16006 Need RFC8106 decode in snoop
[illumos-gate.git] / usr / src / uts / common / os / clock.c
blobb4cd540a21fba5f55a9ea68613664eee64b2f392
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2016 by Delphix. All rights reserved.
28 * Copyright 2023 Oxide Computer Company
31 #include <sys/param.h>
32 #include <sys/t_lock.h>
33 #include <sys/types.h>
34 #include <sys/tuneable.h>
35 #include <sys/sysmacros.h>
36 #include <sys/systm.h>
37 #include <sys/cpuvar.h>
38 #include <sys/lgrp.h>
39 #include <sys/user.h>
40 #include <sys/proc.h>
41 #include <sys/callo.h>
42 #include <sys/kmem.h>
43 #include <sys/var.h>
44 #include <sys/cmn_err.h>
45 #include <sys/swap.h>
46 #include <sys/vmsystm.h>
47 #include <sys/class.h>
48 #include <sys/time.h>
49 #include <sys/debug.h>
50 #include <sys/vtrace.h>
51 #include <sys/spl.h>
52 #include <sys/atomic.h>
53 #include <sys/dumphdr.h>
54 #include <sys/archsystm.h>
55 #include <sys/fs/swapnode.h>
56 #include <sys/panic.h>
57 #include <sys/disp.h>
58 #include <sys/msacct.h>
59 #include <sys/mem_cage.h>
61 #include <vm/page.h>
62 #include <vm/anon.h>
63 #include <vm/rm.h>
64 #include <sys/cyclic.h>
65 #include <sys/cpupart.h>
66 #include <sys/rctl.h>
67 #include <sys/task.h>
68 #include <sys/sdt.h>
69 #include <sys/ddi_periodic.h>
70 #include <sys/random.h>
71 #include <sys/modctl.h>
72 #include <sys/zone.h>
75 * for NTP support
77 #include <sys/timex.h>
78 #include <sys/inttypes.h>
80 #include <sys/sunddi.h>
81 #include <sys/clock_impl.h>
84 * clock() is called straight from the clock cyclic; see clock_init().
86 * Functions:
87 * reprime clock
88 * maintain date
89 * jab the scheduler
92 extern kcondvar_t fsflush_cv;
93 extern sysinfo_t sysinfo;
94 extern vminfo_t vminfo;
95 extern int idleswtch; /* flag set while idle in pswtch() */
96 extern hrtime_t volatile devinfo_freeze;
99 * high-precision avenrun values. These are needed to make the
100 * regular avenrun values accurate.
102 static uint64_t hp_avenrun[3];
103 int avenrun[3]; /* FSCALED average run queue lengths */
104 time_t time; /* time in seconds since 1970 - for compatibility only */
106 static struct loadavg_s loadavg;
108 * Phase/frequency-lock loop (PLL/FLL) definitions
110 * The following variables are read and set by the ntp_adjtime() system
111 * call.
113 * time_state shows the state of the system clock, with values defined
114 * in the timex.h header file.
116 * time_status shows the status of the system clock, with bits defined
117 * in the timex.h header file.
119 * time_offset is used by the PLL/FLL to adjust the system time in small
120 * increments.
122 * time_constant determines the bandwidth or "stiffness" of the PLL.
124 * time_tolerance determines maximum frequency error or tolerance of the
125 * CPU clock oscillator and is a property of the architecture; however,
126 * in principle it could change as result of the presence of external
127 * discipline signals, for instance.
129 * time_precision is usually equal to the kernel tick variable; however,
130 * in cases where a precision clock counter or external clock is
131 * available, the resolution can be much less than this and depend on
132 * whether the external clock is working or not.
134 * time_maxerror is initialized by a ntp_adjtime() call and increased by
135 * the kernel once each second to reflect the maximum error bound
136 * growth.
138 * time_esterror is set and read by the ntp_adjtime() call, but
139 * otherwise not used by the kernel.
141 int32_t time_state = TIME_OK; /* clock state */
142 int32_t time_status = STA_UNSYNC; /* clock status bits */
143 int32_t time_offset = 0; /* time offset (us) */
144 int32_t time_constant = 0; /* pll time constant */
145 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
146 int32_t time_precision = 1; /* clock precision (us) */
147 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */
148 int32_t time_esterror = MAXPHASE; /* estimated error (us) */
151 * The following variables establish the state of the PLL/FLL and the
152 * residual time and frequency offset of the local clock. The scale
153 * factors are defined in the timex.h header file.
155 * time_phase and time_freq are the phase increment and the frequency
156 * increment, respectively, of the kernel time variable.
158 * time_freq is set via ntp_adjtime() from a value stored in a file when
159 * the synchronization daemon is first started. Its value is retrieved
160 * via ntp_adjtime() and written to the file about once per hour by the
161 * daemon.
163 * time_adj is the adjustment added to the value of tick at each timer
164 * interrupt and is recomputed from time_phase and time_freq at each
165 * seconds rollover.
167 * time_reftime is the second's portion of the system time at the last
168 * call to ntp_adjtime(). It is used to adjust the time_freq variable
169 * and to increase the time_maxerror as the time since last update
170 * increases.
172 int32_t time_phase = 0; /* phase offset (scaled us) */
173 int32_t time_freq = 0; /* frequency offset (scaled ppm) */
174 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */
175 int32_t time_reftime = 0; /* time at last adjustment (s) */
178 * The scale factors of the following variables are defined in the
179 * timex.h header file.
181 * pps_time contains the time at each calibration interval, as read by
182 * microtime(). pps_count counts the seconds of the calibration
183 * interval, the duration of which is nominally pps_shift in powers of
184 * two.
186 * pps_offset is the time offset produced by the time median filter
187 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
188 * this filter.
190 * pps_freq is the frequency offset produced by the frequency median
191 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
192 * by this filter.
194 * pps_usec is latched from a high resolution counter or external clock
195 * at pps_time. Here we want the hardware counter contents only, not the
196 * contents plus the time_tv.usec as usual.
198 * pps_valid counts the number of seconds since the last PPS update. It
199 * is used as a watchdog timer to disable the PPS discipline should the
200 * PPS signal be lost.
202 * pps_glitch counts the number of seconds since the beginning of an
203 * offset burst more than tick/2 from current nominal offset. It is used
204 * mainly to suppress error bursts due to priority conflicts between the
205 * PPS interrupt and timer interrupt.
207 * pps_intcnt counts the calibration intervals for use in the interval-
208 * adaptation algorithm. It's just too complicated for words.
210 struct timeval pps_time; /* kernel time at last interval */
211 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
212 int32_t pps_offset = 0; /* pps time offset (us) */
213 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
214 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
215 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */
216 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
217 int32_t pps_usec = 0; /* microsec counter at last interval */
218 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */
219 int32_t pps_glitch = 0; /* pps signal glitch counter */
220 int32_t pps_count = 0; /* calibration interval counter (s) */
221 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
222 int32_t pps_intcnt = 0; /* intervals at current duration */
225 * PPS signal quality monitors
227 * pps_jitcnt counts the seconds that have been discarded because the
228 * jitter measured by the time median filter exceeds the limit MAXTIME
229 * (100 us).
231 * pps_calcnt counts the frequency calibration intervals, which are
232 * variable from 4 s to 256 s.
234 * pps_errcnt counts the calibration intervals which have been discarded
235 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
236 * calibration interval jitter exceeds two ticks.
238 * pps_stbcnt counts the calibration intervals that have been discarded
239 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
241 int32_t pps_jitcnt = 0; /* jitter limit exceeded */
242 int32_t pps_calcnt = 0; /* calibration intervals */
243 int32_t pps_errcnt = 0; /* calibration errors */
244 int32_t pps_stbcnt = 0; /* stability limit exceeded */
246 kcondvar_t lbolt_cv;
249 * Hybrid lbolt implementation:
251 * The service historically provided by the lbolt and lbolt64 variables has
252 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
253 * original symbols removed from the system. The once clock driven variables are
254 * now implemented in an event driven fashion, backed by gethrtime() coarsed to
255 * the appropriate clock resolution. The default event driven implementation is
256 * complemented by a cyclic driven one, active only during periods of intense
257 * activity around the DDI lbolt routines, when a lbolt specific cyclic is
258 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
259 * rely on the original low cost of consulting a memory position.
261 * The implementation uses the number of calls to these routines and the
262 * frequency of these to determine when to transition from event to cyclic
263 * driven and vice-versa. These values are kept on a per CPU basis for
264 * scalability reasons and to prevent CPUs from constantly invalidating a single
265 * cache line when modifying a global variable. The transition from event to
266 * cyclic mode happens once the thresholds are crossed, and activity on any CPU
267 * can cause such transition.
269 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
270 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
271 * lbolt_cyclic_driven() according to the current mode. When the thresholds
272 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
273 * fire at a nsec_per_tick interval and increment an internal variable at
274 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
275 * will simply return the value of such variable. lbolt_cyclic() will attempt
276 * to shut itself off at each threshold interval (sampling period for calls
277 * to the DDI lbolt routines), and return to the event driven mode, but will
278 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
280 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
281 * for the cyclic subsystem to be intialized.
284 int64_t lbolt_bootstrap(void);
285 int64_t lbolt_event_driven(void);
286 int64_t lbolt_cyclic_driven(void);
287 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
288 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
291 * lbolt's cyclic, installed by clock_init().
293 static void lbolt_cyclic(void);
296 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
297 * from switching back to event driven, once it reaches cyclic mode.
299 static boolean_t lbolt_cyc_only = B_FALSE;
302 * Cache aligned, per CPU structure with lbolt usage statistics.
304 static lbolt_cpu_t *lb_cpu;
307 * Single, cache aligned, structure with all the information required by
308 * the lbolt implementation.
310 lbolt_info_t *lb_info;
313 int one_sec = 1; /* turned on once every second */
314 static int fsflushcnt; /* counter for t_fsflushr */
315 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */
316 int tod_needsync = 0; /* need to sync tod chip with software time */
317 static int tod_broken = 0; /* clock chip doesn't work */
318 time_t boot_time = 0; /* Boot time in seconds since 1970 */
319 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */
320 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */
322 extern void clock_tick_schedule(int);
323 extern void set_freemem(void);
324 extern void pageout_deadman(void);
326 static int lgrp_ticks; /* counter to schedule lgrp load calcs */
329 * for tod fault detection
331 #define TOD_REF_FREQ ((longlong_t)(NANOSEC))
332 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2)
333 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2)
334 #define TOD_FILTER_N 4
335 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N)
336 static enum tod_fault_type tod_faulted = TOD_NOFAULT;
338 static int tod_status_flag = 0; /* used by tod_validate() */
340 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */
341 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */
343 /* patchable via /etc/system */
344 int tod_validate_enable = 1;
346 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
347 int delay_from_interrupt_diagnose = 0;
348 volatile uint32_t delay_from_interrupt_msg = 20;
351 * On non-SPARC systems, TOD validation must be deferred until gethrtime
352 * returns non-zero values (after mach_clkinit's execution).
353 * On SPARC systems, it must be deferred until after hrtime_base
354 * and hres_last_tick are set (in the first invocation of hres_tick).
355 * Since in both cases the prerequisites occur before the invocation of
356 * tod_get() in clock(), the deferment is lifted there.
358 static boolean_t tod_validate_deferred = B_TRUE;
361 * tod_fault_table[] must be aligned with
362 * enum tod_fault_type in systm.h
364 static char *tod_fault_table[] = {
365 "Reversed", /* TOD_REVERSED */
366 "Stalled", /* TOD_STALLED */
367 "Jumped", /* TOD_JUMPED */
368 "Changed in Clock Rate", /* TOD_RATECHANGED */
369 "Is Read-Only" /* TOD_RDONLY */
371 * no strings needed for TOD_NOFAULT
376 * test hook for tod broken detection in tod_validate
378 int tod_unit_test = 0;
379 time_t tod_test_injector;
381 #define CLOCK_ADJ_HIST_SIZE 4
383 static int adj_hist_entry;
385 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
387 static void calcloadavg(int, uint64_t *);
388 static int genloadavg(struct loadavg_s *);
389 static void loadavg_update();
391 void (*cmm_clock_callout)() = NULL;
392 void (*cpucaps_clock_callout)() = NULL;
394 extern clock_t clock_tick_proc_max;
396 static int64_t deadman_counter = 0;
398 static void
399 clock(void)
401 kthread_t *t;
402 uint_t nrunnable;
403 uint_t w_io;
404 cpu_t *cp;
405 cpupart_t *cpupart;
406 void (*funcp)();
407 int32_t ltemp;
408 int64_t lltemp;
409 int s;
410 int do_lgrp_load;
411 int i;
412 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */
414 if (panicstr)
415 return;
418 * Make sure that 'freemem' do not drift too far from the truth
420 set_freemem();
424 * Before the section which is repeated is executed, we do
425 * the time delta processing which occurs every clock tick
427 * There is additional processing which happens every time
428 * the nanosecond counter rolls over which is described
429 * below - see the section which begins with : if (one_sec)
431 * This section marks the beginning of the precision-kernel
432 * code fragment.
434 * First, compute the phase adjustment. If the low-order bits
435 * (time_phase) of the update overflow, bump the higher order
436 * bits (time_update).
438 time_phase += time_adj;
439 if (time_phase <= -FINEUSEC) {
440 ltemp = -time_phase / SCALE_PHASE;
441 time_phase += ltemp * SCALE_PHASE;
442 s = hr_clock_lock();
443 timedelta -= ltemp * (NANOSEC/MICROSEC);
444 hr_clock_unlock(s);
445 } else if (time_phase >= FINEUSEC) {
446 ltemp = time_phase / SCALE_PHASE;
447 time_phase -= ltemp * SCALE_PHASE;
448 s = hr_clock_lock();
449 timedelta += ltemp * (NANOSEC/MICROSEC);
450 hr_clock_unlock(s);
454 * End of precision-kernel code fragment which is processed
455 * every timer interrupt.
457 * Continue with the interrupt processing as scheduled.
460 * Count the number of runnable threads and the number waiting
461 * for some form of I/O to complete -- gets added to
462 * sysinfo.waiting. To know the state of the system, must add
463 * wait counts from all CPUs. Also add up the per-partition
464 * statistics.
466 w_io = 0;
467 nrunnable = 0;
470 * keep track of when to update lgrp/part loads
473 do_lgrp_load = 0;
474 if (lgrp_ticks++ >= hz / 10) {
475 lgrp_ticks = 0;
476 do_lgrp_load = 1;
479 if (one_sec) {
480 loadavg_update();
481 deadman_counter++;
482 pageout_deadman();
486 * First count the threads waiting on kpreempt queues in each
487 * CPU partition.
490 cpupart = cp_list_head;
491 do {
492 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
494 cpupart->cp_updates++;
495 nrunnable += cpupart_nrunnable;
496 cpupart->cp_nrunnable_cum += cpupart_nrunnable;
497 if (one_sec) {
498 cpupart->cp_nrunning = 0;
499 cpupart->cp_nrunnable = cpupart_nrunnable;
501 } while ((cpupart = cpupart->cp_next) != cp_list_head);
504 /* Now count the per-CPU statistics. */
505 cp = cpu_list;
506 do {
507 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
509 nrunnable += cpu_nrunnable;
510 cpupart = cp->cpu_part;
511 cpupart->cp_nrunnable_cum += cpu_nrunnable;
512 if (one_sec) {
513 cpupart->cp_nrunnable += cpu_nrunnable;
515 * Update user, system, and idle cpu times.
517 cpupart->cp_nrunning++;
519 * w_io is used to update sysinfo.waiting during
520 * one_second processing below. Only gather w_io
521 * information when we walk the list of cpus if we're
522 * going to perform one_second processing.
524 w_io += CPU_STATS(cp, sys.iowait);
527 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
528 int i, load, change;
529 hrtime_t intracct, intrused;
530 const hrtime_t maxnsec = 1000000000;
531 const int precision = 100;
534 * Estimate interrupt load on this cpu each second.
535 * Computes cpu_intrload as %utilization (0-99).
538 /* add up interrupt time from all micro states */
539 for (intracct = 0, i = 0; i < NCMSTATES; i++)
540 intracct += cp->cpu_intracct[i];
541 scalehrtime(&intracct);
543 /* compute nsec used in the past second */
544 intrused = intracct - cp->cpu_intrlast;
545 cp->cpu_intrlast = intracct;
547 /* limit the value for safety (and the first pass) */
548 if (intrused >= maxnsec)
549 intrused = maxnsec - 1;
551 /* calculate %time in interrupt */
552 load = (precision * intrused) / maxnsec;
553 ASSERT(load >= 0 && load < precision);
554 change = cp->cpu_intrload - load;
556 /* jump to new max, or decay the old max */
557 if (change < 0)
558 cp->cpu_intrload = load;
559 else if (change > 0)
560 cp->cpu_intrload -= (change + 3) / 4;
562 DTRACE_PROBE3(cpu_intrload,
563 cpu_t *, cp,
564 hrtime_t, intracct,
565 hrtime_t, intrused);
568 if (do_lgrp_load &&
569 (cp->cpu_flags & CPU_EXISTS)) {
571 * When updating the lgroup's load average,
572 * account for the thread running on the CPU.
573 * If the CPU is the current one, then we need
574 * to account for the underlying thread which
575 * got the clock interrupt not the thread that is
576 * handling the interrupt and caculating the load
577 * average
579 t = cp->cpu_thread;
580 if (CPU == cp)
581 t = t->t_intr;
584 * Account for the load average for this thread if
585 * it isn't the idle thread or it is on the interrupt
586 * stack and not the current CPU handling the clock
587 * interrupt
589 if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
590 CPU_ON_INTR(cp))) {
591 if (t->t_lpl == cp->cpu_lpl) {
592 /* local thread */
593 cpu_nrunnable++;
594 } else {
596 * This is a remote thread, charge it
597 * against its home lgroup. Note that
598 * we notice that a thread is remote
599 * only if it's currently executing.
600 * This is a reasonable approximation,
601 * since queued remote threads are rare.
602 * Note also that if we didn't charge
603 * it to its home lgroup, remote
604 * execution would often make a system
605 * appear balanced even though it was
606 * not, and thread placement/migration
607 * would often not be done correctly.
609 lgrp_loadavg(t->t_lpl,
610 LGRP_LOADAVG_IN_THREAD_MAX, 0);
613 lgrp_loadavg(cp->cpu_lpl,
614 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
616 } while ((cp = cp->cpu_next) != cpu_list);
618 clock_tick_schedule(one_sec);
621 * Check for a callout that needs be called from the clock
622 * thread to support the membership protocol in a clustered
623 * system. Copy the function pointer so that we can reset
624 * this to NULL if needed.
626 if ((funcp = cmm_clock_callout) != NULL)
627 (*funcp)();
629 if ((funcp = cpucaps_clock_callout) != NULL)
630 (*funcp)();
633 * Wakeup the cageout thread waiters once per second.
635 if (one_sec)
636 kcage_tick();
638 if (one_sec) {
640 int drift, absdrift;
641 timestruc_t tod;
642 int s;
645 * Beginning of precision-kernel code fragment executed
646 * every second.
648 * On rollover of the second the phase adjustment to be
649 * used for the next second is calculated. Also, the
650 * maximum error is increased by the tolerance. If the
651 * PPS frequency discipline code is present, the phase is
652 * increased to compensate for the CPU clock oscillator
653 * frequency error.
655 * On a 32-bit machine and given parameters in the timex.h
656 * header file, the maximum phase adjustment is +-512 ms
657 * and maximum frequency offset is (a tad less than)
658 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
660 time_maxerror += time_tolerance / SCALE_USEC;
663 * Leap second processing. If in leap-insert state at
664 * the end of the day, the system clock is set back one
665 * second; if in leap-delete state, the system clock is
666 * set ahead one second. The microtime() routine or
667 * external clock driver will insure that reported time
668 * is always monotonic. The ugly divides should be
669 * replaced.
671 switch (time_state) {
673 case TIME_OK:
674 if (time_status & STA_INS)
675 time_state = TIME_INS;
676 else if (time_status & STA_DEL)
677 time_state = TIME_DEL;
678 break;
680 case TIME_INS:
681 if (hrestime.tv_sec % 86400 == 0) {
682 s = hr_clock_lock();
683 hrestime.tv_sec--;
684 hr_clock_unlock(s);
685 time_state = TIME_OOP;
687 break;
689 case TIME_DEL:
690 if ((hrestime.tv_sec + 1) % 86400 == 0) {
691 s = hr_clock_lock();
692 hrestime.tv_sec++;
693 hr_clock_unlock(s);
694 time_state = TIME_WAIT;
696 break;
698 case TIME_OOP:
699 time_state = TIME_WAIT;
700 break;
702 case TIME_WAIT:
703 if (!(time_status & (STA_INS | STA_DEL)))
704 time_state = TIME_OK;
705 default:
706 break;
710 * Compute the phase adjustment for the next second. In
711 * PLL mode, the offset is reduced by a fixed factor
712 * times the time constant. In FLL mode the offset is
713 * used directly. In either mode, the maximum phase
714 * adjustment for each second is clamped so as to spread
715 * the adjustment over not more than the number of
716 * seconds between updates.
718 if (time_offset == 0)
719 time_adj = 0;
720 else if (time_offset < 0) {
721 lltemp = -time_offset;
722 if (!(time_status & STA_FLL)) {
723 if ((1 << time_constant) >= SCALE_KG)
724 lltemp *= (1 << time_constant) /
725 SCALE_KG;
726 else
727 lltemp = (lltemp / SCALE_KG) >>
728 time_constant;
730 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
731 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
732 time_offset += lltemp;
733 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
734 } else {
735 lltemp = time_offset;
736 if (!(time_status & STA_FLL)) {
737 if ((1 << time_constant) >= SCALE_KG)
738 lltemp *= (1 << time_constant) /
739 SCALE_KG;
740 else
741 lltemp = (lltemp / SCALE_KG) >>
742 time_constant;
744 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
745 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
746 time_offset -= lltemp;
747 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
751 * Compute the frequency estimate and additional phase
752 * adjustment due to frequency error for the next
753 * second. When the PPS signal is engaged, gnaw on the
754 * watchdog counter and update the frequency computed by
755 * the pll and the PPS signal.
757 pps_valid++;
758 if (pps_valid == PPS_VALID) {
759 pps_jitter = MAXTIME;
760 pps_stabil = MAXFREQ;
761 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
762 STA_PPSWANDER | STA_PPSERROR);
764 lltemp = time_freq + pps_freq;
766 if (lltemp)
767 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
770 * End of precision kernel-code fragment
772 * The section below should be modified if we are planning
773 * to use NTP for synchronization.
775 * Note: the clock synchronization code now assumes
776 * the following:
777 * - if dosynctodr is 1, then compute the drift between
778 * the tod chip and software time and adjust one or
779 * the other depending on the circumstances
781 * - if dosynctodr is 0, then the tod chip is independent
782 * of the software clock and should not be adjusted,
783 * but allowed to free run. this allows NTP to sync.
784 * hrestime without any interference from the tod chip.
787 tod_validate_deferred = B_FALSE;
788 mutex_enter(&tod_lock);
789 tod = tod_get();
790 drift = tod.tv_sec - hrestime.tv_sec;
791 absdrift = (drift >= 0) ? drift : -drift;
792 if (tod_needsync || absdrift > 1) {
793 int s;
794 if (absdrift > 2) {
795 if (!tod_broken && tod_faulted == TOD_NOFAULT) {
796 s = hr_clock_lock();
797 hrestime = tod;
798 membar_enter(); /* hrestime visible */
799 timedelta = 0;
800 timechanged++;
801 tod_needsync = 0;
802 hr_clock_unlock(s);
803 callout_hrestime();
806 } else {
807 if (tod_needsync || !dosynctodr) {
808 gethrestime(&tod);
809 tod_set(tod);
810 s = hr_clock_lock();
811 if (timedelta == 0)
812 tod_needsync = 0;
813 hr_clock_unlock(s);
814 } else {
816 * If the drift is 2 seconds on the
817 * money, then the TOD is adjusting
818 * the clock; record that.
820 clock_adj_hist[adj_hist_entry++ %
821 CLOCK_ADJ_HIST_SIZE] = now;
822 s = hr_clock_lock();
823 timedelta = (int64_t)drift*NANOSEC;
824 hr_clock_unlock(s);
828 one_sec = 0;
829 time = gethrestime_sec(); /* for crusty old kmem readers */
830 mutex_exit(&tod_lock);
833 * Some drivers still depend on this... XXX
835 cv_broadcast(&lbolt_cv);
837 vminfo.freemem += freemem;
839 pgcnt_t maxswap, resv, free;
840 pgcnt_t avail =
841 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
843 maxswap = k_anoninfo.ani_mem_resv +
844 k_anoninfo.ani_max +avail;
845 /* Update ani_free */
846 set_anoninfo();
847 free = k_anoninfo.ani_free + avail;
848 resv = k_anoninfo.ani_phys_resv +
849 k_anoninfo.ani_mem_resv;
851 vminfo.swap_resv += resv;
852 /* number of reserved and allocated pages */
853 #ifdef DEBUG
854 if (maxswap < free)
855 cmn_err(CE_WARN, "clock: maxswap < free");
856 if (maxswap < resv)
857 cmn_err(CE_WARN, "clock: maxswap < resv");
858 #endif
859 vminfo.swap_alloc += maxswap - free;
860 vminfo.swap_avail += maxswap - resv;
861 vminfo.swap_free += free;
863 vminfo.updates++;
864 if (nrunnable) {
865 sysinfo.runque += nrunnable;
866 sysinfo.runocc++;
868 if (nswapped) {
869 sysinfo.swpque += nswapped;
870 sysinfo.swpocc++;
872 sysinfo.waiting += w_io;
873 sysinfo.updates++;
876 * Wake up fsflush to write out DELWRI
877 * buffers, dirty pages and other cached
878 * administrative data, e.g. inodes.
880 if (--fsflushcnt <= 0) {
881 fsflushcnt = tune.t_fsflushr;
882 cv_signal(&fsflush_cv);
885 vmmeter();
886 calcloadavg(genloadavg(&loadavg), hp_avenrun);
887 for (i = 0; i < 3; i++)
889 * At the moment avenrun[] can only hold 31
890 * bits of load average as it is a signed
891 * int in the API. We need to ensure that
892 * hp_avenrun[i] >> (16 - FSHIFT) will not be
893 * too large. If it is, we put the largest value
894 * that we can use into avenrun[i]. This is
895 * kludgey, but about all we can do until we
896 * avenrun[] is declared as an array of uint64[]
898 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
899 avenrun[i] = (int32_t)(hp_avenrun[i] >>
900 (16 - FSHIFT));
901 else
902 avenrun[i] = 0x7fffffff;
904 cpupart = cp_list_head;
905 do {
906 calcloadavg(genloadavg(&cpupart->cp_loadavg),
907 cpupart->cp_hp_avenrun);
908 } while ((cpupart = cpupart->cp_next) != cp_list_head);
911 * Wake up the swapper thread if necessary.
913 if (runin ||
914 (runout && (avefree < desfree || wake_sched_sec))) {
915 t = &t0;
916 thread_lock(t);
917 if (t->t_state == TS_STOPPED) {
918 runin = runout = 0;
919 wake_sched_sec = 0;
920 t->t_whystop = 0;
921 t->t_whatstop = 0;
922 t->t_schedflag &= ~TS_ALLSTART;
923 THREAD_TRANSITION(t);
924 setfrontdq(t);
926 thread_unlock(t);
931 * Wake up the swapper if any high priority swapped-out threads
932 * became runable during the last tick.
934 if (wake_sched) {
935 t = &t0;
936 thread_lock(t);
937 if (t->t_state == TS_STOPPED) {
938 runin = runout = 0;
939 wake_sched = 0;
940 t->t_whystop = 0;
941 t->t_whatstop = 0;
942 t->t_schedflag &= ~TS_ALLSTART;
943 THREAD_TRANSITION(t);
944 setfrontdq(t);
946 thread_unlock(t);
950 void
951 clock_init(void)
953 cyc_handler_t clk_hdlr, lbolt_hdlr;
954 cyc_time_t clk_when, lbolt_when;
955 int i, sz;
956 intptr_t buf;
959 * Setup handler and timer for the clock cyclic.
961 clk_hdlr.cyh_func = (cyc_func_t)clock;
962 clk_hdlr.cyh_level = CY_LOCK_LEVEL;
963 clk_hdlr.cyh_arg = NULL;
965 clk_when.cyt_when = 0;
966 clk_when.cyt_interval = nsec_per_tick;
969 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
970 * interval to satisfy performance needs of the DDI lbolt consumers.
971 * It is off by default.
973 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
974 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
975 lbolt_hdlr.cyh_arg = NULL;
977 lbolt_when.cyt_interval = nsec_per_tick;
980 * Allocate cache line aligned space for the per CPU lbolt data and
981 * lbolt info structures, and initialize them with their default
982 * values. Note that these structures are also cache line sized.
984 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
985 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
986 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
988 if (hz != HZ_DEFAULT)
989 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
990 hz/HZ_DEFAULT;
991 else
992 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
994 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
996 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
997 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
998 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
1000 for (i = 0; i < max_ncpus; i++)
1001 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1004 * Install the softint used to switch between event and cyclic driven
1005 * lbolt. We use a soft interrupt to make sure the context of the
1006 * cyclic reprogram call is safe.
1008 lbolt_softint_add();
1011 * Since the hybrid lbolt implementation is based on a hardware counter
1012 * that is reset at every hardware reboot and that we'd like to have
1013 * the lbolt value starting at zero after both a hardware and a fast
1014 * reboot, we calculate the number of clock ticks the system's been up
1015 * and store it in the lbi_debug_time field of the lbolt info structure.
1016 * The value of this field will be subtracted from lbolt before
1017 * returning it.
1019 lb_info->lbi_internal = lb_info->lbi_debug_time =
1020 (gethrtime()/nsec_per_tick);
1023 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1024 * and lbolt_debug_{enter,return} use this value as an indication that
1025 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1026 * to either lbolt_{cyclic,event}_driven here signals those code paths
1027 * that the lbolt related structures can be used.
1029 if (lbolt_cyc_only) {
1030 lbolt_when.cyt_when = 0;
1031 lbolt_hybrid = lbolt_cyclic_driven;
1032 } else {
1033 lbolt_when.cyt_when = CY_INFINITY;
1034 lbolt_hybrid = lbolt_event_driven;
1038 * Grab cpu_lock and install all three cyclics.
1040 mutex_enter(&cpu_lock);
1042 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1043 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1045 mutex_exit(&cpu_lock);
1049 * Called before calcloadavg to get 10-sec moving loadavg together
1052 static int
1053 genloadavg(struct loadavg_s *avgs)
1055 int avg;
1056 int spos; /* starting position */
1057 int cpos; /* moving current position */
1058 int i;
1059 int slen;
1060 hrtime_t hr_avg;
1062 /* 10-second snapshot, calculate first positon */
1063 if (avgs->lg_len == 0) {
1064 return (0);
1066 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1068 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1069 S_LOADAVG_SZ + (avgs->lg_cur - 1);
1070 for (i = hr_avg = 0; i < slen; i++) {
1071 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1072 hr_avg += avgs->lg_loads[cpos];
1075 hr_avg = hr_avg / slen;
1076 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1078 return (avg);
1082 * Run every second from clock () to update the loadavg count available to the
1083 * system and cpu-partitions.
1085 * This works by sampling the previous usr, sys, wait time elapsed,
1086 * computing a delta, and adding that delta to the elapsed usr, sys,
1087 * wait increase.
1090 static void
1091 loadavg_update()
1093 cpu_t *cp;
1094 cpupart_t *cpupart;
1095 hrtime_t cpu_total;
1096 int prev;
1098 cp = cpu_list;
1099 loadavg.lg_total = 0;
1102 * first pass totals up per-cpu statistics for system and cpu
1103 * partitions
1106 do {
1107 struct loadavg_s *lavg;
1109 lavg = &cp->cpu_loadavg;
1111 cpu_total = cp->cpu_acct[CMS_USER] +
1112 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1113 /* compute delta against last total */
1114 scalehrtime(&cpu_total);
1115 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1116 S_LOADAVG_SZ + (lavg->lg_cur - 1);
1117 if (lavg->lg_loads[prev] <= 0) {
1118 lavg->lg_loads[lavg->lg_cur] = cpu_total;
1119 cpu_total = 0;
1120 } else {
1121 lavg->lg_loads[lavg->lg_cur] = cpu_total;
1122 cpu_total = cpu_total - lavg->lg_loads[prev];
1123 if (cpu_total < 0)
1124 cpu_total = 0;
1127 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1128 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1129 lavg->lg_len + 1 : S_LOADAVG_SZ;
1131 loadavg.lg_total += cpu_total;
1132 cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1134 } while ((cp = cp->cpu_next) != cpu_list);
1136 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1137 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1138 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1139 loadavg.lg_len + 1 : S_LOADAVG_SZ;
1141 * Second pass updates counts
1143 cpupart = cp_list_head;
1145 do {
1146 struct loadavg_s *lavg;
1148 lavg = &cpupart->cp_loadavg;
1149 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1150 lavg->lg_total = 0;
1151 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1152 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1153 lavg->lg_len + 1 : S_LOADAVG_SZ;
1155 } while ((cpupart = cpupart->cp_next) != cp_list_head);
1158 * Third pass totals up per-zone statistics.
1160 zone_loadavg_update();
1164 * clock_update() - local clock update
1166 * This routine is called by ntp_adjtime() to update the local clock
1167 * phase and frequency. The implementation is of an
1168 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1169 * routine computes new time and frequency offset estimates for each
1170 * call. The PPS signal itself determines the new time offset,
1171 * instead of the calling argument. Presumably, calls to
1172 * ntp_adjtime() occur only when the caller believes the local clock
1173 * is valid within some bound (+-128 ms with NTP). If the caller's
1174 * time is far different than the PPS time, an argument will ensue,
1175 * and it's not clear who will lose.
1177 * For uncompensated quartz crystal oscillatores and nominal update
1178 * intervals less than 1024 s, operation should be in phase-lock mode
1179 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1180 * intervals greater than this, operation should be in frequency-lock
1181 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1183 * Note: mutex(&tod_lock) is in effect.
1185 void
1186 clock_update(int offset)
1188 int ltemp, mtemp, s;
1190 ASSERT(MUTEX_HELD(&tod_lock));
1192 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1193 return;
1194 ltemp = offset;
1195 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1196 ltemp = pps_offset;
1199 * Scale the phase adjustment and clamp to the operating range.
1201 if (ltemp > MAXPHASE)
1202 time_offset = MAXPHASE * SCALE_UPDATE;
1203 else if (ltemp < -MAXPHASE)
1204 time_offset = -(MAXPHASE * SCALE_UPDATE);
1205 else
1206 time_offset = ltemp * SCALE_UPDATE;
1209 * Select whether the frequency is to be controlled and in which
1210 * mode (PLL or FLL). Clamp to the operating range. Ugly
1211 * multiply/divide should be replaced someday.
1213 if (time_status & STA_FREQHOLD || time_reftime == 0)
1214 time_reftime = hrestime.tv_sec;
1216 mtemp = hrestime.tv_sec - time_reftime;
1217 time_reftime = hrestime.tv_sec;
1219 if (time_status & STA_FLL) {
1220 if (mtemp >= MINSEC) {
1221 ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1222 SCALE_UPDATE));
1223 if (ltemp)
1224 time_freq += ltemp / SCALE_KH;
1226 } else {
1227 if (mtemp < MAXSEC) {
1228 ltemp *= mtemp;
1229 if (ltemp)
1230 time_freq += (int)(((int64_t)ltemp *
1231 SCALE_USEC) / SCALE_KF)
1232 / (1 << (time_constant * 2));
1235 if (time_freq > time_tolerance)
1236 time_freq = time_tolerance;
1237 else if (time_freq < -time_tolerance)
1238 time_freq = -time_tolerance;
1240 s = hr_clock_lock();
1241 tod_needsync = 1;
1242 hr_clock_unlock(s);
1246 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1248 * This routine is called at each PPS interrupt in order to discipline
1249 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1250 * and leaves it in a handy spot for the clock() routine. It
1251 * integrates successive PPS phase differences and calculates the
1252 * frequency offset. This is used in clock() to discipline the CPU
1253 * clock oscillator so that intrinsic frequency error is cancelled out.
1254 * The code requires the caller to capture the time and hardware counter
1255 * value at the on-time PPS signal transition.
1257 * Note that, on some Unix systems, this routine runs at an interrupt
1258 * priority level higher than the timer interrupt routine clock().
1259 * Therefore, the variables used are distinct from the clock()
1260 * variables, except for certain exceptions: The PPS frequency pps_freq
1261 * and phase pps_offset variables are determined by this routine and
1262 * updated atomically. The time_tolerance variable can be considered a
1263 * constant, since it is infrequently changed, and then only when the
1264 * PPS signal is disabled. The watchdog counter pps_valid is updated
1265 * once per second by clock() and is atomically cleared in this
1266 * routine.
1268 * tvp is the time of the last tick; usec is a microsecond count since the
1269 * last tick.
1271 * Note: In Solaris systems, the tick value is actually given by
1272 * usec_per_tick. This is called from the serial driver cdintr(),
1273 * or equivalent, at a high PIL. Because the kernel keeps a
1274 * highresolution time, the following code can accept either
1275 * the traditional argument pair, or the current highres timestamp
1276 * in tvp and zero in usec.
1278 void
1279 ddi_hardpps(struct timeval *tvp, int usec)
1281 int u_usec, v_usec, bigtick;
1282 time_t cal_sec;
1283 int cal_usec;
1286 * An occasional glitch can be produced when the PPS interrupt
1287 * occurs in the clock() routine before the time variable is
1288 * updated. Here the offset is discarded when the difference
1289 * between it and the last one is greater than tick/2, but not
1290 * if the interval since the first discard exceeds 30 s.
1292 time_status |= STA_PPSSIGNAL;
1293 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1294 pps_valid = 0;
1295 u_usec = -tvp->tv_usec;
1296 if (u_usec < -(MICROSEC/2))
1297 u_usec += MICROSEC;
1298 v_usec = pps_offset - u_usec;
1299 if (v_usec < 0)
1300 v_usec = -v_usec;
1301 if (v_usec > (usec_per_tick >> 1)) {
1302 if (pps_glitch > MAXGLITCH) {
1303 pps_glitch = 0;
1304 pps_tf[2] = u_usec;
1305 pps_tf[1] = u_usec;
1306 } else {
1307 pps_glitch++;
1308 u_usec = pps_offset;
1310 } else
1311 pps_glitch = 0;
1314 * A three-stage median filter is used to help deglitch the pps
1315 * time. The median sample becomes the time offset estimate; the
1316 * difference between the other two samples becomes the time
1317 * dispersion (jitter) estimate.
1319 pps_tf[2] = pps_tf[1];
1320 pps_tf[1] = pps_tf[0];
1321 pps_tf[0] = u_usec;
1322 if (pps_tf[0] > pps_tf[1]) {
1323 if (pps_tf[1] > pps_tf[2]) {
1324 pps_offset = pps_tf[1]; /* 0 1 2 */
1325 v_usec = pps_tf[0] - pps_tf[2];
1326 } else if (pps_tf[2] > pps_tf[0]) {
1327 pps_offset = pps_tf[0]; /* 2 0 1 */
1328 v_usec = pps_tf[2] - pps_tf[1];
1329 } else {
1330 pps_offset = pps_tf[2]; /* 0 2 1 */
1331 v_usec = pps_tf[0] - pps_tf[1];
1333 } else {
1334 if (pps_tf[1] < pps_tf[2]) {
1335 pps_offset = pps_tf[1]; /* 2 1 0 */
1336 v_usec = pps_tf[2] - pps_tf[0];
1337 } else if (pps_tf[2] < pps_tf[0]) {
1338 pps_offset = pps_tf[0]; /* 1 0 2 */
1339 v_usec = pps_tf[1] - pps_tf[2];
1340 } else {
1341 pps_offset = pps_tf[2]; /* 1 2 0 */
1342 v_usec = pps_tf[1] - pps_tf[0];
1345 if (v_usec > MAXTIME)
1346 pps_jitcnt++;
1347 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1348 pps_jitter += v_usec / (1 << PPS_AVG);
1349 if (pps_jitter > (MAXTIME >> 1))
1350 time_status |= STA_PPSJITTER;
1353 * During the calibration interval adjust the starting time when
1354 * the tick overflows. At the end of the interval compute the
1355 * duration of the interval and the difference of the hardware
1356 * counters at the beginning and end of the interval. This code
1357 * is deliciously complicated by the fact valid differences may
1358 * exceed the value of tick when using long calibration
1359 * intervals and small ticks. Note that the counter can be
1360 * greater than tick if caught at just the wrong instant, but
1361 * the values returned and used here are correct.
1363 bigtick = (int)usec_per_tick * SCALE_USEC;
1364 pps_usec -= pps_freq;
1365 if (pps_usec >= bigtick)
1366 pps_usec -= bigtick;
1367 if (pps_usec < 0)
1368 pps_usec += bigtick;
1369 pps_time.tv_sec++;
1370 pps_count++;
1371 if (pps_count < (1 << pps_shift))
1372 return;
1373 pps_count = 0;
1374 pps_calcnt++;
1375 u_usec = usec * SCALE_USEC;
1376 v_usec = pps_usec - u_usec;
1377 if (v_usec >= bigtick >> 1)
1378 v_usec -= bigtick;
1379 if (v_usec < -(bigtick >> 1))
1380 v_usec += bigtick;
1381 if (v_usec < 0)
1382 v_usec = -(-v_usec >> pps_shift);
1383 else
1384 v_usec = v_usec >> pps_shift;
1385 pps_usec = u_usec;
1386 cal_sec = tvp->tv_sec;
1387 cal_usec = tvp->tv_usec;
1388 cal_sec -= pps_time.tv_sec;
1389 cal_usec -= pps_time.tv_usec;
1390 if (cal_usec < 0) {
1391 cal_usec += MICROSEC;
1392 cal_sec--;
1394 pps_time = *tvp;
1397 * Check for lost interrupts, noise, excessive jitter and
1398 * excessive frequency error. The number of timer ticks during
1399 * the interval may vary +-1 tick. Add to this a margin of one
1400 * tick for the PPS signal jitter and maximum frequency
1401 * deviation. If the limits are exceeded, the calibration
1402 * interval is reset to the minimum and we start over.
1404 u_usec = (int)usec_per_tick << 1;
1405 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1406 (cal_sec == 0 && cal_usec < u_usec)) ||
1407 v_usec > time_tolerance || v_usec < -time_tolerance) {
1408 pps_errcnt++;
1409 pps_shift = PPS_SHIFT;
1410 pps_intcnt = 0;
1411 time_status |= STA_PPSERROR;
1412 return;
1416 * A three-stage median filter is used to help deglitch the pps
1417 * frequency. The median sample becomes the frequency offset
1418 * estimate; the difference between the other two samples
1419 * becomes the frequency dispersion (stability) estimate.
1421 pps_ff[2] = pps_ff[1];
1422 pps_ff[1] = pps_ff[0];
1423 pps_ff[0] = v_usec;
1424 if (pps_ff[0] > pps_ff[1]) {
1425 if (pps_ff[1] > pps_ff[2]) {
1426 u_usec = pps_ff[1]; /* 0 1 2 */
1427 v_usec = pps_ff[0] - pps_ff[2];
1428 } else if (pps_ff[2] > pps_ff[0]) {
1429 u_usec = pps_ff[0]; /* 2 0 1 */
1430 v_usec = pps_ff[2] - pps_ff[1];
1431 } else {
1432 u_usec = pps_ff[2]; /* 0 2 1 */
1433 v_usec = pps_ff[0] - pps_ff[1];
1435 } else {
1436 if (pps_ff[1] < pps_ff[2]) {
1437 u_usec = pps_ff[1]; /* 2 1 0 */
1438 v_usec = pps_ff[2] - pps_ff[0];
1439 } else if (pps_ff[2] < pps_ff[0]) {
1440 u_usec = pps_ff[0]; /* 1 0 2 */
1441 v_usec = pps_ff[1] - pps_ff[2];
1442 } else {
1443 u_usec = pps_ff[2]; /* 1 2 0 */
1444 v_usec = pps_ff[1] - pps_ff[0];
1449 * Here the frequency dispersion (stability) is updated. If it
1450 * is less than one-fourth the maximum (MAXFREQ), the frequency
1451 * offset is updated as well, but clamped to the tolerance. It
1452 * will be processed later by the clock() routine.
1454 v_usec = (v_usec >> 1) - pps_stabil;
1455 if (v_usec < 0)
1456 pps_stabil -= -v_usec >> PPS_AVG;
1457 else
1458 pps_stabil += v_usec >> PPS_AVG;
1459 if (pps_stabil > MAXFREQ >> 2) {
1460 pps_stbcnt++;
1461 time_status |= STA_PPSWANDER;
1462 return;
1464 if (time_status & STA_PPSFREQ) {
1465 if (u_usec < 0) {
1466 pps_freq -= -u_usec >> PPS_AVG;
1467 if (pps_freq < -time_tolerance)
1468 pps_freq = -time_tolerance;
1469 u_usec = -u_usec;
1470 } else {
1471 pps_freq += u_usec >> PPS_AVG;
1472 if (pps_freq > time_tolerance)
1473 pps_freq = time_tolerance;
1478 * Here the calibration interval is adjusted. If the maximum
1479 * time difference is greater than tick / 4, reduce the interval
1480 * by half. If this is not the case for four consecutive
1481 * intervals, double the interval.
1483 if (u_usec << pps_shift > bigtick >> 2) {
1484 pps_intcnt = 0;
1485 if (pps_shift > PPS_SHIFT)
1486 pps_shift--;
1487 } else if (pps_intcnt >= 4) {
1488 pps_intcnt = 0;
1489 if (pps_shift < PPS_SHIFTMAX)
1490 pps_shift++;
1491 } else
1492 pps_intcnt++;
1495 * If recovering from kmdb, then make sure the tod chip gets resynced.
1496 * If we took an early exit above, then we don't yet have a stable
1497 * calibration signal to lock onto, so don't mark the tod for sync
1498 * until we get all the way here.
1501 int s = hr_clock_lock();
1503 tod_needsync = 1;
1504 hr_clock_unlock(s);
1509 * Handle clock tick processing for a thread.
1510 * Check for timer action, enforce CPU rlimit, do profiling etc.
1512 void
1513 clock_tick(kthread_t *t, int pending)
1515 struct proc *pp;
1516 klwp_id_t lwp;
1517 struct as *as;
1518 clock_t ticks;
1519 int poke = 0; /* notify another CPU */
1520 int user_mode;
1521 size_t rss;
1522 int i, total_usec, usec;
1523 rctl_qty_t secs;
1525 ASSERT(pending > 0);
1527 /* Must be operating on a lwp/thread */
1528 if ((lwp = ttolwp(t)) == NULL) {
1529 panic("clock_tick: no lwp");
1530 /*NOTREACHED*/
1533 for (i = 0; i < pending; i++) {
1534 CL_TICK(t); /* Class specific tick processing */
1535 DTRACE_SCHED1(tick, kthread_t *, t);
1538 pp = ttoproc(t);
1540 /* pp->p_lock makes sure that the thread does not exit */
1541 ASSERT(MUTEX_HELD(&pp->p_lock));
1543 user_mode = (lwp->lwp_state == LWP_USER);
1545 ticks = (pp->p_utime + pp->p_stime) % hz;
1547 * Update process times. Should use high res clock and state
1548 * changes instead of statistical sampling method. XXX
1550 if (user_mode) {
1551 pp->p_utime += pending;
1552 } else {
1553 pp->p_stime += pending;
1556 pp->p_ttime += pending;
1557 as = pp->p_as;
1560 * Update user profiling statistics. Get the pc from the
1561 * lwp when the AST happens.
1563 if (pp->p_prof.pr_scale) {
1564 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1565 if (user_mode) {
1566 poke = 1;
1567 aston(t);
1572 * If CPU was in user state, process lwp-virtual time
1573 * interval timer. The value passed to itimerdecr() has to be
1574 * in microseconds and has to be less than one second. Hence
1575 * this loop.
1577 total_usec = usec_per_tick * pending;
1578 while (total_usec > 0) {
1579 usec = MIN(total_usec, (MICROSEC - 1));
1580 if (user_mode &&
1581 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1582 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1583 poke = 1;
1584 sigtoproc(pp, t, SIGVTALRM);
1586 total_usec -= usec;
1590 * If CPU was in user state, process lwp-profile
1591 * interval timer.
1593 total_usec = usec_per_tick * pending;
1594 while (total_usec > 0) {
1595 usec = MIN(total_usec, (MICROSEC - 1));
1596 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1597 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1598 poke = 1;
1599 sigtoproc(pp, t, SIGPROF);
1601 total_usec -= usec;
1605 * Enforce CPU resource controls:
1606 * (a) process.max-cpu-time resource control
1608 * Perform the check only if we have accumulated more a second.
1610 if ((ticks + pending) >= hz) {
1611 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1612 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1616 * (b) task.max-cpu-time resource control
1618 * If we have accumulated enough ticks, increment the task CPU
1619 * time usage and test for the resource limit. This minimizes the
1620 * number of calls to the rct_test(). The task CPU time mutex
1621 * is highly contentious as many processes can be sharing a task.
1623 if (pp->p_ttime >= clock_tick_proc_max) {
1624 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1625 pp->p_ttime = 0;
1626 if (secs) {
1627 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1628 pp, secs, RCA_UNSAFE_SIGINFO);
1633 * Update memory usage for the currently running process.
1635 rss = rm_asrss(as);
1636 PTOU(pp)->u_mem += rss;
1637 if (rss > PTOU(pp)->u_mem_max)
1638 PTOU(pp)->u_mem_max = rss;
1641 * Notify the CPU the thread is running on.
1643 if (poke && t->t_cpu != CPU)
1644 poke_cpu(t->t_cpu->cpu_id);
1647 void
1648 profil_tick(uintptr_t upc)
1650 int ticks;
1651 proc_t *p = ttoproc(curthread);
1652 klwp_t *lwp = ttolwp(curthread);
1653 struct prof *pr = &p->p_prof;
1655 do {
1656 ticks = lwp->lwp_oweupc;
1657 } while (atomic_cas_32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1659 mutex_enter(&p->p_pflock);
1660 if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1662 * Old-style profiling
1664 uint16_t *slot = pr->pr_base;
1665 uint16_t old, new;
1666 if (pr->pr_scale != 2) {
1667 uintptr_t delta = upc - pr->pr_off;
1668 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1669 (((delta & 0xffff) * pr->pr_scale) >> 16);
1670 if (byteoff >= (uintptr_t)pr->pr_size) {
1671 mutex_exit(&p->p_pflock);
1672 return;
1674 slot += byteoff / sizeof (uint16_t);
1676 if (fuword16(slot, &old) < 0 ||
1677 (new = old + ticks) > SHRT_MAX ||
1678 suword16(slot, new) < 0) {
1679 pr->pr_scale = 0;
1681 } else if (pr->pr_scale == 1) {
1683 * PC Sampling
1685 model_t model = lwp_getdatamodel(lwp);
1686 int result;
1687 #ifdef __lint
1688 model = model;
1689 #endif
1690 while (ticks-- > 0) {
1691 if (pr->pr_samples == pr->pr_size) {
1692 /* buffer full, turn off sampling */
1693 pr->pr_scale = 0;
1694 break;
1696 switch (SIZEOF_PTR(model)) {
1697 case sizeof (uint32_t):
1698 result = suword32(pr->pr_base, (uint32_t)upc);
1699 break;
1700 #ifdef _LP64
1701 case sizeof (uint64_t):
1702 result = suword64(pr->pr_base, (uint64_t)upc);
1703 break;
1704 #endif
1705 default:
1706 cmn_err(CE_WARN, "profil_tick: unexpected "
1707 "data model");
1708 result = -1;
1709 break;
1711 if (result != 0) {
1712 pr->pr_scale = 0;
1713 break;
1715 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1716 pr->pr_samples++;
1719 mutex_exit(&p->p_pflock);
1722 static void
1723 delay_wakeup(void *arg)
1725 kthread_t *t = arg;
1727 mutex_enter(&t->t_delay_lock);
1728 cv_signal(&t->t_delay_cv);
1729 mutex_exit(&t->t_delay_lock);
1733 * The delay(9F) man page indicates that it can only be called from user or
1734 * kernel context - detect and diagnose bad calls. The following macro will
1735 * produce a limited number of messages identifying bad callers. This is done
1736 * in a macro so that caller() is meaningful. When a bad caller is identified,
1737 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1739 #define DELAY_CONTEXT_CHECK() { \
1740 uint32_t m; \
1741 char *f; \
1742 ulong_t off; \
1744 m = delay_from_interrupt_msg; \
1745 if (delay_from_interrupt_diagnose && servicing_interrupt() && \
1746 !panicstr && !devinfo_freeze && \
1747 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \
1748 f = modgetsymname((uintptr_t)caller(), &off); \
1749 cmn_err(CE_WARN, "delay(9F) called from " \
1750 "interrupt context: %s`%s", \
1751 mod_containing_pc(caller()), f ? f : "..."); \
1756 * delay_common: common delay code.
1758 static void
1759 delay_common(clock_t ticks)
1761 kthread_t *t = curthread;
1762 clock_t deadline;
1763 clock_t timeleft;
1764 callout_id_t id;
1766 /* If timeouts aren't running all we can do is spin. */
1767 if (panicstr || devinfo_freeze) {
1768 /* Convert delay(9F) call into drv_usecwait(9F) call. */
1769 if (ticks > 0)
1770 drv_usecwait(TICK_TO_USEC(ticks));
1771 return;
1774 deadline = ddi_get_lbolt() + ticks;
1775 while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1776 mutex_enter(&t->t_delay_lock);
1777 id = timeout_default(delay_wakeup, t, timeleft);
1778 cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1779 mutex_exit(&t->t_delay_lock);
1780 (void) untimeout_default(id, 0);
1785 * Delay specified number of clock ticks.
1787 void
1788 delay(clock_t ticks)
1790 DELAY_CONTEXT_CHECK();
1792 delay_common(ticks);
1796 * Delay a random number of clock ticks between 1 and ticks.
1798 void
1799 delay_random(clock_t ticks)
1801 int r;
1803 DELAY_CONTEXT_CHECK();
1805 (void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1806 if (ticks == 0)
1807 ticks = 1;
1808 ticks = (r % ticks) + 1;
1809 delay_common(ticks);
1813 * Like delay, but interruptible by a signal.
1816 delay_sig(clock_t ticks)
1818 kthread_t *t = curthread;
1819 clock_t deadline;
1820 clock_t rc;
1822 /* If timeouts aren't running all we can do is spin. */
1823 if (panicstr || devinfo_freeze) {
1824 if (ticks > 0)
1825 drv_usecwait(TICK_TO_USEC(ticks));
1826 return (0);
1829 deadline = ddi_get_lbolt() + ticks;
1830 mutex_enter(&t->t_delay_lock);
1831 do {
1832 rc = cv_timedwait_sig(&t->t_delay_cv,
1833 &t->t_delay_lock, deadline);
1834 /* loop until past deadline or signaled */
1835 } while (rc > 0);
1836 mutex_exit(&t->t_delay_lock);
1837 if (rc == 0)
1838 return (EINTR);
1839 return (0);
1843 #define SECONDS_PER_DAY 86400
1846 * Initialize the system time based on the TOD chip. approx is used as
1847 * an approximation of time (e.g. from the filesystem) in the event that
1848 * the TOD chip has been cleared or is unresponsive. An approx of -1
1849 * means the filesystem doesn't keep time.
1851 void
1852 clkset(time_t approx)
1854 timestruc_t ts;
1855 int spl;
1856 int set_clock = 0;
1858 mutex_enter(&tod_lock);
1859 ts = tod_get();
1861 if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1863 * If the TOD chip is reporting some time after 1971,
1864 * then it probably didn't lose power or become otherwise
1865 * cleared in the recent past; check to assure that
1866 * the time coming from the filesystem isn't in the future
1867 * according to the TOD chip.
1869 if (approx != -1 && approx > ts.tv_sec) {
1870 cmn_err(CE_WARN, "Last shutdown is later "
1871 "than time on time-of-day chip; check date.");
1873 } else {
1875 * If the TOD chip isn't giving correct time, set it to the
1876 * greater of i) approx and ii) 1987. That way if approx
1877 * is negative or is earlier than 1987, we set the clock
1878 * back to a time when Oliver North, ALF and Dire Straits
1879 * were all on the collective brain: 1987.
1881 timestruc_t tmp;
1882 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1883 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1884 ts.tv_nsec = 0;
1887 * Attempt to write the new time to the TOD chip. Set spl high
1888 * to avoid getting preempted between the tod_set and tod_get.
1890 spl = splhi();
1891 tod_set(ts);
1892 tmp = tod_get();
1893 splx(spl);
1895 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1896 tod_broken = 1;
1897 dosynctodr = 0;
1898 cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1899 } else {
1900 cmn_err(CE_WARN, "Time-of-day chip had "
1901 "incorrect date; check and reset.");
1903 set_clock = 1;
1906 if (!boot_time) {
1907 boot_time = ts.tv_sec;
1908 global_zone->zone_boot_time = ts.tv_sec;
1909 set_clock = 1;
1912 if (set_clock)
1913 set_hrestime(&ts);
1915 mutex_exit(&tod_lock);
1918 int timechanged; /* for testing if the system time has been reset */
1920 void
1921 set_hrestime(timestruc_t *ts)
1923 int spl = hr_clock_lock();
1924 hrestime = *ts;
1925 membar_enter(); /* hrestime must be visible before timechanged++ */
1926 timedelta = 0;
1927 timechanged++;
1928 hr_clock_unlock(spl);
1929 callout_hrestime();
1932 static uint_t deadman_seconds;
1933 static uint32_t deadman_panics;
1934 static int deadman_enabled = 0;
1935 static int deadman_panic_timers = 1;
1937 static void
1938 deadman(void)
1940 if (panicstr) {
1942 * During panic, other CPUs besides the panic
1943 * master continue to handle cyclics and some other
1944 * interrupts. The code below is intended to be
1945 * single threaded, so any CPU other than the master
1946 * must keep out.
1948 if (CPU->cpu_id != panic_cpu.cpu_id)
1949 return;
1951 if (!deadman_panic_timers)
1952 return; /* allow all timers to be manually disabled */
1955 * If we are generating a crash dump or syncing filesystems and
1956 * the corresponding timer is set, decrement it and re-enter
1957 * the panic code to abort it and advance to the next state.
1958 * The panic states and triggers are explained in panic.c.
1960 if (panic_dump) {
1961 if (dump_timeleft && (--dump_timeleft == 0)) {
1962 panic("panic dump timeout");
1963 /*NOTREACHED*/
1966 return;
1969 if (deadman_counter != CPU->cpu_deadman_counter) {
1970 CPU->cpu_deadman_counter = deadman_counter;
1971 CPU->cpu_deadman_countdown = deadman_seconds;
1972 return;
1975 if (--CPU->cpu_deadman_countdown > 0)
1976 return;
1979 * Regardless of whether or not we actually bring the system down,
1980 * bump the deadman_panics variable.
1982 * N.B. deadman_panics is incremented once for each CPU that
1983 * passes through here. It's expected that all the CPUs will
1984 * detect this condition within one second of each other, so
1985 * when deadman_enabled is off, deadman_panics will
1986 * typically be a multiple of the total number of CPUs in
1987 * the system.
1989 atomic_inc_32(&deadman_panics);
1991 if (!deadman_enabled) {
1992 CPU->cpu_deadman_countdown = deadman_seconds;
1993 return;
1997 * If we're here, we want to bring the system down.
1999 panic("deadman: timed out after %d seconds of clock "
2000 "inactivity", deadman_seconds);
2001 /*NOTREACHED*/
2004 /*ARGSUSED*/
2005 static void
2006 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2008 cpu->cpu_deadman_counter = 0;
2009 cpu->cpu_deadman_countdown = deadman_seconds;
2011 hdlr->cyh_func = (cyc_func_t)deadman;
2012 hdlr->cyh_level = CY_HIGH_LEVEL;
2013 hdlr->cyh_arg = NULL;
2016 * Stagger the CPUs so that they don't all run deadman() at
2017 * the same time. Simplest reason to do this is to make it
2018 * more likely that only one CPU will panic in case of a
2019 * timeout. This is (strictly speaking) an aesthetic, not a
2020 * technical consideration.
2022 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2023 when->cyt_interval = NANOSEC;
2027 void
2028 deadman_init(void)
2030 cyc_omni_handler_t hdlr;
2032 if (deadman_seconds == 0)
2033 deadman_seconds = snoop_interval / MICROSEC;
2035 if (snooping)
2036 deadman_enabled = 1;
2038 hdlr.cyo_online = deadman_online;
2039 hdlr.cyo_offline = NULL;
2040 hdlr.cyo_arg = NULL;
2042 mutex_enter(&cpu_lock);
2043 deadman_cyclic = cyclic_add_omni(&hdlr);
2044 mutex_exit(&cpu_lock);
2048 * tod_fault() is for updating tod validate mechanism state:
2049 * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2050 * currently used for debugging only
2051 * (2) The following four cases detected by tod validate mechanism:
2052 * TOD_REVERSED: current tod value is less than previous value.
2053 * TOD_STALLED: current tod value hasn't advanced.
2054 * TOD_JUMPED: current tod value advanced too far from previous value.
2055 * TOD_RATECHANGED: the ratio between average tod delta and
2056 * average tick delta has changed.
2057 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2058 * a virtual TOD provided by a hypervisor.
2060 enum tod_fault_type
2061 tod_fault(enum tod_fault_type ftype, int off)
2063 ASSERT(MUTEX_HELD(&tod_lock));
2065 if (tod_faulted != ftype) {
2066 switch (ftype) {
2067 case TOD_NOFAULT:
2068 plat_tod_fault(TOD_NOFAULT);
2069 cmn_err(CE_NOTE, "Restarted tracking "
2070 "Time of Day clock.");
2071 tod_faulted = ftype;
2072 break;
2073 case TOD_REVERSED:
2074 case TOD_JUMPED:
2075 if (tod_faulted == TOD_NOFAULT) {
2076 plat_tod_fault(ftype);
2077 cmn_err(CE_WARN, "Time of Day clock error: "
2078 "reason [%s by 0x%x]. -- "
2079 " Stopped tracking Time Of Day clock.",
2080 tod_fault_table[ftype], off);
2081 tod_faulted = ftype;
2083 break;
2084 case TOD_STALLED:
2085 case TOD_RATECHANGED:
2086 if (tod_faulted == TOD_NOFAULT) {
2087 plat_tod_fault(ftype);
2088 cmn_err(CE_WARN, "Time of Day clock error: "
2089 "reason [%s]. -- "
2090 " Stopped tracking Time Of Day clock.",
2091 tod_fault_table[ftype]);
2092 tod_faulted = ftype;
2094 break;
2095 case TOD_RDONLY:
2096 if (tod_faulted == TOD_NOFAULT) {
2097 plat_tod_fault(ftype);
2098 cmn_err(CE_NOTE, "!Time of Day clock is "
2099 "Read-Only; set of Date/Time will not "
2100 "persist across reboot.");
2101 tod_faulted = ftype;
2103 break;
2104 default:
2105 break;
2108 return (tod_faulted);
2112 * Two functions that allow tod_status_flag to be manipulated by functions
2113 * external to this file.
2116 void
2117 tod_status_set(int tod_flag)
2119 tod_status_flag |= tod_flag;
2122 void
2123 tod_status_clear(int tod_flag)
2125 tod_status_flag &= ~tod_flag;
2129 * Record a timestamp and the value passed to tod_set(). The next call to
2130 * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2131 * when checking the timestruc_t returned by tod_get(). Ordinarily,
2132 * tod_validate() will use prev_tick and prev_tod for this task but these
2133 * become obsolete, and will be re-assigned with the prev_set_* values,
2134 * in the case when the TOD is re-written.
2136 void
2137 tod_set_prev(timestruc_t ts)
2139 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2140 tod_validate_deferred) {
2141 return;
2143 prev_set_tick = gethrtime();
2145 * A negative value will be set to zero in utc_to_tod() so we fake
2146 * a zero here in such a case. This would need to change if the
2147 * behavior of utc_to_tod() changes.
2149 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2153 * tod_validate() is used for checking values returned by tod_get().
2154 * Four error cases can be detected by this routine:
2155 * TOD_REVERSED: current tod value is less than previous.
2156 * TOD_STALLED: current tod value hasn't advanced.
2157 * TOD_JUMPED: current tod value advanced too far from previous value.
2158 * TOD_RATECHANGED: the ratio between average tod delta and
2159 * average tick delta has changed.
2161 time_t
2162 tod_validate(time_t tod)
2164 time_t diff_tod;
2165 hrtime_t diff_tick;
2167 long dtick;
2168 int dtick_delta;
2170 int off = 0;
2171 enum tod_fault_type tod_bad = TOD_NOFAULT;
2173 static int firsttime = 1;
2175 static time_t prev_tod = 0;
2176 static hrtime_t prev_tick = 0;
2177 static long dtick_avg = TOD_REF_FREQ;
2179 int cpr_resume_done = 0;
2180 int dr_resume_done = 0;
2182 hrtime_t tick = gethrtime();
2184 ASSERT(MUTEX_HELD(&tod_lock));
2187 * tod_validate_enable is patchable via /etc/system.
2188 * If TOD is already faulted, or if TOD validation is deferred,
2189 * there is nothing to do.
2191 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2192 tod_validate_deferred) {
2193 return (tod);
2197 * If this is the first time through, we just need to save the tod
2198 * we were called with and hrtime so we can use them next time to
2199 * validate tod_get().
2201 if (firsttime) {
2202 firsttime = 0;
2203 prev_tod = tod;
2204 prev_tick = tick;
2205 return (tod);
2209 * Handle any flags that have been turned on by tod_status_set().
2210 * In the case where a tod_set() is done and then a subsequent
2211 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2212 * true), we treat the TOD_GET_FAILED with precedence by switching
2213 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2214 * until such time as tod_get() completes successfully.
2216 if (tod_status_flag & TOD_GET_FAILED) {
2218 * tod_get() has encountered an issue, possibly transitory,
2219 * when reading TOD. We'll just return the incoming tod
2220 * value (which is actually hrestime.tv_sec in this case)
2221 * and when we get a genuine tod, following a successful
2222 * tod_get(), we can validate using prev_tod and prev_tick.
2224 tod_status_flag &= ~TOD_GET_FAILED;
2225 return (tod);
2226 } else if (tod_status_flag & TOD_SET_DONE) {
2228 * TOD has been modified. Just before the TOD was written,
2229 * tod_set_prev() saved tod and hrtime; we can now use
2230 * those values, prev_set_tod and prev_set_tick, to validate
2231 * the incoming tod that's just been read.
2233 prev_tod = prev_set_tod;
2234 prev_tick = prev_set_tick;
2235 dtick_avg = TOD_REF_FREQ;
2236 tod_status_flag &= ~TOD_SET_DONE;
2238 * If a tod_set() preceded a cpr_suspend() without an
2239 * intervening tod_validate(), we need to ensure that a
2240 * TOD_JUMPED condition is ignored.
2241 * Note this isn't a concern in the case of DR as we've
2242 * just reassigned dtick_avg, above.
2244 if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2245 cpr_resume_done = 1;
2246 tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2248 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2250 * The system's coming back from a checkpoint resume.
2252 cpr_resume_done = 1;
2253 tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2255 * We need to handle the possibility of a CPR suspend
2256 * operation having been initiated whilst a DR event was
2257 * in-flight.
2259 if (tod_status_flag & TOD_DR_RESUME_DONE) {
2260 dr_resume_done = 1;
2261 tod_status_flag &= ~TOD_DR_RESUME_DONE;
2263 } else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2265 * A Dynamic Reconfiguration event has taken place.
2267 dr_resume_done = 1;
2268 tod_status_flag &= ~TOD_DR_RESUME_DONE;
2271 /* test hook */
2272 switch (tod_unit_test) {
2273 case 1: /* for testing jumping tod */
2274 tod += tod_test_injector;
2275 tod_unit_test = 0;
2276 break;
2277 case 2: /* for testing stuck tod bit */
2278 tod |= 1 << tod_test_injector;
2279 tod_unit_test = 0;
2280 break;
2281 case 3: /* for testing stalled tod */
2282 tod = prev_tod;
2283 tod_unit_test = 0;
2284 break;
2285 case 4: /* reset tod fault status */
2286 (void) tod_fault(TOD_NOFAULT, 0);
2287 tod_unit_test = 0;
2288 break;
2289 default:
2290 break;
2293 diff_tod = tod - prev_tod;
2294 diff_tick = tick - prev_tick;
2296 ASSERT(diff_tick >= 0);
2298 if (diff_tod < 0) {
2299 /* ERROR - tod reversed */
2300 tod_bad = TOD_REVERSED;
2301 off = (int)(prev_tod - tod);
2302 } else if (diff_tod == 0) {
2303 /* tod did not advance */
2304 if (diff_tick > TOD_STALL_THRESHOLD) {
2305 /* ERROR - tod stalled */
2306 tod_bad = TOD_STALLED;
2307 } else {
2309 * Make sure we don't update prev_tick
2310 * so that diff_tick is calculated since
2311 * the first diff_tod == 0
2313 return (tod);
2315 } else {
2316 /* calculate dtick */
2317 dtick = diff_tick / diff_tod;
2319 /* update dtick averages */
2320 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2323 * Calculate dtick_delta as
2324 * variation from reference freq in quartiles
2326 dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2327 (TOD_REF_FREQ >> 2);
2330 * Even with a perfectly functioning TOD device,
2331 * when the number of elapsed seconds is low the
2332 * algorithm can calculate a rate that is beyond
2333 * tolerance, causing an error. The algorithm is
2334 * inaccurate when elapsed time is low (less than
2335 * 5 seconds).
2337 if (diff_tod > 4) {
2338 if (dtick < TOD_JUMP_THRESHOLD) {
2340 * If we've just done a CPR resume, we detect
2341 * a jump in the TOD but, actually, what's
2342 * happened is that the TOD has been increasing
2343 * whilst the system was suspended and the tick
2344 * count hasn't kept up. We consider the first
2345 * occurrence of this after a resume as normal
2346 * and ignore it; otherwise, in a non-resume
2347 * case, we regard it as a TOD problem.
2349 if (!cpr_resume_done) {
2350 /* ERROR - tod jumped */
2351 tod_bad = TOD_JUMPED;
2352 off = (int)diff_tod;
2355 if (dtick_delta) {
2357 * If we've just done a DR resume, dtick_avg
2358 * can go a bit askew so we reset it and carry
2359 * on; otherwise, the TOD is in error.
2361 if (dr_resume_done) {
2362 dtick_avg = TOD_REF_FREQ;
2363 } else {
2364 /* ERROR - change in clock rate */
2365 tod_bad = TOD_RATECHANGED;
2371 if (tod_bad != TOD_NOFAULT) {
2372 (void) tod_fault(tod_bad, off);
2375 * Disable dosynctodr since we are going to fault
2376 * the TOD chip anyway here
2378 dosynctodr = 0;
2381 * Set tod to the correct value from hrestime
2383 tod = hrestime.tv_sec;
2386 prev_tod = tod;
2387 prev_tick = tick;
2388 return (tod);
2391 static void
2392 calcloadavg(int nrun, uint64_t *hp_ave)
2394 static int64_t f[3] = { 135, 27, 9 };
2395 uint_t i;
2396 int64_t q, r;
2399 * Compute load average over the last 1, 5, and 15 minutes
2400 * (60, 300, and 900 seconds). The constants in f[3] are for
2401 * exponential decay:
2402 * (1 - exp(-1/60)) << 13 = 135,
2403 * (1 - exp(-1/300)) << 13 = 27,
2404 * (1 - exp(-1/900)) << 13 = 9.
2408 * a little hoop-jumping to avoid integer overflow
2410 for (i = 0; i < 3; i++) {
2411 q = (hp_ave[i] >> 16) << 7;
2412 r = (hp_ave[i] & 0xffff) << 7;
2413 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2418 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2419 * calculate the value of lbolt according to the current mode. In the event
2420 * driven mode (the default), lbolt is calculated by dividing the current hires
2421 * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2422 * an internal variable is incremented at each firing of the lbolt cyclic
2423 * and returned by lbolt_cyclic_driven().
2425 * The system will transition from event to cyclic driven mode when the number
2426 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2427 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2428 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2429 * causing enough activity to cross the thresholds.
2431 int64_t
2432 lbolt_bootstrap(void)
2434 return (0);
2437 /* ARGSUSED */
2438 uint_t
2439 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2441 hrtime_t ts, exp;
2442 int ret;
2444 ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2446 kpreempt_disable();
2448 ts = gethrtime();
2449 lb_info->lbi_internal = (ts/nsec_per_tick);
2452 * Align the next expiration to a clock tick boundary.
2454 exp = ts + nsec_per_tick - 1;
2455 exp = (exp/nsec_per_tick) * nsec_per_tick;
2457 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2458 ASSERT(ret);
2460 lbolt_hybrid = lbolt_cyclic_driven;
2461 lb_info->lbi_cyc_deactivate = B_FALSE;
2462 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2464 kpreempt_enable();
2466 ret = atomic_dec_32_nv(&lb_info->lbi_token);
2467 ASSERT(ret == 0);
2469 return (1);
2472 int64_t
2473 lbolt_event_driven(void)
2475 hrtime_t ts;
2476 int64_t lb;
2477 int ret, cpu = CPU->cpu_seqid;
2479 ts = gethrtime();
2480 ASSERT(ts > 0);
2482 ASSERT(nsec_per_tick > 0);
2483 lb = (ts/nsec_per_tick);
2486 * Switch to cyclic mode if the number of calls to this routine
2487 * has reached the threshold within the interval.
2489 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2491 if (--lb_cpu[cpu].lbc_counter == 0) {
2493 * Reached the threshold within the interval, reset
2494 * the usage statistics.
2496 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2497 lb_cpu[cpu].lbc_cnt_start = lb;
2500 * Make sure only one thread reprograms the
2501 * lbolt cyclic and changes the mode.
2503 if (panicstr == NULL &&
2504 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2506 if (lbolt_hybrid == lbolt_cyclic_driven) {
2507 ret = atomic_dec_32_nv(
2508 &lb_info->lbi_token);
2509 ASSERT(ret == 0);
2510 } else {
2511 lbolt_softint_post();
2515 } else {
2517 * Exceeded the interval, reset the usage statistics.
2519 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2520 lb_cpu[cpu].lbc_cnt_start = lb;
2523 ASSERT(lb >= lb_info->lbi_debug_time);
2525 return (lb - lb_info->lbi_debug_time);
2528 int64_t
2529 lbolt_cyclic_driven(void)
2531 int64_t lb = lb_info->lbi_internal;
2532 int cpu;
2535 * If a CPU has already prevented the lbolt cyclic from deactivating
2536 * itself, don't bother tracking the usage. Otherwise check if we're
2537 * within the interval and how the per CPU counter is doing.
2539 if (lb_info->lbi_cyc_deactivate) {
2540 cpu = CPU->cpu_seqid;
2541 if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2542 lb_info->lbi_thresh_interval) {
2544 if (lb_cpu[cpu].lbc_counter == 0)
2546 * Reached the threshold within the interval,
2547 * prevent the lbolt cyclic from turning itself
2548 * off.
2550 lb_info->lbi_cyc_deactivate = B_FALSE;
2551 else
2552 lb_cpu[cpu].lbc_counter--;
2553 } else {
2555 * Only reset the usage statistics when we have
2556 * exceeded the interval.
2558 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2559 lb_cpu[cpu].lbc_cnt_start = lb;
2563 ASSERT(lb >= lb_info->lbi_debug_time);
2565 return (lb - lb_info->lbi_debug_time);
2569 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2570 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2571 * It is inactive by default, and will be activated when switching from event
2572 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2573 * by lbolt_cyclic_driven().
2575 static void
2576 lbolt_cyclic(void)
2578 int ret;
2580 lb_info->lbi_internal++;
2582 if (!lbolt_cyc_only) {
2584 if (lb_info->lbi_cyc_deactivate) {
2586 * Switching from cyclic to event driven mode.
2588 if (panicstr == NULL &&
2589 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2591 if (lbolt_hybrid == lbolt_event_driven) {
2592 ret = atomic_dec_32_nv(
2593 &lb_info->lbi_token);
2594 ASSERT(ret == 0);
2595 return;
2598 kpreempt_disable();
2600 lbolt_hybrid = lbolt_event_driven;
2601 ret = cyclic_reprogram(
2602 lb_info->id.lbi_cyclic_id,
2603 CY_INFINITY);
2604 ASSERT(ret);
2606 kpreempt_enable();
2608 ret = atomic_dec_32_nv(&lb_info->lbi_token);
2609 ASSERT(ret == 0);
2614 * The lbolt cyclic should not try to deactivate itself before
2615 * the sampling period has elapsed.
2617 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2618 lb_info->lbi_thresh_interval) {
2619 lb_info->lbi_cyc_deactivate = B_TRUE;
2620 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2626 * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2627 * when the system drops into the kernel debugger. lbolt_debug_entry() is
2628 * called by the KDI system claim callbacks to record a hires timestamp at
2629 * debug enter time. lbolt_debug_return() is called by the sistem release
2630 * callbacks to account for the time spent in the debugger. The value is then
2631 * accumulated in the lb_info structure and used by lbolt_event_driven() and
2632 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2634 void
2635 lbolt_debug_entry(void)
2637 if (lbolt_hybrid != lbolt_bootstrap) {
2638 ASSERT(lb_info != NULL);
2639 lb_info->lbi_debug_ts = gethrtime();
2644 * Calculate the time spent in the debugger and add it to the lbolt info
2645 * structure. We also update the internal lbolt value in case we were in
2646 * cyclic driven mode going in.
2648 void
2649 lbolt_debug_return(void)
2651 hrtime_t ts;
2653 if (lbolt_hybrid != lbolt_bootstrap) {
2654 ASSERT(lb_info != NULL);
2655 ASSERT(nsec_per_tick > 0);
2657 ts = gethrtime();
2658 lb_info->lbi_internal = (ts/nsec_per_tick);
2659 lb_info->lbi_debug_time +=
2660 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2662 lb_info->lbi_debug_ts = 0;