16691 zfstest: rootpool tests do not make sense when rootfs is not zfs
[illumos-gate.git] / usr / src / uts / i86pc / vm / hat_pte.h
blobb65a69cb517ecd09b2f2b9f04eb970086ad8d8e4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2018 Joyent, Inc.
27 #ifndef _VM_HAT_PTE_H
28 #define _VM_HAT_PTE_H
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
34 #include <sys/types.h>
35 #include <sys/mach_mmu.h>
38 * macros to get/set/clear the PTE fields
40 #define PTE_SET(p, f) ((p) |= (f))
41 #define PTE_CLR(p, f) ((p) &= ~(x86pte_t)(f))
42 #define PTE_GET(p, f) ((p) & (f))
45 * Handy macro to check if a pagetable entry or pointer is valid
47 #define PTE_ISVALID(p) PTE_GET(p, PT_VALID)
50 * Does a PTE map a large page.
52 #define PTE_IS_LGPG(p, l) ((l) > 0 && PTE_GET((p), PT_PAGESIZE))
55 * does this PTE represent a page (not a pointer to another page table)?
57 #define PTE_ISPAGE(p, l) \
58 (PTE_ISVALID(p) && ((l) == 0 || PTE_GET(p, PT_PAGESIZE)))
61 * Handy macro to check if 2 PTE's are the same - ignores REF/MOD bits.
62 * On the 64 bit hypervisor we also have to ignore the high order
63 * software bits and the global/user bit which are set/cleared
64 * capriciously (by the hypervisor!)
66 #if defined(__amd64) && defined(__xpv)
67 #define PT_IGNORE ((0x7fful << 52) | PT_GLOBAL | PT_USER)
68 #else
69 #define PT_IGNORE (0)
70 #endif
71 #define PTE_EQUIV(a, b) (((a) | (PT_IGNORE | PT_REF | PT_MOD)) == \
72 ((b) | (PT_IGNORE | PT_REF | PT_MOD)))
75 * Shorthand for converting a PTE to it's pfn.
77 #define PTE2MFN(p, l) \
78 mmu_btop(PTE_GET((p), PTE_IS_LGPG((p), (l)) ? PT_PADDR_LGPG : PT_PADDR))
79 #ifdef __xpv
80 #define PTE2PFN(p, l) pte2pfn(p, l)
81 #else
82 #define PTE2PFN(p, l) PTE2MFN(p, l)
83 #endif
85 #define PT_NX (0x8000000000000000ull)
86 #define PT_PADDR (0x000ffffffffff000ull)
87 #define PT_PADDR_LGPG (0x000fffffffffe000ull) /* phys addr for large pages */
90 * Macros to create a PTP or PTE from the pfn and level
92 #ifdef __xpv
95 * we use the highest order bit in physical address pfns to mark foreign mfns
97 #ifdef _LP64
98 #define PFN_IS_FOREIGN_MFN (1ul << 51)
99 #else
100 #define PFN_IS_FOREIGN_MFN (1ul << 31)
101 #endif
103 #define MAKEPTP(pfn, l) \
104 (pa_to_ma(pfn_to_pa(pfn)) | mmu.ptp_bits[(l) + 1])
105 #define MAKEPTE(pfn, l) \
106 ((pfn & PFN_IS_FOREIGN_MFN) ? \
107 ((pfn_to_pa(pfn & ~PFN_IS_FOREIGN_MFN) | mmu.pte_bits[l]) | \
108 PT_FOREIGN | PT_REF | PT_MOD) : \
109 (pa_to_ma(pfn_to_pa(pfn)) | mmu.pte_bits[l]))
110 #else
111 #define MAKEPTP(pfn, l) \
112 (pfn_to_pa(pfn) | mmu.ptp_bits[(l) + 1])
113 #define MAKEPTE(pfn, l) \
114 (pfn_to_pa(pfn) | mmu.pte_bits[l])
115 #endif
118 * The idea of "level" refers to the level where the page table is used in the
119 * the hardware address translation steps. The level values correspond to the
120 * following names of tables used in AMD/Intel architecture documents:
122 * AMD/INTEL name Level #
123 * ---------------------- -------
124 * Page Map Level 4 3
125 * Page Directory Pointer 2
126 * Page Directory 1
127 * Page Table 0
129 * The numbering scheme is such that the values of 0 and 1 can correspond to
130 * the pagesize codes used for MPSS support. For now the Maximum level at
131 * which you can have a large page is a constant, that may change in
132 * future processors.
134 * The type of "level_t" is signed so that it can be used like:
135 * level_t l;
136 * ...
137 * while (--l >= 0)
138 * ...
140 #define MAX_NUM_LEVEL 4
141 #define MAX_PAGE_LEVEL 2
142 #define MIN_PAGE_LEVEL 0
143 typedef int8_t level_t;
144 #define LEVEL_SHIFT(l) (mmu.level_shift[l])
145 #define LEVEL_SIZE(l) (mmu.level_size[l])
146 #define LEVEL_OFFSET(l) (mmu.level_offset[l])
147 #define LEVEL_MASK(l) (mmu.level_mask[l])
150 * Macros to:
151 * Check for a PFN above 4Gig and 64Gig for 32 bit PAE support
153 #define PFN_4G (4ull * (1024 * 1024 * 1024 / MMU_PAGESIZE))
154 #define PFN_64G (64ull * (1024 * 1024 * 1024 / MMU_PAGESIZE))
155 #define PFN_ABOVE4G(pfn) ((pfn) >= PFN_4G)
156 #define PFN_ABOVE64G(pfn) ((pfn) >= PFN_64G)
159 * The CR3 register holds the physical address of the top level page table,
160 * along with the current PCID if any.
162 #define MAKECR3(pfn, pcid) (mmu_ptob(pfn) | pcid)
165 * HAT/MMU parameters that depend on kernel mode and/or processor type
167 struct htable;
168 struct hat_mmu_info {
169 x86pte_t pt_nx; /* either 0 or PT_NX */
170 x86pte_t pt_global; /* either 0 or PT_GLOBAL */
172 pfn_t highest_pfn;
174 uint_t num_level; /* number of page table levels in use */
175 uint_t max_level; /* just num_level - 1 */
176 uint_t max_page_level; /* maximum level at which we can map a page */
177 uint_t umax_page_level; /* max user page map level */
178 uint_t ptes_per_table; /* # of entries in lower level page tables */
179 uint_t top_level_count; /* # of entries in top-level page table */
180 uint_t top_level_uslots; /* # of user slots in top-level page table */
181 uint_t num_copied_ents; /* # of PCP-copied PTEs to create */
182 /* 32-bit versions of values */
183 uint_t top_level_uslots32;
184 uint_t max_level32;
185 uint_t num_copied_ents32;
187 uint_t hash_cnt; /* cnt of entries in htable_hash_cache */
188 uint_t hat32_hash_cnt; /* cnt of entries in 32-bit htable_hash_cache */
190 uint_t pae_hat; /* either 0 or 1 */
192 uintptr_t hole_start; /* start of VA hole (or -1 if none) */
193 uintptr_t hole_end; /* end of VA hole (or 0 if none) */
195 struct htable **kmap_htables; /* htables for segmap + 32 bit heap */
196 x86pte_t *kmap_ptes; /* mapping of pagetables that map kmap */
197 uintptr_t kmap_addr; /* start addr of kmap */
198 uintptr_t kmap_eaddr; /* end addr of kmap */
200 uint_t pte_size; /* either 4 or 8 */
201 uint_t pte_size_shift; /* either 2 or 3 */
202 x86pte_t ptp_bits[MAX_NUM_LEVEL]; /* bits set for interior PTP */
203 x86pte_t pte_bits[MAX_NUM_LEVEL]; /* bits set for leaf PTE */
206 * A range of VA used to window pages in the i86pc/vm code.
207 * See PWIN_XXX macros.
209 caddr_t pwin_base;
210 caddr_t pwin_pte_va;
211 paddr_t pwin_pte_pa;
214 * The following tables are equivalent to PAGEXXXXX at different levels
215 * in the page table hierarchy.
217 uint_t level_shift[MAX_NUM_LEVEL]; /* PAGESHIFT for given level */
218 uintptr_t level_size[MAX_NUM_LEVEL]; /* PAGESIZE for given level */
219 uintptr_t level_offset[MAX_NUM_LEVEL]; /* PAGEOFFSET for given level */
220 uintptr_t level_mask[MAX_NUM_LEVEL]; /* PAGEMASK for given level */
224 #if defined(_KERNEL)
227 * Macros to access the HAT's private page windows. They're used for
228 * accessing pagetables, ppcopy() and page_zero().
229 * The 1st two macros are used to get an index for the particular use.
230 * The next three give you:
231 * - the virtual address of the window
232 * - the virtual address of the pte that maps the window
233 * - the physical address of the pte that map the window
235 #define PWIN_TABLE(cpuid) ((cpuid) * 2)
236 #define PWIN_SRC(cpuid) ((cpuid) * 2 + 1) /* for x86pte_copy() */
237 #define PWIN_VA(x) (mmu.pwin_base + ((x) << MMU_PAGESHIFT))
238 #define PWIN_PTE_VA(x) (mmu.pwin_pte_va + ((x) << mmu.pte_size_shift))
239 #define PWIN_PTE_PA(x) (mmu.pwin_pte_pa + ((x) << mmu.pte_size_shift))
242 * The concept of a VA hole exists in AMD64. This might need to be made
243 * model specific eventually.
245 * In the 64 bit kernel PTE loads are atomic, but need atomic_cas_64 on 32
246 * bit kernel.
248 #if defined(__amd64)
250 #ifdef lint
251 #define IN_VA_HOLE(va) (__lintzero)
252 #else
253 #define IN_VA_HOLE(va) (mmu.hole_start <= (va) && (va) < mmu.hole_end)
254 #endif
256 #define FMT_PTE "0x%lx"
257 #define GET_PTE(ptr) (*(x86pte_t *)(ptr))
258 #define SET_PTE(ptr, pte) (*(x86pte_t *)(ptr) = pte)
259 #define CAS_PTE(ptr, x, y) atomic_cas_64(ptr, x, y)
261 #elif defined(__i386)
263 #define IN_VA_HOLE(va) (__lintzero)
265 #define FMT_PTE "0x%llx"
267 /* on 32 bit kernels, 64 bit loads aren't atomic, use get_pte64() */
268 extern x86pte_t get_pte64(x86pte_t *ptr);
269 #define GET_PTE(ptr) (mmu.pae_hat ? get_pte64(ptr) : *(x86pte32_t *)(ptr))
270 #define SET_PTE(ptr, pte) \
271 ((mmu.pae_hat ? ((x86pte32_t *)(ptr))[1] = (pte >> 32) : 0), \
272 *(x86pte32_t *)(ptr) = pte)
273 #define CAS_PTE(ptr, x, y) \
274 (mmu.pae_hat ? atomic_cas_64(ptr, x, y) : \
275 atomic_cas_32((uint32_t *)(ptr), (uint32_t)(x), (uint32_t)(y)))
277 #endif /* __i386 */
280 * Return a pointer to the pte entry at the given index within a page table.
282 #define PT_INDEX_PTR(p, x) \
283 ((x86pte_t *)((uintptr_t)(p) + ((x) << mmu.pte_size_shift)))
286 * Return the physical address of the pte entry at the given index within a
287 * page table.
289 #define PT_INDEX_PHYSADDR(p, x) \
290 ((paddr_t)(p) + ((x) << mmu.pte_size_shift))
293 * From pfn to bytes, careful not to lose bits on PAE.
295 #define pfn_to_pa(pfn) (mmu_ptob((paddr_t)(pfn)))
297 #ifdef __xpv
298 extern pfn_t pte2pfn(x86pte_t, level_t);
299 #endif
301 extern struct hat_mmu_info mmu;
303 #endif /* _KERNEL */
306 #ifdef __cplusplus
308 #endif
310 #endif /* _VM_HAT_PTE_H */