4091 e1000g I217/I218 support
[illumos-gate.git] / usr / src / uts / common / io / e1000api / e1000_phy.c
blob241c1d5d307328643235e0f16612de11ff50d3cf
1 /******************************************************************************
3 Copyright (c) 2001-2013, Intel Corporation
4 All rights reserved.
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
32 ******************************************************************************/
33 /*$FreeBSD$*/
35 #include "e1000_api.h"
37 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read, bool page_set);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] = {
46 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 (sizeof(e1000_m88_cable_length_table) / \
49 sizeof(e1000_m88_cable_length_table[0]))
51 static const u16 e1000_igp_2_cable_length_table[] = {
52 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
53 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
54 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
55 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
56 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
57 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
58 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
59 124};
60 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
61 (sizeof(e1000_igp_2_cable_length_table) / \
62 sizeof(e1000_igp_2_cable_length_table[0]))
64 /**
65 * e1000_init_phy_ops_generic - Initialize PHY function pointers
66 * @hw: pointer to the HW structure
68 * Setups up the function pointers to no-op functions
69 **/
70 void e1000_init_phy_ops_generic(struct e1000_hw *hw)
72 struct e1000_phy_info *phy = &hw->phy;
73 DEBUGFUNC("e1000_init_phy_ops_generic");
75 /* Initialize function pointers */
76 phy->ops.init_params = e1000_null_ops_generic;
77 phy->ops.acquire = e1000_null_ops_generic;
78 phy->ops.check_polarity = e1000_null_ops_generic;
79 phy->ops.check_reset_block = e1000_null_ops_generic;
80 phy->ops.commit = e1000_null_ops_generic;
81 phy->ops.force_speed_duplex = e1000_null_ops_generic;
82 phy->ops.get_cfg_done = e1000_null_ops_generic;
83 phy->ops.get_cable_length = e1000_null_ops_generic;
84 phy->ops.get_info = e1000_null_ops_generic;
85 phy->ops.set_page = e1000_null_set_page;
86 phy->ops.read_reg = e1000_null_read_reg;
87 phy->ops.read_reg_locked = e1000_null_read_reg;
88 phy->ops.read_reg_page = e1000_null_read_reg;
89 phy->ops.release = e1000_null_phy_generic;
90 phy->ops.reset = e1000_null_ops_generic;
91 phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
92 phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
93 phy->ops.write_reg = e1000_null_write_reg;
94 phy->ops.write_reg_locked = e1000_null_write_reg;
95 phy->ops.write_reg_page = e1000_null_write_reg;
96 phy->ops.power_up = e1000_null_phy_generic;
97 phy->ops.power_down = e1000_null_phy_generic;
98 phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
99 phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
100 phy->ops.cfg_on_link_up = e1000_null_ops_generic;
104 * e1000_null_set_page - No-op function, return 0
105 * @hw: pointer to the HW structure
107 s32 e1000_null_set_page(struct e1000_hw *hw, u16 data)
109 DEBUGFUNC("e1000_null_set_page");
110 return E1000_SUCCESS;
114 * e1000_null_read_reg - No-op function, return 0
115 * @hw: pointer to the HW structure
117 s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data)
119 DEBUGFUNC("e1000_null_read_reg");
120 return E1000_SUCCESS;
124 * e1000_null_phy_generic - No-op function, return void
125 * @hw: pointer to the HW structure
127 void e1000_null_phy_generic(struct e1000_hw *hw)
129 DEBUGFUNC("e1000_null_phy_generic");
130 return;
134 * e1000_null_lplu_state - No-op function, return 0
135 * @hw: pointer to the HW structure
137 s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active)
139 DEBUGFUNC("e1000_null_lplu_state");
140 return E1000_SUCCESS;
144 * e1000_null_write_reg - No-op function, return 0
145 * @hw: pointer to the HW structure
147 s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data)
149 DEBUGFUNC("e1000_null_write_reg");
150 return E1000_SUCCESS;
154 * e1000_read_i2c_byte_null - No-op function, return 0
155 * @hw: pointer to hardware structure
156 * @byte_offset: byte offset to write
157 * @dev_addr: device address
158 * @data: data value read
161 s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
162 u8 dev_addr, u8 *data)
164 DEBUGFUNC("e1000_read_i2c_byte_null");
165 return E1000_SUCCESS;
169 * e1000_write_i2c_byte_null - No-op function, return 0
170 * @hw: pointer to hardware structure
171 * @byte_offset: byte offset to write
172 * @dev_addr: device address
173 * @data: data value to write
176 s32 e1000_write_i2c_byte_null(struct e1000_hw *hw,
177 u8 byte_offset,
178 u8 dev_addr,
179 u8 data)
181 DEBUGFUNC("e1000_write_i2c_byte_null");
182 return E1000_SUCCESS;
186 * e1000_check_reset_block_generic - Check if PHY reset is blocked
187 * @hw: pointer to the HW structure
189 * Read the PHY management control register and check whether a PHY reset
190 * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
191 * return E1000_BLK_PHY_RESET (12).
193 s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
195 u32 manc;
197 DEBUGFUNC("e1000_check_reset_block");
199 manc = E1000_READ_REG(hw, E1000_MANC);
201 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
202 E1000_BLK_PHY_RESET : E1000_SUCCESS;
206 * e1000_get_phy_id - Retrieve the PHY ID and revision
207 * @hw: pointer to the HW structure
209 * Reads the PHY registers and stores the PHY ID and possibly the PHY
210 * revision in the hardware structure.
212 s32 e1000_get_phy_id(struct e1000_hw *hw)
214 struct e1000_phy_info *phy = &hw->phy;
215 s32 ret_val = E1000_SUCCESS;
216 u16 phy_id;
217 u16 retry_count = 0;
219 DEBUGFUNC("e1000_get_phy_id");
221 if (!phy->ops.read_reg)
222 return E1000_SUCCESS;
224 while (retry_count < 2) {
225 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
226 if (ret_val)
227 return ret_val;
229 phy->id = (u32)(phy_id << 16);
230 usec_delay(20);
231 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
232 if (ret_val)
233 return ret_val;
235 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
236 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
238 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
239 return E1000_SUCCESS;
241 retry_count++;
244 return E1000_SUCCESS;
248 * e1000_phy_reset_dsp_generic - Reset PHY DSP
249 * @hw: pointer to the HW structure
251 * Reset the digital signal processor.
253 s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
255 s32 ret_val;
257 DEBUGFUNC("e1000_phy_reset_dsp_generic");
259 if (!hw->phy.ops.write_reg)
260 return E1000_SUCCESS;
262 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
263 if (ret_val)
264 return ret_val;
266 return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
270 * e1000_read_phy_reg_mdic - Read MDI control register
271 * @hw: pointer to the HW structure
272 * @offset: register offset to be read
273 * @data: pointer to the read data
275 * Reads the MDI control register in the PHY at offset and stores the
276 * information read to data.
278 s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
280 struct e1000_phy_info *phy = &hw->phy;
281 u32 i, mdic = 0;
283 DEBUGFUNC("e1000_read_phy_reg_mdic");
285 if (offset > MAX_PHY_REG_ADDRESS) {
286 DEBUGOUT1("PHY Address %d is out of range\n", offset);
287 return -E1000_ERR_PARAM;
290 /* Set up Op-code, Phy Address, and register offset in the MDI
291 * Control register. The MAC will take care of interfacing with the
292 * PHY to retrieve the desired data.
294 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
295 (phy->addr << E1000_MDIC_PHY_SHIFT) |
296 (E1000_MDIC_OP_READ));
298 E1000_WRITE_REG(hw, E1000_MDIC, mdic);
300 /* Poll the ready bit to see if the MDI read completed
301 * Increasing the time out as testing showed failures with
302 * the lower time out
304 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
305 usec_delay(50);
306 mdic = E1000_READ_REG(hw, E1000_MDIC);
307 if (mdic & E1000_MDIC_READY)
308 break;
310 if (!(mdic & E1000_MDIC_READY)) {
311 DEBUGOUT("MDI Read did not complete\n");
312 return -E1000_ERR_PHY;
314 if (mdic & E1000_MDIC_ERROR) {
315 DEBUGOUT("MDI Error\n");
316 return -E1000_ERR_PHY;
318 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
319 DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
320 offset,
321 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
322 return -E1000_ERR_PHY;
324 *data = (u16) mdic;
326 /* Allow some time after each MDIC transaction to avoid
327 * reading duplicate data in the next MDIC transaction.
329 if (hw->mac.type == e1000_pch2lan)
330 usec_delay(100);
332 return E1000_SUCCESS;
336 * e1000_write_phy_reg_mdic - Write MDI control register
337 * @hw: pointer to the HW structure
338 * @offset: register offset to write to
339 * @data: data to write to register at offset
341 * Writes data to MDI control register in the PHY at offset.
343 s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
345 struct e1000_phy_info *phy = &hw->phy;
346 u32 i, mdic = 0;
348 DEBUGFUNC("e1000_write_phy_reg_mdic");
350 if (offset > MAX_PHY_REG_ADDRESS) {
351 DEBUGOUT1("PHY Address %d is out of range\n", offset);
352 return -E1000_ERR_PARAM;
355 /* Set up Op-code, Phy Address, and register offset in the MDI
356 * Control register. The MAC will take care of interfacing with the
357 * PHY to retrieve the desired data.
359 mdic = (((u32)data) |
360 (offset << E1000_MDIC_REG_SHIFT) |
361 (phy->addr << E1000_MDIC_PHY_SHIFT) |
362 (E1000_MDIC_OP_WRITE));
364 E1000_WRITE_REG(hw, E1000_MDIC, mdic);
366 /* Poll the ready bit to see if the MDI read completed
367 * Increasing the time out as testing showed failures with
368 * the lower time out
370 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
371 usec_delay(50);
372 mdic = E1000_READ_REG(hw, E1000_MDIC);
373 if (mdic & E1000_MDIC_READY)
374 break;
376 if (!(mdic & E1000_MDIC_READY)) {
377 DEBUGOUT("MDI Write did not complete\n");
378 return -E1000_ERR_PHY;
380 if (mdic & E1000_MDIC_ERROR) {
381 DEBUGOUT("MDI Error\n");
382 return -E1000_ERR_PHY;
384 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
385 DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
386 offset,
387 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
388 return -E1000_ERR_PHY;
391 /* Allow some time after each MDIC transaction to avoid
392 * reading duplicate data in the next MDIC transaction.
394 if (hw->mac.type == e1000_pch2lan)
395 usec_delay(100);
397 return E1000_SUCCESS;
401 * e1000_read_phy_reg_i2c - Read PHY register using i2c
402 * @hw: pointer to the HW structure
403 * @offset: register offset to be read
404 * @data: pointer to the read data
406 * Reads the PHY register at offset using the i2c interface and stores the
407 * retrieved information in data.
409 s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
411 struct e1000_phy_info *phy = &hw->phy;
412 u32 i, i2ccmd = 0;
414 DEBUGFUNC("e1000_read_phy_reg_i2c");
416 /* Set up Op-code, Phy Address, and register address in the I2CCMD
417 * register. The MAC will take care of interfacing with the
418 * PHY to retrieve the desired data.
420 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
421 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
422 (E1000_I2CCMD_OPCODE_READ));
424 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
426 /* Poll the ready bit to see if the I2C read completed */
427 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
428 usec_delay(50);
429 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
430 if (i2ccmd & E1000_I2CCMD_READY)
431 break;
433 if (!(i2ccmd & E1000_I2CCMD_READY)) {
434 DEBUGOUT("I2CCMD Read did not complete\n");
435 return -E1000_ERR_PHY;
437 if (i2ccmd & E1000_I2CCMD_ERROR) {
438 DEBUGOUT("I2CCMD Error bit set\n");
439 return -E1000_ERR_PHY;
442 /* Need to byte-swap the 16-bit value. */
443 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
445 return E1000_SUCCESS;
449 * e1000_write_phy_reg_i2c - Write PHY register using i2c
450 * @hw: pointer to the HW structure
451 * @offset: register offset to write to
452 * @data: data to write at register offset
454 * Writes the data to PHY register at the offset using the i2c interface.
456 s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
458 struct e1000_phy_info *phy = &hw->phy;
459 u32 i, i2ccmd = 0;
460 u16 phy_data_swapped;
462 DEBUGFUNC("e1000_write_phy_reg_i2c");
464 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
465 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
466 DEBUGOUT1("PHY I2C Address %d is out of range.\n",
467 hw->phy.addr);
468 return -E1000_ERR_CONFIG;
471 /* Swap the data bytes for the I2C interface */
472 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
474 /* Set up Op-code, Phy Address, and register address in the I2CCMD
475 * register. The MAC will take care of interfacing with the
476 * PHY to retrieve the desired data.
478 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
479 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
480 E1000_I2CCMD_OPCODE_WRITE |
481 phy_data_swapped);
483 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
485 /* Poll the ready bit to see if the I2C read completed */
486 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
487 usec_delay(50);
488 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
489 if (i2ccmd & E1000_I2CCMD_READY)
490 break;
492 if (!(i2ccmd & E1000_I2CCMD_READY)) {
493 DEBUGOUT("I2CCMD Write did not complete\n");
494 return -E1000_ERR_PHY;
496 if (i2ccmd & E1000_I2CCMD_ERROR) {
497 DEBUGOUT("I2CCMD Error bit set\n");
498 return -E1000_ERR_PHY;
501 return E1000_SUCCESS;
505 * e1000_read_sfp_data_byte - Reads SFP module data.
506 * @hw: pointer to the HW structure
507 * @offset: byte location offset to be read
508 * @data: read data buffer pointer
510 * Reads one byte from SFP module data stored
511 * in SFP resided EEPROM memory or SFP diagnostic area.
512 * Function should be called with
513 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
514 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
515 * access
517 s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
519 u32 i = 0;
520 u32 i2ccmd = 0;
521 u32 data_local = 0;
523 DEBUGFUNC("e1000_read_sfp_data_byte");
525 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
526 DEBUGOUT("I2CCMD command address exceeds upper limit\n");
527 return -E1000_ERR_PHY;
530 /* Set up Op-code, EEPROM Address,in the I2CCMD
531 * register. The MAC will take care of interfacing with the
532 * EEPROM to retrieve the desired data.
534 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
535 E1000_I2CCMD_OPCODE_READ);
537 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
539 /* Poll the ready bit to see if the I2C read completed */
540 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
541 usec_delay(50);
542 data_local = E1000_READ_REG(hw, E1000_I2CCMD);
543 if (data_local & E1000_I2CCMD_READY)
544 break;
546 if (!(data_local & E1000_I2CCMD_READY)) {
547 DEBUGOUT("I2CCMD Read did not complete\n");
548 return -E1000_ERR_PHY;
550 if (data_local & E1000_I2CCMD_ERROR) {
551 DEBUGOUT("I2CCMD Error bit set\n");
552 return -E1000_ERR_PHY;
554 *data = (u8) data_local & 0xFF;
556 return E1000_SUCCESS;
560 * e1000_write_sfp_data_byte - Writes SFP module data.
561 * @hw: pointer to the HW structure
562 * @offset: byte location offset to write to
563 * @data: data to write
565 * Writes one byte to SFP module data stored
566 * in SFP resided EEPROM memory or SFP diagnostic area.
567 * Function should be called with
568 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
569 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
570 * access
572 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
574 u32 i = 0;
575 u32 i2ccmd = 0;
576 u32 data_local = 0;
578 DEBUGFUNC("e1000_write_sfp_data_byte");
580 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
581 DEBUGOUT("I2CCMD command address exceeds upper limit\n");
582 return -E1000_ERR_PHY;
584 /* The programming interface is 16 bits wide
585 * so we need to read the whole word first
586 * then update appropriate byte lane and write
587 * the updated word back.
589 /* Set up Op-code, EEPROM Address,in the I2CCMD
590 * register. The MAC will take care of interfacing
591 * with an EEPROM to write the data given.
593 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
594 E1000_I2CCMD_OPCODE_READ);
595 /* Set a command to read single word */
596 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
597 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
598 usec_delay(50);
599 /* Poll the ready bit to see if lastly
600 * launched I2C operation completed
602 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
603 if (i2ccmd & E1000_I2CCMD_READY) {
604 /* Check if this is READ or WRITE phase */
605 if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
606 E1000_I2CCMD_OPCODE_READ) {
607 /* Write the selected byte
608 * lane and update whole word
610 data_local = i2ccmd & 0xFF00;
611 data_local |= data;
612 i2ccmd = ((offset <<
613 E1000_I2CCMD_REG_ADDR_SHIFT) |
614 E1000_I2CCMD_OPCODE_WRITE | data_local);
615 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
616 } else {
617 break;
621 if (!(i2ccmd & E1000_I2CCMD_READY)) {
622 DEBUGOUT("I2CCMD Write did not complete\n");
623 return -E1000_ERR_PHY;
625 if (i2ccmd & E1000_I2CCMD_ERROR) {
626 DEBUGOUT("I2CCMD Error bit set\n");
627 return -E1000_ERR_PHY;
629 return E1000_SUCCESS;
633 * e1000_read_phy_reg_m88 - Read m88 PHY register
634 * @hw: pointer to the HW structure
635 * @offset: register offset to be read
636 * @data: pointer to the read data
638 * Acquires semaphore, if necessary, then reads the PHY register at offset
639 * and storing the retrieved information in data. Release any acquired
640 * semaphores before exiting.
642 s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
644 s32 ret_val;
646 DEBUGFUNC("e1000_read_phy_reg_m88");
648 if (!hw->phy.ops.acquire)
649 return E1000_SUCCESS;
651 ret_val = hw->phy.ops.acquire(hw);
652 if (ret_val)
653 return ret_val;
655 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
656 data);
658 hw->phy.ops.release(hw);
660 return ret_val;
664 * e1000_write_phy_reg_m88 - Write m88 PHY register
665 * @hw: pointer to the HW structure
666 * @offset: register offset to write to
667 * @data: data to write at register offset
669 * Acquires semaphore, if necessary, then writes the data to PHY register
670 * at the offset. Release any acquired semaphores before exiting.
672 s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
674 s32 ret_val;
676 DEBUGFUNC("e1000_write_phy_reg_m88");
678 if (!hw->phy.ops.acquire)
679 return E1000_SUCCESS;
681 ret_val = hw->phy.ops.acquire(hw);
682 if (ret_val)
683 return ret_val;
685 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
686 data);
688 hw->phy.ops.release(hw);
690 return ret_val;
694 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
695 * @hw: pointer to the HW structure
696 * @page: page to set (shifted left when necessary)
698 * Sets PHY page required for PHY register access. Assumes semaphore is
699 * already acquired. Note, this function sets phy.addr to 1 so the caller
700 * must set it appropriately (if necessary) after this function returns.
702 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
704 DEBUGFUNC("e1000_set_page_igp");
706 DEBUGOUT1("Setting page 0x%x\n", page);
708 hw->phy.addr = 1;
710 return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
714 * __e1000_read_phy_reg_igp - Read igp PHY register
715 * @hw: pointer to the HW structure
716 * @offset: register offset to be read
717 * @data: pointer to the read data
718 * @locked: semaphore has already been acquired or not
720 * Acquires semaphore, if necessary, then reads the PHY register at offset
721 * and stores the retrieved information in data. Release any acquired
722 * semaphores before exiting.
724 static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
725 bool locked)
727 s32 ret_val = E1000_SUCCESS;
729 DEBUGFUNC("__e1000_read_phy_reg_igp");
731 if (!locked) {
732 if (!hw->phy.ops.acquire)
733 return E1000_SUCCESS;
735 ret_val = hw->phy.ops.acquire(hw);
736 if (ret_val)
737 return ret_val;
740 if (offset > MAX_PHY_MULTI_PAGE_REG)
741 ret_val = e1000_write_phy_reg_mdic(hw,
742 IGP01E1000_PHY_PAGE_SELECT,
743 (u16)offset);
744 if (!ret_val)
745 ret_val = e1000_read_phy_reg_mdic(hw,
746 MAX_PHY_REG_ADDRESS & offset,
747 data);
748 if (!locked)
749 hw->phy.ops.release(hw);
751 return ret_val;
755 * e1000_read_phy_reg_igp - Read igp PHY register
756 * @hw: pointer to the HW structure
757 * @offset: register offset to be read
758 * @data: pointer to the read data
760 * Acquires semaphore then reads the PHY register at offset and stores the
761 * retrieved information in data.
762 * Release the acquired semaphore before exiting.
764 s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
766 return __e1000_read_phy_reg_igp(hw, offset, data, FALSE);
770 * e1000_read_phy_reg_igp_locked - Read igp PHY register
771 * @hw: pointer to the HW structure
772 * @offset: register offset to be read
773 * @data: pointer to the read data
775 * Reads the PHY register at offset and stores the retrieved information
776 * in data. Assumes semaphore already acquired.
778 s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
780 return __e1000_read_phy_reg_igp(hw, offset, data, TRUE);
784 * e1000_write_phy_reg_igp - Write igp PHY register
785 * @hw: pointer to the HW structure
786 * @offset: register offset to write to
787 * @data: data to write at register offset
788 * @locked: semaphore has already been acquired or not
790 * Acquires semaphore, if necessary, then writes the data to PHY register
791 * at the offset. Release any acquired semaphores before exiting.
793 static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
794 bool locked)
796 s32 ret_val = E1000_SUCCESS;
798 DEBUGFUNC("e1000_write_phy_reg_igp");
800 if (!locked) {
801 if (!hw->phy.ops.acquire)
802 return E1000_SUCCESS;
804 ret_val = hw->phy.ops.acquire(hw);
805 if (ret_val)
806 return ret_val;
809 if (offset > MAX_PHY_MULTI_PAGE_REG)
810 ret_val = e1000_write_phy_reg_mdic(hw,
811 IGP01E1000_PHY_PAGE_SELECT,
812 (u16)offset);
813 if (!ret_val)
814 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
815 offset,
816 data);
817 if (!locked)
818 hw->phy.ops.release(hw);
820 return ret_val;
824 * e1000_write_phy_reg_igp - Write igp PHY register
825 * @hw: pointer to the HW structure
826 * @offset: register offset to write to
827 * @data: data to write at register offset
829 * Acquires semaphore then writes the data to PHY register
830 * at the offset. Release any acquired semaphores before exiting.
832 s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
834 return __e1000_write_phy_reg_igp(hw, offset, data, FALSE);
838 * e1000_write_phy_reg_igp_locked - Write igp PHY register
839 * @hw: pointer to the HW structure
840 * @offset: register offset to write to
841 * @data: data to write at register offset
843 * Writes the data to PHY register at the offset.
844 * Assumes semaphore already acquired.
846 s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
848 return __e1000_write_phy_reg_igp(hw, offset, data, TRUE);
852 * __e1000_read_kmrn_reg - Read kumeran register
853 * @hw: pointer to the HW structure
854 * @offset: register offset to be read
855 * @data: pointer to the read data
856 * @locked: semaphore has already been acquired or not
858 * Acquires semaphore, if necessary. Then reads the PHY register at offset
859 * using the kumeran interface. The information retrieved is stored in data.
860 * Release any acquired semaphores before exiting.
862 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
863 bool locked)
865 u32 kmrnctrlsta;
867 DEBUGFUNC("__e1000_read_kmrn_reg");
869 if (!locked) {
870 s32 ret_val = E1000_SUCCESS;
872 if (!hw->phy.ops.acquire)
873 return E1000_SUCCESS;
875 ret_val = hw->phy.ops.acquire(hw);
876 if (ret_val)
877 return ret_val;
880 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
881 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
882 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
883 E1000_WRITE_FLUSH(hw);
885 usec_delay(2);
887 kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
888 *data = (u16)kmrnctrlsta;
890 if (!locked)
891 hw->phy.ops.release(hw);
893 return E1000_SUCCESS;
897 * e1000_read_kmrn_reg_generic - Read kumeran register
898 * @hw: pointer to the HW structure
899 * @offset: register offset to be read
900 * @data: pointer to the read data
902 * Acquires semaphore then reads the PHY register at offset using the
903 * kumeran interface. The information retrieved is stored in data.
904 * Release the acquired semaphore before exiting.
906 s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
908 return __e1000_read_kmrn_reg(hw, offset, data, FALSE);
912 * e1000_read_kmrn_reg_locked - Read kumeran register
913 * @hw: pointer to the HW structure
914 * @offset: register offset to be read
915 * @data: pointer to the read data
917 * Reads the PHY register at offset using the kumeran interface. The
918 * information retrieved is stored in data.
919 * Assumes semaphore already acquired.
921 s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
923 return __e1000_read_kmrn_reg(hw, offset, data, TRUE);
927 * __e1000_write_kmrn_reg - Write kumeran register
928 * @hw: pointer to the HW structure
929 * @offset: register offset to write to
930 * @data: data to write at register offset
931 * @locked: semaphore has already been acquired or not
933 * Acquires semaphore, if necessary. Then write the data to PHY register
934 * at the offset using the kumeran interface. Release any acquired semaphores
935 * before exiting.
937 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
938 bool locked)
940 u32 kmrnctrlsta;
942 DEBUGFUNC("e1000_write_kmrn_reg_generic");
944 if (!locked) {
945 s32 ret_val = E1000_SUCCESS;
947 if (!hw->phy.ops.acquire)
948 return E1000_SUCCESS;
950 ret_val = hw->phy.ops.acquire(hw);
951 if (ret_val)
952 return ret_val;
955 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
956 E1000_KMRNCTRLSTA_OFFSET) | data;
957 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
958 E1000_WRITE_FLUSH(hw);
960 usec_delay(2);
962 if (!locked)
963 hw->phy.ops.release(hw);
965 return E1000_SUCCESS;
969 * e1000_write_kmrn_reg_generic - Write kumeran register
970 * @hw: pointer to the HW structure
971 * @offset: register offset to write to
972 * @data: data to write at register offset
974 * Acquires semaphore then writes the data to the PHY register at the offset
975 * using the kumeran interface. Release the acquired semaphore before exiting.
977 s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
979 return __e1000_write_kmrn_reg(hw, offset, data, FALSE);
983 * e1000_write_kmrn_reg_locked - Write kumeran register
984 * @hw: pointer to the HW structure
985 * @offset: register offset to write to
986 * @data: data to write at register offset
988 * Write the data to PHY register at the offset using the kumeran interface.
989 * Assumes semaphore already acquired.
991 s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
993 return __e1000_write_kmrn_reg(hw, offset, data, TRUE);
997 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
998 * @hw: pointer to the HW structure
1000 * Sets up Master/slave mode
1002 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
1004 s32 ret_val;
1005 u16 phy_data;
1007 /* Resolve Master/Slave mode */
1008 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
1009 if (ret_val)
1010 return ret_val;
1012 /* load defaults for future use */
1013 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
1014 ((phy_data & CR_1000T_MS_VALUE) ?
1015 e1000_ms_force_master :
1016 e1000_ms_force_slave) : e1000_ms_auto;
1018 switch (hw->phy.ms_type) {
1019 case e1000_ms_force_master:
1020 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1021 break;
1022 case e1000_ms_force_slave:
1023 phy_data |= CR_1000T_MS_ENABLE;
1024 phy_data &= ~(CR_1000T_MS_VALUE);
1025 break;
1026 case e1000_ms_auto:
1027 phy_data &= ~CR_1000T_MS_ENABLE;
1028 /* fall-through */
1029 default:
1030 break;
1033 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
1037 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
1038 * @hw: pointer to the HW structure
1040 * Sets up Carrier-sense on Transmit and downshift values.
1042 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
1044 s32 ret_val;
1045 u16 phy_data;
1047 DEBUGFUNC("e1000_copper_link_setup_82577");
1049 if (hw->phy.type == e1000_phy_82580) {
1050 ret_val = hw->phy.ops.reset(hw);
1051 if (ret_val) {
1052 DEBUGOUT("Error resetting the PHY.\n");
1053 return ret_val;
1057 /* Enable CRS on Tx. This must be set for half-duplex operation.
1058 * Not required on some PHYs.
1060 ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
1061 if (ret_val)
1062 return ret_val;
1064 if ((hw->phy.type != e1000_phy_82579) &&
1065 (hw->phy.type != e1000_phy_i217))
1066 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
1068 /* Enable downshift */
1069 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
1071 ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
1072 if (ret_val)
1073 return ret_val;
1075 /* Set MDI/MDIX mode */
1076 ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
1077 if (ret_val)
1078 return ret_val;
1079 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
1080 /* Options:
1081 * 0 - Auto (default)
1082 * 1 - MDI mode
1083 * 2 - MDI-X mode
1085 switch (hw->phy.mdix) {
1086 case 1:
1087 break;
1088 case 2:
1089 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
1090 break;
1091 case 0:
1092 default:
1093 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
1094 break;
1096 ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
1097 if (ret_val)
1098 return ret_val;
1100 return e1000_set_master_slave_mode(hw);
1104 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
1105 * @hw: pointer to the HW structure
1107 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
1108 * and downshift values are set also.
1110 s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
1112 struct e1000_phy_info *phy = &hw->phy;
1113 s32 ret_val;
1114 u16 phy_data;
1116 DEBUGFUNC("e1000_copper_link_setup_m88");
1119 /* Enable CRS on Tx. This must be set for half-duplex operation. */
1120 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1121 if (ret_val)
1122 return ret_val;
1124 /* For BM PHY this bit is downshift enable */
1125 if (phy->type != e1000_phy_bm)
1126 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1128 /* Options:
1129 * MDI/MDI-X = 0 (default)
1130 * 0 - Auto for all speeds
1131 * 1 - MDI mode
1132 * 2 - MDI-X mode
1133 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1135 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1137 switch (phy->mdix) {
1138 case 1:
1139 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1140 break;
1141 case 2:
1142 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1143 break;
1144 case 3:
1145 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1146 break;
1147 case 0:
1148 default:
1149 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1150 break;
1153 /* Options:
1154 * disable_polarity_correction = 0 (default)
1155 * Automatic Correction for Reversed Cable Polarity
1156 * 0 - Disabled
1157 * 1 - Enabled
1159 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1160 if (phy->disable_polarity_correction)
1161 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1163 /* Enable downshift on BM (disabled by default) */
1164 if (phy->type == e1000_phy_bm) {
1165 /* For 82574/82583, first disable then enable downshift */
1166 if (phy->id == BME1000_E_PHY_ID_R2) {
1167 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
1168 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1169 phy_data);
1170 if (ret_val)
1171 return ret_val;
1172 /* Commit the changes. */
1173 ret_val = phy->ops.commit(hw);
1174 if (ret_val) {
1175 DEBUGOUT("Error committing the PHY changes\n");
1176 return ret_val;
1180 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
1183 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1184 if (ret_val)
1185 return ret_val;
1187 if ((phy->type == e1000_phy_m88) &&
1188 (phy->revision < E1000_REVISION_4) &&
1189 (phy->id != BME1000_E_PHY_ID_R2)) {
1190 /* Force TX_CLK in the Extended PHY Specific Control Register
1191 * to 25MHz clock.
1193 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1194 &phy_data);
1195 if (ret_val)
1196 return ret_val;
1198 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1200 if ((phy->revision == E1000_REVISION_2) &&
1201 (phy->id == M88E1111_I_PHY_ID)) {
1202 /* 82573L PHY - set the downshift counter to 5x. */
1203 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
1204 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1205 } else {
1206 /* Configure Master and Slave downshift values */
1207 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1208 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1209 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1210 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1212 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1213 phy_data);
1214 if (ret_val)
1215 return ret_val;
1218 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
1219 /* Set PHY page 0, register 29 to 0x0003 */
1220 ret_val = phy->ops.write_reg(hw, 29, 0x0003);
1221 if (ret_val)
1222 return ret_val;
1224 /* Set PHY page 0, register 30 to 0x0000 */
1225 ret_val = phy->ops.write_reg(hw, 30, 0x0000);
1226 if (ret_val)
1227 return ret_val;
1230 /* Commit the changes. */
1231 ret_val = phy->ops.commit(hw);
1232 if (ret_val) {
1233 DEBUGOUT("Error committing the PHY changes\n");
1234 return ret_val;
1237 if (phy->type == e1000_phy_82578) {
1238 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1239 &phy_data);
1240 if (ret_val)
1241 return ret_val;
1243 /* 82578 PHY - set the downshift count to 1x. */
1244 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
1245 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
1246 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1247 phy_data);
1248 if (ret_val)
1249 return ret_val;
1252 if (phy->type == e1000_phy_i210) {
1253 ret_val = e1000_set_master_slave_mode(hw);
1254 if (ret_val)
1255 return ret_val;
1258 return E1000_SUCCESS;
1262 * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
1263 * @hw: pointer to the HW structure
1265 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
1266 * Also enables and sets the downshift parameters.
1268 s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
1270 struct e1000_phy_info *phy = &hw->phy;
1271 s32 ret_val;
1272 u16 phy_data;
1274 DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
1277 /* Enable CRS on Tx. This must be set for half-duplex operation. */
1278 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1279 if (ret_val)
1280 return ret_val;
1282 /* Options:
1283 * MDI/MDI-X = 0 (default)
1284 * 0 - Auto for all speeds
1285 * 1 - MDI mode
1286 * 2 - MDI-X mode
1287 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1289 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1291 switch (phy->mdix) {
1292 case 1:
1293 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1294 break;
1295 case 2:
1296 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1297 break;
1298 case 3:
1299 /* M88E1112 does not support this mode) */
1300 if (phy->id != M88E1112_E_PHY_ID) {
1301 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1302 break;
1304 case 0:
1305 default:
1306 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1307 break;
1310 /* Options:
1311 * disable_polarity_correction = 0 (default)
1312 * Automatic Correction for Reversed Cable Polarity
1313 * 0 - Disabled
1314 * 1 - Enabled
1316 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1317 if (phy->disable_polarity_correction)
1318 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1320 /* Enable downshift and setting it to X6 */
1321 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
1322 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
1323 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
1325 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1326 if (ret_val)
1327 return ret_val;
1329 /* Commit the changes. */
1330 ret_val = phy->ops.commit(hw);
1331 if (ret_val) {
1332 DEBUGOUT("Error committing the PHY changes\n");
1333 return ret_val;
1336 return E1000_SUCCESS;
1340 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
1341 * @hw: pointer to the HW structure
1343 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
1344 * igp PHY's.
1346 s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
1348 struct e1000_phy_info *phy = &hw->phy;
1349 s32 ret_val;
1350 u16 data;
1352 DEBUGFUNC("e1000_copper_link_setup_igp");
1355 ret_val = hw->phy.ops.reset(hw);
1356 if (ret_val) {
1357 DEBUGOUT("Error resetting the PHY.\n");
1358 return ret_val;
1361 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
1362 * timeout issues when LFS is enabled.
1364 msec_delay(100);
1366 /* The NVM settings will configure LPLU in D3 for
1367 * non-IGP1 PHYs.
1369 if (phy->type == e1000_phy_igp) {
1370 /* disable lplu d3 during driver init */
1371 ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE);
1372 if (ret_val) {
1373 DEBUGOUT("Error Disabling LPLU D3\n");
1374 return ret_val;
1378 /* disable lplu d0 during driver init */
1379 if (hw->phy.ops.set_d0_lplu_state) {
1380 ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
1381 if (ret_val) {
1382 DEBUGOUT("Error Disabling LPLU D0\n");
1383 return ret_val;
1386 /* Configure mdi-mdix settings */
1387 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
1388 if (ret_val)
1389 return ret_val;
1391 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1393 switch (phy->mdix) {
1394 case 1:
1395 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1396 break;
1397 case 2:
1398 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1399 break;
1400 case 0:
1401 default:
1402 data |= IGP01E1000_PSCR_AUTO_MDIX;
1403 break;
1405 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
1406 if (ret_val)
1407 return ret_val;
1409 /* set auto-master slave resolution settings */
1410 if (hw->mac.autoneg) {
1411 /* when autonegotiation advertisement is only 1000Mbps then we
1412 * should disable SmartSpeed and enable Auto MasterSlave
1413 * resolution as hardware default.
1415 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
1416 /* Disable SmartSpeed */
1417 ret_val = phy->ops.read_reg(hw,
1418 IGP01E1000_PHY_PORT_CONFIG,
1419 &data);
1420 if (ret_val)
1421 return ret_val;
1423 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1424 ret_val = phy->ops.write_reg(hw,
1425 IGP01E1000_PHY_PORT_CONFIG,
1426 data);
1427 if (ret_val)
1428 return ret_val;
1430 /* Set auto Master/Slave resolution process */
1431 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1432 if (ret_val)
1433 return ret_val;
1435 data &= ~CR_1000T_MS_ENABLE;
1436 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1437 if (ret_val)
1438 return ret_val;
1441 ret_val = e1000_set_master_slave_mode(hw);
1444 return ret_val;
1448 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
1449 * @hw: pointer to the HW structure
1451 * Reads the MII auto-neg advertisement register and/or the 1000T control
1452 * register and if the PHY is already setup for auto-negotiation, then
1453 * return successful. Otherwise, setup advertisement and flow control to
1454 * the appropriate values for the wanted auto-negotiation.
1456 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1458 struct e1000_phy_info *phy = &hw->phy;
1459 s32 ret_val;
1460 u16 mii_autoneg_adv_reg;
1461 u16 mii_1000t_ctrl_reg = 0;
1463 DEBUGFUNC("e1000_phy_setup_autoneg");
1465 phy->autoneg_advertised &= phy->autoneg_mask;
1467 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1468 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1469 if (ret_val)
1470 return ret_val;
1472 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1473 /* Read the MII 1000Base-T Control Register (Address 9). */
1474 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1475 &mii_1000t_ctrl_reg);
1476 if (ret_val)
1477 return ret_val;
1480 /* Need to parse both autoneg_advertised and fc and set up
1481 * the appropriate PHY registers. First we will parse for
1482 * autoneg_advertised software override. Since we can advertise
1483 * a plethora of combinations, we need to check each bit
1484 * individually.
1487 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1488 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1489 * the 1000Base-T Control Register (Address 9).
1491 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1492 NWAY_AR_100TX_HD_CAPS |
1493 NWAY_AR_10T_FD_CAPS |
1494 NWAY_AR_10T_HD_CAPS);
1495 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1497 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1499 /* Do we want to advertise 10 Mb Half Duplex? */
1500 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1501 DEBUGOUT("Advertise 10mb Half duplex\n");
1502 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1505 /* Do we want to advertise 10 Mb Full Duplex? */
1506 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1507 DEBUGOUT("Advertise 10mb Full duplex\n");
1508 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1511 /* Do we want to advertise 100 Mb Half Duplex? */
1512 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1513 DEBUGOUT("Advertise 100mb Half duplex\n");
1514 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1517 /* Do we want to advertise 100 Mb Full Duplex? */
1518 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1519 DEBUGOUT("Advertise 100mb Full duplex\n");
1520 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1523 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1524 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1525 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1527 /* Do we want to advertise 1000 Mb Full Duplex? */
1528 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1529 DEBUGOUT("Advertise 1000mb Full duplex\n");
1530 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1533 /* Check for a software override of the flow control settings, and
1534 * setup the PHY advertisement registers accordingly. If
1535 * auto-negotiation is enabled, then software will have to set the
1536 * "PAUSE" bits to the correct value in the Auto-Negotiation
1537 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1538 * negotiation.
1540 * The possible values of the "fc" parameter are:
1541 * 0: Flow control is completely disabled
1542 * 1: Rx flow control is enabled (we can receive pause frames
1543 * but not send pause frames).
1544 * 2: Tx flow control is enabled (we can send pause frames
1545 * but we do not support receiving pause frames).
1546 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1547 * other: No software override. The flow control configuration
1548 * in the EEPROM is used.
1550 switch (hw->fc.current_mode) {
1551 case e1000_fc_none:
1552 /* Flow control (Rx & Tx) is completely disabled by a
1553 * software over-ride.
1555 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1556 break;
1557 case e1000_fc_rx_pause:
1558 /* Rx Flow control is enabled, and Tx Flow control is
1559 * disabled, by a software over-ride.
1561 * Since there really isn't a way to advertise that we are
1562 * capable of Rx Pause ONLY, we will advertise that we
1563 * support both symmetric and asymmetric Rx PAUSE. Later
1564 * (in e1000_config_fc_after_link_up) we will disable the
1565 * hw's ability to send PAUSE frames.
1567 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1568 break;
1569 case e1000_fc_tx_pause:
1570 /* Tx Flow control is enabled, and Rx Flow control is
1571 * disabled, by a software over-ride.
1573 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1574 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1575 break;
1576 case e1000_fc_full:
1577 /* Flow control (both Rx and Tx) is enabled by a software
1578 * over-ride.
1580 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1581 break;
1582 default:
1583 DEBUGOUT("Flow control param set incorrectly\n");
1584 return -E1000_ERR_CONFIG;
1587 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1588 if (ret_val)
1589 return ret_val;
1591 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1593 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1594 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
1595 mii_1000t_ctrl_reg);
1597 return ret_val;
1601 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1602 * @hw: pointer to the HW structure
1604 * Performs initial bounds checking on autoneg advertisement parameter, then
1605 * configure to advertise the full capability. Setup the PHY to autoneg
1606 * and restart the negotiation process between the link partner. If
1607 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1609 s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1611 struct e1000_phy_info *phy = &hw->phy;
1612 s32 ret_val;
1613 u16 phy_ctrl;
1615 DEBUGFUNC("e1000_copper_link_autoneg");
1617 /* Perform some bounds checking on the autoneg advertisement
1618 * parameter.
1620 phy->autoneg_advertised &= phy->autoneg_mask;
1622 /* If autoneg_advertised is zero, we assume it was not defaulted
1623 * by the calling code so we set to advertise full capability.
1625 if (!phy->autoneg_advertised)
1626 phy->autoneg_advertised = phy->autoneg_mask;
1628 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1629 ret_val = e1000_phy_setup_autoneg(hw);
1630 if (ret_val) {
1631 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1632 return ret_val;
1634 DEBUGOUT("Restarting Auto-Neg\n");
1636 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1637 * the Auto Neg Restart bit in the PHY control register.
1639 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1640 if (ret_val)
1641 return ret_val;
1643 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1644 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1645 if (ret_val)
1646 return ret_val;
1648 /* Does the user want to wait for Auto-Neg to complete here, or
1649 * check at a later time (for example, callback routine).
1651 if (phy->autoneg_wait_to_complete) {
1652 ret_val = e1000_wait_autoneg(hw);
1653 if (ret_val) {
1654 DEBUGOUT("Error while waiting for autoneg to complete\n");
1655 return ret_val;
1659 hw->mac.get_link_status = TRUE;
1661 return ret_val;
1665 * e1000_setup_copper_link_generic - Configure copper link settings
1666 * @hw: pointer to the HW structure
1668 * Calls the appropriate function to configure the link for auto-neg or forced
1669 * speed and duplex. Then we check for link, once link is established calls
1670 * to configure collision distance and flow control are called. If link is
1671 * not established, we return -E1000_ERR_PHY (-2).
1673 s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
1675 s32 ret_val;
1676 bool link;
1678 DEBUGFUNC("e1000_setup_copper_link_generic");
1680 if (hw->mac.autoneg) {
1681 /* Setup autoneg and flow control advertisement and perform
1682 * autonegotiation.
1684 ret_val = e1000_copper_link_autoneg(hw);
1685 if (ret_val)
1686 return ret_val;
1687 } else {
1688 /* PHY will be set to 10H, 10F, 100H or 100F
1689 * depending on user settings.
1691 DEBUGOUT("Forcing Speed and Duplex\n");
1692 ret_val = hw->phy.ops.force_speed_duplex(hw);
1693 if (ret_val) {
1694 DEBUGOUT("Error Forcing Speed and Duplex\n");
1695 return ret_val;
1699 /* Check link status. Wait up to 100 microseconds for link to become
1700 * valid.
1702 ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1703 &link);
1704 if (ret_val)
1705 return ret_val;
1707 if (link) {
1708 DEBUGOUT("Valid link established!!!\n");
1709 hw->mac.ops.config_collision_dist(hw);
1710 ret_val = e1000_config_fc_after_link_up_generic(hw);
1711 } else {
1712 DEBUGOUT("Unable to establish link!!!\n");
1715 return ret_val;
1719 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1720 * @hw: pointer to the HW structure
1722 * Calls the PHY setup function to force speed and duplex. Clears the
1723 * auto-crossover to force MDI manually. Waits for link and returns
1724 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1726 s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1728 struct e1000_phy_info *phy = &hw->phy;
1729 s32 ret_val;
1730 u16 phy_data;
1731 bool link;
1733 DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1735 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1736 if (ret_val)
1737 return ret_val;
1739 e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1741 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1742 if (ret_val)
1743 return ret_val;
1745 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1746 * forced whenever speed and duplex are forced.
1748 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1749 if (ret_val)
1750 return ret_val;
1752 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1753 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1755 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1756 if (ret_val)
1757 return ret_val;
1759 DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1761 usec_delay(1);
1763 if (phy->autoneg_wait_to_complete) {
1764 DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1766 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1767 100000, &link);
1768 if (ret_val)
1769 return ret_val;
1771 if (!link)
1772 DEBUGOUT("Link taking longer than expected.\n");
1774 /* Try once more */
1775 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1776 100000, &link);
1779 return ret_val;
1783 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1784 * @hw: pointer to the HW structure
1786 * Calls the PHY setup function to force speed and duplex. Clears the
1787 * auto-crossover to force MDI manually. Resets the PHY to commit the
1788 * changes. If time expires while waiting for link up, we reset the DSP.
1789 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1790 * successful completion, else return corresponding error code.
1792 s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1794 struct e1000_phy_info *phy = &hw->phy;
1795 s32 ret_val;
1796 u16 phy_data;
1797 bool link;
1799 DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1801 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1802 if (phy->type != e1000_phy_i210) {
1803 /* Clear Auto-Crossover to force MDI manually. M88E1000
1804 * requires MDI forced whenever speed and duplex are forced.
1806 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1807 &phy_data);
1808 if (ret_val)
1809 return ret_val;
1811 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1812 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1813 phy_data);
1814 if (ret_val)
1815 return ret_val;
1818 DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1820 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1821 if (ret_val)
1822 return ret_val;
1824 e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1826 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1827 if (ret_val)
1828 return ret_val;
1830 /* Reset the phy to commit changes. */
1831 ret_val = hw->phy.ops.commit(hw);
1832 if (ret_val)
1833 return ret_val;
1835 if (phy->autoneg_wait_to_complete) {
1836 DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1838 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1839 100000, &link);
1840 if (ret_val)
1841 return ret_val;
1843 if (!link) {
1844 bool reset_dsp = TRUE;
1846 switch (hw->phy.id) {
1847 case I347AT4_E_PHY_ID:
1848 case M88E1340M_E_PHY_ID:
1849 case M88E1112_E_PHY_ID:
1850 case I210_I_PHY_ID:
1851 reset_dsp = FALSE;
1852 break;
1853 default:
1854 if (hw->phy.type != e1000_phy_m88)
1855 reset_dsp = FALSE;
1856 break;
1859 if (!reset_dsp) {
1860 DEBUGOUT("Link taking longer than expected.\n");
1861 } else {
1862 /* We didn't get link.
1863 * Reset the DSP and cross our fingers.
1865 ret_val = phy->ops.write_reg(hw,
1866 M88E1000_PHY_PAGE_SELECT,
1867 0x001d);
1868 if (ret_val)
1869 return ret_val;
1870 ret_val = e1000_phy_reset_dsp_generic(hw);
1871 if (ret_val)
1872 return ret_val;
1876 /* Try once more */
1877 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1878 100000, &link);
1879 if (ret_val)
1880 return ret_val;
1883 if (hw->phy.type != e1000_phy_m88)
1884 return E1000_SUCCESS;
1886 if (hw->phy.id == I347AT4_E_PHY_ID ||
1887 hw->phy.id == M88E1340M_E_PHY_ID ||
1888 hw->phy.id == M88E1112_E_PHY_ID)
1889 return E1000_SUCCESS;
1890 if (hw->phy.id == I210_I_PHY_ID)
1891 return E1000_SUCCESS;
1892 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1893 if (ret_val)
1894 return ret_val;
1896 /* Resetting the phy means we need to re-force TX_CLK in the
1897 * Extended PHY Specific Control Register to 25MHz clock from
1898 * the reset value of 2.5MHz.
1900 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1901 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1902 if (ret_val)
1903 return ret_val;
1905 /* In addition, we must re-enable CRS on Tx for both half and full
1906 * duplex.
1908 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1909 if (ret_val)
1910 return ret_val;
1912 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1913 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1915 return ret_val;
1919 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1920 * @hw: pointer to the HW structure
1922 * Forces the speed and duplex settings of the PHY.
1923 * This is a function pointer entry point only called by
1924 * PHY setup routines.
1926 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1928 struct e1000_phy_info *phy = &hw->phy;
1929 s32 ret_val;
1930 u16 data;
1931 bool link;
1933 DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
1935 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1936 if (ret_val)
1937 return ret_val;
1939 e1000_phy_force_speed_duplex_setup(hw, &data);
1941 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1942 if (ret_val)
1943 return ret_val;
1945 /* Disable MDI-X support for 10/100 */
1946 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1947 if (ret_val)
1948 return ret_val;
1950 data &= ~IFE_PMC_AUTO_MDIX;
1951 data &= ~IFE_PMC_FORCE_MDIX;
1953 ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1954 if (ret_val)
1955 return ret_val;
1957 DEBUGOUT1("IFE PMC: %X\n", data);
1959 usec_delay(1);
1961 if (phy->autoneg_wait_to_complete) {
1962 DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1964 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1965 100000, &link);
1966 if (ret_val)
1967 return ret_val;
1969 if (!link)
1970 DEBUGOUT("Link taking longer than expected.\n");
1972 /* Try once more */
1973 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1974 100000, &link);
1975 if (ret_val)
1976 return ret_val;
1979 return E1000_SUCCESS;
1983 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1984 * @hw: pointer to the HW structure
1985 * @phy_ctrl: pointer to current value of PHY_CONTROL
1987 * Forces speed and duplex on the PHY by doing the following: disable flow
1988 * control, force speed/duplex on the MAC, disable auto speed detection,
1989 * disable auto-negotiation, configure duplex, configure speed, configure
1990 * the collision distance, write configuration to CTRL register. The
1991 * caller must write to the PHY_CONTROL register for these settings to
1992 * take affect.
1994 void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1996 struct e1000_mac_info *mac = &hw->mac;
1997 u32 ctrl;
1999 DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
2001 /* Turn off flow control when forcing speed/duplex */
2002 hw->fc.current_mode = e1000_fc_none;
2004 /* Force speed/duplex on the mac */
2005 ctrl = E1000_READ_REG(hw, E1000_CTRL);
2006 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2007 ctrl &= ~E1000_CTRL_SPD_SEL;
2009 /* Disable Auto Speed Detection */
2010 ctrl &= ~E1000_CTRL_ASDE;
2012 /* Disable autoneg on the phy */
2013 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
2015 /* Forcing Full or Half Duplex? */
2016 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
2017 ctrl &= ~E1000_CTRL_FD;
2018 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
2019 DEBUGOUT("Half Duplex\n");
2020 } else {
2021 ctrl |= E1000_CTRL_FD;
2022 *phy_ctrl |= MII_CR_FULL_DUPLEX;
2023 DEBUGOUT("Full Duplex\n");
2026 /* Forcing 10mb or 100mb? */
2027 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
2028 ctrl |= E1000_CTRL_SPD_100;
2029 *phy_ctrl |= MII_CR_SPEED_100;
2030 *phy_ctrl &= ~MII_CR_SPEED_1000;
2031 DEBUGOUT("Forcing 100mb\n");
2032 } else {
2033 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2034 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2035 DEBUGOUT("Forcing 10mb\n");
2038 hw->mac.ops.config_collision_dist(hw);
2040 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2044 * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
2045 * @hw: pointer to the HW structure
2046 * @active: boolean used to enable/disable lplu
2048 * Success returns 0, Failure returns 1
2050 * The low power link up (lplu) state is set to the power management level D3
2051 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
2052 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2053 * is used during Dx states where the power conservation is most important.
2054 * During driver activity, SmartSpeed should be enabled so performance is
2055 * maintained.
2057 s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
2059 struct e1000_phy_info *phy = &hw->phy;
2060 s32 ret_val;
2061 u16 data;
2063 DEBUGFUNC("e1000_set_d3_lplu_state_generic");
2065 if (!hw->phy.ops.read_reg)
2066 return E1000_SUCCESS;
2068 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
2069 if (ret_val)
2070 return ret_val;
2072 if (!active) {
2073 data &= ~IGP02E1000_PM_D3_LPLU;
2074 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2075 data);
2076 if (ret_val)
2077 return ret_val;
2078 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2079 * during Dx states where the power conservation is most
2080 * important. During driver activity we should enable
2081 * SmartSpeed, so performance is maintained.
2083 if (phy->smart_speed == e1000_smart_speed_on) {
2084 ret_val = phy->ops.read_reg(hw,
2085 IGP01E1000_PHY_PORT_CONFIG,
2086 &data);
2087 if (ret_val)
2088 return ret_val;
2090 data |= IGP01E1000_PSCFR_SMART_SPEED;
2091 ret_val = phy->ops.write_reg(hw,
2092 IGP01E1000_PHY_PORT_CONFIG,
2093 data);
2094 if (ret_val)
2095 return ret_val;
2096 } else if (phy->smart_speed == e1000_smart_speed_off) {
2097 ret_val = phy->ops.read_reg(hw,
2098 IGP01E1000_PHY_PORT_CONFIG,
2099 &data);
2100 if (ret_val)
2101 return ret_val;
2103 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2104 ret_val = phy->ops.write_reg(hw,
2105 IGP01E1000_PHY_PORT_CONFIG,
2106 data);
2107 if (ret_val)
2108 return ret_val;
2110 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2111 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2112 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2113 data |= IGP02E1000_PM_D3_LPLU;
2114 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2115 data);
2116 if (ret_val)
2117 return ret_val;
2119 /* When LPLU is enabled, we should disable SmartSpeed */
2120 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2121 &data);
2122 if (ret_val)
2123 return ret_val;
2125 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2126 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2127 data);
2130 return ret_val;
2134 * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
2135 * @hw: pointer to the HW structure
2137 * Success returns 0, Failure returns 1
2139 * A downshift is detected by querying the PHY link health.
2141 s32 e1000_check_downshift_generic(struct e1000_hw *hw)
2143 struct e1000_phy_info *phy = &hw->phy;
2144 s32 ret_val;
2145 u16 phy_data, offset, mask;
2147 DEBUGFUNC("e1000_check_downshift_generic");
2149 switch (phy->type) {
2150 case e1000_phy_i210:
2151 case e1000_phy_m88:
2152 case e1000_phy_gg82563:
2153 case e1000_phy_bm:
2154 case e1000_phy_82578:
2155 offset = M88E1000_PHY_SPEC_STATUS;
2156 mask = M88E1000_PSSR_DOWNSHIFT;
2157 break;
2158 case e1000_phy_igp:
2159 case e1000_phy_igp_2:
2160 case e1000_phy_igp_3:
2161 offset = IGP01E1000_PHY_LINK_HEALTH;
2162 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
2163 break;
2164 default:
2165 /* speed downshift not supported */
2166 phy->speed_downgraded = FALSE;
2167 return E1000_SUCCESS;
2170 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2172 if (!ret_val)
2173 phy->speed_downgraded = !!(phy_data & mask);
2175 return ret_val;
2179 * e1000_check_polarity_m88 - Checks the polarity.
2180 * @hw: pointer to the HW structure
2182 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2184 * Polarity is determined based on the PHY specific status register.
2186 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
2188 struct e1000_phy_info *phy = &hw->phy;
2189 s32 ret_val;
2190 u16 data;
2192 DEBUGFUNC("e1000_check_polarity_m88");
2194 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
2196 if (!ret_val)
2197 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
2198 ? e1000_rev_polarity_reversed
2199 : e1000_rev_polarity_normal;
2201 return ret_val;
2205 * e1000_check_polarity_igp - Checks the polarity.
2206 * @hw: pointer to the HW structure
2208 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2210 * Polarity is determined based on the PHY port status register, and the
2211 * current speed (since there is no polarity at 100Mbps).
2213 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
2215 struct e1000_phy_info *phy = &hw->phy;
2216 s32 ret_val;
2217 u16 data, offset, mask;
2219 DEBUGFUNC("e1000_check_polarity_igp");
2221 /* Polarity is determined based on the speed of
2222 * our connection.
2224 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2225 if (ret_val)
2226 return ret_val;
2228 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2229 IGP01E1000_PSSR_SPEED_1000MBPS) {
2230 offset = IGP01E1000_PHY_PCS_INIT_REG;
2231 mask = IGP01E1000_PHY_POLARITY_MASK;
2232 } else {
2233 /* This really only applies to 10Mbps since
2234 * there is no polarity for 100Mbps (always 0).
2236 offset = IGP01E1000_PHY_PORT_STATUS;
2237 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
2240 ret_val = phy->ops.read_reg(hw, offset, &data);
2242 if (!ret_val)
2243 phy->cable_polarity = (data & mask)
2244 ? e1000_rev_polarity_reversed
2245 : e1000_rev_polarity_normal;
2247 return ret_val;
2251 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
2252 * @hw: pointer to the HW structure
2254 * Polarity is determined on the polarity reversal feature being enabled.
2256 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
2258 struct e1000_phy_info *phy = &hw->phy;
2259 s32 ret_val;
2260 u16 phy_data, offset, mask;
2262 DEBUGFUNC("e1000_check_polarity_ife");
2264 /* Polarity is determined based on the reversal feature being enabled.
2266 if (phy->polarity_correction) {
2267 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
2268 mask = IFE_PESC_POLARITY_REVERSED;
2269 } else {
2270 offset = IFE_PHY_SPECIAL_CONTROL;
2271 mask = IFE_PSC_FORCE_POLARITY;
2274 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2276 if (!ret_val)
2277 phy->cable_polarity = (phy_data & mask)
2278 ? e1000_rev_polarity_reversed
2279 : e1000_rev_polarity_normal;
2281 return ret_val;
2285 * e1000_wait_autoneg - Wait for auto-neg completion
2286 * @hw: pointer to the HW structure
2288 * Waits for auto-negotiation to complete or for the auto-negotiation time
2289 * limit to expire, which ever happens first.
2291 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2293 s32 ret_val = E1000_SUCCESS;
2294 u16 i, phy_status;
2296 DEBUGFUNC("e1000_wait_autoneg");
2298 if (!hw->phy.ops.read_reg)
2299 return E1000_SUCCESS;
2301 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
2302 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
2303 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2304 if (ret_val)
2305 break;
2306 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2307 if (ret_val)
2308 break;
2309 if (phy_status & MII_SR_AUTONEG_COMPLETE)
2310 break;
2311 msec_delay(100);
2314 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
2315 * has completed.
2317 return ret_val;
2321 * e1000_phy_has_link_generic - Polls PHY for link
2322 * @hw: pointer to the HW structure
2323 * @iterations: number of times to poll for link
2324 * @usec_interval: delay between polling attempts
2325 * @success: pointer to whether polling was successful or not
2327 * Polls the PHY status register for link, 'iterations' number of times.
2329 s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
2330 u32 usec_interval, bool *success)
2332 s32 ret_val = E1000_SUCCESS;
2333 u16 i, phy_status;
2335 DEBUGFUNC("e1000_phy_has_link_generic");
2337 if (!hw->phy.ops.read_reg)
2338 return E1000_SUCCESS;
2340 for (i = 0; i < iterations; i++) {
2341 /* Some PHYs require the PHY_STATUS register to be read
2342 * twice due to the link bit being sticky. No harm doing
2343 * it across the board.
2345 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2346 if (ret_val)
2347 /* If the first read fails, another entity may have
2348 * ownership of the resources, wait and try again to
2349 * see if they have relinquished the resources yet.
2351 usec_delay(usec_interval);
2352 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2353 if (ret_val)
2354 break;
2355 if (phy_status & MII_SR_LINK_STATUS)
2356 break;
2357 if (usec_interval >= 1000)
2358 msec_delay_irq(usec_interval/1000);
2359 else
2360 usec_delay(usec_interval);
2363 *success = (i < iterations);
2365 return ret_val;
2369 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
2370 * @hw: pointer to the HW structure
2372 * Reads the PHY specific status register to retrieve the cable length
2373 * information. The cable length is determined by averaging the minimum and
2374 * maximum values to get the "average" cable length. The m88 PHY has four
2375 * possible cable length values, which are:
2376 * Register Value Cable Length
2377 * 0 < 50 meters
2378 * 1 50 - 80 meters
2379 * 2 80 - 110 meters
2380 * 3 110 - 140 meters
2381 * 4 > 140 meters
2383 s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
2385 struct e1000_phy_info *phy = &hw->phy;
2386 s32 ret_val;
2387 u16 phy_data, index;
2389 DEBUGFUNC("e1000_get_cable_length_m88");
2391 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2392 if (ret_val)
2393 return ret_val;
2395 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2396 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2398 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2399 return -E1000_ERR_PHY;
2401 phy->min_cable_length = e1000_m88_cable_length_table[index];
2402 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2404 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2406 return E1000_SUCCESS;
2409 s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
2411 struct e1000_phy_info *phy = &hw->phy;
2412 s32 ret_val;
2413 u16 phy_data, phy_data2, is_cm;
2414 u16 index, default_page;
2416 DEBUGFUNC("e1000_get_cable_length_m88_gen2");
2418 switch (hw->phy.id) {
2419 case I210_I_PHY_ID:
2420 /* Get cable length from PHY Cable Diagnostics Control Reg */
2421 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2422 (I347AT4_PCDL + phy->addr),
2423 &phy_data);
2424 if (ret_val)
2425 return ret_val;
2427 /* Check if the unit of cable length is meters or cm */
2428 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2429 I347AT4_PCDC, &phy_data2);
2430 if (ret_val)
2431 return ret_val;
2433 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2435 /* Populate the phy structure with cable length in meters */
2436 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2437 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2438 phy->cable_length = phy_data / (is_cm ? 100 : 1);
2439 break;
2440 case M88E1340M_E_PHY_ID:
2441 case I347AT4_E_PHY_ID:
2442 /* Remember the original page select and set it to 7 */
2443 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2444 &default_page);
2445 if (ret_val)
2446 return ret_val;
2448 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
2449 if (ret_val)
2450 return ret_val;
2452 /* Get cable length from PHY Cable Diagnostics Control Reg */
2453 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
2454 &phy_data);
2455 if (ret_val)
2456 return ret_val;
2458 /* Check if the unit of cable length is meters or cm */
2459 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
2460 if (ret_val)
2461 return ret_val;
2463 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2465 /* Populate the phy structure with cable length in meters */
2466 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2467 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2468 phy->cable_length = phy_data / (is_cm ? 100 : 1);
2470 /* Reset the page select to its original value */
2471 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2472 default_page);
2473 if (ret_val)
2474 return ret_val;
2475 break;
2477 case M88E1112_E_PHY_ID:
2478 /* Remember the original page select and set it to 5 */
2479 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2480 &default_page);
2481 if (ret_val)
2482 return ret_val;
2484 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
2485 if (ret_val)
2486 return ret_val;
2488 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
2489 &phy_data);
2490 if (ret_val)
2491 return ret_val;
2493 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2494 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2496 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2497 return -E1000_ERR_PHY;
2499 phy->min_cable_length = e1000_m88_cable_length_table[index];
2500 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2502 phy->cable_length = (phy->min_cable_length +
2503 phy->max_cable_length) / 2;
2505 /* Reset the page select to its original value */
2506 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2507 default_page);
2508 if (ret_val)
2509 return ret_val;
2511 break;
2512 default:
2513 return -E1000_ERR_PHY;
2516 return ret_val;
2520 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
2521 * @hw: pointer to the HW structure
2523 * The automatic gain control (agc) normalizes the amplitude of the
2524 * received signal, adjusting for the attenuation produced by the
2525 * cable. By reading the AGC registers, which represent the
2526 * combination of coarse and fine gain value, the value can be put
2527 * into a lookup table to obtain the approximate cable length
2528 * for each channel.
2530 s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
2532 struct e1000_phy_info *phy = &hw->phy;
2533 s32 ret_val;
2534 u16 phy_data, i, agc_value = 0;
2535 u16 cur_agc_index, max_agc_index = 0;
2536 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
2537 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
2538 IGP02E1000_PHY_AGC_A,
2539 IGP02E1000_PHY_AGC_B,
2540 IGP02E1000_PHY_AGC_C,
2541 IGP02E1000_PHY_AGC_D
2544 DEBUGFUNC("e1000_get_cable_length_igp_2");
2546 /* Read the AGC registers for all channels */
2547 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
2548 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
2549 if (ret_val)
2550 return ret_val;
2552 /* Getting bits 15:9, which represent the combination of
2553 * coarse and fine gain values. The result is a number
2554 * that can be put into the lookup table to obtain the
2555 * approximate cable length.
2557 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
2558 IGP02E1000_AGC_LENGTH_MASK;
2560 /* Array index bound check. */
2561 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
2562 (cur_agc_index == 0))
2563 return -E1000_ERR_PHY;
2565 /* Remove min & max AGC values from calculation. */
2566 if (e1000_igp_2_cable_length_table[min_agc_index] >
2567 e1000_igp_2_cable_length_table[cur_agc_index])
2568 min_agc_index = cur_agc_index;
2569 if (e1000_igp_2_cable_length_table[max_agc_index] <
2570 e1000_igp_2_cable_length_table[cur_agc_index])
2571 max_agc_index = cur_agc_index;
2573 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
2576 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
2577 e1000_igp_2_cable_length_table[max_agc_index]);
2578 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
2580 /* Calculate cable length with the error range of +/- 10 meters. */
2581 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
2582 (agc_value - IGP02E1000_AGC_RANGE) : 0;
2583 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
2585 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2587 return E1000_SUCCESS;
2591 * e1000_get_phy_info_m88 - Retrieve PHY information
2592 * @hw: pointer to the HW structure
2594 * Valid for only copper links. Read the PHY status register (sticky read)
2595 * to verify that link is up. Read the PHY special control register to
2596 * determine the polarity and 10base-T extended distance. Read the PHY
2597 * special status register to determine MDI/MDIx and current speed. If
2598 * speed is 1000, then determine cable length, local and remote receiver.
2600 s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
2602 struct e1000_phy_info *phy = &hw->phy;
2603 s32 ret_val;
2604 u16 phy_data;
2605 bool link;
2607 DEBUGFUNC("e1000_get_phy_info_m88");
2609 if (phy->media_type != e1000_media_type_copper) {
2610 DEBUGOUT("Phy info is only valid for copper media\n");
2611 return -E1000_ERR_CONFIG;
2614 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2615 if (ret_val)
2616 return ret_val;
2618 if (!link) {
2619 DEBUGOUT("Phy info is only valid if link is up\n");
2620 return -E1000_ERR_CONFIG;
2623 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2624 if (ret_val)
2625 return ret_val;
2627 phy->polarity_correction = !!(phy_data &
2628 M88E1000_PSCR_POLARITY_REVERSAL);
2630 ret_val = e1000_check_polarity_m88(hw);
2631 if (ret_val)
2632 return ret_val;
2634 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2635 if (ret_val)
2636 return ret_val;
2638 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
2640 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2641 ret_val = hw->phy.ops.get_cable_length(hw);
2642 if (ret_val)
2643 return ret_val;
2645 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2646 if (ret_val)
2647 return ret_val;
2649 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2650 ? e1000_1000t_rx_status_ok
2651 : e1000_1000t_rx_status_not_ok;
2653 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2654 ? e1000_1000t_rx_status_ok
2655 : e1000_1000t_rx_status_not_ok;
2656 } else {
2657 /* Set values to "undefined" */
2658 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2659 phy->local_rx = e1000_1000t_rx_status_undefined;
2660 phy->remote_rx = e1000_1000t_rx_status_undefined;
2663 return ret_val;
2667 * e1000_get_phy_info_igp - Retrieve igp PHY information
2668 * @hw: pointer to the HW structure
2670 * Read PHY status to determine if link is up. If link is up, then
2671 * set/determine 10base-T extended distance and polarity correction. Read
2672 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2673 * determine on the cable length, local and remote receiver.
2675 s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
2677 struct e1000_phy_info *phy = &hw->phy;
2678 s32 ret_val;
2679 u16 data;
2680 bool link;
2682 DEBUGFUNC("e1000_get_phy_info_igp");
2684 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2685 if (ret_val)
2686 return ret_val;
2688 if (!link) {
2689 DEBUGOUT("Phy info is only valid if link is up\n");
2690 return -E1000_ERR_CONFIG;
2693 phy->polarity_correction = TRUE;
2695 ret_val = e1000_check_polarity_igp(hw);
2696 if (ret_val)
2697 return ret_val;
2699 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2700 if (ret_val)
2701 return ret_val;
2703 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2705 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2706 IGP01E1000_PSSR_SPEED_1000MBPS) {
2707 ret_val = phy->ops.get_cable_length(hw);
2708 if (ret_val)
2709 return ret_val;
2711 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2712 if (ret_val)
2713 return ret_val;
2715 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2716 ? e1000_1000t_rx_status_ok
2717 : e1000_1000t_rx_status_not_ok;
2719 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2720 ? e1000_1000t_rx_status_ok
2721 : e1000_1000t_rx_status_not_ok;
2722 } else {
2723 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2724 phy->local_rx = e1000_1000t_rx_status_undefined;
2725 phy->remote_rx = e1000_1000t_rx_status_undefined;
2728 return ret_val;
2732 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2733 * @hw: pointer to the HW structure
2735 * Populates "phy" structure with various feature states.
2737 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2739 struct e1000_phy_info *phy = &hw->phy;
2740 s32 ret_val;
2741 u16 data;
2742 bool link;
2744 DEBUGFUNC("e1000_get_phy_info_ife");
2746 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2747 if (ret_val)
2748 return ret_val;
2750 if (!link) {
2751 DEBUGOUT("Phy info is only valid if link is up\n");
2752 return -E1000_ERR_CONFIG;
2755 ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2756 if (ret_val)
2757 return ret_val;
2758 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2760 if (phy->polarity_correction) {
2761 ret_val = e1000_check_polarity_ife(hw);
2762 if (ret_val)
2763 return ret_val;
2764 } else {
2765 /* Polarity is forced */
2766 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2767 ? e1000_rev_polarity_reversed
2768 : e1000_rev_polarity_normal;
2771 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
2772 if (ret_val)
2773 return ret_val;
2775 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2777 /* The following parameters are undefined for 10/100 operation. */
2778 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2779 phy->local_rx = e1000_1000t_rx_status_undefined;
2780 phy->remote_rx = e1000_1000t_rx_status_undefined;
2782 return E1000_SUCCESS;
2786 * e1000_phy_sw_reset_generic - PHY software reset
2787 * @hw: pointer to the HW structure
2789 * Does a software reset of the PHY by reading the PHY control register and
2790 * setting/write the control register reset bit to the PHY.
2792 s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
2794 s32 ret_val;
2795 u16 phy_ctrl;
2797 DEBUGFUNC("e1000_phy_sw_reset_generic");
2799 if (!hw->phy.ops.read_reg)
2800 return E1000_SUCCESS;
2802 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2803 if (ret_val)
2804 return ret_val;
2806 phy_ctrl |= MII_CR_RESET;
2807 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2808 if (ret_val)
2809 return ret_val;
2811 usec_delay(1);
2813 return ret_val;
2817 * e1000_phy_hw_reset_generic - PHY hardware reset
2818 * @hw: pointer to the HW structure
2820 * Verify the reset block is not blocking us from resetting. Acquire
2821 * semaphore (if necessary) and read/set/write the device control reset
2822 * bit in the PHY. Wait the appropriate delay time for the device to
2823 * reset and release the semaphore (if necessary).
2825 s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
2827 struct e1000_phy_info *phy = &hw->phy;
2828 s32 ret_val;
2829 u32 ctrl;
2831 DEBUGFUNC("e1000_phy_hw_reset_generic");
2833 if (phy->ops.check_reset_block) {
2834 ret_val = phy->ops.check_reset_block(hw);
2835 if (ret_val)
2836 return E1000_SUCCESS;
2839 ret_val = phy->ops.acquire(hw);
2840 if (ret_val)
2841 return ret_val;
2843 ctrl = E1000_READ_REG(hw, E1000_CTRL);
2844 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2845 E1000_WRITE_FLUSH(hw);
2847 usec_delay(phy->reset_delay_us);
2849 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2850 E1000_WRITE_FLUSH(hw);
2852 usec_delay(150);
2854 phy->ops.release(hw);
2856 return phy->ops.get_cfg_done(hw);
2860 * e1000_get_cfg_done_generic - Generic configuration done
2861 * @hw: pointer to the HW structure
2863 * Generic function to wait 10 milli-seconds for configuration to complete
2864 * and return success.
2866 s32 e1000_get_cfg_done_generic(struct e1000_hw *hw)
2868 DEBUGFUNC("e1000_get_cfg_done_generic");
2870 msec_delay_irq(10);
2872 return E1000_SUCCESS;
2876 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
2877 * @hw: pointer to the HW structure
2879 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2881 s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
2883 DEBUGOUT("Running IGP 3 PHY init script\n");
2885 /* PHY init IGP 3 */
2886 /* Enable rise/fall, 10-mode work in class-A */
2887 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2888 /* Remove all caps from Replica path filter */
2889 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2890 /* Bias trimming for ADC, AFE and Driver (Default) */
2891 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2892 /* Increase Hybrid poly bias */
2893 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2894 /* Add 4% to Tx amplitude in Gig mode */
2895 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2896 /* Disable trimming (TTT) */
2897 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2898 /* Poly DC correction to 94.6% + 2% for all channels */
2899 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2900 /* ABS DC correction to 95.9% */
2901 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2902 /* BG temp curve trim */
2903 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2904 /* Increasing ADC OPAMP stage 1 currents to max */
2905 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2906 /* Force 1000 ( required for enabling PHY regs configuration) */
2907 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2908 /* Set upd_freq to 6 */
2909 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2910 /* Disable NPDFE */
2911 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2912 /* Disable adaptive fixed FFE (Default) */
2913 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2914 /* Enable FFE hysteresis */
2915 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2916 /* Fixed FFE for short cable lengths */
2917 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2918 /* Fixed FFE for medium cable lengths */
2919 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2920 /* Fixed FFE for long cable lengths */
2921 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2922 /* Enable Adaptive Clip Threshold */
2923 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2924 /* AHT reset limit to 1 */
2925 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2926 /* Set AHT master delay to 127 msec */
2927 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2928 /* Set scan bits for AHT */
2929 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2930 /* Set AHT Preset bits */
2931 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2932 /* Change integ_factor of channel A to 3 */
2933 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2934 /* Change prop_factor of channels BCD to 8 */
2935 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2936 /* Change cg_icount + enable integbp for channels BCD */
2937 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2938 /* Change cg_icount + enable integbp + change prop_factor_master
2939 * to 8 for channel A
2941 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2942 /* Disable AHT in Slave mode on channel A */
2943 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2944 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2945 * Enable SPD+B2B
2947 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2948 /* Enable restart AN on an1000_dis change */
2949 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2950 /* Enable wh_fifo read clock in 10/100 modes */
2951 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2952 /* Restart AN, Speed selection is 1000 */
2953 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2955 return E1000_SUCCESS;
2959 * e1000_get_phy_type_from_id - Get PHY type from id
2960 * @phy_id: phy_id read from the phy
2962 * Returns the phy type from the id.
2964 enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
2966 enum e1000_phy_type phy_type = e1000_phy_unknown;
2968 switch (phy_id) {
2969 case M88E1000_I_PHY_ID:
2970 case M88E1000_E_PHY_ID:
2971 case M88E1111_I_PHY_ID:
2972 case M88E1011_I_PHY_ID:
2973 case I347AT4_E_PHY_ID:
2974 case M88E1112_E_PHY_ID:
2975 case M88E1340M_E_PHY_ID:
2976 phy_type = e1000_phy_m88;
2977 break;
2978 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2979 phy_type = e1000_phy_igp_2;
2980 break;
2981 case GG82563_E_PHY_ID:
2982 phy_type = e1000_phy_gg82563;
2983 break;
2984 case IGP03E1000_E_PHY_ID:
2985 phy_type = e1000_phy_igp_3;
2986 break;
2987 case IFE_E_PHY_ID:
2988 case IFE_PLUS_E_PHY_ID:
2989 case IFE_C_E_PHY_ID:
2990 phy_type = e1000_phy_ife;
2991 break;
2992 case BME1000_E_PHY_ID:
2993 case BME1000_E_PHY_ID_R2:
2994 phy_type = e1000_phy_bm;
2995 break;
2996 case I82578_E_PHY_ID:
2997 phy_type = e1000_phy_82578;
2998 break;
2999 case I82577_E_PHY_ID:
3000 phy_type = e1000_phy_82577;
3001 break;
3002 case I82579_E_PHY_ID:
3003 phy_type = e1000_phy_82579;
3004 break;
3005 case I217_E_PHY_ID:
3006 phy_type = e1000_phy_i217;
3007 break;
3008 case I82580_I_PHY_ID:
3009 phy_type = e1000_phy_82580;
3010 break;
3011 case I210_I_PHY_ID:
3012 phy_type = e1000_phy_i210;
3013 break;
3014 default:
3015 phy_type = e1000_phy_unknown;
3016 break;
3018 return phy_type;
3022 * e1000_determine_phy_address - Determines PHY address.
3023 * @hw: pointer to the HW structure
3025 * This uses a trial and error method to loop through possible PHY
3026 * addresses. It tests each by reading the PHY ID registers and
3027 * checking for a match.
3029 s32 e1000_determine_phy_address(struct e1000_hw *hw)
3031 u32 phy_addr = 0;
3032 u32 i;
3033 enum e1000_phy_type phy_type = e1000_phy_unknown;
3035 hw->phy.id = phy_type;
3037 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
3038 hw->phy.addr = phy_addr;
3039 i = 0;
3041 do {
3042 e1000_get_phy_id(hw);
3043 phy_type = e1000_get_phy_type_from_id(hw->phy.id);
3045 /* If phy_type is valid, break - we found our
3046 * PHY address
3048 if (phy_type != e1000_phy_unknown)
3049 return E1000_SUCCESS;
3051 msec_delay(1);
3052 i++;
3053 } while (i < 10);
3056 return -E1000_ERR_PHY_TYPE;
3060 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
3061 * @page: page to access
3063 * Returns the phy address for the page requested.
3065 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
3067 u32 phy_addr = 2;
3069 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
3070 phy_addr = 1;
3072 return phy_addr;
3076 * e1000_write_phy_reg_bm - Write BM PHY register
3077 * @hw: pointer to the HW structure
3078 * @offset: register offset to write to
3079 * @data: data to write at register offset
3081 * Acquires semaphore, if necessary, then writes the data to PHY register
3082 * at the offset. Release any acquired semaphores before exiting.
3084 s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
3086 s32 ret_val;
3087 u32 page = offset >> IGP_PAGE_SHIFT;
3089 DEBUGFUNC("e1000_write_phy_reg_bm");
3091 ret_val = hw->phy.ops.acquire(hw);
3092 if (ret_val)
3093 return ret_val;
3095 /* Page 800 works differently than the rest so it has its own func */
3096 if (page == BM_WUC_PAGE) {
3097 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3098 FALSE, FALSE);
3099 goto release;
3102 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
3104 if (offset > MAX_PHY_MULTI_PAGE_REG) {
3105 u32 page_shift, page_select;
3107 /* Page select is register 31 for phy address 1 and 22 for
3108 * phy address 2 and 3. Page select is shifted only for
3109 * phy address 1.
3111 if (hw->phy.addr == 1) {
3112 page_shift = IGP_PAGE_SHIFT;
3113 page_select = IGP01E1000_PHY_PAGE_SELECT;
3114 } else {
3115 page_shift = 0;
3116 page_select = BM_PHY_PAGE_SELECT;
3119 /* Page is shifted left, PHY expects (page x 32) */
3120 ret_val = e1000_write_phy_reg_mdic(hw, page_select,
3121 (page << page_shift));
3122 if (ret_val)
3123 goto release;
3126 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3127 data);
3129 release:
3130 hw->phy.ops.release(hw);
3131 return ret_val;
3135 * e1000_read_phy_reg_bm - Read BM PHY register
3136 * @hw: pointer to the HW structure
3137 * @offset: register offset to be read
3138 * @data: pointer to the read data
3140 * Acquires semaphore, if necessary, then reads the PHY register at offset
3141 * and storing the retrieved information in data. Release any acquired
3142 * semaphores before exiting.
3144 s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
3146 s32 ret_val;
3147 u32 page = offset >> IGP_PAGE_SHIFT;
3149 DEBUGFUNC("e1000_read_phy_reg_bm");
3151 ret_val = hw->phy.ops.acquire(hw);
3152 if (ret_val)
3153 return ret_val;
3155 /* Page 800 works differently than the rest so it has its own func */
3156 if (page == BM_WUC_PAGE) {
3157 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3158 TRUE, FALSE);
3159 goto release;
3162 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
3164 if (offset > MAX_PHY_MULTI_PAGE_REG) {
3165 u32 page_shift, page_select;
3167 /* Page select is register 31 for phy address 1 and 22 for
3168 * phy address 2 and 3. Page select is shifted only for
3169 * phy address 1.
3171 if (hw->phy.addr == 1) {
3172 page_shift = IGP_PAGE_SHIFT;
3173 page_select = IGP01E1000_PHY_PAGE_SELECT;
3174 } else {
3175 page_shift = 0;
3176 page_select = BM_PHY_PAGE_SELECT;
3179 /* Page is shifted left, PHY expects (page x 32) */
3180 ret_val = e1000_write_phy_reg_mdic(hw, page_select,
3181 (page << page_shift));
3182 if (ret_val)
3183 goto release;
3186 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3187 data);
3188 release:
3189 hw->phy.ops.release(hw);
3190 return ret_val;
3194 * e1000_read_phy_reg_bm2 - Read BM PHY register
3195 * @hw: pointer to the HW structure
3196 * @offset: register offset to be read
3197 * @data: pointer to the read data
3199 * Acquires semaphore, if necessary, then reads the PHY register at offset
3200 * and storing the retrieved information in data. Release any acquired
3201 * semaphores before exiting.
3203 s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
3205 s32 ret_val;
3206 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3208 DEBUGFUNC("e1000_read_phy_reg_bm2");
3210 ret_val = hw->phy.ops.acquire(hw);
3211 if (ret_val)
3212 return ret_val;
3214 /* Page 800 works differently than the rest so it has its own func */
3215 if (page == BM_WUC_PAGE) {
3216 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3217 TRUE, FALSE);
3218 goto release;
3221 hw->phy.addr = 1;
3223 if (offset > MAX_PHY_MULTI_PAGE_REG) {
3224 /* Page is shifted left, PHY expects (page x 32) */
3225 ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3226 page);
3228 if (ret_val)
3229 goto release;
3232 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3233 data);
3234 release:
3235 hw->phy.ops.release(hw);
3236 return ret_val;
3240 * e1000_write_phy_reg_bm2 - Write BM PHY register
3241 * @hw: pointer to the HW structure
3242 * @offset: register offset to write to
3243 * @data: data to write at register offset
3245 * Acquires semaphore, if necessary, then writes the data to PHY register
3246 * at the offset. Release any acquired semaphores before exiting.
3248 s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
3250 s32 ret_val;
3251 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3253 DEBUGFUNC("e1000_write_phy_reg_bm2");
3255 ret_val = hw->phy.ops.acquire(hw);
3256 if (ret_val)
3257 return ret_val;
3259 /* Page 800 works differently than the rest so it has its own func */
3260 if (page == BM_WUC_PAGE) {
3261 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3262 FALSE, FALSE);
3263 goto release;
3266 hw->phy.addr = 1;
3268 if (offset > MAX_PHY_MULTI_PAGE_REG) {
3269 /* Page is shifted left, PHY expects (page x 32) */
3270 ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3271 page);
3273 if (ret_val)
3274 goto release;
3277 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3278 data);
3280 release:
3281 hw->phy.ops.release(hw);
3282 return ret_val;
3286 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
3287 * @hw: pointer to the HW structure
3288 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
3290 * Assumes semaphore already acquired and phy_reg points to a valid memory
3291 * address to store contents of the BM_WUC_ENABLE_REG register.
3293 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
3295 s32 ret_val;
3296 u16 temp;
3298 DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
3300 if (!phy_reg)
3301 return -E1000_ERR_PARAM;
3303 /* All page select, port ctrl and wakeup registers use phy address 1 */
3304 hw->phy.addr = 1;
3306 /* Select Port Control Registers page */
3307 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3308 if (ret_val) {
3309 DEBUGOUT("Could not set Port Control page\n");
3310 return ret_val;
3313 ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
3314 if (ret_val) {
3315 DEBUGOUT2("Could not read PHY register %d.%d\n",
3316 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3317 return ret_val;
3320 /* Enable both PHY wakeup mode and Wakeup register page writes.
3321 * Prevent a power state change by disabling ME and Host PHY wakeup.
3323 temp = *phy_reg;
3324 temp |= BM_WUC_ENABLE_BIT;
3325 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
3327 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
3328 if (ret_val) {
3329 DEBUGOUT2("Could not write PHY register %d.%d\n",
3330 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3331 return ret_val;
3334 /* Select Host Wakeup Registers page - caller now able to write
3335 * registers on the Wakeup registers page
3337 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
3341 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
3342 * @hw: pointer to the HW structure
3343 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
3345 * Restore BM_WUC_ENABLE_REG to its original value.
3347 * Assumes semaphore already acquired and *phy_reg is the contents of the
3348 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
3349 * caller.
3351 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
3353 s32 ret_val;
3355 DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
3357 if (!phy_reg)
3358 return -E1000_ERR_PARAM;
3360 /* Select Port Control Registers page */
3361 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3362 if (ret_val) {
3363 DEBUGOUT("Could not set Port Control page\n");
3364 return ret_val;
3367 /* Restore 769.17 to its original value */
3368 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
3369 if (ret_val)
3370 DEBUGOUT2("Could not restore PHY register %d.%d\n",
3371 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3373 return ret_val;
3377 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
3378 * @hw: pointer to the HW structure
3379 * @offset: register offset to be read or written
3380 * @data: pointer to the data to read or write
3381 * @read: determines if operation is read or write
3382 * @page_set: BM_WUC_PAGE already set and access enabled
3384 * Read the PHY register at offset and store the retrieved information in
3385 * data, or write data to PHY register at offset. Note the procedure to
3386 * access the PHY wakeup registers is different than reading the other PHY
3387 * registers. It works as such:
3388 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
3389 * 2) Set page to 800 for host (801 if we were manageability)
3390 * 3) Write the address using the address opcode (0x11)
3391 * 4) Read or write the data using the data opcode (0x12)
3392 * 5) Restore 769.17.2 to its original value
3394 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
3395 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
3397 * Assumes semaphore is already acquired. When page_set==TRUE, assumes
3398 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
3399 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
3401 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
3402 u16 *data, bool read, bool page_set)
3404 s32 ret_val;
3405 u16 reg = BM_PHY_REG_NUM(offset);
3406 u16 page = BM_PHY_REG_PAGE(offset);
3407 u16 phy_reg = 0;
3409 DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
3411 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
3412 if ((hw->mac.type == e1000_pchlan) &&
3413 (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
3414 DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
3415 page);
3417 if (!page_set) {
3418 /* Enable access to PHY wakeup registers */
3419 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3420 if (ret_val) {
3421 DEBUGOUT("Could not enable PHY wakeup reg access\n");
3422 return ret_val;
3426 DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
3428 /* Write the Wakeup register page offset value using opcode 0x11 */
3429 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
3430 if (ret_val) {
3431 DEBUGOUT1("Could not write address opcode to page %d\n", page);
3432 return ret_val;
3435 if (read) {
3436 /* Read the Wakeup register page value using opcode 0x12 */
3437 ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3438 data);
3439 } else {
3440 /* Write the Wakeup register page value using opcode 0x12 */
3441 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3442 *data);
3445 if (ret_val) {
3446 DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
3447 return ret_val;
3450 if (!page_set)
3451 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3453 return ret_val;
3457 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
3458 * @hw: pointer to the HW structure
3460 * In the case of a PHY power down to save power, or to turn off link during a
3461 * driver unload, or wake on lan is not enabled, restore the link to previous
3462 * settings.
3464 void e1000_power_up_phy_copper(struct e1000_hw *hw)
3466 u16 mii_reg = 0;
3467 u16 power_reg = 0;
3469 /* The PHY will retain its settings across a power down/up cycle */
3470 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3471 mii_reg &= ~MII_CR_POWER_DOWN;
3472 if (hw->phy.type == e1000_phy_i210) {
3473 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
3474 power_reg &= ~GS40G_CS_POWER_DOWN;
3475 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
3477 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3481 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
3482 * @hw: pointer to the HW structure
3484 * In the case of a PHY power down to save power, or to turn off link during a
3485 * driver unload, or wake on lan is not enabled, restore the link to previous
3486 * settings.
3488 void e1000_power_down_phy_copper(struct e1000_hw *hw)
3490 u16 mii_reg = 0;
3491 u16 power_reg = 0;
3493 /* The PHY will retain its settings across a power down/up cycle */
3494 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3495 mii_reg |= MII_CR_POWER_DOWN;
3496 /* i210 Phy requires an additional bit for power up/down */
3497 if (hw->phy.type == e1000_phy_i210) {
3498 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
3499 power_reg |= GS40G_CS_POWER_DOWN;
3500 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
3502 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3503 msec_delay(1);
3507 * __e1000_read_phy_reg_hv - Read HV PHY register
3508 * @hw: pointer to the HW structure
3509 * @offset: register offset to be read
3510 * @data: pointer to the read data
3511 * @locked: semaphore has already been acquired or not
3513 * Acquires semaphore, if necessary, then reads the PHY register at offset
3514 * and stores the retrieved information in data. Release any acquired
3515 * semaphore before exiting.
3517 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
3518 bool locked, bool page_set)
3520 s32 ret_val;
3521 u16 page = BM_PHY_REG_PAGE(offset);
3522 u16 reg = BM_PHY_REG_NUM(offset);
3523 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3525 DEBUGFUNC("__e1000_read_phy_reg_hv");
3527 if (!locked) {
3528 ret_val = hw->phy.ops.acquire(hw);
3529 if (ret_val)
3530 return ret_val;
3533 /* Page 800 works differently than the rest so it has its own func */
3534 if (page == BM_WUC_PAGE) {
3535 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3536 TRUE, page_set);
3537 goto out;
3540 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3541 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3542 data, TRUE);
3543 goto out;
3546 if (!page_set) {
3547 if (page == HV_INTC_FC_PAGE_START)
3548 page = 0;
3550 if (reg > MAX_PHY_MULTI_PAGE_REG) {
3551 /* Page is shifted left, PHY expects (page x 32) */
3552 ret_val = e1000_set_page_igp(hw,
3553 (page << IGP_PAGE_SHIFT));
3555 hw->phy.addr = phy_addr;
3557 if (ret_val)
3558 goto out;
3562 DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3563 page << IGP_PAGE_SHIFT, reg);
3565 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3566 data);
3567 out:
3568 if (!locked)
3569 hw->phy.ops.release(hw);
3571 return ret_val;
3575 * e1000_read_phy_reg_hv - Read HV PHY register
3576 * @hw: pointer to the HW structure
3577 * @offset: register offset to be read
3578 * @data: pointer to the read data
3580 * Acquires semaphore then reads the PHY register at offset and stores
3581 * the retrieved information in data. Release the acquired semaphore
3582 * before exiting.
3584 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
3586 return __e1000_read_phy_reg_hv(hw, offset, data, FALSE, FALSE);
3590 * e1000_read_phy_reg_hv_locked - Read HV PHY register
3591 * @hw: pointer to the HW structure
3592 * @offset: register offset to be read
3593 * @data: pointer to the read data
3595 * Reads the PHY register at offset and stores the retrieved information
3596 * in data. Assumes semaphore already acquired.
3598 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
3600 return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, FALSE);
3604 * e1000_read_phy_reg_page_hv - Read HV PHY register
3605 * @hw: pointer to the HW structure
3606 * @offset: register offset to write to
3607 * @data: data to write at register offset
3609 * Reads the PHY register at offset and stores the retrieved information
3610 * in data. Assumes semaphore already acquired and page already set.
3612 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
3614 return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, true);
3618 * __e1000_write_phy_reg_hv - Write HV PHY register
3619 * @hw: pointer to the HW structure
3620 * @offset: register offset to write to
3621 * @data: data to write at register offset
3622 * @locked: semaphore has already been acquired or not
3624 * Acquires semaphore, if necessary, then writes the data to PHY register
3625 * at the offset. Release any acquired semaphores before exiting.
3627 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
3628 bool locked, bool page_set)
3630 s32 ret_val;
3631 u16 page = BM_PHY_REG_PAGE(offset);
3632 u16 reg = BM_PHY_REG_NUM(offset);
3633 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3635 DEBUGFUNC("__e1000_write_phy_reg_hv");
3637 if (!locked) {
3638 ret_val = hw->phy.ops.acquire(hw);
3639 if (ret_val)
3640 return ret_val;
3643 /* Page 800 works differently than the rest so it has its own func */
3644 if (page == BM_WUC_PAGE) {
3645 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3646 FALSE, page_set);
3647 goto out;
3650 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3651 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3652 &data, FALSE);
3653 goto out;
3656 if (!page_set) {
3657 if (page == HV_INTC_FC_PAGE_START)
3658 page = 0;
3660 /* Workaround MDIO accesses being disabled after entering IEEE
3661 * Power Down (when bit 11 of the PHY Control register is set)
3663 if ((hw->phy.type == e1000_phy_82578) &&
3664 (hw->phy.revision >= 1) &&
3665 (hw->phy.addr == 2) &&
3666 !(MAX_PHY_REG_ADDRESS & reg) &&
3667 (data & (1 << 11))) {
3668 u16 data2 = 0x7EFF;
3669 ret_val = e1000_access_phy_debug_regs_hv(hw,
3670 (1 << 6) | 0x3,
3671 &data2, FALSE);
3672 if (ret_val)
3673 goto out;
3676 if (reg > MAX_PHY_MULTI_PAGE_REG) {
3677 /* Page is shifted left, PHY expects (page x 32) */
3678 ret_val = e1000_set_page_igp(hw,
3679 (page << IGP_PAGE_SHIFT));
3681 hw->phy.addr = phy_addr;
3683 if (ret_val)
3684 goto out;
3688 DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3689 page << IGP_PAGE_SHIFT, reg);
3691 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3692 data);
3694 out:
3695 if (!locked)
3696 hw->phy.ops.release(hw);
3698 return ret_val;
3702 * e1000_write_phy_reg_hv - Write HV PHY register
3703 * @hw: pointer to the HW structure
3704 * @offset: register offset to write to
3705 * @data: data to write at register offset
3707 * Acquires semaphore then writes the data to PHY register at the offset.
3708 * Release the acquired semaphores before exiting.
3710 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3712 return __e1000_write_phy_reg_hv(hw, offset, data, FALSE, FALSE);
3716 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3717 * @hw: pointer to the HW structure
3718 * @offset: register offset to write to
3719 * @data: data to write at register offset
3721 * Writes the data to PHY register at the offset. Assumes semaphore
3722 * already acquired.
3724 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3726 return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, FALSE);
3730 * e1000_write_phy_reg_page_hv - Write HV PHY register
3731 * @hw: pointer to the HW structure
3732 * @offset: register offset to write to
3733 * @data: data to write at register offset
3735 * Writes the data to PHY register at the offset. Assumes semaphore
3736 * already acquired and page already set.
3738 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3740 return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, true);
3744 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
3745 * @page: page to be accessed
3747 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3749 u32 phy_addr = 2;
3751 if (page >= HV_INTC_FC_PAGE_START)
3752 phy_addr = 1;
3754 return phy_addr;
3758 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3759 * @hw: pointer to the HW structure
3760 * @offset: register offset to be read or written
3761 * @data: pointer to the data to be read or written
3762 * @read: determines if operation is read or write
3764 * Reads the PHY register at offset and stores the retreived information
3765 * in data. Assumes semaphore already acquired. Note that the procedure
3766 * to access these regs uses the address port and data port to read/write.
3767 * These accesses done with PHY address 2 and without using pages.
3769 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3770 u16 *data, bool read)
3772 s32 ret_val;
3773 u32 addr_reg;
3774 u32 data_reg;
3776 DEBUGFUNC("e1000_access_phy_debug_regs_hv");
3778 /* This takes care of the difference with desktop vs mobile phy */
3779 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3780 I82578_ADDR_REG : I82577_ADDR_REG;
3781 data_reg = addr_reg + 1;
3783 /* All operations in this function are phy address 2 */
3784 hw->phy.addr = 2;
3786 /* masking with 0x3F to remove the page from offset */
3787 ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3788 if (ret_val) {
3789 DEBUGOUT("Could not write the Address Offset port register\n");
3790 return ret_val;
3793 /* Read or write the data value next */
3794 if (read)
3795 ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
3796 else
3797 ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
3799 if (ret_val)
3800 DEBUGOUT("Could not access the Data port register\n");
3802 return ret_val;
3806 * e1000_link_stall_workaround_hv - Si workaround
3807 * @hw: pointer to the HW structure
3809 * This function works around a Si bug where the link partner can get
3810 * a link up indication before the PHY does. If small packets are sent
3811 * by the link partner they can be placed in the packet buffer without
3812 * being properly accounted for by the PHY and will stall preventing
3813 * further packets from being received. The workaround is to clear the
3814 * packet buffer after the PHY detects link up.
3816 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3818 s32 ret_val = E1000_SUCCESS;
3819 u16 data;
3821 DEBUGFUNC("e1000_link_stall_workaround_hv");
3823 if (hw->phy.type != e1000_phy_82578)
3824 return E1000_SUCCESS;
3826 /* Do not apply workaround if in PHY loopback bit 14 set */
3827 hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3828 if (data & PHY_CONTROL_LB)
3829 return E1000_SUCCESS;
3831 /* check if link is up and at 1Gbps */
3832 ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3833 if (ret_val)
3834 return ret_val;
3836 data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3837 BM_CS_STATUS_SPEED_MASK;
3839 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3840 BM_CS_STATUS_SPEED_1000))
3841 return E1000_SUCCESS;
3843 msec_delay(200);
3845 /* flush the packets in the fifo buffer */
3846 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3847 (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3848 HV_MUX_DATA_CTRL_FORCE_SPEED));
3849 if (ret_val)
3850 return ret_val;
3852 return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3853 HV_MUX_DATA_CTRL_GEN_TO_MAC);
3857 * e1000_check_polarity_82577 - Checks the polarity.
3858 * @hw: pointer to the HW structure
3860 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3862 * Polarity is determined based on the PHY specific status register.
3864 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3866 struct e1000_phy_info *phy = &hw->phy;
3867 s32 ret_val;
3868 u16 data;
3870 DEBUGFUNC("e1000_check_polarity_82577");
3872 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3874 if (!ret_val)
3875 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3876 ? e1000_rev_polarity_reversed
3877 : e1000_rev_polarity_normal;
3879 return ret_val;
3883 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3884 * @hw: pointer to the HW structure
3886 * Calls the PHY setup function to force speed and duplex.
3888 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3890 struct e1000_phy_info *phy = &hw->phy;
3891 s32 ret_val;
3892 u16 phy_data;
3893 bool link;
3895 DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
3897 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3898 if (ret_val)
3899 return ret_val;
3901 e1000_phy_force_speed_duplex_setup(hw, &phy_data);
3903 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3904 if (ret_val)
3905 return ret_val;
3907 usec_delay(1);
3909 if (phy->autoneg_wait_to_complete) {
3910 DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
3912 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3913 100000, &link);
3914 if (ret_val)
3915 return ret_val;
3917 if (!link)
3918 DEBUGOUT("Link taking longer than expected.\n");
3920 /* Try once more */
3921 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3922 100000, &link);
3925 return ret_val;
3929 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3930 * @hw: pointer to the HW structure
3932 * Read PHY status to determine if link is up. If link is up, then
3933 * set/determine 10base-T extended distance and polarity correction. Read
3934 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3935 * determine on the cable length, local and remote receiver.
3937 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3939 struct e1000_phy_info *phy = &hw->phy;
3940 s32 ret_val;
3941 u16 data;
3942 bool link;
3944 DEBUGFUNC("e1000_get_phy_info_82577");
3946 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
3947 if (ret_val)
3948 return ret_val;
3950 if (!link) {
3951 DEBUGOUT("Phy info is only valid if link is up\n");
3952 return -E1000_ERR_CONFIG;
3955 phy->polarity_correction = TRUE;
3957 ret_val = e1000_check_polarity_82577(hw);
3958 if (ret_val)
3959 return ret_val;
3961 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3962 if (ret_val)
3963 return ret_val;
3965 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3967 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3968 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3969 ret_val = hw->phy.ops.get_cable_length(hw);
3970 if (ret_val)
3971 return ret_val;
3973 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3974 if (ret_val)
3975 return ret_val;
3977 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3978 ? e1000_1000t_rx_status_ok
3979 : e1000_1000t_rx_status_not_ok;
3981 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3982 ? e1000_1000t_rx_status_ok
3983 : e1000_1000t_rx_status_not_ok;
3984 } else {
3985 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3986 phy->local_rx = e1000_1000t_rx_status_undefined;
3987 phy->remote_rx = e1000_1000t_rx_status_undefined;
3990 return E1000_SUCCESS;
3994 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3995 * @hw: pointer to the HW structure
3997 * Reads the diagnostic status register and verifies result is valid before
3998 * placing it in the phy_cable_length field.
4000 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
4002 struct e1000_phy_info *phy = &hw->phy;
4003 s32 ret_val;
4004 u16 phy_data, length;
4006 DEBUGFUNC("e1000_get_cable_length_82577");
4008 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
4009 if (ret_val)
4010 return ret_val;
4012 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
4013 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
4015 if (length == E1000_CABLE_LENGTH_UNDEFINED)
4016 return -E1000_ERR_PHY;
4018 phy->cable_length = length;
4020 return E1000_SUCCESS;
4024 * e1000_write_phy_reg_gs40g - Write GS40G PHY register
4025 * @hw: pointer to the HW structure
4026 * @offset: register offset to write to
4027 * @data: data to write at register offset
4029 * Acquires semaphore, if necessary, then writes the data to PHY register
4030 * at the offset. Release any acquired semaphores before exiting.
4032 s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
4034 s32 ret_val;
4035 u16 page = offset >> GS40G_PAGE_SHIFT;
4037 DEBUGFUNC("e1000_write_phy_reg_gs40g");
4039 offset = offset & GS40G_OFFSET_MASK;
4040 ret_val = hw->phy.ops.acquire(hw);
4041 if (ret_val)
4042 return ret_val;
4044 ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4045 if (ret_val)
4046 goto release;
4047 ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
4049 release:
4050 hw->phy.ops.release(hw);
4051 return ret_val;
4055 * e1000_read_phy_reg_gs40g - Read GS40G PHY register
4056 * @hw: pointer to the HW structure
4057 * @offset: lower half is register offset to read to
4058 * upper half is page to use.
4059 * @data: data to read at register offset
4061 * Acquires semaphore, if necessary, then reads the data in the PHY register
4062 * at the offset. Release any acquired semaphores before exiting.
4064 s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
4066 s32 ret_val;
4067 u16 page = offset >> GS40G_PAGE_SHIFT;
4069 DEBUGFUNC("e1000_read_phy_reg_gs40g");
4071 offset = offset & GS40G_OFFSET_MASK;
4072 ret_val = hw->phy.ops.acquire(hw);
4073 if (ret_val)
4074 return ret_val;
4076 ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4077 if (ret_val)
4078 goto release;
4079 ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
4081 release:
4082 hw->phy.ops.release(hw);
4083 return ret_val;