bit & ipsa->ipsa_replay_arr[offset >> 6]) ? B_TRUE : B_FALSE);
5991 * Shift the bits of the replay window over.
5993 static void
5994 ipsa_shift_replay(ipsa_t *ipsa, uint32_t shift)
5996 int i;
5997 int jump = ((shift - 1) >> 6) + 1;
5999 if (shift == 0)
6000 return;
6002 for (i = (ipsa->ipsa_replay_wsize - 1) >> 6; i >= 0; i--) {
6003 if (i + jump <= (ipsa->ipsa_replay_wsize - 1) >> 6) {
6004 ipsa->ipsa_replay_arr[i + jump] |=
6005 ipsa->ipsa_replay_arr[i] >> (64 - (shift & 63));
6007 ipsa->ipsa_replay_arr[i] <<= shift;
6012 * Set a bit in the bit vector.
6014 static void
6015 ipsa_set_replay(ipsa_t *ipsa, uint32_t offset)
6017 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63);
6019 ipsa->ipsa_replay_arr[offset >> 6] |= bit;
6022 #define SADB_MAX_REPLAY_VALUE 0xffffffff
6025 * Assume caller has NOT done ntohl() already on seq. Check to see
6026 * if replay sequence number "seq" has been seen already.
6028 boolean_t
6029 sadb_replay_check(ipsa_t *ipsa, uint32_t seq)
6031 boolean_t rc;
6032 uint32_t diff;
6034 if (ipsa->ipsa_replay_wsize == 0)
6035 return (B_TRUE);
6038 * NOTE: I've already checked for 0 on the wire in sadb_replay_peek().
6041 /* Convert sequence number into host order before holding the mutex. */
6042 seq = ntohl(seq);
6044 mutex_enter(&ipsa->ipsa_lock);
6046 /* Initialize inbound SA's ipsa_replay field to last one received. */
6047 if (ipsa->ipsa_replay == 0)
6048 ipsa->ipsa_replay = 1;
6050 if (seq > ipsa->ipsa_replay) {
6052 * I have received a new "highest value received". Shift
6053 * the replay window over.
6055 diff = seq - ipsa->ipsa_replay;
6056 if (diff < ipsa->ipsa_replay_wsize) {
6057 /* In replay window, shift bits over. */
6058 ipsa_shift_replay(ipsa, diff);
6059 } else {
6060 /* WAY FAR AHEAD, clear bits and start again. */
6061 bzero(ipsa->ipsa_replay_arr,
6062 sizeof (ipsa->ipsa_replay_arr));
6064 ipsa_set_replay(ipsa, 0);
6065 ipsa->ipsa_replay = seq;
6066 rc = B_TRUE;
6067 goto done;
6069 diff = ipsa->ipsa_replay - seq;
6070 if (diff >= ipsa->ipsa_replay_wsize || ipsa_is_replay_set(ipsa, diff)) {
6071 rc = B_FALSE;
6072 goto done;
6074 /* Set this packet as seen. */
6075 ipsa_set_replay(ipsa, diff);
6077 rc = B_TRUE;
6078 done:
6079 mutex_exit(&ipsa->ipsa_lock);
6080 return (rc);
6084 * "Peek" and see if we should even bother going through the effort of
6085 * running an authentication check on the sequence number passed in.
6086 * this takes into account packets that are below the replay window,
6087 * and collisions with already replayed packets. Return B_TRUE if it
6088 * is okay to proceed, B_FALSE if this packet should be dropped immediately.
6089 * Assume same byte-ordering as sadb_replay_check.
6091 boolean_t
6092 sadb_replay_peek(ipsa_t *ipsa, uint32_t seq)
6094 boolean_t rc = B_FALSE;
6095 uint32_t diff;
6097 if (ipsa->ipsa_replay_wsize == 0)
6098 return (B_TRUE);
6101 * 0 is 0, regardless of byte order... :)
6103 * If I get 0 on the wire (and there is a replay window) then the
6104 * sender most likely wrapped. This ipsa may need to be marked or
6105 * something.
6107 if (seq == 0)
6108 return (B_FALSE);
6110 seq = ntohl(seq);
6111 mutex_enter(&ipsa->ipsa_lock);
6112 if (seq < ipsa->ipsa_replay - ipsa->ipsa_replay_wsize &&
6113 ipsa->ipsa_replay >= ipsa->ipsa_replay_wsize)
6114 goto done;
6117 * If I've hit 0xffffffff, then quite honestly, I don't need to
6118 * bother with formalities. I'm not accepting any more packets
6119 * on this SA.
6121 if (ipsa->ipsa_replay == SADB_MAX_REPLAY_VALUE) {
6123 * Since we're already holding the lock, update the
6124 * expire time ala. sadb_replay_delete() and return.
6126 ipsa->ipsa_hardexpiretime = (time_t)1;
6127 goto done;
6130 if (seq <= ipsa->ipsa_replay) {
6132 * This seq is in the replay window. I'm not below it,
6133 * because I already checked for that above!
6135 diff = ipsa->ipsa_replay - seq;
6136 if (ipsa_is_replay_set(ipsa, diff))
6137 goto done;
6139 /* Else return B_TRUE, I'm going to advance the window. */
6141 rc = B_TRUE;
6142 done:
6143 mutex_exit(&ipsa->ipsa_lock);
6144 return (rc);
6148 * Delete a single SA.
6150 * For now, use the quick-and-dirty trick of making the association's
6151 * hard-expire lifetime (time_t)1, ensuring deletion by the *_ager().
6153 void
6154 sadb_replay_delete(ipsa_t *assoc)
6156 mutex_enter(&assoc->ipsa_lock);
6157 assoc->ipsa_hardexpiretime = (time_t)1;
6158 mutex_exit(&assoc->ipsa_lock);
6162 * Given a queue that presumably points to IP, send a T_BIND_REQ for _proto_
6163 * down. The caller will handle the T_BIND_ACK locally.
6165 boolean_t
6166 sadb_t_bind_req(queue_t *q, int proto)
6168 struct T_bind_req *tbr;
6169 mblk_t *mp;
6171 mp = allocb(sizeof (struct T_bind_req) + 1, BPRI_HI);
6172 if (mp == NULL) {
6173 /* cmn_err(CE_WARN, */
6174 /* "sadb_t_bind_req(%d): couldn't allocate mblk\n", proto); */
6175 return (B_FALSE);
6177 mp->b_datap->db_type = M_PCPROTO;
6178 tbr = (struct T_bind_req *)mp->b_rptr;
6179 mp->b_wptr += sizeof (struct T_bind_req);
6180 tbr->PRIM_type = T_BIND_REQ;
6181 tbr->ADDR_length = 0;
6182 tbr->ADDR_offset = 0;
6183 tbr->CONIND_number = 0;
6184 *mp->b_wptr = (uint8_t)proto;
6185 mp->b_wptr++;
6187 putnext(q, mp);
6188 return (B_TRUE);
6192 * Special front-end to ipsec_rl_strlog() dealing with SA failure.
6193 * this is designed to take only a format string with "* %x * %s *", so
6194 * that "spi" is printed first, then "addr" is converted using inet_pton().
6196 * This is abstracted out to save the stack space for only when inet_pton()
6197 * is called. Make sure "spi" is in network order; it usually is when this
6198 * would get called.
6200 void
6201 ipsec_assocfailure(short mid, short sid, char level, ushort_t sl, char *fmt,
6202 uint32_t spi, void *addr, int af, netstack_t *ns)
6204 char buf[INET6_ADDRSTRLEN];
6206 ASSERT(af == AF_INET6 || af == AF_INET);
6208 ipsec_rl_strlog(ns, mid, sid, level, sl, fmt, ntohl(spi),
6209 inet_ntop(af, addr, buf, sizeof (buf)));
6213 * Fills in a reference to the policy, if any, from the conn, in *ppp
6214 * Releases a reference to the passed conn_t.
6216 static void
6217 ipsec_conn_pol(ipsec_selector_t *sel, conn_t *connp, ipsec_policy_t **ppp)
6219 ipsec_policy_t *pp;
6220 ipsec_latch_t *ipl = connp->conn_latch;
6222 if ((ipl != NULL) && (ipl->ipl_out_policy != NULL)) {
6223 pp = ipl->ipl_out_policy;
6224 IPPOL_REFHOLD(pp);
6225 } else {
6226 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel,
6227 connp->conn_netstack);
6229 *ppp = pp;
6230 CONN_DEC_REF(connp);
6234 * The following functions scan through active conn_t structures
6235 * and return a reference to the best-matching policy it can find.
6236 * Caller must release the reference.
6238 static void
6239 ipsec_udp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst)
6241 connf_t *connfp;
6242 conn_t *connp = NULL;
6243 ipsec_selector_t portonly;
6245 bzero((void *)&portonly, sizeof (portonly));
6247 if (sel->ips_local_port == 0)
6248 return;
6250 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(sel->ips_local_port,
6251 ipst)];
6252 mutex_enter(&connfp->connf_lock);
6254 if (sel->ips_isv4) {
6255 connp = connfp->connf_head;
6256 while (connp != NULL) {
6257 if (IPCL_UDP_MATCH(connp, sel->ips_local_port,
6258 sel->ips_local_addr_v4, sel->ips_remote_port,
6259 sel->ips_remote_addr_v4))
6260 break;
6261 connp = connp->conn_next;
6264 if (connp == NULL) {
6265 /* Try port-only match in IPv6. */
6266 portonly.ips_local_port = sel->ips_local_port;
6267 sel = &portonly;
6271 if (connp == NULL) {
6272 connp = connfp->connf_head;
6273 while (connp != NULL) {
6274 if (IPCL_UDP_MATCH_V6(connp, sel->ips_local_port,
6275 sel->ips_local_addr_v6, sel->ips_remote_port,
6276 sel->ips_remote_addr_v6))
6277 break;
6278 connp = connp->conn_next;
6281 if (connp == NULL) {
6282 mutex_exit(&connfp->connf_lock);
6283 return;
6287 CONN_INC_REF(connp);
6288 mutex_exit(&connfp->connf_lock);
6290 ipsec_conn_pol(sel, connp, ppp);
6293 static conn_t *
6294 ipsec_find_listen_conn(uint16_t *pptr, ipsec_selector_t *sel, ip_stack_t *ipst)
6296 connf_t *connfp;
6297 conn_t *connp = NULL;
6298 const in6_addr_t *v6addrmatch = &sel->ips_local_addr_v6;
6300 if (sel->ips_local_port == 0)
6301 return (NULL);
6303 connfp = &ipst->ips_ipcl_bind_fanout[
6304 IPCL_BIND_HASH(sel->ips_local_port, ipst)];
6305 mutex_enter(&connfp->connf_lock);
6307 if (sel->ips_isv4) {
6308 connp = connfp->connf_head;
6309 while (connp != NULL) {
6310 if (IPCL_BIND_MATCH(connp, IPPROTO_TCP,
6311 sel->ips_local_addr_v4, pptr[1]))
6312 break;
6313 connp = connp->conn_next;
6316 if (connp == NULL) {
6317 /* Match to all-zeroes. */
6318 v6addrmatch = &ipv6_all_zeros;
6322 if (connp == NULL) {
6323 connp = connfp->connf_head;
6324 while (connp != NULL) {
6325 if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP,
6326 *v6addrmatch, pptr[1]))
6327 break;
6328 connp = connp->conn_next;
6331 if (connp == NULL) {
6332 mutex_exit(&connfp->connf_lock);
6333 return (NULL);
6337 CONN_INC_REF(connp);
6338 mutex_exit(&connfp->connf_lock);
6339 return (connp);
6342 static void
6343 ipsec_tcp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst)
6345 connf_t *connfp;
6346 conn_t *connp;
6347 uint32_t ports;
6348 uint16_t *pptr = (uint16_t *)&ports;
6351 * Find TCP state in the following order:
6352 * 1.) Connected conns.
6353 * 2.) Listeners.
6355 * Even though #2 will be the common case for inbound traffic, only
6356 * following this order insures correctness.
6359 if (sel->ips_local_port == 0)
6360 return;
6363 * 0 should be fport, 1 should be lport. SRC is the local one here.
6364 * See ipsec_construct_inverse_acquire() for details.
6366 pptr[0] = sel->ips_remote_port;
6367 pptr[1] = sel->ips_local_port;
6369 connfp = &ipst->ips_ipcl_conn_fanout[
6370 IPCL_CONN_HASH(sel->ips_remote_addr_v4, ports, ipst)];
6371 mutex_enter(&connfp->connf_lock);
6372 connp = connfp->connf_head;
6374 if (sel->ips_isv4) {
6375 while (connp != NULL) {
6376 if (IPCL_CONN_MATCH(connp, IPPROTO_TCP,
6377 sel->ips_remote_addr_v4, sel->ips_local_addr_v4,
6378 ports))
6379 break;
6380 connp = connp->conn_next;
6382 } else {
6383 while (connp != NULL) {
6384 if (IPCL_CONN_MATCH_V6(connp, IPPROTO_TCP,
6385 sel->ips_remote_addr_v6, sel->ips_local_addr_v6,
6386 ports))
6387 break;
6388 connp = connp->conn_next;
6392 if (connp != NULL) {
6393 CONN_INC_REF(connp);
6394 mutex_exit(&connfp->connf_lock);
6395 } else {
6396 mutex_exit(&connfp->connf_lock);
6398 /* Try the listen hash. */
6399 if ((connp = ipsec_find_listen_conn(pptr, sel, ipst)) == NULL)
6400 return;
6403 ipsec_conn_pol(sel, connp, ppp);
6406 static void
6407 ipsec_sctp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
6408 ip_stack_t *ipst)
6410 conn_t *connp;
6411 uint32_t ports;
6412 uint16_t *pptr = (uint16_t *)&ports;
6415 * Find SCP state in the following order:
6416 * 1.) Connected conns.
6417 * 2.) Listeners.
6419 * Even though #2 will be the common case for inbound traffic, only
6420 * following this order insures correctness.
6423 if (sel->ips_local_port == 0)
6424 return;
6427 * 0 should be fport, 1 should be lport. SRC is the local one here.
6428 * See ipsec_construct_inverse_acquire() for details.
6430 pptr[0] = sel->ips_remote_port;
6431 pptr[1] = sel->ips_local_port;
6433 if (sel->ips_isv4) {
6434 in6_addr_t src, dst;
6436 IN6_IPADDR_TO_V4MAPPED(sel->ips_remote_addr_v4, &dst);
6437 IN6_IPADDR_TO_V4MAPPED(sel->ips_local_addr_v4, &src);
6438 connp = sctp_find_conn(&dst, &src, ports, ALL_ZONES,
6439 ipst->ips_netstack->netstack_sctp);
6440 } else {
6441 connp = sctp_find_conn(&sel->ips_remote_addr_v6,
6442 &sel->ips_local_addr_v6, ports, ALL_ZONES,
6443 ipst->ips_netstack->netstack_sctp);
6445 if (connp == NULL)
6446 return;
6447 ipsec_conn_pol(sel, connp, ppp);
6451 * Fill in a query for the SPD (in "sel") using two PF_KEY address extensions.
6452 * Returns 0 or errno, and always sets *diagnostic to something appropriate
6453 * to PF_KEY.
6455 * NOTE: For right now, this function (and ipsec_selector_t for that matter),
6456 * ignore prefix lengths in the address extension. Since we match on first-
6457 * entered policies, this shouldn't matter. Also, since we normalize prefix-
6458 * set addresses to mask out the lower bits, we should get a suitable search
6459 * key for the SPD anyway. This is the function to change if the assumption
6460 * about suitable search keys is wrong.
6462 static int
6463 ipsec_get_inverse_acquire_sel(ipsec_selector_t *sel, sadb_address_t *srcext,
6464 sadb_address_t *dstext, int *diagnostic)
6466 struct sockaddr_in *src, *dst;
6467 struct sockaddr_in6 *src6, *dst6;
6469 *diagnostic = 0;
6471 bzero(sel, sizeof (*sel));
6472 sel->ips_protocol = srcext->sadb_address_proto;
6473 dst = (struct sockaddr_in *)(dstext + 1);
6474 if (dst->sin_family == AF_INET6) {
6475 dst6 = (struct sockaddr_in6 *)dst;
6476 src6 = (struct sockaddr_in6 *)(srcext + 1);
6477 if (src6->sin6_family != AF_INET6) {
6478 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
6479 return (EINVAL);
6481 sel->ips_remote_addr_v6 = dst6->sin6_addr;
6482 sel->ips_local_addr_v6 = src6->sin6_addr;
6483 if (sel->ips_protocol == IPPROTO_ICMPV6) {
6484 sel->ips_is_icmp_inv_acq = 1;
6485 } else {
6486 sel->ips_remote_port = dst6->sin6_port;
6487 sel->ips_local_port = src6->sin6_port;
6489 sel->ips_isv4 = B_FALSE;
6490 } else {
6491 src = (struct sockaddr_in *)(srcext + 1);
6492 if (src->sin_family != AF_INET) {
6493 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
6494 return (EINVAL);
6496 sel->ips_remote_addr_v4 = dst->sin_addr.s_addr;
6497 sel->ips_local_addr_v4 = src->sin_addr.s_addr;
6498 if (sel->ips_protocol == IPPROTO_ICMP) {
6499 sel->ips_is_icmp_inv_acq = 1;
6500 } else {
6501 sel->ips_remote_port = dst->sin_port;
6502 sel->ips_local_port = src->sin_port;
6504 sel->ips_isv4 = B_TRUE;
6506 return (0);
6510 * We have encapsulation.
6511 * - Lookup tun_t by address and look for an associated
6512 * tunnel policy
6513 * - If there are inner selectors
6514 * - check ITPF_P_TUNNEL and ITPF_P_ACTIVE
6515 * - Look up tunnel policy based on selectors
6516 * - Else
6517 * - Sanity check the negotation
6518 * - If appropriate, fall through to global policy
6520 static int
6521 ipsec_tun_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
6522 sadb_address_t *innsrcext, sadb_address_t *inndstext, ipsec_tun_pol_t *itp,
6523 int *diagnostic, netstack_t *ns)
6525 int err;
6526 ipsec_policy_head_t *polhead;
6528 /* Check for inner selectors and act appropriately */
6530 if (innsrcext != NULL) {
6531 /* Inner selectors present */
6532 ASSERT(inndstext != NULL);
6533 if ((itp == NULL) ||
6534 (itp->itp_flags & (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) !=
6535 (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) {
6537 * If inner packet selectors, we must have negotiate
6538 * tunnel and active policy. If the tunnel has
6539 * transport-mode policy set on it, or has no policy,
6540 * fail.
6542 return (ENOENT);
6543 } else {
6545 * Reset "sel" to indicate inner selectors. Pass
6546 * inner PF_KEY address extensions for this to happen.
6548 err = ipsec_get_inverse_acquire_sel(sel,
6549 innsrcext, inndstext, diagnostic);
6550 if (err != 0) {
6551 ITP_REFRELE(itp, ns);
6552 return (err);
6555 * Now look for a tunnel policy based on those inner
6556 * selectors. (Common code is below.)
6559 } else {
6560 /* No inner selectors present */
6561 if ((itp == NULL) || !(itp->itp_flags & ITPF_P_ACTIVE)) {
6563 * Transport mode negotiation with no tunnel policy
6564 * configured - return to indicate a global policy
6565 * check is needed.
6567 if (itp != NULL) {
6568 ITP_REFRELE(itp, ns);
6570 return (0);
6571 } else if (itp->itp_flags & ITPF_P_TUNNEL) {
6572 /* Tunnel mode set with no inner selectors. */
6573 ITP_REFRELE(itp, ns);
6574 return (ENOENT);
6577 * Else, this is a tunnel policy configured with ifconfig(1m)
6578 * or "negotiate transport" with ipsecconf(1m). We have an
6579 * itp with policy set based on any match, so don't bother
6580 * changing fields in "sel".
6584 ASSERT(itp != NULL);
6585 polhead = itp->itp_policy;
6586 ASSERT(polhead != NULL);
6587 rw_enter(&polhead->iph_lock, RW_READER);
6588 *ppp = ipsec_find_policy_head(NULL, polhead,
6589 IPSEC_TYPE_INBOUND, sel, ns);
6590 rw_exit(&polhead->iph_lock);
6591 ITP_REFRELE(itp, ns);
6594 * Don't default to global if we didn't find a matching policy entry.
6595 * Instead, send ENOENT, just like if we hit a transport-mode tunnel.
6597 if (*ppp == NULL)
6598 return (ENOENT);
6600 return (0);
6603 static void
6604 ipsec_oth_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
6605 ip_stack_t *ipst)
6607 boolean_t isv4 = sel->ips_isv4;
6608 connf_t *connfp;
6609 conn_t *connp;
6611 if (isv4) {
6612 connfp = &ipst->ips_ipcl_proto_fanout[sel->ips_protocol];
6613 } else {
6614 connfp = &ipst->ips_ipcl_proto_fanout_v6[sel->ips_protocol];
6617 mutex_enter(&connfp->connf_lock);
6618 for (connp = connfp->connf_head; connp != NULL;
6619 connp = connp->conn_next) {
6620 if (!((isv4 && !((connp->conn_src == 0 ||
6621 connp->conn_src == sel->ips_local_addr_v4) &&
6622 (connp->conn_rem == 0 ||
6623 connp->conn_rem == sel->ips_remote_addr_v4))) ||
6624 (!isv4 && !((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_srcv6) ||
6625 IN6_ARE_ADDR_EQUAL(&connp->conn_srcv6,
6626 &sel->ips_local_addr_v6)) &&
6627 (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_remv6) ||
6628 IN6_ARE_ADDR_EQUAL(&connp->conn_remv6,
6629 &sel->ips_remote_addr_v6)))))) {
6630 break;
6633 if (connp == NULL) {
6634 mutex_exit(&connfp->connf_lock);
6635 return;
6638 CONN_INC_REF(connp);
6639 mutex_exit(&connfp->connf_lock);
6641 ipsec_conn_pol(sel, connp, ppp);
6645 * Construct an inverse ACQUIRE reply based on:
6647 * 1.) Current global policy.
6648 * 2.) An conn_t match depending on what all was passed in the extv[].
6649 * 3.) A tunnel's policy head.
6650 * ...
6651 * N.) Other stuff TBD (e.g. identities)
6653 * If there is an error, set sadb_msg_errno and sadb_x_msg_diagnostic
6654 * in this function so the caller can extract them where appropriately.
6656 * The SRC address is the local one - just like an outbound ACQUIRE message.
6658 mblk_t *
6659 ipsec_construct_inverse_acquire(sadb_msg_t *samsg, sadb_ext_t *extv[],
6660 netstack_t *ns)
6662 int err;
6663 int diagnostic;
6664 sadb_address_t *srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC],
6665 *dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST],
6666 *innsrcext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC],
6667 *inndstext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST];
6668 struct sockaddr_in6 *src, *dst;
6669 struct sockaddr_in6 *isrc, *idst;
6670 ipsec_tun_pol_t *itp = NULL;
6671 ipsec_policy_t *pp = NULL;
6672 ipsec_selector_t sel, isel;
6673 mblk_t *retmp;
6674 ip_stack_t *ipst = ns->netstack_ip;
6675 ipsec_stack_t *ipss = ns->netstack_ipsec;
6677 /* Normalize addresses */
6678 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)srcext, 0, ns)
6679 == KS_IN_ADDR_UNKNOWN) {
6680 err = EINVAL;
6681 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC;
6682 goto bail;
6684 src = (struct sockaddr_in6 *)(srcext + 1);
6685 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)dstext, 0, ns)
6686 == KS_IN_ADDR_UNKNOWN) {
6687 err = EINVAL;
6688 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
6689 goto bail;
6691 dst = (struct sockaddr_in6 *)(dstext + 1);
6692 if (src->sin6_family != dst->sin6_family) {
6693 err = EINVAL;
6694 diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
6695 goto bail;
6698 /* Check for tunnel mode and act appropriately */
6699 if (innsrcext != NULL) {
6700 if (inndstext == NULL) {
6701 err = EINVAL;
6702 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
6703 goto bail;
6705 if (sadb_addrcheck(NULL, (mblk_t *)samsg,
6706 (sadb_ext_t *)innsrcext, 0, ns) == KS_IN_ADDR_UNKNOWN) {
6707 err = EINVAL;
6708 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_SRC;
6709 goto bail;
6711 isrc = (struct sockaddr_in6 *)(innsrcext + 1);
6712 if (sadb_addrcheck(NULL, (mblk_t *)samsg,
6713 (sadb_ext_t *)inndstext, 0, ns) == KS_IN_ADDR_UNKNOWN) {
6714 err = EINVAL;
6715 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_DST;
6716 goto bail;
6718 idst = (struct sockaddr_in6 *)(inndstext + 1);
6719 if (isrc->sin6_family != idst->sin6_family) {
6720 err = EINVAL;
6721 diagnostic = SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH;
6722 goto bail;
6724 if (isrc->sin6_family != AF_INET &&
6725 isrc->sin6_family != AF_INET6) {
6726 err = EINVAL;
6727 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_SRC_AF;
6728 goto bail;
6730 } else if (inndstext != NULL) {
6731 err = EINVAL;
6732 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
6733 goto bail;
6736 /* Get selectors first, based on outer addresses */
6737 err = ipsec_get_inverse_acquire_sel(&sel, srcext, dstext, &diagnostic);
6738 if (err != 0)
6739 goto bail;
6741 /* Check for tunnel mode mismatches. */
6742 if (innsrcext != NULL &&
6743 ((isrc->sin6_family == AF_INET &&
6744 sel.ips_protocol != IPPROTO_ENCAP && sel.ips_protocol != 0) ||
6745 (isrc->sin6_family == AF_INET6 &&
6746 sel.ips_protocol != IPPROTO_IPV6 && sel.ips_protocol != 0))) {
6747 err = EPROTOTYPE;
6748 goto bail;
6752 * Okay, we have the addresses and other selector information.
6753 * Let's first find a conn...
6755 pp = NULL;
6756 switch (sel.ips_protocol) {
6757 case IPPROTO_TCP:
6758 ipsec_tcp_pol(&sel, &pp, ipst);
6759 break;
6760 case IPPROTO_UDP:
6761 ipsec_udp_pol(&sel, &pp, ipst);
6762 break;
6763 case IPPROTO_SCTP:
6764 ipsec_sctp_pol(&sel, &pp, ipst);
6765 break;
6766 case IPPROTO_ENCAP:
6767 case IPPROTO_IPV6:
6768 rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_READER);
6770 * Assume sel.ips_remote_addr_* has the right address at
6771 * that exact position.
6773 itp = ipss->ipsec_itp_get_byaddr(
6774 (uint32_t *)(&sel.ips_local_addr_v6),
6775 (uint32_t *)(&sel.ips_remote_addr_v6),
6776 src->sin6_family, ns);
6777 rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock);
6778 if (innsrcext == NULL) {
6780 * Transport-mode tunnel, make sure we fake out isel
6781 * to contain something based on the outer protocol.
6783 bzero(&isel, sizeof (isel));
6784 isel.ips_isv4 = (sel.ips_protocol == IPPROTO_ENCAP);
6785 } /* Else isel is initialized by ipsec_tun_pol(). */
6786 err = ipsec_tun_pol(&isel, &pp, innsrcext, inndstext, itp,
6787 &diagnostic, ns);
6789 * NOTE: isel isn't used for now, but in RFC 430x IPsec, it
6790 * may be.
6792 if (err != 0)
6793 goto bail;
6794 break;
6795 default:
6796 ipsec_oth_pol(&sel, &pp, ipst);
6797 break;
6801 * If we didn't find a matching conn_t or other policy head, take a
6802 * look in the global policy.
6804 if (pp == NULL) {
6805 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, NULL, NULL, &sel,
6806 ns);
6807 if (pp == NULL) {
6808 /* There's no global policy. */
6809 err = ENOENT;
6810 diagnostic = 0;
6811 goto bail;
6816 * Now that we have a policy entry/widget, construct an ACQUIRE
6817 * message based on that, fix fields where appropriate,
6818 * and return the message.
6820 retmp = sadb_extended_acquire(&sel, pp, NULL,
6821 (itp != NULL && (itp->itp_flags & ITPF_P_TUNNEL)),
6822 samsg->sadb_msg_seq, samsg->sadb_msg_pid, ns);
6823 if (pp != NULL) {
6824 IPPOL_REFRELE(pp, ns);
6826 if (retmp != NULL) {
6827 return (retmp);
6828 } else {
6829 err = ENOMEM;
6830 diagnostic = 0;
6832 bail:
6833 samsg->sadb_msg_errno = (uint8_t)err;
6834 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic;
6835 return (NULL);
6839 * ipsa_lpkt is a one-element queue, only manipulated by casptr within
6840 * the next two functions.
6842 * These functions loop calling casptr() until the swap "happens",
6843 * turning a compare-and-swap op into an atomic swap operation.
6847 * sadb_set_lpkt: Atomically swap in a value to ipsa->ipsa_lpkt and
6848 * freemsg the previous value. free clue: freemsg(NULL) is safe.
6851 void
6852 sadb_set_lpkt(ipsa_t *ipsa, mblk_t *npkt, netstack_t *ns)
6854 mblk_t *opkt;
6855 ipsec_stack_t *ipss = ns->netstack_ipsec;
6857 ASSERT(ipsa->ipsa_state == IPSA_STATE_LARVAL);
6859 membar_producer();
6860 do {
6861 opkt = ipsa->ipsa_lpkt;
6862 } while (casptr(&ipsa->ipsa_lpkt, opkt, npkt) != opkt);
6864 ip_drop_packet(opkt, B_TRUE, NULL, NULL,
6865 DROPPER(ipss, ipds_sadb_inlarval_replace),
6866 &ipss->ipsec_sadb_dropper);
6870 * sadb_clear_lpkt: Atomically clear ipsa->ipsa_lpkt and return the
6871 * previous value.
6874 mblk_t *
6875 sadb_clear_lpkt(ipsa_t *ipsa)
6877 mblk_t *opkt;
6879 do {
6880 opkt = ipsa->ipsa_lpkt;
6881 } while (casptr(&ipsa->ipsa_lpkt, opkt, NULL) != opkt);
6883 return (opkt);
6887 * Buffer a packet that's in IDLE state as set by Solaris Clustering.
6889 void
6890 sadb_buf_pkt(ipsa_t *ipsa, mblk_t *bpkt, netstack_t *ns)
6892 ipsec_stack_t *ipss = ns->netstack_ipsec;
6893 extern void (*cl_inet_idlesa)(uint8_t, uint32_t, sa_family_t,
6894 in6_addr_t, in6_addr_t);
6895 in6_addr_t *srcaddr = (in6_addr_t *)(&ipsa->ipsa_srcaddr);
6896 in6_addr_t *dstaddr = (in6_addr_t *)(&ipsa->ipsa_dstaddr);
6898 ASSERT(ipsa->ipsa_state == IPSA_STATE_IDLE);
6900 if (cl_inet_idlesa == NULL) {
6901 ip_drop_packet(bpkt, B_TRUE, NULL, NULL,
6902 DROPPER(ipss, ipds_sadb_inidle_overflow),
6903 &ipss->ipsec_sadb_dropper);
6904 return;
6907 cl_inet_idlesa((ipsa->ipsa_type == SADB_SATYPE_AH) ?
6908 IPPROTO_AH : IPPROTO_ESP, ipsa->ipsa_spi, ipsa->ipsa_addrfam,
6909 *srcaddr, *dstaddr);
6911 mutex_enter(&ipsa->ipsa_lock);
6912 ipsa->ipsa_mblkcnt++;
6913 if (ipsa->ipsa_bpkt_head == NULL) {
6914 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_tail = bpkt;
6915 } else {
6916 ipsa->ipsa_bpkt_tail->b_next = bpkt;
6917 ipsa->ipsa_bpkt_tail = bpkt;
6918 if (ipsa->ipsa_mblkcnt > SADB_MAX_IDLEPKTS) {
6919 mblk_t *tmp;
6920 tmp = ipsa->ipsa_bpkt_head;
6921 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_head->b_next;
6922 ip_drop_packet(tmp, B_TRUE, NULL, NULL,
6923 DROPPER(ipss, ipds_sadb_inidle_overflow),
6924 &ipss->ipsec_sadb_dropper);
6925 ipsa->ipsa_mblkcnt --;
6928 mutex_exit(&ipsa->ipsa_lock);
6933 * Stub function that taskq_dispatch() invokes to take the mblk (in arg)
6934 * and put into STREAMS again.
6936 void
6937 sadb_clear_buf_pkt(void *ipkt)
6939 mblk_t *tmp, *buf_pkt;
6941 buf_pkt = (mblk_t *)ipkt;
6943 while (buf_pkt != NULL) {
6944 tmp = buf_pkt->b_next;
6945 buf_pkt->b_next = NULL;
6946 ip_fanout_proto_again(buf_pkt, NULL, NULL, NULL);
6947 buf_pkt = tmp;
6951 * Walker callback used by sadb_alg_update() to free/create crypto
6952 * context template when a crypto software provider is removed or
6953 * added.
6956 struct sadb_update_alg_state {
6957 ipsec_algtype_t alg_type;
6958 uint8_t alg_id;
6959 boolean_t is_added;
6962 static void
6963 sadb_alg_update_cb(isaf_t *head, ipsa_t *entry, void *cookie)
6965 struct sadb_update_alg_state *update_state =
6966 (struct sadb_update_alg_state *)cookie;
6967 crypto_ctx_template_t *ctx_tmpl = NULL;
6969 ASSERT(MUTEX_HELD(&head->isaf_lock));
6971 if (entry->ipsa_state == IPSA_STATE_LARVAL)
6972 return;
6974 mutex_enter(&entry->ipsa_lock);
6976 switch (update_state->alg_type) {
6977 case IPSEC_ALG_AUTH:
6978 if (entry->ipsa_auth_alg == update_state->alg_id)
6979 ctx_tmpl = &entry->ipsa_authtmpl;
6980 break;
6981 case IPSEC_ALG_ENCR:
6982 if (entry->ipsa_encr_alg == update_state->alg_id)
6983 ctx_tmpl = &entry->ipsa_encrtmpl;
6984 break;
6985 default:
6986 ctx_tmpl = NULL;
6989 if (ctx_tmpl == NULL) {
6990 mutex_exit(&entry->ipsa_lock);
6991 return;
6995 * The context template of the SA may be affected by the change
6996 * of crypto provider.
6998 if (update_state->is_added) {
6999 /* create the context template if not already done */
7000 if (*ctx_tmpl == NULL) {
7001 (void) ipsec_create_ctx_tmpl(entry,
7002 update_state->alg_type);
7004 } else {
7006 * The crypto provider was removed. If the context template
7007 * exists but it is no longer valid, free it.
7009 if (*ctx_tmpl != NULL)
7010 ipsec_destroy_ctx_tmpl(entry, update_state->alg_type);
7013 mutex_exit(&entry->ipsa_lock);
7017 * Invoked by IP when an software crypto provider has been updated.
7018 * The type and id of the corresponding algorithm is passed as argument.
7019 * is_added is B_TRUE if the provider was added, B_FALSE if it was
7020 * removed. The function updates the SADB and free/creates the
7021 * context templates associated with SAs if needed.
7024 #define SADB_ALG_UPDATE_WALK(sadb, table) \
7025 sadb_walker((sadb).table, (sadb).sdb_hashsize, sadb_alg_update_cb, \
7026 &update_state)
7028 void
7029 sadb_alg_update(ipsec_algtype_t alg_type, uint8_t alg_id, boolean_t is_added,
7030 netstack_t *ns)
7032 struct sadb_update_alg_state update_state;
7033 ipsecah_stack_t *ahstack = ns->netstack_ipsecah;
7034 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
7036 update_state.alg_type = alg_type;
7037 update_state.alg_id = alg_id;
7038 update_state.is_added = is_added;
7040 if (alg_type == IPSEC_ALG_AUTH) {
7041 /* walk the AH tables only for auth. algorithm changes */
7042 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_of);
7043 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_if);
7044 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_of);
7045 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_if);
7048 /* walk the ESP tables */
7049 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_of);
7050 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_if);
7051 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_of);
7052 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_if);
7056 * Creates a context template for the specified SA. This function
7057 * is called when an SA is created and when a context template needs
7058 * to be created due to a change of software provider.
7061 ipsec_create_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type)
7063 ipsec_alginfo_t *alg;
7064 crypto_mechanism_t mech;
7065 crypto_key_t *key;
7066 crypto_ctx_template_t *sa_tmpl;
7067 int rv;
7068 ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec;
7070 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
7071 ASSERT(MUTEX_HELD(&sa->ipsa_lock));
7073 /* get pointers to the algorithm info, context template, and key */
7074 switch (alg_type) {
7075 case IPSEC_ALG_AUTH:
7076 key = &sa->ipsa_kcfauthkey;
7077 sa_tmpl = &sa->ipsa_authtmpl;
7078 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_auth_alg];
7079 break;
7080 case IPSEC_ALG_ENCR:
7081 key = &sa->ipsa_kcfencrkey;
7082 sa_tmpl = &sa->ipsa_encrtmpl;
7083 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_encr_alg];
7084 break;
7085 default:
7086 alg = NULL;
7089 if (alg == NULL || !ALG_VALID(alg))
7090 return (EINVAL);
7092 /* initialize the mech info structure for the framework */
7093 ASSERT(alg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
7094 mech.cm_type = alg->alg_mech_type;
7095 mech.cm_param = NULL;
7096 mech.cm_param_len = 0;
7098 /* create a new context template */
7099 rv = crypto_create_ctx_template(&mech, key, sa_tmpl, KM_NOSLEEP);
7102 * CRYPTO_MECH_NOT_SUPPORTED can be returned if only hardware
7103 * providers are available for that mechanism. In that case
7104 * we don't fail, and will generate the context template from
7105 * the framework callback when a software provider for that
7106 * mechanism registers.
7108 * The context template is assigned the special value
7109 * IPSEC_CTX_TMPL_ALLOC if the allocation failed due to a
7110 * lack of memory. No attempt will be made to use
7111 * the context template if it is set to this value.
7113 if (rv == CRYPTO_HOST_MEMORY) {
7114 *sa_tmpl = IPSEC_CTX_TMPL_ALLOC;
7115 } else if (rv != CRYPTO_SUCCESS) {
7116 *sa_tmpl = NULL;
7117 if (rv != CRYPTO_MECH_NOT_SUPPORTED)
7118 return (EINVAL);
7121 return (0);
7125 * Destroy the context template of the specified algorithm type
7126 * of the specified SA. Must be called while holding the SA lock.
7128 void
7129 ipsec_destroy_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type)
7131 ASSERT(MUTEX_HELD(&sa->ipsa_lock));
7133 if (alg_type == IPSEC_ALG_AUTH) {
7134 if (sa->ipsa_authtmpl == IPSEC_CTX_TMPL_ALLOC)
7135 sa->ipsa_authtmpl = NULL;
7136 else if (sa->ipsa_authtmpl != NULL) {
7137 crypto_destroy_ctx_template(sa->ipsa_authtmpl);
7138 sa->ipsa_authtmpl = NULL;
7140 } else {
7141 ASSERT(alg_type == IPSEC_ALG_ENCR);
7142 if (sa->ipsa_encrtmpl == IPSEC_CTX_TMPL_ALLOC)
7143 sa->ipsa_encrtmpl = NULL;
7144 else if (sa->ipsa_encrtmpl != NULL) {
7145 crypto_destroy_ctx_template(sa->ipsa_encrtmpl);
7146 sa->ipsa_encrtmpl = NULL;
7152 * Use the kernel crypto framework to check the validity of a key received
7153 * via keysock. Returns 0 if the key is OK, -1 otherwise.
7156 ipsec_check_key(crypto_mech_type_t mech_type, sadb_key_t *sadb_key,
7157 boolean_t is_auth, int *diag)
7159 crypto_mechanism_t mech;
7160 crypto_key_t crypto_key;
7161 int crypto_rc;
7163 mech.cm_type = mech_type;
7164 mech.cm_param = NULL;
7165 mech.cm_param_len = 0;
7167 crypto_key.ck_format = CRYPTO_KEY_RAW;
7168 crypto_key.ck_data = sadb_key + 1;
7169 crypto_key.ck_length = sadb_key->sadb_key_bits;
7171 crypto_rc = crypto_key_check(&mech, &crypto_key);
7173 switch (crypto_rc) {
7174 case CRYPTO_SUCCESS:
7175 return (0);
7176 case CRYPTO_MECHANISM_INVALID:
7177 case CRYPTO_MECH_NOT_SUPPORTED:
7178 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AALG :
7179 SADB_X_DIAGNOSTIC_BAD_EALG;
7180 break;
7181 case CRYPTO_KEY_SIZE_RANGE:
7182 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AKEYBITS :
7183 SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
7184 break;
7185 case CRYPTO_WEAK_KEY:
7186 *diag = is_auth ? SADB_X_DIAGNOSTIC_WEAK_AKEY :
7187 SADB_X_DIAGNOSTIC_WEAK_EKEY;
7188 break;
7191 return (-1);
7194 * If this is an outgoing SA then add some fuzz to the
7195 * SOFT EXPIRE time. The reason for this is to stop
7196 * peers trying to renegotiate SOFT expiring SA's at
7197 * the same time. The amount of fuzz needs to be at
7198 * least 10 seconds which is the typical interval
7199 * sadb_ager(), although this is only a guide as it
7200 * selftunes.
7202 void
7203 lifetime_fuzz(ipsa_t *assoc)
7205 uint8_t rnd;
7207 if (assoc->ipsa_softaddlt == 0)
7208 return;
7210 (void) random_get_pseudo_bytes(&rnd, sizeof (rnd));
7211 rnd = (rnd & 0xF) + 10;
7212 assoc->ipsa_softexpiretime -= rnd;
7213 assoc->ipsa_softaddlt -= rnd;
7215 void
7216 destroy_ipsa_pair(ipsap_t *ipsapp)
7218 if (ipsapp == NULL)
7219 return;
7222 * Because of the multi-line macro nature of IPSA_REFRELE, keep
7223 * them in { }.
7225 if (ipsapp->ipsap_sa_ptr != NULL) {
7226 IPSA_REFRELE(ipsapp->ipsap_sa_ptr);
7228 if (ipsapp->ipsap_psa_ptr != NULL) {
7229 IPSA_REFRELE(ipsapp->ipsap_psa_ptr);
7232 kmem_free(ipsapp, sizeof (*ipsapp));
7236 * The sadb_ager() function walks through the hash tables of SA's and ages
7237 * them, if the SA expires as a result, its marked as DEAD and will be reaped
7238 * the next time sadb_ager() runs. SA's which are paired or have a peer (same
7239 * SA appears in both the inbound and outbound tables because its not possible
7240 * to determine its direction) are placed on a list when they expire. This is
7241 * to ensure that pair/peer SA's are reaped at the same time, even if they
7242 * expire at different times.
7244 * This function is called twice by sadb_ager(), one after processing the
7245 * inbound table, then again after processing the outbound table.
7247 void
7248 age_pair_peer_list(templist_t *haspeerlist, sadb_t *sp, boolean_t outbound)
7250 templist_t *listptr;
7251 int outhash;
7252 isaf_t *bucket;
7253 boolean_t haspeer;
7254 ipsa_t *peer_assoc, *dying;
7256 * Haspeer cases will contain both IPv4 and IPv6. This code
7257 * is address independent.
7259 while (haspeerlist != NULL) {
7260 /* "dying" contains the SA that has a peer. */
7261 dying = haspeerlist->ipsa;
7262 haspeer = (dying->ipsa_haspeer);
7263 listptr = haspeerlist;
7264 haspeerlist = listptr->next;
7265 kmem_free(listptr, sizeof (*listptr));
7267 * Pick peer bucket based on addrfam.
7269 if (outbound) {
7270 if (haspeer)
7271 bucket = INBOUND_BUCKET(sp, dying->ipsa_spi);
7272 else
7273 bucket = INBOUND_BUCKET(sp,
7274 dying->ipsa_otherspi);
7275 } else { /* inbound */
7276 if (haspeer) {
7277 if (dying->ipsa_addrfam == AF_INET6) {
7278 outhash = OUTBOUND_HASH_V6(sp,
7279 *((in6_addr_t *)&dying->
7280 ipsa_dstaddr));
7281 } else {
7282 outhash = OUTBOUND_HASH_V4(sp,
7283 *((ipaddr_t *)&dying->
7284 ipsa_dstaddr));
7286 } else if (dying->ipsa_addrfam == AF_INET6) {
7287 outhash = OUTBOUND_HASH_V6(sp,
7288 *((in6_addr_t *)&dying->
7289 ipsa_srcaddr));
7290 } else {
7291 outhash = OUTBOUND_HASH_V4(sp,
7292 *((ipaddr_t *)&dying->
7293 ipsa_srcaddr));
7295 bucket = &(sp->sdb_of[outhash]);
7298 mutex_enter(&bucket->isaf_lock);
7300 * "haspeer" SA's have the same src/dst address ordering,
7301 * "paired" SA's have the src/dst addresses reversed.
7303 if (haspeer) {
7304 peer_assoc = ipsec_getassocbyspi(bucket,
7305 dying->ipsa_spi, dying->ipsa_srcaddr,
7306 dying->ipsa_dstaddr, dying->ipsa_addrfam);
7307 } else {
7308 peer_assoc = ipsec_getassocbyspi(bucket,
7309 dying->ipsa_otherspi, dying->ipsa_dstaddr,
7310 dying->ipsa_srcaddr, dying->ipsa_addrfam);
7313 mutex_exit(&bucket->isaf_lock);
7314 if (peer_assoc != NULL) {
7315 mutex_enter(&peer_assoc->ipsa_lock);
7316 mutex_enter(&dying->ipsa_lock);
7317 if (!haspeer) {
7319 * Only SA's which have a "peer" or are
7320 * "paired" end up on this list, so this
7321 * must be a "paired" SA, update the flags
7322 * to break the pair.
7324 peer_assoc->ipsa_otherspi = 0;
7325 peer_assoc->ipsa_flags &= ~IPSA_F_PAIRED;
7326 dying->ipsa_otherspi = 0;
7327 dying->ipsa_flags &= ~IPSA_F_PAIRED;
7329 if (haspeer || outbound) {
7331 * Update the state of the "inbound" SA when
7332 * the "outbound" SA has expired. Don't update
7333 * the "outbound" SA when the "inbound" SA
7334 * SA expires because setting the hard_addtime
7335 * below will cause this to happen.
7337 peer_assoc->ipsa_state = dying->ipsa_state;
7339 if (dying->ipsa_state == IPSA_STATE_DEAD)
7340 peer_assoc->ipsa_hardexpiretime = 1;
7342 mutex_exit(&dying->ipsa_lock);
7343 mutex_exit(&peer_assoc->ipsa_lock);
7344 IPSA_REFRELE(peer_assoc);
7346 IPSA_REFRELE(dying);