6198 Let's EOL cachefs
[illumos-gate.git] / usr / src / uts / common / sys / avl.h
blobcc4af828e6e1729c7bcdd1cabadb043fd368206f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2014 by Delphix. All rights reserved.
30 #ifndef _AVL_H
31 #define _AVL_H
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
37 #include <sys/types.h>
38 #include <sys/avl_impl.h>
41 * This is a generic implementation of AVL trees for use in the illumos. The
42 * interfaces provide an efficient way of implementing an ordered set of data
43 * structures.
45 * AVL trees provide an alternative to using an ordered linked list. Using AVL
46 * trees will usually be faster, however they requires more storage. An ordered
47 * linked list in general requires 2 pointers in each data structure. The
48 * AVL tree implementation uses 3 pointers. The following chart gives the
49 * approximate performance of operations with the different approaches:
51 * Operation Link List AVL tree
52 * --------- -------- --------
53 * lookup O(n) O(log(n))
55 * insert 1 node constant O(log(n))
57 * delete 1 node constant between constant and O(log(n))
59 * delete all nodes O(n) O(n)
61 * visit the next
62 * or prev node constant between constant and O(log(n))
65 * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
66 * of a list header) and the individual nodes will have a field of
67 * type "avl_node_t" (corresponding to list pointers).
69 * The type "avl_index_t" is used to indicate a position in the list for
70 * certain calls.
72 * The usage scenario is generally:
74 * 1. Create the list/tree with: avl_create()
76 * followed by any mixture of:
78 * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
80 * 2b. Visited elements with:
81 * avl_first() - returns the lowest valued node
82 * avl_last() - returns the highest valued node
83 * AVL_NEXT() - given a node go to next higher one
84 * AVL_PREV() - given a node go to previous lower one
86 * 2c. Find the node with the closest value either less than or greater
87 * than a given value with avl_nearest().
89 * 2d. Remove individual nodes from the list/tree with avl_remove().
91 * and finally when the list is being destroyed
93 * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
94 * Note that once you use avl_destroy_nodes(), you can no longer
95 * use any routine except avl_destroy_nodes() and avl_destoy().
97 * 4. Use avl_destroy() to destroy the AVL tree itself.
99 * Any locking for multiple thread access is up to the user to provide, just
100 * as is needed for any linked list implementation.
105 * Type used for the root of the AVL tree.
107 typedef struct avl_tree avl_tree_t;
110 * The data nodes in the AVL tree must have a field of this type.
112 typedef struct avl_node avl_node_t;
115 * An opaque type used to locate a position in the tree where a node
116 * would be inserted.
118 typedef uintptr_t avl_index_t;
122 * Direction constants used for avl_nearest().
124 #define AVL_BEFORE (0)
125 #define AVL_AFTER (1)
129 * Prototypes
131 * Where not otherwise mentioned, "void *" arguments are a pointer to the
132 * user data structure which must contain a field of type avl_node_t.
134 * Also assume the user data structures looks like:
135 * stuct my_type {
136 * ...
137 * avl_node_t my_link;
138 * ...
139 * };
143 * Initialize an AVL tree. Arguments are:
145 * tree - the tree to be initialized
146 * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
147 * -1 for <, 0 for ==, and +1 for >
148 * size - the value of sizeof(struct my_type)
149 * offset - the value of OFFSETOF(struct my_type, my_link)
151 extern void avl_create(avl_tree_t *tree,
152 int (*compar) (const void *, const void *), size_t size, size_t offset);
156 * Find a node with a matching value in the tree. Returns the matching node
157 * found. If not found, it returns NULL and then if "where" is not NULL it sets
158 * "where" for use with avl_insert() or avl_nearest().
160 * node - node that has the value being looked for
161 * where - position for use with avl_nearest() or avl_insert(), may be NULL
163 extern void *avl_find(avl_tree_t *tree, const void *node, avl_index_t *where);
166 * Insert a node into the tree.
168 * node - the node to insert
169 * where - position as returned from avl_find()
171 extern void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
174 * Insert "new_data" in "tree" in the given "direction" either after
175 * or before the data "here".
177 * This might be useful for avl clients caching recently accessed
178 * data to avoid doing avl_find() again for insertion.
180 * new_data - new data to insert
181 * here - existing node in "tree"
182 * direction - either AVL_AFTER or AVL_BEFORE the data "here".
184 extern void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
185 int direction);
189 * Return the first or last valued node in the tree. Will return NULL
190 * if the tree is empty.
193 extern void *avl_first(avl_tree_t *tree);
194 extern void *avl_last(avl_tree_t *tree);
198 * Return the next or previous valued node in the tree.
199 * AVL_NEXT() will return NULL if at the last node.
200 * AVL_PREV() will return NULL if at the first node.
202 * node - the node from which the next or previous node is found
204 #define AVL_NEXT(tree, node) avl_walk(tree, node, AVL_AFTER)
205 #define AVL_PREV(tree, node) avl_walk(tree, node, AVL_BEFORE)
209 * Find the node with the nearest value either greater or less than
210 * the value from a previous avl_find(). Returns the node or NULL if
211 * there isn't a matching one.
213 * where - position as returned from avl_find()
214 * direction - either AVL_BEFORE or AVL_AFTER
216 * EXAMPLE get the greatest node that is less than a given value:
218 * avl_tree_t *tree;
219 * struct my_data look_for_value = {....};
220 * struct my_data *node;
221 * struct my_data *less;
222 * avl_index_t where;
224 * node = avl_find(tree, &look_for_value, &where);
225 * if (node != NULL)
226 * less = AVL_PREV(tree, node);
227 * else
228 * less = avl_nearest(tree, where, AVL_BEFORE);
230 extern void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
234 * Add a single node to the tree.
235 * The node must not be in the tree, and it must not
236 * compare equal to any other node already in the tree.
238 * node - the node to add
240 extern void avl_add(avl_tree_t *tree, void *node);
244 * Remove a single node from the tree. The node must be in the tree.
246 * node - the node to remove
248 extern void avl_remove(avl_tree_t *tree, void *node);
251 * Reinsert a node only if its order has changed relative to its nearest
252 * neighbors. To optimize performance avl_update_lt() checks only the previous
253 * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
254 * avl_update_gt() only if you know the direction in which the order of the
255 * node may change.
257 extern boolean_t avl_update(avl_tree_t *, void *);
258 extern boolean_t avl_update_lt(avl_tree_t *, void *);
259 extern boolean_t avl_update_gt(avl_tree_t *, void *);
262 * Swaps the contents of the two trees.
264 extern void avl_swap(avl_tree_t *tree1, avl_tree_t *tree2);
267 * Return the number of nodes in the tree
269 extern ulong_t avl_numnodes(avl_tree_t *tree);
272 * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
274 extern boolean_t avl_is_empty(avl_tree_t *tree);
277 * Used to destroy any remaining nodes in a tree. The cookie argument should
278 * be initialized to NULL before the first call. Returns a node that has been
279 * removed from the tree and may be free()'d. Returns NULL when the tree is
280 * empty.
282 * Once you call avl_destroy_nodes(), you can only continuing calling it and
283 * finally avl_destroy(). No other AVL routines will be valid.
285 * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
287 * EXAMPLE:
288 * avl_tree_t *tree;
289 * struct my_data *node;
290 * void *cookie;
292 * cookie = NULL;
293 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
294 * free(node);
295 * avl_destroy(tree);
297 extern void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
301 * Final destroy of an AVL tree. Arguments are:
303 * tree - the empty tree to destroy
305 extern void avl_destroy(avl_tree_t *tree);
309 #ifdef __cplusplus
311 #endif
313 #endif /* _AVL_H */