16705 Want lifetime extensions for TCP_MD5SIG SAs
[illumos-gate.git] / usr / src / uts / common / inet / ip / spd.c
blob0bcecd8a3ab1b0c20268d740c5559d26e2a5ace4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
26 * Copyright (c) 2018, Joyent, Inc.
30 * IPsec Security Policy Database.
32 * This module maintains the SPD and provides routines used by ip and ip6
33 * to apply IPsec policy to inbound and outbound datagrams.
36 #include <sys/types.h>
37 #include <sys/stream.h>
38 #include <sys/stropts.h>
39 #include <sys/sysmacros.h>
40 #include <sys/strsubr.h>
41 #include <sys/strsun.h>
42 #include <sys/strlog.h>
43 #include <sys/strsun.h>
44 #include <sys/cmn_err.h>
45 #include <sys/zone.h>
47 #include <sys/systm.h>
48 #include <sys/param.h>
49 #include <sys/kmem.h>
50 #include <sys/ddi.h>
52 #include <sys/crypto/api.h>
54 #include <inet/common.h>
55 #include <inet/mi.h>
57 #include <netinet/ip6.h>
58 #include <netinet/icmp6.h>
59 #include <netinet/udp.h>
61 #include <inet/ip.h>
62 #include <inet/ip6.h>
64 #include <net/pfkeyv2.h>
65 #include <net/pfpolicy.h>
66 #include <inet/sadb.h>
67 #include <inet/ipsec_impl.h>
69 #include <inet/ip_impl.h> /* For IP_MOD_ID */
71 #include <inet/ipsecah.h>
72 #include <inet/ipsecesp.h>
73 #include <inet/ipdrop.h>
74 #include <inet/ipclassifier.h>
75 #include <inet/iptun.h>
76 #include <inet/iptun/iptun_impl.h>
78 static void ipsec_update_present_flags(ipsec_stack_t *);
79 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
80 netstack_t *);
81 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
82 ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
83 static void ipsec_action_free_table(ipsec_action_t *);
84 static void ipsec_action_reclaim(void *);
85 static void ipsec_action_reclaim_stack(ipsec_stack_t *);
86 static void ipsid_init(netstack_t *);
87 static void ipsid_fini(netstack_t *);
89 /* sel_flags values for ipsec_init_inbound_sel(). */
90 #define SEL_NONE 0x0000
91 #define SEL_PORT_POLICY 0x0001
92 #define SEL_IS_ICMP 0x0002
93 #define SEL_TUNNEL_MODE 0x0004
94 #define SEL_POST_FRAG 0x0008
96 /* Return values for ipsec_init_inbound_sel(). */
97 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
98 selret_t;
100 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
101 ipha_t *, ip6_t *, uint8_t);
103 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
104 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
105 kstat_named_t **, netstack_t *);
106 static void ipsec_unregister_prov_update(void);
107 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
108 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
109 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
110 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
111 static void ipsec_kstat_destroy(ipsec_stack_t *);
112 static int ipsec_free_tables(ipsec_stack_t *);
113 static int tunnel_compare(const void *, const void *);
114 static void ipsec_freemsg_chain(mblk_t *);
115 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
116 struct kstat_named *, ipdropper_t *);
117 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
118 static void ipsec_kstat_destroy(ipsec_stack_t *);
119 static int ipsec_free_tables(ipsec_stack_t *);
120 static int tunnel_compare(const void *, const void *);
121 static void ipsec_freemsg_chain(mblk_t *);
124 * Selector hash table is statically sized at module load time.
125 * we default to 251 buckets, which is the largest prime number under 255
128 #define IPSEC_SPDHASH_DEFAULT 251
130 /* SPD hash-size tunable per tunnel. */
131 #define TUN_SPDHASH_DEFAULT 5
133 uint32_t ipsec_spd_hashsize;
134 uint32_t tun_spd_hashsize;
136 #define IPSEC_SEL_NOHASH ((uint32_t)(~0))
139 * Handle global across all stack instances
141 static crypto_notify_handle_t prov_update_handle = NULL;
143 static kmem_cache_t *ipsec_action_cache;
144 static kmem_cache_t *ipsec_sel_cache;
145 static kmem_cache_t *ipsec_pol_cache;
147 /* Frag cache prototypes */
148 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
149 static ipsec_fragcache_entry_t *fragcache_delentry(int,
150 ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
151 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
152 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
153 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
154 int, ipsec_stack_t *);
156 int ipsec_hdr_pullup_needed = 0;
157 int ipsec_weird_null_inbound_policy = 0;
159 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align))
160 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align)
163 * Inbound traffic should have matching identities for both SA's.
166 #define SA_IDS_MATCH(sa1, sa2) \
167 (((sa1) == NULL) || ((sa2) == NULL) || \
168 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \
169 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
172 * IPv6 Fragments
174 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR)
177 * Policy failure messages.
179 static char *ipsec_policy_failure_msgs[] = {
181 /* IPSEC_POLICY_NOT_NEEDED */
182 "%s: Dropping the datagram because the incoming packet "
183 "is %s, but the recipient expects clear; Source %s, "
184 "Destination %s.\n",
186 /* IPSEC_POLICY_MISMATCH */
187 "%s: Policy Failure for the incoming packet (%s); Source %s, "
188 "Destination %s.\n",
190 /* IPSEC_POLICY_AUTH_NOT_NEEDED */
191 "%s: Authentication present while not expected in the "
192 "incoming %s packet; Source %s, Destination %s.\n",
194 /* IPSEC_POLICY_ENCR_NOT_NEEDED */
195 "%s: Encryption present while not expected in the "
196 "incoming %s packet; Source %s, Destination %s.\n",
198 /* IPSEC_POLICY_SE_NOT_NEEDED */
199 "%s: Self-Encapsulation present while not expected in the "
200 "incoming %s packet; Source %s, Destination %s.\n",
204 * General overviews:
206 * Locking:
208 * All of the system policy structures are protected by a single
209 * rwlock. These structures are threaded in a
210 * fairly complex fashion and are not expected to change on a
211 * regular basis, so this should not cause scaling/contention
212 * problems. As a result, policy checks should (hopefully) be MT-hot.
214 * Allocation policy:
216 * We use custom kmem cache types for the various
217 * bits & pieces of the policy data structures. All allocations
218 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The
219 * policy table is of potentially unbounded size, so we don't
220 * want to provide a way to hog all system memory with policy
221 * entries..
224 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
226 /* Free all messages in an mblk chain */
227 static void
228 ipsec_freemsg_chain(mblk_t *mp)
230 mblk_t *mpnext;
231 while (mp != NULL) {
232 ASSERT(mp->b_prev == NULL);
233 mpnext = mp->b_next;
234 mp->b_next = NULL;
235 freemsg(mp);
236 mp = mpnext;
241 * ip_drop all messages in an mblk chain
242 * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
243 * of data.
245 static void
246 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
247 struct kstat_named *counter, ipdropper_t *who_called)
249 mblk_t *mpnext;
250 while (mp != NULL) {
251 ASSERT(mp->b_prev == NULL);
252 mpnext = mp->b_next;
253 mp->b_next = NULL;
254 if (ip_recv_attr_is_mblk(mp))
255 mp = ip_recv_attr_free_mblk(mp);
256 ip_drop_packet(mp, inbound, ill, counter, who_called);
257 mp = mpnext;
262 * AVL tree comparison function.
263 * the in-kernel avl assumes unique keys for all objects.
264 * Since sometimes policy will duplicate rules, we may insert
265 * multiple rules with the same rule id, so we need a tie-breaker.
267 static int
268 ipsec_policy_cmpbyid(const void *a, const void *b)
270 const ipsec_policy_t *ipa, *ipb;
271 uint64_t idxa, idxb;
273 ipa = (const ipsec_policy_t *)a;
274 ipb = (const ipsec_policy_t *)b;
275 idxa = ipa->ipsp_index;
276 idxb = ipb->ipsp_index;
278 if (idxa < idxb)
279 return (-1);
280 if (idxa > idxb)
281 return (1);
283 * Tie-breaker #1: All installed policy rules have a non-NULL
284 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
285 * actually in-tree but rather a template node being used in
286 * an avl_find query; see ipsec_policy_delete(). This gives us
287 * a placeholder in the ordering just before the first entry with
288 * a key >= the one we're looking for, so we can walk forward from
289 * that point to get the remaining entries with the same id.
291 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
292 return (-1);
293 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
294 return (1);
296 * At most one of the arguments to the comparison should have a
297 * NULL selector pointer; if not, the tree is broken.
299 ASSERT(ipa->ipsp_sel != NULL);
300 ASSERT(ipb->ipsp_sel != NULL);
302 * Tie-breaker #2: use the virtual address of the policy node
303 * to arbitrarily break ties. Since we use the new tree node in
304 * the avl_find() in ipsec_insert_always, the new node will be
305 * inserted into the tree in the right place in the sequence.
307 if (ipa < ipb)
308 return (-1);
309 if (ipa > ipb)
310 return (1);
311 return (0);
315 * Free what ipsec_alloc_table allocated.
317 void
318 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
320 int dir;
321 int i;
323 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
324 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
326 if (ipr->ipr_hash == NULL)
327 continue;
329 for (i = 0; i < ipr->ipr_nchains; i++) {
330 ASSERT(ipr->ipr_hash[i].hash_head == NULL);
332 kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
333 sizeof (ipsec_policy_hash_t));
334 ipr->ipr_hash = NULL;
338 void
339 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
341 int dir;
343 avl_destroy(&iph->iph_rulebyid);
344 rw_destroy(&iph->iph_lock);
346 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
347 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
348 int chain;
350 for (chain = 0; chain < ipr->ipr_nchains; chain++)
351 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
354 ipsec_polhead_free_table(iph);
358 * Free the IPsec stack instance.
360 /* ARGSUSED */
361 static void
362 ipsec_stack_fini(netstackid_t stackid, void *arg)
364 ipsec_stack_t *ipss = (ipsec_stack_t *)arg;
365 void *cookie;
366 ipsec_tun_pol_t *node;
367 netstack_t *ns = ipss->ipsec_netstack;
368 int i;
369 ipsec_algtype_t algtype;
371 ipsec_loader_destroy(ipss);
373 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
375 * It's possible we can just ASSERT() the tree is empty. After all,
376 * we aren't called until IP is ready to unload (and presumably all
377 * tunnels have been unplumbed). But we'll play it safe for now, the
378 * loop will just exit immediately if it's empty.
380 cookie = NULL;
381 while ((node = (ipsec_tun_pol_t *)
382 avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
383 &cookie)) != NULL) {
384 ITP_REFRELE(node, ns);
386 avl_destroy(&ipss->ipsec_tunnel_policies);
387 rw_exit(&ipss->ipsec_tunnel_policy_lock);
388 rw_destroy(&ipss->ipsec_tunnel_policy_lock);
390 ipsec_config_flush(ns);
392 ipsec_kstat_destroy(ipss);
394 ip_drop_unregister(&ipss->ipsec_dropper);
396 ip_drop_unregister(&ipss->ipsec_spd_dropper);
397 ip_drop_destroy(ipss);
399 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
400 * attempting to free them, hence they should have 1 now.
402 ipsec_polhead_destroy(&ipss->ipsec_system_policy);
403 ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
404 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
405 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
407 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
408 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
409 ipss->ipsec_action_hash[i].hash_head = NULL;
410 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
413 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
414 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
415 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
418 rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
419 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
420 for (i = 0; i < IPSEC_MAX_ALGS; i++) {
421 if (ipss->ipsec_alglists[algtype][i] != NULL)
422 ipsec_alg_unreg(algtype, i, ns);
425 rw_exit(&ipss->ipsec_alg_lock);
426 rw_destroy(&ipss->ipsec_alg_lock);
428 ipsid_gc(ns);
429 ipsid_fini(ns);
431 (void) ipsec_free_tables(ipss);
432 kmem_free(ipss, sizeof (*ipss));
435 void
436 ipsec_policy_g_destroy(void)
438 kmem_cache_destroy(ipsec_action_cache);
439 kmem_cache_destroy(ipsec_sel_cache);
440 kmem_cache_destroy(ipsec_pol_cache);
442 ipsec_unregister_prov_update();
444 netstack_unregister(NS_IPSEC);
449 * Free what ipsec_alloc_tables allocated.
450 * Called when table allocation fails to free the table.
452 static int
453 ipsec_free_tables(ipsec_stack_t *ipss)
455 int i;
457 if (ipss->ipsec_sel_hash != NULL) {
458 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
459 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
461 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
462 sizeof (*ipss->ipsec_sel_hash));
463 ipss->ipsec_sel_hash = NULL;
464 ipss->ipsec_spd_hashsize = 0;
466 ipsec_polhead_free_table(&ipss->ipsec_system_policy);
467 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
469 return (ENOMEM);
473 * Attempt to allocate the tables in a single policy head.
474 * Return nonzero on failure after cleaning up any work in progress.
477 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
478 boolean_t global_cleanup, netstack_t *ns)
480 int dir;
482 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
483 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
485 ipr->ipr_nchains = nchains;
486 ipr->ipr_hash = kmem_zalloc(nchains *
487 sizeof (ipsec_policy_hash_t), kmflag);
488 if (ipr->ipr_hash == NULL)
489 return (global_cleanup ?
490 ipsec_free_tables(ns->netstack_ipsec) :
491 ENOMEM);
493 return (0);
497 * Attempt to allocate the various tables. Return nonzero on failure
498 * after cleaning up any work in progress.
500 static int
501 ipsec_alloc_tables(int kmflag, netstack_t *ns)
503 int error;
504 ipsec_stack_t *ipss = ns->netstack_ipsec;
506 error = ipsec_alloc_table(&ipss->ipsec_system_policy,
507 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
508 if (error != 0)
509 return (error);
511 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
512 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
513 if (error != 0)
514 return (error);
516 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
517 sizeof (*ipss->ipsec_sel_hash), kmflag);
519 if (ipss->ipsec_sel_hash == NULL)
520 return (ipsec_free_tables(ipss));
522 return (0);
526 * After table allocation, initialize a policy head.
528 void
529 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
531 int dir, chain;
533 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
534 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
535 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
537 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
538 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
539 ipr->ipr_nchains = nchains;
541 for (chain = 0; chain < nchains; chain++) {
542 mutex_init(&(ipr->ipr_hash[chain].hash_lock),
543 NULL, MUTEX_DEFAULT, NULL);
548 static boolean_t
549 ipsec_kstat_init(ipsec_stack_t *ipss)
551 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
552 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
553 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
555 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
556 return (B_FALSE);
558 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
560 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
561 KI(esp_stat_in_requests);
562 KI(esp_stat_in_discards);
563 KI(esp_stat_lookup_failure);
564 KI(ah_stat_in_requests);
565 KI(ah_stat_in_discards);
566 KI(ah_stat_lookup_failure);
567 KI(sadb_acquire_maxpackets);
568 KI(sadb_acquire_qhiwater);
569 #undef KI
571 kstat_install(ipss->ipsec_ksp);
572 return (B_TRUE);
575 static void
576 ipsec_kstat_destroy(ipsec_stack_t *ipss)
578 kstat_delete_netstack(ipss->ipsec_ksp,
579 ipss->ipsec_netstack->netstack_stackid);
580 ipss->ipsec_kstats = NULL;
585 * Initialize the IPsec stack instance.
587 /* ARGSUSED */
588 static void *
589 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
591 ipsec_stack_t *ipss;
592 int i;
594 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
595 ipss->ipsec_netstack = ns;
598 * FIXME: netstack_ipsec is used by some of the routines we call
599 * below, but it isn't set until this routine returns.
600 * Either we introduce optional xxx_stack_alloc() functions
601 * that will be called by the netstack framework before xxx_stack_init,
602 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
603 * (latter has some include file order issues for sadb.h, but makes
604 * sense if we merge some of the ipsec related stack_t's together.
606 ns->netstack_ipsec = ipss;
609 * Make two attempts to allocate policy hash tables; try it at
610 * the "preferred" size (may be set in /etc/system) first,
611 * then fall back to the default size.
613 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
614 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
616 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
617 cmn_err(CE_WARN,
618 "Unable to allocate %d entry IPsec policy hash table",
619 ipss->ipsec_spd_hashsize);
620 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
621 cmn_err(CE_WARN, "Falling back to %d entries",
622 ipss->ipsec_spd_hashsize);
623 (void) ipsec_alloc_tables(KM_SLEEP, ns);
626 /* Just set a default for tunnels. */
627 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
628 TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
630 ipsid_init(ns);
632 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
633 * to free them.
635 ipss->ipsec_system_policy.iph_refs = 1;
636 ipss->ipsec_inactive_policy.iph_refs = 1;
637 ipsec_polhead_init(&ipss->ipsec_system_policy,
638 ipss->ipsec_spd_hashsize);
639 ipsec_polhead_init(&ipss->ipsec_inactive_policy,
640 ipss->ipsec_spd_hashsize);
641 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
642 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
643 sizeof (ipsec_tun_pol_t), 0);
645 ipss->ipsec_next_policy_index = 1;
647 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
648 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
650 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
651 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
652 NULL, MUTEX_DEFAULT, NULL);
654 for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
655 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
656 NULL, MUTEX_DEFAULT, NULL);
658 rw_init(&ipss->ipsec_alg_lock, NULL, RW_DEFAULT, NULL);
659 for (i = 0; i < IPSEC_NALGTYPES; i++) {
660 ipss->ipsec_nalgs[i] = 0;
663 ip_drop_init(ipss);
664 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
666 /* IP's IPsec code calls the packet dropper */
667 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
669 (void) ipsec_kstat_init(ipss);
671 ipsec_loader_init(ipss);
672 ipsec_loader_start(ipss);
674 return (ipss);
677 /* Global across all stack instances */
678 void
679 ipsec_policy_g_init(void)
681 ipsec_action_cache = kmem_cache_create("ipsec_actions",
682 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
683 ipsec_action_reclaim, NULL, NULL, 0);
684 ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
685 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
686 NULL, NULL, NULL, 0);
687 ipsec_pol_cache = kmem_cache_create("ipsec_policy",
688 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
689 NULL, NULL, NULL, 0);
692 * We want to be informed each time a stack is created or
693 * destroyed in the kernel, so we can maintain the
694 * set of ipsec_stack_t's.
696 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
700 * Sort algorithm lists.
702 * I may need to split this based on
703 * authentication/encryption, and I may wish to have an administrator
704 * configure this list. Hold on to some NDD variables...
706 * XXX For now, sort on minimum key size (GAG!). While minimum key size is
707 * not the ideal metric, it's the only quantifiable measure available.
708 * We need a better metric for sorting algorithms by preference.
710 static void
711 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
713 ipsec_stack_t *ipss = ns->netstack_ipsec;
714 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
715 uint8_t holder, swap;
716 uint_t i;
717 uint_t count = ipss->ipsec_nalgs[at];
718 ASSERT(ai != NULL);
719 ASSERT(algid == ai->alg_id);
721 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
723 holder = algid;
725 for (i = 0; i < count - 1; i++) {
726 ipsec_alginfo_t *alt;
728 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
730 * If you want to give precedence to newly added algs,
731 * add the = in the > comparison.
733 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
734 /* Swap sortlist[i] and holder. */
735 swap = ipss->ipsec_sortlist[at][i];
736 ipss->ipsec_sortlist[at][i] = holder;
737 holder = swap;
738 ai = alt;
739 } /* Else just continue. */
742 /* Store holder in last slot. */
743 ipss->ipsec_sortlist[at][i] = holder;
747 * Remove an algorithm from a sorted algorithm list.
748 * This should be considerably easier, even with complex sorting.
750 static void
751 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
753 boolean_t copyback = B_FALSE;
754 int i;
755 ipsec_stack_t *ipss = ns->netstack_ipsec;
756 int newcount = ipss->ipsec_nalgs[at];
758 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
760 for (i = 0; i <= newcount; i++) {
761 if (copyback) {
762 ipss->ipsec_sortlist[at][i-1] =
763 ipss->ipsec_sortlist[at][i];
764 } else if (ipss->ipsec_sortlist[at][i] == algid) {
765 copyback = B_TRUE;
771 * Add the specified algorithm to the algorithm tables.
772 * Must be called while holding the algorithm table writer lock.
774 void
775 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
777 ipsec_stack_t *ipss = ns->netstack_ipsec;
779 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
781 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
782 ipsec_alg_fix_min_max(alg, algtype, ns);
783 ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
785 ipss->ipsec_nalgs[algtype]++;
786 alg_insert_sortlist(algtype, alg->alg_id, ns);
790 * Remove the specified algorithm from the algorithm tables.
791 * Must be called while holding the algorithm table writer lock.
793 void
794 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
796 ipsec_stack_t *ipss = ns->netstack_ipsec;
798 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
800 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
801 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
802 ipss->ipsec_alglists[algtype][algid] = NULL;
804 ipss->ipsec_nalgs[algtype]--;
805 alg_remove_sortlist(algtype, algid, ns);
809 * Hooks for spdsock to get a grip on system policy.
812 ipsec_policy_head_t *
813 ipsec_system_policy(netstack_t *ns)
815 ipsec_stack_t *ipss = ns->netstack_ipsec;
816 ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
818 IPPH_REFHOLD(h);
819 return (h);
822 ipsec_policy_head_t *
823 ipsec_inactive_policy(netstack_t *ns)
825 ipsec_stack_t *ipss = ns->netstack_ipsec;
826 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
828 IPPH_REFHOLD(h);
829 return (h);
833 * Lock inactive policy, then active policy, then exchange policy root
834 * pointers.
836 void
837 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
838 netstack_t *ns)
840 int af, dir;
841 avl_tree_t r1, r2;
843 rw_enter(&inactive->iph_lock, RW_WRITER);
844 rw_enter(&active->iph_lock, RW_WRITER);
846 r1 = active->iph_rulebyid;
847 r2 = inactive->iph_rulebyid;
848 active->iph_rulebyid = r2;
849 inactive->iph_rulebyid = r1;
851 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
852 ipsec_policy_hash_t *h1, *h2;
854 h1 = active->iph_root[dir].ipr_hash;
855 h2 = inactive->iph_root[dir].ipr_hash;
856 active->iph_root[dir].ipr_hash = h2;
857 inactive->iph_root[dir].ipr_hash = h1;
859 for (af = 0; af < IPSEC_NAF; af++) {
860 ipsec_policy_t *t1, *t2;
862 t1 = active->iph_root[dir].ipr_nonhash[af];
863 t2 = inactive->iph_root[dir].ipr_nonhash[af];
864 active->iph_root[dir].ipr_nonhash[af] = t2;
865 inactive->iph_root[dir].ipr_nonhash[af] = t1;
866 if (t1 != NULL) {
867 t1->ipsp_hash.hash_pp =
868 &(inactive->iph_root[dir].ipr_nonhash[af]);
870 if (t2 != NULL) {
871 t2->ipsp_hash.hash_pp =
872 &(active->iph_root[dir].ipr_nonhash[af]);
877 active->iph_gen++;
878 inactive->iph_gen++;
879 ipsec_update_present_flags(ns->netstack_ipsec);
880 rw_exit(&active->iph_lock);
881 rw_exit(&inactive->iph_lock);
885 * Swap global policy primary/secondary.
887 void
888 ipsec_swap_global_policy(netstack_t *ns)
890 ipsec_stack_t *ipss = ns->netstack_ipsec;
892 ipsec_swap_policy(&ipss->ipsec_system_policy,
893 &ipss->ipsec_inactive_policy, ns);
897 * Clone one policy rule..
899 static ipsec_policy_t *
900 ipsec_copy_policy(const ipsec_policy_t *src)
902 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
904 if (dst == NULL)
905 return (NULL);
908 * Adjust refcounts of cloned state.
910 IPACT_REFHOLD(src->ipsp_act);
911 src->ipsp_sel->ipsl_refs++;
913 HASH_NULL(dst, ipsp_hash);
914 dst->ipsp_netstack = src->ipsp_netstack;
915 dst->ipsp_refs = 1;
916 dst->ipsp_sel = src->ipsp_sel;
917 dst->ipsp_act = src->ipsp_act;
918 dst->ipsp_prio = src->ipsp_prio;
919 dst->ipsp_index = src->ipsp_index;
921 return (dst);
924 void
925 ipsec_insert_always(avl_tree_t *tree, void *new_node)
927 void *node;
928 avl_index_t where;
930 node = avl_find(tree, new_node, &where);
931 ASSERT(node == NULL);
932 avl_insert(tree, new_node, where);
936 static int
937 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
938 ipsec_policy_t **dstp)
940 for (; src != NULL; src = src->ipsp_hash.hash_next) {
941 ipsec_policy_t *dst = ipsec_copy_policy(src);
942 if (dst == NULL)
943 return (ENOMEM);
945 HASHLIST_INSERT(dst, ipsp_hash, *dstp);
946 ipsec_insert_always(&dph->iph_rulebyid, dst);
948 return (0);
954 * Make one policy head look exactly like another.
956 * As with ipsec_swap_policy, we lock the destination policy head first, then
957 * the source policy head. Note that we only need to read-lock the source
958 * policy head as we are not changing it.
961 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
962 netstack_t *ns)
964 int af, dir, chain, nchains;
966 rw_enter(&dph->iph_lock, RW_WRITER);
968 ipsec_polhead_flush(dph, ns);
970 rw_enter(&sph->iph_lock, RW_READER);
972 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
973 ipsec_policy_root_t *dpr = &dph->iph_root[dir];
974 ipsec_policy_root_t *spr = &sph->iph_root[dir];
975 nchains = dpr->ipr_nchains;
977 ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
979 for (af = 0; af < IPSEC_NAF; af++) {
980 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
981 &dpr->ipr_nonhash[af]))
982 goto abort_copy;
985 for (chain = 0; chain < nchains; chain++) {
986 if (ipsec_copy_chain(dph,
987 spr->ipr_hash[chain].hash_head,
988 &dpr->ipr_hash[chain].hash_head))
989 goto abort_copy;
993 dph->iph_gen++;
995 rw_exit(&sph->iph_lock);
996 rw_exit(&dph->iph_lock);
997 return (0);
999 abort_copy:
1000 ipsec_polhead_flush(dph, ns);
1001 rw_exit(&sph->iph_lock);
1002 rw_exit(&dph->iph_lock);
1003 return (ENOMEM);
1007 * Clone currently active policy to the inactive policy list.
1010 ipsec_clone_system_policy(netstack_t *ns)
1012 ipsec_stack_t *ipss = ns->netstack_ipsec;
1014 return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1015 &ipss->ipsec_inactive_policy, ns));
1019 * Extract the string from ipsec_policy_failure_msgs[type] and
1020 * log it.
1023 void
1024 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1025 boolean_t secure, netstack_t *ns)
1027 char sbuf[INET6_ADDRSTRLEN];
1028 char dbuf[INET6_ADDRSTRLEN];
1029 char *s;
1030 char *d;
1031 ipsec_stack_t *ipss = ns->netstack_ipsec;
1033 ASSERT((ipha == NULL && ip6h != NULL) ||
1034 (ip6h == NULL && ipha != NULL));
1036 if (ipha != NULL) {
1037 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1038 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1039 } else {
1040 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1041 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1045 /* Always bump the policy failure counter. */
1046 ipss->ipsec_policy_failure_count[type]++;
1048 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1049 ipsec_policy_failure_msgs[type], func_name,
1050 (secure ? "secure" : "not secure"), s, d);
1054 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables
1055 * in /dev/ip and the same rate-limiting clock so that there's a single
1056 * knob to turn to throttle the rate of messages.
1058 void
1059 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1060 char *fmt, ...)
1062 va_list adx;
1063 hrtime_t current = gethrtime();
1064 ip_stack_t *ipst = ns->netstack_ip;
1065 ipsec_stack_t *ipss = ns->netstack_ipsec;
1067 sl |= SL_CONSOLE;
1069 * Throttle logging to stop syslog from being swamped. If variable
1070 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1071 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1072 * msec. Convert interval (in msec) to hrtime (in nsec).
1075 if (ipst->ips_ipsec_policy_log_interval) {
1076 if (ipss->ipsec_policy_failure_last +
1077 MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1078 va_start(adx, fmt);
1079 (void) vstrlog(mid, sid, level, sl, fmt, adx);
1080 va_end(adx);
1081 ipss->ipsec_policy_failure_last = current;
1086 void
1087 ipsec_config_flush(netstack_t *ns)
1089 ipsec_stack_t *ipss = ns->netstack_ipsec;
1091 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1092 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1093 ipss->ipsec_next_policy_index = 1;
1094 rw_exit(&ipss->ipsec_system_policy.iph_lock);
1095 ipsec_action_reclaim_stack(ipss);
1099 * Clip a policy's min/max keybits vs. the capabilities of the
1100 * algorithm.
1102 static void
1103 act_alg_adjust(uint_t algtype, uint_t algid,
1104 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1106 ipsec_stack_t *ipss = ns->netstack_ipsec;
1107 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1109 if (algp != NULL) {
1111 * If passed-in minbits is zero, we assume the caller trusts
1112 * us with setting the minimum key size. We pick the
1113 * algorithms DEFAULT key size for the minimum in this case.
1115 if (*minbits == 0) {
1116 *minbits = algp->alg_default_bits;
1117 ASSERT(*minbits >= algp->alg_minbits);
1118 } else {
1119 *minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1120 algp->alg_minbits);
1122 if (*maxbits == 0)
1123 *maxbits = algp->alg_maxbits;
1124 else
1125 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1126 algp->alg_maxbits);
1127 ASSERT(*minbits <= *maxbits);
1128 } else {
1129 *minbits = 0;
1130 *maxbits = 0;
1135 * Check an action's requested algorithms against the algorithms currently
1136 * loaded in the system.
1138 boolean_t
1139 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1141 ipsec_prot_t *ipp;
1142 ipsec_stack_t *ipss = ns->netstack_ipsec;
1144 ipp = &act->ipa_apply;
1146 if (ipp->ipp_use_ah &&
1147 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1148 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1149 return (B_FALSE);
1151 if (ipp->ipp_use_espa &&
1152 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1153 NULL) {
1154 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1155 return (B_FALSE);
1157 if (ipp->ipp_use_esp &&
1158 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1159 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1160 return (B_FALSE);
1163 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1164 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1165 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1166 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1167 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1168 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1170 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1171 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1172 return (B_FALSE);
1174 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1175 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1176 return (B_FALSE);
1178 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1179 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1180 return (B_FALSE);
1182 /* TODO: sanity check lifetimes */
1183 return (B_TRUE);
1187 * Set up a single action during wildcard expansion..
1189 static void
1190 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1191 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1193 ipsec_prot_t *ipp;
1195 *outact = *act;
1196 ipp = &outact->ipa_apply;
1197 ipp->ipp_auth_alg = (uint8_t)auth_alg;
1198 ipp->ipp_encr_alg = (uint8_t)encr_alg;
1199 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1201 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1202 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1203 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1204 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1205 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1206 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1210 * combinatoric expansion time: expand a wildcarded action into an
1211 * array of wildcarded actions; we return the exploded action list,
1212 * and return a count in *nact (output only).
1214 static ipsec_act_t *
1215 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1217 boolean_t use_ah, use_esp, use_espa;
1218 boolean_t wild_auth, wild_encr, wild_eauth;
1219 uint_t auth_alg, auth_idx, auth_min, auth_max;
1220 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max;
1221 uint_t encr_alg, encr_idx, encr_min, encr_max;
1222 uint_t action_count, ai;
1223 ipsec_act_t *outact;
1224 ipsec_stack_t *ipss = ns->netstack_ipsec;
1226 if (act->ipa_type != IPSEC_ACT_APPLY) {
1227 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1228 *nact = 1;
1229 if (outact != NULL)
1230 bcopy(act, outact, sizeof (*act));
1231 return (outact);
1234 * compute the combinatoric explosion..
1236 * we assume a request for encr if esp_req is PREF_REQUIRED
1237 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1238 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1241 use_ah = act->ipa_apply.ipp_use_ah;
1242 use_esp = act->ipa_apply.ipp_use_esp;
1243 use_espa = act->ipa_apply.ipp_use_espa;
1244 auth_alg = act->ipa_apply.ipp_auth_alg;
1245 eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1246 encr_alg = act->ipa_apply.ipp_encr_alg;
1248 wild_auth = use_ah && (auth_alg == 0);
1249 wild_eauth = use_espa && (eauth_alg == 0);
1250 wild_encr = use_esp && (encr_alg == 0);
1252 action_count = 1;
1253 auth_min = auth_max = auth_alg;
1254 eauth_min = eauth_max = eauth_alg;
1255 encr_min = encr_max = encr_alg;
1258 * set up for explosion.. for each dimension, expand output
1259 * size by the explosion factor.
1261 * Don't include the "any" algorithms, if defined, as no
1262 * kernel policies should be set for these algorithms.
1265 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \
1266 if (wild) { \
1267 int nalgs = ipss->ipsec_nalgs[type]; \
1268 if (ipss->ipsec_alglists[type][alg] != NULL) \
1269 nalgs--; \
1270 action_count *= nalgs; \
1271 min = 0; \
1272 max = ipss->ipsec_nalgs[type] - 1; \
1275 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1276 auth_min, auth_max, ipss);
1277 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1278 eauth_min, eauth_max, ipss);
1279 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1280 encr_min, encr_max, ipss);
1282 #undef SET_EXP_MINMAX
1285 * ok, allocate the whole mess..
1288 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1289 if (outact == NULL)
1290 return (NULL);
1293 * Now compute all combinations. Note that non-wildcarded
1294 * dimensions just get a single value from auth_min, while
1295 * wildcarded dimensions indirect through the sortlist.
1297 * We do encryption outermost since, at this time, there's
1298 * greater difference in security and performance between
1299 * encryption algorithms vs. authentication algorithms.
1302 ai = 0;
1304 #define WHICH_ALG(type, wild, idx, ipss) \
1305 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1307 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1308 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1309 if (wild_encr && encr_alg == SADB_EALG_NONE)
1310 continue;
1311 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1312 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1313 auth_idx, ipss);
1314 if (wild_auth && auth_alg == SADB_AALG_NONE)
1315 continue;
1316 for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1317 eauth_idx++) {
1318 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1319 wild_eauth, eauth_idx, ipss);
1320 if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1321 continue;
1323 ipsec_setup_act(&outact[ai], act,
1324 auth_alg, encr_alg, eauth_alg, ns);
1325 ai++;
1330 #undef WHICH_ALG
1332 ASSERT(ai == action_count);
1333 *nact = action_count;
1334 return (outact);
1338 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1340 static void
1341 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
1343 bzero(ipp, sizeof (*ipp));
1345 * ipp_use_* are bitfields. Look at "!!" in the following as a
1346 * "boolean canonicalization" operator.
1348 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1349 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1350 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1351 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1352 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1353 IPSEC_PREF_UNIQUE);
1354 ipp->ipp_encr_alg = req->ipsr_esp_alg;
1356 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1357 * "none" above. If auth is required, as determined above,
1358 * SADB_AALG_ANY becomes 0, which is the representation
1359 * of "any" and "none" in PF_KEY v2.
1361 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1362 req->ipsr_auth_alg : 0;
1363 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1364 req->ipsr_esp_auth_alg : 0;
1368 * Extract a new-style action from a request.
1370 void
1371 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1372 netstack_t *ns)
1374 struct ipsec_act act;
1376 bzero(&act, sizeof (act));
1377 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1378 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1379 act.ipa_type = IPSEC_ACT_BYPASS;
1380 } else {
1381 act.ipa_type = IPSEC_ACT_APPLY;
1382 ipsec_prot_from_req(req, &act.ipa_apply);
1384 *actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1388 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1389 * We assume caller has already zero'ed *req for us.
1391 static int
1392 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1394 req->ipsr_esp_alg = ipp->ipp_encr_alg;
1395 req->ipsr_auth_alg = ipp->ipp_auth_alg;
1396 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1398 if (ipp->ipp_use_unique) {
1399 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1400 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1402 if (ipp->ipp_use_se)
1403 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1404 if (ipp->ipp_use_ah)
1405 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1406 if (ipp->ipp_use_esp)
1407 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1408 return (sizeof (*req));
1412 * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1413 * We assume caller has already zero'ed *req for us.
1415 static int
1416 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1418 switch (ap->ipa_act.ipa_type) {
1419 case IPSEC_ACT_BYPASS:
1420 req->ipsr_ah_req = IPSEC_PREF_NEVER;
1421 req->ipsr_esp_req = IPSEC_PREF_NEVER;
1422 return (sizeof (*req));
1423 case IPSEC_ACT_APPLY:
1424 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1426 return (sizeof (*req));
1430 * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1431 * We assume caller has already zero'ed *req for us.
1434 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1436 ipsec_policy_t *p;
1439 * FULL-PERSOCK: consult hash table, too?
1441 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1442 p != NULL;
1443 p = p->ipsp_hash.hash_next) {
1444 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1445 return (ipsec_req_from_act(p->ipsp_act, req));
1447 return (sizeof (*req));
1451 * Based on per-socket or latched policy, convert to an appropriate
1452 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1453 * be tail-called from ip.
1456 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1458 ipsec_latch_t *ipl;
1459 int rv = sizeof (ipsec_req_t);
1461 bzero(req, sizeof (*req));
1463 ASSERT(MUTEX_HELD(&connp->conn_lock));
1464 ipl = connp->conn_latch;
1467 * Find appropriate policy. First choice is latched action;
1468 * failing that, see latched policy; failing that,
1469 * look at configured policy.
1471 if (ipl != NULL) {
1472 if (connp->conn_latch_in_action != NULL) {
1473 rv = ipsec_req_from_act(connp->conn_latch_in_action,
1474 req);
1475 goto done;
1477 if (connp->conn_latch_in_policy != NULL) {
1478 rv = ipsec_req_from_act(
1479 connp->conn_latch_in_policy->ipsp_act, req);
1480 goto done;
1483 if (connp->conn_policy != NULL)
1484 rv = ipsec_req_from_head(connp->conn_policy, req, af);
1485 done:
1486 return (rv);
1489 void
1490 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1492 kmem_free(act, nact * sizeof (*act));
1496 * Consumes a reference to ipsp.
1498 static mblk_t *
1499 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
1500 ipsec_policy_t *ipsp)
1502 if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
1503 return (data_mp);
1505 ASSERT(ira->ira_flags & IRAF_LOOPBACK);
1507 IPPOL_REFRELE(ipsp);
1510 * We should do an actual policy check here. Revisit this
1511 * when we revisit the IPsec API. (And pass a conn_t in when we
1512 * get there.)
1515 return (data_mp);
1519 * Check that packet's inbound ports & proto match the selectors
1520 * expected by the SAs it traversed on the way in.
1522 static boolean_t
1523 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
1524 kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
1526 uint64_t ah_mask, esp_mask;
1527 ipsa_t *ah_assoc;
1528 ipsa_t *esp_assoc;
1529 ipsec_stack_t *ipss = ns->netstack_ipsec;
1531 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1532 ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
1534 ah_assoc = ira->ira_ipsec_ah_sa;
1535 esp_assoc = ira->ira_ipsec_esp_sa;
1536 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1538 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1539 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1541 if ((ah_mask == 0) && (esp_mask == 0))
1542 return (B_TRUE);
1545 * The pkt_unique check will also check for tunnel mode on the SA
1546 * vs. the tunneled_packet boolean. "Be liberal in what you receive"
1547 * should not apply in this case. ;)
1550 if (ah_mask != 0 &&
1551 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1552 *reason = "AH inner header mismatch";
1553 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1554 return (B_FALSE);
1556 if (esp_mask != 0 &&
1557 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1558 *reason = "ESP inner header mismatch";
1559 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1560 return (B_FALSE);
1562 return (B_TRUE);
1565 static boolean_t
1566 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
1567 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1568 netstack_t *ns)
1570 boolean_t ret = B_TRUE;
1571 ipsec_prot_t *ipp;
1572 ipsa_t *ah_assoc;
1573 ipsa_t *esp_assoc;
1574 boolean_t decaps;
1575 ipsec_stack_t *ipss = ns->netstack_ipsec;
1577 ASSERT((ipha == NULL && ip6h != NULL) ||
1578 (ip6h == NULL && ipha != NULL));
1580 if (ira->ira_flags & IRAF_LOOPBACK) {
1582 * Besides accepting pointer-equivalent actions, we also
1583 * accept any ICMP errors we generated for ourselves,
1584 * regardless of policy. If we do not wish to make this
1585 * assumption in the future, check here, and where
1586 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
1588 if (ap == ira->ira_ipsec_action ||
1589 (ira->ira_flags & IRAF_TRUSTED_ICMP))
1590 return (B_TRUE);
1592 /* Deep compare necessary here?? */
1593 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1594 *reason = "loopback policy mismatch";
1595 return (B_FALSE);
1597 ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
1598 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1600 ah_assoc = ira->ira_ipsec_ah_sa;
1601 esp_assoc = ira->ira_ipsec_esp_sa;
1603 decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
1605 switch (ap->ipa_act.ipa_type) {
1606 case IPSEC_ACT_DISCARD:
1607 case IPSEC_ACT_REJECT:
1608 /* Should "fail hard" */
1609 *counter = DROPPER(ipss, ipds_spd_explicit);
1610 *reason = "blocked by policy";
1611 return (B_FALSE);
1613 case IPSEC_ACT_BYPASS:
1614 case IPSEC_ACT_CLEAR:
1615 *counter = DROPPER(ipss, ipds_spd_got_secure);
1616 *reason = "expected clear, got protected";
1617 return (B_FALSE);
1619 case IPSEC_ACT_APPLY:
1620 ipp = &ap->ipa_act.ipa_apply;
1622 * As of now we do the simple checks of whether
1623 * the datagram has gone through the required IPSEC
1624 * protocol constraints or not. We might have more
1625 * in the future like sensitive levels, key bits, etc.
1626 * If it fails the constraints, check whether we would
1627 * have accepted this if it had come in clear.
1629 if (ipp->ipp_use_ah) {
1630 if (ah_assoc == NULL) {
1631 ret = ipsec_inbound_accept_clear(mp, ipha,
1632 ip6h);
1633 *counter = DROPPER(ipss, ipds_spd_got_clear);
1634 *reason = "unprotected not accepted";
1635 break;
1637 ASSERT(ah_assoc != NULL);
1638 ASSERT(ipp->ipp_auth_alg != 0);
1640 if (ah_assoc->ipsa_auth_alg !=
1641 ipp->ipp_auth_alg) {
1642 *counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1643 *reason = "unacceptable ah alg";
1644 ret = B_FALSE;
1645 break;
1647 } else if (ah_assoc != NULL) {
1649 * Don't allow this. Check IPSEC NOTE above
1650 * ip_fanout_proto().
1652 *counter = DROPPER(ipss, ipds_spd_got_ah);
1653 *reason = "unexpected AH";
1654 ret = B_FALSE;
1655 break;
1657 if (ipp->ipp_use_esp) {
1658 if (esp_assoc == NULL) {
1659 ret = ipsec_inbound_accept_clear(mp, ipha,
1660 ip6h);
1661 *counter = DROPPER(ipss, ipds_spd_got_clear);
1662 *reason = "unprotected not accepted";
1663 break;
1665 ASSERT(esp_assoc != NULL);
1666 ASSERT(ipp->ipp_encr_alg != 0);
1668 if (esp_assoc->ipsa_encr_alg !=
1669 ipp->ipp_encr_alg) {
1670 *counter = DROPPER(ipss, ipds_spd_bad_espealg);
1671 *reason = "unacceptable esp alg";
1672 ret = B_FALSE;
1673 break;
1676 * If the client does not need authentication,
1677 * we don't verify the alogrithm.
1679 if (ipp->ipp_use_espa) {
1680 if (esp_assoc->ipsa_auth_alg !=
1681 ipp->ipp_esp_auth_alg) {
1682 *counter = DROPPER(ipss,
1683 ipds_spd_bad_espaalg);
1684 *reason = "unacceptable esp auth alg";
1685 ret = B_FALSE;
1686 break;
1689 } else if (esp_assoc != NULL) {
1691 * Don't allow this. Check IPSEC NOTE above
1692 * ip_fanout_proto().
1694 *counter = DROPPER(ipss, ipds_spd_got_esp);
1695 *reason = "unexpected ESP";
1696 ret = B_FALSE;
1697 break;
1699 if (ipp->ipp_use_se) {
1700 if (!decaps) {
1701 ret = ipsec_inbound_accept_clear(mp, ipha,
1702 ip6h);
1703 if (!ret) {
1704 /* XXX mutant? */
1705 *counter = DROPPER(ipss,
1706 ipds_spd_bad_selfencap);
1707 *reason = "self encap not found";
1708 break;
1711 } else if (decaps) {
1713 * XXX If the packet comes in tunneled and the
1714 * recipient does not expect it to be tunneled, it
1715 * is okay. But we drop to be consistent with the
1716 * other cases.
1718 *counter = DROPPER(ipss, ipds_spd_got_selfencap);
1719 *reason = "unexpected self encap";
1720 ret = B_FALSE;
1721 break;
1723 if (ira->ira_ipsec_action != NULL) {
1725 * This can happen if we do a double policy-check on
1726 * a packet
1727 * XXX XXX should fix this case!
1729 IPACT_REFRELE(ira->ira_ipsec_action);
1731 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1732 ASSERT(ira->ira_ipsec_action == NULL);
1733 IPACT_REFHOLD(ap);
1734 ira->ira_ipsec_action = ap;
1735 break; /* from switch */
1737 return (ret);
1740 static boolean_t
1741 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1743 ASSERT(ipl->ipl_ids_latched == B_TRUE);
1744 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1745 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1749 * Takes a latched conn and an inbound packet and returns a unique_id suitable
1750 * for SA comparisons. Most of the time we will copy from the conn_t, but
1751 * there are cases when the conn_t is latched but it has wildcard selectors,
1752 * and then we need to fallback to scooping them out of the packet.
1754 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We
1755 * can get away with this because we only have non-zero ports/proto for
1756 * latched conn_ts.
1758 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1759 * to not be a nice macro.
1761 static uint64_t
1762 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1764 ipsec_selector_t sel;
1765 uint8_t ulp = connp->conn_proto;
1767 ASSERT(connp->conn_latch_in_policy != NULL);
1769 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1770 (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1771 /* Slow path - we gotta grab from the packet. */
1772 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1773 SEL_NONE) != SELRET_SUCCESS) {
1774 /* Failure -> have caller free packet with ENOMEM. */
1775 return (0);
1777 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1778 sel.ips_protocol, 0));
1781 #ifdef DEBUG_NOT_UNTIL_6478464
1782 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1783 SELRET_SUCCESS) {
1784 ASSERT(sel.ips_local_port == connp->conn_lport);
1785 ASSERT(sel.ips_remote_port == connp->conn_fport);
1786 ASSERT(sel.ips_protocol == connp->conn_proto);
1788 ASSERT(connp->conn_proto != 0);
1789 #endif
1791 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1795 * Called to check policy on a latched connection.
1796 * Note that we don't dereference conn_latch or conn_ihere since the conn might
1797 * be closing. The caller passes a held ipsec_latch_t instead.
1799 static boolean_t
1800 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
1801 ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
1802 kstat_named_t **counter, conn_t *connp, netstack_t *ns)
1804 ipsec_stack_t *ipss = ns->netstack_ipsec;
1806 ASSERT(ipl->ipl_ids_latched == B_TRUE);
1807 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1809 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
1811 * Over loopback, there aren't real security associations,
1812 * so there are neither identities nor "unique" values
1813 * for us to check the packet against.
1815 if (ira->ira_ipsec_ah_sa != NULL) {
1816 if (!spd_match_inbound_ids(ipl,
1817 ira->ira_ipsec_ah_sa)) {
1818 *counter = DROPPER(ipss, ipds_spd_ah_badid);
1819 *reason = "AH identity mismatch";
1820 return (B_FALSE);
1824 if (ira->ira_ipsec_esp_sa != NULL) {
1825 if (!spd_match_inbound_ids(ipl,
1826 ira->ira_ipsec_esp_sa)) {
1827 *counter = DROPPER(ipss, ipds_spd_esp_badid);
1828 *reason = "ESP identity mismatch";
1829 return (B_FALSE);
1834 * Can fudge pkt_unique from connp because we're latched.
1835 * In DEBUG kernels (see conn_to_unique()'s implementation),
1836 * verify this even if it REALLY slows things down.
1838 if (!ipsec_check_ipsecin_unique(ira, reason, counter,
1839 conn_to_unique(connp, mp, ipha, ip6h), ns)) {
1840 return (B_FALSE);
1843 return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
1844 counter, ns));
1848 * Check to see whether this secured datagram meets the policy
1849 * constraints specified in ipsp.
1851 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1853 * Consumes a reference to ipsp.
1854 * Returns the mblk if ok.
1856 static mblk_t *
1857 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
1858 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
1859 netstack_t *ns)
1861 ipsec_action_t *ap;
1862 const char *reason = "no policy actions found";
1863 ip_stack_t *ipst = ns->netstack_ip;
1864 ipsec_stack_t *ipss = ns->netstack_ipsec;
1865 kstat_named_t *counter;
1867 counter = DROPPER(ipss, ipds_spd_got_secure);
1869 ASSERT(ipsp != NULL);
1871 ASSERT((ipha == NULL && ip6h != NULL) ||
1872 (ip6h == NULL && ipha != NULL));
1874 if (ira->ira_flags & IRAF_LOOPBACK)
1875 return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
1877 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1879 if (ira->ira_ipsec_action != NULL) {
1881 * this can happen if we do a double policy-check on a packet
1882 * Would be nice to be able to delete this test..
1884 IPACT_REFRELE(ira->ira_ipsec_action);
1886 ASSERT(ira->ira_ipsec_action == NULL);
1888 if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
1889 reason = "inbound AH and ESP identities differ";
1890 counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1891 goto drop;
1894 if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
1895 ns))
1896 goto drop;
1899 * Ok, now loop through the possible actions and see if any
1900 * of them work for us.
1903 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1904 if (ipsec_check_ipsecin_action(ira, data_mp, ap,
1905 ipha, ip6h, &reason, &counter, ns)) {
1906 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
1907 IPPOL_REFRELE(ipsp);
1908 return (data_mp);
1911 drop:
1912 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1913 "ipsec inbound policy mismatch: %s, packet dropped\n",
1914 reason);
1915 IPPOL_REFRELE(ipsp);
1916 ASSERT(ira->ira_ipsec_action == NULL);
1917 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
1918 ip_drop_packet(data_mp, B_TRUE, NULL, counter,
1919 &ipss->ipsec_spd_dropper);
1920 return (NULL);
1924 * sleazy prefix-length-based compare.
1925 * another inlining candidate..
1927 boolean_t
1928 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1930 int offset = pfxlen>>3;
1931 int bitsleft = pfxlen & 7;
1932 uint8_t *addr2 = (uint8_t *)addr2p;
1935 * and there was much evil..
1936 * XXX should inline-expand the bcmp here and do this 32 bits
1937 * or 64 bits at a time..
1939 return ((bcmp(addr1, addr2, offset) == 0) &&
1940 ((bitsleft == 0) ||
1941 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
1944 static ipsec_policy_t *
1945 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1946 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1948 ipsec_selkey_t *isel;
1949 ipsec_policy_t *p;
1950 int bpri = best ? best->ipsp_prio : 0;
1952 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1953 uint32_t valid;
1955 if (p->ipsp_prio <= bpri)
1956 continue;
1957 isel = &p->ipsp_sel->ipsl_key;
1958 valid = isel->ipsl_valid;
1960 if ((valid & IPSL_PROTOCOL) &&
1961 (isel->ipsl_proto != sel->ips_protocol))
1962 continue;
1964 if ((valid & IPSL_REMOTE_ADDR) &&
1965 !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1966 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
1967 continue;
1969 if ((valid & IPSL_LOCAL_ADDR) &&
1970 !ip_addr_match((uint8_t *)&isel->ipsl_local,
1971 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
1972 continue;
1974 if ((valid & IPSL_REMOTE_PORT) &&
1975 isel->ipsl_rport != sel->ips_remote_port)
1976 continue;
1978 if ((valid & IPSL_LOCAL_PORT) &&
1979 isel->ipsl_lport != sel->ips_local_port)
1980 continue;
1982 if (!is_icmp_inv_acq) {
1983 if ((valid & IPSL_ICMP_TYPE) &&
1984 (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1985 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1986 continue;
1989 if ((valid & IPSL_ICMP_CODE) &&
1990 (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1991 isel->ipsl_icmp_code_end <
1992 sel->ips_icmp_code)) {
1993 continue;
1995 } else {
1997 * special case for icmp inverse acquire
1998 * we only want policies that aren't drop/pass
2000 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2001 continue;
2004 /* we matched all the packet-port-field selectors! */
2005 best = p;
2006 bpri = p->ipsp_prio;
2009 return (best);
2013 * Try to find and return the best policy entry under a given policy
2014 * root for a given set of selectors; the first parameter "best" is
2015 * the current best policy so far. If "best" is non-null, we have a
2016 * reference to it. We return a reference to a policy; if that policy
2017 * is not the original "best", we need to release that reference
2018 * before returning.
2020 ipsec_policy_t *
2021 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2022 int direction, ipsec_selector_t *sel)
2024 ipsec_policy_t *curbest;
2025 ipsec_policy_root_t *root;
2026 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2027 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2029 curbest = best;
2030 root = &head->iph_root[direction];
2032 #ifdef DEBUG
2033 if (is_icmp_inv_acq) {
2034 if (sel->ips_isv4) {
2035 if (sel->ips_protocol != IPPROTO_ICMP) {
2036 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2037 " expecting icmp, got %d",
2038 sel->ips_protocol);
2040 } else {
2041 if (sel->ips_protocol != IPPROTO_ICMPV6) {
2042 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2043 " expecting icmpv6, got %d",
2044 sel->ips_protocol);
2048 #endif
2050 rw_enter(&head->iph_lock, RW_READER);
2052 if (root->ipr_nchains > 0) {
2053 curbest = ipsec_find_policy_chain(curbest,
2054 root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2055 is_icmp_inv_acq);
2057 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2058 is_icmp_inv_acq);
2061 * Adjust reference counts if we found anything new.
2063 if (curbest != best) {
2064 ASSERT(curbest != NULL);
2065 IPPOL_REFHOLD(curbest);
2067 if (best != NULL) {
2068 IPPOL_REFRELE(best);
2072 rw_exit(&head->iph_lock);
2074 return (curbest);
2078 * Find the best system policy (either global or per-interface) which
2079 * applies to the given selector; look in all the relevant policy roots
2080 * to figure out which policy wins.
2082 * Returns a reference to a policy; caller must release this
2083 * reference when done.
2085 ipsec_policy_t *
2086 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
2087 netstack_t *ns)
2089 ipsec_policy_t *p;
2090 ipsec_stack_t *ipss = ns->netstack_ipsec;
2092 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2093 direction, sel);
2094 if ((connp != NULL) && (connp->conn_policy != NULL)) {
2095 p = ipsec_find_policy_head(p, connp->conn_policy,
2096 direction, sel);
2099 return (p);
2103 * Check with global policy and see whether this inbound
2104 * packet meets the policy constraints.
2106 * Locate appropriate policy from global policy, supplemented by the
2107 * conn's configured and/or cached policy if the conn is supplied.
2109 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2110 * encrypted packet to see if they match.
2112 * Otherwise, see if the policy allows cleartext; if not, drop it on the
2113 * floor.
2115 mblk_t *
2116 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
2117 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
2119 ipsec_policy_t *p;
2120 ipsec_selector_t sel;
2121 boolean_t policy_present;
2122 kstat_named_t *counter;
2123 uint64_t pkt_unique;
2124 ip_stack_t *ipst = ns->netstack_ip;
2125 ipsec_stack_t *ipss = ns->netstack_ipsec;
2127 sel.ips_is_icmp_inv_acq = 0;
2129 ASSERT((ipha == NULL && ip6h != NULL) ||
2130 (ip6h == NULL && ipha != NULL));
2132 if (ipha != NULL)
2133 policy_present = ipss->ipsec_inbound_v4_policy_present;
2134 else
2135 policy_present = ipss->ipsec_inbound_v6_policy_present;
2137 if (!policy_present && connp == NULL) {
2139 * No global policy and no per-socket policy;
2140 * just pass it back (but we shouldn't get here in that case)
2142 return (data_mp);
2146 * If we have cached policy, use it.
2147 * Otherwise consult system policy.
2149 if ((connp != NULL) && (connp->conn_latch != NULL)) {
2150 p = connp->conn_latch_in_policy;
2151 if (p != NULL) {
2152 IPPOL_REFHOLD(p);
2155 * Fudge sel for UNIQUE_ID setting below.
2157 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2158 } else {
2159 /* Initialize the ports in the selector */
2160 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2161 SEL_NONE) == SELRET_NOMEM) {
2163 * Technically not a policy mismatch, but it is
2164 * an internal failure.
2166 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2167 "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
2168 counter = DROPPER(ipss, ipds_spd_nomem);
2169 goto fail;
2173 * Find the policy which best applies.
2175 * If we find global policy, we should look at both
2176 * local policy and global policy and see which is
2177 * stronger and match accordingly.
2179 * If we don't find a global policy, check with
2180 * local policy alone.
2183 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
2184 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2185 sel.ips_local_port, sel.ips_protocol, 0);
2188 if (p == NULL) {
2189 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2191 * We have no policy; default to succeeding.
2192 * XXX paranoid system design doesn't do this.
2194 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2195 return (data_mp);
2196 } else {
2197 counter = DROPPER(ipss, ipds_spd_got_secure);
2198 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2199 "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2200 ns);
2201 goto fail;
2204 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2205 return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
2206 pkt_unique, ira, ns));
2208 if (p->ipsp_act->ipa_allow_clear) {
2209 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2210 IPPOL_REFRELE(p);
2211 return (data_mp);
2213 IPPOL_REFRELE(p);
2215 * If we reach here, we will drop the packet because it failed the
2216 * global policy check because the packet was cleartext, and it
2217 * should not have been.
2219 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2220 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2221 counter = DROPPER(ipss, ipds_spd_got_clear);
2223 fail:
2224 ip_drop_packet(data_mp, B_TRUE, NULL, counter,
2225 &ipss->ipsec_spd_dropper);
2226 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2227 return (NULL);
2231 * We check whether an inbound datagram is a valid one
2232 * to accept in clear. If it is secure, it is the job
2233 * of IPSEC to log information appropriately if it
2234 * suspects that it may not be the real one.
2236 * It is called only while fanning out to the ULP
2237 * where ULP accepts only secure data and the incoming
2238 * is clear. Usually we never accept clear datagrams in
2239 * such cases. ICMP is the only exception.
2241 * NOTE : We don't call this function if the client (ULP)
2242 * is willing to accept things in clear.
2244 boolean_t
2245 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2247 ushort_t iph_hdr_length;
2248 icmph_t *icmph;
2249 icmp6_t *icmp6;
2250 uint8_t *nexthdrp;
2252 ASSERT((ipha != NULL && ip6h == NULL) ||
2253 (ipha == NULL && ip6h != NULL));
2255 if (ip6h != NULL) {
2256 iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2257 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2258 &nexthdrp)) {
2259 return (B_FALSE);
2261 if (*nexthdrp != IPPROTO_ICMPV6)
2262 return (B_FALSE);
2263 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2264 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2265 switch (icmp6->icmp6_type) {
2266 case ICMP6_PARAM_PROB:
2267 /* Corresponds to port/proto unreach in IPv4. */
2268 case ICMP6_ECHO_REQUEST:
2269 /* Just like IPv4. */
2270 return (B_FALSE);
2272 case MLD_LISTENER_QUERY:
2273 case MLD_LISTENER_REPORT:
2274 case MLD_LISTENER_REDUCTION:
2276 * XXX Seperate NDD in IPv4 what about here?
2277 * Plus, mcast is important to ND.
2279 case ICMP6_DST_UNREACH:
2280 /* Corresponds to HOST/NET unreachable in IPv4. */
2281 case ICMP6_PACKET_TOO_BIG:
2282 case ICMP6_ECHO_REPLY:
2283 /* These are trusted in IPv4. */
2284 case ND_ROUTER_SOLICIT:
2285 case ND_ROUTER_ADVERT:
2286 case ND_NEIGHBOR_SOLICIT:
2287 case ND_NEIGHBOR_ADVERT:
2288 case ND_REDIRECT:
2289 /* Trust ND messages for now. */
2290 case ICMP6_TIME_EXCEEDED:
2291 default:
2292 return (B_TRUE);
2294 } else {
2296 * If it is not ICMP, fail this request.
2298 if (ipha->ipha_protocol != IPPROTO_ICMP) {
2299 #ifdef FRAGCACHE_DEBUG
2300 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2301 ipha->ipha_protocol);
2302 #endif
2303 return (B_FALSE);
2305 iph_hdr_length = IPH_HDR_LENGTH(ipha);
2306 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2308 * It is an insecure icmp message. Check to see whether we are
2309 * willing to accept this one.
2312 switch (icmph->icmph_type) {
2313 case ICMP_ECHO_REPLY:
2314 case ICMP_TIME_STAMP_REPLY:
2315 case ICMP_INFO_REPLY:
2316 case ICMP_ROUTER_ADVERTISEMENT:
2318 * We should not encourage clear replies if this
2319 * client expects secure. If somebody is replying
2320 * in clear some mailicious user watching both the
2321 * request and reply, can do chosen-plain-text attacks.
2322 * With global policy we might be just expecting secure
2323 * but sending out clear. We don't know what the right
2324 * thing is. We can't do much here as we can't control
2325 * the sender here. Till we are sure of what to do,
2326 * accept them.
2328 return (B_TRUE);
2329 case ICMP_ECHO_REQUEST:
2330 case ICMP_TIME_STAMP_REQUEST:
2331 case ICMP_INFO_REQUEST:
2332 case ICMP_ADDRESS_MASK_REQUEST:
2333 case ICMP_ROUTER_SOLICITATION:
2334 case ICMP_ADDRESS_MASK_REPLY:
2336 * Don't accept this as somebody could be sending
2337 * us plain text to get encrypted data. If we reply,
2338 * it will lead to chosen plain text attack.
2340 return (B_FALSE);
2341 case ICMP_DEST_UNREACHABLE:
2342 switch (icmph->icmph_code) {
2343 case ICMP_FRAGMENTATION_NEEDED:
2345 * Be in sync with icmp_inbound, where we have
2346 * already set dce_pmtu
2348 #ifdef FRAGCACHE_DEBUG
2349 cmn_err(CE_WARN, "ICMP frag needed\n");
2350 #endif
2351 return (B_TRUE);
2352 case ICMP_HOST_UNREACHABLE:
2353 case ICMP_NET_UNREACHABLE:
2355 * By accepting, we could reset a connection.
2356 * How do we solve the problem of some
2357 * intermediate router sending in-secure ICMP
2358 * messages ?
2360 return (B_TRUE);
2361 case ICMP_PORT_UNREACHABLE:
2362 case ICMP_PROTOCOL_UNREACHABLE:
2363 default :
2364 return (B_FALSE);
2366 case ICMP_SOURCE_QUENCH:
2368 * If this is an attack, TCP will slow start
2369 * because of this. Is it very harmful ?
2371 return (B_TRUE);
2372 case ICMP_PARAM_PROBLEM:
2373 return (B_FALSE);
2374 case ICMP_TIME_EXCEEDED:
2375 return (B_TRUE);
2376 case ICMP_REDIRECT:
2377 return (B_FALSE);
2378 default :
2379 return (B_FALSE);
2384 void
2385 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2387 mutex_enter(&ipl->ipl_lock);
2389 if (ipl->ipl_ids_latched) {
2390 /* I lost, someone else got here before me */
2391 mutex_exit(&ipl->ipl_lock);
2392 return;
2395 if (local != NULL)
2396 IPSID_REFHOLD(local);
2397 if (remote != NULL)
2398 IPSID_REFHOLD(remote);
2400 ipl->ipl_local_cid = local;
2401 ipl->ipl_remote_cid = remote;
2402 ipl->ipl_ids_latched = B_TRUE;
2403 mutex_exit(&ipl->ipl_lock);
2406 void
2407 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
2409 ipsa_t *sa;
2410 ipsec_latch_t *ipl = connp->conn_latch;
2412 if (!ipl->ipl_ids_latched) {
2413 ipsid_t *local = NULL;
2414 ipsid_t *remote = NULL;
2416 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
2417 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2418 if (ira->ira_ipsec_esp_sa != NULL)
2419 sa = ira->ira_ipsec_esp_sa;
2420 else
2421 sa = ira->ira_ipsec_ah_sa;
2422 ASSERT(sa != NULL);
2423 local = sa->ipsa_dst_cid;
2424 remote = sa->ipsa_src_cid;
2426 ipsec_latch_ids(ipl, local, remote);
2428 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2429 if (connp->conn_latch_in_action != NULL) {
2431 * Previously cached action. This is probably
2432 * harmless, but in DEBUG kernels, check for
2433 * action equality.
2435 * Preserve the existing action to preserve latch
2436 * invariance.
2438 ASSERT(connp->conn_latch_in_action ==
2439 ira->ira_ipsec_action);
2440 return;
2442 connp->conn_latch_in_action = ira->ira_ipsec_action;
2443 IPACT_REFHOLD(connp->conn_latch_in_action);
2448 * Check whether the policy constraints are met either for an
2449 * inbound datagram; called from IP in numerous places.
2451 * Note that this is not a chokepoint for inbound policy checks;
2452 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2454 mblk_t *
2455 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
2456 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
2458 boolean_t ret;
2459 ipsec_latch_t *ipl;
2460 ipsec_action_t *ap;
2461 uint64_t unique_id;
2462 ipsec_stack_t *ipss;
2463 ip_stack_t *ipst;
2464 netstack_t *ns;
2465 ipsec_policy_head_t *policy_head;
2466 ipsec_policy_t *p = NULL;
2468 ASSERT(connp != NULL);
2469 ns = connp->conn_netstack;
2470 ipss = ns->netstack_ipsec;
2471 ipst = ns->netstack_ip;
2473 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2475 * This is the case where the incoming datagram is
2476 * cleartext and we need to see whether this client
2477 * would like to receive such untrustworthy things from
2478 * the wire.
2480 ASSERT(mp != NULL);
2482 mutex_enter(&connp->conn_lock);
2483 if (connp->conn_state_flags & CONN_CONDEMNED) {
2484 mutex_exit(&connp->conn_lock);
2485 ip_drop_packet(mp, B_TRUE, NULL,
2486 DROPPER(ipss, ipds_spd_got_clear),
2487 &ipss->ipsec_spd_dropper);
2488 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2489 return (NULL);
2491 if (connp->conn_latch != NULL) {
2492 /* Hold a reference in case the conn is closing */
2493 p = connp->conn_latch_in_policy;
2494 if (p != NULL)
2495 IPPOL_REFHOLD(p);
2496 mutex_exit(&connp->conn_lock);
2498 * Policy is cached in the conn.
2500 if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
2501 ret = ipsec_inbound_accept_clear(mp,
2502 ipha, ip6h);
2503 if (ret) {
2504 BUMP_MIB(&ipst->ips_ip_mib,
2505 ipsecInSucceeded);
2506 IPPOL_REFRELE(p);
2507 return (mp);
2508 } else {
2509 ipsec_log_policy_failure(
2510 IPSEC_POLICY_MISMATCH,
2511 "ipsec_check_inbound_policy", ipha,
2512 ip6h, B_FALSE, ns);
2513 ip_drop_packet(mp, B_TRUE, NULL,
2514 DROPPER(ipss, ipds_spd_got_clear),
2515 &ipss->ipsec_spd_dropper);
2516 BUMP_MIB(&ipst->ips_ip_mib,
2517 ipsecInFailed);
2518 IPPOL_REFRELE(p);
2519 return (NULL);
2521 } else {
2522 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2523 if (p != NULL)
2524 IPPOL_REFRELE(p);
2525 return (mp);
2527 } else {
2528 policy_head = connp->conn_policy;
2530 /* Hold a reference in case the conn is closing */
2531 if (policy_head != NULL)
2532 IPPH_REFHOLD(policy_head);
2533 mutex_exit(&connp->conn_lock);
2535 * As this is a non-hardbound connection we need
2536 * to look at both per-socket policy and global
2537 * policy.
2539 mp = ipsec_check_global_policy(mp, connp,
2540 ipha, ip6h, ira, ns);
2541 if (policy_head != NULL)
2542 IPPH_REFRELE(policy_head, ns);
2543 return (mp);
2547 mutex_enter(&connp->conn_lock);
2548 /* Connection is closing */
2549 if (connp->conn_state_flags & CONN_CONDEMNED) {
2550 mutex_exit(&connp->conn_lock);
2551 ip_drop_packet(mp, B_TRUE, NULL,
2552 DROPPER(ipss, ipds_spd_got_clear),
2553 &ipss->ipsec_spd_dropper);
2554 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2555 return (NULL);
2559 * Once a connection is latched it remains so for life, the conn_latch
2560 * pointer on the conn has not changed, simply initializing ipl here
2561 * as the earlier initialization was done only in the cleartext case.
2563 if ((ipl = connp->conn_latch) == NULL) {
2564 mblk_t *retmp;
2565 policy_head = connp->conn_policy;
2567 /* Hold a reference in case the conn is closing */
2568 if (policy_head != NULL)
2569 IPPH_REFHOLD(policy_head);
2570 mutex_exit(&connp->conn_lock);
2572 * We don't have policies cached in the conn
2573 * for this stream. So, look at the global
2574 * policy. It will check against conn or global
2575 * depending on whichever is stronger.
2577 retmp = ipsec_check_global_policy(mp, connp,
2578 ipha, ip6h, ira, ns);
2579 if (policy_head != NULL)
2580 IPPH_REFRELE(policy_head, ns);
2581 return (retmp);
2584 IPLATCH_REFHOLD(ipl);
2585 /* Hold reference on conn_latch_in_action in case conn is closing */
2586 ap = connp->conn_latch_in_action;
2587 if (ap != NULL)
2588 IPACT_REFHOLD(ap);
2589 mutex_exit(&connp->conn_lock);
2591 if (ap != NULL) {
2592 /* Policy is cached & latched; fast(er) path */
2593 const char *reason;
2594 kstat_named_t *counter;
2596 if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
2597 ipha, ip6h, &reason, &counter, connp, ns)) {
2598 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2599 IPLATCH_REFRELE(ipl);
2600 IPACT_REFRELE(ap);
2601 return (mp);
2603 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2604 SL_ERROR|SL_WARN|SL_CONSOLE,
2605 "ipsec inbound policy mismatch: %s, packet dropped\n",
2606 reason);
2607 ip_drop_packet(mp, B_TRUE, NULL, counter,
2608 &ipss->ipsec_spd_dropper);
2609 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2610 IPLATCH_REFRELE(ipl);
2611 IPACT_REFRELE(ap);
2612 return (NULL);
2614 if ((p = connp->conn_latch_in_policy) == NULL) {
2615 ipsec_weird_null_inbound_policy++;
2616 IPLATCH_REFRELE(ipl);
2617 return (mp);
2620 unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2621 IPPOL_REFHOLD(p);
2622 mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
2624 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2625 * ipsec_check_ipsecin_policy().
2627 if (mp != NULL)
2628 ipsec_latch_inbound(connp, ira);
2629 IPLATCH_REFRELE(ipl);
2630 return (mp);
2634 * Handle all sorts of cases like tunnel-mode and ICMP.
2636 static int
2637 prepended_length(mblk_t *mp, uintptr_t hptr)
2639 int rc = 0;
2641 while (mp != NULL) {
2642 if (hptr >= (uintptr_t)mp->b_rptr && hptr <
2643 (uintptr_t)mp->b_wptr) {
2644 rc += (int)(hptr - (uintptr_t)mp->b_rptr);
2645 break; /* out of while loop */
2647 rc += (int)MBLKL(mp);
2648 mp = mp->b_cont;
2651 if (mp == NULL) {
2653 * IF (big IF) we make it here by naturally exiting the loop,
2654 * then ip6h isn't in the mblk chain "mp" at all.
2656 * The only case where this happens is with a reversed IP
2657 * header that gets passed up by inbound ICMP processing.
2658 * This unfortunately triggers longstanding bug 6478464. For
2659 * now, just pass up 0 for the answer.
2661 #ifdef DEBUG_NOT_UNTIL_6478464
2662 ASSERT(mp != NULL);
2663 #endif
2664 rc = 0;
2667 return (rc);
2671 * Returns:
2673 * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2674 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2675 * gathering, the initial fragment is too short for
2676 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is
2677 * set.
2678 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2679 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller
2680 * should put this packet in a fragment-gathering queue.
2681 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2682 * is set.
2684 * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
2685 * of tunneled packets.
2686 * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
2687 * error past the ICMP error.
2689 static selret_t
2690 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2691 ip6_t *ip6h, uint8_t sel_flags)
2693 uint16_t *ports;
2694 int outer_hdr_len = 0; /* For ICMP or tunnel-mode cases... */
2695 ushort_t hdr_len;
2696 mblk_t *spare_mp = NULL;
2697 uint8_t *nexthdrp, *transportp;
2698 uint8_t nexthdr;
2699 uint8_t icmp_proto;
2700 ip_pkt_t ipp;
2701 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2702 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2703 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2704 boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
2706 ASSERT((ipha == NULL && ip6h != NULL) ||
2707 (ipha != NULL && ip6h == NULL));
2709 if (ip6h != NULL) {
2710 outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
2711 nexthdr = ip6h->ip6_nxt;
2712 icmp_proto = IPPROTO_ICMPV6;
2713 sel->ips_isv4 = B_FALSE;
2714 sel->ips_local_addr_v6 = ip6h->ip6_dst;
2715 sel->ips_remote_addr_v6 = ip6h->ip6_src;
2717 bzero(&ipp, sizeof (ipp));
2719 switch (nexthdr) {
2720 case IPPROTO_HOPOPTS:
2721 case IPPROTO_ROUTING:
2722 case IPPROTO_DSTOPTS:
2723 case IPPROTO_FRAGMENT:
2725 * Use ip_hdr_length_nexthdr_v6(). And have a spare
2726 * mblk that's contiguous to feed it
2728 if ((spare_mp = msgpullup(mp, -1)) == NULL)
2729 return (SELRET_NOMEM);
2730 if (!ip_hdr_length_nexthdr_v6(spare_mp,
2731 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2732 &hdr_len, &nexthdrp)) {
2733 /* Malformed packet - caller frees. */
2734 ipsec_freemsg_chain(spare_mp);
2735 return (SELRET_BADPKT);
2737 /* Repopulate now that we have the whole packet */
2738 ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
2739 (void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
2740 NULL);
2741 nexthdr = *nexthdrp;
2742 /* We can just extract based on hdr_len now. */
2743 break;
2744 default:
2745 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
2746 hdr_len = IPV6_HDR_LEN;
2747 break;
2749 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2750 /* IPv6 Fragment */
2751 ipsec_freemsg_chain(spare_mp);
2752 return (SELRET_TUNFRAG);
2754 transportp = (uint8_t *)ip6h + hdr_len;
2755 } else {
2756 outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
2757 icmp_proto = IPPROTO_ICMP;
2758 sel->ips_isv4 = B_TRUE;
2759 sel->ips_local_addr_v4 = ipha->ipha_dst;
2760 sel->ips_remote_addr_v4 = ipha->ipha_src;
2761 nexthdr = ipha->ipha_protocol;
2762 hdr_len = IPH_HDR_LENGTH(ipha);
2764 if (port_policy_present &&
2765 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2766 !is_icmp) {
2767 /* IPv4 Fragment */
2768 ipsec_freemsg_chain(spare_mp);
2769 return (SELRET_TUNFRAG);
2771 transportp = (uint8_t *)ipha + hdr_len;
2773 sel->ips_protocol = nexthdr;
2775 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2776 nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
2777 (!port_policy_present && !post_frag && tunnel_mode)) {
2778 sel->ips_remote_port = sel->ips_local_port = 0;
2779 ipsec_freemsg_chain(spare_mp);
2780 return (SELRET_SUCCESS);
2783 if (transportp + 4 > mp->b_wptr) {
2784 /* If we didn't pullup a copy already, do so now. */
2786 * XXX performance, will upper-layers frequently split TCP/UDP
2787 * apart from IP or options? If so, perhaps we should revisit
2788 * the spare_mp strategy.
2790 ipsec_hdr_pullup_needed++;
2791 if (spare_mp == NULL &&
2792 (spare_mp = msgpullup(mp, -1)) == NULL) {
2793 return (SELRET_NOMEM);
2795 transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
2798 if (nexthdr == icmp_proto) {
2799 sel->ips_icmp_type = *transportp++;
2800 sel->ips_icmp_code = *transportp;
2801 sel->ips_remote_port = sel->ips_local_port = 0;
2802 } else {
2803 ports = (uint16_t *)transportp;
2804 sel->ips_remote_port = *ports++;
2805 sel->ips_local_port = *ports;
2807 ipsec_freemsg_chain(spare_mp);
2808 return (SELRET_SUCCESS);
2812 * This is called with a b_next chain of messages from the fragcache code,
2813 * hence it needs to discard a chain on error.
2815 static boolean_t
2816 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2817 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2820 * XXX cut&paste shared with ipsec_init_inbound_sel
2822 uint16_t *ports;
2823 ushort_t hdr_len;
2824 mblk_t *spare_mp = NULL;
2825 uint8_t *nexthdrp;
2826 uint8_t nexthdr;
2827 uint8_t *typecode;
2828 uint8_t check_proto;
2830 ASSERT((ipha == NULL && ip6h != NULL) ||
2831 (ipha != NULL && ip6h == NULL));
2833 if (ip6h != NULL) {
2834 check_proto = IPPROTO_ICMPV6;
2835 nexthdr = ip6h->ip6_nxt;
2836 switch (nexthdr) {
2837 case IPPROTO_HOPOPTS:
2838 case IPPROTO_ROUTING:
2839 case IPPROTO_DSTOPTS:
2840 case IPPROTO_FRAGMENT:
2842 * Use ip_hdr_length_nexthdr_v6(). And have a spare
2843 * mblk that's contiguous to feed it
2845 spare_mp = msgpullup(mp, -1);
2846 if (spare_mp == NULL ||
2847 !ip_hdr_length_nexthdr_v6(spare_mp,
2848 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2849 &hdr_len, &nexthdrp)) {
2850 /* Always works, even if NULL. */
2851 ipsec_freemsg_chain(spare_mp);
2852 ip_drop_packet_chain(mp, B_FALSE, NULL,
2853 DROPPER(ipss, ipds_spd_nomem),
2854 &ipss->ipsec_spd_dropper);
2855 return (B_FALSE);
2856 } else {
2857 nexthdr = *nexthdrp;
2858 /* We can just extract based on hdr_len now. */
2860 break;
2861 default:
2862 hdr_len = IPV6_HDR_LEN;
2863 break;
2865 } else {
2866 check_proto = IPPROTO_ICMP;
2867 hdr_len = IPH_HDR_LENGTH(ipha);
2868 nexthdr = ipha->ipha_protocol;
2871 sel->ips_protocol = nexthdr;
2872 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2873 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2874 sel->ips_local_port = sel->ips_remote_port = 0;
2875 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2876 return (B_TRUE);
2879 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2880 /* If we didn't pullup a copy already, do so now. */
2882 * XXX performance, will upper-layers frequently split TCP/UDP
2883 * apart from IP or options? If so, perhaps we should revisit
2884 * the spare_mp strategy.
2886 * XXX should this be msgpullup(mp, hdr_len+4) ???
2888 if (spare_mp == NULL &&
2889 (spare_mp = msgpullup(mp, -1)) == NULL) {
2890 ip_drop_packet_chain(mp, B_FALSE, NULL,
2891 DROPPER(ipss, ipds_spd_nomem),
2892 &ipss->ipsec_spd_dropper);
2893 return (B_FALSE);
2895 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2896 } else {
2897 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2900 if (nexthdr == check_proto) {
2901 typecode = (uint8_t *)ports;
2902 sel->ips_icmp_type = *typecode++;
2903 sel->ips_icmp_code = *typecode;
2904 sel->ips_remote_port = sel->ips_local_port = 0;
2905 } else {
2906 sel->ips_local_port = *ports++;
2907 sel->ips_remote_port = *ports;
2909 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2910 return (B_TRUE);
2914 * Prepend an mblk with a ipsec_crypto_t to the message chain.
2915 * Frees the argument and returns NULL should the allocation fail.
2916 * Returns the pointer to the crypto data part.
2918 mblk_t *
2919 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
2921 mblk_t *mp;
2923 mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
2924 if (mp == NULL) {
2925 freemsg(data_mp);
2926 return (NULL);
2928 bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
2929 mp->b_wptr += sizeof (ipsec_crypto_t);
2930 mp->b_cont = data_mp;
2931 mp->b_datap->db_type = M_EVENT; /* For ASSERT */
2932 *icp = (ipsec_crypto_t *)mp->b_rptr;
2933 return (mp);
2937 * Remove what was prepended above. Return b_cont and a pointer to the
2938 * crypto data.
2939 * The caller must call ipsec_free_crypto_data for mblk once it is done
2940 * with the crypto data.
2942 mblk_t *
2943 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
2945 ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2946 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2948 *icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
2949 return (crypto_mp->b_cont);
2953 * Free what was prepended above. Return b_cont.
2955 mblk_t *
2956 ipsec_free_crypto_data(mblk_t *crypto_mp)
2958 mblk_t *mp;
2960 ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2961 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2963 mp = crypto_mp->b_cont;
2964 freeb(crypto_mp);
2965 return (mp);
2969 * Create an ipsec_action_t based on the way an inbound packet was protected.
2970 * Used to reflect traffic back to a sender.
2972 * We don't bother interning the action into the hash table.
2974 ipsec_action_t *
2975 ipsec_in_to_out_action(ip_recv_attr_t *ira)
2977 ipsa_t *ah_assoc, *esp_assoc;
2978 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2979 ipsec_action_t *ap;
2980 boolean_t unique;
2982 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2984 if (ap == NULL)
2985 return (NULL);
2987 bzero(ap, sizeof (*ap));
2988 HASH_NULL(ap, ipa_hash);
2989 ap->ipa_next = NULL;
2990 ap->ipa_refs = 1;
2993 * Get the algorithms that were used for this packet.
2995 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2996 ap->ipa_act.ipa_log = 0;
2997 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2999 ah_assoc = ira->ira_ipsec_ah_sa;
3000 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3002 esp_assoc = ira->ira_ipsec_esp_sa;
3003 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3005 if (esp_assoc != NULL) {
3006 encr_alg = esp_assoc->ipsa_encr_alg;
3007 espa_alg = esp_assoc->ipsa_auth_alg;
3008 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3010 if (ah_assoc != NULL)
3011 auth_alg = ah_assoc->ipsa_auth_alg;
3013 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3014 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3015 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3016 ap->ipa_act.ipa_apply.ipp_use_se =
3017 !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3018 unique = B_FALSE;
3020 if (esp_assoc != NULL) {
3021 ap->ipa_act.ipa_apply.ipp_espa_minbits =
3022 esp_assoc->ipsa_authkeybits;
3023 ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3024 esp_assoc->ipsa_authkeybits;
3025 ap->ipa_act.ipa_apply.ipp_espe_minbits =
3026 esp_assoc->ipsa_encrkeybits;
3027 ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3028 esp_assoc->ipsa_encrkeybits;
3029 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3030 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3031 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3032 unique = B_TRUE;
3034 if (ah_assoc != NULL) {
3035 ap->ipa_act.ipa_apply.ipp_ah_minbits =
3036 ah_assoc->ipsa_authkeybits;
3037 ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3038 ah_assoc->ipsa_authkeybits;
3039 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3040 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3041 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3042 unique = B_TRUE;
3044 ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3045 ap->ipa_want_unique = unique;
3046 ap->ipa_allow_clear = B_FALSE;
3047 ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3048 ap->ipa_want_ah = (ah_assoc != NULL);
3049 ap->ipa_want_esp = (esp_assoc != NULL);
3051 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3053 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3055 return (ap);
3060 * Compute the worst-case amount of extra space required by an action.
3061 * Note that, because of the ESP considerations listed below, this is
3062 * actually not the same as the best-case reduction in the MTU; in the
3063 * future, we should pass additional information to this function to
3064 * allow the actual MTU impact to be computed.
3066 * AH: Revisit this if we implement algorithms with
3067 * a verifier size of more than 12 bytes.
3069 * ESP: A more exact but more messy computation would take into
3070 * account the interaction between the cipher block size and the
3071 * effective MTU, yielding the inner payload size which reflects a
3072 * packet with *minimum* ESP padding..
3074 int32_t
3075 ipsec_act_ovhd(const ipsec_act_t *act)
3077 int32_t overhead = 0;
3079 if (act->ipa_type == IPSEC_ACT_APPLY) {
3080 const ipsec_prot_t *ipp = &act->ipa_apply;
3082 if (ipp->ipp_use_ah)
3083 overhead += IPSEC_MAX_AH_HDR_SIZE;
3084 if (ipp->ipp_use_esp) {
3085 overhead += IPSEC_MAX_ESP_HDR_SIZE;
3086 overhead += sizeof (struct udphdr);
3088 if (ipp->ipp_use_se)
3089 overhead += IP_SIMPLE_HDR_LENGTH;
3091 return (overhead);
3095 * This hash function is used only when creating policies and thus is not
3096 * performance-critical for packet flows.
3098 * Future work: canonicalize the structures hashed with this (i.e.,
3099 * zeroize padding) so the hash works correctly.
3101 /* ARGSUSED */
3102 static uint32_t
3103 policy_hash(int size, const void *start, const void *end)
3105 return (0);
3110 * Hash function macros for each address type.
3112 * The IPV6 hash function assumes that the low order 32-bits of the
3113 * address (typically containing the low order 24 bits of the mac
3114 * address) are reasonably well-distributed. Revisit this if we run
3115 * into trouble from lots of collisions on ::1 addresses and the like
3116 * (seems unlikely).
3118 #define IPSEC_IPV4_HASH(a, n) ((a) % (n))
3119 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3122 * These two hash functions should produce coordinated values
3123 * but have slightly different roles.
3125 static uint32_t
3126 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3128 uint32_t valid = selkey->ipsl_valid;
3129 ipsec_stack_t *ipss = ns->netstack_ipsec;
3131 if (!(valid & IPSL_REMOTE_ADDR))
3132 return (IPSEC_SEL_NOHASH);
3134 if (valid & IPSL_IPV4) {
3135 if (selkey->ipsl_remote_pfxlen == 32) {
3136 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3137 ipss->ipsec_spd_hashsize));
3140 if (valid & IPSL_IPV6) {
3141 if (selkey->ipsl_remote_pfxlen == 128) {
3142 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3143 ipss->ipsec_spd_hashsize));
3146 return (IPSEC_SEL_NOHASH);
3149 static uint32_t
3150 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3152 if (sel->ips_isv4) {
3153 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3154 root->ipr_nchains));
3156 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3160 * Intern actions into the action hash table.
3162 ipsec_action_t *
3163 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3165 int i;
3166 uint32_t hval;
3167 ipsec_action_t *ap;
3168 ipsec_action_t *prev = NULL;
3169 int32_t overhead, maxovhd = 0;
3170 boolean_t allow_clear = B_FALSE;
3171 boolean_t want_ah = B_FALSE;
3172 boolean_t want_esp = B_FALSE;
3173 boolean_t want_se = B_FALSE;
3174 boolean_t want_unique = B_FALSE;
3175 ipsec_stack_t *ipss = ns->netstack_ipsec;
3178 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3179 * so we can use a non-trivial policy_hash function.
3181 ap = NULL;
3182 for (i = n-1; i >= 0; i--) {
3183 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3185 HASH_LOCK(ipss->ipsec_action_hash, hval);
3187 for (HASH_ITERATE(ap, ipa_hash,
3188 ipss->ipsec_action_hash, hval)) {
3189 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3190 continue;
3191 if (ap->ipa_next != prev)
3192 continue;
3193 break;
3195 if (ap != NULL) {
3196 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3197 prev = ap;
3198 continue;
3201 * need to allocate a new one..
3203 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3204 if (ap == NULL) {
3205 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3206 if (prev != NULL)
3207 ipsec_action_free(prev);
3208 return (NULL);
3210 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3212 ap->ipa_next = prev;
3213 ap->ipa_act = a[i];
3215 overhead = ipsec_act_ovhd(&a[i]);
3216 if (maxovhd < overhead)
3217 maxovhd = overhead;
3219 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3220 (a[i].ipa_type == IPSEC_ACT_CLEAR))
3221 allow_clear = B_TRUE;
3222 if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3223 const ipsec_prot_t *ipp = &a[i].ipa_apply;
3225 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3226 want_ah |= ipp->ipp_use_ah;
3227 want_esp |= ipp->ipp_use_esp;
3228 want_se |= ipp->ipp_use_se;
3229 want_unique |= ipp->ipp_use_unique;
3231 ap->ipa_allow_clear = allow_clear;
3232 ap->ipa_want_ah = want_ah;
3233 ap->ipa_want_esp = want_esp;
3234 ap->ipa_want_se = want_se;
3235 ap->ipa_want_unique = want_unique;
3236 ap->ipa_refs = 1; /* from the hash table */
3237 ap->ipa_ovhd = maxovhd;
3238 if (prev)
3239 prev->ipa_refs++;
3240 prev = ap;
3241 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3244 ap->ipa_refs++; /* caller's reference */
3246 return (ap);
3250 * Called when refcount goes to 0, indicating that all references to this
3251 * node are gone.
3253 * This does not unchain the action from the hash table.
3255 void
3256 ipsec_action_free(ipsec_action_t *ap)
3258 for (;;) {
3259 ipsec_action_t *np = ap->ipa_next;
3260 ASSERT(ap->ipa_refs == 0);
3261 ASSERT(ap->ipa_hash.hash_pp == NULL);
3262 kmem_cache_free(ipsec_action_cache, ap);
3263 ap = np;
3264 /* Inlined IPACT_REFRELE -- avoid recursion */
3265 if (ap == NULL)
3266 break;
3267 membar_exit();
3268 if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0)
3269 break;
3270 /* End inlined IPACT_REFRELE */
3275 * Called when the action hash table goes away.
3277 * The actions can be queued on an mblk with ipsec_in or
3278 * ipsec_out, hence the actions might still be around.
3279 * But we decrement ipa_refs here since we no longer have
3280 * a reference to the action from the hash table.
3282 static void
3283 ipsec_action_free_table(ipsec_action_t *ap)
3285 while (ap != NULL) {
3286 ipsec_action_t *np = ap->ipa_next;
3288 /* FIXME: remove? */
3289 (void) printf("ipsec_action_free_table(%p) ref %d\n",
3290 (void *)ap, ap->ipa_refs);
3291 ASSERT(ap->ipa_refs > 0);
3292 IPACT_REFRELE(ap);
3293 ap = np;
3298 * Need to walk all stack instances since the reclaim function
3299 * is global for all instances
3301 /* ARGSUSED */
3302 static void
3303 ipsec_action_reclaim(void *arg)
3305 netstack_handle_t nh;
3306 netstack_t *ns;
3307 ipsec_stack_t *ipss;
3309 netstack_next_init(&nh);
3310 while ((ns = netstack_next(&nh)) != NULL) {
3312 * netstack_next() can return a netstack_t with a NULL
3313 * netstack_ipsec at boot time.
3315 if ((ipss = ns->netstack_ipsec) == NULL) {
3316 netstack_rele(ns);
3317 continue;
3319 ipsec_action_reclaim_stack(ipss);
3320 netstack_rele(ns);
3322 netstack_next_fini(&nh);
3326 * Periodically sweep action hash table for actions with refcount==1, and
3327 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3328 * because we can't close the race between another thread finding the action
3329 * in the hash table without holding the bucket lock during IPACT_REFRELE.
3330 * Instead, we run this function sporadically to clean up after ourselves;
3331 * we also set it as the "reclaim" function for the action kmem_cache.
3333 * Note that it may take several passes of ipsec_action_gc() to free all
3334 * "stale" actions.
3336 static void
3337 ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
3339 int i;
3341 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3342 ipsec_action_t *ap, *np;
3344 /* skip the lock if nobody home */
3345 if (ipss->ipsec_action_hash[i].hash_head == NULL)
3346 continue;
3348 HASH_LOCK(ipss->ipsec_action_hash, i);
3349 for (ap = ipss->ipsec_action_hash[i].hash_head;
3350 ap != NULL; ap = np) {
3351 ASSERT(ap->ipa_refs > 0);
3352 np = ap->ipa_hash.hash_next;
3353 if (ap->ipa_refs > 1)
3354 continue;
3355 HASH_UNCHAIN(ap, ipa_hash,
3356 ipss->ipsec_action_hash, i);
3357 IPACT_REFRELE(ap);
3359 HASH_UNLOCK(ipss->ipsec_action_hash, i);
3364 * Intern a selector set into the selector set hash table.
3365 * This is simpler than the actions case..
3367 static ipsec_sel_t *
3368 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3370 ipsec_sel_t *sp;
3371 uint32_t hval, bucket;
3372 ipsec_stack_t *ipss = ns->netstack_ipsec;
3375 * Exactly one AF bit should be set in selkey.
3377 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3378 !(selkey->ipsl_valid & IPSL_IPV6));
3380 hval = selkey_hash(selkey, ns);
3381 /* Set pol_hval to uninitialized until we put it in a polhead. */
3382 selkey->ipsl_sel_hval = hval;
3384 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3386 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3387 HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3389 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3390 if (bcmp(&sp->ipsl_key, selkey,
3391 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3392 break;
3394 if (sp != NULL) {
3395 sp->ipsl_refs++;
3397 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3398 return (sp);
3401 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3402 if (sp == NULL) {
3403 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3404 return (NULL);
3407 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3408 sp->ipsl_refs = 2; /* one for hash table, one for caller */
3409 sp->ipsl_key = *selkey;
3410 /* Set to uninitalized and have insertion into polhead fix things. */
3411 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3412 sp->ipsl_key.ipsl_pol_hval = 0;
3413 else
3414 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3416 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3418 return (sp);
3421 static void
3422 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3424 ipsec_sel_t *sp = *spp;
3425 int hval = sp->ipsl_key.ipsl_sel_hval;
3426 ipsec_stack_t *ipss = ns->netstack_ipsec;
3428 *spp = NULL;
3430 if (hval == IPSEC_SEL_NOHASH)
3431 hval = 0;
3433 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3434 HASH_LOCK(ipss->ipsec_sel_hash, hval);
3435 if (--sp->ipsl_refs == 1) {
3436 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3437 sp->ipsl_refs--;
3438 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3439 ASSERT(sp->ipsl_refs == 0);
3440 kmem_cache_free(ipsec_sel_cache, sp);
3441 /* Caller unlocks */
3442 return;
3445 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3449 * Free a policy rule which we know is no longer being referenced.
3451 void
3452 ipsec_policy_free(ipsec_policy_t *ipp)
3454 ASSERT(ipp->ipsp_refs == 0);
3455 ASSERT(ipp->ipsp_sel != NULL);
3456 ASSERT(ipp->ipsp_act != NULL);
3457 ASSERT(ipp->ipsp_netstack != NULL);
3459 ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
3460 IPACT_REFRELE(ipp->ipsp_act);
3461 kmem_cache_free(ipsec_pol_cache, ipp);
3465 * Construction of new policy rules; construct a policy, and add it to
3466 * the appropriate tables.
3468 ipsec_policy_t *
3469 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3470 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3472 ipsec_action_t *ap;
3473 ipsec_sel_t *sp;
3474 ipsec_policy_t *ipp;
3475 ipsec_stack_t *ipss = ns->netstack_ipsec;
3477 if (index_ptr == NULL)
3478 index_ptr = &ipss->ipsec_next_policy_index;
3480 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3481 ap = ipsec_act_find(a, nacts, ns);
3482 sp = ipsec_find_sel(keys, ns);
3484 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3485 if (ap != NULL) {
3486 IPACT_REFRELE(ap);
3488 if (sp != NULL)
3489 ipsec_sel_rel(&sp, ns);
3490 if (ipp != NULL)
3491 kmem_cache_free(ipsec_pol_cache, ipp);
3492 return (NULL);
3495 HASH_NULL(ipp, ipsp_hash);
3497 ipp->ipsp_netstack = ns; /* Needed for ipsec_policy_free */
3498 ipp->ipsp_refs = 1; /* caller's reference */
3499 ipp->ipsp_sel = sp;
3500 ipp->ipsp_act = ap;
3501 ipp->ipsp_prio = prio; /* rule priority */
3502 ipp->ipsp_index = *index_ptr;
3503 (*index_ptr)++;
3505 return (ipp);
3508 static void
3509 ipsec_update_present_flags(ipsec_stack_t *ipss)
3511 boolean_t hashpol;
3513 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3515 if (hashpol) {
3516 ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3517 ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3518 ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3519 ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3520 return;
3523 ipss->ipsec_outbound_v4_policy_present = (NULL !=
3524 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3525 ipr_nonhash[IPSEC_AF_V4]);
3526 ipss->ipsec_outbound_v6_policy_present = (NULL !=
3527 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3528 ipr_nonhash[IPSEC_AF_V6]);
3529 ipss->ipsec_inbound_v4_policy_present = (NULL !=
3530 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3531 ipr_nonhash[IPSEC_AF_V4]);
3532 ipss->ipsec_inbound_v6_policy_present = (NULL !=
3533 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3534 ipr_nonhash[IPSEC_AF_V6]);
3537 boolean_t
3538 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3539 netstack_t *ns)
3541 ipsec_sel_t *sp;
3542 ipsec_policy_t *ip, *nip, *head;
3543 int af;
3544 ipsec_policy_root_t *pr = &php->iph_root[dir];
3546 sp = ipsec_find_sel(keys, ns);
3548 if (sp == NULL)
3549 return (B_FALSE);
3551 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3553 rw_enter(&php->iph_lock, RW_WRITER);
3555 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3556 head = pr->ipr_nonhash[af];
3557 } else {
3558 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3561 for (ip = head; ip != NULL; ip = nip) {
3562 nip = ip->ipsp_hash.hash_next;
3563 if (ip->ipsp_sel != sp) {
3564 continue;
3567 IPPOL_UNCHAIN(php, ip);
3569 php->iph_gen++;
3570 ipsec_update_present_flags(ns->netstack_ipsec);
3572 rw_exit(&php->iph_lock);
3574 ipsec_sel_rel(&sp, ns);
3576 return (B_TRUE);
3579 rw_exit(&php->iph_lock);
3580 ipsec_sel_rel(&sp, ns);
3581 return (B_FALSE);
3585 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3586 netstack_t *ns)
3588 boolean_t found = B_FALSE;
3589 ipsec_policy_t ipkey;
3590 ipsec_policy_t *ip;
3591 avl_index_t where;
3593 bzero(&ipkey, sizeof (ipkey));
3594 ipkey.ipsp_index = policy_index;
3596 rw_enter(&php->iph_lock, RW_WRITER);
3599 * We could be cleverer here about the walk.
3600 * but well, (k+1)*log(N) will do for now (k==number of matches,
3601 * N==number of table entries
3603 for (;;) {
3604 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3605 (void *)&ipkey, &where);
3606 ASSERT(ip == NULL);
3608 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3610 if (ip == NULL)
3611 break;
3613 if (ip->ipsp_index != policy_index) {
3614 ASSERT(ip->ipsp_index > policy_index);
3615 break;
3618 IPPOL_UNCHAIN(php, ip);
3619 found = B_TRUE;
3622 if (found) {
3623 php->iph_gen++;
3624 ipsec_update_present_flags(ns->netstack_ipsec);
3627 rw_exit(&php->iph_lock);
3629 return (found ? 0 : ENOENT);
3633 * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3634 * into the correct policy ruleset. As a side-effect, it sets the hash
3635 * entries on "ipp"'s ipsp_pol_hval.
3637 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3638 * duplicate policy exists with exactly the same selectors), or an icmp
3639 * rule exists with a different encryption/authentication action.
3641 boolean_t
3642 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3644 ipsec_policy_root_t *pr = &php->iph_root[direction];
3645 int af = -1;
3646 ipsec_policy_t *p2, *head;
3647 uint8_t check_proto;
3648 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3649 uint32_t valid = selkey->ipsl_valid;
3651 if (valid & IPSL_IPV6) {
3652 ASSERT(!(valid & IPSL_IPV4));
3653 af = IPSEC_AF_V6;
3654 check_proto = IPPROTO_ICMPV6;
3655 } else {
3656 ASSERT(valid & IPSL_IPV4);
3657 af = IPSEC_AF_V4;
3658 check_proto = IPPROTO_ICMP;
3661 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3664 * Double-check that we don't have any duplicate selectors here.
3665 * Because selectors are interned below, we need only compare pointers
3666 * for equality.
3668 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3669 head = pr->ipr_nonhash[af];
3670 } else {
3671 selkey->ipsl_pol_hval =
3672 (selkey->ipsl_valid & IPSL_IPV4) ?
3673 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3674 pr->ipr_nchains) :
3675 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3676 pr->ipr_nchains);
3678 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3681 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3682 if (p2->ipsp_sel == ipp->ipsp_sel)
3683 return (B_FALSE);
3687 * If it's ICMP and not a drop or pass rule, run through the ICMP
3688 * rules and make sure the action is either new or the same as any
3689 * other actions. We don't have to check the full chain because
3690 * discard and bypass will override all other actions
3693 if (valid & IPSL_PROTOCOL &&
3694 selkey->ipsl_proto == check_proto &&
3695 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3697 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3699 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3700 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3701 (p2->ipsp_act->ipa_act.ipa_type ==
3702 IPSEC_ACT_APPLY)) {
3703 return (ipsec_compare_action(p2, ipp));
3708 return (B_TRUE);
3712 * compare the action chains of two policies for equality
3713 * B_TRUE -> effective equality
3716 static boolean_t
3717 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3720 ipsec_action_t *act1, *act2;
3722 /* We have a valid rule. Let's compare the actions */
3723 if (p1->ipsp_act == p2->ipsp_act) {
3724 /* same action. We are good */
3725 return (B_TRUE);
3728 /* we have to walk the chain */
3730 act1 = p1->ipsp_act;
3731 act2 = p2->ipsp_act;
3733 while (act1 != NULL && act2 != NULL) {
3735 /* otherwise, Are we close enough? */
3736 if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3737 act1->ipa_want_ah != act2->ipa_want_ah ||
3738 act1->ipa_want_esp != act2->ipa_want_esp ||
3739 act1->ipa_want_se != act2->ipa_want_se) {
3740 /* Nope, we aren't */
3741 return (B_FALSE);
3744 if (act1->ipa_want_ah) {
3745 if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3746 act2->ipa_act.ipa_apply.ipp_auth_alg) {
3747 return (B_FALSE);
3750 if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3751 act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3752 act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3753 act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3754 return (B_FALSE);
3758 if (act1->ipa_want_esp) {
3759 if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3760 act2->ipa_act.ipa_apply.ipp_use_esp ||
3761 act1->ipa_act.ipa_apply.ipp_use_espa !=
3762 act2->ipa_act.ipa_apply.ipp_use_espa) {
3763 return (B_FALSE);
3766 if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3767 if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3768 act2->ipa_act.ipa_apply.ipp_encr_alg) {
3769 return (B_FALSE);
3772 if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3773 act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3774 act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3775 act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3776 return (B_FALSE);
3780 if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3781 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3782 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3783 return (B_FALSE);
3786 if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3787 act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3788 act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3789 act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3790 return (B_FALSE);
3796 act1 = act1->ipa_next;
3797 act2 = act2->ipa_next;
3800 if (act1 != NULL || act2 != NULL) {
3801 return (B_FALSE);
3804 return (B_TRUE);
3809 * Given a constructed ipsec_policy_t policy rule, enter it into
3810 * the correct policy ruleset.
3812 * ipsec_check_policy() is assumed to have succeeded first (to check for
3813 * duplicates).
3815 void
3816 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3817 netstack_t *ns)
3819 ipsec_policy_root_t *pr = &php->iph_root[direction];
3820 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3821 uint32_t valid = selkey->ipsl_valid;
3822 uint32_t hval = selkey->ipsl_pol_hval;
3823 int af = -1;
3825 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3827 if (valid & IPSL_IPV6) {
3828 ASSERT(!(valid & IPSL_IPV4));
3829 af = IPSEC_AF_V6;
3830 } else {
3831 ASSERT(valid & IPSL_IPV4);
3832 af = IPSEC_AF_V4;
3835 php->iph_gen++;
3837 if (hval == IPSEC_SEL_NOHASH) {
3838 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3839 } else {
3840 HASH_LOCK(pr->ipr_hash, hval);
3841 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3842 HASH_UNLOCK(pr->ipr_hash, hval);
3845 ipsec_insert_always(&php->iph_rulebyid, ipp);
3847 ipsec_update_present_flags(ns->netstack_ipsec);
3850 static void
3851 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3853 ipsec_policy_t *ip, *nip;
3854 int af, chain, nchain;
3856 for (af = 0; af < IPSEC_NAF; af++) {
3857 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3858 nip = ip->ipsp_hash.hash_next;
3859 IPPOL_UNCHAIN(php, ip);
3861 ipr->ipr_nonhash[af] = NULL;
3863 nchain = ipr->ipr_nchains;
3865 for (chain = 0; chain < nchain; chain++) {
3866 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3867 ip = nip) {
3868 nip = ip->ipsp_hash.hash_next;
3869 IPPOL_UNCHAIN(php, ip);
3871 ipr->ipr_hash[chain].hash_head = NULL;
3876 * Create and insert inbound or outbound policy associated with actp for the
3877 * address family fam into the policy head ph. Returns B_TRUE if policy was
3878 * inserted, and B_FALSE otherwise.
3880 boolean_t
3881 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
3882 int fam, int ptype, netstack_t *ns)
3884 ipsec_selkey_t sel;
3885 ipsec_policy_t *pol;
3886 ipsec_policy_root_t *pr;
3888 bzero(&sel, sizeof (sel));
3889 sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
3890 if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
3891 NULL, ns)) != NULL) {
3892 pr = &ph->iph_root[ptype];
3893 HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
3894 ipsec_insert_always(&ph->iph_rulebyid, pol);
3896 return (pol != NULL);
3899 void
3900 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3902 int dir;
3904 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3906 for (dir = 0; dir < IPSEC_NTYPES; dir++)
3907 ipsec_ipr_flush(php, &php->iph_root[dir]);
3909 php->iph_gen++;
3910 ipsec_update_present_flags(ns->netstack_ipsec);
3913 void
3914 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3916 int dir;
3918 ASSERT(php->iph_refs == 0);
3920 rw_enter(&php->iph_lock, RW_WRITER);
3921 ipsec_polhead_flush(php, ns);
3922 rw_exit(&php->iph_lock);
3923 rw_destroy(&php->iph_lock);
3924 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3925 ipsec_policy_root_t *ipr = &php->iph_root[dir];
3926 int chain;
3928 for (chain = 0; chain < ipr->ipr_nchains; chain++)
3929 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3932 ipsec_polhead_free_table(php);
3933 kmem_free(php, sizeof (*php));
3936 static void
3937 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3939 int af;
3941 ipr->ipr_nchains = 0;
3942 ipr->ipr_hash = NULL;
3944 for (af = 0; af < IPSEC_NAF; af++) {
3945 ipr->ipr_nonhash[af] = NULL;
3949 ipsec_policy_head_t *
3950 ipsec_polhead_create(void)
3952 ipsec_policy_head_t *php;
3954 php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3955 if (php == NULL)
3956 return (php);
3958 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3959 php->iph_refs = 1;
3960 php->iph_gen = 0;
3962 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3963 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3965 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3966 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3968 return (php);
3972 * Clone the policy head into a new polhead; release one reference to the
3973 * old one and return the only reference to the new one.
3974 * If the old one had a refcount of 1, just return it.
3976 ipsec_policy_head_t *
3977 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3979 ipsec_policy_head_t *nphp;
3981 if (php == NULL)
3982 return (ipsec_polhead_create());
3983 else if (php->iph_refs == 1)
3984 return (php);
3986 nphp = ipsec_polhead_create();
3987 if (nphp == NULL)
3988 return (NULL);
3990 if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3991 ipsec_polhead_free(nphp, ns);
3992 return (NULL);
3994 IPPH_REFRELE(php, ns);
3995 return (nphp);
3999 * When sending a response to a ICMP request or generating a RST
4000 * in the TCP case, the outbound packets need to go at the same level
4001 * of protection as the incoming ones i.e we associate our outbound
4002 * policy with how the packet came in. We call this after we have
4003 * accepted the incoming packet which may or may not have been in
4004 * clear and hence we are sending the reply back with the policy
4005 * matching the incoming datagram's policy.
4007 * NOTE : This technology serves two purposes :
4009 * 1) If we have multiple outbound policies, we send out a reply
4010 * matching with how it came in rather than matching the outbound
4011 * policy.
4013 * 2) For assymetric policies, we want to make sure that incoming
4014 * and outgoing has the same level of protection. Assymetric
4015 * policies exist only with global policy where we may not have
4016 * both outbound and inbound at the same time.
4018 * NOTE2: This function is called by cleartext cases, so it needs to be
4019 * in IP proper.
4021 * Note: the caller has moved other parts of ira into ixa already.
4023 boolean_t
4024 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
4025 ipha_t *ipha, ip6_t *ip6h)
4027 ipsec_selector_t sel;
4028 ipsec_action_t *reflect_action = NULL;
4029 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
4031 bzero((void*)&sel, sizeof (sel));
4033 if (ira->ira_ipsec_action != NULL) {
4034 /* transfer reference.. */
4035 reflect_action = ira->ira_ipsec_action;
4036 ira->ira_ipsec_action = NULL;
4037 } else if (!(ira->ira_flags & IRAF_LOOPBACK))
4038 reflect_action = ipsec_in_to_out_action(ira);
4041 * The caller is going to send the datagram out which might
4042 * go on the wire or delivered locally through ire_send_local.
4044 * 1) If it goes out on the wire, new associations will be
4045 * obtained.
4046 * 2) If it is delivered locally, ire_send_local will convert
4047 * this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
4048 * requests.
4050 ixa->ixa_ipsec_action = reflect_action;
4052 if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
4053 ns->netstack_ipsec)) {
4054 /* Note: data_mp already consumed and ip_drop_packet done */
4055 return (B_FALSE);
4057 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4058 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4059 ixa->ixa_ipsec_proto = sel.ips_protocol;
4060 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4061 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4064 * Don't use global policy for this, as we want
4065 * to use the same protection that was applied to the inbound packet.
4066 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
4067 * it be sent in the clear.
4069 if (ira->ira_flags & IRAF_IPSEC_SECURE)
4070 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4071 else
4072 ixa->ixa_flags |= IXAF_NO_IPSEC;
4074 return (B_TRUE);
4077 void
4078 ipsec_out_release_refs(ip_xmit_attr_t *ixa)
4080 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4081 return;
4083 if (ixa->ixa_ipsec_ah_sa != NULL) {
4084 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
4085 ixa->ixa_ipsec_ah_sa = NULL;
4087 if (ixa->ixa_ipsec_esp_sa != NULL) {
4088 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
4089 ixa->ixa_ipsec_esp_sa = NULL;
4091 if (ixa->ixa_ipsec_policy != NULL) {
4092 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4093 ixa->ixa_ipsec_policy = NULL;
4095 if (ixa->ixa_ipsec_action != NULL) {
4096 IPACT_REFRELE(ixa->ixa_ipsec_action);
4097 ixa->ixa_ipsec_action = NULL;
4099 if (ixa->ixa_ipsec_latch) {
4100 IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
4101 ixa->ixa_ipsec_latch = NULL;
4103 /* Clear the soft references to the SAs */
4104 ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
4105 ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
4106 ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
4107 ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
4108 ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
4109 ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
4110 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4113 void
4114 ipsec_in_release_refs(ip_recv_attr_t *ira)
4116 if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
4117 return;
4119 if (ira->ira_ipsec_ah_sa != NULL) {
4120 IPSA_REFRELE(ira->ira_ipsec_ah_sa);
4121 ira->ira_ipsec_ah_sa = NULL;
4123 if (ira->ira_ipsec_esp_sa != NULL) {
4124 IPSA_REFRELE(ira->ira_ipsec_esp_sa);
4125 ira->ira_ipsec_esp_sa = NULL;
4127 if (ira->ira_ipsec_action != NULL) {
4128 IPACT_REFRELE(ira->ira_ipsec_action);
4129 ira->ira_ipsec_action = NULL;
4132 ira->ira_flags &= ~IRAF_IPSEC_SECURE;
4136 * This is called from ire_send_local when a packet
4137 * is looped back. We setup the ip_recv_attr_t "borrowing" the references
4138 * held by the callers.
4139 * Note that we don't do any IPsec but we carry the actions and IPSEC flags
4140 * across so that the fanout policy checks see that IPsec was applied.
4142 * The caller should do ipsec_in_release_refs() on the ira by calling
4143 * ira_cleanup().
4145 void
4146 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
4148 ipsec_policy_t *pol;
4149 ipsec_action_t *act;
4151 /* Non-IPsec operations */
4152 ira->ira_free_flags = 0;
4153 ira->ira_zoneid = ixa->ixa_zoneid;
4154 ira->ira_cred = ixa->ixa_cred;
4155 ira->ira_cpid = ixa->ixa_cpid;
4156 ira->ira_tsl = ixa->ixa_tsl;
4157 ira->ira_ill = ira->ira_rill = ill;
4158 ira->ira_flags = ixa->ixa_flags & IAF_MASK;
4159 ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
4160 ira->ira_pktlen = ixa->ixa_pktlen;
4161 ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
4162 ira->ira_protocol = ixa->ixa_protocol;
4163 ira->ira_mhip = NULL;
4165 ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
4167 ira->ira_sqp = ixa->ixa_sqp;
4168 ira->ira_ring = NULL;
4170 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
4171 ira->ira_rifindex = ira->ira_ruifindex;
4173 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4174 return;
4176 ira->ira_flags |= IRAF_IPSEC_SECURE;
4178 ira->ira_ipsec_ah_sa = NULL;
4179 ira->ira_ipsec_esp_sa = NULL;
4181 act = ixa->ixa_ipsec_action;
4182 if (act == NULL) {
4183 pol = ixa->ixa_ipsec_policy;
4184 if (pol != NULL) {
4185 act = pol->ipsp_act;
4186 IPACT_REFHOLD(act);
4189 ixa->ixa_ipsec_action = NULL;
4190 ira->ira_ipsec_action = act;
4194 * Consults global policy and per-socket policy to see whether this datagram
4195 * should go out secure. If so it updates the ip_xmit_attr_t
4196 * Should not be used when connecting, since then we want to latch the policy.
4198 * If connp is NULL we just look at the global policy.
4200 * Returns NULL if the packet was dropped, in which case the MIB has
4201 * been incremented and ip_drop_packet done.
4203 mblk_t *
4204 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4205 const conn_t *connp, ip_xmit_attr_t *ixa)
4207 ipsec_selector_t sel;
4208 boolean_t policy_present;
4209 ip_stack_t *ipst = ixa->ixa_ipst;
4210 netstack_t *ns = ipst->ips_netstack;
4211 ipsec_stack_t *ipss = ns->netstack_ipsec;
4212 ipsec_policy_t *p;
4214 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4215 ASSERT((ipha != NULL && ip6h == NULL) ||
4216 (ip6h != NULL && ipha == NULL));
4218 if (ipha != NULL)
4219 policy_present = ipss->ipsec_outbound_v4_policy_present;
4220 else
4221 policy_present = ipss->ipsec_outbound_v6_policy_present;
4223 if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
4224 return (mp);
4226 bzero((void*)&sel, sizeof (sel));
4228 if (ipha != NULL) {
4229 sel.ips_local_addr_v4 = ipha->ipha_src;
4230 sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4231 sel.ips_isv4 = B_TRUE;
4232 } else {
4233 sel.ips_isv4 = B_FALSE;
4234 sel.ips_local_addr_v6 = ip6h->ip6_src;
4235 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
4237 sel.ips_protocol = ixa->ixa_protocol;
4239 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4240 if (ipha != NULL) {
4241 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4242 } else {
4243 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4245 /* Note: mp already consumed and ip_drop_packet done */
4246 return (NULL);
4249 ASSERT(ixa->ixa_ipsec_policy == NULL);
4250 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4251 ixa->ixa_ipsec_policy = p;
4252 if (p != NULL) {
4253 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4254 if (connp == NULL || connp->conn_policy == NULL)
4255 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4256 } else {
4257 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4261 * Copy the right port information.
4263 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4264 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4265 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4266 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4267 ixa->ixa_ipsec_proto = sel.ips_protocol;
4268 return (mp);
4272 * When appropriate, this function caches inbound and outbound policy
4273 * for this connection. The outbound policy is stored in conn_ixa.
4274 * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
4276 * XXX need to work out more details about per-interface policy and
4277 * caching here!
4279 * XXX may want to split inbound and outbound caching for ill..
4282 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4284 boolean_t global_policy_present;
4285 netstack_t *ns = connp->conn_netstack;
4286 ipsec_stack_t *ipss = ns->netstack_ipsec;
4288 connp->conn_ixa->ixa_ipsec_policy_gen =
4289 ipss->ipsec_system_policy.iph_gen;
4291 * There is no policy latching for ICMP sockets because we can't
4292 * decide on which policy to use until we see the packet and get
4293 * type/code selectors.
4295 if (connp->conn_proto == IPPROTO_ICMP ||
4296 connp->conn_proto == IPPROTO_ICMPV6) {
4297 connp->conn_in_enforce_policy =
4298 connp->conn_out_enforce_policy = B_TRUE;
4299 if (connp->conn_latch != NULL) {
4300 IPLATCH_REFRELE(connp->conn_latch);
4301 connp->conn_latch = NULL;
4303 if (connp->conn_latch_in_policy != NULL) {
4304 IPPOL_REFRELE(connp->conn_latch_in_policy);
4305 connp->conn_latch_in_policy = NULL;
4307 if (connp->conn_latch_in_action != NULL) {
4308 IPACT_REFRELE(connp->conn_latch_in_action);
4309 connp->conn_latch_in_action = NULL;
4311 if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
4312 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4313 connp->conn_ixa->ixa_ipsec_policy = NULL;
4315 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4316 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4317 connp->conn_ixa->ixa_ipsec_action = NULL;
4319 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4320 return (0);
4323 global_policy_present = isv4 ?
4324 (ipss->ipsec_outbound_v4_policy_present ||
4325 ipss->ipsec_inbound_v4_policy_present) :
4326 (ipss->ipsec_outbound_v6_policy_present ||
4327 ipss->ipsec_inbound_v6_policy_present);
4329 if ((connp->conn_policy != NULL) || global_policy_present) {
4330 ipsec_selector_t sel;
4331 ipsec_policy_t *p;
4333 if (connp->conn_latch == NULL &&
4334 (connp->conn_latch = iplatch_create()) == NULL) {
4335 return (ENOMEM);
4338 bzero((void*)&sel, sizeof (sel));
4340 sel.ips_protocol = connp->conn_proto;
4341 sel.ips_local_port = connp->conn_lport;
4342 sel.ips_remote_port = connp->conn_fport;
4343 sel.ips_is_icmp_inv_acq = 0;
4344 sel.ips_isv4 = isv4;
4345 if (isv4) {
4346 sel.ips_local_addr_v4 = connp->conn_laddr_v4;
4347 sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
4348 } else {
4349 sel.ips_local_addr_v6 = connp->conn_laddr_v6;
4350 sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
4353 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
4354 if (connp->conn_latch_in_policy != NULL)
4355 IPPOL_REFRELE(connp->conn_latch_in_policy);
4356 connp->conn_latch_in_policy = p;
4357 connp->conn_in_enforce_policy = (p != NULL);
4359 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4360 if (connp->conn_ixa->ixa_ipsec_policy != NULL)
4361 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4362 connp->conn_ixa->ixa_ipsec_policy = p;
4363 connp->conn_out_enforce_policy = (p != NULL);
4364 if (p != NULL) {
4365 connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4366 if (connp->conn_policy == NULL) {
4367 connp->conn_ixa->ixa_flags |=
4368 IXAF_IPSEC_GLOBAL_POLICY;
4370 } else {
4371 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4373 /* Clear the latched actions too, in case we're recaching. */
4374 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4375 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4376 connp->conn_ixa->ixa_ipsec_action = NULL;
4378 if (connp->conn_latch_in_action != NULL) {
4379 IPACT_REFRELE(connp->conn_latch_in_action);
4380 connp->conn_latch_in_action = NULL;
4382 connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
4383 connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4384 connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4385 connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4386 connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
4387 } else {
4388 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4392 * We may or may not have policy for this endpoint. We still set
4393 * conn_policy_cached so that inbound datagrams don't have to look
4394 * at global policy as policy is considered latched for these
4395 * endpoints. We should not set conn_policy_cached until the conn
4396 * reflects the actual policy. If we *set* this before inheriting
4397 * the policy there is a window where the check
4398 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4399 * on the conn (because we have not yet copied the policy on to
4400 * conn and hence not set conn_in_enforce_policy) nor with the
4401 * global policy (because conn_policy_cached is already set).
4403 connp->conn_policy_cached = B_TRUE;
4404 return (0);
4408 * When appropriate, this function caches outbound policy for faddr/fport.
4409 * It is used when we are not connected i.e., when we can not latch the
4410 * policy.
4412 void
4413 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
4414 const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
4416 boolean_t isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
4417 boolean_t global_policy_present;
4418 netstack_t *ns = connp->conn_netstack;
4419 ipsec_stack_t *ipss = ns->netstack_ipsec;
4421 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4424 * There is no policy caching for ICMP sockets because we can't
4425 * decide on which policy to use until we see the packet and get
4426 * type/code selectors.
4428 if (connp->conn_proto == IPPROTO_ICMP ||
4429 connp->conn_proto == IPPROTO_ICMPV6) {
4430 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4431 if (ixa->ixa_ipsec_policy != NULL) {
4432 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4433 ixa->ixa_ipsec_policy = NULL;
4435 if (ixa->ixa_ipsec_action != NULL) {
4436 IPACT_REFRELE(ixa->ixa_ipsec_action);
4437 ixa->ixa_ipsec_action = NULL;
4439 return;
4442 global_policy_present = isv4 ?
4443 (ipss->ipsec_outbound_v4_policy_present ||
4444 ipss->ipsec_inbound_v4_policy_present) :
4445 (ipss->ipsec_outbound_v6_policy_present ||
4446 ipss->ipsec_inbound_v6_policy_present);
4448 if ((connp->conn_policy != NULL) || global_policy_present) {
4449 ipsec_selector_t sel;
4450 ipsec_policy_t *p;
4452 bzero((void*)&sel, sizeof (sel));
4454 sel.ips_protocol = connp->conn_proto;
4455 sel.ips_local_port = connp->conn_lport;
4456 sel.ips_remote_port = dstport;
4457 sel.ips_is_icmp_inv_acq = 0;
4458 sel.ips_isv4 = isv4;
4459 if (isv4) {
4460 IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
4461 IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
4462 } else {
4463 sel.ips_local_addr_v6 = *v6src;
4464 sel.ips_remote_addr_v6 = *v6dst;
4467 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4468 if (ixa->ixa_ipsec_policy != NULL)
4469 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4470 ixa->ixa_ipsec_policy = p;
4471 if (p != NULL) {
4472 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4473 if (connp->conn_policy == NULL)
4474 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4475 } else {
4476 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4478 /* Clear the latched actions too, in case we're recaching. */
4479 if (ixa->ixa_ipsec_action != NULL) {
4480 IPACT_REFRELE(ixa->ixa_ipsec_action);
4481 ixa->ixa_ipsec_action = NULL;
4484 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4485 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4486 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4487 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4488 ixa->ixa_ipsec_proto = sel.ips_protocol;
4489 } else {
4490 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4491 if (ixa->ixa_ipsec_policy != NULL) {
4492 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4493 ixa->ixa_ipsec_policy = NULL;
4495 if (ixa->ixa_ipsec_action != NULL) {
4496 IPACT_REFRELE(ixa->ixa_ipsec_action);
4497 ixa->ixa_ipsec_action = NULL;
4503 * Returns B_FALSE if the policy has gone stale.
4505 boolean_t
4506 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
4508 ipsec_stack_t *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
4510 if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
4511 return (B_TRUE);
4513 return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
4516 void
4517 iplatch_free(ipsec_latch_t *ipl)
4519 if (ipl->ipl_local_cid != NULL)
4520 IPSID_REFRELE(ipl->ipl_local_cid);
4521 if (ipl->ipl_remote_cid != NULL)
4522 IPSID_REFRELE(ipl->ipl_remote_cid);
4523 mutex_destroy(&ipl->ipl_lock);
4524 kmem_free(ipl, sizeof (*ipl));
4527 ipsec_latch_t *
4528 iplatch_create()
4530 ipsec_latch_t *ipl = kmem_zalloc(sizeof (*ipl), KM_NOSLEEP);
4531 if (ipl == NULL)
4532 return (ipl);
4533 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4534 ipl->ipl_refcnt = 1;
4535 return (ipl);
4539 * Hash function for ID hash table.
4541 static uint32_t
4542 ipsid_hash(int idtype, char *idstring)
4544 uint32_t hval = idtype;
4545 unsigned char c;
4547 while ((c = *idstring++) != 0) {
4548 hval = (hval << 4) | (hval >> 28);
4549 hval ^= c;
4551 hval = hval ^ (hval >> 16);
4552 return (hval & (IPSID_HASHSIZE-1));
4556 * Look up identity string in hash table. Return identity object
4557 * corresponding to the name -- either preexisting, or newly allocated.
4559 * Return NULL if we need to allocate a new one and can't get memory.
4561 ipsid_t *
4562 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4564 ipsid_t *retval;
4565 char *nstr;
4566 int idlen = strlen(idstring) + 1;
4567 ipsec_stack_t *ipss = ns->netstack_ipsec;
4568 ipsif_t *bucket;
4570 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4572 mutex_enter(&bucket->ipsif_lock);
4574 for (retval = bucket->ipsif_head; retval != NULL;
4575 retval = retval->ipsid_next) {
4576 if (idtype != retval->ipsid_type)
4577 continue;
4578 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4579 continue;
4581 IPSID_REFHOLD(retval);
4582 mutex_exit(&bucket->ipsif_lock);
4583 return (retval);
4586 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4587 if (!retval) {
4588 mutex_exit(&bucket->ipsif_lock);
4589 return (NULL);
4592 nstr = kmem_alloc(idlen, KM_NOSLEEP);
4593 if (!nstr) {
4594 mutex_exit(&bucket->ipsif_lock);
4595 kmem_free(retval, sizeof (*retval));
4596 return (NULL);
4599 retval->ipsid_refcnt = 1;
4600 retval->ipsid_next = bucket->ipsif_head;
4601 if (retval->ipsid_next != NULL)
4602 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4603 retval->ipsid_ptpn = &bucket->ipsif_head;
4604 retval->ipsid_type = idtype;
4605 retval->ipsid_cid = nstr;
4606 bucket->ipsif_head = retval;
4607 bcopy(idstring, nstr, idlen);
4608 mutex_exit(&bucket->ipsif_lock);
4610 return (retval);
4614 * Garbage collect the identity hash table.
4616 void
4617 ipsid_gc(netstack_t *ns)
4619 int i, len;
4620 ipsid_t *id, *nid;
4621 ipsif_t *bucket;
4622 ipsec_stack_t *ipss = ns->netstack_ipsec;
4624 for (i = 0; i < IPSID_HASHSIZE; i++) {
4625 bucket = &ipss->ipsec_ipsid_buckets[i];
4626 mutex_enter(&bucket->ipsif_lock);
4627 for (id = bucket->ipsif_head; id != NULL; id = nid) {
4628 nid = id->ipsid_next;
4629 if (id->ipsid_refcnt == 0) {
4630 *id->ipsid_ptpn = nid;
4631 if (nid != NULL)
4632 nid->ipsid_ptpn = id->ipsid_ptpn;
4633 len = strlen(id->ipsid_cid) + 1;
4634 kmem_free(id->ipsid_cid, len);
4635 kmem_free(id, sizeof (*id));
4638 mutex_exit(&bucket->ipsif_lock);
4643 * Return true if two identities are the same.
4645 boolean_t
4646 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4648 if (id1 == id2)
4649 return (B_TRUE);
4650 #ifdef DEBUG
4651 if ((id1 == NULL) || (id2 == NULL))
4652 return (B_FALSE);
4654 * test that we're interning id's correctly..
4656 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4657 (id1->ipsid_type != id2->ipsid_type));
4658 #endif
4659 return (B_FALSE);
4663 * Initialize identity table; called during module initialization.
4665 static void
4666 ipsid_init(netstack_t *ns)
4668 ipsif_t *bucket;
4669 int i;
4670 ipsec_stack_t *ipss = ns->netstack_ipsec;
4672 for (i = 0; i < IPSID_HASHSIZE; i++) {
4673 bucket = &ipss->ipsec_ipsid_buckets[i];
4674 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4679 * Free identity table (preparatory to module unload)
4681 static void
4682 ipsid_fini(netstack_t *ns)
4684 ipsif_t *bucket;
4685 int i;
4686 ipsec_stack_t *ipss = ns->netstack_ipsec;
4688 for (i = 0; i < IPSID_HASHSIZE; i++) {
4689 bucket = &ipss->ipsec_ipsid_buckets[i];
4690 ASSERT(bucket->ipsif_head == NULL);
4691 mutex_destroy(&bucket->ipsif_lock);
4696 * Update the minimum and maximum supported key sizes for the specified
4697 * algorithm, which is either a member of a netstack alg array or about to be,
4698 * and therefore must be called holding ipsec_alg_lock for write.
4700 void
4701 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
4702 netstack_t *ns)
4704 size_t crypto_min = (size_t)-1, crypto_max = 0;
4705 size_t cur_crypto_min, cur_crypto_max;
4706 boolean_t is_valid;
4707 crypto_mechanism_info_t *mech_infos;
4708 uint_t nmech_infos;
4709 int crypto_rc, i;
4710 crypto_mech_usage_t mask;
4711 ipsec_stack_t *ipss = ns->netstack_ipsec;
4713 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
4716 * Compute the min, max, and default key sizes (in number of
4717 * increments to the default key size in bits) as defined
4718 * by the algorithm mappings. This range of key sizes is used
4719 * for policy related operations. The effective key sizes
4720 * supported by the framework could be more limited than
4721 * those defined for an algorithm.
4723 alg->alg_default_bits = alg->alg_key_sizes[0];
4724 alg->alg_default = 0;
4725 if (alg->alg_increment != 0) {
4726 /* key sizes are defined by range & increment */
4727 alg->alg_minbits = alg->alg_key_sizes[1];
4728 alg->alg_maxbits = alg->alg_key_sizes[2];
4729 } else if (alg->alg_nkey_sizes == 0) {
4730 /* no specified key size for algorithm */
4731 alg->alg_minbits = alg->alg_maxbits = 0;
4732 } else {
4733 /* key sizes are defined by enumeration */
4734 alg->alg_minbits = (uint16_t)-1;
4735 alg->alg_maxbits = 0;
4737 for (i = 0; i < alg->alg_nkey_sizes; i++) {
4738 if (alg->alg_key_sizes[i] < alg->alg_minbits)
4739 alg->alg_minbits = alg->alg_key_sizes[i];
4740 if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4741 alg->alg_maxbits = alg->alg_key_sizes[i];
4745 if (!(alg->alg_flags & ALG_FLAG_VALID))
4746 return;
4749 * Mechanisms do not apply to the NULL encryption
4750 * algorithm, so simply return for this case.
4752 if (alg->alg_id == SADB_EALG_NULL)
4753 return;
4756 * Find the min and max key sizes supported by the cryptographic
4757 * framework providers.
4760 /* get the key sizes supported by the framework */
4761 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4762 &mech_infos, &nmech_infos, KM_SLEEP);
4763 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4764 alg->alg_flags &= ~ALG_FLAG_VALID;
4765 return;
4768 /* min and max key sizes supported by framework */
4769 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4770 int unit_bits;
4773 * Ignore entries that do not support the operations
4774 * needed for the algorithm type.
4776 if (alg_type == IPSEC_ALG_AUTH) {
4777 mask = CRYPTO_MECH_USAGE_MAC;
4778 } else {
4779 mask = CRYPTO_MECH_USAGE_ENCRYPT |
4780 CRYPTO_MECH_USAGE_DECRYPT;
4782 if ((mech_infos[i].mi_usage & mask) != mask)
4783 continue;
4785 unit_bits = (mech_infos[i].mi_keysize_unit ==
4786 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1;
4787 /* adjust min/max supported by framework */
4788 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4789 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4791 if (cur_crypto_min < crypto_min)
4792 crypto_min = cur_crypto_min;
4795 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4796 * the crypto framework which means "no upper limit".
4798 if (mech_infos[i].mi_max_key_size ==
4799 CRYPTO_EFFECTIVELY_INFINITE) {
4800 crypto_max = (size_t)-1;
4801 } else if (cur_crypto_max > crypto_max) {
4802 crypto_max = cur_crypto_max;
4805 is_valid = B_TRUE;
4808 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4809 nmech_infos);
4811 if (!is_valid) {
4812 /* no key sizes supported by framework */
4813 alg->alg_flags &= ~ALG_FLAG_VALID;
4814 return;
4818 * Determine min and max key sizes from alg_key_sizes[].
4819 * defined for the algorithm entry. Adjust key sizes based on
4820 * those supported by the framework.
4822 alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4825 * For backwards compatability, assume that the IV length
4826 * is the same as the data length.
4828 alg->alg_ivlen = alg->alg_datalen;
4831 * Copy any algorithm parameters (if provided) into dedicated
4832 * elements in the ipsec_alginfo_t structure.
4833 * There may be a better place to put this code.
4835 for (i = 0; i < alg->alg_nparams; i++) {
4836 switch (i) {
4837 case 0:
4838 /* Initialisation Vector length (bytes) */
4839 alg->alg_ivlen = alg->alg_params[0];
4840 break;
4841 case 1:
4842 /* Integrity Check Vector length (bytes) */
4843 alg->alg_icvlen = alg->alg_params[1];
4844 break;
4845 case 2:
4846 /* Salt length (bytes) */
4847 alg->alg_saltlen = (uint8_t)alg->alg_params[2];
4848 break;
4849 default:
4850 break;
4854 /* Default if the IV length is not specified. */
4855 if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
4856 alg->alg_ivlen = alg->alg_datalen;
4858 alg_flag_check(alg);
4860 if (alg->alg_increment != 0) {
4861 /* supported key sizes are defined by range & increment */
4862 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4863 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4865 alg->alg_ef_minbits = MAX(alg->alg_minbits,
4866 (uint16_t)crypto_min);
4867 alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4868 (uint16_t)crypto_max);
4871 * If the sizes supported by the framework are outside
4872 * the range of sizes defined by the algorithm mappings,
4873 * the algorithm cannot be used. Check for this
4874 * condition here.
4876 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4877 alg->alg_flags &= ~ALG_FLAG_VALID;
4878 return;
4880 if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4881 alg->alg_ef_default_bits = alg->alg_ef_minbits;
4882 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4883 alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4884 } else if (alg->alg_nkey_sizes == 0) {
4885 /* no specified key size for algorithm */
4886 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4887 } else {
4888 /* supported key sizes are defined by enumeration */
4889 alg->alg_ef_minbits = (uint16_t)-1;
4890 alg->alg_ef_maxbits = 0;
4892 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4894 * Ignore the current key size if it is not in the
4895 * range of sizes supported by the framework.
4897 if (alg->alg_key_sizes[i] < crypto_min ||
4898 alg->alg_key_sizes[i] > crypto_max)
4899 continue;
4900 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4901 alg->alg_ef_minbits = alg->alg_key_sizes[i];
4902 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4903 alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4904 is_valid = B_TRUE;
4907 if (!is_valid) {
4908 alg->alg_flags &= ~ALG_FLAG_VALID;
4909 return;
4911 alg->alg_ef_default = 0;
4916 * Sanity check parameters provided by ipsecalgs(8). Assume that
4917 * the algoritm is marked as valid, there is a check at the top
4918 * of this function. If any of the checks below fail, the algorithm
4919 * entry is invalid.
4921 void
4922 alg_flag_check(ipsec_alginfo_t *alg)
4924 alg->alg_flags &= ~ALG_FLAG_VALID;
4927 * Can't have the algorithm marked as CCM and GCM.
4928 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
4929 * flags are set for CCM & GCM.
4931 if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
4932 (ALG_FLAG_CCM|ALG_FLAG_GCM))
4933 return;
4934 if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
4935 if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
4936 return;
4937 if (!(alg->alg_flags & ALG_FLAG_COMBINED))
4938 return;
4942 * For ALG_FLAG_COUNTERMODE, check the parameters
4943 * fit in the ipsec_nonce_t structure.
4945 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
4946 if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
4947 return;
4948 if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
4949 return;
4951 if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
4952 (alg->alg_icvlen == 0))
4953 return;
4955 /* all is well. */
4956 alg->alg_flags |= ALG_FLAG_VALID;
4960 * Free the memory used by the specified algorithm.
4962 void
4963 ipsec_alg_free(ipsec_alginfo_t *alg)
4965 if (alg == NULL)
4966 return;
4968 if (alg->alg_key_sizes != NULL) {
4969 kmem_free(alg->alg_key_sizes,
4970 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4971 alg->alg_key_sizes = NULL;
4973 if (alg->alg_block_sizes != NULL) {
4974 kmem_free(alg->alg_block_sizes,
4975 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4976 alg->alg_block_sizes = NULL;
4978 if (alg->alg_params != NULL) {
4979 kmem_free(alg->alg_params,
4980 (alg->alg_nparams + 1) * sizeof (uint16_t));
4981 alg->alg_params = NULL;
4983 kmem_free(alg, sizeof (*alg));
4987 * Check the validity of the specified key size for an algorithm.
4988 * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4990 boolean_t
4991 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4993 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4994 return (B_FALSE);
4996 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4998 * If the key sizes are defined by enumeration, the new
4999 * key size must be equal to one of the supported values.
5001 int i;
5003 for (i = 0; i < alg->alg_nkey_sizes; i++)
5004 if (key_size == alg->alg_key_sizes[i])
5005 break;
5006 if (i == alg->alg_nkey_sizes)
5007 return (B_FALSE);
5010 return (B_TRUE);
5014 * Callback function invoked by the crypto framework when a provider
5015 * registers or unregisters. This callback updates the algorithms
5016 * tables when a crypto algorithm is no longer available or becomes
5017 * available, and triggers the freeing/creation of context templates
5018 * associated with existing SAs, if needed.
5020 * Need to walk all stack instances since the callback is global
5021 * for all instances
5023 void
5024 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5026 netstack_handle_t nh;
5027 netstack_t *ns;
5029 netstack_next_init(&nh);
5030 while ((ns = netstack_next(&nh)) != NULL) {
5031 ipsec_prov_update_callback_stack(event, event_arg, ns);
5032 netstack_rele(ns);
5034 netstack_next_fini(&nh);
5037 static void
5038 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5039 netstack_t *ns)
5041 crypto_notify_event_change_t *prov_change =
5042 (crypto_notify_event_change_t *)event_arg;
5043 uint_t algidx, algid, algtype, mech_count, mech_idx;
5044 ipsec_alginfo_t *alg;
5045 ipsec_alginfo_t oalg;
5046 crypto_mech_name_t *mechs;
5047 boolean_t alg_changed = B_FALSE;
5048 ipsec_stack_t *ipss = ns->netstack_ipsec;
5050 /* ignore events for which we didn't register */
5051 if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5052 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5053 " received from crypto framework\n", event));
5054 return;
5057 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5058 if (mechs == NULL)
5059 return;
5062 * Walk the list of currently defined IPsec algorithm. Update
5063 * the algorithm valid flag and trigger an update of the
5064 * SAs that depend on that algorithm.
5066 rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
5067 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5068 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5069 algidx++) {
5071 algid = ipss->ipsec_sortlist[algtype][algidx];
5072 alg = ipss->ipsec_alglists[algtype][algid];
5073 ASSERT(alg != NULL);
5076 * Skip the algorithms which do not map to the
5077 * crypto framework provider being added or removed.
5079 if (strncmp(alg->alg_mech_name,
5080 prov_change->ec_mech_name,
5081 CRYPTO_MAX_MECH_NAME) != 0)
5082 continue;
5085 * Determine if the mechanism is valid. If it
5086 * is not, mark the algorithm as being invalid. If
5087 * it is, mark the algorithm as being valid.
5089 for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5090 if (strncmp(alg->alg_mech_name,
5091 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5092 break;
5093 if (mech_idx == mech_count &&
5094 alg->alg_flags & ALG_FLAG_VALID) {
5095 alg->alg_flags &= ~ALG_FLAG_VALID;
5096 alg_changed = B_TRUE;
5097 } else if (mech_idx < mech_count &&
5098 !(alg->alg_flags & ALG_FLAG_VALID)) {
5099 alg->alg_flags |= ALG_FLAG_VALID;
5100 alg_changed = B_TRUE;
5104 * Update the supported key sizes, regardless
5105 * of whether a crypto provider was added or
5106 * removed.
5108 oalg = *alg;
5109 ipsec_alg_fix_min_max(alg, algtype, ns);
5110 if (!alg_changed &&
5111 alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5112 alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5113 alg->alg_ef_default != oalg.alg_ef_default ||
5114 alg->alg_ef_default_bits !=
5115 oalg.alg_ef_default_bits)
5116 alg_changed = B_TRUE;
5119 * Update the affected SAs if a software provider is
5120 * being added or removed.
5122 if (prov_change->ec_provider_type ==
5123 CRYPTO_SW_PROVIDER)
5124 sadb_alg_update(algtype, alg->alg_id,
5125 prov_change->ec_change ==
5126 CRYPTO_MECH_ADDED, ns);
5129 rw_exit(&ipss->ipsec_alg_lock);
5130 crypto_free_mech_list(mechs, mech_count);
5132 if (alg_changed) {
5134 * An algorithm has changed, i.e. it became valid or
5135 * invalid, or its support key sizes have changed.
5136 * Notify ipsecah and ipsecesp of this change so
5137 * that they can send a SADB_REGISTER to their consumers.
5139 ipsecah_algs_changed(ns);
5140 ipsecesp_algs_changed(ns);
5145 * Registers with the crypto framework to be notified of crypto
5146 * providers changes. Used to update the algorithm tables and
5147 * to free or create context templates if needed. Invoked after IPsec
5148 * is loaded successfully.
5150 * This is called separately for each IP instance, so we ensure we only
5151 * register once.
5153 void
5154 ipsec_register_prov_update(void)
5156 if (prov_update_handle != NULL)
5157 return;
5159 prov_update_handle = crypto_notify_events(
5160 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5164 * Unregisters from the framework to be notified of crypto providers
5165 * changes. Called from ipsec_policy_g_destroy().
5167 static void
5168 ipsec_unregister_prov_update(void)
5170 if (prov_update_handle != NULL)
5171 crypto_unnotify_events(prov_update_handle);
5175 * Tunnel-mode support routines.
5179 * Returns an mblk chain suitable for putnext() if policies match and IPsec
5180 * SAs are available. If there's no per-tunnel policy, or a match comes back
5181 * with no match, then still return the packet and have global policy take
5182 * a crack at it in IP.
5183 * This updates the ip_xmit_attr with the IPsec policy.
5185 * Remember -> we can be forwarding packets. Keep that in mind w.r.t.
5186 * inner-packet contents.
5188 mblk_t *
5189 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
5190 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5191 ip_xmit_attr_t *ixa)
5193 ipsec_policy_head_t *polhead;
5194 ipsec_selector_t sel;
5195 mblk_t *nmp;
5196 boolean_t is_fragment;
5197 ipsec_policy_t *pol;
5198 ipsec_tun_pol_t *itp = iptun->iptun_itp;
5199 netstack_t *ns = iptun->iptun_ns;
5200 ipsec_stack_t *ipss = ns->netstack_ipsec;
5202 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5203 outer_ipv4 != NULL && outer_ipv6 == NULL);
5204 /* We take care of inners in a bit. */
5206 /* Are the IPsec fields initialized at all? */
5207 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
5208 ASSERT(ixa->ixa_ipsec_policy == NULL);
5209 ASSERT(ixa->ixa_ipsec_latch == NULL);
5210 ASSERT(ixa->ixa_ipsec_action == NULL);
5211 ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
5212 ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
5215 ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
5216 polhead = itp->itp_policy;
5218 bzero(&sel, sizeof (sel));
5219 if (inner_ipv4 != NULL) {
5220 ASSERT(inner_ipv6 == NULL);
5221 sel.ips_isv4 = B_TRUE;
5222 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5223 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5224 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5225 } else {
5226 ASSERT(inner_ipv6 != NULL);
5227 sel.ips_isv4 = B_FALSE;
5228 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5230 * We don't care about routing-header dests in the
5231 * forwarding/tunnel path, so just grab ip6_dst.
5233 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5236 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5238 * Caller can prepend the outer header, which means
5239 * inner_ipv[46] may be stuck in the middle. Pullup the whole
5240 * mess now if need-be, for easier processing later. Don't
5241 * forget to rewire the outer header too.
5243 if (mp->b_cont != NULL) {
5244 nmp = msgpullup(mp, -1);
5245 if (nmp == NULL) {
5246 ip_drop_packet(mp, B_FALSE, NULL,
5247 DROPPER(ipss, ipds_spd_nomem),
5248 &ipss->ipsec_spd_dropper);
5249 return (NULL);
5251 freemsg(mp);
5252 mp = nmp;
5253 if (outer_ipv4 != NULL)
5254 outer_ipv4 = (ipha_t *)mp->b_rptr;
5255 else
5256 outer_ipv6 = (ip6_t *)mp->b_rptr;
5257 if (inner_ipv4 != NULL) {
5258 inner_ipv4 =
5259 (ipha_t *)(mp->b_rptr + outer_hdr_len);
5260 } else {
5261 inner_ipv6 =
5262 (ip6_t *)(mp->b_rptr + outer_hdr_len);
5265 if (inner_ipv4 != NULL) {
5266 is_fragment = IS_V4_FRAGMENT(
5267 inner_ipv4->ipha_fragment_offset_and_flags);
5268 } else {
5269 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
5270 &is_fragment);
5273 if (is_fragment) {
5274 ipha_t *oiph;
5275 ipha_t *iph = NULL;
5276 ip6_t *ip6h = NULL;
5277 int hdr_len;
5278 uint16_t ip6_hdr_length;
5279 uint8_t v6_proto;
5280 uint8_t *v6_proto_p;
5283 * We have a fragment we need to track!
5285 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5286 outer_hdr_len, ipss);
5287 if (mp == NULL)
5288 return (NULL);
5289 ASSERT(mp->b_cont == NULL);
5292 * If we get here, we have a full fragment chain
5295 oiph = (ipha_t *)mp->b_rptr;
5296 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5297 hdr_len = ((outer_hdr_len != 0) ?
5298 IPH_HDR_LENGTH(oiph) : 0);
5299 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5300 } else {
5301 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5302 ip6h = (ip6_t *)mp->b_rptr;
5303 if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
5304 &ip6_hdr_length, &v6_proto_p)) {
5305 ip_drop_packet_chain(mp, B_FALSE, NULL,
5306 DROPPER(ipss,
5307 ipds_spd_malformed_packet),
5308 &ipss->ipsec_spd_dropper);
5309 return (NULL);
5311 hdr_len = ip6_hdr_length;
5313 outer_hdr_len = hdr_len;
5315 if (sel.ips_isv4) {
5316 if (iph == NULL) {
5317 /* Was v6 outer */
5318 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5320 inner_ipv4 = iph;
5321 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5322 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5323 sel.ips_protocol =
5324 (uint8_t)inner_ipv4->ipha_protocol;
5325 } else {
5326 inner_ipv6 = (ip6_t *)(mp->b_rptr +
5327 hdr_len);
5328 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5329 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5330 if (!ip_hdr_length_nexthdr_v6(mp,
5331 inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
5332 ip_drop_packet_chain(mp, B_FALSE, NULL,
5333 DROPPER(ipss,
5334 ipds_spd_malformed_frag),
5335 &ipss->ipsec_spd_dropper);
5336 return (NULL);
5338 v6_proto = *v6_proto_p;
5339 sel.ips_protocol = v6_proto;
5340 #ifdef FRAGCACHE_DEBUG
5341 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5342 sel.ips_protocol);
5343 #endif
5345 /* Ports are extracted below */
5348 /* Get ports... */
5349 if (!ipsec_init_outbound_ports(&sel, mp,
5350 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5351 /* callee did ip_drop_packet_chain() on mp. */
5352 return (NULL);
5354 #ifdef FRAGCACHE_DEBUG
5355 if (inner_ipv4 != NULL)
5356 cmn_err(CE_WARN,
5357 "(v4) sel.ips_protocol = %d, "
5358 "sel.ips_local_port = %d, "
5359 "sel.ips_remote_port = %d\n",
5360 sel.ips_protocol, ntohs(sel.ips_local_port),
5361 ntohs(sel.ips_remote_port));
5362 if (inner_ipv6 != NULL)
5363 cmn_err(CE_WARN,
5364 "(v6) sel.ips_protocol = %d, "
5365 "sel.ips_local_port = %d, "
5366 "sel.ips_remote_port = %d\n",
5367 sel.ips_protocol, ntohs(sel.ips_local_port),
5368 ntohs(sel.ips_remote_port));
5369 #endif
5370 /* Success so far! */
5372 rw_enter(&polhead->iph_lock, RW_READER);
5373 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5374 rw_exit(&polhead->iph_lock);
5375 if (pol == NULL) {
5377 * No matching policy on this tunnel, drop the packet.
5379 * NOTE: Tunnel-mode tunnels are different from the
5380 * IP global transport mode policy head. For a tunnel-mode
5381 * tunnel, we drop the packet in lieu of passing it
5382 * along accepted the way a global-policy miss would.
5384 * NOTE2: "negotiate transport" tunnels should match ALL
5385 * inbound packets, but we do not uncomment the ASSERT()
5386 * below because if/when we open PF_POLICY, a user can
5387 * shoot themself in the foot with a 0 priority.
5390 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5391 #ifdef FRAGCACHE_DEBUG
5392 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5393 "per-port policy\n");
5394 #endif
5395 ip_drop_packet_chain(mp, B_FALSE, NULL,
5396 DROPPER(ipss, ipds_spd_explicit),
5397 &ipss->ipsec_spd_dropper);
5398 return (NULL);
5401 #ifdef FRAGCACHE_DEBUG
5402 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5403 #endif
5406 * NOTE: ixa_cleanup() function will release pol references.
5408 ixa->ixa_ipsec_policy = pol;
5410 * NOTE: There is a subtle difference between iptun_zoneid and
5411 * iptun_connp->conn_zoneid explained in iptun_conn_create(). When
5412 * interacting with the ip module, we must use conn_zoneid.
5414 ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
5416 ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
5417 !(ixa->ixa_flags & IXAF_IS_IPV4));
5418 ASSERT(ixa->ixa_ipsec_policy != NULL);
5419 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
5421 if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5422 /* Set up transport mode for tunnelled packets. */
5423 ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5424 IPPROTO_IPV6;
5425 return (mp);
5428 /* Fill in tunnel-mode goodies here. */
5429 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
5430 /* XXX Do I need to fill in all of the goodies here? */
5431 if (inner_ipv4) {
5432 ixa->ixa_ipsec_inaf = AF_INET;
5433 ixa->ixa_ipsec_insrc[0] =
5434 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5435 ixa->ixa_ipsec_indst[0] =
5436 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5437 } else {
5438 ixa->ixa_ipsec_inaf = AF_INET6;
5439 ixa->ixa_ipsec_insrc[0] =
5440 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5441 ixa->ixa_ipsec_insrc[1] =
5442 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5443 ixa->ixa_ipsec_insrc[2] =
5444 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5445 ixa->ixa_ipsec_insrc[3] =
5446 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5447 ixa->ixa_ipsec_indst[0] =
5448 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5449 ixa->ixa_ipsec_indst[1] =
5450 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5451 ixa->ixa_ipsec_indst[2] =
5452 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5453 ixa->ixa_ipsec_indst[3] =
5454 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5456 ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5457 ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5458 /* NOTE: These are used for transport mode too. */
5459 ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5460 ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5461 ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5463 return (mp);
5467 * NOTE: The following releases pol's reference and
5468 * calls ip_drop_packet() for me on NULL returns.
5470 mblk_t *
5471 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
5472 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5474 /* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
5475 mblk_t *data_chain = NULL, *data_tail = NULL;
5476 mblk_t *next;
5477 mblk_t *data_mp;
5478 ip_recv_attr_t iras;
5480 while (attr_mp != NULL) {
5481 ASSERT(ip_recv_attr_is_mblk(attr_mp));
5482 next = attr_mp->b_next;
5483 attr_mp->b_next = NULL; /* No tripping asserts. */
5485 data_mp = attr_mp->b_cont;
5486 attr_mp->b_cont = NULL;
5487 if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
5488 /* The ill or ip_stack_t disappeared on us */
5489 freemsg(data_mp); /* ip_drop_packet?? */
5490 ira_cleanup(&iras, B_TRUE);
5491 goto fail;
5495 * Need IPPOL_REFHOLD(pol) for extras because
5496 * ipsecin_policy does the refrele.
5498 IPPOL_REFHOLD(pol);
5500 data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
5501 inner_ipv6, pkt_unique, &iras, ns);
5502 ira_cleanup(&iras, B_TRUE);
5504 if (data_mp == NULL)
5505 goto fail;
5507 if (data_tail == NULL) {
5508 /* First one */
5509 data_chain = data_tail = data_mp;
5510 } else {
5511 data_tail->b_next = data_mp;
5512 data_tail = data_mp;
5514 attr_mp = next;
5517 * One last release because either the loop bumped it up, or we never
5518 * called ipsec_check_ipsecin_policy().
5520 IPPOL_REFRELE(pol);
5522 /* data_chain is ready for return to tun module. */
5523 return (data_chain);
5525 fail:
5527 * Need to get rid of any extra pol
5528 * references, and any remaining bits as well.
5530 IPPOL_REFRELE(pol);
5531 ipsec_freemsg_chain(data_chain);
5532 ipsec_freemsg_chain(next); /* ipdrop stats? */
5533 return (NULL);
5537 * Return a message if the inbound packet passed an IPsec policy check. Returns
5538 * NULL if it failed or if it is a fragment needing its friends before a
5539 * policy check can be performed.
5541 * Expects a non-NULL data_mp, and a non-NULL polhead.
5542 * The returned mblk may be a b_next chain of packets if fragments
5543 * neeeded to be collected for a proper policy check.
5545 * This function calls ip_drop_packet() on data_mp if need be.
5547 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller
5548 * is inspecting an ICMP packet.
5550 mblk_t *
5551 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
5552 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5553 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5555 ipsec_policy_head_t *polhead;
5556 ipsec_selector_t sel;
5557 ipsec_policy_t *pol;
5558 uint16_t tmpport;
5559 selret_t rc;
5560 boolean_t port_policy_present, is_icmp, global_present;
5561 in6_addr_t tmpaddr;
5562 ipaddr_t tmp4;
5563 uint8_t flags, *inner_hdr;
5564 ipsec_stack_t *ipss = ns->netstack_ipsec;
5566 sel.ips_is_icmp_inv_acq = 0;
5568 if (outer_ipv4 != NULL) {
5569 ASSERT(outer_ipv6 == NULL);
5570 global_present = ipss->ipsec_inbound_v4_policy_present;
5571 } else {
5572 ASSERT(outer_ipv6 != NULL);
5573 global_present = ipss->ipsec_inbound_v6_policy_present;
5576 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5577 inner_ipv4 == NULL && inner_ipv6 != NULL);
5579 if (outer_hdr_len < 0) {
5580 outer_hdr_len = (-outer_hdr_len);
5581 is_icmp = B_TRUE;
5582 } else {
5583 is_icmp = B_FALSE;
5586 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5587 mblk_t *mp = data_mp;
5589 polhead = itp->itp_policy;
5591 * We need to perform full Tunnel-Mode enforcement,
5592 * and we need to have inner-header data for such enforcement.
5594 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5595 * and on return.
5598 port_policy_present = ((itp->itp_flags &
5599 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5601 * NOTE: Even if our policy is transport mode, set the
5602 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
5603 * do the right thing w.r.t. outer headers.
5605 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5606 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5608 rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
5609 inner_ipv6, flags);
5611 switch (rc) {
5612 case SELRET_NOMEM:
5613 ip_drop_packet(data_mp, B_TRUE, NULL,
5614 DROPPER(ipss, ipds_spd_nomem),
5615 &ipss->ipsec_spd_dropper);
5616 return (NULL);
5617 case SELRET_TUNFRAG:
5619 * At this point, if we're cleartext, we don't want
5620 * to go there.
5622 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5623 ip_drop_packet(data_mp, B_TRUE, NULL,
5624 DROPPER(ipss, ipds_spd_got_clear),
5625 &ipss->ipsec_spd_dropper);
5626 return (NULL);
5630 * Inner and outer headers may not be contiguous.
5631 * Pullup the data_mp now to satisfy assumptions of
5632 * ipsec_fragcache_add()
5634 if (data_mp->b_cont != NULL) {
5635 mblk_t *nmp;
5637 nmp = msgpullup(data_mp, -1);
5638 if (nmp == NULL) {
5639 ip_drop_packet(data_mp, B_TRUE, NULL,
5640 DROPPER(ipss, ipds_spd_nomem),
5641 &ipss->ipsec_spd_dropper);
5642 return (NULL);
5644 freemsg(data_mp);
5645 data_mp = nmp;
5646 if (outer_ipv4 != NULL)
5647 outer_ipv4 =
5648 (ipha_t *)data_mp->b_rptr;
5649 else
5650 outer_ipv6 =
5651 (ip6_t *)data_mp->b_rptr;
5652 if (inner_ipv4 != NULL) {
5653 inner_ipv4 =
5654 (ipha_t *)(data_mp->b_rptr +
5655 outer_hdr_len);
5656 } else {
5657 inner_ipv6 =
5658 (ip6_t *)(data_mp->b_rptr +
5659 outer_hdr_len);
5664 * If we need to queue the packet. First we
5665 * get an mblk with the attributes. ipsec_fragcache_add
5666 * will prepend that to the queued data and return
5667 * a list of b_next messages each of which starts with
5668 * the attribute mblk.
5670 mp = ip_recv_attr_to_mblk(ira);
5671 if (mp == NULL) {
5672 ip_drop_packet(data_mp, B_TRUE, NULL,
5673 DROPPER(ipss, ipds_spd_nomem),
5674 &ipss->ipsec_spd_dropper);
5675 return (NULL);
5678 mp = ipsec_fragcache_add(&itp->itp_fragcache,
5679 mp, data_mp, outer_hdr_len, ipss);
5681 if (mp == NULL) {
5683 * Data is cached, fragment chain is not
5684 * complete.
5686 return (NULL);
5690 * If we get here, we have a full fragment chain.
5691 * Reacquire headers and selectors from first fragment.
5693 ASSERT(ip_recv_attr_is_mblk(mp));
5694 data_mp = mp->b_cont;
5695 inner_hdr = data_mp->b_rptr;
5696 if (outer_ipv4 != NULL) {
5697 inner_hdr += IPH_HDR_LENGTH(
5698 (ipha_t *)data_mp->b_rptr);
5699 } else {
5700 inner_hdr += ip_hdr_length_v6(data_mp,
5701 (ip6_t *)data_mp->b_rptr);
5703 ASSERT(inner_hdr <= data_mp->b_wptr);
5705 if (inner_ipv4 != NULL) {
5706 inner_ipv4 = (ipha_t *)inner_hdr;
5707 inner_ipv6 = NULL;
5708 } else {
5709 inner_ipv6 = (ip6_t *)inner_hdr;
5710 inner_ipv4 = NULL;
5714 * Use SEL_TUNNEL_MODE to take into account the outer
5715 * header. Use SEL_POST_FRAG so we always get ports.
5717 rc = ipsec_init_inbound_sel(&sel, data_mp,
5718 inner_ipv4, inner_ipv6,
5719 SEL_TUNNEL_MODE | SEL_POST_FRAG);
5720 switch (rc) {
5721 case SELRET_SUCCESS:
5723 * Get to same place as first caller's
5724 * SELRET_SUCCESS case.
5726 break;
5727 case SELRET_NOMEM:
5728 ip_drop_packet_chain(mp, B_TRUE, NULL,
5729 DROPPER(ipss, ipds_spd_nomem),
5730 &ipss->ipsec_spd_dropper);
5731 return (NULL);
5732 case SELRET_BADPKT:
5733 ip_drop_packet_chain(mp, B_TRUE, NULL,
5734 DROPPER(ipss, ipds_spd_malformed_frag),
5735 &ipss->ipsec_spd_dropper);
5736 return (NULL);
5737 case SELRET_TUNFRAG:
5738 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5739 /* FALLTHRU */
5740 default:
5741 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5742 " returns bizarro 0x%x", rc);
5743 /* Guaranteed panic! */
5744 ASSERT(rc == SELRET_NOMEM);
5745 return (NULL);
5747 /* FALLTHRU */
5748 case SELRET_SUCCESS:
5750 * Common case:
5751 * No per-port policy or a non-fragment. Keep going.
5753 break;
5754 case SELRET_BADPKT:
5756 * We may receive ICMP (with IPv6 inner) packets that
5757 * trigger this return value. Send 'em in for
5758 * enforcement checking.
5760 cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5761 "sending 'bad packet' in for enforcement");
5762 break;
5763 default:
5764 cmn_err(CE_WARN,
5765 "ipsec_init_inbound_sel() returns bizarro 0x%x",
5766 rc);
5767 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */
5768 return (NULL);
5771 if (is_icmp) {
5773 * Swap local/remote because this is an ICMP packet.
5775 tmpaddr = sel.ips_local_addr_v6;
5776 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5777 sel.ips_remote_addr_v6 = tmpaddr;
5778 tmpport = sel.ips_local_port;
5779 sel.ips_local_port = sel.ips_remote_port;
5780 sel.ips_remote_port = tmpport;
5783 /* find_policy_head() */
5784 rw_enter(&polhead->iph_lock, RW_READER);
5785 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5786 &sel);
5787 rw_exit(&polhead->iph_lock);
5788 if (pol != NULL) {
5789 uint64_t pkt_unique;
5791 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5792 if (!pol->ipsp_act->ipa_allow_clear) {
5794 * XXX should never get here with
5795 * tunnel reassembled fragments?
5797 ASSERT(mp == data_mp);
5798 ip_drop_packet(data_mp, B_TRUE, NULL,
5799 DROPPER(ipss, ipds_spd_got_clear),
5800 &ipss->ipsec_spd_dropper);
5801 IPPOL_REFRELE(pol);
5802 return (NULL);
5803 } else {
5804 IPPOL_REFRELE(pol);
5805 return (mp);
5808 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
5809 sel.ips_local_port,
5810 (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5811 IPPROTO_ENCAP, sel.ips_protocol);
5814 * NOTE: The following releases pol's reference and
5815 * calls ip_drop_packet() for me on NULL returns.
5817 * "sel" is still good here, so let's use it!
5819 if (data_mp == mp) {
5820 /* A single packet without attributes */
5821 data_mp = ipsec_check_ipsecin_policy(data_mp,
5822 pol, inner_ipv4, inner_ipv6, pkt_unique,
5823 ira, ns);
5824 } else {
5826 * We pass in the b_next chain of attr_mp's
5827 * and get back a b_next chain of data_mp's.
5829 data_mp = ipsec_check_ipsecin_policy_reasm(mp,
5830 pol, inner_ipv4, inner_ipv6, pkt_unique,
5831 ns);
5833 return (data_mp);
5837 * Else fallthru and check the global policy on the outer
5838 * header(s) if this tunnel is an old-style transport-mode
5839 * one. Drop the packet explicitly (no policy entry) for
5840 * a new-style tunnel-mode tunnel.
5842 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5843 ip_drop_packet_chain(data_mp, B_TRUE, NULL,
5844 DROPPER(ipss, ipds_spd_explicit),
5845 &ipss->ipsec_spd_dropper);
5846 return (NULL);
5851 * NOTE: If we reach here, we will not have packet chains from
5852 * fragcache_add(), because the only way I get chains is on a
5853 * tunnel-mode tunnel, which either returns with a pass, or gets
5854 * hit by the ip_drop_packet_chain() call right above here.
5856 ASSERT(data_mp->b_next == NULL);
5858 /* If no per-tunnel security, check global policy now. */
5859 if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
5860 if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
5862 * This is an ICMP message that was geenrated locally.
5863 * We should accept it.
5865 return (data_mp);
5868 ip_drop_packet(data_mp, B_TRUE, NULL,
5869 DROPPER(ipss, ipds_spd_got_secure),
5870 &ipss->ipsec_spd_dropper);
5871 return (NULL);
5874 if (is_icmp) {
5876 * For ICMP packets, "outer_ipvN" is set to the outer header
5877 * that is *INSIDE* the ICMP payload. For global policy
5878 * checking, we need to reverse src/dst on the payload in
5879 * order to construct selectors appropriately. See "ripha"
5880 * constructions in ip.c. To avoid a bug like 6478464 (see
5881 * earlier in this file), we will actually exchange src/dst
5882 * in the packet, and reverse if after the call to
5883 * ipsec_check_global_policy().
5885 if (outer_ipv4 != NULL) {
5886 tmp4 = outer_ipv4->ipha_src;
5887 outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5888 outer_ipv4->ipha_dst = tmp4;
5889 } else {
5890 ASSERT(outer_ipv6 != NULL);
5891 tmpaddr = outer_ipv6->ip6_src;
5892 outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5893 outer_ipv6->ip6_dst = tmpaddr;
5897 data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
5898 outer_ipv6, ira, ns);
5899 if (data_mp == NULL)
5900 return (NULL);
5902 if (is_icmp) {
5903 /* Set things back to normal. */
5904 if (outer_ipv4 != NULL) {
5905 tmp4 = outer_ipv4->ipha_src;
5906 outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5907 outer_ipv4->ipha_dst = tmp4;
5908 } else {
5909 /* No need for ASSERT()s now. */
5910 tmpaddr = outer_ipv6->ip6_src;
5911 outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5912 outer_ipv6->ip6_dst = tmpaddr;
5917 * At this point, we pretend it's a cleartext accepted
5918 * packet.
5920 return (data_mp);
5924 * AVL comparison routine for our list of tunnel polheads.
5926 static int
5927 tunnel_compare(const void *arg1, const void *arg2)
5929 ipsec_tun_pol_t *left, *right;
5930 int rc;
5932 left = (ipsec_tun_pol_t *)arg1;
5933 right = (ipsec_tun_pol_t *)arg2;
5935 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5936 return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5940 * Free a tunnel policy node.
5942 void
5943 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
5945 if (node->itp_policy != NULL) {
5946 IPPH_REFRELE(node->itp_policy, ns);
5947 node->itp_policy = NULL;
5949 if (node->itp_inactive != NULL) {
5950 IPPH_REFRELE(node->itp_inactive, ns);
5951 node->itp_inactive = NULL;
5953 mutex_destroy(&node->itp_lock);
5954 kmem_free(node, sizeof (*node));
5957 void
5958 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
5960 ipsec_stack_t *ipss = ns->netstack_ipsec;
5962 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
5963 ipss->ipsec_tunnel_policy_gen++;
5964 ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
5965 avl_remove(&ipss->ipsec_tunnel_policies, node);
5966 rw_exit(&ipss->ipsec_tunnel_policy_lock);
5967 ITP_REFRELE(node, ns);
5971 * Public interface to look up a tunnel security policy by name. Used by
5972 * spdsock mostly. Returns "node" with a bumped refcnt.
5974 ipsec_tun_pol_t *
5975 get_tunnel_policy(char *name, netstack_t *ns)
5977 ipsec_tun_pol_t *node, lookup;
5978 ipsec_stack_t *ipss = ns->netstack_ipsec;
5980 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5982 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5983 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
5984 &lookup, NULL);
5985 if (node != NULL) {
5986 ITP_REFHOLD(node);
5988 rw_exit(&ipss->ipsec_tunnel_policy_lock);
5990 return (node);
5994 * Public interface to walk all tunnel security polcies. Useful for spdsock
5995 * DUMP operations. iterator() will not consume a reference.
5997 void
5998 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
5999 void *arg, netstack_t *ns)
6001 ipsec_tun_pol_t *node;
6002 ipsec_stack_t *ipss = ns->netstack_ipsec;
6004 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6005 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6006 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6007 iterator(node, arg, ns);
6009 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6013 * Initialize policy head. This can only fail if there's a memory problem.
6015 static boolean_t
6016 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6018 ipsec_stack_t *ipss = ns->netstack_ipsec;
6020 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6021 iph->iph_refs = 1;
6022 iph->iph_gen = 0;
6023 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6024 KM_SLEEP, B_FALSE, ns) != 0) {
6025 ipsec_polhead_free_table(iph);
6026 return (B_FALSE);
6028 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6029 return (B_TRUE);
6033 * Create a tunnel policy node with "name". Set errno with
6034 * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6035 * node.
6037 ipsec_tun_pol_t *
6038 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6040 ipsec_tun_pol_t *newbie, *existing;
6041 avl_index_t where;
6042 ipsec_stack_t *ipss = ns->netstack_ipsec;
6044 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6045 if (newbie == NULL) {
6046 *errno = ENOMEM;
6047 return (NULL);
6049 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6050 kmem_free(newbie, sizeof (*newbie));
6051 *errno = ENOMEM;
6052 return (NULL);
6055 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6057 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6058 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6059 newbie, &where);
6060 if (existing != NULL) {
6061 itp_free(newbie, ns);
6062 *errno = EEXIST;
6063 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6064 return (NULL);
6066 ipss->ipsec_tunnel_policy_gen++;
6067 *gen = ipss->ipsec_tunnel_policy_gen;
6068 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */
6069 newbie->itp_next_policy_index = 1;
6070 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6071 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6072 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6073 KM_NOSLEEP);
6074 if (newbie->itp_policy == NULL)
6075 goto nomem;
6076 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6077 KM_NOSLEEP);
6078 if (newbie->itp_inactive == NULL) {
6079 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6080 goto nomem;
6083 if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6084 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6085 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6086 goto nomem;
6087 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6088 IPPH_REFRELE(newbie->itp_policy, ns);
6089 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6090 goto nomem;
6092 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6094 return (newbie);
6095 nomem:
6096 *errno = ENOMEM;
6097 kmem_free(newbie, sizeof (*newbie));
6098 return (NULL);
6102 * Given two addresses, find a tunnel instance's IPsec policy heads.
6103 * Returns NULL on failure.
6105 ipsec_tun_pol_t *
6106 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
6108 conn_t *connp;
6109 iptun_t *iptun;
6110 ipsec_tun_pol_t *itp = NULL;
6112 /* Classifiers are used to "src" being foreign. */
6113 if (af == AF_INET) {
6114 connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
6115 (ipaddr_t *)laddr, ipst);
6116 } else {
6117 ASSERT(af == AF_INET6);
6118 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
6119 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
6120 connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
6121 (in6_addr_t *)laddr, ipst);
6124 if (connp == NULL)
6125 return (NULL);
6127 if (IPCL_IS_IPTUN(connp)) {
6128 iptun = connp->conn_iptun;
6129 if (iptun != NULL) {
6130 itp = iptun->iptun_itp;
6131 if (itp != NULL) {
6132 /* Braces due to the macro's nature... */
6133 ITP_REFHOLD(itp);
6135 } /* Else itp is already NULL. */
6138 CONN_DEC_REF(connp);
6139 return (itp);
6143 * Frag cache code, based on SunScreen 3.2 source
6144 * screen/kernel/common/screen_fragcache.c
6147 #define IPSEC_FRAG_TTL_MAX 5
6149 * Note that the following parameters create 256 hash buckets
6150 * with 1024 free entries to be distributed. Things are cleaned
6151 * periodically and are attempted to be cleaned when there is no
6152 * free space, but this system errs on the side of dropping packets
6153 * over creating memory exhaustion. We may decide to make hash
6154 * factor a tunable if this proves to be a bad decision.
6156 #define IPSEC_FRAG_HASH_SLOTS (1<<8)
6157 #define IPSEC_FRAG_HASH_FACTOR 4
6158 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6160 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1)
6161 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \
6162 (((id) / \
6163 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6164 IPSEC_FRAG_HASH_MASK))
6166 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */
6167 #define IPSEC_MAX_FRAGS 1366
6169 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6170 IPH_OFFSET) << 3)
6171 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6172 IPH_MF)
6175 * Initialize an ipsec fragcache instance.
6176 * Returns B_FALSE if memory allocation fails.
6178 boolean_t
6179 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6181 ipsec_fragcache_entry_t *ftemp;
6182 int i;
6184 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6185 frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6186 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6187 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6188 if (frag->itpf_ptr == NULL)
6189 return (B_FALSE);
6191 ftemp = (ipsec_fragcache_entry_t *)
6192 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6193 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6194 if (ftemp == NULL) {
6195 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6196 IPSEC_FRAG_HASH_SLOTS);
6197 return (B_FALSE);
6200 frag->itpf_freelist = NULL;
6202 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6203 ftemp->itpfe_next = frag->itpf_freelist;
6204 frag->itpf_freelist = ftemp;
6205 ftemp++;
6208 frag->itpf_expire_hint = 0;
6210 return (B_TRUE);
6213 void
6214 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6216 ipsec_fragcache_entry_t *fep;
6217 int i;
6219 mutex_enter(&frag->itpf_lock);
6220 if (frag->itpf_ptr) {
6221 /* Delete any existing fragcache entry chains */
6222 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6223 fep = (frag->itpf_ptr)[i];
6224 while (fep != NULL) {
6225 /* Returned fep is next in chain or NULL */
6226 fep = fragcache_delentry(i, fep, frag, ipss);
6230 * Chase the pointers back to the beginning
6231 * of the memory allocation and then
6232 * get rid of the allocated freelist
6234 while (frag->itpf_freelist->itpfe_next != NULL)
6235 frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6237 * XXX - If we ever dynamically grow the freelist
6238 * then we'll have to free entries individually
6239 * or determine how many entries or chunks we have
6240 * grown since the initial allocation.
6242 kmem_free(frag->itpf_freelist,
6243 sizeof (ipsec_fragcache_entry_t) *
6244 IPSEC_FRAG_HASH_SIZE);
6245 /* Free the fragcache structure */
6246 kmem_free(frag->itpf_ptr,
6247 sizeof (ipsec_fragcache_entry_t *) *
6248 IPSEC_FRAG_HASH_SLOTS);
6250 mutex_exit(&frag->itpf_lock);
6251 mutex_destroy(&frag->itpf_lock);
6255 * Add a fragment to the fragment cache. Consumes mp if NULL is returned.
6256 * Returns mp if a whole fragment has been assembled, NULL otherwise
6257 * The returned mp could be a b_next chain of fragments.
6259 * The iramp argument is set on inbound; NULL if outbound.
6261 mblk_t *
6262 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
6263 int outer_hdr_len, ipsec_stack_t *ipss)
6265 boolean_t is_v4;
6266 time_t itpf_time;
6267 ipha_t *iph;
6268 ipha_t *oiph;
6269 ip6_t *ip6h = NULL;
6270 uint8_t v6_proto;
6271 uint8_t *v6_proto_p;
6272 uint16_t ip6_hdr_length;
6273 ip_pkt_t ipp;
6274 ip6_frag_t *fraghdr;
6275 ipsec_fragcache_entry_t *fep;
6276 int i;
6277 mblk_t *nmp, *prevmp;
6278 int firstbyte, lastbyte;
6279 int offset;
6280 int last;
6281 boolean_t inbound = (iramp != NULL);
6283 #ifdef FRAGCACHE_DEBUG
6284 cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
6285 #endif
6286 v6_proto = 0;
6287 fraghdr = NULL;
6290 * You're on the slow path, so insure that every packet in the
6291 * cache is a single-mblk one.
6293 if (mp->b_cont != NULL) {
6294 nmp = msgpullup(mp, -1);
6295 if (nmp == NULL) {
6296 ip_drop_packet(mp, inbound, NULL,
6297 DROPPER(ipss, ipds_spd_nomem),
6298 &ipss->ipsec_spd_dropper);
6299 if (inbound)
6300 (void) ip_recv_attr_free_mblk(iramp);
6301 return (NULL);
6303 freemsg(mp);
6304 mp = nmp;
6307 mutex_enter(&frag->itpf_lock);
6309 oiph = (ipha_t *)mp->b_rptr;
6310 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6312 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6313 is_v4 = B_TRUE;
6314 } else {
6315 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6316 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
6318 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
6319 &v6_proto_p)) {
6321 * Find upper layer protocol.
6322 * If it fails we have a malformed packet
6324 mutex_exit(&frag->itpf_lock);
6325 ip_drop_packet(mp, inbound, NULL,
6326 DROPPER(ipss, ipds_spd_malformed_packet),
6327 &ipss->ipsec_spd_dropper);
6328 if (inbound)
6329 (void) ip_recv_attr_free_mblk(iramp);
6330 return (NULL);
6331 } else {
6332 v6_proto = *v6_proto_p;
6336 bzero(&ipp, sizeof (ipp));
6337 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
6338 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6340 * We think this is a fragment, but didn't find
6341 * a fragment header. Something is wrong.
6343 mutex_exit(&frag->itpf_lock);
6344 ip_drop_packet(mp, inbound, NULL,
6345 DROPPER(ipss, ipds_spd_malformed_frag),
6346 &ipss->ipsec_spd_dropper);
6347 if (inbound)
6348 (void) ip_recv_attr_free_mblk(iramp);
6349 return (NULL);
6351 fraghdr = ipp.ipp_fraghdr;
6352 is_v4 = B_FALSE;
6355 /* Anything to cleanup? */
6358 * This cleanup call could be put in a timer loop
6359 * but it may actually be just as reasonable a decision to
6360 * leave it here. The disadvantage is this only gets called when
6361 * frags are added. The advantage is that it is not
6362 * susceptible to race conditions like a time-based cleanup
6363 * may be.
6365 itpf_time = gethrestime_sec();
6366 if (itpf_time >= frag->itpf_expire_hint)
6367 ipsec_fragcache_clean(frag, ipss);
6369 /* Lookup to see if there is an existing entry */
6371 if (is_v4)
6372 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6373 else
6374 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6376 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6377 if (is_v4) {
6378 ASSERT(iph != NULL);
6379 if ((fep->itpfe_id == iph->ipha_ident) &&
6380 (fep->itpfe_src == iph->ipha_src) &&
6381 (fep->itpfe_dst == iph->ipha_dst) &&
6382 (fep->itpfe_proto == iph->ipha_protocol))
6383 break;
6384 } else {
6385 ASSERT(fraghdr != NULL);
6386 ASSERT(fep != NULL);
6387 if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6388 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6389 &ip6h->ip6_src) &&
6390 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6391 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6392 break;
6396 if (is_v4) {
6397 firstbyte = V4_FRAG_OFFSET(iph);
6398 lastbyte = firstbyte + ntohs(iph->ipha_length) -
6399 IPH_HDR_LENGTH(iph);
6400 last = (V4_MORE_FRAGS(iph) == 0);
6401 #ifdef FRAGCACHE_DEBUG
6402 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6403 "is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
6404 lastbyte, last, iph->ipha_ident, mp);
6405 #endif
6406 } else {
6407 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6408 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
6409 sizeof (ip6_t) - ip6_hdr_length;
6410 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6411 #ifdef FRAGCACHE_DEBUG
6412 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6413 "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
6414 firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
6415 mp);
6416 #endif
6419 /* check for bogus fragments and delete the entry */
6420 if (firstbyte > 0 && firstbyte <= 8) {
6421 if (fep != NULL)
6422 (void) fragcache_delentry(i, fep, frag, ipss);
6423 mutex_exit(&frag->itpf_lock);
6424 ip_drop_packet(mp, inbound, NULL,
6425 DROPPER(ipss, ipds_spd_malformed_frag),
6426 &ipss->ipsec_spd_dropper);
6427 if (inbound)
6428 (void) ip_recv_attr_free_mblk(iramp);
6429 return (NULL);
6432 /* Not found, allocate a new entry */
6433 if (fep == NULL) {
6434 if (frag->itpf_freelist == NULL) {
6435 /* see if there is some space */
6436 ipsec_fragcache_clean(frag, ipss);
6437 if (frag->itpf_freelist == NULL) {
6438 mutex_exit(&frag->itpf_lock);
6439 ip_drop_packet(mp, inbound, NULL,
6440 DROPPER(ipss, ipds_spd_nomem),
6441 &ipss->ipsec_spd_dropper);
6442 if (inbound)
6443 (void) ip_recv_attr_free_mblk(iramp);
6444 return (NULL);
6448 fep = frag->itpf_freelist;
6449 frag->itpf_freelist = fep->itpfe_next;
6451 if (is_v4) {
6452 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6453 sizeof (struct in_addr));
6454 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6455 sizeof (struct in_addr));
6456 fep->itpfe_id = iph->ipha_ident;
6457 fep->itpfe_proto = iph->ipha_protocol;
6458 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6459 } else {
6460 bcopy((in6_addr_t *)&ip6h->ip6_src,
6461 (in6_addr_t *)&fep->itpfe_src6,
6462 sizeof (struct in6_addr));
6463 bcopy((in6_addr_t *)&ip6h->ip6_dst,
6464 (in6_addr_t *)&fep->itpfe_dst6,
6465 sizeof (struct in6_addr));
6466 fep->itpfe_id = fraghdr->ip6f_ident;
6467 fep->itpfe_proto = v6_proto;
6468 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6470 itpf_time = gethrestime_sec();
6471 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6472 fep->itpfe_last = 0;
6473 fep->itpfe_fraglist = NULL;
6474 fep->itpfe_depth = 0;
6475 fep->itpfe_next = (frag->itpf_ptr)[i];
6476 (frag->itpf_ptr)[i] = fep;
6478 if (frag->itpf_expire_hint > fep->itpfe_exp)
6479 frag->itpf_expire_hint = fep->itpfe_exp;
6483 /* Insert it in the frag list */
6484 /* List is in order by starting offset of fragments */
6486 prevmp = NULL;
6487 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6488 ipha_t *niph;
6489 ipha_t *oniph;
6490 ip6_t *nip6h;
6491 ip_pkt_t nipp;
6492 ip6_frag_t *nfraghdr;
6493 uint16_t nip6_hdr_length;
6494 uint8_t *nv6_proto_p;
6495 int nfirstbyte, nlastbyte;
6496 char *data, *ndata;
6497 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6498 int hdr_len;
6500 oniph = (ipha_t *)mp->b_rptr;
6501 nip6h = NULL;
6502 niph = NULL;
6505 * Determine outer header type and length and set
6506 * pointers appropriately
6509 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6510 hdr_len = ((outer_hdr_len != 0) ?
6511 IPH_HDR_LENGTH(oiph) : 0);
6512 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6513 } else {
6514 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6515 ASSERT(ndata_mp->b_cont == NULL);
6516 nip6h = (ip6_t *)ndata_mp->b_rptr;
6517 (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6518 &nip6_hdr_length, &v6_proto_p);
6519 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6523 * Determine inner header type and length and set
6524 * pointers appropriately
6527 if (is_v4) {
6528 if (niph == NULL) {
6529 /* Was v6 outer */
6530 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6532 nfirstbyte = V4_FRAG_OFFSET(niph);
6533 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6534 IPH_HDR_LENGTH(niph);
6535 } else {
6536 ASSERT(ndata_mp->b_cont == NULL);
6537 nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
6538 if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6539 &nip6_hdr_length, &nv6_proto_p)) {
6540 mutex_exit(&frag->itpf_lock);
6541 ip_drop_packet_chain(nmp, inbound, NULL,
6542 DROPPER(ipss, ipds_spd_malformed_frag),
6543 &ipss->ipsec_spd_dropper);
6544 ipsec_freemsg_chain(ndata_mp);
6545 if (inbound)
6546 (void) ip_recv_attr_free_mblk(iramp);
6547 return (NULL);
6549 bzero(&nipp, sizeof (nipp));
6550 (void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
6551 NULL);
6552 nfraghdr = nipp.ipp_fraghdr;
6553 nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6554 IP6F_OFF_MASK);
6555 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) +
6556 sizeof (ip6_t) - nip6_hdr_length;
6559 /* Check for overlapping fragments */
6560 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6562 * Overlap Check:
6563 * ~~~~--------- # Check if the newly
6564 * ~ ndata_mp| # received fragment
6565 * ~~~~--------- # overlaps with the
6566 * ---------~~~~~~ # current fragment.
6567 * | mp ~
6568 * ---------~~~~~~
6570 if (is_v4) {
6571 data = (char *)iph + IPH_HDR_LENGTH(iph) +
6572 firstbyte - nfirstbyte;
6573 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6574 } else {
6575 data = (char *)ip6h +
6576 nip6_hdr_length + firstbyte -
6577 nfirstbyte;
6578 ndata = (char *)nip6h + nip6_hdr_length;
6580 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6581 firstbyte)) {
6582 /* Overlapping data does not match */
6583 (void) fragcache_delentry(i, fep, frag, ipss);
6584 mutex_exit(&frag->itpf_lock);
6585 ip_drop_packet(mp, inbound, NULL,
6586 DROPPER(ipss, ipds_spd_overlap_frag),
6587 &ipss->ipsec_spd_dropper);
6588 if (inbound)
6589 (void) ip_recv_attr_free_mblk(iramp);
6590 return (NULL);
6592 /* Part of defense for jolt2.c fragmentation attack */
6593 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6595 * Check for identical or subset fragments:
6596 * ---------- ~~~~--------~~~~~
6597 * | nmp | or ~ nmp ~
6598 * ---------- ~~~~--------~~~~~
6599 * ---------- ------
6600 * | mp | | mp |
6601 * ---------- ------
6603 mutex_exit(&frag->itpf_lock);
6604 ip_drop_packet(mp, inbound, NULL,
6605 DROPPER(ipss, ipds_spd_evil_frag),
6606 &ipss->ipsec_spd_dropper);
6607 if (inbound)
6608 (void) ip_recv_attr_free_mblk(iramp);
6609 return (NULL);
6614 /* Correct location for this fragment? */
6615 if (firstbyte <= nfirstbyte) {
6617 * Check if the tail end of the new fragment overlaps
6618 * with the head of the current fragment.
6619 * --------~~~~~~~
6620 * | nmp ~
6621 * --------~~~~~~~
6622 * ~~~~~--------
6623 * ~ mp |
6624 * ~~~~~--------
6626 if (lastbyte > nfirstbyte) {
6627 /* Fragments overlap */
6628 data = (char *)iph + IPH_HDR_LENGTH(iph) +
6629 firstbyte - nfirstbyte;
6630 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6631 if (is_v4) {
6632 data = (char *)iph +
6633 IPH_HDR_LENGTH(iph) + firstbyte -
6634 nfirstbyte;
6635 ndata = (char *)niph +
6636 IPH_HDR_LENGTH(niph);
6637 } else {
6638 data = (char *)ip6h +
6639 nip6_hdr_length + firstbyte -
6640 nfirstbyte;
6641 ndata = (char *)nip6h + nip6_hdr_length;
6643 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6644 - nfirstbyte)) {
6645 /* Overlap mismatch */
6646 (void) fragcache_delentry(i, fep, frag,
6647 ipss);
6648 mutex_exit(&frag->itpf_lock);
6649 ip_drop_packet(mp, inbound, NULL,
6650 DROPPER(ipss,
6651 ipds_spd_overlap_frag),
6652 &ipss->ipsec_spd_dropper);
6653 if (inbound) {
6654 (void) ip_recv_attr_free_mblk(
6655 iramp);
6657 return (NULL);
6662 * Fragment does not illegally overlap and can now
6663 * be inserted into the chain
6665 break;
6668 prevmp = nmp;
6670 /* Prepend the attributes before we link it in */
6671 if (iramp != NULL) {
6672 ASSERT(iramp->b_cont == NULL);
6673 iramp->b_cont = mp;
6674 mp = iramp;
6675 iramp = NULL;
6677 mp->b_next = nmp;
6679 if (prevmp == NULL) {
6680 fep->itpfe_fraglist = mp;
6681 } else {
6682 prevmp->b_next = mp;
6684 if (last)
6685 fep->itpfe_last = 1;
6687 /* Part of defense for jolt2.c fragmentation attack */
6688 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6689 (void) fragcache_delentry(i, fep, frag, ipss);
6690 mutex_exit(&frag->itpf_lock);
6691 if (inbound)
6692 mp = ip_recv_attr_free_mblk(mp);
6694 ip_drop_packet(mp, inbound, NULL,
6695 DROPPER(ipss, ipds_spd_max_frags),
6696 &ipss->ipsec_spd_dropper);
6697 return (NULL);
6700 /* Check for complete packet */
6702 if (!fep->itpfe_last) {
6703 mutex_exit(&frag->itpf_lock);
6704 #ifdef FRAGCACHE_DEBUG
6705 cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
6706 #endif
6707 return (NULL);
6710 offset = 0;
6711 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6712 mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6713 int hdr_len;
6715 oiph = (ipha_t *)data_mp->b_rptr;
6716 ip6h = NULL;
6717 iph = NULL;
6719 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6720 hdr_len = ((outer_hdr_len != 0) ?
6721 IPH_HDR_LENGTH(oiph) : 0);
6722 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6723 } else {
6724 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6725 ASSERT(data_mp->b_cont == NULL);
6726 ip6h = (ip6_t *)data_mp->b_rptr;
6727 (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6728 &ip6_hdr_length, &v6_proto_p);
6729 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6732 /* Calculate current fragment start/end */
6733 if (is_v4) {
6734 if (iph == NULL) {
6735 /* Was v6 outer */
6736 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6738 firstbyte = V4_FRAG_OFFSET(iph);
6739 lastbyte = firstbyte + ntohs(iph->ipha_length) -
6740 IPH_HDR_LENGTH(iph);
6741 } else {
6742 ASSERT(data_mp->b_cont == NULL);
6743 ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
6744 if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6745 &ip6_hdr_length, &v6_proto_p)) {
6746 mutex_exit(&frag->itpf_lock);
6747 ip_drop_packet_chain(mp, inbound, NULL,
6748 DROPPER(ipss, ipds_spd_malformed_frag),
6749 &ipss->ipsec_spd_dropper);
6750 return (NULL);
6752 v6_proto = *v6_proto_p;
6753 bzero(&ipp, sizeof (ipp));
6754 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
6755 NULL);
6756 fraghdr = ipp.ipp_fraghdr;
6757 firstbyte = ntohs(fraghdr->ip6f_offlg &
6758 IP6F_OFF_MASK);
6759 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
6760 sizeof (ip6_t) - ip6_hdr_length;
6764 * If this fragment is greater than current offset,
6765 * we have a missing fragment so return NULL
6767 if (firstbyte > offset) {
6768 mutex_exit(&frag->itpf_lock);
6769 #ifdef FRAGCACHE_DEBUG
6771 * Note, this can happen when the last frag
6772 * gets sent through because it is smaller
6773 * than the MTU. It is not necessarily an
6774 * error condition.
6776 cmn_err(CE_WARN, "Frag greater than offset! : "
6777 "missing fragment: firstbyte = %d, offset = %d, "
6778 "mp = %p\n", firstbyte, offset, mp);
6779 #endif
6780 return (NULL);
6782 #ifdef FRAGCACHE_DEBUG
6783 cmn_err(CE_WARN, "Frag offsets : "
6784 "firstbyte = %d, offset = %d, mp = %p\n",
6785 firstbyte, offset, mp);
6786 #endif
6789 * If we are at the last fragment, we have the complete
6790 * packet, so rechain things and return it to caller
6791 * for processing
6794 if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6795 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6796 mp = fep->itpfe_fraglist;
6797 fep->itpfe_fraglist = NULL;
6798 (void) fragcache_delentry(i, fep, frag, ipss);
6799 mutex_exit(&frag->itpf_lock);
6801 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6802 65535)) || (!is_v4 && (firstbyte +
6803 ntohs(ip6h->ip6_plen) > 65535))) {
6804 /* It is an invalid "ping-o-death" packet */
6805 /* Discard it */
6806 ip_drop_packet_chain(mp, inbound, NULL,
6807 DROPPER(ipss, ipds_spd_evil_frag),
6808 &ipss->ipsec_spd_dropper);
6809 return (NULL);
6811 #ifdef FRAGCACHE_DEBUG
6812 cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6813 "mp->b_next = %p", mp, mp->b_next);
6814 #endif
6816 * For inbound case, mp has attrmp b_next'd chain
6817 * For outbound case, it is just data mp chain
6819 return (mp);
6823 * Update new ending offset if this
6824 * fragment extends the packet
6826 if (offset < lastbyte)
6827 offset = lastbyte;
6830 mutex_exit(&frag->itpf_lock);
6832 /* Didn't find last fragment, so return NULL */
6833 return (NULL);
6836 static void
6837 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6839 ipsec_fragcache_entry_t *fep;
6840 int i;
6841 ipsec_fragcache_entry_t *earlyfep = NULL;
6842 time_t itpf_time;
6843 int earlyexp;
6844 int earlyi = 0;
6846 ASSERT(MUTEX_HELD(&frag->itpf_lock));
6848 itpf_time = gethrestime_sec();
6849 earlyexp = itpf_time + 10000;
6851 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6852 fep = (frag->itpf_ptr)[i];
6853 while (fep) {
6854 if (fep->itpfe_exp < itpf_time) {
6855 /* found */
6856 fep = fragcache_delentry(i, fep, frag, ipss);
6857 } else {
6858 if (fep->itpfe_exp < earlyexp) {
6859 earlyfep = fep;
6860 earlyexp = fep->itpfe_exp;
6861 earlyi = i;
6863 fep = fep->itpfe_next;
6868 frag->itpf_expire_hint = earlyexp;
6870 /* if (!found) */
6871 if (frag->itpf_freelist == NULL)
6872 (void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
6875 static ipsec_fragcache_entry_t *
6876 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6877 ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6879 ipsec_fragcache_entry_t *targp;
6880 ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6882 ASSERT(MUTEX_HELD(&frag->itpf_lock));
6884 /* Free up any fragment list still in cache entry */
6885 if (fep->itpfe_fraglist != NULL) {
6886 ip_drop_packet_chain(fep->itpfe_fraglist,
6887 ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
6888 DROPPER(ipss, ipds_spd_expired_frags),
6889 &ipss->ipsec_spd_dropper);
6891 fep->itpfe_fraglist = NULL;
6893 targp = (frag->itpf_ptr)[slot];
6894 ASSERT(targp != 0);
6896 if (targp == fep) {
6897 /* unlink from head of hash chain */
6898 (frag->itpf_ptr)[slot] = nextp;
6899 /* link into free list */
6900 fep->itpfe_next = frag->itpf_freelist;
6901 frag->itpf_freelist = fep;
6902 return (nextp);
6905 /* maybe should use double linked list to make update faster */
6906 /* must be past front of chain */
6907 while (targp) {
6908 if (targp->itpfe_next == fep) {
6909 /* unlink from hash chain */
6910 targp->itpfe_next = nextp;
6911 /* link into free list */
6912 fep->itpfe_next = frag->itpf_freelist;
6913 frag->itpf_freelist = fep;
6914 return (nextp);
6916 targp = targp->itpfe_next;
6917 ASSERT(targp != 0);
6919 /* NOTREACHED */
6920 return (NULL);