16602 usba: unused label
[illumos-gate.git] / usr / src / uts / common / io / pts.c
blob046a2bc76bfb2b1cedcddb74271bd2e40da01552
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
29 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
30 * Copyright 2021 Oxide Computer Company
34 * PSEUDO-TERMINAL SUBSIDIARY DRIVER (PTS)
36 * The pseudo-terminal subsystem simulates a terminal connection, where the
37 * manager side represents the terminal and the subsidiary represents the user
38 * process's special device end point. The manager device is set up as a
39 * cloned device where its major device number is the major for the clone
40 * device and its minor device number is the major for the ptm driver. There
41 * are no nodes in the file system for manager devices. The manager pseudo
42 * driver is opened using the open(2) system call with /dev/ptmx as the device
43 * parameter. The clone open finds the next available minor device for the ptm
44 * major device.
46 * A manager device is available only if it and its corresponding subsidiary
47 * device are not already open. When the manager device is opened, the
48 * corresponding subsidiary device is automatically locked out. Only one open
49 * is allowed on a manager device. Multiple opens are allowed on the
50 * subsidiary device. After both the manager and subsidiary have been opened,
51 * the user has two file descriptors which are the end points of a full duplex
52 * connection composed of two streams which are automatically connected at the
53 * manager and subsidiary drivers. The user may then push modules onto either
54 * side of the stream pair.
56 * The manager and subsidiary drivers pass all messages to their adjacent
57 * queues. Only the M_FLUSH needs some processing. Because the read queue of
58 * one side is connected to the write queue of the other, the FLUSHR flag is
59 * changed to the FLUSHW flag and vice versa. When the manager device is
60 * closed an M_HANGUP message is sent to the subsidiary device which will
61 * render the device unusable. The process on the subsidiary side gets the EIO
62 * when attempting to write on that stream but it will be able to read any data
63 * remaining on the stream head read queue. When all the data has been read,
64 * read() returns 0 indicating that the stream can no longer be used. On the
65 * last close of the subsidiary device, a 0-length message is sent to the
66 * manager device. When the application on the manager side issues a read() or
67 * getmsg() and 0 is returned, the user of the manager device decides whether
68 * to issue a close() that dismantles the pseudo-terminal subsystem. If the
69 * manager device is not closed, the pseudo-tty subsystem will be available to
70 * another user to open the subsidiary device.
73 * SYNCHRONIZATION
75 * All global data synchronization between ptm/pts is done via global ptms_lock
76 * mutex which is initialized at system boot time from ptms_initspace (called
77 * from space.c).
79 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
80 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
82 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
83 * which allow reader locks to be reacquired by the same thread (usual
84 * reader/writer locks can't be used for that purpose since it is illegal for a
85 * thread to acquire a lock it already holds, even as a reader). The sole
86 * purpose of these macros is to guarantee that the peer queue will not
87 * disappear (due to closing peer) while it is used. It is safe to use
88 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
89 * they are not real locks but reference counts).
91 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in manager/subsidiary
92 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
93 * be set to appropriate queues *after* qprocson() is called during open (to
94 * prevent peer from accessing the queue with incomplete plumbing) and set to
95 * NULL before qprocsoff() is called during close.
97 * The pt_nullmsg field is only used in open/close routines and it is also
98 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
99 * holds.
102 * LOCK ORDERING
104 * If both ptms_lock and per-pty lock should be held, ptms_lock should always
105 * be entered first, followed by per-pty lock.
107 * See ptms.h, ptm.c and ptms_conf.c fore more information.
110 #include <sys/types.h>
111 #include <sys/param.h>
112 #include <sys/sysmacros.h>
113 #include <sys/stream.h>
114 #include <sys/stropts.h>
115 #include <sys/strsubr.h>
116 #include <sys/stat.h>
117 #include <sys/errno.h>
118 #include <sys/debug.h>
119 #include <sys/cmn_err.h>
120 #include <sys/ptms.h>
121 #include <sys/systm.h>
122 #include <sys/modctl.h>
123 #include <sys/conf.h>
124 #include <sys/ddi.h>
125 #include <sys/sunddi.h>
126 #include <sys/cred.h>
127 #include <sys/zone.h>
129 #ifdef DEBUG
130 int pts_debug = 0;
131 #define DBG(a) if (pts_debug) cmn_err(CE_NOTE, a)
132 #else
133 #define DBG(a)
134 #endif
136 static int ptsopen(queue_t *, dev_t *, int, int, cred_t *);
137 static int ptsclose(queue_t *, int, cred_t *);
138 static int ptswput(queue_t *, mblk_t *);
139 static int ptsrsrv(queue_t *);
140 static int ptswsrv(queue_t *);
142 static struct module_info pts_info = {
143 0xface,
144 "pts",
146 _TTY_BUFSIZ,
147 _TTY_BUFSIZ,
151 static struct qinit ptsrint = {
152 NULL,
153 ptsrsrv,
154 ptsopen,
155 ptsclose,
156 NULL,
157 &pts_info,
158 NULL
161 static struct qinit ptswint = {
162 ptswput,
163 ptswsrv,
164 NULL,
165 NULL,
166 NULL,
167 &pts_info,
168 NULL
171 static struct streamtab ptsinfo = {
172 &ptsrint,
173 &ptswint,
174 NULL,
175 NULL
178 static int pts_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
179 static int pts_attach(dev_info_t *, ddi_attach_cmd_t);
180 static int pts_detach(dev_info_t *, ddi_detach_cmd_t);
182 #define PTS_CONF_FLAG (D_NEW | D_MP)
185 * this will define (struct cb_ops cb_pts_ops) and (struct dev_ops pts_ops)
187 DDI_DEFINE_STREAM_OPS(pts_ops, nulldev, nulldev, \
188 pts_attach, pts_detach, nodev, \
189 pts_devinfo, PTS_CONF_FLAG, &ptsinfo, ddi_quiesce_not_supported);
192 * Module linkage information for the kernel.
195 static struct modldrv modldrv = {
196 &mod_driverops,
197 "Pseudo-Terminal Subsidiary Driver",
198 &pts_ops,
201 static struct modlinkage modlinkage = {
202 MODREV_1,
203 &modldrv,
204 NULL
208 _init(void)
210 int rc;
212 if ((rc = mod_install(&modlinkage)) == 0)
213 ptms_init();
214 return (rc);
219 _fini(void)
221 return (mod_remove(&modlinkage));
225 _info(struct modinfo *modinfop)
227 return (mod_info(&modlinkage, modinfop));
230 static int
231 pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
233 if (cmd != DDI_ATTACH)
234 return (DDI_FAILURE);
236 mutex_enter(&ptms_lock);
237 pts_dip = devi;
238 mutex_exit(&ptms_lock);
240 return (DDI_SUCCESS);
243 static int
244 pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
246 if (cmd != DDI_DETACH)
247 return (DDI_FAILURE);
250 * For now, pts cannot be detached.
252 return (DDI_FAILURE);
255 static int
256 pts_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
257 void **result)
259 int error;
261 switch (infocmd) {
262 case DDI_INFO_DEVT2DEVINFO:
263 if (pts_dip == NULL) {
264 error = DDI_FAILURE;
265 } else {
266 *result = (void *)pts_dip;
267 error = DDI_SUCCESS;
269 break;
270 case DDI_INFO_DEVT2INSTANCE:
271 *result = (void *)0;
272 error = DDI_SUCCESS;
273 break;
274 default:
275 error = DDI_FAILURE;
277 return (error);
280 /* ARGSUSED */
282 * Open the subsidiary device. Reject a clone open and do not allow the
283 * driver to be pushed. If the subsidiary/manager pair is locked or if
284 * the manager is not open, return EACCESS.
285 * Upon success, store the write queue pointer in private data and
286 * set the PTSOPEN bit in the pt_state field.
288 static int
289 ptsopen(
290 queue_t *rqp, /* pointer to the read side queue */
291 dev_t *devp, /* pointer to stream tail's dev */
292 int oflag, /* the user open(2) supplied flags */
293 int sflag, /* open state flag */
294 cred_t *credp) /* credentials */
296 struct pt_ttys *ptsp;
297 mblk_t *mp;
298 mblk_t *mop; /* ptr to a setopts message block */
299 minor_t dminor = getminor(*devp);
300 struct stroptions *sop;
302 DDBG("entering ptsopen(%d)", dminor);
304 if (sflag != 0) {
305 return (EINVAL);
308 mutex_enter(&ptms_lock);
309 ptsp = ptms_minor2ptty(dminor);
311 if (ptsp == NULL) {
312 mutex_exit(&ptms_lock);
313 return (ENXIO);
315 mutex_enter(&ptsp->pt_lock);
318 * Prevent opens from zones other than the one blessed by ptm. We
319 * can't even allow the global zone to open all pts's, as it would
320 * otherwise inproperly be able to claim pts's already opened by zones.
322 if (ptsp->pt_zoneid != getzoneid()) {
323 mutex_exit(&ptsp->pt_lock);
324 mutex_exit(&ptms_lock);
325 return (EPERM);
329 * Allow reopen of this device.
331 if (rqp->q_ptr != NULL) {
332 ASSERT(rqp->q_ptr == ptsp);
333 ASSERT(ptsp->pts_rdq == rqp);
334 mutex_exit(&ptsp->pt_lock);
335 mutex_exit(&ptms_lock);
336 return (0);
339 DDBGP("ptsopen: p = %p\n", (uintptr_t)ptsp);
340 DDBG("ptsopen: state = %x\n", ptsp->pt_state);
342 ASSERT(ptsp->pt_minor == dminor);
344 if ((ptsp->pt_state & PTLOCK) || !(ptsp->pt_state & PTMOPEN)) {
345 mutex_exit(&ptsp->pt_lock);
346 mutex_exit(&ptms_lock);
347 return (EAGAIN);
351 * if already open, simply return...
353 if (ptsp->pt_state & PTSOPEN) {
354 ASSERT(rqp->q_ptr == ptsp);
355 ASSERT(ptsp->pts_rdq == rqp);
356 mutex_exit(&ptsp->pt_lock);
357 mutex_exit(&ptms_lock);
358 return (0);
362 * Allocate message block for setting stream head options.
364 if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
365 mutex_exit(&ptsp->pt_lock);
366 mutex_exit(&ptms_lock);
367 return (ENOMEM);
371 * Subsidiary should send zero-length message to a manager when it is
372 * closing. If memory is low at that time, manager will not detect
373 * subsidiary closes, this pty will not be deallocated. So,
374 * preallocate this zero-length message block early.
376 if ((mp = allocb(0, BPRI_MED)) == NULL) {
377 mutex_exit(&ptsp->pt_lock);
378 mutex_exit(&ptms_lock);
379 freemsg(mop);
380 return (ENOMEM);
383 ptsp->pt_state |= PTSOPEN;
385 WR(rqp)->q_ptr = rqp->q_ptr = ptsp;
387 mutex_exit(&ptsp->pt_lock);
388 mutex_exit(&ptms_lock);
390 if (ptsp->pt_state & PTSTTY)
391 STREAM(rqp)->sd_flag |= STRXPG4TTY;
393 qprocson(rqp);
396 * After qprocson pts driver is fully plumbed into the stream and can
397 * send/receive messages. Setting pts_rdq will allow manager side to
398 * send messages to the subsidiary. This setting can't occur before
399 * qprocson() is finished because subsidiary is not ready to process
400 * them.
402 PT_ENTER_WRITE(ptsp);
403 ptsp->pts_rdq = rqp;
404 ASSERT(ptsp->pt_nullmsg == NULL);
405 ptsp->pt_nullmsg = mp;
406 PT_EXIT_WRITE(ptsp);
409 * set up hi/lo water marks on stream head read queue
410 * and add controlling tty if not set
413 mop->b_datap->db_type = M_SETOPTS;
414 mop->b_wptr += sizeof (struct stroptions);
415 sop = (struct stroptions *)mop->b_rptr;
416 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
417 sop->so_hiwat = _TTY_BUFSIZ;
418 sop->so_lowat = 256;
419 putnext(rqp, mop);
421 return (0);
425 * Find the address to private data identifying the subsidiary's write queue.
426 * Send a 0-length msg up the subsidiary's read queue to designate the manager
427 * is closing. Uattach the manager from the subsidiary by nulling out
428 * manager's write queue field in private data.
430 static int
431 ptsclose(queue_t *rqp, int flag, cred_t *credp)
433 struct pt_ttys *ptsp;
434 queue_t *wqp;
435 mblk_t *mp;
436 mblk_t *bp;
439 * q_ptr should never be NULL in the close routine and it is checked in
440 * DEBUG kernel by ASSERT. For non-DEBUG kernel the attempt is made to
441 * behave gracefully.
443 ASSERT(rqp->q_ptr != NULL);
444 if (rqp->q_ptr == NULL) {
445 qprocsoff(rqp);
446 return (0);
449 ptsp = (struct pt_ttys *)rqp->q_ptr;
452 * Subsidiary is going to close and doesn't want any new messages
453 * coming from the manager side, so set pts_rdq to NULL. This should
454 * be done before call to qprocsoff() since subsidiary can't process
455 * additional messages from the manager after qprocsoff is called.
457 PT_ENTER_WRITE(ptsp);
458 mp = ptsp->pt_nullmsg;
459 ptsp->pt_nullmsg = NULL;
460 ptsp->pts_rdq = NULL;
461 PT_EXIT_WRITE(ptsp);
464 * Drain the ouput
466 wqp = WR(rqp);
467 PT_ENTER_READ(ptsp);
468 while ((bp = getq(wqp)) != NULL) {
469 if (ptsp->ptm_rdq) {
470 putnext(ptsp->ptm_rdq, bp);
471 } else if (bp->b_datap->db_type == M_IOCTL) {
472 bp->b_datap->db_type = M_IOCNAK;
473 freemsg(bp->b_cont);
474 bp->b_cont = NULL;
475 qreply(wqp, bp);
476 } else {
477 freemsg(bp);
481 * qenable manager side write queue so that it can flush its messages
482 * as subsidiarys's read queue is going away:
484 if (ptsp->ptm_rdq) {
485 if (mp)
486 putnext(ptsp->ptm_rdq, mp);
487 else
488 qenable(WR(ptsp->ptm_rdq));
489 } else
490 freemsg(mp);
491 PT_EXIT_READ(ptsp);
493 qprocsoff(rqp);
495 rqp->q_ptr = NULL;
496 WR(rqp)->q_ptr = NULL;
498 ptms_close(ptsp, PTSOPEN | PTSTTY);
500 return (0);
505 * The wput procedure will only handle flush messages. All other messages are
506 * queued and the write side service procedure sends them off to the manager
507 * side.
509 static int
510 ptswput(queue_t *qp, mblk_t *mp)
512 struct pt_ttys *ptsp;
513 struct iocblk *iocp;
514 unsigned char type = mp->b_datap->db_type;
516 DBG(("entering ptswput\n"));
517 ASSERT(qp->q_ptr);
519 ptsp = (struct pt_ttys *)qp->q_ptr;
520 PT_ENTER_READ(ptsp);
521 if (ptsp->ptm_rdq == NULL) {
522 DBG(("in write put proc but no manager\n"));
524 * NAK ioctl as subsidiary side read queue is gone.
525 * Or else free the message.
527 if (mp->b_datap->db_type == M_IOCTL) {
528 mp->b_datap->db_type = M_IOCNAK;
529 freemsg(mp->b_cont);
530 mp->b_cont = NULL;
531 qreply(qp, mp);
532 } else
533 freemsg(mp);
534 PT_EXIT_READ(ptsp);
535 return (0);
538 if (type >= QPCTL) {
539 switch (type) {
542 * if write queue request, flush subsidiary's write
543 * queue and send FLUSHR to ptm. If read queue
544 * request, send FLUSHR to ptm.
546 case M_FLUSH:
547 DBG(("pts got flush request\n"));
548 if (*mp->b_rptr & FLUSHW) {
550 DBG(("got FLUSHW, flush pts write Q\n"));
551 if (*mp->b_rptr & FLUSHBAND)
553 * if it is a FLUSHBAND, do flushband.
555 flushband(qp, *(mp->b_rptr + 1), FLUSHDATA);
556 else
557 flushq(qp, FLUSHDATA);
559 *mp->b_rptr &= ~FLUSHW;
560 if ((*mp->b_rptr & FLUSHR) == 0) {
562 * FLUSHW only. Change to FLUSHR and putnext
563 * to ptm, then we are done.
565 *mp->b_rptr |= FLUSHR;
566 if (ptsp->ptm_rdq)
567 putnext(ptsp->ptm_rdq, mp);
568 break;
569 } else {
570 mblk_t *nmp;
572 /* It is a FLUSHRW. Duplicate the mblk */
573 nmp = copyb(mp);
574 if (nmp) {
576 * Change FLUSHW to FLUSHR before
577 * putnext to ptm.
579 DBG(("putnext nmp(FLUSHR) to ptm\n"));
580 *nmp->b_rptr |= FLUSHR;
581 if (ptsp->ptm_rdq)
582 putnext(ptsp->ptm_rdq, nmp);
587 * Since the packet module will toss any M_FLUSHES sent to the
588 * manager's stream head read queue, we simply turn it around
589 * here.
591 if (*mp->b_rptr & FLUSHR) {
592 ASSERT(RD(qp)->q_first == NULL);
593 DBG(("qreply(qp) turning FLUSHR around\n"));
594 qreply(qp, mp);
595 } else {
596 freemsg(mp);
598 break;
600 case M_READ:
601 /* Caused by ldterm - can not pass to manager */
602 freemsg(mp);
603 break;
605 default:
606 if (ptsp->ptm_rdq)
607 putnext(ptsp->ptm_rdq, mp);
608 break;
610 PT_EXIT_READ(ptsp);
611 return (0);
614 switch (type) {
616 case M_IOCTL:
618 * For case PTSSTTY set the flag PTSTTY and ACK
619 * the ioctl so that the user program can push
620 * the associated modules to get tty semantics.
621 * See bugid 4025044
623 iocp = (struct iocblk *)mp->b_rptr;
624 switch (iocp->ioc_cmd) {
625 default:
626 break;
628 case PTSSTTY:
629 if (ptsp->pt_state & PTSTTY) {
630 mp->b_datap->db_type = M_IOCNAK;
631 iocp->ioc_error = EEXIST;
632 } else {
633 mp->b_datap->db_type = M_IOCACK;
634 mutex_enter(&ptsp->pt_lock);
635 ptsp->pt_state |= PTSTTY;
636 mutex_exit(&ptsp->pt_lock);
637 iocp->ioc_error = 0;
639 iocp->ioc_count = 0;
640 qreply(qp, mp);
641 PT_EXIT_READ(ptsp);
642 return (0);
644 /* FALLTHROUGH */
645 default:
647 * send other messages to the manager
649 DBG(("put msg on subsidiary's write queue\n"));
650 (void) putq(qp, mp);
651 break;
654 PT_EXIT_READ(ptsp);
655 DBG(("return from ptswput()\n"));
656 return (0);
661 * Enable the write side of the manager. This triggers the manager to send any
662 * messages queued on its write side to the read side of this subsidiary.
664 static int
665 ptsrsrv(queue_t *qp)
667 struct pt_ttys *ptsp;
669 DBG(("entering ptsrsrv\n"));
670 ASSERT(qp->q_ptr);
672 ptsp = (struct pt_ttys *)qp->q_ptr;
673 PT_ENTER_READ(ptsp);
674 if (ptsp->ptm_rdq == NULL) {
675 DBG(("in read srv proc but no manager\n"));
676 PT_EXIT_READ(ptsp);
677 return (0);
679 qenable(WR(ptsp->ptm_rdq));
680 PT_EXIT_READ(ptsp);
681 DBG(("leaving ptsrsrv\n"));
682 return (0);
686 * If there are messages on this queue that can be sent to manager, send them
687 * via putnext(). Otherwise, if queued messages cannot be sent, leave them on
688 * this queue. If priority messages on this queue, send them to manager no
689 * matter what.
691 static int
692 ptswsrv(queue_t *qp)
694 struct pt_ttys *ptsp;
695 queue_t *ptm_rdq;
696 mblk_t *mp;
698 DBG(("entering ptswsrv\n"));
699 ASSERT(qp->q_ptr);
701 ptsp = (struct pt_ttys *)qp->q_ptr;
702 PT_ENTER_READ(ptsp);
703 if (ptsp->ptm_rdq == NULL) {
704 DBG(("in write srv proc but no manager\n"));
706 * Free messages on the write queue and send NAK for any
707 * M_IOCTL type messages to wakeup the user process waiting for
708 * ACK/NAK from the ioctl invocation
710 while ((mp = getq(qp)) != NULL) {
711 if (mp->b_datap->db_type == M_IOCTL) {
712 mp->b_datap->db_type = M_IOCNAK;
713 freemsg(mp->b_cont);
714 mp->b_cont = NULL;
715 qreply(qp, mp);
716 } else
717 freemsg(mp);
719 PT_EXIT_READ(ptsp);
720 return (0);
721 } else {
722 ptm_rdq = ptsp->ptm_rdq;
726 * While there are messages on this write queue...
728 while ((mp = getq(qp)) != NULL) {
730 * If this is not a control message and we cannot put messages
731 * on the manager's read queue, put it back on this queue.
733 if (mp->b_datap->db_type <= QPCTL &&
734 !bcanputnext(ptm_rdq, mp->b_band)) {
735 DBG(("put msg. back on Q\n"));
736 (void) putbq(qp, mp);
737 break;
740 * Otherwise, send the message up manager's stream:
742 DBG(("send message to manager\n"));
743 putnext(ptm_rdq, mp);
745 DBG(("leaving ptswsrv\n"));
746 PT_EXIT_READ(ptsp);
747 return (0);