6198 Let's EOL cachefs
[illumos-gate.git] / usr / src / uts / i86pc / vm / htable.c
blob44e66ddfc19105f30088718d7fb35739641db33a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2014 by Delphix. All rights reserved.
25 * Copyright 2015 Joyent, Inc.
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/atomic.h>
32 #include <sys/bitmap.h>
33 #include <sys/machparam.h>
34 #include <sys/machsystm.h>
35 #include <sys/mman.h>
36 #include <sys/systm.h>
37 #include <sys/cpuvar.h>
38 #include <sys/thread.h>
39 #include <sys/proc.h>
40 #include <sys/cpu.h>
41 #include <sys/kmem.h>
42 #include <sys/disp.h>
43 #include <sys/vmem.h>
44 #include <sys/vmsystm.h>
45 #include <sys/promif.h>
46 #include <sys/var.h>
47 #include <sys/x86_archext.h>
48 #include <sys/archsystm.h>
49 #include <sys/bootconf.h>
50 #include <sys/dumphdr.h>
51 #include <vm/seg_kmem.h>
52 #include <vm/seg_kpm.h>
53 #include <vm/hat.h>
54 #include <vm/hat_i86.h>
55 #include <sys/cmn_err.h>
56 #include <sys/panic.h>
58 #ifdef __xpv
59 #include <sys/hypervisor.h>
60 #include <sys/xpv_panic.h>
61 #endif
63 #include <sys/bootinfo.h>
64 #include <vm/kboot_mmu.h>
66 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
68 kmem_cache_t *htable_cache;
71 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
72 * is used in order to facilitate testing of the htable_steal() code.
73 * By resetting htable_reserve_amount to a lower value, we can force
74 * stealing to occur. The reserve amount is a guess to get us through boot.
76 #define HTABLE_RESERVE_AMOUNT (200)
77 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
78 kmutex_t htable_reserve_mutex;
79 uint_t htable_reserve_cnt;
80 htable_t *htable_reserve_pool;
83 * Used to hand test htable_steal().
85 #ifdef DEBUG
86 ulong_t force_steal = 0;
87 ulong_t ptable_cnt = 0;
88 #endif
91 * This variable is so that we can tune this via /etc/system
92 * Any value works, but a power of two <= mmu.ptes_per_table is best.
94 uint_t htable_steal_passes = 8;
97 * mutex stuff for access to htable hash
99 #define NUM_HTABLE_MUTEX 128
100 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
101 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
103 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
104 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
107 * forward declarations
109 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
110 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
111 static void htable_free(htable_t *ht);
112 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
113 static void x86pte_release_pagetable(htable_t *ht);
114 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
115 x86pte_t new);
118 * A counter to track if we are stealing or reaping htables. When non-zero
119 * htable_free() will directly free htables (either to the reserve or kmem)
120 * instead of putting them in a hat's htable cache.
122 uint32_t htable_dont_cache = 0;
125 * Track the number of active pagetables, so we can know how many to reap
127 static uint32_t active_ptables = 0;
129 #ifdef __xpv
131 * Deal with hypervisor complications.
133 void
134 xen_flush_va(caddr_t va)
136 struct mmuext_op t;
137 uint_t count;
139 if (IN_XPV_PANIC()) {
140 mmu_tlbflush_entry((caddr_t)va);
141 } else {
142 t.cmd = MMUEXT_INVLPG_LOCAL;
143 t.arg1.linear_addr = (uintptr_t)va;
144 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
145 panic("HYPERVISOR_mmuext_op() failed");
146 ASSERT(count == 1);
150 void
151 xen_gflush_va(caddr_t va, cpuset_t cpus)
153 struct mmuext_op t;
154 uint_t count;
156 if (IN_XPV_PANIC()) {
157 mmu_tlbflush_entry((caddr_t)va);
158 return;
161 t.cmd = MMUEXT_INVLPG_MULTI;
162 t.arg1.linear_addr = (uintptr_t)va;
163 /*LINTED: constant in conditional context*/
164 set_xen_guest_handle(t.arg2.vcpumask, &cpus);
165 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
166 panic("HYPERVISOR_mmuext_op() failed");
167 ASSERT(count == 1);
170 void
171 xen_flush_tlb()
173 struct mmuext_op t;
174 uint_t count;
176 if (IN_XPV_PANIC()) {
177 xpv_panic_reload_cr3();
178 } else {
179 t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
180 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
181 panic("HYPERVISOR_mmuext_op() failed");
182 ASSERT(count == 1);
186 void
187 xen_gflush_tlb(cpuset_t cpus)
189 struct mmuext_op t;
190 uint_t count;
192 ASSERT(!IN_XPV_PANIC());
193 t.cmd = MMUEXT_TLB_FLUSH_MULTI;
194 /*LINTED: constant in conditional context*/
195 set_xen_guest_handle(t.arg2.vcpumask, &cpus);
196 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
197 panic("HYPERVISOR_mmuext_op() failed");
198 ASSERT(count == 1);
202 * Install/Adjust a kpm mapping under the hypervisor.
203 * Value of "how" should be:
204 * PT_WRITABLE | PT_VALID - regular kpm mapping
205 * PT_VALID - make mapping read-only
206 * 0 - remove mapping
208 * returns 0 on success. non-zero for failure.
211 xen_kpm_page(pfn_t pfn, uint_t how)
213 paddr_t pa = mmu_ptob((paddr_t)pfn);
214 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
216 if (kpm_vbase == NULL)
217 return (0);
219 if (how)
220 pte |= pa_to_ma(pa) | how;
221 else
222 pte = 0;
223 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
224 pte, UVMF_INVLPG | UVMF_ALL));
227 void
228 xen_pin(pfn_t pfn, level_t lvl)
230 struct mmuext_op t;
231 uint_t count;
233 t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
234 t.arg1.mfn = pfn_to_mfn(pfn);
235 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
236 panic("HYPERVISOR_mmuext_op() failed");
237 ASSERT(count == 1);
240 void
241 xen_unpin(pfn_t pfn)
243 struct mmuext_op t;
244 uint_t count;
246 t.cmd = MMUEXT_UNPIN_TABLE;
247 t.arg1.mfn = pfn_to_mfn(pfn);
248 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
249 panic("HYPERVISOR_mmuext_op() failed");
250 ASSERT(count == 1);
253 static void
254 xen_map(uint64_t pte, caddr_t va)
256 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
257 UVMF_INVLPG | UVMF_LOCAL))
258 panic("HYPERVISOR_update_va_mapping() failed");
260 #endif /* __xpv */
263 * Allocate a memory page for a hardware page table.
265 * A wrapper around page_get_physical(), with some extra checks.
267 static pfn_t
268 ptable_alloc(uintptr_t seed)
270 pfn_t pfn;
271 page_t *pp;
273 pfn = PFN_INVALID;
276 * The first check is to see if there is memory in the system. If we
277 * drop to throttlefree, then fail the ptable_alloc() and let the
278 * stealing code kick in. Note that we have to do this test here,
279 * since the test in page_create_throttle() would let the NOSLEEP
280 * allocation go through and deplete the page reserves.
282 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
284 if (!NOMEMWAIT() && freemem <= throttlefree + 1)
285 return (PFN_INVALID);
287 #ifdef DEBUG
289 * This code makes htable_steal() easier to test. By setting
290 * force_steal we force pagetable allocations to fall
291 * into the stealing code. Roughly 1 in ever "force_steal"
292 * page table allocations will fail.
294 if (proc_pageout != NULL && force_steal > 1 &&
295 ++ptable_cnt > force_steal) {
296 ptable_cnt = 0;
297 return (PFN_INVALID);
299 #endif /* DEBUG */
301 pp = page_get_physical(seed);
302 if (pp == NULL)
303 return (PFN_INVALID);
304 ASSERT(PAGE_SHARED(pp));
305 pfn = pp->p_pagenum;
306 if (pfn == PFN_INVALID)
307 panic("ptable_alloc(): Invalid PFN!!");
308 atomic_inc_32(&active_ptables);
309 HATSTAT_INC(hs_ptable_allocs);
310 return (pfn);
314 * Free an htable's associated page table page. See the comments
315 * for ptable_alloc().
317 static void
318 ptable_free(pfn_t pfn)
320 page_t *pp = page_numtopp_nolock(pfn);
323 * need to destroy the page used for the pagetable
325 ASSERT(pfn != PFN_INVALID);
326 HATSTAT_INC(hs_ptable_frees);
327 atomic_dec_32(&active_ptables);
328 if (pp == NULL)
329 panic("ptable_free(): no page for pfn!");
330 ASSERT(PAGE_SHARED(pp));
331 ASSERT(pfn == pp->p_pagenum);
332 ASSERT(!IN_XPV_PANIC());
335 * Get an exclusive lock, might have to wait for a kmem reader.
337 if (!page_tryupgrade(pp)) {
338 u_offset_t off = pp->p_offset;
339 page_unlock(pp);
340 pp = page_lookup(&kvp, off, SE_EXCL);
341 if (pp == NULL)
342 panic("page not found");
344 #ifdef __xpv
345 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
346 panic("failure making kpm r/w pfn=0x%lx", pfn);
347 #endif
348 page_hashout(pp, NULL);
349 page_free(pp, 1);
350 page_unresv(1);
354 * Put one htable on the reserve list.
356 static void
357 htable_put_reserve(htable_t *ht)
359 ht->ht_hat = NULL; /* no longer tied to a hat */
360 ASSERT(ht->ht_pfn == PFN_INVALID);
361 HATSTAT_INC(hs_htable_rputs);
362 mutex_enter(&htable_reserve_mutex);
363 ht->ht_next = htable_reserve_pool;
364 htable_reserve_pool = ht;
365 ++htable_reserve_cnt;
366 mutex_exit(&htable_reserve_mutex);
370 * Take one htable from the reserve.
372 static htable_t *
373 htable_get_reserve(void)
375 htable_t *ht = NULL;
377 mutex_enter(&htable_reserve_mutex);
378 if (htable_reserve_cnt != 0) {
379 ht = htable_reserve_pool;
380 ASSERT(ht != NULL);
381 ASSERT(ht->ht_pfn == PFN_INVALID);
382 htable_reserve_pool = ht->ht_next;
383 --htable_reserve_cnt;
384 HATSTAT_INC(hs_htable_rgets);
386 mutex_exit(&htable_reserve_mutex);
387 return (ht);
391 * Allocate initial htables and put them on the reserve list
393 void
394 htable_initial_reserve(uint_t count)
396 htable_t *ht;
398 count += HTABLE_RESERVE_AMOUNT;
399 while (count > 0) {
400 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
401 ASSERT(ht != NULL);
403 ASSERT(use_boot_reserve);
404 ht->ht_pfn = PFN_INVALID;
405 htable_put_reserve(ht);
406 --count;
411 * Readjust the reserves after a thread finishes using them.
413 void
414 htable_adjust_reserve()
416 htable_t *ht;
419 * Free any excess htables in the reserve list
421 while (htable_reserve_cnt > htable_reserve_amount &&
422 !USE_HAT_RESERVES()) {
423 ht = htable_get_reserve();
424 if (ht == NULL)
425 return;
426 ASSERT(ht->ht_pfn == PFN_INVALID);
427 kmem_cache_free(htable_cache, ht);
432 * Search the active htables for one to steal. Start at a different hash
433 * bucket every time to help spread the pain of stealing
435 static void
436 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold,
437 uint_t *stolen, htable_t **list)
439 static uint_t h_seed = 0;
440 htable_t *higher, *ht;
441 uint_t h, e, h_start;
442 uintptr_t va;
443 x86pte_t pte;
445 h = h_start = h_seed++ % hat->hat_num_hash;
446 do {
447 higher = NULL;
448 HTABLE_ENTER(h);
449 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
452 * Can we rule out reaping?
454 if (ht->ht_busy != 0 ||
455 (ht->ht_flags & HTABLE_SHARED_PFN) ||
456 ht->ht_level > 0 || ht->ht_valid_cnt > threshold ||
457 ht->ht_lock_cnt != 0)
458 continue;
461 * Increment busy so the htable can't disappear. We
462 * drop the htable mutex to avoid deadlocks with
463 * hat_pageunload() and the hment mutex while we
464 * call hat_pte_unmap()
466 ++ht->ht_busy;
467 HTABLE_EXIT(h);
470 * Try stealing.
471 * - unload and invalidate all PTEs
473 for (e = 0, va = ht->ht_vaddr;
474 e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 &&
475 ht->ht_busy == 1 && ht->ht_lock_cnt == 0;
476 ++e, va += MMU_PAGESIZE) {
477 pte = x86pte_get(ht, e);
478 if (!PTE_ISVALID(pte))
479 continue;
480 hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL,
481 B_TRUE);
485 * Reacquire htable lock. If we didn't remove all
486 * mappings in the table, or another thread added a new
487 * mapping behind us, give up on this table.
489 HTABLE_ENTER(h);
490 if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 ||
491 ht->ht_lock_cnt != 0) {
492 --ht->ht_busy;
493 continue;
497 * Steal it and unlink the page table.
499 higher = ht->ht_parent;
500 unlink_ptp(higher, ht, ht->ht_vaddr);
503 * remove from the hash list
505 if (ht->ht_next)
506 ht->ht_next->ht_prev = ht->ht_prev;
508 if (ht->ht_prev) {
509 ht->ht_prev->ht_next = ht->ht_next;
510 } else {
511 ASSERT(hat->hat_ht_hash[h] == ht);
512 hat->hat_ht_hash[h] = ht->ht_next;
516 * Break to outer loop to release the
517 * higher (ht_parent) pagetable. This
518 * spreads out the pain caused by
519 * pagefaults.
521 ht->ht_next = *list;
522 *list = ht;
523 ++*stolen;
524 break;
526 HTABLE_EXIT(h);
527 if (higher != NULL)
528 htable_release(higher);
529 if (++h == hat->hat_num_hash)
530 h = 0;
531 } while (*stolen < cnt && h != h_start);
535 * Move hat to the end of the kas list
537 static void
538 move_victim(hat_t *hat)
540 ASSERT(MUTEX_HELD(&hat_list_lock));
542 /* unlink victim hat */
543 if (hat->hat_prev)
544 hat->hat_prev->hat_next = hat->hat_next;
545 else
546 kas.a_hat->hat_next = hat->hat_next;
548 if (hat->hat_next)
549 hat->hat_next->hat_prev = hat->hat_prev;
550 else
551 kas.a_hat->hat_prev = hat->hat_prev;
552 /* relink at end of hat list */
553 hat->hat_next = NULL;
554 hat->hat_prev = kas.a_hat->hat_prev;
555 if (hat->hat_prev)
556 hat->hat_prev->hat_next = hat;
557 else
558 kas.a_hat->hat_next = hat;
560 kas.a_hat->hat_prev = hat;
564 * This routine steals htables from user processes. Called by htable_reap
565 * (reap=TRUE) or htable_alloc (reap=FALSE).
567 static htable_t *
568 htable_steal(uint_t cnt, boolean_t reap)
570 hat_t *hat = kas.a_hat; /* list starts with khat */
571 htable_t *list = NULL;
572 htable_t *ht;
573 uint_t stolen = 0;
574 uint_t pass, passes;
575 uint_t threshold;
578 * Limit htable_steal_passes to something reasonable
580 if (htable_steal_passes == 0)
581 htable_steal_passes = 1;
582 if (htable_steal_passes > mmu.ptes_per_table)
583 htable_steal_passes = mmu.ptes_per_table;
586 * If we're stealing merely as part of kmem reaping (versus stealing
587 * to assure forward progress), we don't want to actually steal any
588 * active htables. (Stealing active htables merely to give memory
589 * back to the system can inadvertently kick off an htable crime wave
590 * as active processes repeatedly steal htables from one another,
591 * plummeting the system into a kind of HAT lawlessness that can
592 * become so violent as to impede the one thing that can end it: the
593 * freeing of memory via ARC reclaim and other means.) So if we're
594 * reaping, we limit ourselves to the first pass that steals cached
595 * htables that aren't in use -- which gives memory back, but averts
596 * the entire breakdown of social order.
598 passes = reap ? 0 : htable_steal_passes;
601 * Loop through all user hats. The 1st pass takes cached htables that
602 * aren't in use. The later passes steal by removing mappings, too.
604 atomic_inc_32(&htable_dont_cache);
605 for (pass = 0; pass <= passes && stolen < cnt; ++pass) {
606 threshold = pass * mmu.ptes_per_table / htable_steal_passes;
608 mutex_enter(&hat_list_lock);
610 /* skip the first hat (kernel) */
611 hat = kas.a_hat->hat_next;
612 for (;;) {
614 * Skip any hat that is already being stolen from.
616 * We skip SHARED hats, as these are dummy
617 * hats that host ISM shared page tables.
619 * We also skip if HAT_FREEING because hat_pte_unmap()
620 * won't zero out the PTE's. That would lead to hitting
621 * stale PTEs either here or under hat_unload() when we
622 * steal and unload the same page table in competing
623 * threads.
625 while (hat != NULL &&
626 (hat->hat_flags &
627 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
628 hat = hat->hat_next;
630 if (hat == NULL)
631 break;
634 * Mark the HAT as a stealing victim so that it is
635 * not freed from under us, e.g. in as_free()
637 hat->hat_flags |= HAT_VICTIM;
638 mutex_exit(&hat_list_lock);
641 * Take any htables from the hat's cached "free" list.
643 hat_enter(hat);
644 while ((ht = hat->hat_ht_cached) != NULL &&
645 stolen < cnt) {
646 hat->hat_ht_cached = ht->ht_next;
647 ht->ht_next = list;
648 list = ht;
649 ++stolen;
651 hat_exit(hat);
654 * Don't steal active htables on first pass.
656 if (pass != 0 && (stolen < cnt))
657 htable_steal_active(hat, cnt, threshold,
658 &stolen, &list);
661 * do synchronous teardown for the reap case so that
662 * we can forget hat; at this time, hat is
663 * guaranteed to be around because HAT_VICTIM is set
664 * (see htable_free() for similar code)
666 for (ht = list; (ht) && (reap); ht = ht->ht_next) {
667 if (ht->ht_hat == NULL)
668 continue;
669 ASSERT(ht->ht_hat == hat);
670 #if defined(__xpv) && defined(__amd64)
671 if (!(ht->ht_flags & HTABLE_VLP) &&
672 ht->ht_level == mmu.max_level) {
673 ptable_free(hat->hat_user_ptable);
674 hat->hat_user_ptable = PFN_INVALID;
676 #endif
678 * forget the hat
680 ht->ht_hat = NULL;
683 mutex_enter(&hat_list_lock);
686 * Are we finished?
688 if (stolen == cnt) {
690 * Try to spread the pain of stealing,
691 * move victim HAT to the end of the HAT list.
693 if (pass >= 1 && cnt == 1 &&
694 kas.a_hat->hat_prev != hat)
695 move_victim(hat);
697 * We are finished
702 * Clear the victim flag, hat can go away now (once
703 * the lock is dropped)
705 if (hat->hat_flags & HAT_VICTIM) {
706 ASSERT(hat != kas.a_hat);
707 hat->hat_flags &= ~HAT_VICTIM;
708 cv_broadcast(&hat_list_cv);
711 /* move on to the next hat */
712 hat = hat->hat_next;
715 mutex_exit(&hat_list_lock);
718 ASSERT(!MUTEX_HELD(&hat_list_lock));
720 atomic_dec_32(&htable_dont_cache);
721 return (list);
725 * This is invoked from kmem when the system is low on memory. We try
726 * to free hments, htables, and ptables to improve the memory situation.
728 /*ARGSUSED*/
729 static void
730 htable_reap(void *handle)
732 uint_t reap_cnt;
733 htable_t *list;
734 htable_t *ht;
736 HATSTAT_INC(hs_reap_attempts);
737 if (!can_steal_post_boot)
738 return;
741 * Try to reap 5% of the page tables bounded by a maximum of
742 * 5% of physmem and a minimum of 10.
744 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10);
747 * Note: htable_dont_cache should be set at the time of
748 * invoking htable_free()
750 atomic_inc_32(&htable_dont_cache);
752 * Let htable_steal() do the work, we just call htable_free()
754 XPV_DISALLOW_MIGRATE();
755 list = htable_steal(reap_cnt, B_TRUE);
756 XPV_ALLOW_MIGRATE();
757 while ((ht = list) != NULL) {
758 list = ht->ht_next;
759 HATSTAT_INC(hs_reaped);
760 htable_free(ht);
762 atomic_dec_32(&htable_dont_cache);
765 * Free up excess reserves
767 htable_adjust_reserve();
768 hment_adjust_reserve();
772 * Allocate an htable, stealing one or using the reserve if necessary
774 static htable_t *
775 htable_alloc(
776 hat_t *hat,
777 uintptr_t vaddr,
778 level_t level,
779 htable_t *shared)
781 htable_t *ht = NULL;
782 uint_t is_vlp;
783 uint_t is_bare = 0;
784 uint_t need_to_zero = 1;
785 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
787 if (level < 0 || level > TOP_LEVEL(hat))
788 panic("htable_alloc(): level %d out of range\n", level);
790 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
791 if (is_vlp || shared != NULL)
792 is_bare = 1;
795 * First reuse a cached htable from the hat_ht_cached field, this
796 * avoids unnecessary trips through kmem/page allocators.
798 if (hat->hat_ht_cached != NULL && !is_bare) {
799 hat_enter(hat);
800 ht = hat->hat_ht_cached;
801 if (ht != NULL) {
802 hat->hat_ht_cached = ht->ht_next;
803 need_to_zero = 0;
804 /* XX64 ASSERT() they're all zero somehow */
805 ASSERT(ht->ht_pfn != PFN_INVALID);
807 hat_exit(hat);
810 if (ht == NULL) {
812 * Allocate an htable, possibly refilling the reserves.
814 if (USE_HAT_RESERVES()) {
815 ht = htable_get_reserve();
816 } else {
818 * Donate successful htable allocations to the reserve.
820 for (;;) {
821 ht = kmem_cache_alloc(htable_cache, kmflags);
822 if (ht == NULL)
823 break;
824 ht->ht_pfn = PFN_INVALID;
825 if (USE_HAT_RESERVES() ||
826 htable_reserve_cnt >= htable_reserve_amount)
827 break;
828 htable_put_reserve(ht);
833 * allocate a page for the hardware page table if needed
835 if (ht != NULL && !is_bare) {
836 ht->ht_hat = hat;
837 ht->ht_pfn = ptable_alloc((uintptr_t)ht);
838 if (ht->ht_pfn == PFN_INVALID) {
839 if (USE_HAT_RESERVES())
840 htable_put_reserve(ht);
841 else
842 kmem_cache_free(htable_cache, ht);
843 ht = NULL;
849 * If allocations failed, kick off a kmem_reap() and resort to
850 * htable steal(). We may spin here if the system is very low on
851 * memory. If the kernel itself has consumed all memory and kmem_reap()
852 * can't free up anything, then we'll really get stuck here.
853 * That should only happen in a system where the administrator has
854 * misconfigured VM parameters via /etc/system.
856 while (ht == NULL && can_steal_post_boot) {
857 kmem_reap();
858 ht = htable_steal(1, B_FALSE);
859 HATSTAT_INC(hs_steals);
862 * If we stole for a bare htable, release the pagetable page.
864 if (ht != NULL) {
865 if (is_bare) {
866 ptable_free(ht->ht_pfn);
867 ht->ht_pfn = PFN_INVALID;
868 #if defined(__xpv) && defined(__amd64)
870 * make stolen page table writable again in kpm
872 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
873 PT_VALID | PT_WRITABLE) < 0) {
874 panic("failure making kpm r/w pfn=0x%lx",
875 ht->ht_pfn);
876 #endif
882 * All attempts to allocate or steal failed. This should only happen
883 * if we run out of memory during boot, due perhaps to a huge
884 * boot_archive. At this point there's no way to continue.
886 if (ht == NULL)
887 panic("htable_alloc(): couldn't steal\n");
889 #if defined(__amd64) && defined(__xpv)
891 * Under the 64-bit hypervisor, we have 2 top level page tables.
892 * If this allocation fails, we'll resort to stealing.
893 * We use the stolen page indirectly, by freeing the
894 * stolen htable first.
896 if (level == mmu.max_level) {
897 for (;;) {
898 htable_t *stolen;
900 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
901 if (hat->hat_user_ptable != PFN_INVALID)
902 break;
903 stolen = htable_steal(1, B_FALSE);
904 if (stolen == NULL)
905 panic("2nd steal ptable failed\n");
906 htable_free(stolen);
908 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
909 MMU_PAGESIZE);
911 #endif
914 * Shared page tables have all entries locked and entries may not
915 * be added or deleted.
917 ht->ht_flags = 0;
918 if (shared != NULL) {
919 ASSERT(shared->ht_valid_cnt > 0);
920 ht->ht_flags |= HTABLE_SHARED_PFN;
921 ht->ht_pfn = shared->ht_pfn;
922 ht->ht_lock_cnt = 0;
923 ht->ht_valid_cnt = 0; /* updated in hat_share() */
924 ht->ht_shares = shared;
925 need_to_zero = 0;
926 } else {
927 ht->ht_shares = NULL;
928 ht->ht_lock_cnt = 0;
929 ht->ht_valid_cnt = 0;
933 * setup flags, etc. for VLP htables
935 if (is_vlp) {
936 ht->ht_flags |= HTABLE_VLP;
937 ASSERT(ht->ht_pfn == PFN_INVALID);
938 need_to_zero = 0;
942 * fill in the htable
944 ht->ht_hat = hat;
945 ht->ht_parent = NULL;
946 ht->ht_vaddr = vaddr;
947 ht->ht_level = level;
948 ht->ht_busy = 1;
949 ht->ht_next = NULL;
950 ht->ht_prev = NULL;
953 * Zero out any freshly allocated page table
955 if (need_to_zero)
956 x86pte_zero(ht, 0, mmu.ptes_per_table);
958 #if defined(__amd64) && defined(__xpv)
959 if (!is_bare && kpm_vbase) {
960 (void) xen_kpm_page(ht->ht_pfn, PT_VALID);
961 if (level == mmu.max_level)
962 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
964 #endif
966 return (ht);
970 * Free up an htable, either to a hat's cached list, the reserves or
971 * back to kmem.
973 static void
974 htable_free(htable_t *ht)
976 hat_t *hat = ht->ht_hat;
979 * If the process isn't exiting, cache the free htable in the hat
980 * structure. We always do this for the boot time reserve. We don't
981 * do this if the hat is exiting or we are stealing/reaping htables.
983 if (hat != NULL &&
984 !(ht->ht_flags & HTABLE_SHARED_PFN) &&
985 (use_boot_reserve ||
986 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
987 ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
988 ASSERT(ht->ht_pfn != PFN_INVALID);
989 hat_enter(hat);
990 ht->ht_next = hat->hat_ht_cached;
991 hat->hat_ht_cached = ht;
992 hat_exit(hat);
993 return;
997 * If we have a hardware page table, free it.
998 * We don't free page tables that are accessed by sharing.
1000 if (ht->ht_flags & HTABLE_SHARED_PFN) {
1001 ASSERT(ht->ht_pfn != PFN_INVALID);
1002 } else if (!(ht->ht_flags & HTABLE_VLP)) {
1003 ptable_free(ht->ht_pfn);
1004 #if defined(__amd64) && defined(__xpv)
1005 if (ht->ht_level == mmu.max_level && hat != NULL) {
1006 ptable_free(hat->hat_user_ptable);
1007 hat->hat_user_ptable = PFN_INVALID;
1009 #endif
1011 ht->ht_pfn = PFN_INVALID;
1014 * Free it or put into reserves.
1016 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
1017 htable_put_reserve(ht);
1018 } else {
1019 kmem_cache_free(htable_cache, ht);
1020 htable_adjust_reserve();
1026 * This is called when a hat is being destroyed or swapped out. We reap all
1027 * the remaining htables in the hat cache. If destroying all left over
1028 * htables are also destroyed.
1030 * We also don't need to invalidate any of the PTPs nor do any demapping.
1032 void
1033 htable_purge_hat(hat_t *hat)
1035 htable_t *ht;
1036 int h;
1039 * Purge the htable cache if just reaping.
1041 if (!(hat->hat_flags & HAT_FREEING)) {
1042 atomic_inc_32(&htable_dont_cache);
1043 for (;;) {
1044 hat_enter(hat);
1045 ht = hat->hat_ht_cached;
1046 if (ht == NULL) {
1047 hat_exit(hat);
1048 break;
1050 hat->hat_ht_cached = ht->ht_next;
1051 hat_exit(hat);
1052 htable_free(ht);
1054 atomic_dec_32(&htable_dont_cache);
1055 return;
1059 * if freeing, no locking is needed
1061 while ((ht = hat->hat_ht_cached) != NULL) {
1062 hat->hat_ht_cached = ht->ht_next;
1063 htable_free(ht);
1067 * walk thru the htable hash table and free all the htables in it.
1069 for (h = 0; h < hat->hat_num_hash; ++h) {
1070 while ((ht = hat->hat_ht_hash[h]) != NULL) {
1071 if (ht->ht_next)
1072 ht->ht_next->ht_prev = ht->ht_prev;
1074 if (ht->ht_prev) {
1075 ht->ht_prev->ht_next = ht->ht_next;
1076 } else {
1077 ASSERT(hat->hat_ht_hash[h] == ht);
1078 hat->hat_ht_hash[h] = ht->ht_next;
1080 htable_free(ht);
1086 * Unlink an entry for a table at vaddr and level out of the existing table
1087 * one level higher. We are always holding the HASH_ENTER() when doing this.
1089 static void
1090 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1092 uint_t entry = htable_va2entry(vaddr, higher);
1093 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level);
1094 x86pte_t found;
1095 hat_t *hat = old->ht_hat;
1097 ASSERT(higher->ht_busy > 0);
1098 ASSERT(higher->ht_valid_cnt > 0);
1099 ASSERT(old->ht_valid_cnt == 0);
1100 found = x86pte_cas(higher, entry, expect, 0);
1101 #ifdef __xpv
1103 * This is weird, but Xen apparently automatically unlinks empty
1104 * pagetables from the upper page table. So allow PTP to be 0 already.
1106 if (found != expect && found != 0)
1107 #else
1108 if (found != expect)
1109 #endif
1110 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1111 found, expect);
1114 * When a top level VLP page table entry changes, we must issue
1115 * a reload of cr3 on all processors.
1117 * If we don't need do do that, then we still have to INVLPG against
1118 * an address covered by the inner page table, as the latest processors
1119 * have TLB-like caches for non-leaf page table entries.
1121 if (!(hat->hat_flags & HAT_FREEING)) {
1122 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1123 DEMAP_ALL_ADDR : old->ht_vaddr);
1126 HTABLE_DEC(higher->ht_valid_cnt);
1130 * Link an entry for a new table at vaddr and level into the existing table
1131 * one level higher. We are always holding the HASH_ENTER() when doing this.
1133 static void
1134 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1136 uint_t entry = htable_va2entry(vaddr, higher);
1137 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1138 x86pte_t found;
1140 ASSERT(higher->ht_busy > 0);
1142 ASSERT(new->ht_level != mmu.max_level);
1144 HTABLE_INC(higher->ht_valid_cnt);
1146 found = x86pte_cas(higher, entry, 0, newptp);
1147 if ((found & ~PT_REF) != 0)
1148 panic("HAT: ptp not 0, found=" FMT_PTE, found);
1151 * When any top level VLP page table entry changes, we must issue
1152 * a reload of cr3 on all processors using it.
1153 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1155 if (
1156 #ifdef __i386
1157 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1158 #endif
1159 (higher->ht_flags & HTABLE_VLP))
1160 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1164 * Release of hold on an htable. If this is the last use and the pagetable
1165 * is empty we may want to free it, then recursively look at the pagetable
1166 * above it. The recursion is handled by the outer while() loop.
1168 * On the metal, during process exit, we don't bother unlinking the tables from
1169 * upper level pagetables. They are instead handled in bulk by hat_free_end().
1170 * We can't do this on the hypervisor as we need the page table to be
1171 * implicitly unpinnned before it goes to the free page lists. This can't
1172 * happen unless we fully unlink it from the page table hierarchy.
1174 void
1175 htable_release(htable_t *ht)
1177 uint_t hashval;
1178 htable_t *shared;
1179 htable_t *higher;
1180 hat_t *hat;
1181 uintptr_t va;
1182 level_t level;
1184 while (ht != NULL) {
1185 shared = NULL;
1186 for (;;) {
1187 hat = ht->ht_hat;
1188 va = ht->ht_vaddr;
1189 level = ht->ht_level;
1190 hashval = HTABLE_HASH(hat, va, level);
1193 * The common case is that this isn't the last use of
1194 * an htable so we don't want to free the htable.
1196 HTABLE_ENTER(hashval);
1197 ASSERT(ht->ht_valid_cnt >= 0);
1198 ASSERT(ht->ht_busy > 0);
1199 if (ht->ht_valid_cnt > 0)
1200 break;
1201 if (ht->ht_busy > 1)
1202 break;
1203 ASSERT(ht->ht_lock_cnt == 0);
1205 #if !defined(__xpv)
1207 * we always release empty shared htables
1209 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1212 * don't release if in address space tear down
1214 if (hat->hat_flags & HAT_FREEING)
1215 break;
1218 * At and above max_page_level, free if it's for
1219 * a boot-time kernel mapping below kernelbase.
1221 if (level >= mmu.max_page_level &&
1222 (hat != kas.a_hat || va >= kernelbase))
1223 break;
1225 #endif /* __xpv */
1228 * Remember if we destroy an htable that shares its PFN
1229 * from elsewhere.
1231 if (ht->ht_flags & HTABLE_SHARED_PFN) {
1232 ASSERT(shared == NULL);
1233 shared = ht->ht_shares;
1234 HATSTAT_INC(hs_htable_unshared);
1238 * Handle release of a table and freeing the htable_t.
1239 * Unlink it from the table higher (ie. ht_parent).
1241 higher = ht->ht_parent;
1242 ASSERT(higher != NULL);
1245 * Unlink the pagetable.
1247 unlink_ptp(higher, ht, va);
1250 * remove this htable from its hash list
1252 if (ht->ht_next)
1253 ht->ht_next->ht_prev = ht->ht_prev;
1255 if (ht->ht_prev) {
1256 ht->ht_prev->ht_next = ht->ht_next;
1257 } else {
1258 ASSERT(hat->hat_ht_hash[hashval] == ht);
1259 hat->hat_ht_hash[hashval] = ht->ht_next;
1261 HTABLE_EXIT(hashval);
1262 htable_free(ht);
1263 ht = higher;
1266 ASSERT(ht->ht_busy >= 1);
1267 --ht->ht_busy;
1268 HTABLE_EXIT(hashval);
1271 * If we released a shared htable, do a release on the htable
1272 * from which it shared
1274 ht = shared;
1279 * Find the htable for the pagetable at the given level for the given address.
1280 * If found acquires a hold that eventually needs to be htable_release()d
1282 htable_t *
1283 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1285 uintptr_t base;
1286 uint_t hashval;
1287 htable_t *ht = NULL;
1289 ASSERT(level >= 0);
1290 ASSERT(level <= TOP_LEVEL(hat));
1292 if (level == TOP_LEVEL(hat)) {
1293 #if defined(__amd64)
1295 * 32 bit address spaces on 64 bit kernels need to check
1296 * for overflow of the 32 bit address space
1298 if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1299 return (NULL);
1300 #endif
1301 base = 0;
1302 } else {
1303 base = vaddr & LEVEL_MASK(level + 1);
1306 hashval = HTABLE_HASH(hat, base, level);
1307 HTABLE_ENTER(hashval);
1308 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1309 if (ht->ht_hat == hat &&
1310 ht->ht_vaddr == base &&
1311 ht->ht_level == level)
1312 break;
1314 if (ht)
1315 ++ht->ht_busy;
1317 HTABLE_EXIT(hashval);
1318 return (ht);
1322 * Acquires a hold on a known htable (from a locked hment entry).
1324 void
1325 htable_acquire(htable_t *ht)
1327 hat_t *hat = ht->ht_hat;
1328 level_t level = ht->ht_level;
1329 uintptr_t base = ht->ht_vaddr;
1330 uint_t hashval = HTABLE_HASH(hat, base, level);
1332 HTABLE_ENTER(hashval);
1333 #ifdef DEBUG
1335 * make sure the htable is there
1338 htable_t *h;
1340 for (h = hat->hat_ht_hash[hashval];
1341 h && h != ht;
1342 h = h->ht_next)
1344 ASSERT(h == ht);
1346 #endif /* DEBUG */
1347 ++ht->ht_busy;
1348 HTABLE_EXIT(hashval);
1352 * Find the htable for the pagetable at the given level for the given address.
1353 * If found acquires a hold that eventually needs to be htable_release()d
1354 * If not found the table is created.
1356 * Since we can't hold a hash table mutex during allocation, we have to
1357 * drop it and redo the search on a create. Then we may have to free the newly
1358 * allocated htable if another thread raced in and created it ahead of us.
1360 htable_t *
1361 htable_create(
1362 hat_t *hat,
1363 uintptr_t vaddr,
1364 level_t level,
1365 htable_t *shared)
1367 uint_t h;
1368 level_t l;
1369 uintptr_t base;
1370 htable_t *ht;
1371 htable_t *higher = NULL;
1372 htable_t *new = NULL;
1374 if (level < 0 || level > TOP_LEVEL(hat))
1375 panic("htable_create(): level %d out of range\n", level);
1378 * Create the page tables in top down order.
1380 for (l = TOP_LEVEL(hat); l >= level; --l) {
1381 new = NULL;
1382 if (l == TOP_LEVEL(hat))
1383 base = 0;
1384 else
1385 base = vaddr & LEVEL_MASK(l + 1);
1387 h = HTABLE_HASH(hat, base, l);
1388 try_again:
1390 * look up the htable at this level
1392 HTABLE_ENTER(h);
1393 if (l == TOP_LEVEL(hat)) {
1394 ht = hat->hat_htable;
1395 } else {
1396 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1397 ASSERT(ht->ht_hat == hat);
1398 if (ht->ht_vaddr == base &&
1399 ht->ht_level == l)
1400 break;
1405 * if we found the htable, increment its busy cnt
1406 * and if we had allocated a new htable, free it.
1408 if (ht != NULL) {
1410 * If we find a pre-existing shared table, it must
1411 * share from the same place.
1413 if (l == level && shared && ht->ht_shares &&
1414 ht->ht_shares != shared) {
1415 panic("htable shared from wrong place "
1416 "found htable=%p shared=%p",
1417 (void *)ht, (void *)shared);
1419 ++ht->ht_busy;
1420 HTABLE_EXIT(h);
1421 if (new)
1422 htable_free(new);
1423 if (higher != NULL)
1424 htable_release(higher);
1425 higher = ht;
1428 * if we didn't find it on the first search
1429 * allocate a new one and search again
1431 } else if (new == NULL) {
1432 HTABLE_EXIT(h);
1433 new = htable_alloc(hat, base, l,
1434 l == level ? shared : NULL);
1435 goto try_again;
1438 * 2nd search and still not there, use "new" table
1439 * Link new table into higher, when not at top level.
1441 } else {
1442 ht = new;
1443 if (higher != NULL) {
1444 link_ptp(higher, ht, base);
1445 ht->ht_parent = higher;
1447 ht->ht_next = hat->hat_ht_hash[h];
1448 ASSERT(ht->ht_prev == NULL);
1449 if (hat->hat_ht_hash[h])
1450 hat->hat_ht_hash[h]->ht_prev = ht;
1451 hat->hat_ht_hash[h] = ht;
1452 HTABLE_EXIT(h);
1455 * Note we don't do htable_release(higher).
1456 * That happens recursively when "new" is removed by
1457 * htable_release() or htable_steal().
1459 higher = ht;
1462 * If we just created a new shared page table we
1463 * increment the shared htable's busy count, so that
1464 * it can't be the victim of a steal even if it's empty.
1466 if (l == level && shared) {
1467 (void) htable_lookup(shared->ht_hat,
1468 shared->ht_vaddr, shared->ht_level);
1469 HATSTAT_INC(hs_htable_shared);
1474 return (ht);
1478 * Inherit initial pagetables from the boot program. On the 64-bit
1479 * hypervisor we also temporarily mark the p_index field of page table
1480 * pages, so we know not to try making them writable in seg_kpm.
1482 void
1483 htable_attach(
1484 hat_t *hat,
1485 uintptr_t base,
1486 level_t level,
1487 htable_t *parent,
1488 pfn_t pfn)
1490 htable_t *ht;
1491 uint_t h;
1492 uint_t i;
1493 x86pte_t pte;
1494 x86pte_t *ptep;
1495 page_t *pp;
1496 extern page_t *boot_claim_page(pfn_t);
1498 ht = htable_get_reserve();
1499 if (level == mmu.max_level)
1500 kas.a_hat->hat_htable = ht;
1501 ht->ht_hat = hat;
1502 ht->ht_parent = parent;
1503 ht->ht_vaddr = base;
1504 ht->ht_level = level;
1505 ht->ht_busy = 1;
1506 ht->ht_next = NULL;
1507 ht->ht_prev = NULL;
1508 ht->ht_flags = 0;
1509 ht->ht_pfn = pfn;
1510 ht->ht_lock_cnt = 0;
1511 ht->ht_valid_cnt = 0;
1512 if (parent != NULL)
1513 ++parent->ht_busy;
1515 h = HTABLE_HASH(hat, base, level);
1516 HTABLE_ENTER(h);
1517 ht->ht_next = hat->hat_ht_hash[h];
1518 ASSERT(ht->ht_prev == NULL);
1519 if (hat->hat_ht_hash[h])
1520 hat->hat_ht_hash[h]->ht_prev = ht;
1521 hat->hat_ht_hash[h] = ht;
1522 HTABLE_EXIT(h);
1525 * make sure the page table physical page is not FREE
1527 if (page_resv(1, KM_NOSLEEP) == 0)
1528 panic("page_resv() failed in ptable alloc");
1530 pp = boot_claim_page(pfn);
1531 ASSERT(pp != NULL);
1534 * Page table pages that were allocated by dboot or
1535 * in very early startup didn't go through boot_mapin()
1536 * and so won't have vnode/offsets. Fix that here.
1538 if (pp->p_vnode == NULL) {
1539 /* match offset calculation in page_get_physical() */
1540 u_offset_t offset = (uintptr_t)ht;
1541 if (offset > kernelbase)
1542 offset -= kernelbase;
1543 offset <<= MMU_PAGESHIFT;
1544 #if defined(__amd64)
1545 offset += mmu.hole_start; /* something in VA hole */
1546 #else
1547 offset += 1ULL << 40; /* something > 4 Gig */
1548 #endif
1549 ASSERT(page_exists(&kvp, offset) == NULL);
1550 (void) page_hashin(pp, &kvp, offset, NULL);
1552 page_downgrade(pp);
1553 #if defined(__xpv) && defined(__amd64)
1555 * Record in the page_t that is a pagetable for segkpm setup.
1557 if (kpm_vbase)
1558 pp->p_index = 1;
1559 #endif
1562 * Count valid mappings and recursively attach lower level pagetables.
1564 ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1565 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1566 if (mmu.pae_hat)
1567 pte = ptep[i];
1568 else
1569 pte = ((x86pte32_t *)ptep)[i];
1570 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1571 ++ht->ht_valid_cnt;
1572 if (!PTE_ISPAGE(pte, level)) {
1573 htable_attach(hat, base, level - 1,
1574 ht, PTE2PFN(pte, level));
1575 ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1578 base += LEVEL_SIZE(level);
1579 if (base == mmu.hole_start)
1580 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1584 * As long as all the mappings we had were below kernel base
1585 * we can release the htable.
1587 if (base < kernelbase)
1588 htable_release(ht);
1592 * Walk through a given htable looking for the first valid entry. This
1593 * routine takes both a starting and ending address. The starting address
1594 * is required to be within the htable provided by the caller, but there is
1595 * no such restriction on the ending address.
1597 * If the routine finds a valid entry in the htable (at or beyond the
1598 * starting address), the PTE (and its address) will be returned.
1599 * This PTE may correspond to either a page or a pagetable - it is the
1600 * caller's responsibility to determine which. If no valid entry is
1601 * found, 0 (and invalid PTE) and the next unexamined address will be
1602 * returned.
1604 * The loop has been carefully coded for optimization.
1606 static x86pte_t
1607 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1609 uint_t e;
1610 x86pte_t found_pte = (x86pte_t)0;
1611 caddr_t pte_ptr;
1612 caddr_t end_pte_ptr;
1613 int l = ht->ht_level;
1614 uintptr_t va = *vap & LEVEL_MASK(l);
1615 size_t pgsize = LEVEL_SIZE(l);
1617 ASSERT(va >= ht->ht_vaddr);
1618 ASSERT(va <= HTABLE_LAST_PAGE(ht));
1621 * Compute the starting index and ending virtual address
1623 e = htable_va2entry(va, ht);
1626 * The following page table scan code knows that the valid
1627 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1629 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1630 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1631 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1632 while (!PTE_ISVALID(*pte_ptr)) {
1633 va += pgsize;
1634 if (va >= eaddr)
1635 break;
1636 pte_ptr += mmu.pte_size;
1637 ASSERT(pte_ptr <= end_pte_ptr);
1638 if (pte_ptr == end_pte_ptr)
1639 break;
1643 * if we found a valid PTE, load the entire PTE
1645 if (va < eaddr && pte_ptr != end_pte_ptr)
1646 found_pte = GET_PTE((x86pte_t *)pte_ptr);
1647 x86pte_release_pagetable(ht);
1649 #if defined(__amd64)
1651 * deal with VA hole on amd64
1653 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1654 va = mmu.hole_end + va - mmu.hole_start;
1655 #endif /* __amd64 */
1657 *vap = va;
1658 return (found_pte);
1662 * Find the address and htable for the first populated translation at or
1663 * above the given virtual address. The caller may also specify an upper
1664 * limit to the address range to search. Uses level information to quickly
1665 * skip unpopulated sections of virtual address spaces.
1667 * If not found returns NULL. When found, returns the htable and virt addr
1668 * and has a hold on the htable.
1670 x86pte_t
1671 htable_walk(
1672 struct hat *hat,
1673 htable_t **htp,
1674 uintptr_t *vaddr,
1675 uintptr_t eaddr)
1677 uintptr_t va = *vaddr;
1678 htable_t *ht;
1679 htable_t *prev = *htp;
1680 level_t l;
1681 level_t max_mapped_level;
1682 x86pte_t pte;
1684 ASSERT(eaddr > va);
1687 * If this is a user address, then we know we need not look beyond
1688 * kernelbase.
1690 ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1691 eaddr == HTABLE_WALK_TO_END);
1692 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1693 eaddr = kernelbase;
1696 * If we're coming in with a previous page table, search it first
1697 * without doing an htable_lookup(), this should be frequent.
1699 if (prev) {
1700 ASSERT(prev->ht_busy > 0);
1701 ASSERT(prev->ht_vaddr <= va);
1702 l = prev->ht_level;
1703 if (va <= HTABLE_LAST_PAGE(prev)) {
1704 pte = htable_scan(prev, &va, eaddr);
1706 if (PTE_ISPAGE(pte, l)) {
1707 *vaddr = va;
1708 *htp = prev;
1709 return (pte);
1714 * We found nothing in the htable provided by the caller,
1715 * so fall through and do the full search
1717 htable_release(prev);
1721 * Find the level of the largest pagesize used by this HAT.
1723 if (hat->hat_ism_pgcnt > 0) {
1724 max_mapped_level = mmu.umax_page_level;
1725 } else {
1726 max_mapped_level = 0;
1727 for (l = 1; l <= mmu.max_page_level; ++l)
1728 if (hat->hat_pages_mapped[l] != 0)
1729 max_mapped_level = l;
1732 while (va < eaddr && va >= *vaddr) {
1734 * Find lowest table with any entry for given address.
1736 for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1737 ht = htable_lookup(hat, va, l);
1738 if (ht != NULL) {
1739 pte = htable_scan(ht, &va, eaddr);
1740 if (PTE_ISPAGE(pte, l)) {
1741 VERIFY(!IN_VA_HOLE(va));
1742 *vaddr = va;
1743 *htp = ht;
1744 return (pte);
1746 htable_release(ht);
1747 break;
1751 * No htable at this level for the address. If there
1752 * is no larger page size that could cover it, we can
1753 * skip right to the start of the next page table.
1755 ASSERT(l < TOP_LEVEL(hat));
1756 if (l >= max_mapped_level) {
1757 va = NEXT_ENTRY_VA(va, l + 1);
1758 if (va >= eaddr)
1759 break;
1764 *vaddr = 0;
1765 *htp = NULL;
1766 return (0);
1770 * Find the htable and page table entry index of the given virtual address
1771 * with pagesize at or below given level.
1772 * If not found returns NULL. When found, returns the htable, sets
1773 * entry, and has a hold on the htable.
1775 htable_t *
1776 htable_getpte(
1777 struct hat *hat,
1778 uintptr_t vaddr,
1779 uint_t *entry,
1780 x86pte_t *pte,
1781 level_t level)
1783 htable_t *ht;
1784 level_t l;
1785 uint_t e;
1787 ASSERT(level <= mmu.max_page_level);
1789 for (l = 0; l <= level; ++l) {
1790 ht = htable_lookup(hat, vaddr, l);
1791 if (ht == NULL)
1792 continue;
1793 e = htable_va2entry(vaddr, ht);
1794 if (entry != NULL)
1795 *entry = e;
1796 if (pte != NULL)
1797 *pte = x86pte_get(ht, e);
1798 return (ht);
1800 return (NULL);
1804 * Find the htable and page table entry index of the given virtual address.
1805 * There must be a valid page mapped at the given address.
1806 * If not found returns NULL. When found, returns the htable, sets
1807 * entry, and has a hold on the htable.
1809 htable_t *
1810 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1812 htable_t *ht;
1813 uint_t e;
1814 x86pte_t pte;
1816 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1817 if (ht == NULL)
1818 return (NULL);
1820 if (entry)
1821 *entry = e;
1823 if (PTE_ISPAGE(pte, ht->ht_level))
1824 return (ht);
1825 htable_release(ht);
1826 return (NULL);
1830 void
1831 htable_init()
1834 * To save on kernel VA usage, we avoid debug information in 32 bit
1835 * kernels.
1837 #if defined(__amd64)
1838 int kmem_flags = KMC_NOHASH;
1839 #elif defined(__i386)
1840 int kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1841 #endif
1844 * initialize kmem caches
1846 htable_cache = kmem_cache_create("htable_t",
1847 sizeof (htable_t), 0, NULL, NULL,
1848 htable_reap, NULL, hat_memload_arena, kmem_flags);
1852 * get the pte index for the virtual address in the given htable's pagetable
1854 uint_t
1855 htable_va2entry(uintptr_t va, htable_t *ht)
1857 level_t l = ht->ht_level;
1859 ASSERT(va >= ht->ht_vaddr);
1860 ASSERT(va <= HTABLE_LAST_PAGE(ht));
1861 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1865 * Given an htable and the index of a pte in it, return the virtual address
1866 * of the page.
1868 uintptr_t
1869 htable_e2va(htable_t *ht, uint_t entry)
1871 level_t l = ht->ht_level;
1872 uintptr_t va;
1874 ASSERT(entry < HTABLE_NUM_PTES(ht));
1875 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1878 * Need to skip over any VA hole in top level table
1880 #if defined(__amd64)
1881 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1882 va += ((mmu.hole_end - mmu.hole_start) + 1);
1883 #endif
1885 return (va);
1889 * The code uses compare and swap instructions to read/write PTE's to
1890 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1891 * will naturally be atomic.
1893 * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1894 * are used to ensure that an interrupt won't overwrite a temporary mapping
1895 * while it's in use. If an interrupt thread tries to access a PTE, it will
1896 * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1898 void
1899 x86pte_cpu_init(cpu_t *cpu)
1901 struct hat_cpu_info *hci;
1903 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1904 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1905 cpu->cpu_hat_info = hci;
1908 void
1909 x86pte_cpu_fini(cpu_t *cpu)
1911 struct hat_cpu_info *hci = cpu->cpu_hat_info;
1913 kmem_free(hci, sizeof (*hci));
1914 cpu->cpu_hat_info = NULL;
1917 #ifdef __i386
1919 * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1921 x86pte_t
1922 get_pte64(x86pte_t *ptr)
1924 volatile uint32_t *p = (uint32_t *)ptr;
1925 x86pte_t t;
1927 ASSERT(mmu.pae_hat != 0);
1928 for (;;) {
1929 t = p[0];
1930 t |= (uint64_t)p[1] << 32;
1931 if ((t & 0xffffffff) == p[0])
1932 return (t);
1935 #endif /* __i386 */
1938 * Disable preemption and establish a mapping to the pagetable with the
1939 * given pfn. This is optimized for there case where it's the same
1940 * pfn as we last used referenced from this CPU.
1942 static x86pte_t *
1943 x86pte_access_pagetable(htable_t *ht, uint_t index)
1946 * VLP pagetables are contained in the hat_t
1948 if (ht->ht_flags & HTABLE_VLP)
1949 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1950 return (x86pte_mapin(ht->ht_pfn, index, ht));
1954 * map the given pfn into the page table window.
1956 /*ARGSUSED*/
1957 x86pte_t *
1958 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1960 x86pte_t *pteptr;
1961 x86pte_t pte = 0;
1962 x86pte_t newpte;
1963 int x;
1965 ASSERT(pfn != PFN_INVALID);
1967 if (!khat_running) {
1968 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1969 return (PT_INDEX_PTR(va, index));
1973 * If kpm is available, use it.
1975 if (kpm_vbase)
1976 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1979 * Disable preemption and grab the CPU's hci_mutex
1981 kpreempt_disable();
1982 ASSERT(CPU->cpu_hat_info != NULL);
1983 mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1984 x = PWIN_TABLE(CPU->cpu_id);
1985 pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1986 #ifndef __xpv
1987 if (mmu.pae_hat)
1988 pte = *pteptr;
1989 else
1990 pte = *(x86pte32_t *)pteptr;
1991 #endif
1993 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1996 * For hardware we can use a writable mapping.
1998 #ifdef __xpv
1999 if (IN_XPV_PANIC())
2000 #endif
2001 newpte |= PT_WRITABLE;
2003 if (!PTE_EQUIV(newpte, pte)) {
2005 #ifdef __xpv
2006 if (!IN_XPV_PANIC()) {
2007 xen_map(newpte, PWIN_VA(x));
2008 } else
2009 #endif
2011 XPV_ALLOW_PAGETABLE_UPDATES();
2012 if (mmu.pae_hat)
2013 *pteptr = newpte;
2014 else
2015 *(x86pte32_t *)pteptr = newpte;
2016 XPV_DISALLOW_PAGETABLE_UPDATES();
2017 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2020 return (PT_INDEX_PTR(PWIN_VA(x), index));
2024 * Release access to a page table.
2026 static void
2027 x86pte_release_pagetable(htable_t *ht)
2030 * nothing to do for VLP htables
2032 if (ht->ht_flags & HTABLE_VLP)
2033 return;
2035 x86pte_mapout();
2038 void
2039 x86pte_mapout(void)
2041 if (kpm_vbase != NULL || !khat_running)
2042 return;
2045 * Drop the CPU's hci_mutex and restore preemption.
2047 #ifdef __xpv
2048 if (!IN_XPV_PANIC()) {
2049 uintptr_t va;
2052 * We need to always clear the mapping in case a page
2053 * that was once a page table page is ballooned out.
2055 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
2056 (void) HYPERVISOR_update_va_mapping(va, 0,
2057 UVMF_INVLPG | UVMF_LOCAL);
2059 #endif
2060 mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2061 kpreempt_enable();
2065 * Atomic retrieval of a pagetable entry
2067 x86pte_t
2068 x86pte_get(htable_t *ht, uint_t entry)
2070 x86pte_t pte;
2071 x86pte_t *ptep;
2074 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2076 ASSERT(entry < mmu.ptes_per_table);
2077 ptep = x86pte_access_pagetable(ht, entry);
2078 pte = GET_PTE(ptep);
2079 x86pte_release_pagetable(ht);
2080 return (pte);
2084 * Atomic unconditional set of a page table entry, it returns the previous
2085 * value. For pre-existing mappings if the PFN changes, then we don't care
2086 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2087 * the MOD/REF bits unchanged.
2089 * If asked to overwrite a link to a lower page table with a large page
2090 * mapping, this routine returns the special value of LPAGE_ERROR. This
2091 * allows the upper HAT layers to retry with a smaller mapping size.
2093 x86pte_t
2094 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2096 x86pte_t old;
2097 x86pte_t prev;
2098 x86pte_t *ptep;
2099 level_t l = ht->ht_level;
2100 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2101 x86pte_t n;
2102 uintptr_t addr = htable_e2va(ht, entry);
2103 hat_t *hat = ht->ht_hat;
2105 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2106 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2107 if (ptr == NULL)
2108 ptep = x86pte_access_pagetable(ht, entry);
2109 else
2110 ptep = ptr;
2113 * Install the new PTE. If remapping the same PFN, then
2114 * copy existing REF/MOD bits to new mapping.
2116 do {
2117 prev = GET_PTE(ptep);
2118 n = new;
2119 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2120 n |= prev & (PT_REF | PT_MOD);
2123 * Another thread may have installed this mapping already,
2124 * flush the local TLB and be done.
2126 if (prev == n) {
2127 old = new;
2128 #ifdef __xpv
2129 if (!IN_XPV_PANIC())
2130 xen_flush_va((caddr_t)addr);
2131 else
2132 #endif
2133 mmu_tlbflush_entry((caddr_t)addr);
2134 goto done;
2138 * Detect if we have a collision of installing a large
2139 * page mapping where there already is a lower page table.
2141 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2142 old = LPAGE_ERROR;
2143 goto done;
2146 XPV_ALLOW_PAGETABLE_UPDATES();
2147 old = CAS_PTE(ptep, prev, n);
2148 XPV_DISALLOW_PAGETABLE_UPDATES();
2149 } while (old != prev);
2152 * Do a TLB demap if needed, ie. the old pte was valid.
2154 * Note that a stale TLB writeback to the PTE here either can't happen
2155 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2156 * mappings, but they were created with REF and MOD already set, so
2157 * no stale writeback will happen.
2159 * Segmap is the only place where remaps happen on the same pfn and for
2160 * that we want to preserve the stale REF/MOD bits.
2162 if (old & PT_REF)
2163 hat_tlb_inval(hat, addr);
2165 done:
2166 if (ptr == NULL)
2167 x86pte_release_pagetable(ht);
2168 return (old);
2172 * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2173 * This is used for links between pagetables of different levels.
2174 * Note we always create these links with dirty/access set, so they should
2175 * never change.
2177 x86pte_t
2178 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2180 x86pte_t pte;
2181 x86pte_t *ptep;
2182 #ifdef __xpv
2184 * We can't use writable pagetables for upper level tables, so fake it.
2186 mmu_update_t t[2];
2187 int cnt = 1;
2188 int count;
2189 maddr_t ma;
2191 if (!IN_XPV_PANIC()) {
2192 ASSERT(!(ht->ht_flags & HTABLE_VLP)); /* no VLP yet */
2193 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2194 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2195 t[0].val = new;
2197 #if defined(__amd64)
2199 * On the 64-bit hypervisor we need to maintain the user mode
2200 * top page table too.
2202 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2203 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2204 ht->ht_hat->hat_user_ptable), entry));
2205 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2206 t[1].val = new;
2207 ++cnt;
2209 #endif /* __amd64 */
2211 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2212 panic("HYPERVISOR_mmu_update() failed");
2213 ASSERT(count == cnt);
2214 return (old);
2216 #endif
2217 ptep = x86pte_access_pagetable(ht, entry);
2218 XPV_ALLOW_PAGETABLE_UPDATES();
2219 pte = CAS_PTE(ptep, old, new);
2220 XPV_DISALLOW_PAGETABLE_UPDATES();
2221 x86pte_release_pagetable(ht);
2222 return (pte);
2226 * Invalidate a page table entry as long as it currently maps something that
2227 * matches the value determined by expect.
2229 * If tlb is set, also invalidates any TLB entries.
2231 * Returns the previous value of the PTE.
2233 x86pte_t
2234 x86pte_inval(
2235 htable_t *ht,
2236 uint_t entry,
2237 x86pte_t expect,
2238 x86pte_t *pte_ptr,
2239 boolean_t tlb)
2241 x86pte_t *ptep;
2242 x86pte_t oldpte;
2243 x86pte_t found;
2245 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2246 ASSERT(ht->ht_level <= mmu.max_page_level);
2248 if (pte_ptr != NULL)
2249 ptep = pte_ptr;
2250 else
2251 ptep = x86pte_access_pagetable(ht, entry);
2253 #if defined(__xpv)
2255 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2256 * with anything else.
2258 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2259 int count;
2260 mmu_update_t t[1];
2261 maddr_t ma;
2263 oldpte = GET_PTE(ptep);
2264 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2265 goto done;
2266 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2267 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2268 t[0].val = 0;
2269 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2270 panic("HYPERVISOR_mmu_update() failed");
2271 ASSERT(count == 1);
2272 goto done;
2274 #endif /* __xpv */
2277 * Note that the loop is needed to handle changes due to h/w updating
2278 * of PT_MOD/PT_REF.
2280 do {
2281 oldpte = GET_PTE(ptep);
2282 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2283 goto done;
2284 XPV_ALLOW_PAGETABLE_UPDATES();
2285 found = CAS_PTE(ptep, oldpte, 0);
2286 XPV_DISALLOW_PAGETABLE_UPDATES();
2287 } while (found != oldpte);
2288 if (tlb && (oldpte & (PT_REF | PT_MOD)))
2289 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2291 done:
2292 if (pte_ptr == NULL)
2293 x86pte_release_pagetable(ht);
2294 return (oldpte);
2298 * Change a page table entry af it currently matches the value in expect.
2300 x86pte_t
2301 x86pte_update(
2302 htable_t *ht,
2303 uint_t entry,
2304 x86pte_t expect,
2305 x86pte_t new)
2307 x86pte_t *ptep;
2308 x86pte_t found;
2310 ASSERT(new != 0);
2311 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2312 ASSERT(ht->ht_level <= mmu.max_page_level);
2314 ptep = x86pte_access_pagetable(ht, entry);
2315 XPV_ALLOW_PAGETABLE_UPDATES();
2316 found = CAS_PTE(ptep, expect, new);
2317 XPV_DISALLOW_PAGETABLE_UPDATES();
2318 if (found == expect) {
2319 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2322 * When removing write permission *and* clearing the
2323 * MOD bit, check if a write happened via a stale
2324 * TLB entry before the TLB shootdown finished.
2326 * If it did happen, simply re-enable write permission and
2327 * act like the original CAS failed.
2329 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2330 (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2331 (GET_PTE(ptep) & PT_MOD) != 0) {
2332 do {
2333 found = GET_PTE(ptep);
2334 XPV_ALLOW_PAGETABLE_UPDATES();
2335 found =
2336 CAS_PTE(ptep, found, found | PT_WRITABLE);
2337 XPV_DISALLOW_PAGETABLE_UPDATES();
2338 } while ((found & PT_WRITABLE) == 0);
2341 x86pte_release_pagetable(ht);
2342 return (found);
2345 #ifndef __xpv
2347 * Copy page tables - this is just a little more complicated than the
2348 * previous routines. Note that it's also not atomic! It also is never
2349 * used for VLP pagetables.
2351 void
2352 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2354 caddr_t src_va;
2355 caddr_t dst_va;
2356 size_t size;
2357 x86pte_t *pteptr;
2358 x86pte_t pte;
2360 ASSERT(khat_running);
2361 ASSERT(!(dest->ht_flags & HTABLE_VLP));
2362 ASSERT(!(src->ht_flags & HTABLE_VLP));
2363 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2364 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2367 * Acquire access to the CPU pagetable windows for the dest and source.
2369 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2370 if (kpm_vbase) {
2371 src_va = (caddr_t)
2372 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2373 } else {
2374 uint_t x = PWIN_SRC(CPU->cpu_id);
2377 * Finish defining the src pagetable mapping
2379 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2380 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2381 pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2382 if (mmu.pae_hat)
2383 *pteptr = pte;
2384 else
2385 *(x86pte32_t *)pteptr = pte;
2386 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2390 * now do the copy
2392 size = count << mmu.pte_size_shift;
2393 bcopy(src_va, dst_va, size);
2395 x86pte_release_pagetable(dest);
2398 #else /* __xpv */
2401 * The hypervisor only supports writable pagetables at level 0, so we have
2402 * to install these 1 by 1 the slow way.
2404 void
2405 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2407 caddr_t src_va;
2408 x86pte_t pte;
2410 ASSERT(!IN_XPV_PANIC());
2411 src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2412 while (count) {
2413 if (mmu.pae_hat)
2414 pte = *(x86pte_t *)src_va;
2415 else
2416 pte = *(x86pte32_t *)src_va;
2417 if (pte != 0) {
2418 set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2419 dest->ht_level, pte);
2420 #ifdef __amd64
2421 if (dest->ht_level == mmu.max_level &&
2422 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2423 set_pteval(
2424 pfn_to_pa(dest->ht_hat->hat_user_ptable),
2425 entry, dest->ht_level, pte);
2426 #endif
2428 --count;
2429 ++entry;
2430 src_va += mmu.pte_size;
2432 x86pte_release_pagetable(src);
2434 #endif /* __xpv */
2437 * Zero page table entries - Note this doesn't use atomic stores!
2439 static void
2440 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2442 caddr_t dst_va;
2443 size_t size;
2444 #ifdef __xpv
2445 int x;
2446 x86pte_t newpte;
2447 #endif
2450 * Map in the page table to be zeroed.
2452 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2453 ASSERT(!(dest->ht_flags & HTABLE_VLP));
2456 * On the hypervisor we don't use x86pte_access_pagetable() since
2457 * in this case the page is not pinned yet.
2459 #ifdef __xpv
2460 if (kpm_vbase == NULL) {
2461 kpreempt_disable();
2462 ASSERT(CPU->cpu_hat_info != NULL);
2463 mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2464 x = PWIN_TABLE(CPU->cpu_id);
2465 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2466 xen_map(newpte, PWIN_VA(x));
2467 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2468 } else
2469 #endif
2470 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2472 size = count << mmu.pte_size_shift;
2473 ASSERT(size > BLOCKZEROALIGN);
2474 #ifdef __i386
2475 if (!is_x86_feature(x86_featureset, X86FSET_SSE2))
2476 bzero(dst_va, size);
2477 else
2478 #endif
2479 block_zero_no_xmm(dst_va, size);
2481 #ifdef __xpv
2482 if (kpm_vbase == NULL) {
2483 xen_map(0, PWIN_VA(x));
2484 mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2485 kpreempt_enable();
2486 } else
2487 #endif
2488 x86pte_release_pagetable(dest);
2492 * Called to ensure that all pagetables are in the system dump
2494 void
2495 hat_dump(void)
2497 hat_t *hat;
2498 uint_t h;
2499 htable_t *ht;
2502 * Dump all page tables
2504 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2505 for (h = 0; h < hat->hat_num_hash; ++h) {
2506 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2507 if ((ht->ht_flags & HTABLE_VLP) == 0)
2508 dump_page(ht->ht_pfn);