4091 e1000g I217/I218 support
[illumos-gate.git] / usr / src / uts / common / io / e1000api / e1000_vf.c
blobd1286ad2a5fa84d68e3e953d3cb186281426a1bc
1 /******************************************************************************
3 Copyright (c) 2001-2011, Intel Corporation
4 All rights reserved.
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
32 ******************************************************************************/
33 /*$FreeBSD$*/
36 #include "e1000_api.h"
39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
41 static void e1000_release_vf(struct e1000_hw *hw);
42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48 u16 *duplex);
49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
55 /**
56 * e1000_init_phy_params_vf - Inits PHY params
57 * @hw: pointer to the HW structure
59 * Doesn't do much - there's no PHY available to the VF.
60 **/
61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
63 DEBUGFUNC("e1000_init_phy_params_vf");
64 hw->phy.type = e1000_phy_vf;
65 hw->phy.ops.acquire = e1000_acquire_vf;
66 hw->phy.ops.release = e1000_release_vf;
68 return E1000_SUCCESS;
71 /**
72 * e1000_init_nvm_params_vf - Inits NVM params
73 * @hw: pointer to the HW structure
75 * Doesn't do much - there's no NVM available to the VF.
76 **/
77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
79 DEBUGFUNC("e1000_init_nvm_params_vf");
80 hw->nvm.type = e1000_nvm_none;
81 hw->nvm.ops.acquire = e1000_acquire_vf;
82 hw->nvm.ops.release = e1000_release_vf;
84 return E1000_SUCCESS;
87 /**
88 * e1000_init_mac_params_vf - Inits MAC params
89 * @hw: pointer to the HW structure
90 **/
91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
93 struct e1000_mac_info *mac = &hw->mac;
95 DEBUGFUNC("e1000_init_mac_params_vf");
97 /* Set media type */
99 * Virtual functions don't care what they're media type is as they
100 * have no direct access to the PHY, or the media. That is handled
101 * by the physical function driver.
103 hw->phy.media_type = e1000_media_type_unknown;
105 /* No ASF features for the VF driver */
106 mac->asf_firmware_present = FALSE;
107 /* ARC subsystem not supported */
108 mac->arc_subsystem_valid = FALSE;
109 /* Disable adaptive IFS mode so the generic funcs don't do anything */
110 mac->adaptive_ifs = FALSE;
111 /* VF's have no MTA Registers - PF feature only */
112 mac->mta_reg_count = 128;
113 /* VF's have no access to RAR entries */
114 mac->rar_entry_count = 1;
116 /* Function pointers */
117 /* link setup */
118 mac->ops.setup_link = e1000_setup_link_vf;
119 /* bus type/speed/width */
120 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121 /* reset */
122 mac->ops.reset_hw = e1000_reset_hw_vf;
123 /* hw initialization */
124 mac->ops.init_hw = e1000_init_hw_vf;
125 /* check for link */
126 mac->ops.check_for_link = e1000_check_for_link_vf;
127 /* link info */
128 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129 /* multicast address update */
130 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131 /* set mac address */
132 mac->ops.rar_set = e1000_rar_set_vf;
133 /* read mac address */
134 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
137 return E1000_SUCCESS;
141 * e1000_init_function_pointers_vf - Inits function pointers
142 * @hw: pointer to the HW structure
144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
146 DEBUGFUNC("e1000_init_function_pointers_vf");
148 hw->mac.ops.init_params = e1000_init_mac_params_vf;
149 hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150 hw->phy.ops.init_params = e1000_init_phy_params_vf;
151 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
155 * e1000_acquire_vf - Acquire rights to access PHY or NVM.
156 * @hw: pointer to the HW structure
158 * There is no PHY or NVM so we want all attempts to acquire these to fail.
159 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
160 * even want any SW to attempt to use them.
162 static s32 e1000_acquire_vf(struct e1000_hw *hw)
164 return -E1000_ERR_PHY;
168 * e1000_release_vf - Release PHY or NVM
169 * @hw: pointer to the HW structure
171 * There is no PHY or NVM so we want all attempts to acquire these to fail.
172 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
173 * even want any SW to attempt to use them.
175 static void e1000_release_vf(struct e1000_hw *hw)
177 return;
181 * e1000_setup_link_vf - Sets up link.
182 * @hw: pointer to the HW structure
184 * Virtual functions cannot change link.
186 static s32 e1000_setup_link_vf(struct e1000_hw *hw)
188 DEBUGFUNC("e1000_setup_link_vf");
190 return E1000_SUCCESS;
194 * e1000_get_bus_info_pcie_vf - Gets the bus info.
195 * @hw: pointer to the HW structure
197 * Virtual functions are not really on their own bus.
199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
201 struct e1000_bus_info *bus = &hw->bus;
203 DEBUGFUNC("e1000_get_bus_info_pcie_vf");
205 /* Do not set type PCI-E because we don't want disable master to run */
206 bus->type = e1000_bus_type_reserved;
207 bus->speed = e1000_bus_speed_2500;
209 return 0;
213 * e1000_get_link_up_info_vf - Gets link info.
214 * @hw: pointer to the HW structure
215 * @speed: pointer to 16 bit value to store link speed.
216 * @duplex: pointer to 16 bit value to store duplex.
218 * Since we cannot read the PHY and get accurate link info, we must rely upon
219 * the status register's data which is often stale and inaccurate.
221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222 u16 *duplex)
224 s32 status;
226 DEBUGFUNC("e1000_get_link_up_info_vf");
228 status = E1000_READ_REG(hw, E1000_STATUS);
229 if (status & E1000_STATUS_SPEED_1000) {
230 *speed = SPEED_1000;
231 DEBUGOUT("1000 Mbs, ");
232 } else if (status & E1000_STATUS_SPEED_100) {
233 *speed = SPEED_100;
234 DEBUGOUT("100 Mbs, ");
235 } else {
236 *speed = SPEED_10;
237 DEBUGOUT("10 Mbs, ");
240 if (status & E1000_STATUS_FD) {
241 *duplex = FULL_DUPLEX;
242 DEBUGOUT("Full Duplex\n");
243 } else {
244 *duplex = HALF_DUPLEX;
245 DEBUGOUT("Half Duplex\n");
248 return E1000_SUCCESS;
252 * e1000_reset_hw_vf - Resets the HW
253 * @hw: pointer to the HW structure
255 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256 * This is all the reset we can perform on a VF.
258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
260 struct e1000_mbx_info *mbx = &hw->mbx;
261 u32 timeout = E1000_VF_INIT_TIMEOUT;
262 s32 ret_val = -E1000_ERR_MAC_INIT;
263 u32 ctrl, msgbuf[3];
264 u8 *addr = (u8 *)(&msgbuf[1]);
266 DEBUGFUNC("e1000_reset_hw_vf");
268 DEBUGOUT("Issuing a function level reset to MAC\n");
269 ctrl = E1000_READ_REG(hw, E1000_CTRL);
270 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
272 /* we cannot reset while the RSTI / RSTD bits are asserted */
273 while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274 timeout--;
275 usec_delay(5);
278 if (timeout) {
279 /* mailbox timeout can now become active */
280 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
282 msgbuf[0] = E1000_VF_RESET;
283 mbx->ops.write_posted(hw, msgbuf, 1, 0);
285 msec_delay(10);
287 /* set our "perm_addr" based on info provided by PF */
288 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289 if (!ret_val) {
290 if (msgbuf[0] == (E1000_VF_RESET |
291 E1000_VT_MSGTYPE_ACK))
292 memcpy(hw->mac.perm_addr, addr, 6);
293 else
294 ret_val = -E1000_ERR_MAC_INIT;
298 return ret_val;
302 * e1000_init_hw_vf - Inits the HW
303 * @hw: pointer to the HW structure
305 * Not much to do here except clear the PF Reset indication if there is one.
307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
309 DEBUGFUNC("e1000_init_hw_vf");
311 /* attempt to set and restore our mac address */
312 e1000_rar_set_vf(hw, hw->mac.addr, 0);
314 return E1000_SUCCESS;
318 * e1000_rar_set_vf - set device MAC address
319 * @hw: pointer to the HW structure
320 * @addr: pointer to the receive address
321 * @index receive address array register
323 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
325 struct e1000_mbx_info *mbx = &hw->mbx;
326 u32 msgbuf[3];
327 u8 *msg_addr = (u8 *)(&msgbuf[1]);
328 s32 ret_val;
330 memset(msgbuf, 0, 12);
331 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
332 memcpy(msg_addr, addr, 6);
333 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
335 if (!ret_val)
336 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
338 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
340 /* if nacked the address was rejected, use "perm_addr" */
341 if (!ret_val &&
342 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
343 e1000_read_mac_addr_vf(hw);
347 * e1000_hash_mc_addr_vf - Generate a multicast hash value
348 * @hw: pointer to the HW structure
349 * @mc_addr: pointer to a multicast address
351 * Generates a multicast address hash value which is used to determine
352 * the multicast filter table array address and new table value.
354 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
356 u32 hash_value, hash_mask;
357 u8 bit_shift = 0;
359 DEBUGFUNC("e1000_hash_mc_addr_generic");
361 /* Register count multiplied by bits per register */
362 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
365 * The bit_shift is the number of left-shifts
366 * where 0xFF would still fall within the hash mask.
368 while (hash_mask >> bit_shift != 0xFF)
369 bit_shift++;
371 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
372 (((u16) mc_addr[5]) << bit_shift)));
374 return hash_value;
377 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
378 u32 *msg, u16 size)
380 struct e1000_mbx_info *mbx = &hw->mbx;
381 u32 retmsg[E1000_VFMAILBOX_SIZE];
382 s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
384 if (!retval)
385 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
389 * e1000_update_mc_addr_list_vf - Update Multicast addresses
390 * @hw: pointer to the HW structure
391 * @mc_addr_list: array of multicast addresses to program
392 * @mc_addr_count: number of multicast addresses to program
394 * Updates the Multicast Table Array.
395 * The caller must have a packed mc_addr_list of multicast addresses.
397 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
398 u8 *mc_addr_list, u32 mc_addr_count)
400 u32 msgbuf[E1000_VFMAILBOX_SIZE];
401 u16 *hash_list = (u16 *)&msgbuf[1];
402 u32 hash_value;
403 u32 i;
405 DEBUGFUNC("e1000_update_mc_addr_list_vf");
407 /* Each entry in the list uses 1 16 bit word. We have 30
408 * 16 bit words available in our HW msg buffer (minus 1 for the
409 * msg type). That's 30 hash values if we pack 'em right. If
410 * there are more than 30 MC addresses to add then punt the
411 * extras for now and then add code to handle more than 30 later.
412 * It would be unusual for a server to request that many multi-cast
413 * addresses except for in large enterprise network environments.
416 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
418 if (mc_addr_count > 30) {
419 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
420 mc_addr_count = 30;
423 msgbuf[0] = E1000_VF_SET_MULTICAST;
424 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
426 for (i = 0; i < mc_addr_count; i++) {
427 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
428 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
429 hash_list[i] = hash_value & 0x0FFF;
430 mc_addr_list += ETH_ADDR_LEN;
433 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
437 * e1000_vfta_set_vf - Set/Unset vlan filter table address
438 * @hw: pointer to the HW structure
439 * @vid: determines the vfta register and bit to set/unset
440 * @set: if TRUE then set bit, else clear bit
442 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
444 u32 msgbuf[2];
446 msgbuf[0] = E1000_VF_SET_VLAN;
447 msgbuf[1] = vid;
448 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
449 if (set)
450 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
452 e1000_write_msg_read_ack(hw, msgbuf, 2);
455 /** e1000_rlpml_set_vf - Set the maximum receive packet length
456 * @hw: pointer to the HW structure
457 * @max_size: value to assign to max frame size
459 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
461 u32 msgbuf[2];
463 msgbuf[0] = E1000_VF_SET_LPE;
464 msgbuf[1] = max_size;
466 e1000_write_msg_read_ack(hw, msgbuf, 2);
470 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
471 * @hw: pointer to the HW structure
472 * @uni: boolean indicating unicast promisc status
473 * @multi: boolean indicating multicast promisc status
475 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
477 struct e1000_mbx_info *mbx = &hw->mbx;
478 u32 msgbuf = E1000_VF_SET_PROMISC;
479 s32 ret_val;
481 switch (type) {
482 case e1000_promisc_multicast:
483 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
484 break;
485 case e1000_promisc_enabled:
486 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
487 case e1000_promisc_unicast:
488 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
489 case e1000_promisc_disabled:
490 break;
491 default:
492 return -E1000_ERR_MAC_INIT;
495 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
497 if (!ret_val)
498 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
500 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
501 ret_val = -E1000_ERR_MAC_INIT;
503 return ret_val;
507 * e1000_read_mac_addr_vf - Read device MAC address
508 * @hw: pointer to the HW structure
510 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
512 int i;
514 for (i = 0; i < ETH_ADDR_LEN; i++)
515 hw->mac.addr[i] = hw->mac.perm_addr[i];
517 return E1000_SUCCESS;
521 * e1000_check_for_link_vf - Check for link for a virtual interface
522 * @hw: pointer to the HW structure
524 * Checks to see if the underlying PF is still talking to the VF and
525 * if it is then it reports the link state to the hardware, otherwise
526 * it reports link down and returns an error.
528 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
530 struct e1000_mbx_info *mbx = &hw->mbx;
531 struct e1000_mac_info *mac = &hw->mac;
532 s32 ret_val = E1000_SUCCESS;
533 u32 in_msg = 0;
535 DEBUGFUNC("e1000_check_for_link_vf");
538 * We only want to run this if there has been a rst asserted.
539 * in this case that could mean a link change, device reset,
540 * or a virtual function reset
543 /* If we were hit with a reset or timeout drop the link */
544 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
545 mac->get_link_status = TRUE;
547 if (!mac->get_link_status)
548 goto out;
550 /* if link status is down no point in checking to see if pf is up */
551 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
552 goto out;
554 /* if the read failed it could just be a mailbox collision, best wait
555 * until we are called again and don't report an error */
556 if (mbx->ops.read(hw, &in_msg, 1, 0))
557 goto out;
559 /* if incoming message isn't clear to send we are waiting on response */
560 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
561 /* message is not CTS and is NACK we have lost CTS status */
562 if (in_msg & E1000_VT_MSGTYPE_NACK)
563 ret_val = -E1000_ERR_MAC_INIT;
564 goto out;
567 /* at this point we know the PF is talking to us, check and see if
568 * we are still accepting timeout or if we had a timeout failure.
569 * if we failed then we will need to reinit */
570 if (!mbx->timeout) {
571 ret_val = -E1000_ERR_MAC_INIT;
572 goto out;
575 /* if we passed all the tests above then the link is up and we no
576 * longer need to check for link */
577 mac->get_link_status = FALSE;
579 out:
580 return ret_val;