4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/spa_boot.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zio_compress.h>
35 #include <sys/dmu_tx.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/uberblock_impl.h>
43 #include <sys/unique.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_dir.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
53 #include "zfeature_common.h"
58 * There are four basic locks for managing spa_t structures:
60 * spa_namespace_lock (global mutex)
62 * This lock must be acquired to do any of the following:
64 * - Lookup a spa_t by name
65 * - Add or remove a spa_t from the namespace
66 * - Increase spa_refcount from non-zero
67 * - Check if spa_refcount is zero
69 * - add/remove/attach/detach devices
70 * - Held for the duration of create/destroy/import/export
72 * It does not need to handle recursion. A create or destroy may
73 * reference objects (files or zvols) in other pools, but by
74 * definition they must have an existing reference, and will never need
75 * to lookup a spa_t by name.
77 * spa_refcount (per-spa refcount_t protected by mutex)
79 * This reference count keep track of any active users of the spa_t. The
80 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
81 * the refcount is never really 'zero' - opening a pool implicitly keeps
82 * some references in the DMU. Internally we check against spa_minref, but
83 * present the image of a zero/non-zero value to consumers.
85 * spa_config_lock[] (per-spa array of rwlocks)
87 * This protects the spa_t from config changes, and must be held in
88 * the following circumstances:
90 * - RW_READER to perform I/O to the spa
91 * - RW_WRITER to change the vdev config
93 * The locking order is fairly straightforward:
95 * spa_namespace_lock -> spa_refcount
97 * The namespace lock must be acquired to increase the refcount from 0
98 * or to check if it is zero.
100 * spa_refcount -> spa_config_lock[]
102 * There must be at least one valid reference on the spa_t to acquire
105 * spa_namespace_lock -> spa_config_lock[]
107 * The namespace lock must always be taken before the config lock.
110 * The spa_namespace_lock can be acquired directly and is globally visible.
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
115 * spa_lookup() Lookup a spa_t by name.
117 * spa_add() Create a new spa_t in the namespace.
119 * spa_remove() Remove a spa_t from the namespace. This also
120 * frees up any memory associated with the spa_t.
122 * spa_next() Returns the next spa_t in the system, or the
123 * first if NULL is passed.
125 * spa_evict_all() Shutdown and remove all spa_t structures in
128 * spa_guid_exists() Determine whether a pool/device guid exists.
130 * The spa_refcount is manipulated using the following functions:
132 * spa_open_ref() Adds a reference to the given spa_t. Must be
133 * called with spa_namespace_lock held if the
134 * refcount is currently zero.
136 * spa_close() Remove a reference from the spa_t. This will
137 * not free the spa_t or remove it from the
138 * namespace. No locking is required.
140 * spa_refcount_zero() Returns true if the refcount is currently
141 * zero. Must be called with spa_namespace_lock
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer. To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership. For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
164 * The lock acquisition rules are as follows:
167 * Protects changes to the vdev tree topology, such as vdev
168 * add/remove/attach/detach. Protects the dirty config list
169 * (spa_config_dirty_list) and the set of spares and l2arc devices.
172 * Protects changes to pool state and vdev state, such as vdev
173 * online/offline/fault/degrade/clear. Protects the dirty state list
174 * (spa_state_dirty_list) and global pool state (spa_state).
177 * Protects changes to metaslab groups and classes.
178 * Held as reader by metaslab_alloc() and metaslab_claim().
181 * Held by bp-level zios (those which have no io_vd upon entry)
182 * to prevent changes to the vdev tree. The bp-level zio implicitly
183 * protects all of its vdev child zios, which do not hold SCL_ZIO.
186 * Protects changes to metaslab groups and classes.
187 * Held as reader by metaslab_free(). SCL_FREE is distinct from
188 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 * blocks in zio_done() while another i/o that holds either
190 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
193 * Held as reader to prevent changes to the vdev tree during trivial
194 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
195 * other locks, and lower than all of them, to ensure that it's safe
196 * to acquire regardless of caller context.
198 * In addition, the following rules apply:
200 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
201 * The lock ordering is SCL_CONFIG > spa_props_lock.
203 * (b) I/O operations on leaf vdevs. For any zio operation that takes
204 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 * or zio_write_phys() -- the caller must ensure that the config cannot
206 * cannot change in the interim, and that the vdev cannot be reopened.
207 * SCL_STATE as reader suffices for both.
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211 * spa_vdev_enter() Acquire the namespace lock and the config lock
214 * spa_vdev_exit() Release the config lock, wait for all I/O
215 * to complete, sync the updated configs to the
216 * cache, and release the namespace lock.
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
226 static avl_tree_t spa_namespace_avl
;
227 kmutex_t spa_namespace_lock
;
228 static kcondvar_t spa_namespace_cv
;
229 static int spa_active_count
;
230 int spa_max_replication_override
= SPA_DVAS_PER_BP
;
232 static kmutex_t spa_spare_lock
;
233 static avl_tree_t spa_spare_avl
;
234 static kmutex_t spa_l2cache_lock
;
235 static avl_tree_t spa_l2cache_avl
;
237 kmem_cache_t
*spa_buffer_pool
;
241 /* Everything except dprintf and spa is on by default in debug builds */
242 int zfs_flags
= ~(ZFS_DEBUG_DPRINTF
| ZFS_DEBUG_SPA
);
248 * zfs_recover can be set to nonzero to attempt to recover from
249 * otherwise-fatal errors, typically caused by on-disk corruption. When
250 * set, calls to zfs_panic_recover() will turn into warning messages.
251 * This should only be used as a last resort, as it typically results
252 * in leaked space, or worse.
254 boolean_t zfs_recover
= B_FALSE
;
257 * If destroy encounters an EIO while reading metadata (e.g. indirect
258 * blocks), space referenced by the missing metadata can not be freed.
259 * Normally this causes the background destroy to become "stalled", as
260 * it is unable to make forward progress. While in this stalled state,
261 * all remaining space to free from the error-encountering filesystem is
262 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
263 * permanently leak the space from indirect blocks that can not be read,
264 * and continue to free everything else that it can.
266 * The default, "stalling" behavior is useful if the storage partially
267 * fails (i.e. some but not all i/os fail), and then later recovers. In
268 * this case, we will be able to continue pool operations while it is
269 * partially failed, and when it recovers, we can continue to free the
270 * space, with no leaks. However, note that this case is actually
273 * Typically pools either (a) fail completely (but perhaps temporarily,
274 * e.g. a top-level vdev going offline), or (b) have localized,
275 * permanent errors (e.g. disk returns the wrong data due to bit flip or
276 * firmware bug). In case (a), this setting does not matter because the
277 * pool will be suspended and the sync thread will not be able to make
278 * forward progress regardless. In case (b), because the error is
279 * permanent, the best we can do is leak the minimum amount of space,
280 * which is what setting this flag will do. Therefore, it is reasonable
281 * for this flag to normally be set, but we chose the more conservative
282 * approach of not setting it, so that there is no possibility of
283 * leaking space in the "partial temporary" failure case.
285 boolean_t zfs_free_leak_on_eio
= B_FALSE
;
288 * Expiration time in milliseconds. This value has two meanings. First it is
289 * used to determine when the spa_deadman() logic should fire. By default the
290 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
291 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
292 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
295 uint64_t zfs_deadman_synctime_ms
= 1000000ULL;
298 * Check time in milliseconds. This defines the frequency at which we check
301 uint64_t zfs_deadman_checktime_ms
= 5000ULL;
304 * Override the zfs deadman behavior via /etc/system. By default the
305 * deadman is enabled except on VMware and sparc deployments.
307 int zfs_deadman_enabled
= -1;
310 * The worst case is single-sector max-parity RAID-Z blocks, in which
311 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
312 * times the size; so just assume that. Add to this the fact that
313 * we can have up to 3 DVAs per bp, and one more factor of 2 because
314 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
316 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
318 int spa_asize_inflation
= 24;
321 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
322 * the pool to be consumed. This ensures that we don't run the pool
323 * completely out of space, due to unaccounted changes (e.g. to the MOS).
324 * It also limits the worst-case time to allocate space. If we have
325 * less than this amount of free space, most ZPL operations (e.g. write,
326 * create) will return ENOSPC.
328 * Certain operations (e.g. file removal, most administrative actions) can
329 * use half the slop space. They will only return ENOSPC if less than half
330 * the slop space is free. Typically, once the pool has less than the slop
331 * space free, the user will use these operations to free up space in the pool.
332 * These are the operations that call dsl_pool_adjustedsize() with the netfree
333 * argument set to TRUE.
335 * A very restricted set of operations are always permitted, regardless of
336 * the amount of free space. These are the operations that call
337 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
338 * operations result in a net increase in the amount of space used,
339 * it is possible to run the pool completely out of space, causing it to
340 * be permanently read-only.
342 * See also the comments in zfs_space_check_t.
344 int spa_slop_shift
= 5;
347 * ==========================================================================
349 * ==========================================================================
352 spa_config_lock_init(spa_t
*spa
)
354 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
355 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
356 mutex_init(&scl
->scl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
357 cv_init(&scl
->scl_cv
, NULL
, CV_DEFAULT
, NULL
);
358 refcount_create_untracked(&scl
->scl_count
);
359 scl
->scl_writer
= NULL
;
360 scl
->scl_write_wanted
= 0;
365 spa_config_lock_destroy(spa_t
*spa
)
367 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
368 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
369 mutex_destroy(&scl
->scl_lock
);
370 cv_destroy(&scl
->scl_cv
);
371 refcount_destroy(&scl
->scl_count
);
372 ASSERT(scl
->scl_writer
== NULL
);
373 ASSERT(scl
->scl_write_wanted
== 0);
378 spa_config_tryenter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
380 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
381 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
382 if (!(locks
& (1 << i
)))
384 mutex_enter(&scl
->scl_lock
);
385 if (rw
== RW_READER
) {
386 if (scl
->scl_writer
|| scl
->scl_write_wanted
) {
387 mutex_exit(&scl
->scl_lock
);
388 spa_config_exit(spa
, locks
^ (1 << i
), tag
);
392 ASSERT(scl
->scl_writer
!= curthread
);
393 if (!refcount_is_zero(&scl
->scl_count
)) {
394 mutex_exit(&scl
->scl_lock
);
395 spa_config_exit(spa
, locks
^ (1 << i
), tag
);
398 scl
->scl_writer
= curthread
;
400 (void) refcount_add(&scl
->scl_count
, tag
);
401 mutex_exit(&scl
->scl_lock
);
407 spa_config_enter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
411 ASSERT3U(SCL_LOCKS
, <, sizeof (wlocks_held
) * NBBY
);
413 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
414 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
415 if (scl
->scl_writer
== curthread
)
416 wlocks_held
|= (1 << i
);
417 if (!(locks
& (1 << i
)))
419 mutex_enter(&scl
->scl_lock
);
420 if (rw
== RW_READER
) {
421 while (scl
->scl_writer
|| scl
->scl_write_wanted
) {
422 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
425 ASSERT(scl
->scl_writer
!= curthread
);
426 while (!refcount_is_zero(&scl
->scl_count
)) {
427 scl
->scl_write_wanted
++;
428 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
429 scl
->scl_write_wanted
--;
431 scl
->scl_writer
= curthread
;
433 (void) refcount_add(&scl
->scl_count
, tag
);
434 mutex_exit(&scl
->scl_lock
);
436 ASSERT(wlocks_held
<= locks
);
440 spa_config_exit(spa_t
*spa
, int locks
, void *tag
)
442 for (int i
= SCL_LOCKS
- 1; i
>= 0; i
--) {
443 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
444 if (!(locks
& (1 << i
)))
446 mutex_enter(&scl
->scl_lock
);
447 ASSERT(!refcount_is_zero(&scl
->scl_count
));
448 if (refcount_remove(&scl
->scl_count
, tag
) == 0) {
449 ASSERT(scl
->scl_writer
== NULL
||
450 scl
->scl_writer
== curthread
);
451 scl
->scl_writer
= NULL
; /* OK in either case */
452 cv_broadcast(&scl
->scl_cv
);
454 mutex_exit(&scl
->scl_lock
);
459 spa_config_held(spa_t
*spa
, int locks
, krw_t rw
)
463 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
464 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
465 if (!(locks
& (1 << i
)))
467 if ((rw
== RW_READER
&& !refcount_is_zero(&scl
->scl_count
)) ||
468 (rw
== RW_WRITER
&& scl
->scl_writer
== curthread
))
469 locks_held
|= 1 << i
;
476 * ==========================================================================
477 * SPA namespace functions
478 * ==========================================================================
482 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
483 * Returns NULL if no matching spa_t is found.
486 spa_lookup(const char *name
)
488 static spa_t search
; /* spa_t is large; don't allocate on stack */
493 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
495 (void) strlcpy(search
.spa_name
, name
, sizeof (search
.spa_name
));
498 * If it's a full dataset name, figure out the pool name and
501 cp
= strpbrk(search
.spa_name
, "/@#");
505 spa
= avl_find(&spa_namespace_avl
, &search
, &where
);
511 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
512 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
513 * looking for potentially hung I/Os.
516 spa_deadman(void *arg
)
521 * Disable the deadman timer if the pool is suspended.
523 if (spa_suspended(spa
)) {
524 VERIFY(cyclic_reprogram(spa
->spa_deadman_cycid
, CY_INFINITY
));
528 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
529 (gethrtime() - spa
->spa_sync_starttime
) / NANOSEC
,
530 ++spa
->spa_deadman_calls
);
531 if (zfs_deadman_enabled
)
532 vdev_deadman(spa
->spa_root_vdev
);
536 * Create an uninitialized spa_t with the given name. Requires
537 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
538 * exist by calling spa_lookup() first.
541 spa_add(const char *name
, nvlist_t
*config
, const char *altroot
)
544 spa_config_dirent_t
*dp
;
548 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
550 spa
= kmem_zalloc(sizeof (spa_t
), KM_SLEEP
);
552 mutex_init(&spa
->spa_async_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
553 mutex_init(&spa
->spa_errlist_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
554 mutex_init(&spa
->spa_errlog_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
555 mutex_init(&spa
->spa_evicting_os_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
556 mutex_init(&spa
->spa_history_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
557 mutex_init(&spa
->spa_proc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
558 mutex_init(&spa
->spa_props_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
559 mutex_init(&spa
->spa_scrub_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
560 mutex_init(&spa
->spa_suspend_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
561 mutex_init(&spa
->spa_vdev_top_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
562 mutex_init(&spa
->spa_iokstat_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
564 cv_init(&spa
->spa_async_cv
, NULL
, CV_DEFAULT
, NULL
);
565 cv_init(&spa
->spa_evicting_os_cv
, NULL
, CV_DEFAULT
, NULL
);
566 cv_init(&spa
->spa_proc_cv
, NULL
, CV_DEFAULT
, NULL
);
567 cv_init(&spa
->spa_scrub_io_cv
, NULL
, CV_DEFAULT
, NULL
);
568 cv_init(&spa
->spa_suspend_cv
, NULL
, CV_DEFAULT
, NULL
);
570 for (int t
= 0; t
< TXG_SIZE
; t
++)
571 bplist_create(&spa
->spa_free_bplist
[t
]);
573 (void) strlcpy(spa
->spa_name
, name
, sizeof (spa
->spa_name
));
574 spa
->spa_state
= POOL_STATE_UNINITIALIZED
;
575 spa
->spa_freeze_txg
= UINT64_MAX
;
576 spa
->spa_final_txg
= UINT64_MAX
;
577 spa
->spa_load_max_txg
= UINT64_MAX
;
579 spa
->spa_proc_state
= SPA_PROC_NONE
;
581 hdlr
.cyh_func
= spa_deadman
;
583 hdlr
.cyh_level
= CY_LOW_LEVEL
;
585 spa
->spa_deadman_synctime
= MSEC2NSEC(zfs_deadman_synctime_ms
);
588 * This determines how often we need to check for hung I/Os after
589 * the cyclic has already fired. Since checking for hung I/Os is
590 * an expensive operation we don't want to check too frequently.
591 * Instead wait for 5 seconds before checking again.
593 when
.cyt_interval
= MSEC2NSEC(zfs_deadman_checktime_ms
);
594 when
.cyt_when
= CY_INFINITY
;
595 mutex_enter(&cpu_lock
);
596 spa
->spa_deadman_cycid
= cyclic_add(&hdlr
, &when
);
597 mutex_exit(&cpu_lock
);
599 refcount_create(&spa
->spa_refcount
);
600 spa_config_lock_init(spa
);
602 avl_add(&spa_namespace_avl
, spa
);
605 * Set the alternate root, if there is one.
608 spa
->spa_root
= spa_strdup(altroot
);
613 * Every pool starts with the default cachefile
615 list_create(&spa
->spa_config_list
, sizeof (spa_config_dirent_t
),
616 offsetof(spa_config_dirent_t
, scd_link
));
618 dp
= kmem_zalloc(sizeof (spa_config_dirent_t
), KM_SLEEP
);
619 dp
->scd_path
= altroot
? NULL
: spa_strdup(spa_config_path
);
620 list_insert_head(&spa
->spa_config_list
, dp
);
622 VERIFY(nvlist_alloc(&spa
->spa_load_info
, NV_UNIQUE_NAME
,
625 if (config
!= NULL
) {
628 if (nvlist_lookup_nvlist(config
, ZPOOL_CONFIG_FEATURES_FOR_READ
,
630 VERIFY(nvlist_dup(features
, &spa
->spa_label_features
,
634 VERIFY(nvlist_dup(config
, &spa
->spa_config
, 0) == 0);
637 if (spa
->spa_label_features
== NULL
) {
638 VERIFY(nvlist_alloc(&spa
->spa_label_features
, NV_UNIQUE_NAME
,
642 spa
->spa_iokstat
= kstat_create("zfs", 0, name
,
643 "disk", KSTAT_TYPE_IO
, 1, 0);
644 if (spa
->spa_iokstat
) {
645 spa
->spa_iokstat
->ks_lock
= &spa
->spa_iokstat_lock
;
646 kstat_install(spa
->spa_iokstat
);
649 spa
->spa_debug
= ((zfs_flags
& ZFS_DEBUG_SPA
) != 0);
652 * As a pool is being created, treat all features as disabled by
653 * setting SPA_FEATURE_DISABLED for all entries in the feature
656 for (int i
= 0; i
< SPA_FEATURES
; i
++) {
657 spa
->spa_feat_refcount_cache
[i
] = SPA_FEATURE_DISABLED
;
664 * Removes a spa_t from the namespace, freeing up any memory used. Requires
665 * spa_namespace_lock. This is called only after the spa_t has been closed and
669 spa_remove(spa_t
*spa
)
671 spa_config_dirent_t
*dp
;
673 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
674 ASSERT(spa
->spa_state
== POOL_STATE_UNINITIALIZED
);
675 ASSERT3U(refcount_count(&spa
->spa_refcount
), ==, 0);
677 nvlist_free(spa
->spa_config_splitting
);
679 avl_remove(&spa_namespace_avl
, spa
);
680 cv_broadcast(&spa_namespace_cv
);
683 spa_strfree(spa
->spa_root
);
687 while ((dp
= list_head(&spa
->spa_config_list
)) != NULL
) {
688 list_remove(&spa
->spa_config_list
, dp
);
689 if (dp
->scd_path
!= NULL
)
690 spa_strfree(dp
->scd_path
);
691 kmem_free(dp
, sizeof (spa_config_dirent_t
));
694 list_destroy(&spa
->spa_config_list
);
696 nvlist_free(spa
->spa_label_features
);
697 nvlist_free(spa
->spa_load_info
);
698 spa_config_set(spa
, NULL
);
700 mutex_enter(&cpu_lock
);
701 if (spa
->spa_deadman_cycid
!= CYCLIC_NONE
)
702 cyclic_remove(spa
->spa_deadman_cycid
);
703 mutex_exit(&cpu_lock
);
704 spa
->spa_deadman_cycid
= CYCLIC_NONE
;
706 refcount_destroy(&spa
->spa_refcount
);
708 spa_config_lock_destroy(spa
);
710 kstat_delete(spa
->spa_iokstat
);
711 spa
->spa_iokstat
= NULL
;
713 for (int t
= 0; t
< TXG_SIZE
; t
++)
714 bplist_destroy(&spa
->spa_free_bplist
[t
]);
716 cv_destroy(&spa
->spa_async_cv
);
717 cv_destroy(&spa
->spa_evicting_os_cv
);
718 cv_destroy(&spa
->spa_proc_cv
);
719 cv_destroy(&spa
->spa_scrub_io_cv
);
720 cv_destroy(&spa
->spa_suspend_cv
);
722 mutex_destroy(&spa
->spa_async_lock
);
723 mutex_destroy(&spa
->spa_errlist_lock
);
724 mutex_destroy(&spa
->spa_errlog_lock
);
725 mutex_destroy(&spa
->spa_evicting_os_lock
);
726 mutex_destroy(&spa
->spa_history_lock
);
727 mutex_destroy(&spa
->spa_proc_lock
);
728 mutex_destroy(&spa
->spa_props_lock
);
729 mutex_destroy(&spa
->spa_scrub_lock
);
730 mutex_destroy(&spa
->spa_suspend_lock
);
731 mutex_destroy(&spa
->spa_vdev_top_lock
);
732 mutex_destroy(&spa
->spa_iokstat_lock
);
734 kmem_free(spa
, sizeof (spa_t
));
738 * Given a pool, return the next pool in the namespace, or NULL if there is
739 * none. If 'prev' is NULL, return the first pool.
742 spa_next(spa_t
*prev
)
744 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
747 return (AVL_NEXT(&spa_namespace_avl
, prev
));
749 return (avl_first(&spa_namespace_avl
));
753 * ==========================================================================
754 * SPA refcount functions
755 * ==========================================================================
759 * Add a reference to the given spa_t. Must have at least one reference, or
760 * have the namespace lock held.
763 spa_open_ref(spa_t
*spa
, void *tag
)
765 ASSERT(refcount_count(&spa
->spa_refcount
) >= spa
->spa_minref
||
766 MUTEX_HELD(&spa_namespace_lock
));
767 (void) refcount_add(&spa
->spa_refcount
, tag
);
771 * Remove a reference to the given spa_t. Must have at least one reference, or
772 * have the namespace lock held.
775 spa_close(spa_t
*spa
, void *tag
)
777 ASSERT(refcount_count(&spa
->spa_refcount
) > spa
->spa_minref
||
778 MUTEX_HELD(&spa_namespace_lock
));
779 (void) refcount_remove(&spa
->spa_refcount
, tag
);
783 * Remove a reference to the given spa_t held by a dsl dir that is
784 * being asynchronously released. Async releases occur from a taskq
785 * performing eviction of dsl datasets and dirs. The namespace lock
786 * isn't held and the hold by the object being evicted may contribute to
787 * spa_minref (e.g. dataset or directory released during pool export),
788 * so the asserts in spa_close() do not apply.
791 spa_async_close(spa_t
*spa
, void *tag
)
793 (void) refcount_remove(&spa
->spa_refcount
, tag
);
797 * Check to see if the spa refcount is zero. Must be called with
798 * spa_namespace_lock held. We really compare against spa_minref, which is the
799 * number of references acquired when opening a pool
802 spa_refcount_zero(spa_t
*spa
)
804 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
806 return (refcount_count(&spa
->spa_refcount
) == spa
->spa_minref
);
810 * ==========================================================================
811 * SPA spare and l2cache tracking
812 * ==========================================================================
816 * Hot spares and cache devices are tracked using the same code below,
817 * for 'auxiliary' devices.
820 typedef struct spa_aux
{
828 spa_aux_compare(const void *a
, const void *b
)
830 const spa_aux_t
*sa
= a
;
831 const spa_aux_t
*sb
= b
;
833 if (sa
->aux_guid
< sb
->aux_guid
)
835 else if (sa
->aux_guid
> sb
->aux_guid
)
842 spa_aux_add(vdev_t
*vd
, avl_tree_t
*avl
)
848 search
.aux_guid
= vd
->vdev_guid
;
849 if ((aux
= avl_find(avl
, &search
, &where
)) != NULL
) {
852 aux
= kmem_zalloc(sizeof (spa_aux_t
), KM_SLEEP
);
853 aux
->aux_guid
= vd
->vdev_guid
;
855 avl_insert(avl
, aux
, where
);
860 spa_aux_remove(vdev_t
*vd
, avl_tree_t
*avl
)
866 search
.aux_guid
= vd
->vdev_guid
;
867 aux
= avl_find(avl
, &search
, &where
);
871 if (--aux
->aux_count
== 0) {
872 avl_remove(avl
, aux
);
873 kmem_free(aux
, sizeof (spa_aux_t
));
874 } else if (aux
->aux_pool
== spa_guid(vd
->vdev_spa
)) {
875 aux
->aux_pool
= 0ULL;
880 spa_aux_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
, avl_tree_t
*avl
)
882 spa_aux_t search
, *found
;
884 search
.aux_guid
= guid
;
885 found
= avl_find(avl
, &search
, NULL
);
889 *pool
= found
->aux_pool
;
896 *refcnt
= found
->aux_count
;
901 return (found
!= NULL
);
905 spa_aux_activate(vdev_t
*vd
, avl_tree_t
*avl
)
907 spa_aux_t search
, *found
;
910 search
.aux_guid
= vd
->vdev_guid
;
911 found
= avl_find(avl
, &search
, &where
);
912 ASSERT(found
!= NULL
);
913 ASSERT(found
->aux_pool
== 0ULL);
915 found
->aux_pool
= spa_guid(vd
->vdev_spa
);
919 * Spares are tracked globally due to the following constraints:
921 * - A spare may be part of multiple pools.
922 * - A spare may be added to a pool even if it's actively in use within
924 * - A spare in use in any pool can only be the source of a replacement if
925 * the target is a spare in the same pool.
927 * We keep track of all spares on the system through the use of a reference
928 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
929 * spare, then we bump the reference count in the AVL tree. In addition, we set
930 * the 'vdev_isspare' member to indicate that the device is a spare (active or
931 * inactive). When a spare is made active (used to replace a device in the
932 * pool), we also keep track of which pool its been made a part of.
934 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
935 * called under the spa_namespace lock as part of vdev reconfiguration. The
936 * separate spare lock exists for the status query path, which does not need to
937 * be completely consistent with respect to other vdev configuration changes.
941 spa_spare_compare(const void *a
, const void *b
)
943 return (spa_aux_compare(a
, b
));
947 spa_spare_add(vdev_t
*vd
)
949 mutex_enter(&spa_spare_lock
);
950 ASSERT(!vd
->vdev_isspare
);
951 spa_aux_add(vd
, &spa_spare_avl
);
952 vd
->vdev_isspare
= B_TRUE
;
953 mutex_exit(&spa_spare_lock
);
957 spa_spare_remove(vdev_t
*vd
)
959 mutex_enter(&spa_spare_lock
);
960 ASSERT(vd
->vdev_isspare
);
961 spa_aux_remove(vd
, &spa_spare_avl
);
962 vd
->vdev_isspare
= B_FALSE
;
963 mutex_exit(&spa_spare_lock
);
967 spa_spare_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
)
971 mutex_enter(&spa_spare_lock
);
972 found
= spa_aux_exists(guid
, pool
, refcnt
, &spa_spare_avl
);
973 mutex_exit(&spa_spare_lock
);
979 spa_spare_activate(vdev_t
*vd
)
981 mutex_enter(&spa_spare_lock
);
982 ASSERT(vd
->vdev_isspare
);
983 spa_aux_activate(vd
, &spa_spare_avl
);
984 mutex_exit(&spa_spare_lock
);
988 * Level 2 ARC devices are tracked globally for the same reasons as spares.
989 * Cache devices currently only support one pool per cache device, and so
990 * for these devices the aux reference count is currently unused beyond 1.
994 spa_l2cache_compare(const void *a
, const void *b
)
996 return (spa_aux_compare(a
, b
));
1000 spa_l2cache_add(vdev_t
*vd
)
1002 mutex_enter(&spa_l2cache_lock
);
1003 ASSERT(!vd
->vdev_isl2cache
);
1004 spa_aux_add(vd
, &spa_l2cache_avl
);
1005 vd
->vdev_isl2cache
= B_TRUE
;
1006 mutex_exit(&spa_l2cache_lock
);
1010 spa_l2cache_remove(vdev_t
*vd
)
1012 mutex_enter(&spa_l2cache_lock
);
1013 ASSERT(vd
->vdev_isl2cache
);
1014 spa_aux_remove(vd
, &spa_l2cache_avl
);
1015 vd
->vdev_isl2cache
= B_FALSE
;
1016 mutex_exit(&spa_l2cache_lock
);
1020 spa_l2cache_exists(uint64_t guid
, uint64_t *pool
)
1024 mutex_enter(&spa_l2cache_lock
);
1025 found
= spa_aux_exists(guid
, pool
, NULL
, &spa_l2cache_avl
);
1026 mutex_exit(&spa_l2cache_lock
);
1032 spa_l2cache_activate(vdev_t
*vd
)
1034 mutex_enter(&spa_l2cache_lock
);
1035 ASSERT(vd
->vdev_isl2cache
);
1036 spa_aux_activate(vd
, &spa_l2cache_avl
);
1037 mutex_exit(&spa_l2cache_lock
);
1041 * ==========================================================================
1043 * ==========================================================================
1047 * Lock the given spa_t for the purpose of adding or removing a vdev.
1048 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1049 * It returns the next transaction group for the spa_t.
1052 spa_vdev_enter(spa_t
*spa
)
1054 mutex_enter(&spa
->spa_vdev_top_lock
);
1055 mutex_enter(&spa_namespace_lock
);
1056 return (spa_vdev_config_enter(spa
));
1060 * Internal implementation for spa_vdev_enter(). Used when a vdev
1061 * operation requires multiple syncs (i.e. removing a device) while
1062 * keeping the spa_namespace_lock held.
1065 spa_vdev_config_enter(spa_t
*spa
)
1067 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1069 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1071 return (spa_last_synced_txg(spa
) + 1);
1075 * Used in combination with spa_vdev_config_enter() to allow the syncing
1076 * of multiple transactions without releasing the spa_namespace_lock.
1079 spa_vdev_config_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
, char *tag
)
1081 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1083 int config_changed
= B_FALSE
;
1085 ASSERT(txg
> spa_last_synced_txg(spa
));
1087 spa
->spa_pending_vdev
= NULL
;
1090 * Reassess the DTLs.
1092 vdev_dtl_reassess(spa
->spa_root_vdev
, 0, 0, B_FALSE
);
1094 if (error
== 0 && !list_is_empty(&spa
->spa_config_dirty_list
)) {
1095 config_changed
= B_TRUE
;
1096 spa
->spa_config_generation
++;
1100 * Verify the metaslab classes.
1102 ASSERT(metaslab_class_validate(spa_normal_class(spa
)) == 0);
1103 ASSERT(metaslab_class_validate(spa_log_class(spa
)) == 0);
1105 spa_config_exit(spa
, SCL_ALL
, spa
);
1108 * Panic the system if the specified tag requires it. This
1109 * is useful for ensuring that configurations are updated
1112 if (zio_injection_enabled
)
1113 zio_handle_panic_injection(spa
, tag
, 0);
1116 * Note: this txg_wait_synced() is important because it ensures
1117 * that there won't be more than one config change per txg.
1118 * This allows us to use the txg as the generation number.
1121 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
1124 ASSERT(!vd
->vdev_detached
|| vd
->vdev_dtl_sm
== NULL
);
1125 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1127 spa_config_exit(spa
, SCL_ALL
, spa
);
1131 * If the config changed, update the config cache.
1134 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1138 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1139 * locking of spa_vdev_enter(), we also want make sure the transactions have
1140 * synced to disk, and then update the global configuration cache with the new
1144 spa_vdev_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
)
1146 spa_vdev_config_exit(spa
, vd
, txg
, error
, FTAG
);
1147 mutex_exit(&spa_namespace_lock
);
1148 mutex_exit(&spa
->spa_vdev_top_lock
);
1154 * Lock the given spa_t for the purpose of changing vdev state.
1157 spa_vdev_state_enter(spa_t
*spa
, int oplocks
)
1159 int locks
= SCL_STATE_ALL
| oplocks
;
1162 * Root pools may need to read of the underlying devfs filesystem
1163 * when opening up a vdev. Unfortunately if we're holding the
1164 * SCL_ZIO lock it will result in a deadlock when we try to issue
1165 * the read from the root filesystem. Instead we "prefetch"
1166 * the associated vnodes that we need prior to opening the
1167 * underlying devices and cache them so that we can prevent
1168 * any I/O when we are doing the actual open.
1170 if (spa_is_root(spa
)) {
1171 int low
= locks
& ~(SCL_ZIO
- 1);
1172 int high
= locks
& ~low
;
1174 spa_config_enter(spa
, high
, spa
, RW_WRITER
);
1175 vdev_hold(spa
->spa_root_vdev
);
1176 spa_config_enter(spa
, low
, spa
, RW_WRITER
);
1178 spa_config_enter(spa
, locks
, spa
, RW_WRITER
);
1180 spa
->spa_vdev_locks
= locks
;
1184 spa_vdev_state_exit(spa_t
*spa
, vdev_t
*vd
, int error
)
1186 boolean_t config_changed
= B_FALSE
;
1188 if (vd
!= NULL
|| error
== 0)
1189 vdev_dtl_reassess(vd
? vd
->vdev_top
: spa
->spa_root_vdev
,
1193 vdev_state_dirty(vd
->vdev_top
);
1194 config_changed
= B_TRUE
;
1195 spa
->spa_config_generation
++;
1198 if (spa_is_root(spa
))
1199 vdev_rele(spa
->spa_root_vdev
);
1201 ASSERT3U(spa
->spa_vdev_locks
, >=, SCL_STATE_ALL
);
1202 spa_config_exit(spa
, spa
->spa_vdev_locks
, spa
);
1205 * If anything changed, wait for it to sync. This ensures that,
1206 * from the system administrator's perspective, zpool(1M) commands
1207 * are synchronous. This is important for things like zpool offline:
1208 * when the command completes, you expect no further I/O from ZFS.
1211 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1214 * If the config changed, update the config cache.
1216 if (config_changed
) {
1217 mutex_enter(&spa_namespace_lock
);
1218 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1219 mutex_exit(&spa_namespace_lock
);
1226 * ==========================================================================
1227 * Miscellaneous functions
1228 * ==========================================================================
1232 spa_activate_mos_feature(spa_t
*spa
, const char *feature
, dmu_tx_t
*tx
)
1234 if (!nvlist_exists(spa
->spa_label_features
, feature
)) {
1235 fnvlist_add_boolean(spa
->spa_label_features
, feature
);
1237 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1238 * dirty the vdev config because lock SCL_CONFIG is not held.
1239 * Thankfully, in this case we don't need to dirty the config
1240 * because it will be written out anyway when we finish
1241 * creating the pool.
1243 if (tx
->tx_txg
!= TXG_INITIAL
)
1244 vdev_config_dirty(spa
->spa_root_vdev
);
1249 spa_deactivate_mos_feature(spa_t
*spa
, const char *feature
)
1251 if (nvlist_remove_all(spa
->spa_label_features
, feature
) == 0)
1252 vdev_config_dirty(spa
->spa_root_vdev
);
1259 spa_rename(const char *name
, const char *newname
)
1265 * Lookup the spa_t and grab the config lock for writing. We need to
1266 * actually open the pool so that we can sync out the necessary labels.
1267 * It's OK to call spa_open() with the namespace lock held because we
1268 * allow recursive calls for other reasons.
1270 mutex_enter(&spa_namespace_lock
);
1271 if ((err
= spa_open(name
, &spa
, FTAG
)) != 0) {
1272 mutex_exit(&spa_namespace_lock
);
1276 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1278 avl_remove(&spa_namespace_avl
, spa
);
1279 (void) strlcpy(spa
->spa_name
, newname
, sizeof (spa
->spa_name
));
1280 avl_add(&spa_namespace_avl
, spa
);
1283 * Sync all labels to disk with the new names by marking the root vdev
1284 * dirty and waiting for it to sync. It will pick up the new pool name
1287 vdev_config_dirty(spa
->spa_root_vdev
);
1289 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1291 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1294 * Sync the updated config cache.
1296 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1298 spa_close(spa
, FTAG
);
1300 mutex_exit(&spa_namespace_lock
);
1306 * Return the spa_t associated with given pool_guid, if it exists. If
1307 * device_guid is non-zero, determine whether the pool exists *and* contains
1308 * a device with the specified device_guid.
1311 spa_by_guid(uint64_t pool_guid
, uint64_t device_guid
)
1314 avl_tree_t
*t
= &spa_namespace_avl
;
1316 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1318 for (spa
= avl_first(t
); spa
!= NULL
; spa
= AVL_NEXT(t
, spa
)) {
1319 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
1321 if (spa
->spa_root_vdev
== NULL
)
1323 if (spa_guid(spa
) == pool_guid
) {
1324 if (device_guid
== 0)
1327 if (vdev_lookup_by_guid(spa
->spa_root_vdev
,
1328 device_guid
) != NULL
)
1332 * Check any devices we may be in the process of adding.
1334 if (spa
->spa_pending_vdev
) {
1335 if (vdev_lookup_by_guid(spa
->spa_pending_vdev
,
1336 device_guid
) != NULL
)
1346 * Determine whether a pool with the given pool_guid exists.
1349 spa_guid_exists(uint64_t pool_guid
, uint64_t device_guid
)
1351 return (spa_by_guid(pool_guid
, device_guid
) != NULL
);
1355 spa_strdup(const char *s
)
1361 new = kmem_alloc(len
+ 1, KM_SLEEP
);
1369 spa_strfree(char *s
)
1371 kmem_free(s
, strlen(s
) + 1);
1375 spa_get_random(uint64_t range
)
1381 (void) random_get_pseudo_bytes((void *)&r
, sizeof (uint64_t));
1387 spa_generate_guid(spa_t
*spa
)
1389 uint64_t guid
= spa_get_random(-1ULL);
1392 while (guid
== 0 || spa_guid_exists(spa_guid(spa
), guid
))
1393 guid
= spa_get_random(-1ULL);
1395 while (guid
== 0 || spa_guid_exists(guid
, 0))
1396 guid
= spa_get_random(-1ULL);
1403 snprintf_blkptr(char *buf
, size_t buflen
, const blkptr_t
*bp
)
1406 char *checksum
= NULL
;
1407 char *compress
= NULL
;
1410 if (BP_GET_TYPE(bp
) & DMU_OT_NEWTYPE
) {
1411 dmu_object_byteswap_t bswap
=
1412 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
1413 (void) snprintf(type
, sizeof (type
), "bswap %s %s",
1414 DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) ?
1415 "metadata" : "data",
1416 dmu_ot_byteswap
[bswap
].ob_name
);
1418 (void) strlcpy(type
, dmu_ot
[BP_GET_TYPE(bp
)].ot_name
,
1421 if (!BP_IS_EMBEDDED(bp
)) {
1423 zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_name
;
1425 compress
= zio_compress_table
[BP_GET_COMPRESS(bp
)].ci_name
;
1428 SNPRINTF_BLKPTR(snprintf
, ' ', buf
, buflen
, bp
, type
, checksum
,
1433 spa_freeze(spa_t
*spa
)
1435 uint64_t freeze_txg
= 0;
1437 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1438 if (spa
->spa_freeze_txg
== UINT64_MAX
) {
1439 freeze_txg
= spa_last_synced_txg(spa
) + TXG_SIZE
;
1440 spa
->spa_freeze_txg
= freeze_txg
;
1442 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1443 if (freeze_txg
!= 0)
1444 txg_wait_synced(spa_get_dsl(spa
), freeze_txg
);
1448 zfs_panic_recover(const char *fmt
, ...)
1453 vcmn_err(zfs_recover
? CE_WARN
: CE_PANIC
, fmt
, adx
);
1458 * This is a stripped-down version of strtoull, suitable only for converting
1459 * lowercase hexadecimal numbers that don't overflow.
1462 strtonum(const char *str
, char **nptr
)
1468 while ((c
= *str
) != '\0') {
1469 if (c
>= '0' && c
<= '9')
1471 else if (c
>= 'a' && c
<= 'f')
1472 digit
= 10 + c
- 'a';
1483 *nptr
= (char *)str
;
1489 * ==========================================================================
1490 * Accessor functions
1491 * ==========================================================================
1495 spa_shutting_down(spa_t
*spa
)
1497 return (spa
->spa_async_suspended
);
1501 spa_get_dsl(spa_t
*spa
)
1503 return (spa
->spa_dsl_pool
);
1507 spa_is_initializing(spa_t
*spa
)
1509 return (spa
->spa_is_initializing
);
1513 spa_get_rootblkptr(spa_t
*spa
)
1515 return (&spa
->spa_ubsync
.ub_rootbp
);
1519 spa_set_rootblkptr(spa_t
*spa
, const blkptr_t
*bp
)
1521 spa
->spa_uberblock
.ub_rootbp
= *bp
;
1525 spa_altroot(spa_t
*spa
, char *buf
, size_t buflen
)
1527 if (spa
->spa_root
== NULL
)
1530 (void) strncpy(buf
, spa
->spa_root
, buflen
);
1534 spa_sync_pass(spa_t
*spa
)
1536 return (spa
->spa_sync_pass
);
1540 spa_name(spa_t
*spa
)
1542 return (spa
->spa_name
);
1546 spa_guid(spa_t
*spa
)
1548 dsl_pool_t
*dp
= spa_get_dsl(spa
);
1552 * If we fail to parse the config during spa_load(), we can go through
1553 * the error path (which posts an ereport) and end up here with no root
1554 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1557 if (spa
->spa_root_vdev
== NULL
)
1558 return (spa
->spa_config_guid
);
1560 guid
= spa
->spa_last_synced_guid
!= 0 ?
1561 spa
->spa_last_synced_guid
: spa
->spa_root_vdev
->vdev_guid
;
1564 * Return the most recently synced out guid unless we're
1565 * in syncing context.
1567 if (dp
&& dsl_pool_sync_context(dp
))
1568 return (spa
->spa_root_vdev
->vdev_guid
);
1574 spa_load_guid(spa_t
*spa
)
1577 * This is a GUID that exists solely as a reference for the
1578 * purposes of the arc. It is generated at load time, and
1579 * is never written to persistent storage.
1581 return (spa
->spa_load_guid
);
1585 spa_last_synced_txg(spa_t
*spa
)
1587 return (spa
->spa_ubsync
.ub_txg
);
1591 spa_first_txg(spa_t
*spa
)
1593 return (spa
->spa_first_txg
);
1597 spa_syncing_txg(spa_t
*spa
)
1599 return (spa
->spa_syncing_txg
);
1603 spa_state(spa_t
*spa
)
1605 return (spa
->spa_state
);
1609 spa_load_state(spa_t
*spa
)
1611 return (spa
->spa_load_state
);
1615 spa_freeze_txg(spa_t
*spa
)
1617 return (spa
->spa_freeze_txg
);
1622 spa_get_asize(spa_t
*spa
, uint64_t lsize
)
1624 return (lsize
* spa_asize_inflation
);
1628 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1631 * See the comment above spa_slop_shift for details.
1634 spa_get_slop_space(spa_t
*spa
) {
1635 uint64_t space
= spa_get_dspace(spa
);
1636 return (MAX(space
>> spa_slop_shift
, SPA_MINDEVSIZE
>> 1));
1640 spa_get_dspace(spa_t
*spa
)
1642 return (spa
->spa_dspace
);
1646 spa_update_dspace(spa_t
*spa
)
1648 spa
->spa_dspace
= metaslab_class_get_dspace(spa_normal_class(spa
)) +
1649 ddt_get_dedup_dspace(spa
);
1653 * Return the failure mode that has been set to this pool. The default
1654 * behavior will be to block all I/Os when a complete failure occurs.
1657 spa_get_failmode(spa_t
*spa
)
1659 return (spa
->spa_failmode
);
1663 spa_suspended(spa_t
*spa
)
1665 return (spa
->spa_suspended
);
1669 spa_version(spa_t
*spa
)
1671 return (spa
->spa_ubsync
.ub_version
);
1675 spa_deflate(spa_t
*spa
)
1677 return (spa
->spa_deflate
);
1681 spa_normal_class(spa_t
*spa
)
1683 return (spa
->spa_normal_class
);
1687 spa_log_class(spa_t
*spa
)
1689 return (spa
->spa_log_class
);
1693 spa_evicting_os_register(spa_t
*spa
, objset_t
*os
)
1695 mutex_enter(&spa
->spa_evicting_os_lock
);
1696 list_insert_head(&spa
->spa_evicting_os_list
, os
);
1697 mutex_exit(&spa
->spa_evicting_os_lock
);
1701 spa_evicting_os_deregister(spa_t
*spa
, objset_t
*os
)
1703 mutex_enter(&spa
->spa_evicting_os_lock
);
1704 list_remove(&spa
->spa_evicting_os_list
, os
);
1705 cv_broadcast(&spa
->spa_evicting_os_cv
);
1706 mutex_exit(&spa
->spa_evicting_os_lock
);
1710 spa_evicting_os_wait(spa_t
*spa
)
1712 mutex_enter(&spa
->spa_evicting_os_lock
);
1713 while (!list_is_empty(&spa
->spa_evicting_os_list
))
1714 cv_wait(&spa
->spa_evicting_os_cv
, &spa
->spa_evicting_os_lock
);
1715 mutex_exit(&spa
->spa_evicting_os_lock
);
1717 dmu_buf_user_evict_wait();
1721 spa_max_replication(spa_t
*spa
)
1724 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1725 * handle BPs with more than one DVA allocated. Set our max
1726 * replication level accordingly.
1728 if (spa_version(spa
) < SPA_VERSION_DITTO_BLOCKS
)
1730 return (MIN(SPA_DVAS_PER_BP
, spa_max_replication_override
));
1734 spa_prev_software_version(spa_t
*spa
)
1736 return (spa
->spa_prev_software_version
);
1740 spa_deadman_synctime(spa_t
*spa
)
1742 return (spa
->spa_deadman_synctime
);
1746 dva_get_dsize_sync(spa_t
*spa
, const dva_t
*dva
)
1748 uint64_t asize
= DVA_GET_ASIZE(dva
);
1749 uint64_t dsize
= asize
;
1751 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
1753 if (asize
!= 0 && spa
->spa_deflate
) {
1754 vdev_t
*vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
1755 dsize
= (asize
>> SPA_MINBLOCKSHIFT
) * vd
->vdev_deflate_ratio
;
1762 bp_get_dsize_sync(spa_t
*spa
, const blkptr_t
*bp
)
1766 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
1767 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1773 bp_get_dsize(spa_t
*spa
, const blkptr_t
*bp
)
1777 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
1779 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
1780 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1782 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
1788 * ==========================================================================
1789 * Initialization and Termination
1790 * ==========================================================================
1794 spa_name_compare(const void *a1
, const void *a2
)
1796 const spa_t
*s1
= a1
;
1797 const spa_t
*s2
= a2
;
1800 s
= strcmp(s1
->spa_name
, s2
->spa_name
);
1811 return (spa_active_count
);
1823 mutex_init(&spa_namespace_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1824 mutex_init(&spa_spare_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1825 mutex_init(&spa_l2cache_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1826 cv_init(&spa_namespace_cv
, NULL
, CV_DEFAULT
, NULL
);
1828 avl_create(&spa_namespace_avl
, spa_name_compare
, sizeof (spa_t
),
1829 offsetof(spa_t
, spa_avl
));
1831 avl_create(&spa_spare_avl
, spa_spare_compare
, sizeof (spa_aux_t
),
1832 offsetof(spa_aux_t
, aux_avl
));
1834 avl_create(&spa_l2cache_avl
, spa_l2cache_compare
, sizeof (spa_aux_t
),
1835 offsetof(spa_aux_t
, aux_avl
));
1837 spa_mode_global
= mode
;
1842 if (spa_mode_global
!= FREAD
&& dprintf_find_string("watch")) {
1843 arc_procfd
= open("/proc/self/ctl", O_WRONLY
);
1844 if (arc_procfd
== -1) {
1845 perror("could not enable watchpoints: "
1846 "opening /proc/self/ctl failed: ");
1859 vdev_cache_stat_init();
1862 zpool_feature_init();
1874 vdev_cache_stat_fini();
1882 avl_destroy(&spa_namespace_avl
);
1883 avl_destroy(&spa_spare_avl
);
1884 avl_destroy(&spa_l2cache_avl
);
1886 cv_destroy(&spa_namespace_cv
);
1887 mutex_destroy(&spa_namespace_lock
);
1888 mutex_destroy(&spa_spare_lock
);
1889 mutex_destroy(&spa_l2cache_lock
);
1893 * Return whether this pool has slogs. No locking needed.
1894 * It's not a problem if the wrong answer is returned as it's only for
1895 * performance and not correctness
1898 spa_has_slogs(spa_t
*spa
)
1900 return (spa
->spa_log_class
->mc_rotor
!= NULL
);
1904 spa_get_log_state(spa_t
*spa
)
1906 return (spa
->spa_log_state
);
1910 spa_set_log_state(spa_t
*spa
, spa_log_state_t state
)
1912 spa
->spa_log_state
= state
;
1916 spa_is_root(spa_t
*spa
)
1918 return (spa
->spa_is_root
);
1922 spa_writeable(spa_t
*spa
)
1924 return (!!(spa
->spa_mode
& FWRITE
));
1928 * Returns true if there is a pending sync task in any of the current
1929 * syncing txg, the current quiescing txg, or the current open txg.
1932 spa_has_pending_synctask(spa_t
*spa
)
1934 return (!txg_all_lists_empty(&spa
->spa_dsl_pool
->dp_sync_tasks
));
1938 spa_mode(spa_t
*spa
)
1940 return (spa
->spa_mode
);
1944 spa_bootfs(spa_t
*spa
)
1946 return (spa
->spa_bootfs
);
1950 spa_delegation(spa_t
*spa
)
1952 return (spa
->spa_delegation
);
1956 spa_meta_objset(spa_t
*spa
)
1958 return (spa
->spa_meta_objset
);
1962 spa_dedup_checksum(spa_t
*spa
)
1964 return (spa
->spa_dedup_checksum
);
1968 * Reset pool scan stat per scan pass (or reboot).
1971 spa_scan_stat_init(spa_t
*spa
)
1973 /* data not stored on disk */
1974 spa
->spa_scan_pass_start
= gethrestime_sec();
1975 spa
->spa_scan_pass_exam
= 0;
1976 vdev_scan_stat_init(spa
->spa_root_vdev
);
1980 * Get scan stats for zpool status reports
1983 spa_scan_get_stats(spa_t
*spa
, pool_scan_stat_t
*ps
)
1985 dsl_scan_t
*scn
= spa
->spa_dsl_pool
? spa
->spa_dsl_pool
->dp_scan
: NULL
;
1987 if (scn
== NULL
|| scn
->scn_phys
.scn_func
== POOL_SCAN_NONE
)
1988 return (SET_ERROR(ENOENT
));
1989 bzero(ps
, sizeof (pool_scan_stat_t
));
1991 /* data stored on disk */
1992 ps
->pss_func
= scn
->scn_phys
.scn_func
;
1993 ps
->pss_start_time
= scn
->scn_phys
.scn_start_time
;
1994 ps
->pss_end_time
= scn
->scn_phys
.scn_end_time
;
1995 ps
->pss_to_examine
= scn
->scn_phys
.scn_to_examine
;
1996 ps
->pss_examined
= scn
->scn_phys
.scn_examined
;
1997 ps
->pss_to_process
= scn
->scn_phys
.scn_to_process
;
1998 ps
->pss_processed
= scn
->scn_phys
.scn_processed
;
1999 ps
->pss_errors
= scn
->scn_phys
.scn_errors
;
2000 ps
->pss_state
= scn
->scn_phys
.scn_state
;
2002 /* data not stored on disk */
2003 ps
->pss_pass_start
= spa
->spa_scan_pass_start
;
2004 ps
->pss_pass_exam
= spa
->spa_scan_pass_exam
;
2010 spa_debug_enabled(spa_t
*spa
)
2012 return (spa
->spa_debug
);
2016 spa_maxblocksize(spa_t
*spa
)
2018 if (spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_BLOCKS
))
2019 return (SPA_MAXBLOCKSIZE
);
2021 return (SPA_OLD_MAXBLOCKSIZE
);