6027 EOL zulu (XVR-4000)
[illumos-gate.git] / usr / src / uts / sun4u / daktari / os / daktari.c
blobf522c7b26b3850196c4039fe4bc0691189c8da4d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #include <sys/cpuvar.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sunddi.h>
31 #include <sys/ddi.h>
32 #include <sys/esunddi.h>
33 #include <sys/sysmacros.h>
34 #include <sys/note.h>
36 #include <sys/modctl.h> /* for modload() */
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/daktari.h>
40 #include <sys/machsystm.h>
41 #include <sys/promif.h>
42 #include <vm/page.h>
43 #include <sys/memnode.h>
44 #include <vm/vm_dep.h>
46 /* I2C Stuff */
47 #include <sys/i2c/clients/i2c_client.h>
50 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
52 /* Daktari Keyswitch Information */
53 #define DAK_KEY_POLL_PORT 3
54 #define DAK_KEY_POLL_BIT 2
55 #define DAK_KEY_POLL_INTVL 10
57 static boolean_t key_locked_bit;
58 static clock_t keypoll_timeout_hz;
61 * Table that maps memory slices to a specific memnode.
63 int slice_to_memnode[DAK_MAX_SLICE];
66 * For software memory interleaving support.
68 static void update_mem_bounds(int, int, int, uint64_t, uint64_t);
70 static uint64_t
71 slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2];
73 #define SLICE_PA 0
74 #define SLICE_SPAN 1
76 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
77 extern void (*abort_seq_handler)();
78 static int daktari_dev_search(dev_info_t *, void *);
79 static void keyswitch_poll(void *);
80 static void daktari_abort_seq_handler(char *msg);
82 void
83 startup_platform(void)
86 * Disable an active h/w watchdog timer
87 * upon exit to OBP.
89 extern int disable_watchdog_on_exit;
90 disable_watchdog_on_exit = 1;
93 int
94 set_platform_tsb_spares()
96 return (0);
99 #pragma weak mmu_init_large_pages
101 void
102 set_platform_defaults(void)
104 extern void mmu_init_large_pages(size_t);
106 if ((mmu_page_sizes == max_mmu_page_sizes) &&
107 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
108 if (&mmu_init_large_pages)
109 mmu_init_large_pages(mmu_ism_pagesize);
113 void
114 load_platform_modules(void)
116 if (modload("misc", "pcihp") < 0) {
117 cmn_err(CE_NOTE, "pcihp driver failed to load");
119 if (modload("drv", "pmc") < 0) {
120 cmn_err(CE_NOTE, "pmc driver failed to load");
125 void
126 load_platform_drivers(void)
128 char **drv;
129 dev_info_t *keysw_dip;
131 static char *boot_time_drivers[] = {
132 "hpc3130",
133 "todds1287",
134 "mc-us3",
135 "ssc050",
136 "pcisch",
137 NULL
140 for (drv = boot_time_drivers; *drv; drv++) {
141 if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
142 cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
143 *drv);
147 * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum()
148 * and keyswitch_poll()
150 (void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
151 (void) ddi_hold_driver(ddi_name_to_major("ssc050"));
153 /* Gain access into the ssc050_get_port function */
154 daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
155 uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
156 if (daktari_ssc050_get_port_bit == NULL) {
157 cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
158 return;
161 ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip);
162 ASSERT(keysw_dip != NULL);
165 * prevent detach of i2c-ssc050
167 e_ddi_hold_devi(keysw_dip);
169 keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
170 keyswitch_poll(keysw_dip);
171 abort_seq_handler = daktari_abort_seq_handler;
174 static int
175 daktari_dev_search(dev_info_t *dip, void *arg)
177 char *compatible = NULL; /* Search tree for "i2c-ssc050" */
178 int *dev_regs; /* Info about where the device is. */
179 uint_t len;
180 int err;
182 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
183 "compatible", &compatible) != DDI_PROP_SUCCESS)
184 return (DDI_WALK_CONTINUE);
186 if (strcmp(compatible, "i2c-ssc050") == 0) {
187 ddi_prop_free(compatible);
189 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
190 DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
191 if (err != DDI_PROP_SUCCESS) {
192 return (DDI_WALK_CONTINUE);
195 * regs[0] contains the bus number and regs[1]
196 * contains the device address of the i2c device.
197 * 0x82 is the device address of the i2c device
198 * from which the key switch position is read.
200 if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
201 *((dev_info_t **)arg) = dip;
202 ddi_prop_free(dev_regs);
203 return (DDI_WALK_TERMINATE);
205 ddi_prop_free(dev_regs);
206 } else {
207 ddi_prop_free(compatible);
209 return (DDI_WALK_CONTINUE);
212 static void
213 keyswitch_poll(void *arg)
215 dev_info_t *dip = arg;
216 uchar_t port_byte;
217 int port = DAK_KEY_POLL_PORT;
218 int bit = DAK_KEY_POLL_BIT;
219 int err;
221 err = daktari_ssc050_get_port_bit(dip, port, bit,
222 &port_byte, I2C_NOSLEEP);
223 if (err != 0) {
224 cmn_err(CE_WARN, "keyswitch polling disabled: "
225 "errno=%d while reading ssc050", err);
226 return;
229 key_locked_bit = (boolean_t)((port_byte & 0x1));
230 (void) timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
233 static void
234 daktari_abort_seq_handler(char *msg)
236 if (key_locked_bit == 0)
237 cmn_err(CE_CONT, "KEY in LOCKED position, "
238 "ignoring debug enter sequence");
239 else {
240 debug_enter(msg);
246 plat_cpu_poweron(struct cpu *cp)
248 _NOTE(ARGUNUSED(cp))
249 return (ENOTSUP);
253 plat_cpu_poweroff(struct cpu *cp)
255 _NOTE(ARGUNUSED(cp))
256 return (ENOTSUP);
260 * Given a pfn, return the board and beginning/end of the page's
261 * memory controller's address range.
263 static int
264 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
266 int bd, cpu, bank;
268 for (bd = 0; bd < DAK_SBD_SLOTS; bd++) {
269 for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) {
270 for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) {
271 uint64_t *slice = slice_table[bd][cpu][bank];
272 uint64_t base = btop(slice[SLICE_PA]);
273 uint64_t len = btop(slice[SLICE_SPAN]);
274 if (len && pfn >= base && pfn < (base + len)) {
275 *first = base;
276 *last = base + len - 1;
277 return (bd);
282 panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
283 /* NOTREACHED */
286 /*ARGSUSED*/
287 void
288 plat_freelist_process(int mnode)
293 * Called for each board/cpu/PA range detected in plat_fill_mc().
295 static void
296 update_mem_bounds(int boardid, int cpuid, int bankid,
297 uint64_t base, uint64_t size)
299 uint64_t end;
300 int mnode;
302 slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
303 slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
305 end = base + size - 1;
308 * First see if this board already has a memnode associated
309 * with it. If not, see if this slice has a memnode. This
310 * covers the cases where a single slice covers multiple
311 * boards (cross-board interleaving) and where a single
312 * board has multiple slices (1+GB DIMMs).
314 if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
315 if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
316 mnode = mem_node_alloc();
318 ASSERT(mnode >= 0);
319 ASSERT(mnode < MAX_MEM_NODES);
320 plat_assign_lgrphand_to_mem_node(boardid, mnode);
323 base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
325 while (base < end) {
326 slice_to_memnode[PA_2_SLICE(base)] = mnode;
327 base += (1ul << PA_SLICE_SHIFT);
332 * Dynamically detect memory slices in the system by decoding
333 * the cpu memory decoder registers at boot time.
335 void
336 plat_fill_mc(pnode_t nodeid)
338 uint64_t mc_addr, saf_addr;
339 uint64_t mc_decode[DAK_BANKS_PER_MC];
340 uint64_t base, size;
341 uint64_t saf_mask;
342 uint64_t offset;
343 uint32_t regs[4];
344 int len;
345 int local_mc;
346 int portid;
347 int boardid;
348 int cpuid;
349 int i;
351 if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
352 (portid == -1))
353 return;
356 * Decode the board number from the MC portid. Assumes
357 * portid == safari agentid.
359 boardid = DAK_GETSLOT(portid);
360 cpuid = DAK_GETSID(portid);
363 * The "reg" property returns 4 32-bit values. The first two are
364 * combined to form a 64-bit address. The second two are for a
365 * 64-bit size, but we don't actually need to look at that value.
367 len = prom_getproplen(nodeid, "reg");
368 if (len != (sizeof (uint32_t) * 4)) {
369 prom_printf("Warning: malformed 'reg' property\n");
370 return;
372 if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
373 return;
374 mc_addr = ((uint64_t)regs[0]) << 32;
375 mc_addr |= (uint64_t)regs[1];
378 * Figure out whether the memory controller we are examining
379 * belongs to this CPU or a different one.
381 saf_addr = lddsafaddr(8);
382 saf_mask = (uint64_t)SAF_MASK;
383 if ((mc_addr & saf_mask) == saf_addr)
384 local_mc = 1;
385 else
386 local_mc = 0;
388 for (i = 0; i < DAK_BANKS_PER_MC; i++) {
390 * Memory decode masks are at offsets 0x10 - 0x28.
392 offset = 0x10 + (i << 3);
395 * If the memory controller is local to this CPU, we use
396 * the special ASI to read the decode registers.
397 * Otherwise, we load the values from a magic address in
398 * I/O space.
400 if (local_mc)
401 mc_decode[i] = lddmcdecode(offset);
402 else
403 mc_decode[i] = lddphysio(mc_addr | offset);
406 * If the upper bit is set, we have a valid mask
408 if ((int64_t)mc_decode[i] < 0) {
410 * The memory decode register is a bitmask field,
411 * so we can decode that into both a base and
412 * a span.
414 base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
415 size = MC_UK2SPAN(mc_decode[i]);
416 update_mem_bounds(boardid, cpuid, i, base, size);
423 * This routine is run midway through the boot process. By the time we get
424 * here, we know about all the active CPU boards in the system, and we have
425 * extracted information about each board's memory from the memory
426 * controllers. We have also figured out which ranges of memory will be
427 * assigned to which memnodes, so we walk the slice table to build the table
428 * of memnodes.
430 /* ARGSUSED */
431 void
432 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
434 int slice;
435 pfn_t basepfn;
436 pgcnt_t npgs;
438 mem_node_pfn_shift = PFN_SLICE_SHIFT;
439 mem_node_physalign = (1ull << PA_SLICE_SHIFT);
440 npgs = 1ull << PFN_SLICE_SHIFT;
442 for (slice = 0; slice < DAK_MAX_SLICE; slice++) {
443 if (slice_to_memnode[slice] == -1)
444 continue;
445 basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
446 mem_node_add_slice(basepfn, basepfn + npgs - 1);
453 * Daktari support for lgroups.
455 * On Daktari, an lgroup platform handle == slot number.
457 * Mappings between lgroup handles and memnodes are managed
458 * in addition to mappings between memory slices and memnodes
459 * to support cross-board interleaving as well as multiple
460 * slices per board (e.g. >1GB DIMMs). The initial mapping
461 * of memnodes to lgroup handles is determined at boot time.
464 plat_pfn_to_mem_node(pfn_t pfn)
466 return (slice_to_memnode[PFN_2_SLICE(pfn)]);
470 * Return the platform handle for the lgroup containing the given CPU
472 * For Daktari, lgroup platform handle == slot number
474 lgrp_handle_t
475 plat_lgrp_cpu_to_hand(processorid_t id)
477 return (DAK_GETSLOT(id));
481 * Platform specific lgroup initialization
483 void
484 plat_lgrp_init(void)
486 int i;
489 * Initialize lookup tables to invalid values so we catch
490 * any illegal use of them.
492 for (i = 0; i < DAK_MAX_SLICE; i++) {
493 slice_to_memnode[i] = -1;
498 * Return latency between "from" and "to" lgroups
500 * This latency number can only be used for relative comparison
501 * between lgroups on the running system, cannot be used across platforms,
502 * and may not reflect the actual latency. It is platform and implementation
503 * specific, so platform gets to decide its value. It would be nice if the
504 * number was at least proportional to make comparisons more meaningful though.
505 * NOTE: The numbers below are supposed to be load latencies for uncached
506 * memory divided by 10.
509 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
512 * Return min remote latency when there are more than two lgroups
513 * (root and child) and getting latency between two different lgroups
514 * or root is involved
516 if (lgrp_optimizations() && (from != to ||
517 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
518 return (21);
519 else
520 return (19);
523 * No platform drivers on this platform
525 char *platform_module_list[] = {
526 (char *)0
529 /*ARGSUSED*/
530 void
531 plat_tod_fault(enum tod_fault_type tod_bad)
535 /*ARGSUSED*/
537 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
538 int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
540 if (flt_in_memory && (p2get_mem_unum != NULL))
541 return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
542 buf, buflen, lenp));
543 else
544 return (ENOTSUP);
548 * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
549 * driver giving each platform the opportunity to add platform
550 * specific label information to the unum for ECC error logging purposes.
552 void
553 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
555 _NOTE(ARGUNUSED(bank, dimm))
557 char board = DAK_GETSLOT_LABEL(mcid);
558 char old_unum[UNUM_NAMLEN];
560 (void) strcpy(old_unum, unum);
561 (void) snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
565 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
567 char board = DAK_GETSLOT_LABEL(cpuid);
569 if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
570 return (ENOSPC);
571 } else {
572 *lenp = strlen(buf);
573 return (0);
578 * The zuluvm module required a dmv interrupt for each installed
579 * Zulu/XVR-4000 board. The following has not been updated during the
580 * removal of zuluvm and therefore it may be suboptimal.
582 void
583 plat_dmv_params(uint_t *hwint, uint_t *swint)
585 *hwint = 0;
586 *swint = DAK_SBD_SLOTS - 1;