1951 leaking a vdev when removing an l2cache device
[illumos-gate.git] / usr / src / uts / common / fs / zfs / vdev.c
blob094d4c92de0392817030c7c800c9bc0ff078ed62
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
47 * Virtual device management.
50 static vdev_ops_t *vdev_ops_table[] = {
51 &vdev_root_ops,
52 &vdev_raidz_ops,
53 &vdev_mirror_ops,
54 &vdev_replacing_ops,
55 &vdev_spare_ops,
56 &vdev_disk_ops,
57 &vdev_file_ops,
58 &vdev_missing_ops,
59 &vdev_hole_ops,
60 NULL
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
67 * Given a vdev type, return the appropriate ops vector.
69 static vdev_ops_t *
70 vdev_getops(const char *type)
72 vdev_ops_t *ops, **opspp;
74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 if (strcmp(ops->vdev_op_type, type) == 0)
76 break;
78 return (ops);
82 * Default asize function: return the MAX of psize with the asize of
83 * all children. This is what's used by anything other than RAID-Z.
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 uint64_t csize;
91 for (int c = 0; c < vd->vdev_children; c++) {
92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 asize = MAX(asize, csize);
96 return (asize);
100 * Get the minimum allocatable size. We define the allocatable size as
101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 * replace or attach devices which don't have the same physical size but
103 * can still satisfy the same number of allocations.
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
108 vdev_t *pvd = vd->vdev_parent;
111 * If our parent is NULL (inactive spare or cache) or is the root,
112 * just return our own asize.
114 if (pvd == NULL)
115 return (vd->vdev_asize);
118 * The top-level vdev just returns the allocatable size rounded
119 * to the nearest metaslab.
121 if (vd == vd->vdev_top)
122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 * so each child must provide at least 1/Nth of its asize.
128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 return (pvd->vdev_min_asize / pvd->vdev_children);
131 return (pvd->vdev_min_asize);
134 void
135 vdev_set_min_asize(vdev_t *vd)
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
139 for (int c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 vdev_t *rvd = spa->spa_root_vdev;
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
155 return (NULL);
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 vdev_t *mvd;
163 if (vd->vdev_guid == guid)
164 return (vd);
166 for (int c = 0; c < vd->vdev_children; c++)
167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 NULL)
169 return (mvd);
171 return (NULL);
174 void
175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 size_t oldsize, newsize;
178 uint64_t id = cvd->vdev_id;
179 vdev_t **newchild;
181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 ASSERT(cvd->vdev_parent == NULL);
184 cvd->vdev_parent = pvd;
186 if (pvd == NULL)
187 return;
189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191 oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 newsize = pvd->vdev_children * sizeof (vdev_t *);
195 newchild = kmem_zalloc(newsize, KM_SLEEP);
196 if (pvd->vdev_child != NULL) {
197 bcopy(pvd->vdev_child, newchild, oldsize);
198 kmem_free(pvd->vdev_child, oldsize);
201 pvd->vdev_child = newchild;
202 pvd->vdev_child[id] = cvd;
204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
208 * Walk up all ancestors to update guid sum.
210 for (; pvd != NULL; pvd = pvd->vdev_parent)
211 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 int c;
218 uint_t id = cvd->vdev_id;
220 ASSERT(cvd->vdev_parent == pvd);
222 if (pvd == NULL)
223 return;
225 ASSERT(id < pvd->vdev_children);
226 ASSERT(pvd->vdev_child[id] == cvd);
228 pvd->vdev_child[id] = NULL;
229 cvd->vdev_parent = NULL;
231 for (c = 0; c < pvd->vdev_children; c++)
232 if (pvd->vdev_child[c])
233 break;
235 if (c == pvd->vdev_children) {
236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 pvd->vdev_child = NULL;
238 pvd->vdev_children = 0;
242 * Walk up all ancestors to update guid sum.
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 * Remove any holes in the child array.
251 void
252 vdev_compact_children(vdev_t *pvd)
254 vdev_t **newchild, *cvd;
255 int oldc = pvd->vdev_children;
256 int newc;
258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
260 for (int c = newc = 0; c < oldc; c++)
261 if (pvd->vdev_child[c])
262 newc++;
264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
266 for (int c = newc = 0; c < oldc; c++) {
267 if ((cvd = pvd->vdev_child[c]) != NULL) {
268 newchild[newc] = cvd;
269 cvd->vdev_id = newc++;
273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 pvd->vdev_child = newchild;
275 pvd->vdev_children = newc;
279 * Allocate and minimally initialize a vdev_t.
281 vdev_t *
282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
284 vdev_t *vd;
286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
288 if (spa->spa_root_vdev == NULL) {
289 ASSERT(ops == &vdev_root_ops);
290 spa->spa_root_vdev = vd;
291 spa->spa_load_guid = spa_generate_guid(NULL);
294 if (guid == 0 && ops != &vdev_hole_ops) {
295 if (spa->spa_root_vdev == vd) {
297 * The root vdev's guid will also be the pool guid,
298 * which must be unique among all pools.
300 guid = spa_generate_guid(NULL);
301 } else {
303 * Any other vdev's guid must be unique within the pool.
305 guid = spa_generate_guid(spa);
307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 vd->vdev_spa = spa;
311 vd->vdev_id = id;
312 vd->vdev_guid = guid;
313 vd->vdev_guid_sum = guid;
314 vd->vdev_ops = ops;
315 vd->vdev_state = VDEV_STATE_CLOSED;
316 vd->vdev_ishole = (ops == &vdev_hole_ops);
318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 for (int t = 0; t < DTL_TYPES; t++) {
322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 &vd->vdev_dtl_lock);
325 txg_list_create(&vd->vdev_ms_list,
326 offsetof(struct metaslab, ms_txg_node));
327 txg_list_create(&vd->vdev_dtl_list,
328 offsetof(struct vdev, vdev_dtl_node));
329 vd->vdev_stat.vs_timestamp = gethrtime();
330 vdev_queue_init(vd);
331 vdev_cache_init(vd);
333 return (vd);
337 * Allocate a new vdev. The 'alloctype' is used to control whether we are
338 * creating a new vdev or loading an existing one - the behavior is slightly
339 * different for each case.
342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343 int alloctype)
345 vdev_ops_t *ops;
346 char *type;
347 uint64_t guid = 0, islog, nparity;
348 vdev_t *vd;
350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 return (EINVAL);
355 if ((ops = vdev_getops(type)) == NULL)
356 return (EINVAL);
359 * If this is a load, get the vdev guid from the nvlist.
360 * Otherwise, vdev_alloc_common() will generate one for us.
362 if (alloctype == VDEV_ALLOC_LOAD) {
363 uint64_t label_id;
365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 label_id != id)
367 return (EINVAL);
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 return (EINVAL);
371 } else if (alloctype == VDEV_ALLOC_SPARE) {
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 return (EINVAL);
374 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (EINVAL);
377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 return (EINVAL);
383 * The first allocated vdev must be of type 'root'.
385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 return (EINVAL);
389 * Determine whether we're a log vdev.
391 islog = 0;
392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 return (ENOTSUP);
396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 return (ENOTSUP);
400 * Set the nparity property for RAID-Z vdevs.
402 nparity = -1ULL;
403 if (ops == &vdev_raidz_ops) {
404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 &nparity) == 0) {
406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 return (EINVAL);
409 * Previous versions could only support 1 or 2 parity
410 * device.
412 if (nparity > 1 &&
413 spa_version(spa) < SPA_VERSION_RAIDZ2)
414 return (ENOTSUP);
415 if (nparity > 2 &&
416 spa_version(spa) < SPA_VERSION_RAIDZ3)
417 return (ENOTSUP);
418 } else {
420 * We require the parity to be specified for SPAs that
421 * support multiple parity levels.
423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 return (EINVAL);
426 * Otherwise, we default to 1 parity device for RAID-Z.
428 nparity = 1;
430 } else {
431 nparity = 0;
433 ASSERT(nparity != -1ULL);
435 vd = vdev_alloc_common(spa, id, guid, ops);
437 vd->vdev_islog = islog;
438 vd->vdev_nparity = nparity;
440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 &vd->vdev_physpath) == 0)
446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 vd->vdev_fru = spa_strdup(vd->vdev_fru);
451 * Set the whole_disk property. If it's not specified, leave the value
452 * as -1.
454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 &vd->vdev_wholedisk) != 0)
456 vd->vdev_wholedisk = -1ULL;
459 * Look for the 'not present' flag. This will only be set if the device
460 * was not present at the time of import.
462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 &vd->vdev_not_present);
466 * Get the alignment requirement.
468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471 * Retrieve the vdev creation time.
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 &vd->vdev_crtxg);
477 * If we're a top-level vdev, try to load the allocation parameters.
479 if (parent && !parent->vdev_parent &&
480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 &vd->vdev_ms_array);
483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 &vd->vdev_ms_shift);
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 &vd->vdev_asize);
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 &vd->vdev_removing);
491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 alloctype == VDEV_ALLOC_ADD ||
494 alloctype == VDEV_ALLOC_SPLIT ||
495 alloctype == VDEV_ALLOC_ROOTPOOL);
496 vd->vdev_mg = metaslab_group_create(islog ?
497 spa_log_class(spa) : spa_normal_class(spa), vd);
501 * If we're a leaf vdev, try to load the DTL object and other state.
503 if (vd->vdev_ops->vdev_op_leaf &&
504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 if (alloctype == VDEV_ALLOC_LOAD) {
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 &vd->vdev_dtl_smo.smo_object);
509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 &vd->vdev_unspare);
513 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 uint64_t spare = 0;
516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 &spare) == 0 && spare)
518 spa_spare_add(vd);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 &vd->vdev_offline);
524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
525 &vd->vdev_resilvering);
528 * When importing a pool, we want to ignore the persistent fault
529 * state, as the diagnosis made on another system may not be
530 * valid in the current context. Local vdevs will
531 * remain in the faulted state.
533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 &vd->vdev_faulted);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 &vd->vdev_degraded);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 &vd->vdev_removed);
541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 char *aux;
544 vd->vdev_label_aux =
545 VDEV_AUX_ERR_EXCEEDED;
546 if (nvlist_lookup_string(nv,
547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 strcmp(aux, "external") == 0)
549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555 * Add ourselves to the parent's list of children.
557 vdev_add_child(parent, vd);
559 *vdp = vd;
561 return (0);
564 void
565 vdev_free(vdev_t *vd)
567 spa_t *spa = vd->vdev_spa;
570 * vdev_free() implies closing the vdev first. This is simpler than
571 * trying to ensure complicated semantics for all callers.
573 vdev_close(vd);
575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
579 * Free all children.
581 for (int c = 0; c < vd->vdev_children; c++)
582 vdev_free(vd->vdev_child[c]);
584 ASSERT(vd->vdev_child == NULL);
585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
588 * Discard allocation state.
590 if (vd->vdev_mg != NULL) {
591 vdev_metaslab_fini(vd);
592 metaslab_group_destroy(vd->vdev_mg);
595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
600 * Remove this vdev from its parent's child list.
602 vdev_remove_child(vd->vdev_parent, vd);
604 ASSERT(vd->vdev_parent == NULL);
607 * Clean up vdev structure.
609 vdev_queue_fini(vd);
610 vdev_cache_fini(vd);
612 if (vd->vdev_path)
613 spa_strfree(vd->vdev_path);
614 if (vd->vdev_devid)
615 spa_strfree(vd->vdev_devid);
616 if (vd->vdev_physpath)
617 spa_strfree(vd->vdev_physpath);
618 if (vd->vdev_fru)
619 spa_strfree(vd->vdev_fru);
621 if (vd->vdev_isspare)
622 spa_spare_remove(vd);
623 if (vd->vdev_isl2cache)
624 spa_l2cache_remove(vd);
626 txg_list_destroy(&vd->vdev_ms_list);
627 txg_list_destroy(&vd->vdev_dtl_list);
629 mutex_enter(&vd->vdev_dtl_lock);
630 for (int t = 0; t < DTL_TYPES; t++) {
631 space_map_unload(&vd->vdev_dtl[t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
634 mutex_exit(&vd->vdev_dtl_lock);
636 mutex_destroy(&vd->vdev_dtl_lock);
637 mutex_destroy(&vd->vdev_stat_lock);
638 mutex_destroy(&vd->vdev_probe_lock);
640 if (vd == spa->spa_root_vdev)
641 spa->spa_root_vdev = NULL;
643 kmem_free(vd, sizeof (vdev_t));
647 * Transfer top-level vdev state from svd to tvd.
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
652 spa_t *spa = svd->vdev_spa;
653 metaslab_t *msp;
654 vdev_t *vd;
655 int t;
657 ASSERT(tvd == tvd->vdev_top);
659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 tvd->vdev_ms_count = svd->vdev_ms_count;
663 svd->vdev_ms_array = 0;
664 svd->vdev_ms_shift = 0;
665 svd->vdev_ms_count = 0;
667 if (tvd->vdev_mg)
668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 tvd->vdev_mg = svd->vdev_mg;
670 tvd->vdev_ms = svd->vdev_ms;
672 svd->vdev_mg = NULL;
673 svd->vdev_ms = NULL;
675 if (tvd->vdev_mg != NULL)
676 tvd->vdev_mg->mg_vd = tvd;
678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
682 svd->vdev_stat.vs_alloc = 0;
683 svd->vdev_stat.vs_space = 0;
684 svd->vdev_stat.vs_dspace = 0;
686 for (t = 0; t < TXG_SIZE; t++) {
687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
695 if (list_link_active(&svd->vdev_config_dirty_node)) {
696 vdev_config_clean(svd);
697 vdev_config_dirty(tvd);
700 if (list_link_active(&svd->vdev_state_dirty_node)) {
701 vdev_state_clean(svd);
702 vdev_state_dirty(tvd);
705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 svd->vdev_deflate_ratio = 0;
708 tvd->vdev_islog = svd->vdev_islog;
709 svd->vdev_islog = 0;
712 static void
713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
715 if (vd == NULL)
716 return;
718 vd->vdev_top = tvd;
720 for (int c = 0; c < vd->vdev_children; c++)
721 vdev_top_update(tvd, vd->vdev_child[c]);
725 * Add a mirror/replacing vdev above an existing vdev.
727 vdev_t *
728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
730 spa_t *spa = cvd->vdev_spa;
731 vdev_t *pvd = cvd->vdev_parent;
732 vdev_t *mvd;
734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
738 mvd->vdev_asize = cvd->vdev_asize;
739 mvd->vdev_min_asize = cvd->vdev_min_asize;
740 mvd->vdev_max_asize = cvd->vdev_max_asize;
741 mvd->vdev_ashift = cvd->vdev_ashift;
742 mvd->vdev_state = cvd->vdev_state;
743 mvd->vdev_crtxg = cvd->vdev_crtxg;
745 vdev_remove_child(pvd, cvd);
746 vdev_add_child(pvd, mvd);
747 cvd->vdev_id = mvd->vdev_children;
748 vdev_add_child(mvd, cvd);
749 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
751 if (mvd == mvd->vdev_top)
752 vdev_top_transfer(cvd, mvd);
754 return (mvd);
758 * Remove a 1-way mirror/replacing vdev from the tree.
760 void
761 vdev_remove_parent(vdev_t *cvd)
763 vdev_t *mvd = cvd->vdev_parent;
764 vdev_t *pvd = mvd->vdev_parent;
766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
768 ASSERT(mvd->vdev_children == 1);
769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 mvd->vdev_ops == &vdev_replacing_ops ||
771 mvd->vdev_ops == &vdev_spare_ops);
772 cvd->vdev_ashift = mvd->vdev_ashift;
774 vdev_remove_child(mvd, cvd);
775 vdev_remove_child(pvd, mvd);
778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 * Otherwise, we could have detached an offline device, and when we
780 * go to import the pool we'll think we have two top-level vdevs,
781 * instead of a different version of the same top-level vdev.
783 if (mvd->vdev_top == mvd) {
784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 cvd->vdev_orig_guid = cvd->vdev_guid;
786 cvd->vdev_guid += guid_delta;
787 cvd->vdev_guid_sum += guid_delta;
789 cvd->vdev_id = mvd->vdev_id;
790 vdev_add_child(pvd, cvd);
791 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
793 if (cvd == cvd->vdev_top)
794 vdev_top_transfer(mvd, cvd);
796 ASSERT(mvd->vdev_children == 0);
797 vdev_free(mvd);
801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
803 spa_t *spa = vd->vdev_spa;
804 objset_t *mos = spa->spa_meta_objset;
805 uint64_t m;
806 uint64_t oldc = vd->vdev_ms_count;
807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 metaslab_t **mspp;
809 int error;
811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
814 * This vdev is not being allocated from yet or is a hole.
816 if (vd->vdev_ms_shift == 0)
817 return (0);
819 ASSERT(!vd->vdev_ishole);
822 * Compute the raidz-deflation ratio. Note, we hard-code
823 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 * or we will inconsistently account for existing bp's.
827 vd->vdev_deflate_ratio = (1 << 17) /
828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
830 ASSERT(oldc <= newc);
832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
834 if (oldc != 0) {
835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
839 vd->vdev_ms = mspp;
840 vd->vdev_ms_count = newc;
842 for (m = oldc; m < newc; m++) {
843 space_map_obj_t smo = { 0, 0, 0 };
844 if (txg == 0) {
845 uint64_t object = 0;
846 error = dmu_read(mos, vd->vdev_ms_array,
847 m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 DMU_READ_PREFETCH);
849 if (error)
850 return (error);
851 if (object != 0) {
852 dmu_buf_t *db;
853 error = dmu_bonus_hold(mos, object, FTAG, &db);
854 if (error)
855 return (error);
856 ASSERT3U(db->db_size, >=, sizeof (smo));
857 bcopy(db->db_data, &smo, sizeof (smo));
858 ASSERT3U(smo.smo_object, ==, object);
859 dmu_buf_rele(db, FTAG);
862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
866 if (txg == 0)
867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
870 * If the vdev is being removed we don't activate
871 * the metaslabs since we want to ensure that no new
872 * allocations are performed on this device.
874 if (oldc == 0 && !vd->vdev_removing)
875 metaslab_group_activate(vd->vdev_mg);
877 if (txg == 0)
878 spa_config_exit(spa, SCL_ALLOC, FTAG);
880 return (0);
883 void
884 vdev_metaslab_fini(vdev_t *vd)
886 uint64_t m;
887 uint64_t count = vd->vdev_ms_count;
889 if (vd->vdev_ms != NULL) {
890 metaslab_group_passivate(vd->vdev_mg);
891 for (m = 0; m < count; m++)
892 if (vd->vdev_ms[m] != NULL)
893 metaslab_fini(vd->vdev_ms[m]);
894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 vd->vdev_ms = NULL;
899 typedef struct vdev_probe_stats {
900 boolean_t vps_readable;
901 boolean_t vps_writeable;
902 int vps_flags;
903 } vdev_probe_stats_t;
905 static void
906 vdev_probe_done(zio_t *zio)
908 spa_t *spa = zio->io_spa;
909 vdev_t *vd = zio->io_vd;
910 vdev_probe_stats_t *vps = zio->io_private;
912 ASSERT(vd->vdev_probe_zio != NULL);
914 if (zio->io_type == ZIO_TYPE_READ) {
915 if (zio->io_error == 0)
916 vps->vps_readable = 1;
917 if (zio->io_error == 0 && spa_writeable(spa)) {
918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 zio->io_offset, zio->io_size, zio->io_data,
920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 } else {
923 zio_buf_free(zio->io_data, zio->io_size);
925 } else if (zio->io_type == ZIO_TYPE_WRITE) {
926 if (zio->io_error == 0)
927 vps->vps_writeable = 1;
928 zio_buf_free(zio->io_data, zio->io_size);
929 } else if (zio->io_type == ZIO_TYPE_NULL) {
930 zio_t *pio;
932 vd->vdev_cant_read |= !vps->vps_readable;
933 vd->vdev_cant_write |= !vps->vps_writeable;
935 if (vdev_readable(vd) &&
936 (vdev_writeable(vd) || !spa_writeable(spa))) {
937 zio->io_error = 0;
938 } else {
939 ASSERT(zio->io_error != 0);
940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 spa, vd, NULL, 0, 0);
942 zio->io_error = ENXIO;
945 mutex_enter(&vd->vdev_probe_lock);
946 ASSERT(vd->vdev_probe_zio == zio);
947 vd->vdev_probe_zio = NULL;
948 mutex_exit(&vd->vdev_probe_lock);
950 while ((pio = zio_walk_parents(zio)) != NULL)
951 if (!vdev_accessible(vd, pio))
952 pio->io_error = ENXIO;
954 kmem_free(vps, sizeof (*vps));
959 * Determine whether this device is accessible by reading and writing
960 * to several known locations: the pad regions of each vdev label
961 * but the first (which we leave alone in case it contains a VTOC).
963 zio_t *
964 vdev_probe(vdev_t *vd, zio_t *zio)
966 spa_t *spa = vd->vdev_spa;
967 vdev_probe_stats_t *vps = NULL;
968 zio_t *pio;
970 ASSERT(vd->vdev_ops->vdev_op_leaf);
973 * Don't probe the probe.
975 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
976 return (NULL);
979 * To prevent 'probe storms' when a device fails, we create
980 * just one probe i/o at a time. All zios that want to probe
981 * this vdev will become parents of the probe io.
983 mutex_enter(&vd->vdev_probe_lock);
985 if ((pio = vd->vdev_probe_zio) == NULL) {
986 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
988 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
989 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
990 ZIO_FLAG_TRYHARD;
992 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
994 * vdev_cant_read and vdev_cant_write can only
995 * transition from TRUE to FALSE when we have the
996 * SCL_ZIO lock as writer; otherwise they can only
997 * transition from FALSE to TRUE. This ensures that
998 * any zio looking at these values can assume that
999 * failures persist for the life of the I/O. That's
1000 * important because when a device has intermittent
1001 * connectivity problems, we want to ensure that
1002 * they're ascribed to the device (ENXIO) and not
1003 * the zio (EIO).
1005 * Since we hold SCL_ZIO as writer here, clear both
1006 * values so the probe can reevaluate from first
1007 * principles.
1009 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010 vd->vdev_cant_read = B_FALSE;
1011 vd->vdev_cant_write = B_FALSE;
1014 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015 vdev_probe_done, vps,
1016 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1019 * We can't change the vdev state in this context, so we
1020 * kick off an async task to do it on our behalf.
1022 if (zio != NULL) {
1023 vd->vdev_probe_wanted = B_TRUE;
1024 spa_async_request(spa, SPA_ASYNC_PROBE);
1028 if (zio != NULL)
1029 zio_add_child(zio, pio);
1031 mutex_exit(&vd->vdev_probe_lock);
1033 if (vps == NULL) {
1034 ASSERT(zio != NULL);
1035 return (NULL);
1038 for (int l = 1; l < VDEV_LABELS; l++) {
1039 zio_nowait(zio_read_phys(pio, vd,
1040 vdev_label_offset(vd->vdev_psize, l,
1041 offsetof(vdev_label_t, vl_pad2)),
1042 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047 if (zio == NULL)
1048 return (pio);
1050 zio_nowait(pio);
1051 return (NULL);
1054 static void
1055 vdev_open_child(void *arg)
1057 vdev_t *vd = arg;
1059 vd->vdev_open_thread = curthread;
1060 vd->vdev_open_error = vdev_open(vd);
1061 vd->vdev_open_thread = NULL;
1064 boolean_t
1065 vdev_uses_zvols(vdev_t *vd)
1067 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068 strlen(ZVOL_DIR)) == 0)
1069 return (B_TRUE);
1070 for (int c = 0; c < vd->vdev_children; c++)
1071 if (vdev_uses_zvols(vd->vdev_child[c]))
1072 return (B_TRUE);
1073 return (B_FALSE);
1076 void
1077 vdev_open_children(vdev_t *vd)
1079 taskq_t *tq;
1080 int children = vd->vdev_children;
1083 * in order to handle pools on top of zvols, do the opens
1084 * in a single thread so that the same thread holds the
1085 * spa_namespace_lock
1087 if (vdev_uses_zvols(vd)) {
1088 for (int c = 0; c < children; c++)
1089 vd->vdev_child[c]->vdev_open_error =
1090 vdev_open(vd->vdev_child[c]);
1091 return;
1093 tq = taskq_create("vdev_open", children, minclsyspri,
1094 children, children, TASKQ_PREPOPULATE);
1096 for (int c = 0; c < children; c++)
1097 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098 TQ_SLEEP) != NULL);
1100 taskq_destroy(tq);
1104 * Prepare a virtual device for access.
1107 vdev_open(vdev_t *vd)
1109 spa_t *spa = vd->vdev_spa;
1110 int error;
1111 uint64_t osize = 0;
1112 uint64_t max_osize = 0;
1113 uint64_t asize, max_asize, psize;
1114 uint64_t ashift = 0;
1116 ASSERT(vd->vdev_open_thread == curthread ||
1117 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120 vd->vdev_state == VDEV_STATE_OFFLINE);
1122 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123 vd->vdev_cant_read = B_FALSE;
1124 vd->vdev_cant_write = B_FALSE;
1125 vd->vdev_min_asize = vdev_get_min_asize(vd);
1128 * If this vdev is not removed, check its fault status. If it's
1129 * faulted, bail out of the open.
1131 if (!vd->vdev_removed && vd->vdev_faulted) {
1132 ASSERT(vd->vdev_children == 0);
1133 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136 vd->vdev_label_aux);
1137 return (ENXIO);
1138 } else if (vd->vdev_offline) {
1139 ASSERT(vd->vdev_children == 0);
1140 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141 return (ENXIO);
1144 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1147 * Reset the vdev_reopening flag so that we actually close
1148 * the vdev on error.
1150 vd->vdev_reopening = B_FALSE;
1151 if (zio_injection_enabled && error == 0)
1152 error = zio_handle_device_injection(vd, NULL, ENXIO);
1154 if (error) {
1155 if (vd->vdev_removed &&
1156 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157 vd->vdev_removed = B_FALSE;
1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 vd->vdev_stat.vs_aux);
1161 return (error);
1164 vd->vdev_removed = B_FALSE;
1167 * Recheck the faulted flag now that we have confirmed that
1168 * the vdev is accessible. If we're faulted, bail.
1170 if (vd->vdev_faulted) {
1171 ASSERT(vd->vdev_children == 0);
1172 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175 vd->vdev_label_aux);
1176 return (ENXIO);
1179 if (vd->vdev_degraded) {
1180 ASSERT(vd->vdev_children == 0);
1181 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182 VDEV_AUX_ERR_EXCEEDED);
1183 } else {
1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1188 * For hole or missing vdevs we just return success.
1190 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191 return (0);
1193 for (int c = 0; c < vd->vdev_children; c++) {
1194 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196 VDEV_AUX_NONE);
1197 break;
1201 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1204 if (vd->vdev_children == 0) {
1205 if (osize < SPA_MINDEVSIZE) {
1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 VDEV_AUX_TOO_SMALL);
1208 return (EOVERFLOW);
1210 psize = osize;
1211 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213 VDEV_LABEL_END_SIZE);
1214 } else {
1215 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 VDEV_AUX_TOO_SMALL);
1219 return (EOVERFLOW);
1221 psize = 0;
1222 asize = osize;
1223 max_asize = max_osize;
1226 vd->vdev_psize = psize;
1229 * Make sure the allocatable size hasn't shrunk.
1231 if (asize < vd->vdev_min_asize) {
1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 VDEV_AUX_BAD_LABEL);
1234 return (EINVAL);
1237 if (vd->vdev_asize == 0) {
1239 * This is the first-ever open, so use the computed values.
1240 * For testing purposes, a higher ashift can be requested.
1242 vd->vdev_asize = asize;
1243 vd->vdev_max_asize = max_asize;
1244 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245 } else {
1247 * Make sure the alignment requirement hasn't increased.
1249 if (ashift > vd->vdev_top->vdev_ashift) {
1250 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1251 VDEV_AUX_BAD_LABEL);
1252 return (EINVAL);
1254 vd->vdev_max_asize = max_asize;
1258 * If all children are healthy and the asize has increased,
1259 * then we've experienced dynamic LUN growth. If automatic
1260 * expansion is enabled then use the additional space.
1262 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1263 (vd->vdev_expanding || spa->spa_autoexpand))
1264 vd->vdev_asize = asize;
1266 vdev_set_min_asize(vd);
1269 * Ensure we can issue some IO before declaring the
1270 * vdev open for business.
1272 if (vd->vdev_ops->vdev_op_leaf &&
1273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1275 VDEV_AUX_ERR_EXCEEDED);
1276 return (error);
1280 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1281 * resilver. But don't do this if we are doing a reopen for a scrub,
1282 * since this would just restart the scrub we are already doing.
1284 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1285 vdev_resilver_needed(vd, NULL, NULL))
1286 spa_async_request(spa, SPA_ASYNC_RESILVER);
1288 return (0);
1292 * Called once the vdevs are all opened, this routine validates the label
1293 * contents. This needs to be done before vdev_load() so that we don't
1294 * inadvertently do repair I/Os to the wrong device.
1296 * If 'strict' is false ignore the spa guid check. This is necessary because
1297 * if the machine crashed during a re-guid the new guid might have been written
1298 * to all of the vdev labels, but not the cached config. The strict check
1299 * will be performed when the pool is opened again using the mos config.
1301 * This function will only return failure if one of the vdevs indicates that it
1302 * has since been destroyed or exported. This is only possible if
1303 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1304 * will be updated but the function will return 0.
1307 vdev_validate(vdev_t *vd, boolean_t strict)
1309 spa_t *spa = vd->vdev_spa;
1310 nvlist_t *label;
1311 uint64_t guid = 0, top_guid;
1312 uint64_t state;
1314 for (int c = 0; c < vd->vdev_children; c++)
1315 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1316 return (EBADF);
1319 * If the device has already failed, or was marked offline, don't do
1320 * any further validation. Otherwise, label I/O will fail and we will
1321 * overwrite the previous state.
1323 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1324 uint64_t aux_guid = 0;
1325 nvlist_t *nvl;
1327 if ((label = vdev_label_read_config(vd)) == NULL) {
1328 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1329 VDEV_AUX_BAD_LABEL);
1330 return (0);
1334 * Determine if this vdev has been split off into another
1335 * pool. If so, then refuse to open it.
1337 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1338 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1339 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1340 VDEV_AUX_SPLIT_POOL);
1341 nvlist_free(label);
1342 return (0);
1345 if (strict && (nvlist_lookup_uint64(label,
1346 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1347 guid != spa_guid(spa))) {
1348 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1349 VDEV_AUX_CORRUPT_DATA);
1350 nvlist_free(label);
1351 return (0);
1354 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1355 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1356 &aux_guid) != 0)
1357 aux_guid = 0;
1360 * If this vdev just became a top-level vdev because its
1361 * sibling was detached, it will have adopted the parent's
1362 * vdev guid -- but the label may or may not be on disk yet.
1363 * Fortunately, either version of the label will have the
1364 * same top guid, so if we're a top-level vdev, we can
1365 * safely compare to that instead.
1367 * If we split this vdev off instead, then we also check the
1368 * original pool's guid. We don't want to consider the vdev
1369 * corrupt if it is partway through a split operation.
1371 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1372 &guid) != 0 ||
1373 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1374 &top_guid) != 0 ||
1375 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1376 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1377 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1378 VDEV_AUX_CORRUPT_DATA);
1379 nvlist_free(label);
1380 return (0);
1383 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1384 &state) != 0) {
1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386 VDEV_AUX_CORRUPT_DATA);
1387 nvlist_free(label);
1388 return (0);
1391 nvlist_free(label);
1394 * If this is a verbatim import, no need to check the
1395 * state of the pool.
1397 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1398 spa_load_state(spa) == SPA_LOAD_OPEN &&
1399 state != POOL_STATE_ACTIVE)
1400 return (EBADF);
1403 * If we were able to open and validate a vdev that was
1404 * previously marked permanently unavailable, clear that state
1405 * now.
1407 if (vd->vdev_not_present)
1408 vd->vdev_not_present = 0;
1411 return (0);
1415 * Close a virtual device.
1417 void
1418 vdev_close(vdev_t *vd)
1420 spa_t *spa = vd->vdev_spa;
1421 vdev_t *pvd = vd->vdev_parent;
1423 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1426 * If our parent is reopening, then we are as well, unless we are
1427 * going offline.
1429 if (pvd != NULL && pvd->vdev_reopening)
1430 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1432 vd->vdev_ops->vdev_op_close(vd);
1434 vdev_cache_purge(vd);
1437 * We record the previous state before we close it, so that if we are
1438 * doing a reopen(), we don't generate FMA ereports if we notice that
1439 * it's still faulted.
1441 vd->vdev_prevstate = vd->vdev_state;
1443 if (vd->vdev_offline)
1444 vd->vdev_state = VDEV_STATE_OFFLINE;
1445 else
1446 vd->vdev_state = VDEV_STATE_CLOSED;
1447 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1450 void
1451 vdev_hold(vdev_t *vd)
1453 spa_t *spa = vd->vdev_spa;
1455 ASSERT(spa_is_root(spa));
1456 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1457 return;
1459 for (int c = 0; c < vd->vdev_children; c++)
1460 vdev_hold(vd->vdev_child[c]);
1462 if (vd->vdev_ops->vdev_op_leaf)
1463 vd->vdev_ops->vdev_op_hold(vd);
1466 void
1467 vdev_rele(vdev_t *vd)
1469 spa_t *spa = vd->vdev_spa;
1471 ASSERT(spa_is_root(spa));
1472 for (int c = 0; c < vd->vdev_children; c++)
1473 vdev_rele(vd->vdev_child[c]);
1475 if (vd->vdev_ops->vdev_op_leaf)
1476 vd->vdev_ops->vdev_op_rele(vd);
1480 * Reopen all interior vdevs and any unopened leaves. We don't actually
1481 * reopen leaf vdevs which had previously been opened as they might deadlock
1482 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1483 * If the leaf has never been opened then open it, as usual.
1485 void
1486 vdev_reopen(vdev_t *vd)
1488 spa_t *spa = vd->vdev_spa;
1490 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1492 /* set the reopening flag unless we're taking the vdev offline */
1493 vd->vdev_reopening = !vd->vdev_offline;
1494 vdev_close(vd);
1495 (void) vdev_open(vd);
1498 * Call vdev_validate() here to make sure we have the same device.
1499 * Otherwise, a device with an invalid label could be successfully
1500 * opened in response to vdev_reopen().
1502 if (vd->vdev_aux) {
1503 (void) vdev_validate_aux(vd);
1504 if (vdev_readable(vd) && vdev_writeable(vd) &&
1505 vd->vdev_aux == &spa->spa_l2cache &&
1506 !l2arc_vdev_present(vd))
1507 l2arc_add_vdev(spa, vd);
1508 } else {
1509 (void) vdev_validate(vd, B_TRUE);
1513 * Reassess parent vdev's health.
1515 vdev_propagate_state(vd);
1519 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1521 int error;
1524 * Normally, partial opens (e.g. of a mirror) are allowed.
1525 * For a create, however, we want to fail the request if
1526 * there are any components we can't open.
1528 error = vdev_open(vd);
1530 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1531 vdev_close(vd);
1532 return (error ? error : ENXIO);
1536 * Recursively initialize all labels.
1538 if ((error = vdev_label_init(vd, txg, isreplacing ?
1539 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1540 vdev_close(vd);
1541 return (error);
1544 return (0);
1547 void
1548 vdev_metaslab_set_size(vdev_t *vd)
1551 * Aim for roughly 200 metaslabs per vdev.
1553 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1554 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1557 void
1558 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1560 ASSERT(vd == vd->vdev_top);
1561 ASSERT(!vd->vdev_ishole);
1562 ASSERT(ISP2(flags));
1563 ASSERT(spa_writeable(vd->vdev_spa));
1565 if (flags & VDD_METASLAB)
1566 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1568 if (flags & VDD_DTL)
1569 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1571 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1575 * DTLs.
1577 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1578 * the vdev has less than perfect replication. There are four kinds of DTL:
1580 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1582 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1584 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1585 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1586 * txgs that was scrubbed.
1588 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1589 * persistent errors or just some device being offline.
1590 * Unlike the other three, the DTL_OUTAGE map is not generally
1591 * maintained; it's only computed when needed, typically to
1592 * determine whether a device can be detached.
1594 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1595 * either has the data or it doesn't.
1597 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1598 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1599 * if any child is less than fully replicated, then so is its parent.
1600 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1601 * comprising only those txgs which appear in 'maxfaults' or more children;
1602 * those are the txgs we don't have enough replication to read. For example,
1603 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1604 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1605 * two child DTL_MISSING maps.
1607 * It should be clear from the above that to compute the DTLs and outage maps
1608 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1609 * Therefore, that is all we keep on disk. When loading the pool, or after
1610 * a configuration change, we generate all other DTLs from first principles.
1612 void
1613 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1615 space_map_t *sm = &vd->vdev_dtl[t];
1617 ASSERT(t < DTL_TYPES);
1618 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1619 ASSERT(spa_writeable(vd->vdev_spa));
1621 mutex_enter(sm->sm_lock);
1622 if (!space_map_contains(sm, txg, size))
1623 space_map_add(sm, txg, size);
1624 mutex_exit(sm->sm_lock);
1627 boolean_t
1628 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1630 space_map_t *sm = &vd->vdev_dtl[t];
1631 boolean_t dirty = B_FALSE;
1633 ASSERT(t < DTL_TYPES);
1634 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1636 mutex_enter(sm->sm_lock);
1637 if (sm->sm_space != 0)
1638 dirty = space_map_contains(sm, txg, size);
1639 mutex_exit(sm->sm_lock);
1641 return (dirty);
1644 boolean_t
1645 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1647 space_map_t *sm = &vd->vdev_dtl[t];
1648 boolean_t empty;
1650 mutex_enter(sm->sm_lock);
1651 empty = (sm->sm_space == 0);
1652 mutex_exit(sm->sm_lock);
1654 return (empty);
1658 * Reassess DTLs after a config change or scrub completion.
1660 void
1661 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1663 spa_t *spa = vd->vdev_spa;
1664 avl_tree_t reftree;
1665 int minref;
1667 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1669 for (int c = 0; c < vd->vdev_children; c++)
1670 vdev_dtl_reassess(vd->vdev_child[c], txg,
1671 scrub_txg, scrub_done);
1673 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1674 return;
1676 if (vd->vdev_ops->vdev_op_leaf) {
1677 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1679 mutex_enter(&vd->vdev_dtl_lock);
1680 if (scrub_txg != 0 &&
1681 (spa->spa_scrub_started ||
1682 (scn && scn->scn_phys.scn_errors == 0))) {
1684 * We completed a scrub up to scrub_txg. If we
1685 * did it without rebooting, then the scrub dtl
1686 * will be valid, so excise the old region and
1687 * fold in the scrub dtl. Otherwise, leave the
1688 * dtl as-is if there was an error.
1690 * There's little trick here: to excise the beginning
1691 * of the DTL_MISSING map, we put it into a reference
1692 * tree and then add a segment with refcnt -1 that
1693 * covers the range [0, scrub_txg). This means
1694 * that each txg in that range has refcnt -1 or 0.
1695 * We then add DTL_SCRUB with a refcnt of 2, so that
1696 * entries in the range [0, scrub_txg) will have a
1697 * positive refcnt -- either 1 or 2. We then convert
1698 * the reference tree into the new DTL_MISSING map.
1700 space_map_ref_create(&reftree);
1701 space_map_ref_add_map(&reftree,
1702 &vd->vdev_dtl[DTL_MISSING], 1);
1703 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1704 space_map_ref_add_map(&reftree,
1705 &vd->vdev_dtl[DTL_SCRUB], 2);
1706 space_map_ref_generate_map(&reftree,
1707 &vd->vdev_dtl[DTL_MISSING], 1);
1708 space_map_ref_destroy(&reftree);
1710 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1711 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1712 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1713 if (scrub_done)
1714 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1715 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1716 if (!vdev_readable(vd))
1717 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1718 else
1719 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1720 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1721 mutex_exit(&vd->vdev_dtl_lock);
1723 if (txg != 0)
1724 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1725 return;
1728 mutex_enter(&vd->vdev_dtl_lock);
1729 for (int t = 0; t < DTL_TYPES; t++) {
1730 /* account for child's outage in parent's missing map */
1731 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1732 if (t == DTL_SCRUB)
1733 continue; /* leaf vdevs only */
1734 if (t == DTL_PARTIAL)
1735 minref = 1; /* i.e. non-zero */
1736 else if (vd->vdev_nparity != 0)
1737 minref = vd->vdev_nparity + 1; /* RAID-Z */
1738 else
1739 minref = vd->vdev_children; /* any kind of mirror */
1740 space_map_ref_create(&reftree);
1741 for (int c = 0; c < vd->vdev_children; c++) {
1742 vdev_t *cvd = vd->vdev_child[c];
1743 mutex_enter(&cvd->vdev_dtl_lock);
1744 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1745 mutex_exit(&cvd->vdev_dtl_lock);
1747 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1748 space_map_ref_destroy(&reftree);
1750 mutex_exit(&vd->vdev_dtl_lock);
1753 static int
1754 vdev_dtl_load(vdev_t *vd)
1756 spa_t *spa = vd->vdev_spa;
1757 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1758 objset_t *mos = spa->spa_meta_objset;
1759 dmu_buf_t *db;
1760 int error;
1762 ASSERT(vd->vdev_children == 0);
1764 if (smo->smo_object == 0)
1765 return (0);
1767 ASSERT(!vd->vdev_ishole);
1769 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1770 return (error);
1772 ASSERT3U(db->db_size, >=, sizeof (*smo));
1773 bcopy(db->db_data, smo, sizeof (*smo));
1774 dmu_buf_rele(db, FTAG);
1776 mutex_enter(&vd->vdev_dtl_lock);
1777 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1778 NULL, SM_ALLOC, smo, mos);
1779 mutex_exit(&vd->vdev_dtl_lock);
1781 return (error);
1784 void
1785 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1787 spa_t *spa = vd->vdev_spa;
1788 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1789 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1790 objset_t *mos = spa->spa_meta_objset;
1791 space_map_t smsync;
1792 kmutex_t smlock;
1793 dmu_buf_t *db;
1794 dmu_tx_t *tx;
1796 ASSERT(!vd->vdev_ishole);
1798 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1800 if (vd->vdev_detached) {
1801 if (smo->smo_object != 0) {
1802 int err = dmu_object_free(mos, smo->smo_object, tx);
1803 ASSERT3U(err, ==, 0);
1804 smo->smo_object = 0;
1806 dmu_tx_commit(tx);
1807 return;
1810 if (smo->smo_object == 0) {
1811 ASSERT(smo->smo_objsize == 0);
1812 ASSERT(smo->smo_alloc == 0);
1813 smo->smo_object = dmu_object_alloc(mos,
1814 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1815 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1816 ASSERT(smo->smo_object != 0);
1817 vdev_config_dirty(vd->vdev_top);
1820 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1822 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1823 &smlock);
1825 mutex_enter(&smlock);
1827 mutex_enter(&vd->vdev_dtl_lock);
1828 space_map_walk(sm, space_map_add, &smsync);
1829 mutex_exit(&vd->vdev_dtl_lock);
1831 space_map_truncate(smo, mos, tx);
1832 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1834 space_map_destroy(&smsync);
1836 mutex_exit(&smlock);
1837 mutex_destroy(&smlock);
1839 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1840 dmu_buf_will_dirty(db, tx);
1841 ASSERT3U(db->db_size, >=, sizeof (*smo));
1842 bcopy(smo, db->db_data, sizeof (*smo));
1843 dmu_buf_rele(db, FTAG);
1845 dmu_tx_commit(tx);
1849 * Determine whether the specified vdev can be offlined/detached/removed
1850 * without losing data.
1852 boolean_t
1853 vdev_dtl_required(vdev_t *vd)
1855 spa_t *spa = vd->vdev_spa;
1856 vdev_t *tvd = vd->vdev_top;
1857 uint8_t cant_read = vd->vdev_cant_read;
1858 boolean_t required;
1860 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1862 if (vd == spa->spa_root_vdev || vd == tvd)
1863 return (B_TRUE);
1866 * Temporarily mark the device as unreadable, and then determine
1867 * whether this results in any DTL outages in the top-level vdev.
1868 * If not, we can safely offline/detach/remove the device.
1870 vd->vdev_cant_read = B_TRUE;
1871 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1872 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1873 vd->vdev_cant_read = cant_read;
1874 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1876 if (!required && zio_injection_enabled)
1877 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1879 return (required);
1883 * Determine if resilver is needed, and if so the txg range.
1885 boolean_t
1886 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1888 boolean_t needed = B_FALSE;
1889 uint64_t thismin = UINT64_MAX;
1890 uint64_t thismax = 0;
1892 if (vd->vdev_children == 0) {
1893 mutex_enter(&vd->vdev_dtl_lock);
1894 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1895 vdev_writeable(vd)) {
1896 space_seg_t *ss;
1898 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1899 thismin = ss->ss_start - 1;
1900 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1901 thismax = ss->ss_end;
1902 needed = B_TRUE;
1904 mutex_exit(&vd->vdev_dtl_lock);
1905 } else {
1906 for (int c = 0; c < vd->vdev_children; c++) {
1907 vdev_t *cvd = vd->vdev_child[c];
1908 uint64_t cmin, cmax;
1910 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1911 thismin = MIN(thismin, cmin);
1912 thismax = MAX(thismax, cmax);
1913 needed = B_TRUE;
1918 if (needed && minp) {
1919 *minp = thismin;
1920 *maxp = thismax;
1922 return (needed);
1925 void
1926 vdev_load(vdev_t *vd)
1929 * Recursively load all children.
1931 for (int c = 0; c < vd->vdev_children; c++)
1932 vdev_load(vd->vdev_child[c]);
1935 * If this is a top-level vdev, initialize its metaslabs.
1937 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1938 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1939 vdev_metaslab_init(vd, 0) != 0))
1940 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1941 VDEV_AUX_CORRUPT_DATA);
1944 * If this is a leaf vdev, load its DTL.
1946 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1947 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1948 VDEV_AUX_CORRUPT_DATA);
1952 * The special vdev case is used for hot spares and l2cache devices. Its
1953 * sole purpose it to set the vdev state for the associated vdev. To do this,
1954 * we make sure that we can open the underlying device, then try to read the
1955 * label, and make sure that the label is sane and that it hasn't been
1956 * repurposed to another pool.
1959 vdev_validate_aux(vdev_t *vd)
1961 nvlist_t *label;
1962 uint64_t guid, version;
1963 uint64_t state;
1965 if (!vdev_readable(vd))
1966 return (0);
1968 if ((label = vdev_label_read_config(vd)) == NULL) {
1969 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1970 VDEV_AUX_CORRUPT_DATA);
1971 return (-1);
1974 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1975 version > SPA_VERSION ||
1976 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1977 guid != vd->vdev_guid ||
1978 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1979 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1980 VDEV_AUX_CORRUPT_DATA);
1981 nvlist_free(label);
1982 return (-1);
1986 * We don't actually check the pool state here. If it's in fact in
1987 * use by another pool, we update this fact on the fly when requested.
1989 nvlist_free(label);
1990 return (0);
1993 void
1994 vdev_remove(vdev_t *vd, uint64_t txg)
1996 spa_t *spa = vd->vdev_spa;
1997 objset_t *mos = spa->spa_meta_objset;
1998 dmu_tx_t *tx;
2000 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2002 if (vd->vdev_dtl_smo.smo_object) {
2003 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2004 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2005 vd->vdev_dtl_smo.smo_object = 0;
2008 if (vd->vdev_ms != NULL) {
2009 for (int m = 0; m < vd->vdev_ms_count; m++) {
2010 metaslab_t *msp = vd->vdev_ms[m];
2012 if (msp == NULL || msp->ms_smo.smo_object == 0)
2013 continue;
2015 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2016 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2017 msp->ms_smo.smo_object = 0;
2021 if (vd->vdev_ms_array) {
2022 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2023 vd->vdev_ms_array = 0;
2024 vd->vdev_ms_shift = 0;
2026 dmu_tx_commit(tx);
2029 void
2030 vdev_sync_done(vdev_t *vd, uint64_t txg)
2032 metaslab_t *msp;
2033 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2035 ASSERT(!vd->vdev_ishole);
2037 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2038 metaslab_sync_done(msp, txg);
2040 if (reassess)
2041 metaslab_sync_reassess(vd->vdev_mg);
2044 void
2045 vdev_sync(vdev_t *vd, uint64_t txg)
2047 spa_t *spa = vd->vdev_spa;
2048 vdev_t *lvd;
2049 metaslab_t *msp;
2050 dmu_tx_t *tx;
2052 ASSERT(!vd->vdev_ishole);
2054 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2055 ASSERT(vd == vd->vdev_top);
2056 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2057 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2058 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2059 ASSERT(vd->vdev_ms_array != 0);
2060 vdev_config_dirty(vd);
2061 dmu_tx_commit(tx);
2065 * Remove the metadata associated with this vdev once it's empty.
2067 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2068 vdev_remove(vd, txg);
2070 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2071 metaslab_sync(msp, txg);
2072 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2075 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2076 vdev_dtl_sync(lvd, txg);
2078 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2081 uint64_t
2082 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2084 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2088 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2089 * not be opened, and no I/O is attempted.
2092 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2094 vdev_t *vd, *tvd;
2096 spa_vdev_state_enter(spa, SCL_NONE);
2098 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2099 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2101 if (!vd->vdev_ops->vdev_op_leaf)
2102 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2104 tvd = vd->vdev_top;
2107 * We don't directly use the aux state here, but if we do a
2108 * vdev_reopen(), we need this value to be present to remember why we
2109 * were faulted.
2111 vd->vdev_label_aux = aux;
2114 * Faulted state takes precedence over degraded.
2116 vd->vdev_delayed_close = B_FALSE;
2117 vd->vdev_faulted = 1ULL;
2118 vd->vdev_degraded = 0ULL;
2119 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2122 * If this device has the only valid copy of the data, then
2123 * back off and simply mark the vdev as degraded instead.
2125 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2126 vd->vdev_degraded = 1ULL;
2127 vd->vdev_faulted = 0ULL;
2130 * If we reopen the device and it's not dead, only then do we
2131 * mark it degraded.
2133 vdev_reopen(tvd);
2135 if (vdev_readable(vd))
2136 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2139 return (spa_vdev_state_exit(spa, vd, 0));
2143 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2144 * user that something is wrong. The vdev continues to operate as normal as far
2145 * as I/O is concerned.
2148 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2150 vdev_t *vd;
2152 spa_vdev_state_enter(spa, SCL_NONE);
2154 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2155 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2157 if (!vd->vdev_ops->vdev_op_leaf)
2158 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2161 * If the vdev is already faulted, then don't do anything.
2163 if (vd->vdev_faulted || vd->vdev_degraded)
2164 return (spa_vdev_state_exit(spa, NULL, 0));
2166 vd->vdev_degraded = 1ULL;
2167 if (!vdev_is_dead(vd))
2168 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2169 aux);
2171 return (spa_vdev_state_exit(spa, vd, 0));
2175 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2176 * any attached spare device should be detached when the device finishes
2177 * resilvering. Second, the online should be treated like a 'test' online case,
2178 * so no FMA events are generated if the device fails to open.
2181 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2183 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2185 spa_vdev_state_enter(spa, SCL_NONE);
2187 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2188 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2190 if (!vd->vdev_ops->vdev_op_leaf)
2191 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2193 tvd = vd->vdev_top;
2194 vd->vdev_offline = B_FALSE;
2195 vd->vdev_tmpoffline = B_FALSE;
2196 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2197 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2199 /* XXX - L2ARC 1.0 does not support expansion */
2200 if (!vd->vdev_aux) {
2201 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2202 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2205 vdev_reopen(tvd);
2206 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2208 if (!vd->vdev_aux) {
2209 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2210 pvd->vdev_expanding = B_FALSE;
2213 if (newstate)
2214 *newstate = vd->vdev_state;
2215 if ((flags & ZFS_ONLINE_UNSPARE) &&
2216 !vdev_is_dead(vd) && vd->vdev_parent &&
2217 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2218 vd->vdev_parent->vdev_child[0] == vd)
2219 vd->vdev_unspare = B_TRUE;
2221 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2223 /* XXX - L2ARC 1.0 does not support expansion */
2224 if (vd->vdev_aux)
2225 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2226 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2228 return (spa_vdev_state_exit(spa, vd, 0));
2231 static int
2232 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2234 vdev_t *vd, *tvd;
2235 int error = 0;
2236 uint64_t generation;
2237 metaslab_group_t *mg;
2239 top:
2240 spa_vdev_state_enter(spa, SCL_ALLOC);
2242 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2243 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2245 if (!vd->vdev_ops->vdev_op_leaf)
2246 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2248 tvd = vd->vdev_top;
2249 mg = tvd->vdev_mg;
2250 generation = spa->spa_config_generation + 1;
2253 * If the device isn't already offline, try to offline it.
2255 if (!vd->vdev_offline) {
2257 * If this device has the only valid copy of some data,
2258 * don't allow it to be offlined. Log devices are always
2259 * expendable.
2261 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2262 vdev_dtl_required(vd))
2263 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2266 * If the top-level is a slog and it has had allocations
2267 * then proceed. We check that the vdev's metaslab group
2268 * is not NULL since it's possible that we may have just
2269 * added this vdev but not yet initialized its metaslabs.
2271 if (tvd->vdev_islog && mg != NULL) {
2273 * Prevent any future allocations.
2275 metaslab_group_passivate(mg);
2276 (void) spa_vdev_state_exit(spa, vd, 0);
2278 error = spa_offline_log(spa);
2280 spa_vdev_state_enter(spa, SCL_ALLOC);
2283 * Check to see if the config has changed.
2285 if (error || generation != spa->spa_config_generation) {
2286 metaslab_group_activate(mg);
2287 if (error)
2288 return (spa_vdev_state_exit(spa,
2289 vd, error));
2290 (void) spa_vdev_state_exit(spa, vd, 0);
2291 goto top;
2293 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2297 * Offline this device and reopen its top-level vdev.
2298 * If the top-level vdev is a log device then just offline
2299 * it. Otherwise, if this action results in the top-level
2300 * vdev becoming unusable, undo it and fail the request.
2302 vd->vdev_offline = B_TRUE;
2303 vdev_reopen(tvd);
2305 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2306 vdev_is_dead(tvd)) {
2307 vd->vdev_offline = B_FALSE;
2308 vdev_reopen(tvd);
2309 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2313 * Add the device back into the metaslab rotor so that
2314 * once we online the device it's open for business.
2316 if (tvd->vdev_islog && mg != NULL)
2317 metaslab_group_activate(mg);
2320 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2322 return (spa_vdev_state_exit(spa, vd, 0));
2326 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2328 int error;
2330 mutex_enter(&spa->spa_vdev_top_lock);
2331 error = vdev_offline_locked(spa, guid, flags);
2332 mutex_exit(&spa->spa_vdev_top_lock);
2334 return (error);
2338 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2339 * vdev_offline(), we assume the spa config is locked. We also clear all
2340 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2342 void
2343 vdev_clear(spa_t *spa, vdev_t *vd)
2345 vdev_t *rvd = spa->spa_root_vdev;
2347 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2349 if (vd == NULL)
2350 vd = rvd;
2352 vd->vdev_stat.vs_read_errors = 0;
2353 vd->vdev_stat.vs_write_errors = 0;
2354 vd->vdev_stat.vs_checksum_errors = 0;
2356 for (int c = 0; c < vd->vdev_children; c++)
2357 vdev_clear(spa, vd->vdev_child[c]);
2360 * If we're in the FAULTED state or have experienced failed I/O, then
2361 * clear the persistent state and attempt to reopen the device. We
2362 * also mark the vdev config dirty, so that the new faulted state is
2363 * written out to disk.
2365 if (vd->vdev_faulted || vd->vdev_degraded ||
2366 !vdev_readable(vd) || !vdev_writeable(vd)) {
2369 * When reopening in reponse to a clear event, it may be due to
2370 * a fmadm repair request. In this case, if the device is
2371 * still broken, we want to still post the ereport again.
2373 vd->vdev_forcefault = B_TRUE;
2375 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2376 vd->vdev_cant_read = B_FALSE;
2377 vd->vdev_cant_write = B_FALSE;
2379 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2381 vd->vdev_forcefault = B_FALSE;
2383 if (vd != rvd && vdev_writeable(vd->vdev_top))
2384 vdev_state_dirty(vd->vdev_top);
2386 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2387 spa_async_request(spa, SPA_ASYNC_RESILVER);
2389 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2393 * When clearing a FMA-diagnosed fault, we always want to
2394 * unspare the device, as we assume that the original spare was
2395 * done in response to the FMA fault.
2397 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2398 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2399 vd->vdev_parent->vdev_child[0] == vd)
2400 vd->vdev_unspare = B_TRUE;
2403 boolean_t
2404 vdev_is_dead(vdev_t *vd)
2407 * Holes and missing devices are always considered "dead".
2408 * This simplifies the code since we don't have to check for
2409 * these types of devices in the various code paths.
2410 * Instead we rely on the fact that we skip over dead devices
2411 * before issuing I/O to them.
2413 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2414 vd->vdev_ops == &vdev_missing_ops);
2417 boolean_t
2418 vdev_readable(vdev_t *vd)
2420 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2423 boolean_t
2424 vdev_writeable(vdev_t *vd)
2426 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2429 boolean_t
2430 vdev_allocatable(vdev_t *vd)
2432 uint64_t state = vd->vdev_state;
2435 * We currently allow allocations from vdevs which may be in the
2436 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2437 * fails to reopen then we'll catch it later when we're holding
2438 * the proper locks. Note that we have to get the vdev state
2439 * in a local variable because although it changes atomically,
2440 * we're asking two separate questions about it.
2442 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2443 !vd->vdev_cant_write && !vd->vdev_ishole);
2446 boolean_t
2447 vdev_accessible(vdev_t *vd, zio_t *zio)
2449 ASSERT(zio->io_vd == vd);
2451 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2452 return (B_FALSE);
2454 if (zio->io_type == ZIO_TYPE_READ)
2455 return (!vd->vdev_cant_read);
2457 if (zio->io_type == ZIO_TYPE_WRITE)
2458 return (!vd->vdev_cant_write);
2460 return (B_TRUE);
2464 * Get statistics for the given vdev.
2466 void
2467 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2469 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2471 mutex_enter(&vd->vdev_stat_lock);
2472 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2473 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2474 vs->vs_state = vd->vdev_state;
2475 vs->vs_rsize = vdev_get_min_asize(vd);
2476 if (vd->vdev_ops->vdev_op_leaf)
2477 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2478 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2479 mutex_exit(&vd->vdev_stat_lock);
2482 * If we're getting stats on the root vdev, aggregate the I/O counts
2483 * over all top-level vdevs (i.e. the direct children of the root).
2485 if (vd == rvd) {
2486 for (int c = 0; c < rvd->vdev_children; c++) {
2487 vdev_t *cvd = rvd->vdev_child[c];
2488 vdev_stat_t *cvs = &cvd->vdev_stat;
2490 mutex_enter(&vd->vdev_stat_lock);
2491 for (int t = 0; t < ZIO_TYPES; t++) {
2492 vs->vs_ops[t] += cvs->vs_ops[t];
2493 vs->vs_bytes[t] += cvs->vs_bytes[t];
2495 cvs->vs_scan_removing = cvd->vdev_removing;
2496 mutex_exit(&vd->vdev_stat_lock);
2501 void
2502 vdev_clear_stats(vdev_t *vd)
2504 mutex_enter(&vd->vdev_stat_lock);
2505 vd->vdev_stat.vs_space = 0;
2506 vd->vdev_stat.vs_dspace = 0;
2507 vd->vdev_stat.vs_alloc = 0;
2508 mutex_exit(&vd->vdev_stat_lock);
2511 void
2512 vdev_scan_stat_init(vdev_t *vd)
2514 vdev_stat_t *vs = &vd->vdev_stat;
2516 for (int c = 0; c < vd->vdev_children; c++)
2517 vdev_scan_stat_init(vd->vdev_child[c]);
2519 mutex_enter(&vd->vdev_stat_lock);
2520 vs->vs_scan_processed = 0;
2521 mutex_exit(&vd->vdev_stat_lock);
2524 void
2525 vdev_stat_update(zio_t *zio, uint64_t psize)
2527 spa_t *spa = zio->io_spa;
2528 vdev_t *rvd = spa->spa_root_vdev;
2529 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2530 vdev_t *pvd;
2531 uint64_t txg = zio->io_txg;
2532 vdev_stat_t *vs = &vd->vdev_stat;
2533 zio_type_t type = zio->io_type;
2534 int flags = zio->io_flags;
2537 * If this i/o is a gang leader, it didn't do any actual work.
2539 if (zio->io_gang_tree)
2540 return;
2542 if (zio->io_error == 0) {
2544 * If this is a root i/o, don't count it -- we've already
2545 * counted the top-level vdevs, and vdev_get_stats() will
2546 * aggregate them when asked. This reduces contention on
2547 * the root vdev_stat_lock and implicitly handles blocks
2548 * that compress away to holes, for which there is no i/o.
2549 * (Holes never create vdev children, so all the counters
2550 * remain zero, which is what we want.)
2552 * Note: this only applies to successful i/o (io_error == 0)
2553 * because unlike i/o counts, errors are not additive.
2554 * When reading a ditto block, for example, failure of
2555 * one top-level vdev does not imply a root-level error.
2557 if (vd == rvd)
2558 return;
2560 ASSERT(vd == zio->io_vd);
2562 if (flags & ZIO_FLAG_IO_BYPASS)
2563 return;
2565 mutex_enter(&vd->vdev_stat_lock);
2567 if (flags & ZIO_FLAG_IO_REPAIR) {
2568 if (flags & ZIO_FLAG_SCAN_THREAD) {
2569 dsl_scan_phys_t *scn_phys =
2570 &spa->spa_dsl_pool->dp_scan->scn_phys;
2571 uint64_t *processed = &scn_phys->scn_processed;
2573 /* XXX cleanup? */
2574 if (vd->vdev_ops->vdev_op_leaf)
2575 atomic_add_64(processed, psize);
2576 vs->vs_scan_processed += psize;
2579 if (flags & ZIO_FLAG_SELF_HEAL)
2580 vs->vs_self_healed += psize;
2583 vs->vs_ops[type]++;
2584 vs->vs_bytes[type] += psize;
2586 mutex_exit(&vd->vdev_stat_lock);
2587 return;
2590 if (flags & ZIO_FLAG_SPECULATIVE)
2591 return;
2594 * If this is an I/O error that is going to be retried, then ignore the
2595 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2596 * hard errors, when in reality they can happen for any number of
2597 * innocuous reasons (bus resets, MPxIO link failure, etc).
2599 if (zio->io_error == EIO &&
2600 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2601 return;
2604 * Intent logs writes won't propagate their error to the root
2605 * I/O so don't mark these types of failures as pool-level
2606 * errors.
2608 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2609 return;
2611 mutex_enter(&vd->vdev_stat_lock);
2612 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2613 if (zio->io_error == ECKSUM)
2614 vs->vs_checksum_errors++;
2615 else
2616 vs->vs_read_errors++;
2618 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2619 vs->vs_write_errors++;
2620 mutex_exit(&vd->vdev_stat_lock);
2622 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2623 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2624 (flags & ZIO_FLAG_SCAN_THREAD) ||
2625 spa->spa_claiming)) {
2627 * This is either a normal write (not a repair), or it's
2628 * a repair induced by the scrub thread, or it's a repair
2629 * made by zil_claim() during spa_load() in the first txg.
2630 * In the normal case, we commit the DTL change in the same
2631 * txg as the block was born. In the scrub-induced repair
2632 * case, we know that scrubs run in first-pass syncing context,
2633 * so we commit the DTL change in spa_syncing_txg(spa).
2634 * In the zil_claim() case, we commit in spa_first_txg(spa).
2636 * We currently do not make DTL entries for failed spontaneous
2637 * self-healing writes triggered by normal (non-scrubbing)
2638 * reads, because we have no transactional context in which to
2639 * do so -- and it's not clear that it'd be desirable anyway.
2641 if (vd->vdev_ops->vdev_op_leaf) {
2642 uint64_t commit_txg = txg;
2643 if (flags & ZIO_FLAG_SCAN_THREAD) {
2644 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2645 ASSERT(spa_sync_pass(spa) == 1);
2646 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2647 commit_txg = spa_syncing_txg(spa);
2648 } else if (spa->spa_claiming) {
2649 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2650 commit_txg = spa_first_txg(spa);
2652 ASSERT(commit_txg >= spa_syncing_txg(spa));
2653 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2654 return;
2655 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2656 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2657 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2659 if (vd != rvd)
2660 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2665 * Update the in-core space usage stats for this vdev, its metaslab class,
2666 * and the root vdev.
2668 void
2669 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2670 int64_t space_delta)
2672 int64_t dspace_delta = space_delta;
2673 spa_t *spa = vd->vdev_spa;
2674 vdev_t *rvd = spa->spa_root_vdev;
2675 metaslab_group_t *mg = vd->vdev_mg;
2676 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2678 ASSERT(vd == vd->vdev_top);
2681 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2682 * factor. We must calculate this here and not at the root vdev
2683 * because the root vdev's psize-to-asize is simply the max of its
2684 * childrens', thus not accurate enough for us.
2686 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2687 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2688 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2689 vd->vdev_deflate_ratio;
2691 mutex_enter(&vd->vdev_stat_lock);
2692 vd->vdev_stat.vs_alloc += alloc_delta;
2693 vd->vdev_stat.vs_space += space_delta;
2694 vd->vdev_stat.vs_dspace += dspace_delta;
2695 mutex_exit(&vd->vdev_stat_lock);
2697 if (mc == spa_normal_class(spa)) {
2698 mutex_enter(&rvd->vdev_stat_lock);
2699 rvd->vdev_stat.vs_alloc += alloc_delta;
2700 rvd->vdev_stat.vs_space += space_delta;
2701 rvd->vdev_stat.vs_dspace += dspace_delta;
2702 mutex_exit(&rvd->vdev_stat_lock);
2705 if (mc != NULL) {
2706 ASSERT(rvd == vd->vdev_parent);
2707 ASSERT(vd->vdev_ms_count != 0);
2709 metaslab_class_space_update(mc,
2710 alloc_delta, defer_delta, space_delta, dspace_delta);
2715 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2716 * so that it will be written out next time the vdev configuration is synced.
2717 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2719 void
2720 vdev_config_dirty(vdev_t *vd)
2722 spa_t *spa = vd->vdev_spa;
2723 vdev_t *rvd = spa->spa_root_vdev;
2724 int c;
2726 ASSERT(spa_writeable(spa));
2729 * If this is an aux vdev (as with l2cache and spare devices), then we
2730 * update the vdev config manually and set the sync flag.
2732 if (vd->vdev_aux != NULL) {
2733 spa_aux_vdev_t *sav = vd->vdev_aux;
2734 nvlist_t **aux;
2735 uint_t naux;
2737 for (c = 0; c < sav->sav_count; c++) {
2738 if (sav->sav_vdevs[c] == vd)
2739 break;
2742 if (c == sav->sav_count) {
2744 * We're being removed. There's nothing more to do.
2746 ASSERT(sav->sav_sync == B_TRUE);
2747 return;
2750 sav->sav_sync = B_TRUE;
2752 if (nvlist_lookup_nvlist_array(sav->sav_config,
2753 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2754 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2755 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2758 ASSERT(c < naux);
2761 * Setting the nvlist in the middle if the array is a little
2762 * sketchy, but it will work.
2764 nvlist_free(aux[c]);
2765 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2767 return;
2771 * The dirty list is protected by the SCL_CONFIG lock. The caller
2772 * must either hold SCL_CONFIG as writer, or must be the sync thread
2773 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2774 * so this is sufficient to ensure mutual exclusion.
2776 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2777 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2778 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2780 if (vd == rvd) {
2781 for (c = 0; c < rvd->vdev_children; c++)
2782 vdev_config_dirty(rvd->vdev_child[c]);
2783 } else {
2784 ASSERT(vd == vd->vdev_top);
2786 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2787 !vd->vdev_ishole)
2788 list_insert_head(&spa->spa_config_dirty_list, vd);
2792 void
2793 vdev_config_clean(vdev_t *vd)
2795 spa_t *spa = vd->vdev_spa;
2797 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2798 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2799 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2801 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2802 list_remove(&spa->spa_config_dirty_list, vd);
2806 * Mark a top-level vdev's state as dirty, so that the next pass of
2807 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2808 * the state changes from larger config changes because they require
2809 * much less locking, and are often needed for administrative actions.
2811 void
2812 vdev_state_dirty(vdev_t *vd)
2814 spa_t *spa = vd->vdev_spa;
2816 ASSERT(spa_writeable(spa));
2817 ASSERT(vd == vd->vdev_top);
2820 * The state list is protected by the SCL_STATE lock. The caller
2821 * must either hold SCL_STATE as writer, or must be the sync thread
2822 * (which holds SCL_STATE as reader). There's only one sync thread,
2823 * so this is sufficient to ensure mutual exclusion.
2825 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2826 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2827 spa_config_held(spa, SCL_STATE, RW_READER)));
2829 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2830 list_insert_head(&spa->spa_state_dirty_list, vd);
2833 void
2834 vdev_state_clean(vdev_t *vd)
2836 spa_t *spa = vd->vdev_spa;
2838 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2839 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2840 spa_config_held(spa, SCL_STATE, RW_READER)));
2842 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2843 list_remove(&spa->spa_state_dirty_list, vd);
2847 * Propagate vdev state up from children to parent.
2849 void
2850 vdev_propagate_state(vdev_t *vd)
2852 spa_t *spa = vd->vdev_spa;
2853 vdev_t *rvd = spa->spa_root_vdev;
2854 int degraded = 0, faulted = 0;
2855 int corrupted = 0;
2856 vdev_t *child;
2858 if (vd->vdev_children > 0) {
2859 for (int c = 0; c < vd->vdev_children; c++) {
2860 child = vd->vdev_child[c];
2863 * Don't factor holes into the decision.
2865 if (child->vdev_ishole)
2866 continue;
2868 if (!vdev_readable(child) ||
2869 (!vdev_writeable(child) && spa_writeable(spa))) {
2871 * Root special: if there is a top-level log
2872 * device, treat the root vdev as if it were
2873 * degraded.
2875 if (child->vdev_islog && vd == rvd)
2876 degraded++;
2877 else
2878 faulted++;
2879 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2880 degraded++;
2883 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2884 corrupted++;
2887 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2890 * Root special: if there is a top-level vdev that cannot be
2891 * opened due to corrupted metadata, then propagate the root
2892 * vdev's aux state as 'corrupt' rather than 'insufficient
2893 * replicas'.
2895 if (corrupted && vd == rvd &&
2896 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2897 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2898 VDEV_AUX_CORRUPT_DATA);
2901 if (vd->vdev_parent)
2902 vdev_propagate_state(vd->vdev_parent);
2906 * Set a vdev's state. If this is during an open, we don't update the parent
2907 * state, because we're in the process of opening children depth-first.
2908 * Otherwise, we propagate the change to the parent.
2910 * If this routine places a device in a faulted state, an appropriate ereport is
2911 * generated.
2913 void
2914 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2916 uint64_t save_state;
2917 spa_t *spa = vd->vdev_spa;
2919 if (state == vd->vdev_state) {
2920 vd->vdev_stat.vs_aux = aux;
2921 return;
2924 save_state = vd->vdev_state;
2926 vd->vdev_state = state;
2927 vd->vdev_stat.vs_aux = aux;
2930 * If we are setting the vdev state to anything but an open state, then
2931 * always close the underlying device unless the device has requested
2932 * a delayed close (i.e. we're about to remove or fault the device).
2933 * Otherwise, we keep accessible but invalid devices open forever.
2934 * We don't call vdev_close() itself, because that implies some extra
2935 * checks (offline, etc) that we don't want here. This is limited to
2936 * leaf devices, because otherwise closing the device will affect other
2937 * children.
2939 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2940 vd->vdev_ops->vdev_op_leaf)
2941 vd->vdev_ops->vdev_op_close(vd);
2944 * If we have brought this vdev back into service, we need
2945 * to notify fmd so that it can gracefully repair any outstanding
2946 * cases due to a missing device. We do this in all cases, even those
2947 * that probably don't correlate to a repaired fault. This is sure to
2948 * catch all cases, and we let the zfs-retire agent sort it out. If
2949 * this is a transient state it's OK, as the retire agent will
2950 * double-check the state of the vdev before repairing it.
2952 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2953 vd->vdev_prevstate != state)
2954 zfs_post_state_change(spa, vd);
2956 if (vd->vdev_removed &&
2957 state == VDEV_STATE_CANT_OPEN &&
2958 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2960 * If the previous state is set to VDEV_STATE_REMOVED, then this
2961 * device was previously marked removed and someone attempted to
2962 * reopen it. If this failed due to a nonexistent device, then
2963 * keep the device in the REMOVED state. We also let this be if
2964 * it is one of our special test online cases, which is only
2965 * attempting to online the device and shouldn't generate an FMA
2966 * fault.
2968 vd->vdev_state = VDEV_STATE_REMOVED;
2969 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2970 } else if (state == VDEV_STATE_REMOVED) {
2971 vd->vdev_removed = B_TRUE;
2972 } else if (state == VDEV_STATE_CANT_OPEN) {
2974 * If we fail to open a vdev during an import or recovery, we
2975 * mark it as "not available", which signifies that it was
2976 * never there to begin with. Failure to open such a device
2977 * is not considered an error.
2979 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2980 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2981 vd->vdev_ops->vdev_op_leaf)
2982 vd->vdev_not_present = 1;
2985 * Post the appropriate ereport. If the 'prevstate' field is
2986 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2987 * that this is part of a vdev_reopen(). In this case, we don't
2988 * want to post the ereport if the device was already in the
2989 * CANT_OPEN state beforehand.
2991 * If the 'checkremove' flag is set, then this is an attempt to
2992 * online the device in response to an insertion event. If we
2993 * hit this case, then we have detected an insertion event for a
2994 * faulted or offline device that wasn't in the removed state.
2995 * In this scenario, we don't post an ereport because we are
2996 * about to replace the device, or attempt an online with
2997 * vdev_forcefault, which will generate the fault for us.
2999 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3000 !vd->vdev_not_present && !vd->vdev_checkremove &&
3001 vd != spa->spa_root_vdev) {
3002 const char *class;
3004 switch (aux) {
3005 case VDEV_AUX_OPEN_FAILED:
3006 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3007 break;
3008 case VDEV_AUX_CORRUPT_DATA:
3009 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3010 break;
3011 case VDEV_AUX_NO_REPLICAS:
3012 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3013 break;
3014 case VDEV_AUX_BAD_GUID_SUM:
3015 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3016 break;
3017 case VDEV_AUX_TOO_SMALL:
3018 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3019 break;
3020 case VDEV_AUX_BAD_LABEL:
3021 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3022 break;
3023 default:
3024 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3027 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3030 /* Erase any notion of persistent removed state */
3031 vd->vdev_removed = B_FALSE;
3032 } else {
3033 vd->vdev_removed = B_FALSE;
3036 if (!isopen && vd->vdev_parent)
3037 vdev_propagate_state(vd->vdev_parent);
3041 * Check the vdev configuration to ensure that it's capable of supporting
3042 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3043 * In addition, only a single top-level vdev is allowed and none of the leaves
3044 * can be wholedisks.
3046 boolean_t
3047 vdev_is_bootable(vdev_t *vd)
3049 if (!vd->vdev_ops->vdev_op_leaf) {
3050 char *vdev_type = vd->vdev_ops->vdev_op_type;
3052 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3053 vd->vdev_children > 1) {
3054 return (B_FALSE);
3055 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3056 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3057 return (B_FALSE);
3059 } else if (vd->vdev_wholedisk == 1) {
3060 return (B_FALSE);
3063 for (int c = 0; c < vd->vdev_children; c++) {
3064 if (!vdev_is_bootable(vd->vdev_child[c]))
3065 return (B_FALSE);
3067 return (B_TRUE);
3071 * Load the state from the original vdev tree (ovd) which
3072 * we've retrieved from the MOS config object. If the original
3073 * vdev was offline or faulted then we transfer that state to the
3074 * device in the current vdev tree (nvd).
3076 void
3077 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3079 spa_t *spa = nvd->vdev_spa;
3081 ASSERT(nvd->vdev_top->vdev_islog);
3082 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3083 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3085 for (int c = 0; c < nvd->vdev_children; c++)
3086 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3088 if (nvd->vdev_ops->vdev_op_leaf) {
3090 * Restore the persistent vdev state
3092 nvd->vdev_offline = ovd->vdev_offline;
3093 nvd->vdev_faulted = ovd->vdev_faulted;
3094 nvd->vdev_degraded = ovd->vdev_degraded;
3095 nvd->vdev_removed = ovd->vdev_removed;
3100 * Determine if a log device has valid content. If the vdev was
3101 * removed or faulted in the MOS config then we know that
3102 * the content on the log device has already been written to the pool.
3104 boolean_t
3105 vdev_log_state_valid(vdev_t *vd)
3107 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3108 !vd->vdev_removed)
3109 return (B_TRUE);
3111 for (int c = 0; c < vd->vdev_children; c++)
3112 if (vdev_log_state_valid(vd->vdev_child[c]))
3113 return (B_TRUE);
3115 return (B_FALSE);
3119 * Expand a vdev if possible.
3121 void
3122 vdev_expand(vdev_t *vd, uint64_t txg)
3124 ASSERT(vd->vdev_top == vd);
3125 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3127 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3128 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3129 vdev_config_dirty(vd);
3134 * Split a vdev.
3136 void
3137 vdev_split(vdev_t *vd)
3139 vdev_t *cvd, *pvd = vd->vdev_parent;
3141 vdev_remove_child(pvd, vd);
3142 vdev_compact_children(pvd);
3144 cvd = pvd->vdev_child[0];
3145 if (pvd->vdev_children == 1) {
3146 vdev_remove_parent(cvd);
3147 cvd->vdev_splitting = B_TRUE;
3149 vdev_propagate_state(cvd);