1452 DTrace buffer autoscaling should be less violent
[illumos-gate.git] / usr / src / uts / common / dtrace / dtrace.c
blobb6be08379f291ea58f5be39910cf42f484516ea2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28 * DTrace - Dynamic Tracing for Solaris
30 * This is the implementation of the Solaris Dynamic Tracing framework
31 * (DTrace). The user-visible interface to DTrace is described at length in
32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
33 * library, the in-kernel DTrace framework, and the DTrace providers are
34 * described in the block comments in the <sys/dtrace.h> header file. The
35 * internal architecture of DTrace is described in the block comments in the
36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
37 * implementation very much assume mastery of all of these sources; if one has
38 * an unanswered question about the implementation, one should consult them
39 * first.
41 * The functions here are ordered roughly as follows:
43 * - Probe context functions
44 * - Probe hashing functions
45 * - Non-probe context utility functions
46 * - Matching functions
47 * - Provider-to-Framework API functions
48 * - Probe management functions
49 * - DIF object functions
50 * - Format functions
51 * - Predicate functions
52 * - ECB functions
53 * - Buffer functions
54 * - Enabling functions
55 * - DOF functions
56 * - Anonymous enabling functions
57 * - Consumer state functions
58 * - Helper functions
59 * - Hook functions
60 * - Driver cookbook functions
62 * Each group of functions begins with a block comment labelled the "DTrace
63 * [Group] Functions", allowing one to find each block by searching forward
64 * on capital-f functions.
66 #include <sys/errno.h>
67 #include <sys/stat.h>
68 #include <sys/modctl.h>
69 #include <sys/conf.h>
70 #include <sys/systm.h>
71 #include <sys/ddi.h>
72 #include <sys/sunddi.h>
73 #include <sys/cpuvar.h>
74 #include <sys/kmem.h>
75 #include <sys/strsubr.h>
76 #include <sys/sysmacros.h>
77 #include <sys/dtrace_impl.h>
78 #include <sys/atomic.h>
79 #include <sys/cmn_err.h>
80 #include <sys/mutex_impl.h>
81 #include <sys/rwlock_impl.h>
82 #include <sys/ctf_api.h>
83 #include <sys/panic.h>
84 #include <sys/priv_impl.h>
85 #include <sys/policy.h>
86 #include <sys/cred_impl.h>
87 #include <sys/procfs_isa.h>
88 #include <sys/taskq.h>
89 #include <sys/mkdev.h>
90 #include <sys/kdi.h>
91 #include <sys/zone.h>
92 #include <sys/socket.h>
93 #include <netinet/in.h>
96 * DTrace Tunable Variables
98 * The following variables may be tuned by adding a line to /etc/system that
99 * includes both the name of the DTrace module ("dtrace") and the name of the
100 * variable. For example:
102 * set dtrace:dtrace_destructive_disallow = 1
104 * In general, the only variables that one should be tuning this way are those
105 * that affect system-wide DTrace behavior, and for which the default behavior
106 * is undesirable. Most of these variables are tunable on a per-consumer
107 * basis using DTrace options, and need not be tuned on a system-wide basis.
108 * When tuning these variables, avoid pathological values; while some attempt
109 * is made to verify the integrity of these variables, they are not considered
110 * part of the supported interface to DTrace, and they are therefore not
111 * checked comprehensively. Further, these variables should not be tuned
112 * dynamically via "mdb -kw" or other means; they should only be tuned via
113 * /etc/system.
115 int dtrace_destructive_disallow = 0;
116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
119 size_t dtrace_global_maxsize = (16 * 1024);
120 size_t dtrace_actions_max = (16 * 1024);
121 size_t dtrace_retain_max = 1024;
122 dtrace_optval_t dtrace_helper_actions_max = 32;
123 dtrace_optval_t dtrace_helper_providers_max = 32;
124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t dtrace_strsize_default = 256;
126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
133 dtrace_optval_t dtrace_nspec_default = 1;
134 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int dtrace_msgdsize_max = 128;
140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */
141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
142 int dtrace_devdepth_max = 32;
143 int dtrace_err_verbose;
144 hrtime_t dtrace_deadman_interval = NANOSEC;
145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 * DTrace External Variables
152 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
153 * available to DTrace consumers via the backtick (`) syntax. One of these,
154 * dtrace_zero, is made deliberately so: it is provided as a source of
155 * well-known, zero-filled memory. While this variable is not documented,
156 * it is used by some translators as an implementation detail.
158 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
161 * DTrace Internal Variables
163 static dev_info_t *dtrace_devi; /* device info */
164 static vmem_t *dtrace_arena; /* probe ID arena */
165 static vmem_t *dtrace_minor; /* minor number arena */
166 static taskq_t *dtrace_taskq; /* task queue */
167 static dtrace_probe_t **dtrace_probes; /* array of all probes */
168 static int dtrace_nprobes; /* number of probes */
169 static dtrace_provider_t *dtrace_provider; /* provider list */
170 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
171 static int dtrace_opens; /* number of opens */
172 static int dtrace_helpers; /* number of helpers */
173 static void *dtrace_softstate; /* softstate pointer */
174 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
175 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
176 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
177 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
178 static int dtrace_toxranges; /* number of toxic ranges */
179 static int dtrace_toxranges_max; /* size of toxic range array */
180 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
181 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
182 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
183 static kthread_t *dtrace_panicked; /* panicking thread */
184 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
185 static dtrace_genid_t dtrace_probegen; /* current probe generation */
186 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
187 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
188 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
190 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
193 * DTrace Locking
194 * DTrace is protected by three (relatively coarse-grained) locks:
196 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
197 * including enabling state, probes, ECBs, consumer state, helper state,
198 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
199 * probe context is lock-free -- synchronization is handled via the
200 * dtrace_sync() cross call mechanism.
202 * (2) dtrace_provider_lock is required when manipulating provider state, or
203 * when provider state must be held constant.
205 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
206 * when meta provider state must be held constant.
208 * The lock ordering between these three locks is dtrace_meta_lock before
209 * dtrace_provider_lock before dtrace_lock. (In particular, there are
210 * several places where dtrace_provider_lock is held by the framework as it
211 * calls into the providers -- which then call back into the framework,
212 * grabbing dtrace_lock.)
214 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
215 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
216 * role as a coarse-grained lock; it is acquired before both of these locks.
217 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
218 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
219 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
220 * acquired _between_ dtrace_provider_lock and dtrace_lock.
222 static kmutex_t dtrace_lock; /* probe state lock */
223 static kmutex_t dtrace_provider_lock; /* provider state lock */
224 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
227 * DTrace Provider Variables
229 * These are the variables relating to DTrace as a provider (that is, the
230 * provider of the BEGIN, END, and ERROR probes).
232 static dtrace_pattr_t dtrace_provider_attr = {
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 static void
241 dtrace_nullop(void)
244 static int
245 dtrace_enable_nullop(void)
247 return (0);
250 static dtrace_pops_t dtrace_provider_ops = {
251 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
252 (void (*)(void *, struct modctl *))dtrace_nullop,
253 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
255 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
257 NULL,
258 NULL,
259 NULL,
260 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
263 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
264 static dtrace_id_t dtrace_probeid_end; /* special END probe */
265 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
268 * DTrace Helper Tracing Variables
270 uint32_t dtrace_helptrace_next = 0;
271 uint32_t dtrace_helptrace_nlocals;
272 char *dtrace_helptrace_buffer;
273 int dtrace_helptrace_bufsize = 512 * 1024;
275 #ifdef DEBUG
276 int dtrace_helptrace_enabled = 1;
277 #else
278 int dtrace_helptrace_enabled = 0;
279 #endif
282 * DTrace Error Hashing
284 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
285 * table. This is very useful for checking coverage of tests that are
286 * expected to induce DIF or DOF processing errors, and may be useful for
287 * debugging problems in the DIF code generator or in DOF generation . The
288 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
290 #ifdef DEBUG
291 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
292 static const char *dtrace_errlast;
293 static kthread_t *dtrace_errthread;
294 static kmutex_t dtrace_errlock;
295 #endif
298 * DTrace Macros and Constants
300 * These are various macros that are useful in various spots in the
301 * implementation, along with a few random constants that have no meaning
302 * outside of the implementation. There is no real structure to this cpp
303 * mishmash -- but is there ever?
305 #define DTRACE_HASHSTR(hash, probe) \
306 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
308 #define DTRACE_HASHNEXT(hash, probe) \
309 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
311 #define DTRACE_HASHPREV(hash, probe) \
312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
314 #define DTRACE_HASHEQ(hash, lhs, rhs) \
315 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
316 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
318 #define DTRACE_AGGHASHSIZE_SLEW 17
320 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
323 * The key for a thread-local variable consists of the lower 61 bits of the
324 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
325 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
326 * equal to a variable identifier. This is necessary (but not sufficient) to
327 * assure that global associative arrays never collide with thread-local
328 * variables. To guarantee that they cannot collide, we must also define the
329 * order for keying dynamic variables. That order is:
331 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
333 * Because the variable-key and the tls-key are in orthogonal spaces, there is
334 * no way for a global variable key signature to match a thread-local key
335 * signature.
337 #define DTRACE_TLS_THRKEY(where) { \
338 uint_t intr = 0; \
339 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
340 for (; actv; actv >>= 1) \
341 intr++; \
342 ASSERT(intr < (1 << 3)); \
343 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
344 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
347 #define DT_BSWAP_8(x) ((x) & 0xff)
348 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
349 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
350 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
352 #define DT_MASK_LO 0x00000000FFFFFFFFULL
354 #define DTRACE_STORE(type, tomax, offset, what) \
355 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
357 #ifndef __i386
358 #define DTRACE_ALIGNCHECK(addr, size, flags) \
359 if (addr & (size - 1)) { \
360 *flags |= CPU_DTRACE_BADALIGN; \
361 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
362 return (0); \
364 #else
365 #define DTRACE_ALIGNCHECK(addr, size, flags)
366 #endif
369 * Test whether a range of memory starting at testaddr of size testsz falls
370 * within the range of memory described by addr, sz. We take care to avoid
371 * problems with overflow and underflow of the unsigned quantities, and
372 * disallow all negative sizes. Ranges of size 0 are allowed.
374 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
375 ((testaddr) - (baseaddr) < (basesz) && \
376 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
377 (testaddr) + (testsz) >= (testaddr))
380 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
381 * alloc_sz on the righthand side of the comparison in order to avoid overflow
382 * or underflow in the comparison with it. This is simpler than the INRANGE
383 * check above, because we know that the dtms_scratch_ptr is valid in the
384 * range. Allocations of size zero are allowed.
386 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
387 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
388 (mstate)->dtms_scratch_ptr >= (alloc_sz))
390 #define DTRACE_LOADFUNC(bits) \
391 /*CSTYLED*/ \
392 uint##bits##_t \
393 dtrace_load##bits(uintptr_t addr) \
395 size_t size = bits / NBBY; \
396 /*CSTYLED*/ \
397 uint##bits##_t rval; \
398 int i; \
399 volatile uint16_t *flags = (volatile uint16_t *) \
400 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
402 DTRACE_ALIGNCHECK(addr, size, flags); \
404 for (i = 0; i < dtrace_toxranges; i++) { \
405 if (addr >= dtrace_toxrange[i].dtt_limit) \
406 continue; \
408 if (addr + size <= dtrace_toxrange[i].dtt_base) \
409 continue; \
411 /* \
412 * This address falls within a toxic region; return 0. \
413 */ \
414 *flags |= CPU_DTRACE_BADADDR; \
415 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
416 return (0); \
419 *flags |= CPU_DTRACE_NOFAULT; \
420 /*CSTYLED*/ \
421 rval = *((volatile uint##bits##_t *)addr); \
422 *flags &= ~CPU_DTRACE_NOFAULT; \
424 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
427 #ifdef _LP64
428 #define dtrace_loadptr dtrace_load64
429 #else
430 #define dtrace_loadptr dtrace_load32
431 #endif
433 #define DTRACE_DYNHASH_FREE 0
434 #define DTRACE_DYNHASH_SINK 1
435 #define DTRACE_DYNHASH_VALID 2
437 #define DTRACE_MATCH_FAIL -1
438 #define DTRACE_MATCH_NEXT 0
439 #define DTRACE_MATCH_DONE 1
440 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
441 #define DTRACE_STATE_ALIGN 64
443 #define DTRACE_FLAGS2FLT(flags) \
444 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
445 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
446 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
447 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
448 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
449 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
450 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
451 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
452 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
453 DTRACEFLT_UNKNOWN)
455 #define DTRACEACT_ISSTRING(act) \
456 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
457 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
459 static size_t dtrace_strlen(const char *, size_t);
460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
461 static void dtrace_enabling_provide(dtrace_provider_t *);
462 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
463 static void dtrace_enabling_matchall(void);
464 static void dtrace_enabling_reap(void);
465 static dtrace_state_t *dtrace_anon_grab(void);
466 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
467 dtrace_state_t *, uint64_t, uint64_t);
468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
469 static void dtrace_buffer_drop(dtrace_buffer_t *);
470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
472 dtrace_state_t *, dtrace_mstate_t *);
473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
474 dtrace_optval_t);
475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
479 * DTrace Probe Context Functions
481 * These functions are called from probe context. Because probe context is
482 * any context in which C may be called, arbitrarily locks may be held,
483 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
484 * As a result, functions called from probe context may only call other DTrace
485 * support functions -- they may not interact at all with the system at large.
486 * (Note that the ASSERT macro is made probe-context safe by redefining it in
487 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
488 * loads are to be performed from probe context, they _must_ be in terms of
489 * the safe dtrace_load*() variants.
491 * Some functions in this block are not actually called from probe context;
492 * for these functions, there will be a comment above the function reading
493 * "Note: not called from probe context."
495 void
496 dtrace_panic(const char *format, ...)
498 va_list alist;
500 va_start(alist, format);
501 dtrace_vpanic(format, alist);
502 va_end(alist);
506 dtrace_assfail(const char *a, const char *f, int l)
508 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
511 * We just need something here that even the most clever compiler
512 * cannot optimize away.
514 return (a[(uintptr_t)f]);
518 * Atomically increment a specified error counter from probe context.
520 static void
521 dtrace_error(uint32_t *counter)
524 * Most counters stored to in probe context are per-CPU counters.
525 * However, there are some error conditions that are sufficiently
526 * arcane that they don't merit per-CPU storage. If these counters
527 * are incremented concurrently on different CPUs, scalability will be
528 * adversely affected -- but we don't expect them to be white-hot in a
529 * correctly constructed enabling...
531 uint32_t oval, nval;
533 do {
534 oval = *counter;
536 if ((nval = oval + 1) == 0) {
538 * If the counter would wrap, set it to 1 -- assuring
539 * that the counter is never zero when we have seen
540 * errors. (The counter must be 32-bits because we
541 * aren't guaranteed a 64-bit compare&swap operation.)
542 * To save this code both the infamy of being fingered
543 * by a priggish news story and the indignity of being
544 * the target of a neo-puritan witch trial, we're
545 * carefully avoiding any colorful description of the
546 * likelihood of this condition -- but suffice it to
547 * say that it is only slightly more likely than the
548 * overflow of predicate cache IDs, as discussed in
549 * dtrace_predicate_create().
551 nval = 1;
553 } while (dtrace_cas32(counter, oval, nval) != oval);
557 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
558 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
560 DTRACE_LOADFUNC(8)
561 DTRACE_LOADFUNC(16)
562 DTRACE_LOADFUNC(32)
563 DTRACE_LOADFUNC(64)
565 static int
566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
568 if (dest < mstate->dtms_scratch_base)
569 return (0);
571 if (dest + size < dest)
572 return (0);
574 if (dest + size > mstate->dtms_scratch_ptr)
575 return (0);
577 return (1);
580 static int
581 dtrace_canstore_statvar(uint64_t addr, size_t sz,
582 dtrace_statvar_t **svars, int nsvars)
584 int i;
586 for (i = 0; i < nsvars; i++) {
587 dtrace_statvar_t *svar = svars[i];
589 if (svar == NULL || svar->dtsv_size == 0)
590 continue;
592 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
593 return (1);
596 return (0);
600 * Check to see if the address is within a memory region to which a store may
601 * be issued. This includes the DTrace scratch areas, and any DTrace variable
602 * region. The caller of dtrace_canstore() is responsible for performing any
603 * alignment checks that are needed before stores are actually executed.
605 static int
606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
607 dtrace_vstate_t *vstate)
610 * First, check to see if the address is in scratch space...
612 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
613 mstate->dtms_scratch_size))
614 return (1);
617 * Now check to see if it's a dynamic variable. This check will pick
618 * up both thread-local variables and any global dynamically-allocated
619 * variables.
621 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
622 vstate->dtvs_dynvars.dtds_size)) {
623 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
624 uintptr_t base = (uintptr_t)dstate->dtds_base +
625 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
626 uintptr_t chunkoffs;
629 * Before we assume that we can store here, we need to make
630 * sure that it isn't in our metadata -- storing to our
631 * dynamic variable metadata would corrupt our state. For
632 * the range to not include any dynamic variable metadata,
633 * it must:
635 * (1) Start above the hash table that is at the base of
636 * the dynamic variable space
638 * (2) Have a starting chunk offset that is beyond the
639 * dtrace_dynvar_t that is at the base of every chunk
641 * (3) Not span a chunk boundary
644 if (addr < base)
645 return (0);
647 chunkoffs = (addr - base) % dstate->dtds_chunksize;
649 if (chunkoffs < sizeof (dtrace_dynvar_t))
650 return (0);
652 if (chunkoffs + sz > dstate->dtds_chunksize)
653 return (0);
655 return (1);
659 * Finally, check the static local and global variables. These checks
660 * take the longest, so we perform them last.
662 if (dtrace_canstore_statvar(addr, sz,
663 vstate->dtvs_locals, vstate->dtvs_nlocals))
664 return (1);
666 if (dtrace_canstore_statvar(addr, sz,
667 vstate->dtvs_globals, vstate->dtvs_nglobals))
668 return (1);
670 return (0);
675 * Convenience routine to check to see if the address is within a memory
676 * region in which a load may be issued given the user's privilege level;
677 * if not, it sets the appropriate error flags and loads 'addr' into the
678 * illegal value slot.
680 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
681 * appropriate memory access protection.
683 static int
684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
685 dtrace_vstate_t *vstate)
687 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
690 * If we hold the privilege to read from kernel memory, then
691 * everything is readable.
693 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
694 return (1);
697 * You can obviously read that which you can store.
699 if (dtrace_canstore(addr, sz, mstate, vstate))
700 return (1);
703 * We're allowed to read from our own string table.
705 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
706 mstate->dtms_difo->dtdo_strlen))
707 return (1);
709 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
710 *illval = addr;
711 return (0);
715 * Convenience routine to check to see if a given string is within a memory
716 * region in which a load may be issued given the user's privilege level;
717 * this exists so that we don't need to issue unnecessary dtrace_strlen()
718 * calls in the event that the user has all privileges.
720 static int
721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
722 dtrace_vstate_t *vstate)
724 size_t strsz;
727 * If we hold the privilege to read from kernel memory, then
728 * everything is readable.
730 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
731 return (1);
733 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
734 if (dtrace_canload(addr, strsz, mstate, vstate))
735 return (1);
737 return (0);
741 * Convenience routine to check to see if a given variable is within a memory
742 * region in which a load may be issued given the user's privilege level.
744 static int
745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
746 dtrace_vstate_t *vstate)
748 size_t sz;
749 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
752 * If we hold the privilege to read from kernel memory, then
753 * everything is readable.
755 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
756 return (1);
758 if (type->dtdt_kind == DIF_TYPE_STRING)
759 sz = dtrace_strlen(src,
760 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
761 else
762 sz = type->dtdt_size;
764 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
768 * Compare two strings using safe loads.
770 static int
771 dtrace_strncmp(char *s1, char *s2, size_t limit)
773 uint8_t c1, c2;
774 volatile uint16_t *flags;
776 if (s1 == s2 || limit == 0)
777 return (0);
779 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
781 do {
782 if (s1 == NULL) {
783 c1 = '\0';
784 } else {
785 c1 = dtrace_load8((uintptr_t)s1++);
788 if (s2 == NULL) {
789 c2 = '\0';
790 } else {
791 c2 = dtrace_load8((uintptr_t)s2++);
794 if (c1 != c2)
795 return (c1 - c2);
796 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
798 return (0);
802 * Compute strlen(s) for a string using safe memory accesses. The additional
803 * len parameter is used to specify a maximum length to ensure completion.
805 static size_t
806 dtrace_strlen(const char *s, size_t lim)
808 uint_t len;
810 for (len = 0; len != lim; len++) {
811 if (dtrace_load8((uintptr_t)s++) == '\0')
812 break;
815 return (len);
819 * Check if an address falls within a toxic region.
821 static int
822 dtrace_istoxic(uintptr_t kaddr, size_t size)
824 uintptr_t taddr, tsize;
825 int i;
827 for (i = 0; i < dtrace_toxranges; i++) {
828 taddr = dtrace_toxrange[i].dtt_base;
829 tsize = dtrace_toxrange[i].dtt_limit - taddr;
831 if (kaddr - taddr < tsize) {
832 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
833 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
834 return (1);
837 if (taddr - kaddr < size) {
838 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
839 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
840 return (1);
844 return (0);
848 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
849 * memory specified by the DIF program. The dst is assumed to be safe memory
850 * that we can store to directly because it is managed by DTrace. As with
851 * standard bcopy, overlapping copies are handled properly.
853 static void
854 dtrace_bcopy(const void *src, void *dst, size_t len)
856 if (len != 0) {
857 uint8_t *s1 = dst;
858 const uint8_t *s2 = src;
860 if (s1 <= s2) {
861 do {
862 *s1++ = dtrace_load8((uintptr_t)s2++);
863 } while (--len != 0);
864 } else {
865 s2 += len;
866 s1 += len;
868 do {
869 *--s1 = dtrace_load8((uintptr_t)--s2);
870 } while (--len != 0);
876 * Copy src to dst using safe memory accesses, up to either the specified
877 * length, or the point that a nul byte is encountered. The src is assumed to
878 * be unsafe memory specified by the DIF program. The dst is assumed to be
879 * safe memory that we can store to directly because it is managed by DTrace.
880 * Unlike dtrace_bcopy(), overlapping regions are not handled.
882 static void
883 dtrace_strcpy(const void *src, void *dst, size_t len)
885 if (len != 0) {
886 uint8_t *s1 = dst, c;
887 const uint8_t *s2 = src;
889 do {
890 *s1++ = c = dtrace_load8((uintptr_t)s2++);
891 } while (--len != 0 && c != '\0');
896 * Copy src to dst, deriving the size and type from the specified (BYREF)
897 * variable type. The src is assumed to be unsafe memory specified by the DIF
898 * program. The dst is assumed to be DTrace variable memory that is of the
899 * specified type; we assume that we can store to directly.
901 static void
902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
904 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
906 if (type->dtdt_kind == DIF_TYPE_STRING) {
907 dtrace_strcpy(src, dst, type->dtdt_size);
908 } else {
909 dtrace_bcopy(src, dst, type->dtdt_size);
914 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
915 * unsafe memory specified by the DIF program. The s2 data is assumed to be
916 * safe memory that we can access directly because it is managed by DTrace.
918 static int
919 dtrace_bcmp(const void *s1, const void *s2, size_t len)
921 volatile uint16_t *flags;
923 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
925 if (s1 == s2)
926 return (0);
928 if (s1 == NULL || s2 == NULL)
929 return (1);
931 if (s1 != s2 && len != 0) {
932 const uint8_t *ps1 = s1;
933 const uint8_t *ps2 = s2;
935 do {
936 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
937 return (1);
938 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
940 return (0);
944 * Zero the specified region using a simple byte-by-byte loop. Note that this
945 * is for safe DTrace-managed memory only.
947 static void
948 dtrace_bzero(void *dst, size_t len)
950 uchar_t *cp;
952 for (cp = dst; len != 0; len--)
953 *cp++ = 0;
956 static void
957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
959 uint64_t result[2];
961 result[0] = addend1[0] + addend2[0];
962 result[1] = addend1[1] + addend2[1] +
963 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
965 sum[0] = result[0];
966 sum[1] = result[1];
970 * Shift the 128-bit value in a by b. If b is positive, shift left.
971 * If b is negative, shift right.
973 static void
974 dtrace_shift_128(uint64_t *a, int b)
976 uint64_t mask;
978 if (b == 0)
979 return;
981 if (b < 0) {
982 b = -b;
983 if (b >= 64) {
984 a[0] = a[1] >> (b - 64);
985 a[1] = 0;
986 } else {
987 a[0] >>= b;
988 mask = 1LL << (64 - b);
989 mask -= 1;
990 a[0] |= ((a[1] & mask) << (64 - b));
991 a[1] >>= b;
993 } else {
994 if (b >= 64) {
995 a[1] = a[0] << (b - 64);
996 a[0] = 0;
997 } else {
998 a[1] <<= b;
999 mask = a[0] >> (64 - b);
1000 a[1] |= mask;
1001 a[0] <<= b;
1007 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1008 * use native multiplication on those, and then re-combine into the
1009 * resulting 128-bit value.
1011 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1012 * hi1 * hi2 << 64 +
1013 * hi1 * lo2 << 32 +
1014 * hi2 * lo1 << 32 +
1015 * lo1 * lo2
1017 static void
1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1020 uint64_t hi1, hi2, lo1, lo2;
1021 uint64_t tmp[2];
1023 hi1 = factor1 >> 32;
1024 hi2 = factor2 >> 32;
1026 lo1 = factor1 & DT_MASK_LO;
1027 lo2 = factor2 & DT_MASK_LO;
1029 product[0] = lo1 * lo2;
1030 product[1] = hi1 * hi2;
1032 tmp[0] = hi1 * lo2;
1033 tmp[1] = 0;
1034 dtrace_shift_128(tmp, 32);
1035 dtrace_add_128(product, tmp, product);
1037 tmp[0] = hi2 * lo1;
1038 tmp[1] = 0;
1039 dtrace_shift_128(tmp, 32);
1040 dtrace_add_128(product, tmp, product);
1044 * This privilege check should be used by actions and subroutines to
1045 * verify that the user credentials of the process that enabled the
1046 * invoking ECB match the target credentials
1048 static int
1049 dtrace_priv_proc_common_user(dtrace_state_t *state)
1051 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1054 * We should always have a non-NULL state cred here, since if cred
1055 * is null (anonymous tracing), we fast-path bypass this routine.
1057 ASSERT(s_cr != NULL);
1059 if ((cr = CRED()) != NULL &&
1060 s_cr->cr_uid == cr->cr_uid &&
1061 s_cr->cr_uid == cr->cr_ruid &&
1062 s_cr->cr_uid == cr->cr_suid &&
1063 s_cr->cr_gid == cr->cr_gid &&
1064 s_cr->cr_gid == cr->cr_rgid &&
1065 s_cr->cr_gid == cr->cr_sgid)
1066 return (1);
1068 return (0);
1072 * This privilege check should be used by actions and subroutines to
1073 * verify that the zone of the process that enabled the invoking ECB
1074 * matches the target credentials
1076 static int
1077 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1079 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1082 * We should always have a non-NULL state cred here, since if cred
1083 * is null (anonymous tracing), we fast-path bypass this routine.
1085 ASSERT(s_cr != NULL);
1087 if ((cr = CRED()) != NULL &&
1088 s_cr->cr_zone == cr->cr_zone)
1089 return (1);
1091 return (0);
1095 * This privilege check should be used by actions and subroutines to
1096 * verify that the process has not setuid or changed credentials.
1098 static int
1099 dtrace_priv_proc_common_nocd()
1101 proc_t *proc;
1103 if ((proc = ttoproc(curthread)) != NULL &&
1104 !(proc->p_flag & SNOCD))
1105 return (1);
1107 return (0);
1110 static int
1111 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1113 int action = state->dts_cred.dcr_action;
1115 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1116 goto bad;
1118 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1119 dtrace_priv_proc_common_zone(state) == 0)
1120 goto bad;
1122 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1123 dtrace_priv_proc_common_user(state) == 0)
1124 goto bad;
1126 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1127 dtrace_priv_proc_common_nocd() == 0)
1128 goto bad;
1130 return (1);
1132 bad:
1133 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1135 return (0);
1138 static int
1139 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1141 if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1142 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1143 return (1);
1145 if (dtrace_priv_proc_common_zone(state) &&
1146 dtrace_priv_proc_common_user(state) &&
1147 dtrace_priv_proc_common_nocd())
1148 return (1);
1151 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1153 return (0);
1156 static int
1157 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1159 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1160 (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1161 return (1);
1163 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1165 return (0);
1168 static int
1169 dtrace_priv_kernel(dtrace_state_t *state)
1171 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1172 return (1);
1174 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1176 return (0);
1179 static int
1180 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1182 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1183 return (1);
1185 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1187 return (0);
1191 * Determine if the dte_cond of the specified ECB allows for processing of
1192 * the current probe to continue. Note that this routine may allow continued
1193 * processing, but with access(es) stripped from the mstate's dtms_access
1194 * field.
1196 static int
1197 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1198 dtrace_ecb_t *ecb)
1200 dtrace_probe_t *probe = ecb->dte_probe;
1201 dtrace_provider_t *prov = probe->dtpr_provider;
1202 dtrace_pops_t *pops = &prov->dtpv_pops;
1203 int mode = DTRACE_MODE_NOPRIV_DROP;
1205 ASSERT(ecb->dte_cond);
1207 if (pops->dtps_mode != NULL) {
1208 mode = pops->dtps_mode(prov->dtpv_arg,
1209 probe->dtpr_id, probe->dtpr_arg);
1211 ASSERT((mode & DTRACE_MODE_USER) ||
1212 (mode & DTRACE_MODE_KERNEL));
1213 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1214 (mode & DTRACE_MODE_NOPRIV_DROP));
1218 * If the dte_cond bits indicate that this consumer is only allowed to
1219 * see user-mode firings of this probe, call the provider's dtps_mode()
1220 * entry point to check that the probe was fired while in a user
1221 * context. If that's not the case, use the policy specified by the
1222 * provider to determine if we drop the probe or merely restrict
1223 * operation.
1225 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1226 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1228 if (!(mode & DTRACE_MODE_USER)) {
1229 if (mode & DTRACE_MODE_NOPRIV_DROP)
1230 return (0);
1232 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1237 * This is more subtle than it looks. We have to be absolutely certain
1238 * that CRED() isn't going to change out from under us so it's only
1239 * legit to examine that structure if we're in constrained situations.
1240 * Currently, the only times we'll this check is if a non-super-user
1241 * has enabled the profile or syscall providers -- providers that
1242 * allow visibility of all processes. For the profile case, the check
1243 * above will ensure that we're examining a user context.
1245 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1246 cred_t *cr;
1247 cred_t *s_cr = state->dts_cred.dcr_cred;
1248 proc_t *proc;
1250 ASSERT(s_cr != NULL);
1252 if ((cr = CRED()) == NULL ||
1253 s_cr->cr_uid != cr->cr_uid ||
1254 s_cr->cr_uid != cr->cr_ruid ||
1255 s_cr->cr_uid != cr->cr_suid ||
1256 s_cr->cr_gid != cr->cr_gid ||
1257 s_cr->cr_gid != cr->cr_rgid ||
1258 s_cr->cr_gid != cr->cr_sgid ||
1259 (proc = ttoproc(curthread)) == NULL ||
1260 (proc->p_flag & SNOCD)) {
1261 if (mode & DTRACE_MODE_NOPRIV_DROP)
1262 return (0);
1264 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1269 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1270 * in our zone, check to see if our mode policy is to restrict rather
1271 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1272 * and DTRACE_ACCESS_ARGS
1274 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1275 cred_t *cr;
1276 cred_t *s_cr = state->dts_cred.dcr_cred;
1278 ASSERT(s_cr != NULL);
1280 if ((cr = CRED()) == NULL ||
1281 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1282 if (mode & DTRACE_MODE_NOPRIV_DROP)
1283 return (0);
1285 mstate->dtms_access &=
1286 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1290 return (1);
1294 * Note: not called from probe context. This function is called
1295 * asynchronously (and at a regular interval) from outside of probe context to
1296 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1297 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1299 void
1300 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1302 dtrace_dynvar_t *dirty;
1303 dtrace_dstate_percpu_t *dcpu;
1304 dtrace_dynvar_t **rinsep;
1305 int i, j, work = 0;
1307 for (i = 0; i < NCPU; i++) {
1308 dcpu = &dstate->dtds_percpu[i];
1309 rinsep = &dcpu->dtdsc_rinsing;
1312 * If the dirty list is NULL, there is no dirty work to do.
1314 if (dcpu->dtdsc_dirty == NULL)
1315 continue;
1317 if (dcpu->dtdsc_rinsing != NULL) {
1319 * If the rinsing list is non-NULL, then it is because
1320 * this CPU was selected to accept another CPU's
1321 * dirty list -- and since that time, dirty buffers
1322 * have accumulated. This is a highly unlikely
1323 * condition, but we choose to ignore the dirty
1324 * buffers -- they'll be picked up a future cleanse.
1326 continue;
1329 if (dcpu->dtdsc_clean != NULL) {
1331 * If the clean list is non-NULL, then we're in a
1332 * situation where a CPU has done deallocations (we
1333 * have a non-NULL dirty list) but no allocations (we
1334 * also have a non-NULL clean list). We can't simply
1335 * move the dirty list into the clean list on this
1336 * CPU, yet we also don't want to allow this condition
1337 * to persist, lest a short clean list prevent a
1338 * massive dirty list from being cleaned (which in
1339 * turn could lead to otherwise avoidable dynamic
1340 * drops). To deal with this, we look for some CPU
1341 * with a NULL clean list, NULL dirty list, and NULL
1342 * rinsing list -- and then we borrow this CPU to
1343 * rinse our dirty list.
1345 for (j = 0; j < NCPU; j++) {
1346 dtrace_dstate_percpu_t *rinser;
1348 rinser = &dstate->dtds_percpu[j];
1350 if (rinser->dtdsc_rinsing != NULL)
1351 continue;
1353 if (rinser->dtdsc_dirty != NULL)
1354 continue;
1356 if (rinser->dtdsc_clean != NULL)
1357 continue;
1359 rinsep = &rinser->dtdsc_rinsing;
1360 break;
1363 if (j == NCPU) {
1365 * We were unable to find another CPU that
1366 * could accept this dirty list -- we are
1367 * therefore unable to clean it now.
1369 dtrace_dynvar_failclean++;
1370 continue;
1374 work = 1;
1377 * Atomically move the dirty list aside.
1379 do {
1380 dirty = dcpu->dtdsc_dirty;
1383 * Before we zap the dirty list, set the rinsing list.
1384 * (This allows for a potential assertion in
1385 * dtrace_dynvar(): if a free dynamic variable appears
1386 * on a hash chain, either the dirty list or the
1387 * rinsing list for some CPU must be non-NULL.)
1389 *rinsep = dirty;
1390 dtrace_membar_producer();
1391 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1392 dirty, NULL) != dirty);
1395 if (!work) {
1397 * We have no work to do; we can simply return.
1399 return;
1402 dtrace_sync();
1404 for (i = 0; i < NCPU; i++) {
1405 dcpu = &dstate->dtds_percpu[i];
1407 if (dcpu->dtdsc_rinsing == NULL)
1408 continue;
1411 * We are now guaranteed that no hash chain contains a pointer
1412 * into this dirty list; we can make it clean.
1414 ASSERT(dcpu->dtdsc_clean == NULL);
1415 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1416 dcpu->dtdsc_rinsing = NULL;
1420 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1421 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1422 * This prevents a race whereby a CPU incorrectly decides that
1423 * the state should be something other than DTRACE_DSTATE_CLEAN
1424 * after dtrace_dynvar_clean() has completed.
1426 dtrace_sync();
1428 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1432 * Depending on the value of the op parameter, this function looks-up,
1433 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1434 * allocation is requested, this function will return a pointer to a
1435 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1436 * variable can be allocated. If NULL is returned, the appropriate counter
1437 * will be incremented.
1439 dtrace_dynvar_t *
1440 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1441 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1442 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1444 uint64_t hashval = DTRACE_DYNHASH_VALID;
1445 dtrace_dynhash_t *hash = dstate->dtds_hash;
1446 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1447 processorid_t me = CPU->cpu_id, cpu = me;
1448 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1449 size_t bucket, ksize;
1450 size_t chunksize = dstate->dtds_chunksize;
1451 uintptr_t kdata, lock, nstate;
1452 uint_t i;
1454 ASSERT(nkeys != 0);
1457 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1458 * algorithm. For the by-value portions, we perform the algorithm in
1459 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1460 * bit, and seems to have only a minute effect on distribution. For
1461 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1462 * over each referenced byte. It's painful to do this, but it's much
1463 * better than pathological hash distribution. The efficacy of the
1464 * hashing algorithm (and a comparison with other algorithms) may be
1465 * found by running the ::dtrace_dynstat MDB dcmd.
1467 for (i = 0; i < nkeys; i++) {
1468 if (key[i].dttk_size == 0) {
1469 uint64_t val = key[i].dttk_value;
1471 hashval += (val >> 48) & 0xffff;
1472 hashval += (hashval << 10);
1473 hashval ^= (hashval >> 6);
1475 hashval += (val >> 32) & 0xffff;
1476 hashval += (hashval << 10);
1477 hashval ^= (hashval >> 6);
1479 hashval += (val >> 16) & 0xffff;
1480 hashval += (hashval << 10);
1481 hashval ^= (hashval >> 6);
1483 hashval += val & 0xffff;
1484 hashval += (hashval << 10);
1485 hashval ^= (hashval >> 6);
1486 } else {
1488 * This is incredibly painful, but it beats the hell
1489 * out of the alternative.
1491 uint64_t j, size = key[i].dttk_size;
1492 uintptr_t base = (uintptr_t)key[i].dttk_value;
1494 if (!dtrace_canload(base, size, mstate, vstate))
1495 break;
1497 for (j = 0; j < size; j++) {
1498 hashval += dtrace_load8(base + j);
1499 hashval += (hashval << 10);
1500 hashval ^= (hashval >> 6);
1505 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1506 return (NULL);
1508 hashval += (hashval << 3);
1509 hashval ^= (hashval >> 11);
1510 hashval += (hashval << 15);
1513 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1514 * comes out to be one of our two sentinel hash values. If this
1515 * actually happens, we set the hashval to be a value known to be a
1516 * non-sentinel value.
1518 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1519 hashval = DTRACE_DYNHASH_VALID;
1522 * Yes, it's painful to do a divide here. If the cycle count becomes
1523 * important here, tricks can be pulled to reduce it. (However, it's
1524 * critical that hash collisions be kept to an absolute minimum;
1525 * they're much more painful than a divide.) It's better to have a
1526 * solution that generates few collisions and still keeps things
1527 * relatively simple.
1529 bucket = hashval % dstate->dtds_hashsize;
1531 if (op == DTRACE_DYNVAR_DEALLOC) {
1532 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1534 for (;;) {
1535 while ((lock = *lockp) & 1)
1536 continue;
1538 if (dtrace_casptr((void *)lockp,
1539 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1540 break;
1543 dtrace_membar_producer();
1546 top:
1547 prev = NULL;
1548 lock = hash[bucket].dtdh_lock;
1550 dtrace_membar_consumer();
1552 start = hash[bucket].dtdh_chain;
1553 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1554 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1555 op != DTRACE_DYNVAR_DEALLOC));
1557 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1558 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1559 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1561 if (dvar->dtdv_hashval != hashval) {
1562 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1564 * We've reached the sink, and therefore the
1565 * end of the hash chain; we can kick out of
1566 * the loop knowing that we have seen a valid
1567 * snapshot of state.
1569 ASSERT(dvar->dtdv_next == NULL);
1570 ASSERT(dvar == &dtrace_dynhash_sink);
1571 break;
1574 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1576 * We've gone off the rails: somewhere along
1577 * the line, one of the members of this hash
1578 * chain was deleted. Note that we could also
1579 * detect this by simply letting this loop run
1580 * to completion, as we would eventually hit
1581 * the end of the dirty list. However, we
1582 * want to avoid running the length of the
1583 * dirty list unnecessarily (it might be quite
1584 * long), so we catch this as early as
1585 * possible by detecting the hash marker. In
1586 * this case, we simply set dvar to NULL and
1587 * break; the conditional after the loop will
1588 * send us back to top.
1590 dvar = NULL;
1591 break;
1594 goto next;
1597 if (dtuple->dtt_nkeys != nkeys)
1598 goto next;
1600 for (i = 0; i < nkeys; i++, dkey++) {
1601 if (dkey->dttk_size != key[i].dttk_size)
1602 goto next; /* size or type mismatch */
1604 if (dkey->dttk_size != 0) {
1605 if (dtrace_bcmp(
1606 (void *)(uintptr_t)key[i].dttk_value,
1607 (void *)(uintptr_t)dkey->dttk_value,
1608 dkey->dttk_size))
1609 goto next;
1610 } else {
1611 if (dkey->dttk_value != key[i].dttk_value)
1612 goto next;
1616 if (op != DTRACE_DYNVAR_DEALLOC)
1617 return (dvar);
1619 ASSERT(dvar->dtdv_next == NULL ||
1620 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1622 if (prev != NULL) {
1623 ASSERT(hash[bucket].dtdh_chain != dvar);
1624 ASSERT(start != dvar);
1625 ASSERT(prev->dtdv_next == dvar);
1626 prev->dtdv_next = dvar->dtdv_next;
1627 } else {
1628 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1629 start, dvar->dtdv_next) != start) {
1631 * We have failed to atomically swing the
1632 * hash table head pointer, presumably because
1633 * of a conflicting allocation on another CPU.
1634 * We need to reread the hash chain and try
1635 * again.
1637 goto top;
1641 dtrace_membar_producer();
1644 * Now set the hash value to indicate that it's free.
1646 ASSERT(hash[bucket].dtdh_chain != dvar);
1647 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1649 dtrace_membar_producer();
1652 * Set the next pointer to point at the dirty list, and
1653 * atomically swing the dirty pointer to the newly freed dvar.
1655 do {
1656 next = dcpu->dtdsc_dirty;
1657 dvar->dtdv_next = next;
1658 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1661 * Finally, unlock this hash bucket.
1663 ASSERT(hash[bucket].dtdh_lock == lock);
1664 ASSERT(lock & 1);
1665 hash[bucket].dtdh_lock++;
1667 return (NULL);
1668 next:
1669 prev = dvar;
1670 continue;
1673 if (dvar == NULL) {
1675 * If dvar is NULL, it is because we went off the rails:
1676 * one of the elements that we traversed in the hash chain
1677 * was deleted while we were traversing it. In this case,
1678 * we assert that we aren't doing a dealloc (deallocs lock
1679 * the hash bucket to prevent themselves from racing with
1680 * one another), and retry the hash chain traversal.
1682 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1683 goto top;
1686 if (op != DTRACE_DYNVAR_ALLOC) {
1688 * If we are not to allocate a new variable, we want to
1689 * return NULL now. Before we return, check that the value
1690 * of the lock word hasn't changed. If it has, we may have
1691 * seen an inconsistent snapshot.
1693 if (op == DTRACE_DYNVAR_NOALLOC) {
1694 if (hash[bucket].dtdh_lock != lock)
1695 goto top;
1696 } else {
1697 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1698 ASSERT(hash[bucket].dtdh_lock == lock);
1699 ASSERT(lock & 1);
1700 hash[bucket].dtdh_lock++;
1703 return (NULL);
1707 * We need to allocate a new dynamic variable. The size we need is the
1708 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1709 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1710 * the size of any referred-to data (dsize). We then round the final
1711 * size up to the chunksize for allocation.
1713 for (ksize = 0, i = 0; i < nkeys; i++)
1714 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1717 * This should be pretty much impossible, but could happen if, say,
1718 * strange DIF specified the tuple. Ideally, this should be an
1719 * assertion and not an error condition -- but that requires that the
1720 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1721 * bullet-proof. (That is, it must not be able to be fooled by
1722 * malicious DIF.) Given the lack of backwards branches in DIF,
1723 * solving this would presumably not amount to solving the Halting
1724 * Problem -- but it still seems awfully hard.
1726 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1727 ksize + dsize > chunksize) {
1728 dcpu->dtdsc_drops++;
1729 return (NULL);
1732 nstate = DTRACE_DSTATE_EMPTY;
1734 do {
1735 retry:
1736 free = dcpu->dtdsc_free;
1738 if (free == NULL) {
1739 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1740 void *rval;
1742 if (clean == NULL) {
1744 * We're out of dynamic variable space on
1745 * this CPU. Unless we have tried all CPUs,
1746 * we'll try to allocate from a different
1747 * CPU.
1749 switch (dstate->dtds_state) {
1750 case DTRACE_DSTATE_CLEAN: {
1751 void *sp = &dstate->dtds_state;
1753 if (++cpu >= NCPU)
1754 cpu = 0;
1756 if (dcpu->dtdsc_dirty != NULL &&
1757 nstate == DTRACE_DSTATE_EMPTY)
1758 nstate = DTRACE_DSTATE_DIRTY;
1760 if (dcpu->dtdsc_rinsing != NULL)
1761 nstate = DTRACE_DSTATE_RINSING;
1763 dcpu = &dstate->dtds_percpu[cpu];
1765 if (cpu != me)
1766 goto retry;
1768 (void) dtrace_cas32(sp,
1769 DTRACE_DSTATE_CLEAN, nstate);
1772 * To increment the correct bean
1773 * counter, take another lap.
1775 goto retry;
1778 case DTRACE_DSTATE_DIRTY:
1779 dcpu->dtdsc_dirty_drops++;
1780 break;
1782 case DTRACE_DSTATE_RINSING:
1783 dcpu->dtdsc_rinsing_drops++;
1784 break;
1786 case DTRACE_DSTATE_EMPTY:
1787 dcpu->dtdsc_drops++;
1788 break;
1791 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1792 return (NULL);
1796 * The clean list appears to be non-empty. We want to
1797 * move the clean list to the free list; we start by
1798 * moving the clean pointer aside.
1800 if (dtrace_casptr(&dcpu->dtdsc_clean,
1801 clean, NULL) != clean) {
1803 * We are in one of two situations:
1805 * (a) The clean list was switched to the
1806 * free list by another CPU.
1808 * (b) The clean list was added to by the
1809 * cleansing cyclic.
1811 * In either of these situations, we can
1812 * just reattempt the free list allocation.
1814 goto retry;
1817 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1820 * Now we'll move the clean list to our free list.
1821 * It's impossible for this to fail: the only way
1822 * the free list can be updated is through this
1823 * code path, and only one CPU can own the clean list.
1824 * Thus, it would only be possible for this to fail if
1825 * this code were racing with dtrace_dynvar_clean().
1826 * (That is, if dtrace_dynvar_clean() updated the clean
1827 * list, and we ended up racing to update the free
1828 * list.) This race is prevented by the dtrace_sync()
1829 * in dtrace_dynvar_clean() -- which flushes the
1830 * owners of the clean lists out before resetting
1831 * the clean lists.
1833 dcpu = &dstate->dtds_percpu[me];
1834 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1835 ASSERT(rval == NULL);
1836 goto retry;
1839 dvar = free;
1840 new_free = dvar->dtdv_next;
1841 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1844 * We have now allocated a new chunk. We copy the tuple keys into the
1845 * tuple array and copy any referenced key data into the data space
1846 * following the tuple array. As we do this, we relocate dttk_value
1847 * in the final tuple to point to the key data address in the chunk.
1849 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1850 dvar->dtdv_data = (void *)(kdata + ksize);
1851 dvar->dtdv_tuple.dtt_nkeys = nkeys;
1853 for (i = 0; i < nkeys; i++) {
1854 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1855 size_t kesize = key[i].dttk_size;
1857 if (kesize != 0) {
1858 dtrace_bcopy(
1859 (const void *)(uintptr_t)key[i].dttk_value,
1860 (void *)kdata, kesize);
1861 dkey->dttk_value = kdata;
1862 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1863 } else {
1864 dkey->dttk_value = key[i].dttk_value;
1867 dkey->dttk_size = kesize;
1870 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1871 dvar->dtdv_hashval = hashval;
1872 dvar->dtdv_next = start;
1874 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1875 return (dvar);
1878 * The cas has failed. Either another CPU is adding an element to
1879 * this hash chain, or another CPU is deleting an element from this
1880 * hash chain. The simplest way to deal with both of these cases
1881 * (though not necessarily the most efficient) is to free our
1882 * allocated block and tail-call ourselves. Note that the free is
1883 * to the dirty list and _not_ to the free list. This is to prevent
1884 * races with allocators, above.
1886 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1888 dtrace_membar_producer();
1890 do {
1891 free = dcpu->dtdsc_dirty;
1892 dvar->dtdv_next = free;
1893 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1895 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1898 /*ARGSUSED*/
1899 static void
1900 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1902 if ((int64_t)nval < (int64_t)*oval)
1903 *oval = nval;
1906 /*ARGSUSED*/
1907 static void
1908 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1910 if ((int64_t)nval > (int64_t)*oval)
1911 *oval = nval;
1914 static void
1915 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1917 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1918 int64_t val = (int64_t)nval;
1920 if (val < 0) {
1921 for (i = 0; i < zero; i++) {
1922 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1923 quanta[i] += incr;
1924 return;
1927 } else {
1928 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1929 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1930 quanta[i - 1] += incr;
1931 return;
1935 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1936 return;
1939 ASSERT(0);
1942 static void
1943 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1945 uint64_t arg = *lquanta++;
1946 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1947 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1948 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1949 int32_t val = (int32_t)nval, level;
1951 ASSERT(step != 0);
1952 ASSERT(levels != 0);
1954 if (val < base) {
1956 * This is an underflow.
1958 lquanta[0] += incr;
1959 return;
1962 level = (val - base) / step;
1964 if (level < levels) {
1965 lquanta[level + 1] += incr;
1966 return;
1970 * This is an overflow.
1972 lquanta[levels + 1] += incr;
1975 static int
1976 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1977 uint16_t high, uint16_t nsteps, int64_t value)
1979 int64_t this = 1, last, next;
1980 int base = 1, order;
1982 ASSERT(factor <= nsteps);
1983 ASSERT(nsteps % factor == 0);
1985 for (order = 0; order < low; order++)
1986 this *= factor;
1989 * If our value is less than our factor taken to the power of the
1990 * low order of magnitude, it goes into the zeroth bucket.
1992 if (value < (last = this))
1993 return (0);
1995 for (this *= factor; order <= high; order++) {
1996 int nbuckets = this > nsteps ? nsteps : this;
1998 if ((next = this * factor) < this) {
2000 * We should not generally get log/linear quantizations
2001 * with a high magnitude that allows 64-bits to
2002 * overflow, but we nonetheless protect against this
2003 * by explicitly checking for overflow, and clamping
2004 * our value accordingly.
2006 value = this - 1;
2009 if (value < this) {
2011 * If our value lies within this order of magnitude,
2012 * determine its position by taking the offset within
2013 * the order of magnitude, dividing by the bucket
2014 * width, and adding to our (accumulated) base.
2016 return (base + (value - last) / (this / nbuckets));
2019 base += nbuckets - (nbuckets / factor);
2020 last = this;
2021 this = next;
2025 * Our value is greater than or equal to our factor taken to the
2026 * power of one plus the high magnitude -- return the top bucket.
2028 return (base);
2031 static void
2032 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2034 uint64_t arg = *llquanta++;
2035 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2036 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2037 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2038 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2040 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2041 low, high, nsteps, nval)] += incr;
2044 /*ARGSUSED*/
2045 static void
2046 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2048 data[0]++;
2049 data[1] += nval;
2052 /*ARGSUSED*/
2053 static void
2054 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2056 int64_t snval = (int64_t)nval;
2057 uint64_t tmp[2];
2059 data[0]++;
2060 data[1] += nval;
2063 * What we want to say here is:
2065 * data[2] += nval * nval;
2067 * But given that nval is 64-bit, we could easily overflow, so
2068 * we do this as 128-bit arithmetic.
2070 if (snval < 0)
2071 snval = -snval;
2073 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2074 dtrace_add_128(data + 2, tmp, data + 2);
2077 /*ARGSUSED*/
2078 static void
2079 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2081 *oval = *oval + 1;
2084 /*ARGSUSED*/
2085 static void
2086 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2088 *oval += nval;
2092 * Aggregate given the tuple in the principal data buffer, and the aggregating
2093 * action denoted by the specified dtrace_aggregation_t. The aggregation
2094 * buffer is specified as the buf parameter. This routine does not return
2095 * failure; if there is no space in the aggregation buffer, the data will be
2096 * dropped, and a corresponding counter incremented.
2098 static void
2099 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2100 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2102 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2103 uint32_t i, ndx, size, fsize;
2104 uint32_t align = sizeof (uint64_t) - 1;
2105 dtrace_aggbuffer_t *agb;
2106 dtrace_aggkey_t *key;
2107 uint32_t hashval = 0, limit, isstr;
2108 caddr_t tomax, data, kdata;
2109 dtrace_actkind_t action;
2110 dtrace_action_t *act;
2111 uintptr_t offs;
2113 if (buf == NULL)
2114 return;
2116 if (!agg->dtag_hasarg) {
2118 * Currently, only quantize() and lquantize() take additional
2119 * arguments, and they have the same semantics: an increment
2120 * value that defaults to 1 when not present. If additional
2121 * aggregating actions take arguments, the setting of the
2122 * default argument value will presumably have to become more
2123 * sophisticated...
2125 arg = 1;
2128 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2129 size = rec->dtrd_offset - agg->dtag_base;
2130 fsize = size + rec->dtrd_size;
2132 ASSERT(dbuf->dtb_tomax != NULL);
2133 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2135 if ((tomax = buf->dtb_tomax) == NULL) {
2136 dtrace_buffer_drop(buf);
2137 return;
2141 * The metastructure is always at the bottom of the buffer.
2143 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2144 sizeof (dtrace_aggbuffer_t));
2146 if (buf->dtb_offset == 0) {
2148 * We just kludge up approximately 1/8th of the size to be
2149 * buckets. If this guess ends up being routinely
2150 * off-the-mark, we may need to dynamically readjust this
2151 * based on past performance.
2153 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2155 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2156 (uintptr_t)tomax || hashsize == 0) {
2158 * We've been given a ludicrously small buffer;
2159 * increment our drop count and leave.
2161 dtrace_buffer_drop(buf);
2162 return;
2166 * And now, a pathetic attempt to try to get a an odd (or
2167 * perchance, a prime) hash size for better hash distribution.
2169 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2170 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2172 agb->dtagb_hashsize = hashsize;
2173 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2174 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2175 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2177 for (i = 0; i < agb->dtagb_hashsize; i++)
2178 agb->dtagb_hash[i] = NULL;
2181 ASSERT(agg->dtag_first != NULL);
2182 ASSERT(agg->dtag_first->dta_intuple);
2185 * Calculate the hash value based on the key. Note that we _don't_
2186 * include the aggid in the hashing (but we will store it as part of
2187 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2188 * algorithm: a simple, quick algorithm that has no known funnels, and
2189 * gets good distribution in practice. The efficacy of the hashing
2190 * algorithm (and a comparison with other algorithms) may be found by
2191 * running the ::dtrace_aggstat MDB dcmd.
2193 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2194 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2195 limit = i + act->dta_rec.dtrd_size;
2196 ASSERT(limit <= size);
2197 isstr = DTRACEACT_ISSTRING(act);
2199 for (; i < limit; i++) {
2200 hashval += data[i];
2201 hashval += (hashval << 10);
2202 hashval ^= (hashval >> 6);
2204 if (isstr && data[i] == '\0')
2205 break;
2209 hashval += (hashval << 3);
2210 hashval ^= (hashval >> 11);
2211 hashval += (hashval << 15);
2214 * Yes, the divide here is expensive -- but it's generally the least
2215 * of the performance issues given the amount of data that we iterate
2216 * over to compute hash values, compare data, etc.
2218 ndx = hashval % agb->dtagb_hashsize;
2220 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2221 ASSERT((caddr_t)key >= tomax);
2222 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2224 if (hashval != key->dtak_hashval || key->dtak_size != size)
2225 continue;
2227 kdata = key->dtak_data;
2228 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2230 for (act = agg->dtag_first; act->dta_intuple;
2231 act = act->dta_next) {
2232 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2233 limit = i + act->dta_rec.dtrd_size;
2234 ASSERT(limit <= size);
2235 isstr = DTRACEACT_ISSTRING(act);
2237 for (; i < limit; i++) {
2238 if (kdata[i] != data[i])
2239 goto next;
2241 if (isstr && data[i] == '\0')
2242 break;
2246 if (action != key->dtak_action) {
2248 * We are aggregating on the same value in the same
2249 * aggregation with two different aggregating actions.
2250 * (This should have been picked up in the compiler,
2251 * so we may be dealing with errant or devious DIF.)
2252 * This is an error condition; we indicate as much,
2253 * and return.
2255 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2256 return;
2260 * This is a hit: we need to apply the aggregator to
2261 * the value at this key.
2263 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2264 return;
2265 next:
2266 continue;
2270 * We didn't find it. We need to allocate some zero-filled space,
2271 * link it into the hash table appropriately, and apply the aggregator
2272 * to the (zero-filled) value.
2274 offs = buf->dtb_offset;
2275 while (offs & (align - 1))
2276 offs += sizeof (uint32_t);
2279 * If we don't have enough room to both allocate a new key _and_
2280 * its associated data, increment the drop count and return.
2282 if ((uintptr_t)tomax + offs + fsize >
2283 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2284 dtrace_buffer_drop(buf);
2285 return;
2288 /*CONSTCOND*/
2289 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2290 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2291 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2293 key->dtak_data = kdata = tomax + offs;
2294 buf->dtb_offset = offs + fsize;
2297 * Now copy the data across.
2299 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2301 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2302 kdata[i] = data[i];
2305 * Because strings are not zeroed out by default, we need to iterate
2306 * looking for actions that store strings, and we need to explicitly
2307 * pad these strings out with zeroes.
2309 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2310 int nul;
2312 if (!DTRACEACT_ISSTRING(act))
2313 continue;
2315 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2316 limit = i + act->dta_rec.dtrd_size;
2317 ASSERT(limit <= size);
2319 for (nul = 0; i < limit; i++) {
2320 if (nul) {
2321 kdata[i] = '\0';
2322 continue;
2325 if (data[i] != '\0')
2326 continue;
2328 nul = 1;
2332 for (i = size; i < fsize; i++)
2333 kdata[i] = 0;
2335 key->dtak_hashval = hashval;
2336 key->dtak_size = size;
2337 key->dtak_action = action;
2338 key->dtak_next = agb->dtagb_hash[ndx];
2339 agb->dtagb_hash[ndx] = key;
2342 * Finally, apply the aggregator.
2344 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2345 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2349 * Given consumer state, this routine finds a speculation in the INACTIVE
2350 * state and transitions it into the ACTIVE state. If there is no speculation
2351 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2352 * incremented -- it is up to the caller to take appropriate action.
2354 static int
2355 dtrace_speculation(dtrace_state_t *state)
2357 int i = 0;
2358 dtrace_speculation_state_t current;
2359 uint32_t *stat = &state->dts_speculations_unavail, count;
2361 while (i < state->dts_nspeculations) {
2362 dtrace_speculation_t *spec = &state->dts_speculations[i];
2364 current = spec->dtsp_state;
2366 if (current != DTRACESPEC_INACTIVE) {
2367 if (current == DTRACESPEC_COMMITTINGMANY ||
2368 current == DTRACESPEC_COMMITTING ||
2369 current == DTRACESPEC_DISCARDING)
2370 stat = &state->dts_speculations_busy;
2371 i++;
2372 continue;
2375 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2376 current, DTRACESPEC_ACTIVE) == current)
2377 return (i + 1);
2381 * We couldn't find a speculation. If we found as much as a single
2382 * busy speculation buffer, we'll attribute this failure as "busy"
2383 * instead of "unavail".
2385 do {
2386 count = *stat;
2387 } while (dtrace_cas32(stat, count, count + 1) != count);
2389 return (0);
2393 * This routine commits an active speculation. If the specified speculation
2394 * is not in a valid state to perform a commit(), this routine will silently do
2395 * nothing. The state of the specified speculation is transitioned according
2396 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2398 static void
2399 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2400 dtrace_specid_t which)
2402 dtrace_speculation_t *spec;
2403 dtrace_buffer_t *src, *dest;
2404 uintptr_t daddr, saddr, dlimit;
2405 dtrace_speculation_state_t current, new;
2406 intptr_t offs;
2408 if (which == 0)
2409 return;
2411 if (which > state->dts_nspeculations) {
2412 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2413 return;
2416 spec = &state->dts_speculations[which - 1];
2417 src = &spec->dtsp_buffer[cpu];
2418 dest = &state->dts_buffer[cpu];
2420 do {
2421 current = spec->dtsp_state;
2423 if (current == DTRACESPEC_COMMITTINGMANY)
2424 break;
2426 switch (current) {
2427 case DTRACESPEC_INACTIVE:
2428 case DTRACESPEC_DISCARDING:
2429 return;
2431 case DTRACESPEC_COMMITTING:
2433 * This is only possible if we are (a) commit()'ing
2434 * without having done a prior speculate() on this CPU
2435 * and (b) racing with another commit() on a different
2436 * CPU. There's nothing to do -- we just assert that
2437 * our offset is 0.
2439 ASSERT(src->dtb_offset == 0);
2440 return;
2442 case DTRACESPEC_ACTIVE:
2443 new = DTRACESPEC_COMMITTING;
2444 break;
2446 case DTRACESPEC_ACTIVEONE:
2448 * This speculation is active on one CPU. If our
2449 * buffer offset is non-zero, we know that the one CPU
2450 * must be us. Otherwise, we are committing on a
2451 * different CPU from the speculate(), and we must
2452 * rely on being asynchronously cleaned.
2454 if (src->dtb_offset != 0) {
2455 new = DTRACESPEC_COMMITTING;
2456 break;
2458 /*FALLTHROUGH*/
2460 case DTRACESPEC_ACTIVEMANY:
2461 new = DTRACESPEC_COMMITTINGMANY;
2462 break;
2464 default:
2465 ASSERT(0);
2467 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2468 current, new) != current);
2471 * We have set the state to indicate that we are committing this
2472 * speculation. Now reserve the necessary space in the destination
2473 * buffer.
2475 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2476 sizeof (uint64_t), state, NULL)) < 0) {
2477 dtrace_buffer_drop(dest);
2478 goto out;
2482 * We have the space; copy the buffer across. (Note that this is a
2483 * highly subobtimal bcopy(); in the unlikely event that this becomes
2484 * a serious performance issue, a high-performance DTrace-specific
2485 * bcopy() should obviously be invented.)
2487 daddr = (uintptr_t)dest->dtb_tomax + offs;
2488 dlimit = daddr + src->dtb_offset;
2489 saddr = (uintptr_t)src->dtb_tomax;
2492 * First, the aligned portion.
2494 while (dlimit - daddr >= sizeof (uint64_t)) {
2495 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2497 daddr += sizeof (uint64_t);
2498 saddr += sizeof (uint64_t);
2502 * Now any left-over bit...
2504 while (dlimit - daddr)
2505 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2508 * Finally, commit the reserved space in the destination buffer.
2510 dest->dtb_offset = offs + src->dtb_offset;
2512 out:
2514 * If we're lucky enough to be the only active CPU on this speculation
2515 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2517 if (current == DTRACESPEC_ACTIVE ||
2518 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2519 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2520 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2522 ASSERT(rval == DTRACESPEC_COMMITTING);
2525 src->dtb_offset = 0;
2526 src->dtb_xamot_drops += src->dtb_drops;
2527 src->dtb_drops = 0;
2531 * This routine discards an active speculation. If the specified speculation
2532 * is not in a valid state to perform a discard(), this routine will silently
2533 * do nothing. The state of the specified speculation is transitioned
2534 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2536 static void
2537 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2538 dtrace_specid_t which)
2540 dtrace_speculation_t *spec;
2541 dtrace_speculation_state_t current, new;
2542 dtrace_buffer_t *buf;
2544 if (which == 0)
2545 return;
2547 if (which > state->dts_nspeculations) {
2548 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2549 return;
2552 spec = &state->dts_speculations[which - 1];
2553 buf = &spec->dtsp_buffer[cpu];
2555 do {
2556 current = spec->dtsp_state;
2558 switch (current) {
2559 case DTRACESPEC_INACTIVE:
2560 case DTRACESPEC_COMMITTINGMANY:
2561 case DTRACESPEC_COMMITTING:
2562 case DTRACESPEC_DISCARDING:
2563 return;
2565 case DTRACESPEC_ACTIVE:
2566 case DTRACESPEC_ACTIVEMANY:
2567 new = DTRACESPEC_DISCARDING;
2568 break;
2570 case DTRACESPEC_ACTIVEONE:
2571 if (buf->dtb_offset != 0) {
2572 new = DTRACESPEC_INACTIVE;
2573 } else {
2574 new = DTRACESPEC_DISCARDING;
2576 break;
2578 default:
2579 ASSERT(0);
2581 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2582 current, new) != current);
2584 buf->dtb_offset = 0;
2585 buf->dtb_drops = 0;
2589 * Note: not called from probe context. This function is called
2590 * asynchronously from cross call context to clean any speculations that are
2591 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2592 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2593 * speculation.
2595 static void
2596 dtrace_speculation_clean_here(dtrace_state_t *state)
2598 dtrace_icookie_t cookie;
2599 processorid_t cpu = CPU->cpu_id;
2600 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2601 dtrace_specid_t i;
2603 cookie = dtrace_interrupt_disable();
2605 if (dest->dtb_tomax == NULL) {
2606 dtrace_interrupt_enable(cookie);
2607 return;
2610 for (i = 0; i < state->dts_nspeculations; i++) {
2611 dtrace_speculation_t *spec = &state->dts_speculations[i];
2612 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2614 if (src->dtb_tomax == NULL)
2615 continue;
2617 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2618 src->dtb_offset = 0;
2619 continue;
2622 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2623 continue;
2625 if (src->dtb_offset == 0)
2626 continue;
2628 dtrace_speculation_commit(state, cpu, i + 1);
2631 dtrace_interrupt_enable(cookie);
2635 * Note: not called from probe context. This function is called
2636 * asynchronously (and at a regular interval) to clean any speculations that
2637 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2638 * is work to be done, it cross calls all CPUs to perform that work;
2639 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2640 * INACTIVE state until they have been cleaned by all CPUs.
2642 static void
2643 dtrace_speculation_clean(dtrace_state_t *state)
2645 int work = 0, rv;
2646 dtrace_specid_t i;
2648 for (i = 0; i < state->dts_nspeculations; i++) {
2649 dtrace_speculation_t *spec = &state->dts_speculations[i];
2651 ASSERT(!spec->dtsp_cleaning);
2653 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2654 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2655 continue;
2657 work++;
2658 spec->dtsp_cleaning = 1;
2661 if (!work)
2662 return;
2664 dtrace_xcall(DTRACE_CPUALL,
2665 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2668 * We now know that all CPUs have committed or discarded their
2669 * speculation buffers, as appropriate. We can now set the state
2670 * to inactive.
2672 for (i = 0; i < state->dts_nspeculations; i++) {
2673 dtrace_speculation_t *spec = &state->dts_speculations[i];
2674 dtrace_speculation_state_t current, new;
2676 if (!spec->dtsp_cleaning)
2677 continue;
2679 current = spec->dtsp_state;
2680 ASSERT(current == DTRACESPEC_DISCARDING ||
2681 current == DTRACESPEC_COMMITTINGMANY);
2683 new = DTRACESPEC_INACTIVE;
2685 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2686 ASSERT(rv == current);
2687 spec->dtsp_cleaning = 0;
2692 * Called as part of a speculate() to get the speculative buffer associated
2693 * with a given speculation. Returns NULL if the specified speculation is not
2694 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2695 * the active CPU is not the specified CPU -- the speculation will be
2696 * atomically transitioned into the ACTIVEMANY state.
2698 static dtrace_buffer_t *
2699 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2700 dtrace_specid_t which)
2702 dtrace_speculation_t *spec;
2703 dtrace_speculation_state_t current, new;
2704 dtrace_buffer_t *buf;
2706 if (which == 0)
2707 return (NULL);
2709 if (which > state->dts_nspeculations) {
2710 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2711 return (NULL);
2714 spec = &state->dts_speculations[which - 1];
2715 buf = &spec->dtsp_buffer[cpuid];
2717 do {
2718 current = spec->dtsp_state;
2720 switch (current) {
2721 case DTRACESPEC_INACTIVE:
2722 case DTRACESPEC_COMMITTINGMANY:
2723 case DTRACESPEC_DISCARDING:
2724 return (NULL);
2726 case DTRACESPEC_COMMITTING:
2727 ASSERT(buf->dtb_offset == 0);
2728 return (NULL);
2730 case DTRACESPEC_ACTIVEONE:
2732 * This speculation is currently active on one CPU.
2733 * Check the offset in the buffer; if it's non-zero,
2734 * that CPU must be us (and we leave the state alone).
2735 * If it's zero, assume that we're starting on a new
2736 * CPU -- and change the state to indicate that the
2737 * speculation is active on more than one CPU.
2739 if (buf->dtb_offset != 0)
2740 return (buf);
2742 new = DTRACESPEC_ACTIVEMANY;
2743 break;
2745 case DTRACESPEC_ACTIVEMANY:
2746 return (buf);
2748 case DTRACESPEC_ACTIVE:
2749 new = DTRACESPEC_ACTIVEONE;
2750 break;
2752 default:
2753 ASSERT(0);
2755 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2756 current, new) != current);
2758 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2759 return (buf);
2763 * Return a string. In the event that the user lacks the privilege to access
2764 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2765 * don't fail access checking.
2767 * dtrace_dif_variable() uses this routine as a helper for various
2768 * builtin values such as 'execname' and 'probefunc.'
2770 uintptr_t
2771 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2772 dtrace_mstate_t *mstate)
2774 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2775 uintptr_t ret;
2776 size_t strsz;
2779 * The easy case: this probe is allowed to read all of memory, so
2780 * we can just return this as a vanilla pointer.
2782 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2783 return (addr);
2786 * This is the tougher case: we copy the string in question from
2787 * kernel memory into scratch memory and return it that way: this
2788 * ensures that we won't trip up when access checking tests the
2789 * BYREF return value.
2791 strsz = dtrace_strlen((char *)addr, size) + 1;
2793 if (mstate->dtms_scratch_ptr + strsz >
2794 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2796 return (NULL);
2799 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2800 strsz);
2801 ret = mstate->dtms_scratch_ptr;
2802 mstate->dtms_scratch_ptr += strsz;
2803 return (ret);
2807 * This function implements the DIF emulator's variable lookups. The emulator
2808 * passes a reserved variable identifier and optional built-in array index.
2810 static uint64_t
2811 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2812 uint64_t ndx)
2815 * If we're accessing one of the uncached arguments, we'll turn this
2816 * into a reference in the args array.
2818 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2819 ndx = v - DIF_VAR_ARG0;
2820 v = DIF_VAR_ARGS;
2823 switch (v) {
2824 case DIF_VAR_ARGS:
2825 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
2826 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
2827 CPU_DTRACE_KPRIV;
2828 return (0);
2831 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2832 if (ndx >= sizeof (mstate->dtms_arg) /
2833 sizeof (mstate->dtms_arg[0])) {
2834 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2835 dtrace_provider_t *pv;
2836 uint64_t val;
2838 pv = mstate->dtms_probe->dtpr_provider;
2839 if (pv->dtpv_pops.dtps_getargval != NULL)
2840 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2841 mstate->dtms_probe->dtpr_id,
2842 mstate->dtms_probe->dtpr_arg, ndx, aframes);
2843 else
2844 val = dtrace_getarg(ndx, aframes);
2847 * This is regrettably required to keep the compiler
2848 * from tail-optimizing the call to dtrace_getarg().
2849 * The condition always evaluates to true, but the
2850 * compiler has no way of figuring that out a priori.
2851 * (None of this would be necessary if the compiler
2852 * could be relied upon to _always_ tail-optimize
2853 * the call to dtrace_getarg() -- but it can't.)
2855 if (mstate->dtms_probe != NULL)
2856 return (val);
2858 ASSERT(0);
2861 return (mstate->dtms_arg[ndx]);
2863 case DIF_VAR_UREGS: {
2864 klwp_t *lwp;
2866 if (!dtrace_priv_proc(state, mstate))
2867 return (0);
2869 if ((lwp = curthread->t_lwp) == NULL) {
2870 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2871 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2872 return (0);
2875 return (dtrace_getreg(lwp->lwp_regs, ndx));
2878 case DIF_VAR_VMREGS: {
2879 uint64_t rval;
2881 if (!dtrace_priv_kernel(state))
2882 return (0);
2884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2886 rval = dtrace_getvmreg(ndx,
2887 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
2889 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2891 return (rval);
2894 case DIF_VAR_CURTHREAD:
2895 if (!dtrace_priv_kernel(state))
2896 return (0);
2897 return ((uint64_t)(uintptr_t)curthread);
2899 case DIF_VAR_TIMESTAMP:
2900 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2901 mstate->dtms_timestamp = dtrace_gethrtime();
2902 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2904 return (mstate->dtms_timestamp);
2906 case DIF_VAR_VTIMESTAMP:
2907 ASSERT(dtrace_vtime_references != 0);
2908 return (curthread->t_dtrace_vtime);
2910 case DIF_VAR_WALLTIMESTAMP:
2911 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2912 mstate->dtms_walltimestamp = dtrace_gethrestime();
2913 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2915 return (mstate->dtms_walltimestamp);
2917 case DIF_VAR_IPL:
2918 if (!dtrace_priv_kernel(state))
2919 return (0);
2920 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2921 mstate->dtms_ipl = dtrace_getipl();
2922 mstate->dtms_present |= DTRACE_MSTATE_IPL;
2924 return (mstate->dtms_ipl);
2926 case DIF_VAR_EPID:
2927 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2928 return (mstate->dtms_epid);
2930 case DIF_VAR_ID:
2931 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2932 return (mstate->dtms_probe->dtpr_id);
2934 case DIF_VAR_STACKDEPTH:
2935 if (!dtrace_priv_kernel(state))
2936 return (0);
2937 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2938 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2940 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2941 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2943 return (mstate->dtms_stackdepth);
2945 case DIF_VAR_USTACKDEPTH:
2946 if (!dtrace_priv_proc(state, mstate))
2947 return (0);
2948 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2950 * See comment in DIF_VAR_PID.
2952 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2953 CPU_ON_INTR(CPU)) {
2954 mstate->dtms_ustackdepth = 0;
2955 } else {
2956 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2957 mstate->dtms_ustackdepth =
2958 dtrace_getustackdepth();
2959 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2961 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2963 return (mstate->dtms_ustackdepth);
2965 case DIF_VAR_CALLER:
2966 if (!dtrace_priv_kernel(state))
2967 return (0);
2968 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2969 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2971 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2973 * If this is an unanchored probe, we are
2974 * required to go through the slow path:
2975 * dtrace_caller() only guarantees correct
2976 * results for anchored probes.
2978 pc_t caller[2];
2980 dtrace_getpcstack(caller, 2, aframes,
2981 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2982 mstate->dtms_caller = caller[1];
2983 } else if ((mstate->dtms_caller =
2984 dtrace_caller(aframes)) == -1) {
2986 * We have failed to do this the quick way;
2987 * we must resort to the slower approach of
2988 * calling dtrace_getpcstack().
2990 pc_t caller;
2992 dtrace_getpcstack(&caller, 1, aframes, NULL);
2993 mstate->dtms_caller = caller;
2996 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2998 return (mstate->dtms_caller);
3000 case DIF_VAR_UCALLER:
3001 if (!dtrace_priv_proc(state, mstate))
3002 return (0);
3004 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3005 uint64_t ustack[3];
3008 * dtrace_getupcstack() fills in the first uint64_t
3009 * with the current PID. The second uint64_t will
3010 * be the program counter at user-level. The third
3011 * uint64_t will contain the caller, which is what
3012 * we're after.
3014 ustack[2] = NULL;
3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3016 dtrace_getupcstack(ustack, 3);
3017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3018 mstate->dtms_ucaller = ustack[2];
3019 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3022 return (mstate->dtms_ucaller);
3024 case DIF_VAR_PROBEPROV:
3025 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3026 return (dtrace_dif_varstr(
3027 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3028 state, mstate));
3030 case DIF_VAR_PROBEMOD:
3031 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3032 return (dtrace_dif_varstr(
3033 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3034 state, mstate));
3036 case DIF_VAR_PROBEFUNC:
3037 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3038 return (dtrace_dif_varstr(
3039 (uintptr_t)mstate->dtms_probe->dtpr_func,
3040 state, mstate));
3042 case DIF_VAR_PROBENAME:
3043 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3044 return (dtrace_dif_varstr(
3045 (uintptr_t)mstate->dtms_probe->dtpr_name,
3046 state, mstate));
3048 case DIF_VAR_PID:
3049 if (!dtrace_priv_proc(state, mstate))
3050 return (0);
3053 * Note that we are assuming that an unanchored probe is
3054 * always due to a high-level interrupt. (And we're assuming
3055 * that there is only a single high level interrupt.)
3057 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3058 return (pid0.pid_id);
3061 * It is always safe to dereference one's own t_procp pointer:
3062 * it always points to a valid, allocated proc structure.
3063 * Further, it is always safe to dereference the p_pidp member
3064 * of one's own proc structure. (These are truisms becuase
3065 * threads and processes don't clean up their own state --
3066 * they leave that task to whomever reaps them.)
3068 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3070 case DIF_VAR_PPID:
3071 if (!dtrace_priv_proc(state, mstate))
3072 return (0);
3075 * See comment in DIF_VAR_PID.
3077 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3078 return (pid0.pid_id);
3081 * It is always safe to dereference one's own t_procp pointer:
3082 * it always points to a valid, allocated proc structure.
3083 * (This is true because threads don't clean up their own
3084 * state -- they leave that task to whomever reaps them.)
3086 return ((uint64_t)curthread->t_procp->p_ppid);
3088 case DIF_VAR_TID:
3090 * See comment in DIF_VAR_PID.
3092 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3093 return (0);
3095 return ((uint64_t)curthread->t_tid);
3097 case DIF_VAR_EXECNAME:
3098 if (!dtrace_priv_proc(state, mstate))
3099 return (0);
3102 * See comment in DIF_VAR_PID.
3104 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3105 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3108 * It is always safe to dereference one's own t_procp pointer:
3109 * it always points to a valid, allocated proc structure.
3110 * (This is true because threads don't clean up their own
3111 * state -- they leave that task to whomever reaps them.)
3113 return (dtrace_dif_varstr(
3114 (uintptr_t)curthread->t_procp->p_user.u_comm,
3115 state, mstate));
3117 case DIF_VAR_ZONENAME:
3118 if (!dtrace_priv_proc(state, mstate))
3119 return (0);
3122 * See comment in DIF_VAR_PID.
3124 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3125 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3128 * It is always safe to dereference one's own t_procp pointer:
3129 * it always points to a valid, allocated proc structure.
3130 * (This is true because threads don't clean up their own
3131 * state -- they leave that task to whomever reaps them.)
3133 return (dtrace_dif_varstr(
3134 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3135 state, mstate));
3137 case DIF_VAR_UID:
3138 if (!dtrace_priv_proc(state, mstate))
3139 return (0);
3142 * See comment in DIF_VAR_PID.
3144 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3145 return ((uint64_t)p0.p_cred->cr_uid);
3148 * It is always safe to dereference one's own t_procp pointer:
3149 * it always points to a valid, allocated proc structure.
3150 * (This is true because threads don't clean up their own
3151 * state -- they leave that task to whomever reaps them.)
3153 * Additionally, it is safe to dereference one's own process
3154 * credential, since this is never NULL after process birth.
3156 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3158 case DIF_VAR_GID:
3159 if (!dtrace_priv_proc(state, mstate))
3160 return (0);
3163 * See comment in DIF_VAR_PID.
3165 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3166 return ((uint64_t)p0.p_cred->cr_gid);
3169 * It is always safe to dereference one's own t_procp pointer:
3170 * it always points to a valid, allocated proc structure.
3171 * (This is true because threads don't clean up their own
3172 * state -- they leave that task to whomever reaps them.)
3174 * Additionally, it is safe to dereference one's own process
3175 * credential, since this is never NULL after process birth.
3177 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3179 case DIF_VAR_ERRNO: {
3180 klwp_t *lwp;
3181 if (!dtrace_priv_proc(state, mstate))
3182 return (0);
3185 * See comment in DIF_VAR_PID.
3187 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3188 return (0);
3191 * It is always safe to dereference one's own t_lwp pointer in
3192 * the event that this pointer is non-NULL. (This is true
3193 * because threads and lwps don't clean up their own state --
3194 * they leave that task to whomever reaps them.)
3196 if ((lwp = curthread->t_lwp) == NULL)
3197 return (0);
3199 return ((uint64_t)lwp->lwp_errno);
3201 default:
3202 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3203 return (0);
3208 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3209 * Notice that we don't bother validating the proper number of arguments or
3210 * their types in the tuple stack. This isn't needed because all argument
3211 * interpretation is safe because of our load safety -- the worst that can
3212 * happen is that a bogus program can obtain bogus results.
3214 static void
3215 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3216 dtrace_key_t *tupregs, int nargs,
3217 dtrace_mstate_t *mstate, dtrace_state_t *state)
3219 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3220 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3221 dtrace_vstate_t *vstate = &state->dts_vstate;
3223 union {
3224 mutex_impl_t mi;
3225 uint64_t mx;
3226 } m;
3228 union {
3229 krwlock_t ri;
3230 uintptr_t rw;
3231 } r;
3233 switch (subr) {
3234 case DIF_SUBR_RAND:
3235 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3236 break;
3238 case DIF_SUBR_MUTEX_OWNED:
3239 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3240 mstate, vstate)) {
3241 regs[rd] = NULL;
3242 break;
3245 m.mx = dtrace_load64(tupregs[0].dttk_value);
3246 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3247 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3248 else
3249 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3250 break;
3252 case DIF_SUBR_MUTEX_OWNER:
3253 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3254 mstate, vstate)) {
3255 regs[rd] = NULL;
3256 break;
3259 m.mx = dtrace_load64(tupregs[0].dttk_value);
3260 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3261 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3262 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3263 else
3264 regs[rd] = 0;
3265 break;
3267 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3269 mstate, vstate)) {
3270 regs[rd] = NULL;
3271 break;
3274 m.mx = dtrace_load64(tupregs[0].dttk_value);
3275 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3276 break;
3278 case DIF_SUBR_MUTEX_TYPE_SPIN:
3279 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3280 mstate, vstate)) {
3281 regs[rd] = NULL;
3282 break;
3285 m.mx = dtrace_load64(tupregs[0].dttk_value);
3286 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3287 break;
3289 case DIF_SUBR_RW_READ_HELD: {
3290 uintptr_t tmp;
3292 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3293 mstate, vstate)) {
3294 regs[rd] = NULL;
3295 break;
3298 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3299 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3300 break;
3303 case DIF_SUBR_RW_WRITE_HELD:
3304 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3305 mstate, vstate)) {
3306 regs[rd] = NULL;
3307 break;
3310 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3311 regs[rd] = _RW_WRITE_HELD(&r.ri);
3312 break;
3314 case DIF_SUBR_RW_ISWRITER:
3315 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3316 mstate, vstate)) {
3317 regs[rd] = NULL;
3318 break;
3321 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3322 regs[rd] = _RW_ISWRITER(&r.ri);
3323 break;
3325 case DIF_SUBR_BCOPY: {
3327 * We need to be sure that the destination is in the scratch
3328 * region -- no other region is allowed.
3330 uintptr_t src = tupregs[0].dttk_value;
3331 uintptr_t dest = tupregs[1].dttk_value;
3332 size_t size = tupregs[2].dttk_value;
3334 if (!dtrace_inscratch(dest, size, mstate)) {
3335 *flags |= CPU_DTRACE_BADADDR;
3336 *illval = regs[rd];
3337 break;
3340 if (!dtrace_canload(src, size, mstate, vstate)) {
3341 regs[rd] = NULL;
3342 break;
3345 dtrace_bcopy((void *)src, (void *)dest, size);
3346 break;
3349 case DIF_SUBR_ALLOCA:
3350 case DIF_SUBR_COPYIN: {
3351 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3352 uint64_t size =
3353 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3354 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3357 * This action doesn't require any credential checks since
3358 * probes will not activate in user contexts to which the
3359 * enabling user does not have permissions.
3363 * Rounding up the user allocation size could have overflowed
3364 * a large, bogus allocation (like -1ULL) to 0.
3366 if (scratch_size < size ||
3367 !DTRACE_INSCRATCH(mstate, scratch_size)) {
3368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3369 regs[rd] = NULL;
3370 break;
3373 if (subr == DIF_SUBR_COPYIN) {
3374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3375 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3379 mstate->dtms_scratch_ptr += scratch_size;
3380 regs[rd] = dest;
3381 break;
3384 case DIF_SUBR_COPYINTO: {
3385 uint64_t size = tupregs[1].dttk_value;
3386 uintptr_t dest = tupregs[2].dttk_value;
3389 * This action doesn't require any credential checks since
3390 * probes will not activate in user contexts to which the
3391 * enabling user does not have permissions.
3393 if (!dtrace_inscratch(dest, size, mstate)) {
3394 *flags |= CPU_DTRACE_BADADDR;
3395 *illval = regs[rd];
3396 break;
3399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3400 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3402 break;
3405 case DIF_SUBR_COPYINSTR: {
3406 uintptr_t dest = mstate->dtms_scratch_ptr;
3407 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3409 if (nargs > 1 && tupregs[1].dttk_value < size)
3410 size = tupregs[1].dttk_value + 1;
3413 * This action doesn't require any credential checks since
3414 * probes will not activate in user contexts to which the
3415 * enabling user does not have permissions.
3417 if (!DTRACE_INSCRATCH(mstate, size)) {
3418 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3419 regs[rd] = NULL;
3420 break;
3423 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3424 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3425 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3427 ((char *)dest)[size - 1] = '\0';
3428 mstate->dtms_scratch_ptr += size;
3429 regs[rd] = dest;
3430 break;
3433 case DIF_SUBR_MSGSIZE:
3434 case DIF_SUBR_MSGDSIZE: {
3435 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3436 uintptr_t wptr, rptr;
3437 size_t count = 0;
3438 int cont = 0;
3440 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3442 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3443 vstate)) {
3444 regs[rd] = NULL;
3445 break;
3448 wptr = dtrace_loadptr(baddr +
3449 offsetof(mblk_t, b_wptr));
3451 rptr = dtrace_loadptr(baddr +
3452 offsetof(mblk_t, b_rptr));
3454 if (wptr < rptr) {
3455 *flags |= CPU_DTRACE_BADADDR;
3456 *illval = tupregs[0].dttk_value;
3457 break;
3460 daddr = dtrace_loadptr(baddr +
3461 offsetof(mblk_t, b_datap));
3463 baddr = dtrace_loadptr(baddr +
3464 offsetof(mblk_t, b_cont));
3467 * We want to prevent against denial-of-service here,
3468 * so we're only going to search the list for
3469 * dtrace_msgdsize_max mblks.
3471 if (cont++ > dtrace_msgdsize_max) {
3472 *flags |= CPU_DTRACE_ILLOP;
3473 break;
3476 if (subr == DIF_SUBR_MSGDSIZE) {
3477 if (dtrace_load8(daddr +
3478 offsetof(dblk_t, db_type)) != M_DATA)
3479 continue;
3482 count += wptr - rptr;
3485 if (!(*flags & CPU_DTRACE_FAULT))
3486 regs[rd] = count;
3488 break;
3491 case DIF_SUBR_PROGENYOF: {
3492 pid_t pid = tupregs[0].dttk_value;
3493 proc_t *p;
3494 int rval = 0;
3496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3498 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3499 if (p->p_pidp->pid_id == pid) {
3500 rval = 1;
3501 break;
3505 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3507 regs[rd] = rval;
3508 break;
3511 case DIF_SUBR_SPECULATION:
3512 regs[rd] = dtrace_speculation(state);
3513 break;
3515 case DIF_SUBR_COPYOUT: {
3516 uintptr_t kaddr = tupregs[0].dttk_value;
3517 uintptr_t uaddr = tupregs[1].dttk_value;
3518 uint64_t size = tupregs[2].dttk_value;
3520 if (!dtrace_destructive_disallow &&
3521 dtrace_priv_proc_control(state, mstate) &&
3522 !dtrace_istoxic(kaddr, size)) {
3523 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3524 dtrace_copyout(kaddr, uaddr, size, flags);
3525 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3527 break;
3530 case DIF_SUBR_COPYOUTSTR: {
3531 uintptr_t kaddr = tupregs[0].dttk_value;
3532 uintptr_t uaddr = tupregs[1].dttk_value;
3533 uint64_t size = tupregs[2].dttk_value;
3535 if (!dtrace_destructive_disallow &&
3536 dtrace_priv_proc_control(state, mstate) &&
3537 !dtrace_istoxic(kaddr, size)) {
3538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3539 dtrace_copyoutstr(kaddr, uaddr, size, flags);
3540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3542 break;
3545 case DIF_SUBR_STRLEN: {
3546 size_t sz;
3547 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3548 sz = dtrace_strlen((char *)addr,
3549 state->dts_options[DTRACEOPT_STRSIZE]);
3551 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3552 regs[rd] = NULL;
3553 break;
3556 regs[rd] = sz;
3558 break;
3561 case DIF_SUBR_STRCHR:
3562 case DIF_SUBR_STRRCHR: {
3564 * We're going to iterate over the string looking for the
3565 * specified character. We will iterate until we have reached
3566 * the string length or we have found the character. If this
3567 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3568 * of the specified character instead of the first.
3570 uintptr_t saddr = tupregs[0].dttk_value;
3571 uintptr_t addr = tupregs[0].dttk_value;
3572 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3573 char c, target = (char)tupregs[1].dttk_value;
3575 for (regs[rd] = NULL; addr < limit; addr++) {
3576 if ((c = dtrace_load8(addr)) == target) {
3577 regs[rd] = addr;
3579 if (subr == DIF_SUBR_STRCHR)
3580 break;
3583 if (c == '\0')
3584 break;
3587 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3588 regs[rd] = NULL;
3589 break;
3592 break;
3595 case DIF_SUBR_STRSTR:
3596 case DIF_SUBR_INDEX:
3597 case DIF_SUBR_RINDEX: {
3599 * We're going to iterate over the string looking for the
3600 * specified string. We will iterate until we have reached
3601 * the string length or we have found the string. (Yes, this
3602 * is done in the most naive way possible -- but considering
3603 * that the string we're searching for is likely to be
3604 * relatively short, the complexity of Rabin-Karp or similar
3605 * hardly seems merited.)
3607 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3608 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3610 size_t len = dtrace_strlen(addr, size);
3611 size_t sublen = dtrace_strlen(substr, size);
3612 char *limit = addr + len, *orig = addr;
3613 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3614 int inc = 1;
3616 regs[rd] = notfound;
3618 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3619 regs[rd] = NULL;
3620 break;
3623 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3624 vstate)) {
3625 regs[rd] = NULL;
3626 break;
3630 * strstr() and index()/rindex() have similar semantics if
3631 * both strings are the empty string: strstr() returns a
3632 * pointer to the (empty) string, and index() and rindex()
3633 * both return index 0 (regardless of any position argument).
3635 if (sublen == 0 && len == 0) {
3636 if (subr == DIF_SUBR_STRSTR)
3637 regs[rd] = (uintptr_t)addr;
3638 else
3639 regs[rd] = 0;
3640 break;
3643 if (subr != DIF_SUBR_STRSTR) {
3644 if (subr == DIF_SUBR_RINDEX) {
3645 limit = orig - 1;
3646 addr += len;
3647 inc = -1;
3651 * Both index() and rindex() take an optional position
3652 * argument that denotes the starting position.
3654 if (nargs == 3) {
3655 int64_t pos = (int64_t)tupregs[2].dttk_value;
3658 * If the position argument to index() is
3659 * negative, Perl implicitly clamps it at
3660 * zero. This semantic is a little surprising
3661 * given the special meaning of negative
3662 * positions to similar Perl functions like
3663 * substr(), but it appears to reflect a
3664 * notion that index() can start from a
3665 * negative index and increment its way up to
3666 * the string. Given this notion, Perl's
3667 * rindex() is at least self-consistent in
3668 * that it implicitly clamps positions greater
3669 * than the string length to be the string
3670 * length. Where Perl completely loses
3671 * coherence, however, is when the specified
3672 * substring is the empty string (""). In
3673 * this case, even if the position is
3674 * negative, rindex() returns 0 -- and even if
3675 * the position is greater than the length,
3676 * index() returns the string length. These
3677 * semantics violate the notion that index()
3678 * should never return a value less than the
3679 * specified position and that rindex() should
3680 * never return a value greater than the
3681 * specified position. (One assumes that
3682 * these semantics are artifacts of Perl's
3683 * implementation and not the results of
3684 * deliberate design -- it beggars belief that
3685 * even Larry Wall could desire such oddness.)
3686 * While in the abstract one would wish for
3687 * consistent position semantics across
3688 * substr(), index() and rindex() -- or at the
3689 * very least self-consistent position
3690 * semantics for index() and rindex() -- we
3691 * instead opt to keep with the extant Perl
3692 * semantics, in all their broken glory. (Do
3693 * we have more desire to maintain Perl's
3694 * semantics than Perl does? Probably.)
3696 if (subr == DIF_SUBR_RINDEX) {
3697 if (pos < 0) {
3698 if (sublen == 0)
3699 regs[rd] = 0;
3700 break;
3703 if (pos > len)
3704 pos = len;
3705 } else {
3706 if (pos < 0)
3707 pos = 0;
3709 if (pos >= len) {
3710 if (sublen == 0)
3711 regs[rd] = len;
3712 break;
3716 addr = orig + pos;
3720 for (regs[rd] = notfound; addr != limit; addr += inc) {
3721 if (dtrace_strncmp(addr, substr, sublen) == 0) {
3722 if (subr != DIF_SUBR_STRSTR) {
3724 * As D index() and rindex() are
3725 * modeled on Perl (and not on awk),
3726 * we return a zero-based (and not a
3727 * one-based) index. (For you Perl
3728 * weenies: no, we're not going to add
3729 * $[ -- and shouldn't you be at a con
3730 * or something?)
3732 regs[rd] = (uintptr_t)(addr - orig);
3733 break;
3736 ASSERT(subr == DIF_SUBR_STRSTR);
3737 regs[rd] = (uintptr_t)addr;
3738 break;
3742 break;
3745 case DIF_SUBR_STRTOK: {
3746 uintptr_t addr = tupregs[0].dttk_value;
3747 uintptr_t tokaddr = tupregs[1].dttk_value;
3748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3749 uintptr_t limit, toklimit = tokaddr + size;
3750 uint8_t c, tokmap[32]; /* 256 / 8 */
3751 char *dest = (char *)mstate->dtms_scratch_ptr;
3752 int i;
3755 * Check both the token buffer and (later) the input buffer,
3756 * since both could be non-scratch addresses.
3758 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3759 regs[rd] = NULL;
3760 break;
3763 if (!DTRACE_INSCRATCH(mstate, size)) {
3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3765 regs[rd] = NULL;
3766 break;
3769 if (addr == NULL) {
3771 * If the address specified is NULL, we use our saved
3772 * strtok pointer from the mstate. Note that this
3773 * means that the saved strtok pointer is _only_
3774 * valid within multiple enablings of the same probe --
3775 * it behaves like an implicit clause-local variable.
3777 addr = mstate->dtms_strtok;
3778 } else {
3780 * If the user-specified address is non-NULL we must
3781 * access check it. This is the only time we have
3782 * a chance to do so, since this address may reside
3783 * in the string table of this clause-- future calls
3784 * (when we fetch addr from mstate->dtms_strtok)
3785 * would fail this access check.
3787 if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3788 regs[rd] = NULL;
3789 break;
3794 * First, zero the token map, and then process the token
3795 * string -- setting a bit in the map for every character
3796 * found in the token string.
3798 for (i = 0; i < sizeof (tokmap); i++)
3799 tokmap[i] = 0;
3801 for (; tokaddr < toklimit; tokaddr++) {
3802 if ((c = dtrace_load8(tokaddr)) == '\0')
3803 break;
3805 ASSERT((c >> 3) < sizeof (tokmap));
3806 tokmap[c >> 3] |= (1 << (c & 0x7));
3809 for (limit = addr + size; addr < limit; addr++) {
3811 * We're looking for a character that is _not_ contained
3812 * in the token string.
3814 if ((c = dtrace_load8(addr)) == '\0')
3815 break;
3817 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3818 break;
3821 if (c == '\0') {
3823 * We reached the end of the string without finding
3824 * any character that was not in the token string.
3825 * We return NULL in this case, and we set the saved
3826 * address to NULL as well.
3828 regs[rd] = NULL;
3829 mstate->dtms_strtok = NULL;
3830 break;
3834 * From here on, we're copying into the destination string.
3836 for (i = 0; addr < limit && i < size - 1; addr++) {
3837 if ((c = dtrace_load8(addr)) == '\0')
3838 break;
3840 if (tokmap[c >> 3] & (1 << (c & 0x7)))
3841 break;
3843 ASSERT(i < size);
3844 dest[i++] = c;
3847 ASSERT(i < size);
3848 dest[i] = '\0';
3849 regs[rd] = (uintptr_t)dest;
3850 mstate->dtms_scratch_ptr += size;
3851 mstate->dtms_strtok = addr;
3852 break;
3855 case DIF_SUBR_SUBSTR: {
3856 uintptr_t s = tupregs[0].dttk_value;
3857 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3858 char *d = (char *)mstate->dtms_scratch_ptr;
3859 int64_t index = (int64_t)tupregs[1].dttk_value;
3860 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3861 size_t len = dtrace_strlen((char *)s, size);
3862 int64_t i;
3864 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3865 regs[rd] = NULL;
3866 break;
3869 if (!DTRACE_INSCRATCH(mstate, size)) {
3870 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3871 regs[rd] = NULL;
3872 break;
3875 if (nargs <= 2)
3876 remaining = (int64_t)size;
3878 if (index < 0) {
3879 index += len;
3881 if (index < 0 && index + remaining > 0) {
3882 remaining += index;
3883 index = 0;
3887 if (index >= len || index < 0) {
3888 remaining = 0;
3889 } else if (remaining < 0) {
3890 remaining += len - index;
3891 } else if (index + remaining > size) {
3892 remaining = size - index;
3895 for (i = 0; i < remaining; i++) {
3896 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3897 break;
3900 d[i] = '\0';
3902 mstate->dtms_scratch_ptr += size;
3903 regs[rd] = (uintptr_t)d;
3904 break;
3907 case DIF_SUBR_GETMAJOR:
3908 #ifdef _LP64
3909 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3910 #else
3911 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3912 #endif
3913 break;
3915 case DIF_SUBR_GETMINOR:
3916 #ifdef _LP64
3917 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3918 #else
3919 regs[rd] = tupregs[0].dttk_value & MAXMIN;
3920 #endif
3921 break;
3923 case DIF_SUBR_DDI_PATHNAME: {
3925 * This one is a galactic mess. We are going to roughly
3926 * emulate ddi_pathname(), but it's made more complicated
3927 * by the fact that we (a) want to include the minor name and
3928 * (b) must proceed iteratively instead of recursively.
3930 uintptr_t dest = mstate->dtms_scratch_ptr;
3931 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3932 char *start = (char *)dest, *end = start + size - 1;
3933 uintptr_t daddr = tupregs[0].dttk_value;
3934 int64_t minor = (int64_t)tupregs[1].dttk_value;
3935 char *s;
3936 int i, len, depth = 0;
3939 * Due to all the pointer jumping we do and context we must
3940 * rely upon, we just mandate that the user must have kernel
3941 * read privileges to use this routine.
3943 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3944 *flags |= CPU_DTRACE_KPRIV;
3945 *illval = daddr;
3946 regs[rd] = NULL;
3949 if (!DTRACE_INSCRATCH(mstate, size)) {
3950 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3951 regs[rd] = NULL;
3952 break;
3955 *end = '\0';
3958 * We want to have a name for the minor. In order to do this,
3959 * we need to walk the minor list from the devinfo. We want
3960 * to be sure that we don't infinitely walk a circular list,
3961 * so we check for circularity by sending a scout pointer
3962 * ahead two elements for every element that we iterate over;
3963 * if the list is circular, these will ultimately point to the
3964 * same element. You may recognize this little trick as the
3965 * answer to a stupid interview question -- one that always
3966 * seems to be asked by those who had to have it laboriously
3967 * explained to them, and who can't even concisely describe
3968 * the conditions under which one would be forced to resort to
3969 * this technique. Needless to say, those conditions are
3970 * found here -- and probably only here. Is this the only use
3971 * of this infamous trick in shipping, production code? If it
3972 * isn't, it probably should be...
3974 if (minor != -1) {
3975 uintptr_t maddr = dtrace_loadptr(daddr +
3976 offsetof(struct dev_info, devi_minor));
3978 uintptr_t next = offsetof(struct ddi_minor_data, next);
3979 uintptr_t name = offsetof(struct ddi_minor_data,
3980 d_minor) + offsetof(struct ddi_minor, name);
3981 uintptr_t dev = offsetof(struct ddi_minor_data,
3982 d_minor) + offsetof(struct ddi_minor, dev);
3983 uintptr_t scout;
3985 if (maddr != NULL)
3986 scout = dtrace_loadptr(maddr + next);
3988 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3989 uint64_t m;
3990 #ifdef _LP64
3991 m = dtrace_load64(maddr + dev) & MAXMIN64;
3992 #else
3993 m = dtrace_load32(maddr + dev) & MAXMIN;
3994 #endif
3995 if (m != minor) {
3996 maddr = dtrace_loadptr(maddr + next);
3998 if (scout == NULL)
3999 continue;
4001 scout = dtrace_loadptr(scout + next);
4003 if (scout == NULL)
4004 continue;
4006 scout = dtrace_loadptr(scout + next);
4008 if (scout == NULL)
4009 continue;
4011 if (scout == maddr) {
4012 *flags |= CPU_DTRACE_ILLOP;
4013 break;
4016 continue;
4020 * We have the minor data. Now we need to
4021 * copy the minor's name into the end of the
4022 * pathname.
4024 s = (char *)dtrace_loadptr(maddr + name);
4025 len = dtrace_strlen(s, size);
4027 if (*flags & CPU_DTRACE_FAULT)
4028 break;
4030 if (len != 0) {
4031 if ((end -= (len + 1)) < start)
4032 break;
4034 *end = ':';
4037 for (i = 1; i <= len; i++)
4038 end[i] = dtrace_load8((uintptr_t)s++);
4039 break;
4043 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4044 ddi_node_state_t devi_state;
4046 devi_state = dtrace_load32(daddr +
4047 offsetof(struct dev_info, devi_node_state));
4049 if (*flags & CPU_DTRACE_FAULT)
4050 break;
4052 if (devi_state >= DS_INITIALIZED) {
4053 s = (char *)dtrace_loadptr(daddr +
4054 offsetof(struct dev_info, devi_addr));
4055 len = dtrace_strlen(s, size);
4057 if (*flags & CPU_DTRACE_FAULT)
4058 break;
4060 if (len != 0) {
4061 if ((end -= (len + 1)) < start)
4062 break;
4064 *end = '@';
4067 for (i = 1; i <= len; i++)
4068 end[i] = dtrace_load8((uintptr_t)s++);
4072 * Now for the node name...
4074 s = (char *)dtrace_loadptr(daddr +
4075 offsetof(struct dev_info, devi_node_name));
4077 daddr = dtrace_loadptr(daddr +
4078 offsetof(struct dev_info, devi_parent));
4081 * If our parent is NULL (that is, if we're the root
4082 * node), we're going to use the special path
4083 * "devices".
4085 if (daddr == NULL)
4086 s = "devices";
4088 len = dtrace_strlen(s, size);
4089 if (*flags & CPU_DTRACE_FAULT)
4090 break;
4092 if ((end -= (len + 1)) < start)
4093 break;
4095 for (i = 1; i <= len; i++)
4096 end[i] = dtrace_load8((uintptr_t)s++);
4097 *end = '/';
4099 if (depth++ > dtrace_devdepth_max) {
4100 *flags |= CPU_DTRACE_ILLOP;
4101 break;
4105 if (end < start)
4106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4108 if (daddr == NULL) {
4109 regs[rd] = (uintptr_t)end;
4110 mstate->dtms_scratch_ptr += size;
4113 break;
4116 case DIF_SUBR_STRJOIN: {
4117 char *d = (char *)mstate->dtms_scratch_ptr;
4118 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4119 uintptr_t s1 = tupregs[0].dttk_value;
4120 uintptr_t s2 = tupregs[1].dttk_value;
4121 int i = 0;
4123 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4124 !dtrace_strcanload(s2, size, mstate, vstate)) {
4125 regs[rd] = NULL;
4126 break;
4129 if (!DTRACE_INSCRATCH(mstate, size)) {
4130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4131 regs[rd] = NULL;
4132 break;
4135 for (;;) {
4136 if (i >= size) {
4137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4138 regs[rd] = NULL;
4139 break;
4142 if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4143 i--;
4144 break;
4148 for (;;) {
4149 if (i >= size) {
4150 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4151 regs[rd] = NULL;
4152 break;
4155 if ((d[i++] = dtrace_load8(s2++)) == '\0')
4156 break;
4159 if (i < size) {
4160 mstate->dtms_scratch_ptr += i;
4161 regs[rd] = (uintptr_t)d;
4164 break;
4167 case DIF_SUBR_LLTOSTR: {
4168 int64_t i = (int64_t)tupregs[0].dttk_value;
4169 int64_t val = i < 0 ? i * -1 : i;
4170 uint64_t size = 22; /* enough room for 2^64 in decimal */
4171 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4173 if (!DTRACE_INSCRATCH(mstate, size)) {
4174 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4175 regs[rd] = NULL;
4176 break;
4179 for (*end-- = '\0'; val; val /= 10)
4180 *end-- = '0' + (val % 10);
4182 if (i == 0)
4183 *end-- = '0';
4185 if (i < 0)
4186 *end-- = '-';
4188 regs[rd] = (uintptr_t)end + 1;
4189 mstate->dtms_scratch_ptr += size;
4190 break;
4193 case DIF_SUBR_HTONS:
4194 case DIF_SUBR_NTOHS:
4195 #ifdef _BIG_ENDIAN
4196 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4197 #else
4198 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4199 #endif
4200 break;
4203 case DIF_SUBR_HTONL:
4204 case DIF_SUBR_NTOHL:
4205 #ifdef _BIG_ENDIAN
4206 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4207 #else
4208 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4209 #endif
4210 break;
4213 case DIF_SUBR_HTONLL:
4214 case DIF_SUBR_NTOHLL:
4215 #ifdef _BIG_ENDIAN
4216 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4217 #else
4218 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4219 #endif
4220 break;
4223 case DIF_SUBR_DIRNAME:
4224 case DIF_SUBR_BASENAME: {
4225 char *dest = (char *)mstate->dtms_scratch_ptr;
4226 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4227 uintptr_t src = tupregs[0].dttk_value;
4228 int i, j, len = dtrace_strlen((char *)src, size);
4229 int lastbase = -1, firstbase = -1, lastdir = -1;
4230 int start, end;
4232 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4233 regs[rd] = NULL;
4234 break;
4237 if (!DTRACE_INSCRATCH(mstate, size)) {
4238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4239 regs[rd] = NULL;
4240 break;
4244 * The basename and dirname for a zero-length string is
4245 * defined to be "."
4247 if (len == 0) {
4248 len = 1;
4249 src = (uintptr_t)".";
4253 * Start from the back of the string, moving back toward the
4254 * front until we see a character that isn't a slash. That
4255 * character is the last character in the basename.
4257 for (i = len - 1; i >= 0; i--) {
4258 if (dtrace_load8(src + i) != '/')
4259 break;
4262 if (i >= 0)
4263 lastbase = i;
4266 * Starting from the last character in the basename, move
4267 * towards the front until we find a slash. The character
4268 * that we processed immediately before that is the first
4269 * character in the basename.
4271 for (; i >= 0; i--) {
4272 if (dtrace_load8(src + i) == '/')
4273 break;
4276 if (i >= 0)
4277 firstbase = i + 1;
4280 * Now keep going until we find a non-slash character. That
4281 * character is the last character in the dirname.
4283 for (; i >= 0; i--) {
4284 if (dtrace_load8(src + i) != '/')
4285 break;
4288 if (i >= 0)
4289 lastdir = i;
4291 ASSERT(!(lastbase == -1 && firstbase != -1));
4292 ASSERT(!(firstbase == -1 && lastdir != -1));
4294 if (lastbase == -1) {
4296 * We didn't find a non-slash character. We know that
4297 * the length is non-zero, so the whole string must be
4298 * slashes. In either the dirname or the basename
4299 * case, we return '/'.
4301 ASSERT(firstbase == -1);
4302 firstbase = lastbase = lastdir = 0;
4305 if (firstbase == -1) {
4307 * The entire string consists only of a basename
4308 * component. If we're looking for dirname, we need
4309 * to change our string to be just "."; if we're
4310 * looking for a basename, we'll just set the first
4311 * character of the basename to be 0.
4313 if (subr == DIF_SUBR_DIRNAME) {
4314 ASSERT(lastdir == -1);
4315 src = (uintptr_t)".";
4316 lastdir = 0;
4317 } else {
4318 firstbase = 0;
4322 if (subr == DIF_SUBR_DIRNAME) {
4323 if (lastdir == -1) {
4325 * We know that we have a slash in the name --
4326 * or lastdir would be set to 0, above. And
4327 * because lastdir is -1, we know that this
4328 * slash must be the first character. (That
4329 * is, the full string must be of the form
4330 * "/basename".) In this case, the last
4331 * character of the directory name is 0.
4333 lastdir = 0;
4336 start = 0;
4337 end = lastdir;
4338 } else {
4339 ASSERT(subr == DIF_SUBR_BASENAME);
4340 ASSERT(firstbase != -1 && lastbase != -1);
4341 start = firstbase;
4342 end = lastbase;
4345 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4346 dest[j] = dtrace_load8(src + i);
4348 dest[j] = '\0';
4349 regs[rd] = (uintptr_t)dest;
4350 mstate->dtms_scratch_ptr += size;
4351 break;
4354 case DIF_SUBR_CLEANPATH: {
4355 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4356 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4357 uintptr_t src = tupregs[0].dttk_value;
4358 int i = 0, j = 0;
4360 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4361 regs[rd] = NULL;
4362 break;
4365 if (!DTRACE_INSCRATCH(mstate, size)) {
4366 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4367 regs[rd] = NULL;
4368 break;
4372 * Move forward, loading each character.
4374 do {
4375 c = dtrace_load8(src + i++);
4376 next:
4377 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
4378 break;
4380 if (c != '/') {
4381 dest[j++] = c;
4382 continue;
4385 c = dtrace_load8(src + i++);
4387 if (c == '/') {
4389 * We have two slashes -- we can just advance
4390 * to the next character.
4392 goto next;
4395 if (c != '.') {
4397 * This is not "." and it's not ".." -- we can
4398 * just store the "/" and this character and
4399 * drive on.
4401 dest[j++] = '/';
4402 dest[j++] = c;
4403 continue;
4406 c = dtrace_load8(src + i++);
4408 if (c == '/') {
4410 * This is a "/./" component. We're not going
4411 * to store anything in the destination buffer;
4412 * we're just going to go to the next component.
4414 goto next;
4417 if (c != '.') {
4419 * This is not ".." -- we can just store the
4420 * "/." and this character and continue
4421 * processing.
4423 dest[j++] = '/';
4424 dest[j++] = '.';
4425 dest[j++] = c;
4426 continue;
4429 c = dtrace_load8(src + i++);
4431 if (c != '/' && c != '\0') {
4433 * This is not ".." -- it's "..[mumble]".
4434 * We'll store the "/.." and this character
4435 * and continue processing.
4437 dest[j++] = '/';
4438 dest[j++] = '.';
4439 dest[j++] = '.';
4440 dest[j++] = c;
4441 continue;
4445 * This is "/../" or "/..\0". We need to back up
4446 * our destination pointer until we find a "/".
4448 i--;
4449 while (j != 0 && dest[--j] != '/')
4450 continue;
4452 if (c == '\0')
4453 dest[++j] = '/';
4454 } while (c != '\0');
4456 dest[j] = '\0';
4457 regs[rd] = (uintptr_t)dest;
4458 mstate->dtms_scratch_ptr += size;
4459 break;
4462 case DIF_SUBR_INET_NTOA:
4463 case DIF_SUBR_INET_NTOA6:
4464 case DIF_SUBR_INET_NTOP: {
4465 size_t size;
4466 int af, argi, i;
4467 char *base, *end;
4469 if (subr == DIF_SUBR_INET_NTOP) {
4470 af = (int)tupregs[0].dttk_value;
4471 argi = 1;
4472 } else {
4473 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4474 argi = 0;
4477 if (af == AF_INET) {
4478 ipaddr_t ip4;
4479 uint8_t *ptr8, val;
4482 * Safely load the IPv4 address.
4484 ip4 = dtrace_load32(tupregs[argi].dttk_value);
4487 * Check an IPv4 string will fit in scratch.
4489 size = INET_ADDRSTRLEN;
4490 if (!DTRACE_INSCRATCH(mstate, size)) {
4491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4492 regs[rd] = NULL;
4493 break;
4495 base = (char *)mstate->dtms_scratch_ptr;
4496 end = (char *)mstate->dtms_scratch_ptr + size - 1;
4499 * Stringify as a dotted decimal quad.
4501 *end-- = '\0';
4502 ptr8 = (uint8_t *)&ip4;
4503 for (i = 3; i >= 0; i--) {
4504 val = ptr8[i];
4506 if (val == 0) {
4507 *end-- = '0';
4508 } else {
4509 for (; val; val /= 10) {
4510 *end-- = '0' + (val % 10);
4514 if (i > 0)
4515 *end-- = '.';
4517 ASSERT(end + 1 >= base);
4519 } else if (af == AF_INET6) {
4520 struct in6_addr ip6;
4521 int firstzero, tryzero, numzero, v6end;
4522 uint16_t val;
4523 const char digits[] = "0123456789abcdef";
4526 * Stringify using RFC 1884 convention 2 - 16 bit
4527 * hexadecimal values with a zero-run compression.
4528 * Lower case hexadecimal digits are used.
4529 * eg, fe80::214:4fff:fe0b:76c8.
4530 * The IPv4 embedded form is returned for inet_ntop,
4531 * just the IPv4 string is returned for inet_ntoa6.
4535 * Safely load the IPv6 address.
4537 dtrace_bcopy(
4538 (void *)(uintptr_t)tupregs[argi].dttk_value,
4539 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4542 * Check an IPv6 string will fit in scratch.
4544 size = INET6_ADDRSTRLEN;
4545 if (!DTRACE_INSCRATCH(mstate, size)) {
4546 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4547 regs[rd] = NULL;
4548 break;
4550 base = (char *)mstate->dtms_scratch_ptr;
4551 end = (char *)mstate->dtms_scratch_ptr + size - 1;
4552 *end-- = '\0';
4555 * Find the longest run of 16 bit zero values
4556 * for the single allowed zero compression - "::".
4558 firstzero = -1;
4559 tryzero = -1;
4560 numzero = 1;
4561 for (i = 0; i < sizeof (struct in6_addr); i++) {
4562 if (ip6._S6_un._S6_u8[i] == 0 &&
4563 tryzero == -1 && i % 2 == 0) {
4564 tryzero = i;
4565 continue;
4568 if (tryzero != -1 &&
4569 (ip6._S6_un._S6_u8[i] != 0 ||
4570 i == sizeof (struct in6_addr) - 1)) {
4572 if (i - tryzero <= numzero) {
4573 tryzero = -1;
4574 continue;
4577 firstzero = tryzero;
4578 numzero = i - i % 2 - tryzero;
4579 tryzero = -1;
4581 if (ip6._S6_un._S6_u8[i] == 0 &&
4582 i == sizeof (struct in6_addr) - 1)
4583 numzero += 2;
4586 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4589 * Check for an IPv4 embedded address.
4591 v6end = sizeof (struct in6_addr) - 2;
4592 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4593 IN6_IS_ADDR_V4COMPAT(&ip6)) {
4594 for (i = sizeof (struct in6_addr) - 1;
4595 i >= DTRACE_V4MAPPED_OFFSET; i--) {
4596 ASSERT(end >= base);
4598 val = ip6._S6_un._S6_u8[i];
4600 if (val == 0) {
4601 *end-- = '0';
4602 } else {
4603 for (; val; val /= 10) {
4604 *end-- = '0' + val % 10;
4608 if (i > DTRACE_V4MAPPED_OFFSET)
4609 *end-- = '.';
4612 if (subr == DIF_SUBR_INET_NTOA6)
4613 goto inetout;
4616 * Set v6end to skip the IPv4 address that
4617 * we have already stringified.
4619 v6end = 10;
4623 * Build the IPv6 string by working through the
4624 * address in reverse.
4626 for (i = v6end; i >= 0; i -= 2) {
4627 ASSERT(end >= base);
4629 if (i == firstzero + numzero - 2) {
4630 *end-- = ':';
4631 *end-- = ':';
4632 i -= numzero - 2;
4633 continue;
4636 if (i < 14 && i != firstzero - 2)
4637 *end-- = ':';
4639 val = (ip6._S6_un._S6_u8[i] << 8) +
4640 ip6._S6_un._S6_u8[i + 1];
4642 if (val == 0) {
4643 *end-- = '0';
4644 } else {
4645 for (; val; val /= 16) {
4646 *end-- = digits[val % 16];
4650 ASSERT(end + 1 >= base);
4652 } else {
4654 * The user didn't use AH_INET or AH_INET6.
4656 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4657 regs[rd] = NULL;
4658 break;
4661 inetout: regs[rd] = (uintptr_t)end + 1;
4662 mstate->dtms_scratch_ptr += size;
4663 break;
4670 * Emulate the execution of DTrace IR instructions specified by the given
4671 * DIF object. This function is deliberately void of assertions as all of
4672 * the necessary checks are handled by a call to dtrace_difo_validate().
4674 static uint64_t
4675 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4676 dtrace_vstate_t *vstate, dtrace_state_t *state)
4678 const dif_instr_t *text = difo->dtdo_buf;
4679 const uint_t textlen = difo->dtdo_len;
4680 const char *strtab = difo->dtdo_strtab;
4681 const uint64_t *inttab = difo->dtdo_inttab;
4683 uint64_t rval = 0;
4684 dtrace_statvar_t *svar;
4685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4686 dtrace_difv_t *v;
4687 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4688 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4690 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4691 uint64_t regs[DIF_DIR_NREGS];
4692 uint64_t *tmp;
4694 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4695 int64_t cc_r;
4696 uint_t pc = 0, id, opc;
4697 uint8_t ttop = 0;
4698 dif_instr_t instr;
4699 uint_t r1, r2, rd;
4702 * We stash the current DIF object into the machine state: we need it
4703 * for subsequent access checking.
4705 mstate->dtms_difo = difo;
4707 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
4709 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4710 opc = pc;
4712 instr = text[pc++];
4713 r1 = DIF_INSTR_R1(instr);
4714 r2 = DIF_INSTR_R2(instr);
4715 rd = DIF_INSTR_RD(instr);
4717 switch (DIF_INSTR_OP(instr)) {
4718 case DIF_OP_OR:
4719 regs[rd] = regs[r1] | regs[r2];
4720 break;
4721 case DIF_OP_XOR:
4722 regs[rd] = regs[r1] ^ regs[r2];
4723 break;
4724 case DIF_OP_AND:
4725 regs[rd] = regs[r1] & regs[r2];
4726 break;
4727 case DIF_OP_SLL:
4728 regs[rd] = regs[r1] << regs[r2];
4729 break;
4730 case DIF_OP_SRL:
4731 regs[rd] = regs[r1] >> regs[r2];
4732 break;
4733 case DIF_OP_SUB:
4734 regs[rd] = regs[r1] - regs[r2];
4735 break;
4736 case DIF_OP_ADD:
4737 regs[rd] = regs[r1] + regs[r2];
4738 break;
4739 case DIF_OP_MUL:
4740 regs[rd] = regs[r1] * regs[r2];
4741 break;
4742 case DIF_OP_SDIV:
4743 if (regs[r2] == 0) {
4744 regs[rd] = 0;
4745 *flags |= CPU_DTRACE_DIVZERO;
4746 } else {
4747 regs[rd] = (int64_t)regs[r1] /
4748 (int64_t)regs[r2];
4750 break;
4752 case DIF_OP_UDIV:
4753 if (regs[r2] == 0) {
4754 regs[rd] = 0;
4755 *flags |= CPU_DTRACE_DIVZERO;
4756 } else {
4757 regs[rd] = regs[r1] / regs[r2];
4759 break;
4761 case DIF_OP_SREM:
4762 if (regs[r2] == 0) {
4763 regs[rd] = 0;
4764 *flags |= CPU_DTRACE_DIVZERO;
4765 } else {
4766 regs[rd] = (int64_t)regs[r1] %
4767 (int64_t)regs[r2];
4769 break;
4771 case DIF_OP_UREM:
4772 if (regs[r2] == 0) {
4773 regs[rd] = 0;
4774 *flags |= CPU_DTRACE_DIVZERO;
4775 } else {
4776 regs[rd] = regs[r1] % regs[r2];
4778 break;
4780 case DIF_OP_NOT:
4781 regs[rd] = ~regs[r1];
4782 break;
4783 case DIF_OP_MOV:
4784 regs[rd] = regs[r1];
4785 break;
4786 case DIF_OP_CMP:
4787 cc_r = regs[r1] - regs[r2];
4788 cc_n = cc_r < 0;
4789 cc_z = cc_r == 0;
4790 cc_v = 0;
4791 cc_c = regs[r1] < regs[r2];
4792 break;
4793 case DIF_OP_TST:
4794 cc_n = cc_v = cc_c = 0;
4795 cc_z = regs[r1] == 0;
4796 break;
4797 case DIF_OP_BA:
4798 pc = DIF_INSTR_LABEL(instr);
4799 break;
4800 case DIF_OP_BE:
4801 if (cc_z)
4802 pc = DIF_INSTR_LABEL(instr);
4803 break;
4804 case DIF_OP_BNE:
4805 if (cc_z == 0)
4806 pc = DIF_INSTR_LABEL(instr);
4807 break;
4808 case DIF_OP_BG:
4809 if ((cc_z | (cc_n ^ cc_v)) == 0)
4810 pc = DIF_INSTR_LABEL(instr);
4811 break;
4812 case DIF_OP_BGU:
4813 if ((cc_c | cc_z) == 0)
4814 pc = DIF_INSTR_LABEL(instr);
4815 break;
4816 case DIF_OP_BGE:
4817 if ((cc_n ^ cc_v) == 0)
4818 pc = DIF_INSTR_LABEL(instr);
4819 break;
4820 case DIF_OP_BGEU:
4821 if (cc_c == 0)
4822 pc = DIF_INSTR_LABEL(instr);
4823 break;
4824 case DIF_OP_BL:
4825 if (cc_n ^ cc_v)
4826 pc = DIF_INSTR_LABEL(instr);
4827 break;
4828 case DIF_OP_BLU:
4829 if (cc_c)
4830 pc = DIF_INSTR_LABEL(instr);
4831 break;
4832 case DIF_OP_BLE:
4833 if (cc_z | (cc_n ^ cc_v))
4834 pc = DIF_INSTR_LABEL(instr);
4835 break;
4836 case DIF_OP_BLEU:
4837 if (cc_c | cc_z)
4838 pc = DIF_INSTR_LABEL(instr);
4839 break;
4840 case DIF_OP_RLDSB:
4841 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4842 *flags |= CPU_DTRACE_KPRIV;
4843 *illval = regs[r1];
4844 break;
4846 /*FALLTHROUGH*/
4847 case DIF_OP_LDSB:
4848 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4849 break;
4850 case DIF_OP_RLDSH:
4851 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4852 *flags |= CPU_DTRACE_KPRIV;
4853 *illval = regs[r1];
4854 break;
4856 /*FALLTHROUGH*/
4857 case DIF_OP_LDSH:
4858 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4859 break;
4860 case DIF_OP_RLDSW:
4861 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4862 *flags |= CPU_DTRACE_KPRIV;
4863 *illval = regs[r1];
4864 break;
4866 /*FALLTHROUGH*/
4867 case DIF_OP_LDSW:
4868 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4869 break;
4870 case DIF_OP_RLDUB:
4871 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4872 *flags |= CPU_DTRACE_KPRIV;
4873 *illval = regs[r1];
4874 break;
4876 /*FALLTHROUGH*/
4877 case DIF_OP_LDUB:
4878 regs[rd] = dtrace_load8(regs[r1]);
4879 break;
4880 case DIF_OP_RLDUH:
4881 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4882 *flags |= CPU_DTRACE_KPRIV;
4883 *illval = regs[r1];
4884 break;
4886 /*FALLTHROUGH*/
4887 case DIF_OP_LDUH:
4888 regs[rd] = dtrace_load16(regs[r1]);
4889 break;
4890 case DIF_OP_RLDUW:
4891 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4892 *flags |= CPU_DTRACE_KPRIV;
4893 *illval = regs[r1];
4894 break;
4896 /*FALLTHROUGH*/
4897 case DIF_OP_LDUW:
4898 regs[rd] = dtrace_load32(regs[r1]);
4899 break;
4900 case DIF_OP_RLDX:
4901 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4902 *flags |= CPU_DTRACE_KPRIV;
4903 *illval = regs[r1];
4904 break;
4906 /*FALLTHROUGH*/
4907 case DIF_OP_LDX:
4908 regs[rd] = dtrace_load64(regs[r1]);
4909 break;
4910 case DIF_OP_ULDSB:
4911 regs[rd] = (int8_t)
4912 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4913 break;
4914 case DIF_OP_ULDSH:
4915 regs[rd] = (int16_t)
4916 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4917 break;
4918 case DIF_OP_ULDSW:
4919 regs[rd] = (int32_t)
4920 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4921 break;
4922 case DIF_OP_ULDUB:
4923 regs[rd] =
4924 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4925 break;
4926 case DIF_OP_ULDUH:
4927 regs[rd] =
4928 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4929 break;
4930 case DIF_OP_ULDUW:
4931 regs[rd] =
4932 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4933 break;
4934 case DIF_OP_ULDX:
4935 regs[rd] =
4936 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4937 break;
4938 case DIF_OP_RET:
4939 rval = regs[rd];
4940 pc = textlen;
4941 break;
4942 case DIF_OP_NOP:
4943 break;
4944 case DIF_OP_SETX:
4945 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4946 break;
4947 case DIF_OP_SETS:
4948 regs[rd] = (uint64_t)(uintptr_t)
4949 (strtab + DIF_INSTR_STRING(instr));
4950 break;
4951 case DIF_OP_SCMP: {
4952 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4953 uintptr_t s1 = regs[r1];
4954 uintptr_t s2 = regs[r2];
4956 if (s1 != NULL &&
4957 !dtrace_strcanload(s1, sz, mstate, vstate))
4958 break;
4959 if (s2 != NULL &&
4960 !dtrace_strcanload(s2, sz, mstate, vstate))
4961 break;
4963 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4965 cc_n = cc_r < 0;
4966 cc_z = cc_r == 0;
4967 cc_v = cc_c = 0;
4968 break;
4970 case DIF_OP_LDGA:
4971 regs[rd] = dtrace_dif_variable(mstate, state,
4972 r1, regs[r2]);
4973 break;
4974 case DIF_OP_LDGS:
4975 id = DIF_INSTR_VAR(instr);
4977 if (id >= DIF_VAR_OTHER_UBASE) {
4978 uintptr_t a;
4980 id -= DIF_VAR_OTHER_UBASE;
4981 svar = vstate->dtvs_globals[id];
4982 ASSERT(svar != NULL);
4983 v = &svar->dtsv_var;
4985 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4986 regs[rd] = svar->dtsv_data;
4987 break;
4990 a = (uintptr_t)svar->dtsv_data;
4992 if (*(uint8_t *)a == UINT8_MAX) {
4994 * If the 0th byte is set to UINT8_MAX
4995 * then this is to be treated as a
4996 * reference to a NULL variable.
4998 regs[rd] = NULL;
4999 } else {
5000 regs[rd] = a + sizeof (uint64_t);
5003 break;
5006 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5007 break;
5009 case DIF_OP_STGS:
5010 id = DIF_INSTR_VAR(instr);
5012 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5013 id -= DIF_VAR_OTHER_UBASE;
5015 svar = vstate->dtvs_globals[id];
5016 ASSERT(svar != NULL);
5017 v = &svar->dtsv_var;
5019 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5020 uintptr_t a = (uintptr_t)svar->dtsv_data;
5022 ASSERT(a != NULL);
5023 ASSERT(svar->dtsv_size != 0);
5025 if (regs[rd] == NULL) {
5026 *(uint8_t *)a = UINT8_MAX;
5027 break;
5028 } else {
5029 *(uint8_t *)a = 0;
5030 a += sizeof (uint64_t);
5032 if (!dtrace_vcanload(
5033 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5034 mstate, vstate))
5035 break;
5037 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5038 (void *)a, &v->dtdv_type);
5039 break;
5042 svar->dtsv_data = regs[rd];
5043 break;
5045 case DIF_OP_LDTA:
5047 * There are no DTrace built-in thread-local arrays at
5048 * present. This opcode is saved for future work.
5050 *flags |= CPU_DTRACE_ILLOP;
5051 regs[rd] = 0;
5052 break;
5054 case DIF_OP_LDLS:
5055 id = DIF_INSTR_VAR(instr);
5057 if (id < DIF_VAR_OTHER_UBASE) {
5059 * For now, this has no meaning.
5061 regs[rd] = 0;
5062 break;
5065 id -= DIF_VAR_OTHER_UBASE;
5067 ASSERT(id < vstate->dtvs_nlocals);
5068 ASSERT(vstate->dtvs_locals != NULL);
5070 svar = vstate->dtvs_locals[id];
5071 ASSERT(svar != NULL);
5072 v = &svar->dtsv_var;
5074 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5075 uintptr_t a = (uintptr_t)svar->dtsv_data;
5076 size_t sz = v->dtdv_type.dtdt_size;
5078 sz += sizeof (uint64_t);
5079 ASSERT(svar->dtsv_size == NCPU * sz);
5080 a += CPU->cpu_id * sz;
5082 if (*(uint8_t *)a == UINT8_MAX) {
5084 * If the 0th byte is set to UINT8_MAX
5085 * then this is to be treated as a
5086 * reference to a NULL variable.
5088 regs[rd] = NULL;
5089 } else {
5090 regs[rd] = a + sizeof (uint64_t);
5093 break;
5096 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5097 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5098 regs[rd] = tmp[CPU->cpu_id];
5099 break;
5101 case DIF_OP_STLS:
5102 id = DIF_INSTR_VAR(instr);
5104 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5105 id -= DIF_VAR_OTHER_UBASE;
5106 ASSERT(id < vstate->dtvs_nlocals);
5108 ASSERT(vstate->dtvs_locals != NULL);
5109 svar = vstate->dtvs_locals[id];
5110 ASSERT(svar != NULL);
5111 v = &svar->dtsv_var;
5113 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5114 uintptr_t a = (uintptr_t)svar->dtsv_data;
5115 size_t sz = v->dtdv_type.dtdt_size;
5117 sz += sizeof (uint64_t);
5118 ASSERT(svar->dtsv_size == NCPU * sz);
5119 a += CPU->cpu_id * sz;
5121 if (regs[rd] == NULL) {
5122 *(uint8_t *)a = UINT8_MAX;
5123 break;
5124 } else {
5125 *(uint8_t *)a = 0;
5126 a += sizeof (uint64_t);
5129 if (!dtrace_vcanload(
5130 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5131 mstate, vstate))
5132 break;
5134 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5135 (void *)a, &v->dtdv_type);
5136 break;
5139 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5140 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5141 tmp[CPU->cpu_id] = regs[rd];
5142 break;
5144 case DIF_OP_LDTS: {
5145 dtrace_dynvar_t *dvar;
5146 dtrace_key_t *key;
5148 id = DIF_INSTR_VAR(instr);
5149 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5150 id -= DIF_VAR_OTHER_UBASE;
5151 v = &vstate->dtvs_tlocals[id];
5153 key = &tupregs[DIF_DTR_NREGS];
5154 key[0].dttk_value = (uint64_t)id;
5155 key[0].dttk_size = 0;
5156 DTRACE_TLS_THRKEY(key[1].dttk_value);
5157 key[1].dttk_size = 0;
5159 dvar = dtrace_dynvar(dstate, 2, key,
5160 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5161 mstate, vstate);
5163 if (dvar == NULL) {
5164 regs[rd] = 0;
5165 break;
5168 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5169 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5170 } else {
5171 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5174 break;
5177 case DIF_OP_STTS: {
5178 dtrace_dynvar_t *dvar;
5179 dtrace_key_t *key;
5181 id = DIF_INSTR_VAR(instr);
5182 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5183 id -= DIF_VAR_OTHER_UBASE;
5185 key = &tupregs[DIF_DTR_NREGS];
5186 key[0].dttk_value = (uint64_t)id;
5187 key[0].dttk_size = 0;
5188 DTRACE_TLS_THRKEY(key[1].dttk_value);
5189 key[1].dttk_size = 0;
5190 v = &vstate->dtvs_tlocals[id];
5192 dvar = dtrace_dynvar(dstate, 2, key,
5193 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5194 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5195 regs[rd] ? DTRACE_DYNVAR_ALLOC :
5196 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5199 * Given that we're storing to thread-local data,
5200 * we need to flush our predicate cache.
5202 curthread->t_predcache = NULL;
5204 if (dvar == NULL)
5205 break;
5207 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5208 if (!dtrace_vcanload(
5209 (void *)(uintptr_t)regs[rd],
5210 &v->dtdv_type, mstate, vstate))
5211 break;
5213 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5214 dvar->dtdv_data, &v->dtdv_type);
5215 } else {
5216 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5219 break;
5222 case DIF_OP_SRA:
5223 regs[rd] = (int64_t)regs[r1] >> regs[r2];
5224 break;
5226 case DIF_OP_CALL:
5227 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5228 regs, tupregs, ttop, mstate, state);
5229 break;
5231 case DIF_OP_PUSHTR:
5232 if (ttop == DIF_DTR_NREGS) {
5233 *flags |= CPU_DTRACE_TUPOFLOW;
5234 break;
5237 if (r1 == DIF_TYPE_STRING) {
5239 * If this is a string type and the size is 0,
5240 * we'll use the system-wide default string
5241 * size. Note that we are _not_ looking at
5242 * the value of the DTRACEOPT_STRSIZE option;
5243 * had this been set, we would expect to have
5244 * a non-zero size value in the "pushtr".
5246 tupregs[ttop].dttk_size =
5247 dtrace_strlen((char *)(uintptr_t)regs[rd],
5248 regs[r2] ? regs[r2] :
5249 dtrace_strsize_default) + 1;
5250 } else {
5251 tupregs[ttop].dttk_size = regs[r2];
5254 tupregs[ttop++].dttk_value = regs[rd];
5255 break;
5257 case DIF_OP_PUSHTV:
5258 if (ttop == DIF_DTR_NREGS) {
5259 *flags |= CPU_DTRACE_TUPOFLOW;
5260 break;
5263 tupregs[ttop].dttk_value = regs[rd];
5264 tupregs[ttop++].dttk_size = 0;
5265 break;
5267 case DIF_OP_POPTS:
5268 if (ttop != 0)
5269 ttop--;
5270 break;
5272 case DIF_OP_FLUSHTS:
5273 ttop = 0;
5274 break;
5276 case DIF_OP_LDGAA:
5277 case DIF_OP_LDTAA: {
5278 dtrace_dynvar_t *dvar;
5279 dtrace_key_t *key = tupregs;
5280 uint_t nkeys = ttop;
5282 id = DIF_INSTR_VAR(instr);
5283 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5284 id -= DIF_VAR_OTHER_UBASE;
5286 key[nkeys].dttk_value = (uint64_t)id;
5287 key[nkeys++].dttk_size = 0;
5289 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5290 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5291 key[nkeys++].dttk_size = 0;
5292 v = &vstate->dtvs_tlocals[id];
5293 } else {
5294 v = &vstate->dtvs_globals[id]->dtsv_var;
5297 dvar = dtrace_dynvar(dstate, nkeys, key,
5298 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5299 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5300 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5302 if (dvar == NULL) {
5303 regs[rd] = 0;
5304 break;
5307 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5308 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5309 } else {
5310 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5313 break;
5316 case DIF_OP_STGAA:
5317 case DIF_OP_STTAA: {
5318 dtrace_dynvar_t *dvar;
5319 dtrace_key_t *key = tupregs;
5320 uint_t nkeys = ttop;
5322 id = DIF_INSTR_VAR(instr);
5323 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5324 id -= DIF_VAR_OTHER_UBASE;
5326 key[nkeys].dttk_value = (uint64_t)id;
5327 key[nkeys++].dttk_size = 0;
5329 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5330 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5331 key[nkeys++].dttk_size = 0;
5332 v = &vstate->dtvs_tlocals[id];
5333 } else {
5334 v = &vstate->dtvs_globals[id]->dtsv_var;
5337 dvar = dtrace_dynvar(dstate, nkeys, key,
5338 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5339 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5340 regs[rd] ? DTRACE_DYNVAR_ALLOC :
5341 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5343 if (dvar == NULL)
5344 break;
5346 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5347 if (!dtrace_vcanload(
5348 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5349 mstate, vstate))
5350 break;
5352 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5353 dvar->dtdv_data, &v->dtdv_type);
5354 } else {
5355 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5358 break;
5361 case DIF_OP_ALLOCS: {
5362 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5363 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5366 * Rounding up the user allocation size could have
5367 * overflowed large, bogus allocations (like -1ULL) to
5368 * 0.
5370 if (size < regs[r1] ||
5371 !DTRACE_INSCRATCH(mstate, size)) {
5372 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5373 regs[rd] = NULL;
5374 break;
5377 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5378 mstate->dtms_scratch_ptr += size;
5379 regs[rd] = ptr;
5380 break;
5383 case DIF_OP_COPYS:
5384 if (!dtrace_canstore(regs[rd], regs[r2],
5385 mstate, vstate)) {
5386 *flags |= CPU_DTRACE_BADADDR;
5387 *illval = regs[rd];
5388 break;
5391 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5392 break;
5394 dtrace_bcopy((void *)(uintptr_t)regs[r1],
5395 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5396 break;
5398 case DIF_OP_STB:
5399 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5400 *flags |= CPU_DTRACE_BADADDR;
5401 *illval = regs[rd];
5402 break;
5404 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5405 break;
5407 case DIF_OP_STH:
5408 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5409 *flags |= CPU_DTRACE_BADADDR;
5410 *illval = regs[rd];
5411 break;
5413 if (regs[rd] & 1) {
5414 *flags |= CPU_DTRACE_BADALIGN;
5415 *illval = regs[rd];
5416 break;
5418 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5419 break;
5421 case DIF_OP_STW:
5422 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5423 *flags |= CPU_DTRACE_BADADDR;
5424 *illval = regs[rd];
5425 break;
5427 if (regs[rd] & 3) {
5428 *flags |= CPU_DTRACE_BADALIGN;
5429 *illval = regs[rd];
5430 break;
5432 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5433 break;
5435 case DIF_OP_STX:
5436 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5437 *flags |= CPU_DTRACE_BADADDR;
5438 *illval = regs[rd];
5439 break;
5441 if (regs[rd] & 7) {
5442 *flags |= CPU_DTRACE_BADALIGN;
5443 *illval = regs[rd];
5444 break;
5446 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5447 break;
5451 if (!(*flags & CPU_DTRACE_FAULT))
5452 return (rval);
5454 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5455 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5457 return (0);
5460 static void
5461 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5463 dtrace_probe_t *probe = ecb->dte_probe;
5464 dtrace_provider_t *prov = probe->dtpr_provider;
5465 char c[DTRACE_FULLNAMELEN + 80], *str;
5466 char *msg = "dtrace: breakpoint action at probe ";
5467 char *ecbmsg = " (ecb ";
5468 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5469 uintptr_t val = (uintptr_t)ecb;
5470 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5472 if (dtrace_destructive_disallow)
5473 return;
5476 * It's impossible to be taking action on the NULL probe.
5478 ASSERT(probe != NULL);
5481 * This is a poor man's (destitute man's?) sprintf(): we want to
5482 * print the provider name, module name, function name and name of
5483 * the probe, along with the hex address of the ECB with the breakpoint
5484 * action -- all of which we must place in the character buffer by
5485 * hand.
5487 while (*msg != '\0')
5488 c[i++] = *msg++;
5490 for (str = prov->dtpv_name; *str != '\0'; str++)
5491 c[i++] = *str;
5492 c[i++] = ':';
5494 for (str = probe->dtpr_mod; *str != '\0'; str++)
5495 c[i++] = *str;
5496 c[i++] = ':';
5498 for (str = probe->dtpr_func; *str != '\0'; str++)
5499 c[i++] = *str;
5500 c[i++] = ':';
5502 for (str = probe->dtpr_name; *str != '\0'; str++)
5503 c[i++] = *str;
5505 while (*ecbmsg != '\0')
5506 c[i++] = *ecbmsg++;
5508 while (shift >= 0) {
5509 mask = (uintptr_t)0xf << shift;
5511 if (val >= ((uintptr_t)1 << shift))
5512 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5513 shift -= 4;
5516 c[i++] = ')';
5517 c[i] = '\0';
5519 debug_enter(c);
5522 static void
5523 dtrace_action_panic(dtrace_ecb_t *ecb)
5525 dtrace_probe_t *probe = ecb->dte_probe;
5528 * It's impossible to be taking action on the NULL probe.
5530 ASSERT(probe != NULL);
5532 if (dtrace_destructive_disallow)
5533 return;
5535 if (dtrace_panicked != NULL)
5536 return;
5538 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5539 return;
5542 * We won the right to panic. (We want to be sure that only one
5543 * thread calls panic() from dtrace_probe(), and that panic() is
5544 * called exactly once.)
5546 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5547 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5548 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5551 static void
5552 dtrace_action_raise(uint64_t sig)
5554 if (dtrace_destructive_disallow)
5555 return;
5557 if (sig >= NSIG) {
5558 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5559 return;
5563 * raise() has a queue depth of 1 -- we ignore all subsequent
5564 * invocations of the raise() action.
5566 if (curthread->t_dtrace_sig == 0)
5567 curthread->t_dtrace_sig = (uint8_t)sig;
5569 curthread->t_sig_check = 1;
5570 aston(curthread);
5573 static void
5574 dtrace_action_stop(void)
5576 if (dtrace_destructive_disallow)
5577 return;
5579 if (!curthread->t_dtrace_stop) {
5580 curthread->t_dtrace_stop = 1;
5581 curthread->t_sig_check = 1;
5582 aston(curthread);
5586 static void
5587 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5589 hrtime_t now;
5590 volatile uint16_t *flags;
5591 cpu_t *cpu = CPU;
5593 if (dtrace_destructive_disallow)
5594 return;
5596 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5598 now = dtrace_gethrtime();
5600 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5602 * We need to advance the mark to the current time.
5604 cpu->cpu_dtrace_chillmark = now;
5605 cpu->cpu_dtrace_chilled = 0;
5609 * Now check to see if the requested chill time would take us over
5610 * the maximum amount of time allowed in the chill interval. (Or
5611 * worse, if the calculation itself induces overflow.)
5613 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5614 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5615 *flags |= CPU_DTRACE_ILLOP;
5616 return;
5619 while (dtrace_gethrtime() - now < val)
5620 continue;
5623 * Normally, we assure that the value of the variable "timestamp" does
5624 * not change within an ECB. The presence of chill() represents an
5625 * exception to this rule, however.
5627 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5628 cpu->cpu_dtrace_chilled += val;
5631 static void
5632 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5633 uint64_t *buf, uint64_t arg)
5635 int nframes = DTRACE_USTACK_NFRAMES(arg);
5636 int strsize = DTRACE_USTACK_STRSIZE(arg);
5637 uint64_t *pcs = &buf[1], *fps;
5638 char *str = (char *)&pcs[nframes];
5639 int size, offs = 0, i, j;
5640 uintptr_t old = mstate->dtms_scratch_ptr, saved;
5641 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5642 char *sym;
5645 * Should be taking a faster path if string space has not been
5646 * allocated.
5648 ASSERT(strsize != 0);
5651 * We will first allocate some temporary space for the frame pointers.
5653 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5654 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5655 (nframes * sizeof (uint64_t));
5657 if (!DTRACE_INSCRATCH(mstate, size)) {
5659 * Not enough room for our frame pointers -- need to indicate
5660 * that we ran out of scratch space.
5662 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5663 return;
5666 mstate->dtms_scratch_ptr += size;
5667 saved = mstate->dtms_scratch_ptr;
5670 * Now get a stack with both program counters and frame pointers.
5672 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5673 dtrace_getufpstack(buf, fps, nframes + 1);
5674 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5677 * If that faulted, we're cooked.
5679 if (*flags & CPU_DTRACE_FAULT)
5680 goto out;
5683 * Now we want to walk up the stack, calling the USTACK helper. For
5684 * each iteration, we restore the scratch pointer.
5686 for (i = 0; i < nframes; i++) {
5687 mstate->dtms_scratch_ptr = saved;
5689 if (offs >= strsize)
5690 break;
5692 sym = (char *)(uintptr_t)dtrace_helper(
5693 DTRACE_HELPER_ACTION_USTACK,
5694 mstate, state, pcs[i], fps[i]);
5697 * If we faulted while running the helper, we're going to
5698 * clear the fault and null out the corresponding string.
5700 if (*flags & CPU_DTRACE_FAULT) {
5701 *flags &= ~CPU_DTRACE_FAULT;
5702 str[offs++] = '\0';
5703 continue;
5706 if (sym == NULL) {
5707 str[offs++] = '\0';
5708 continue;
5711 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5714 * Now copy in the string that the helper returned to us.
5716 for (j = 0; offs + j < strsize; j++) {
5717 if ((str[offs + j] = sym[j]) == '\0')
5718 break;
5721 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5723 offs += j + 1;
5726 if (offs >= strsize) {
5728 * If we didn't have room for all of the strings, we don't
5729 * abort processing -- this needn't be a fatal error -- but we
5730 * still want to increment a counter (dts_stkstroverflows) to
5731 * allow this condition to be warned about. (If this is from
5732 * a jstack() action, it is easily tuned via jstackstrsize.)
5734 dtrace_error(&state->dts_stkstroverflows);
5737 while (offs < strsize)
5738 str[offs++] = '\0';
5740 out:
5741 mstate->dtms_scratch_ptr = old;
5745 * If you're looking for the epicenter of DTrace, you just found it. This
5746 * is the function called by the provider to fire a probe -- from which all
5747 * subsequent probe-context DTrace activity emanates.
5749 void
5750 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5751 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5753 processorid_t cpuid;
5754 dtrace_icookie_t cookie;
5755 dtrace_probe_t *probe;
5756 dtrace_mstate_t mstate;
5757 dtrace_ecb_t *ecb;
5758 dtrace_action_t *act;
5759 intptr_t offs;
5760 size_t size;
5761 int vtime, onintr;
5762 volatile uint16_t *flags;
5763 hrtime_t now;
5766 * Kick out immediately if this CPU is still being born (in which case
5767 * curthread will be set to -1) or the current thread can't allow
5768 * probes in its current context.
5770 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5771 return;
5773 cookie = dtrace_interrupt_disable();
5774 probe = dtrace_probes[id - 1];
5775 cpuid = CPU->cpu_id;
5776 onintr = CPU_ON_INTR(CPU);
5778 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5779 probe->dtpr_predcache == curthread->t_predcache) {
5781 * We have hit in the predicate cache; we know that
5782 * this predicate would evaluate to be false.
5784 dtrace_interrupt_enable(cookie);
5785 return;
5788 if (panic_quiesce) {
5790 * We don't trace anything if we're panicking.
5792 dtrace_interrupt_enable(cookie);
5793 return;
5796 now = dtrace_gethrtime();
5797 vtime = dtrace_vtime_references != 0;
5799 if (vtime && curthread->t_dtrace_start)
5800 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5802 mstate.dtms_difo = NULL;
5803 mstate.dtms_probe = probe;
5804 mstate.dtms_strtok = NULL;
5805 mstate.dtms_arg[0] = arg0;
5806 mstate.dtms_arg[1] = arg1;
5807 mstate.dtms_arg[2] = arg2;
5808 mstate.dtms_arg[3] = arg3;
5809 mstate.dtms_arg[4] = arg4;
5811 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5813 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5814 dtrace_predicate_t *pred = ecb->dte_predicate;
5815 dtrace_state_t *state = ecb->dte_state;
5816 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5817 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5818 dtrace_vstate_t *vstate = &state->dts_vstate;
5819 dtrace_provider_t *prov = probe->dtpr_provider;
5820 int committed = 0;
5821 caddr_t tomax;
5824 * A little subtlety with the following (seemingly innocuous)
5825 * declaration of the automatic 'val': by looking at the
5826 * code, you might think that it could be declared in the
5827 * action processing loop, below. (That is, it's only used in
5828 * the action processing loop.) However, it must be declared
5829 * out of that scope because in the case of DIF expression
5830 * arguments to aggregating actions, one iteration of the
5831 * action loop will use the last iteration's value.
5833 #ifdef lint
5834 uint64_t val = 0;
5835 #else
5836 uint64_t val;
5837 #endif
5839 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5840 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
5841 *flags &= ~CPU_DTRACE_ERROR;
5843 if (prov == dtrace_provider) {
5845 * If dtrace itself is the provider of this probe,
5846 * we're only going to continue processing the ECB if
5847 * arg0 (the dtrace_state_t) is equal to the ECB's
5848 * creating state. (This prevents disjoint consumers
5849 * from seeing one another's metaprobes.)
5851 if (arg0 != (uint64_t)(uintptr_t)state)
5852 continue;
5855 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5857 * We're not currently active. If our provider isn't
5858 * the dtrace pseudo provider, we're not interested.
5860 if (prov != dtrace_provider)
5861 continue;
5864 * Now we must further check if we are in the BEGIN
5865 * probe. If we are, we will only continue processing
5866 * if we're still in WARMUP -- if one BEGIN enabling
5867 * has invoked the exit() action, we don't want to
5868 * evaluate subsequent BEGIN enablings.
5870 if (probe->dtpr_id == dtrace_probeid_begin &&
5871 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5872 ASSERT(state->dts_activity ==
5873 DTRACE_ACTIVITY_DRAINING);
5874 continue;
5878 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
5879 continue;
5881 if (now - state->dts_alive > dtrace_deadman_timeout) {
5883 * We seem to be dead. Unless we (a) have kernel
5884 * destructive permissions (b) have expicitly enabled
5885 * destructive actions and (c) destructive actions have
5886 * not been disabled, we're going to transition into
5887 * the KILLED state, from which no further processing
5888 * on this state will be performed.
5890 if (!dtrace_priv_kernel_destructive(state) ||
5891 !state->dts_cred.dcr_destructive ||
5892 dtrace_destructive_disallow) {
5893 void *activity = &state->dts_activity;
5894 dtrace_activity_t current;
5896 do {
5897 current = state->dts_activity;
5898 } while (dtrace_cas32(activity, current,
5899 DTRACE_ACTIVITY_KILLED) != current);
5901 continue;
5905 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5906 ecb->dte_alignment, state, &mstate)) < 0)
5907 continue;
5909 tomax = buf->dtb_tomax;
5910 ASSERT(tomax != NULL);
5912 if (ecb->dte_size != 0)
5913 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5915 mstate.dtms_epid = ecb->dte_epid;
5916 mstate.dtms_present |= DTRACE_MSTATE_EPID;
5918 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5919 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
5921 if (pred != NULL) {
5922 dtrace_difo_t *dp = pred->dtp_difo;
5923 int rval;
5925 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5927 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5928 dtrace_cacheid_t cid = probe->dtpr_predcache;
5930 if (cid != DTRACE_CACHEIDNONE && !onintr) {
5932 * Update the predicate cache...
5934 ASSERT(cid == pred->dtp_cacheid);
5935 curthread->t_predcache = cid;
5938 continue;
5942 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5943 act != NULL; act = act->dta_next) {
5944 size_t valoffs;
5945 dtrace_difo_t *dp;
5946 dtrace_recdesc_t *rec = &act->dta_rec;
5948 size = rec->dtrd_size;
5949 valoffs = offs + rec->dtrd_offset;
5951 if (DTRACEACT_ISAGG(act->dta_kind)) {
5952 uint64_t v = 0xbad;
5953 dtrace_aggregation_t *agg;
5955 agg = (dtrace_aggregation_t *)act;
5957 if ((dp = act->dta_difo) != NULL)
5958 v = dtrace_dif_emulate(dp,
5959 &mstate, vstate, state);
5961 if (*flags & CPU_DTRACE_ERROR)
5962 continue;
5965 * Note that we always pass the expression
5966 * value from the previous iteration of the
5967 * action loop. This value will only be used
5968 * if there is an expression argument to the
5969 * aggregating action, denoted by the
5970 * dtag_hasarg field.
5972 dtrace_aggregate(agg, buf,
5973 offs, aggbuf, v, val);
5974 continue;
5977 switch (act->dta_kind) {
5978 case DTRACEACT_STOP:
5979 if (dtrace_priv_proc_destructive(state,
5980 &mstate))
5981 dtrace_action_stop();
5982 continue;
5984 case DTRACEACT_BREAKPOINT:
5985 if (dtrace_priv_kernel_destructive(state))
5986 dtrace_action_breakpoint(ecb);
5987 continue;
5989 case DTRACEACT_PANIC:
5990 if (dtrace_priv_kernel_destructive(state))
5991 dtrace_action_panic(ecb);
5992 continue;
5994 case DTRACEACT_STACK:
5995 if (!dtrace_priv_kernel(state))
5996 continue;
5998 dtrace_getpcstack((pc_t *)(tomax + valoffs),
5999 size / sizeof (pc_t), probe->dtpr_aframes,
6000 DTRACE_ANCHORED(probe) ? NULL :
6001 (uint32_t *)arg0);
6003 continue;
6005 case DTRACEACT_JSTACK:
6006 case DTRACEACT_USTACK:
6007 if (!dtrace_priv_proc(state, &mstate))
6008 continue;
6011 * See comment in DIF_VAR_PID.
6013 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6014 CPU_ON_INTR(CPU)) {
6015 int depth = DTRACE_USTACK_NFRAMES(
6016 rec->dtrd_arg) + 1;
6018 dtrace_bzero((void *)(tomax + valoffs),
6019 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6020 + depth * sizeof (uint64_t));
6022 continue;
6025 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6026 curproc->p_dtrace_helpers != NULL) {
6028 * This is the slow path -- we have
6029 * allocated string space, and we're
6030 * getting the stack of a process that
6031 * has helpers. Call into a separate
6032 * routine to perform this processing.
6034 dtrace_action_ustack(&mstate, state,
6035 (uint64_t *)(tomax + valoffs),
6036 rec->dtrd_arg);
6037 continue;
6040 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6041 dtrace_getupcstack((uint64_t *)
6042 (tomax + valoffs),
6043 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6044 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6045 continue;
6047 default:
6048 break;
6051 dp = act->dta_difo;
6052 ASSERT(dp != NULL);
6054 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6056 if (*flags & CPU_DTRACE_ERROR)
6057 continue;
6059 switch (act->dta_kind) {
6060 case DTRACEACT_SPECULATE:
6061 ASSERT(buf == &state->dts_buffer[cpuid]);
6062 buf = dtrace_speculation_buffer(state,
6063 cpuid, val);
6065 if (buf == NULL) {
6066 *flags |= CPU_DTRACE_DROP;
6067 continue;
6070 offs = dtrace_buffer_reserve(buf,
6071 ecb->dte_needed, ecb->dte_alignment,
6072 state, NULL);
6074 if (offs < 0) {
6075 *flags |= CPU_DTRACE_DROP;
6076 continue;
6079 tomax = buf->dtb_tomax;
6080 ASSERT(tomax != NULL);
6082 if (ecb->dte_size != 0)
6083 DTRACE_STORE(uint32_t, tomax, offs,
6084 ecb->dte_epid);
6085 continue;
6087 case DTRACEACT_CHILL:
6088 if (dtrace_priv_kernel_destructive(state))
6089 dtrace_action_chill(&mstate, val);
6090 continue;
6092 case DTRACEACT_RAISE:
6093 if (dtrace_priv_proc_destructive(state,
6094 &mstate))
6095 dtrace_action_raise(val);
6096 continue;
6098 case DTRACEACT_COMMIT:
6099 ASSERT(!committed);
6102 * We need to commit our buffer state.
6104 if (ecb->dte_size)
6105 buf->dtb_offset = offs + ecb->dte_size;
6106 buf = &state->dts_buffer[cpuid];
6107 dtrace_speculation_commit(state, cpuid, val);
6108 committed = 1;
6109 continue;
6111 case DTRACEACT_DISCARD:
6112 dtrace_speculation_discard(state, cpuid, val);
6113 continue;
6115 case DTRACEACT_DIFEXPR:
6116 case DTRACEACT_LIBACT:
6117 case DTRACEACT_PRINTF:
6118 case DTRACEACT_PRINTA:
6119 case DTRACEACT_SYSTEM:
6120 case DTRACEACT_FREOPEN:
6121 break;
6123 case DTRACEACT_SYM:
6124 case DTRACEACT_MOD:
6125 if (!dtrace_priv_kernel(state))
6126 continue;
6127 break;
6129 case DTRACEACT_USYM:
6130 case DTRACEACT_UMOD:
6131 case DTRACEACT_UADDR: {
6132 struct pid *pid = curthread->t_procp->p_pidp;
6134 if (!dtrace_priv_proc(state, &mstate))
6135 continue;
6137 DTRACE_STORE(uint64_t, tomax,
6138 valoffs, (uint64_t)pid->pid_id);
6139 DTRACE_STORE(uint64_t, tomax,
6140 valoffs + sizeof (uint64_t), val);
6142 continue;
6145 case DTRACEACT_EXIT: {
6147 * For the exit action, we are going to attempt
6148 * to atomically set our activity to be
6149 * draining. If this fails (either because
6150 * another CPU has beat us to the exit action,
6151 * or because our current activity is something
6152 * other than ACTIVE or WARMUP), we will
6153 * continue. This assures that the exit action
6154 * can be successfully recorded at most once
6155 * when we're in the ACTIVE state. If we're
6156 * encountering the exit() action while in
6157 * COOLDOWN, however, we want to honor the new
6158 * status code. (We know that we're the only
6159 * thread in COOLDOWN, so there is no race.)
6161 void *activity = &state->dts_activity;
6162 dtrace_activity_t current = state->dts_activity;
6164 if (current == DTRACE_ACTIVITY_COOLDOWN)
6165 break;
6167 if (current != DTRACE_ACTIVITY_WARMUP)
6168 current = DTRACE_ACTIVITY_ACTIVE;
6170 if (dtrace_cas32(activity, current,
6171 DTRACE_ACTIVITY_DRAINING) != current) {
6172 *flags |= CPU_DTRACE_DROP;
6173 continue;
6176 break;
6179 default:
6180 ASSERT(0);
6183 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6184 uintptr_t end = valoffs + size;
6186 if (!dtrace_vcanload((void *)(uintptr_t)val,
6187 &dp->dtdo_rtype, &mstate, vstate))
6188 continue;
6191 * If this is a string, we're going to only
6192 * load until we find the zero byte -- after
6193 * which we'll store zero bytes.
6195 if (dp->dtdo_rtype.dtdt_kind ==
6196 DIF_TYPE_STRING) {
6197 char c = '\0' + 1;
6198 int intuple = act->dta_intuple;
6199 size_t s;
6201 for (s = 0; s < size; s++) {
6202 if (c != '\0')
6203 c = dtrace_load8(val++);
6205 DTRACE_STORE(uint8_t, tomax,
6206 valoffs++, c);
6208 if (c == '\0' && intuple)
6209 break;
6212 continue;
6215 while (valoffs < end) {
6216 DTRACE_STORE(uint8_t, tomax, valoffs++,
6217 dtrace_load8(val++));
6220 continue;
6223 switch (size) {
6224 case 0:
6225 break;
6227 case sizeof (uint8_t):
6228 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6229 break;
6230 case sizeof (uint16_t):
6231 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6232 break;
6233 case sizeof (uint32_t):
6234 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6235 break;
6236 case sizeof (uint64_t):
6237 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6238 break;
6239 default:
6241 * Any other size should have been returned by
6242 * reference, not by value.
6244 ASSERT(0);
6245 break;
6249 if (*flags & CPU_DTRACE_DROP)
6250 continue;
6252 if (*flags & CPU_DTRACE_FAULT) {
6253 int ndx;
6254 dtrace_action_t *err;
6256 buf->dtb_errors++;
6258 if (probe->dtpr_id == dtrace_probeid_error) {
6260 * There's nothing we can do -- we had an
6261 * error on the error probe. We bump an
6262 * error counter to at least indicate that
6263 * this condition happened.
6265 dtrace_error(&state->dts_dblerrors);
6266 continue;
6269 if (vtime) {
6271 * Before recursing on dtrace_probe(), we
6272 * need to explicitly clear out our start
6273 * time to prevent it from being accumulated
6274 * into t_dtrace_vtime.
6276 curthread->t_dtrace_start = 0;
6280 * Iterate over the actions to figure out which action
6281 * we were processing when we experienced the error.
6282 * Note that act points _past_ the faulting action; if
6283 * act is ecb->dte_action, the fault was in the
6284 * predicate, if it's ecb->dte_action->dta_next it's
6285 * in action #1, and so on.
6287 for (err = ecb->dte_action, ndx = 0;
6288 err != act; err = err->dta_next, ndx++)
6289 continue;
6291 dtrace_probe_error(state, ecb->dte_epid, ndx,
6292 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6293 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6294 cpu_core[cpuid].cpuc_dtrace_illval);
6296 continue;
6299 if (!committed)
6300 buf->dtb_offset = offs + ecb->dte_size;
6303 if (vtime)
6304 curthread->t_dtrace_start = dtrace_gethrtime();
6306 dtrace_interrupt_enable(cookie);
6310 * DTrace Probe Hashing Functions
6312 * The functions in this section (and indeed, the functions in remaining
6313 * sections) are not _called_ from probe context. (Any exceptions to this are
6314 * marked with a "Note:".) Rather, they are called from elsewhere in the
6315 * DTrace framework to look-up probes in, add probes to and remove probes from
6316 * the DTrace probe hashes. (Each probe is hashed by each element of the
6317 * probe tuple -- allowing for fast lookups, regardless of what was
6318 * specified.)
6320 static uint_t
6321 dtrace_hash_str(char *p)
6323 unsigned int g;
6324 uint_t hval = 0;
6326 while (*p) {
6327 hval = (hval << 4) + *p++;
6328 if ((g = (hval & 0xf0000000)) != 0)
6329 hval ^= g >> 24;
6330 hval &= ~g;
6332 return (hval);
6335 static dtrace_hash_t *
6336 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6338 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6340 hash->dth_stroffs = stroffs;
6341 hash->dth_nextoffs = nextoffs;
6342 hash->dth_prevoffs = prevoffs;
6344 hash->dth_size = 1;
6345 hash->dth_mask = hash->dth_size - 1;
6347 hash->dth_tab = kmem_zalloc(hash->dth_size *
6348 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6350 return (hash);
6353 static void
6354 dtrace_hash_destroy(dtrace_hash_t *hash)
6356 #ifdef DEBUG
6357 int i;
6359 for (i = 0; i < hash->dth_size; i++)
6360 ASSERT(hash->dth_tab[i] == NULL);
6361 #endif
6363 kmem_free(hash->dth_tab,
6364 hash->dth_size * sizeof (dtrace_hashbucket_t *));
6365 kmem_free(hash, sizeof (dtrace_hash_t));
6368 static void
6369 dtrace_hash_resize(dtrace_hash_t *hash)
6371 int size = hash->dth_size, i, ndx;
6372 int new_size = hash->dth_size << 1;
6373 int new_mask = new_size - 1;
6374 dtrace_hashbucket_t **new_tab, *bucket, *next;
6376 ASSERT((new_size & new_mask) == 0);
6378 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6380 for (i = 0; i < size; i++) {
6381 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6382 dtrace_probe_t *probe = bucket->dthb_chain;
6384 ASSERT(probe != NULL);
6385 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6387 next = bucket->dthb_next;
6388 bucket->dthb_next = new_tab[ndx];
6389 new_tab[ndx] = bucket;
6393 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6394 hash->dth_tab = new_tab;
6395 hash->dth_size = new_size;
6396 hash->dth_mask = new_mask;
6399 static void
6400 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6402 int hashval = DTRACE_HASHSTR(hash, new);
6403 int ndx = hashval & hash->dth_mask;
6404 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6405 dtrace_probe_t **nextp, **prevp;
6407 for (; bucket != NULL; bucket = bucket->dthb_next) {
6408 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6409 goto add;
6412 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6413 dtrace_hash_resize(hash);
6414 dtrace_hash_add(hash, new);
6415 return;
6418 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6419 bucket->dthb_next = hash->dth_tab[ndx];
6420 hash->dth_tab[ndx] = bucket;
6421 hash->dth_nbuckets++;
6423 add:
6424 nextp = DTRACE_HASHNEXT(hash, new);
6425 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6426 *nextp = bucket->dthb_chain;
6428 if (bucket->dthb_chain != NULL) {
6429 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6430 ASSERT(*prevp == NULL);
6431 *prevp = new;
6434 bucket->dthb_chain = new;
6435 bucket->dthb_len++;
6438 static dtrace_probe_t *
6439 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6441 int hashval = DTRACE_HASHSTR(hash, template);
6442 int ndx = hashval & hash->dth_mask;
6443 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6445 for (; bucket != NULL; bucket = bucket->dthb_next) {
6446 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6447 return (bucket->dthb_chain);
6450 return (NULL);
6453 static int
6454 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6456 int hashval = DTRACE_HASHSTR(hash, template);
6457 int ndx = hashval & hash->dth_mask;
6458 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6460 for (; bucket != NULL; bucket = bucket->dthb_next) {
6461 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6462 return (bucket->dthb_len);
6465 return (NULL);
6468 static void
6469 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6471 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6472 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6474 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6475 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6478 * Find the bucket that we're removing this probe from.
6480 for (; bucket != NULL; bucket = bucket->dthb_next) {
6481 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6482 break;
6485 ASSERT(bucket != NULL);
6487 if (*prevp == NULL) {
6488 if (*nextp == NULL) {
6490 * The removed probe was the only probe on this
6491 * bucket; we need to remove the bucket.
6493 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6495 ASSERT(bucket->dthb_chain == probe);
6496 ASSERT(b != NULL);
6498 if (b == bucket) {
6499 hash->dth_tab[ndx] = bucket->dthb_next;
6500 } else {
6501 while (b->dthb_next != bucket)
6502 b = b->dthb_next;
6503 b->dthb_next = bucket->dthb_next;
6506 ASSERT(hash->dth_nbuckets > 0);
6507 hash->dth_nbuckets--;
6508 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6509 return;
6512 bucket->dthb_chain = *nextp;
6513 } else {
6514 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6517 if (*nextp != NULL)
6518 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6522 * DTrace Utility Functions
6524 * These are random utility functions that are _not_ called from probe context.
6526 static int
6527 dtrace_badattr(const dtrace_attribute_t *a)
6529 return (a->dtat_name > DTRACE_STABILITY_MAX ||
6530 a->dtat_data > DTRACE_STABILITY_MAX ||
6531 a->dtat_class > DTRACE_CLASS_MAX);
6535 * Return a duplicate copy of a string. If the specified string is NULL,
6536 * this function returns a zero-length string.
6538 static char *
6539 dtrace_strdup(const char *str)
6541 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6543 if (str != NULL)
6544 (void) strcpy(new, str);
6546 return (new);
6549 #define DTRACE_ISALPHA(c) \
6550 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6552 static int
6553 dtrace_badname(const char *s)
6555 char c;
6557 if (s == NULL || (c = *s++) == '\0')
6558 return (0);
6560 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6561 return (1);
6563 while ((c = *s++) != '\0') {
6564 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6565 c != '-' && c != '_' && c != '.' && c != '`')
6566 return (1);
6569 return (0);
6572 static void
6573 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6575 uint32_t priv;
6577 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6579 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6581 priv = DTRACE_PRIV_ALL;
6582 } else {
6583 *uidp = crgetuid(cr);
6584 *zoneidp = crgetzoneid(cr);
6586 priv = 0;
6587 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6588 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6589 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6590 priv |= DTRACE_PRIV_USER;
6591 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6592 priv |= DTRACE_PRIV_PROC;
6593 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6594 priv |= DTRACE_PRIV_OWNER;
6595 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6596 priv |= DTRACE_PRIV_ZONEOWNER;
6599 *privp = priv;
6602 #ifdef DTRACE_ERRDEBUG
6603 static void
6604 dtrace_errdebug(const char *str)
6606 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6607 int occupied = 0;
6609 mutex_enter(&dtrace_errlock);
6610 dtrace_errlast = str;
6611 dtrace_errthread = curthread;
6613 while (occupied++ < DTRACE_ERRHASHSZ) {
6614 if (dtrace_errhash[hval].dter_msg == str) {
6615 dtrace_errhash[hval].dter_count++;
6616 goto out;
6619 if (dtrace_errhash[hval].dter_msg != NULL) {
6620 hval = (hval + 1) % DTRACE_ERRHASHSZ;
6621 continue;
6624 dtrace_errhash[hval].dter_msg = str;
6625 dtrace_errhash[hval].dter_count = 1;
6626 goto out;
6629 panic("dtrace: undersized error hash");
6630 out:
6631 mutex_exit(&dtrace_errlock);
6633 #endif
6636 * DTrace Matching Functions
6638 * These functions are used to match groups of probes, given some elements of
6639 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6641 static int
6642 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6643 zoneid_t zoneid)
6645 if (priv != DTRACE_PRIV_ALL) {
6646 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6647 uint32_t match = priv & ppriv;
6650 * No PRIV_DTRACE_* privileges...
6652 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6653 DTRACE_PRIV_KERNEL)) == 0)
6654 return (0);
6657 * No matching bits, but there were bits to match...
6659 if (match == 0 && ppriv != 0)
6660 return (0);
6663 * Need to have permissions to the process, but don't...
6665 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6666 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6667 return (0);
6671 * Need to be in the same zone unless we possess the
6672 * privilege to examine all zones.
6674 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6675 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6676 return (0);
6680 return (1);
6684 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6685 * consists of input pattern strings and an ops-vector to evaluate them.
6686 * This function returns >0 for match, 0 for no match, and <0 for error.
6688 static int
6689 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6690 uint32_t priv, uid_t uid, zoneid_t zoneid)
6692 dtrace_provider_t *pvp = prp->dtpr_provider;
6693 int rv;
6695 if (pvp->dtpv_defunct)
6696 return (0);
6698 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6699 return (rv);
6701 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6702 return (rv);
6704 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6705 return (rv);
6707 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6708 return (rv);
6710 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6711 return (0);
6713 return (rv);
6717 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6718 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
6719 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6720 * In addition, all of the recursion cases except for '*' matching have been
6721 * unwound. For '*', we still implement recursive evaluation, but a depth
6722 * counter is maintained and matching is aborted if we recurse too deep.
6723 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6725 static int
6726 dtrace_match_glob(const char *s, const char *p, int depth)
6728 const char *olds;
6729 char s1, c;
6730 int gs;
6732 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6733 return (-1);
6735 if (s == NULL)
6736 s = ""; /* treat NULL as empty string */
6738 top:
6739 olds = s;
6740 s1 = *s++;
6742 if (p == NULL)
6743 return (0);
6745 if ((c = *p++) == '\0')
6746 return (s1 == '\0');
6748 switch (c) {
6749 case '[': {
6750 int ok = 0, notflag = 0;
6751 char lc = '\0';
6753 if (s1 == '\0')
6754 return (0);
6756 if (*p == '!') {
6757 notflag = 1;
6758 p++;
6761 if ((c = *p++) == '\0')
6762 return (0);
6764 do {
6765 if (c == '-' && lc != '\0' && *p != ']') {
6766 if ((c = *p++) == '\0')
6767 return (0);
6768 if (c == '\\' && (c = *p++) == '\0')
6769 return (0);
6771 if (notflag) {
6772 if (s1 < lc || s1 > c)
6773 ok++;
6774 else
6775 return (0);
6776 } else if (lc <= s1 && s1 <= c)
6777 ok++;
6779 } else if (c == '\\' && (c = *p++) == '\0')
6780 return (0);
6782 lc = c; /* save left-hand 'c' for next iteration */
6784 if (notflag) {
6785 if (s1 != c)
6786 ok++;
6787 else
6788 return (0);
6789 } else if (s1 == c)
6790 ok++;
6792 if ((c = *p++) == '\0')
6793 return (0);
6795 } while (c != ']');
6797 if (ok)
6798 goto top;
6800 return (0);
6803 case '\\':
6804 if ((c = *p++) == '\0')
6805 return (0);
6806 /*FALLTHRU*/
6808 default:
6809 if (c != s1)
6810 return (0);
6811 /*FALLTHRU*/
6813 case '?':
6814 if (s1 != '\0')
6815 goto top;
6816 return (0);
6818 case '*':
6819 while (*p == '*')
6820 p++; /* consecutive *'s are identical to a single one */
6822 if (*p == '\0')
6823 return (1);
6825 for (s = olds; *s != '\0'; s++) {
6826 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6827 return (gs);
6830 return (0);
6834 /*ARGSUSED*/
6835 static int
6836 dtrace_match_string(const char *s, const char *p, int depth)
6838 return (s != NULL && strcmp(s, p) == 0);
6841 /*ARGSUSED*/
6842 static int
6843 dtrace_match_nul(const char *s, const char *p, int depth)
6845 return (1); /* always match the empty pattern */
6848 /*ARGSUSED*/
6849 static int
6850 dtrace_match_nonzero(const char *s, const char *p, int depth)
6852 return (s != NULL && s[0] != '\0');
6855 static int
6856 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6857 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6859 dtrace_probe_t template, *probe;
6860 dtrace_hash_t *hash = NULL;
6861 int len, rc, best = INT_MAX, nmatched = 0;
6862 dtrace_id_t i;
6864 ASSERT(MUTEX_HELD(&dtrace_lock));
6867 * If the probe ID is specified in the key, just lookup by ID and
6868 * invoke the match callback once if a matching probe is found.
6870 if (pkp->dtpk_id != DTRACE_IDNONE) {
6871 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6872 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6873 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
6874 return (DTRACE_MATCH_FAIL);
6875 nmatched++;
6877 return (nmatched);
6880 template.dtpr_mod = (char *)pkp->dtpk_mod;
6881 template.dtpr_func = (char *)pkp->dtpk_func;
6882 template.dtpr_name = (char *)pkp->dtpk_name;
6885 * We want to find the most distinct of the module name, function
6886 * name, and name. So for each one that is not a glob pattern or
6887 * empty string, we perform a lookup in the corresponding hash and
6888 * use the hash table with the fewest collisions to do our search.
6890 if (pkp->dtpk_mmatch == &dtrace_match_string &&
6891 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6892 best = len;
6893 hash = dtrace_bymod;
6896 if (pkp->dtpk_fmatch == &dtrace_match_string &&
6897 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6898 best = len;
6899 hash = dtrace_byfunc;
6902 if (pkp->dtpk_nmatch == &dtrace_match_string &&
6903 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6904 best = len;
6905 hash = dtrace_byname;
6909 * If we did not select a hash table, iterate over every probe and
6910 * invoke our callback for each one that matches our input probe key.
6912 if (hash == NULL) {
6913 for (i = 0; i < dtrace_nprobes; i++) {
6914 if ((probe = dtrace_probes[i]) == NULL ||
6915 dtrace_match_probe(probe, pkp, priv, uid,
6916 zoneid) <= 0)
6917 continue;
6919 nmatched++;
6921 if ((rc = (*matched)(probe, arg)) !=
6922 DTRACE_MATCH_NEXT) {
6923 if (rc == DTRACE_MATCH_FAIL)
6924 return (DTRACE_MATCH_FAIL);
6925 break;
6929 return (nmatched);
6933 * If we selected a hash table, iterate over each probe of the same key
6934 * name and invoke the callback for every probe that matches the other
6935 * attributes of our input probe key.
6937 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6938 probe = *(DTRACE_HASHNEXT(hash, probe))) {
6940 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6941 continue;
6943 nmatched++;
6945 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
6946 if (rc == DTRACE_MATCH_FAIL)
6947 return (DTRACE_MATCH_FAIL);
6948 break;
6952 return (nmatched);
6956 * Return the function pointer dtrace_probecmp() should use to compare the
6957 * specified pattern with a string. For NULL or empty patterns, we select
6958 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
6959 * For non-empty non-glob strings, we use dtrace_match_string().
6961 static dtrace_probekey_f *
6962 dtrace_probekey_func(const char *p)
6964 char c;
6966 if (p == NULL || *p == '\0')
6967 return (&dtrace_match_nul);
6969 while ((c = *p++) != '\0') {
6970 if (c == '[' || c == '?' || c == '*' || c == '\\')
6971 return (&dtrace_match_glob);
6974 return (&dtrace_match_string);
6978 * Build a probe comparison key for use with dtrace_match_probe() from the
6979 * given probe description. By convention, a null key only matches anchored
6980 * probes: if each field is the empty string, reset dtpk_fmatch to
6981 * dtrace_match_nonzero().
6983 static void
6984 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6986 pkp->dtpk_prov = pdp->dtpd_provider;
6987 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6989 pkp->dtpk_mod = pdp->dtpd_mod;
6990 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6992 pkp->dtpk_func = pdp->dtpd_func;
6993 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6995 pkp->dtpk_name = pdp->dtpd_name;
6996 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6998 pkp->dtpk_id = pdp->dtpd_id;
7000 if (pkp->dtpk_id == DTRACE_IDNONE &&
7001 pkp->dtpk_pmatch == &dtrace_match_nul &&
7002 pkp->dtpk_mmatch == &dtrace_match_nul &&
7003 pkp->dtpk_fmatch == &dtrace_match_nul &&
7004 pkp->dtpk_nmatch == &dtrace_match_nul)
7005 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7009 * DTrace Provider-to-Framework API Functions
7011 * These functions implement much of the Provider-to-Framework API, as
7012 * described in <sys/dtrace.h>. The parts of the API not in this section are
7013 * the functions in the API for probe management (found below), and
7014 * dtrace_probe() itself (found above).
7018 * Register the calling provider with the DTrace framework. This should
7019 * generally be called by DTrace providers in their attach(9E) entry point.
7022 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7023 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7025 dtrace_provider_t *provider;
7027 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7028 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7029 "arguments", name ? name : "<NULL>");
7030 return (EINVAL);
7033 if (name[0] == '\0' || dtrace_badname(name)) {
7034 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7035 "provider name", name);
7036 return (EINVAL);
7039 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7040 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7041 pops->dtps_destroy == NULL ||
7042 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7043 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7044 "provider ops", name);
7045 return (EINVAL);
7048 if (dtrace_badattr(&pap->dtpa_provider) ||
7049 dtrace_badattr(&pap->dtpa_mod) ||
7050 dtrace_badattr(&pap->dtpa_func) ||
7051 dtrace_badattr(&pap->dtpa_name) ||
7052 dtrace_badattr(&pap->dtpa_args)) {
7053 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7054 "provider attributes", name);
7055 return (EINVAL);
7058 if (priv & ~DTRACE_PRIV_ALL) {
7059 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7060 "privilege attributes", name);
7061 return (EINVAL);
7064 if ((priv & DTRACE_PRIV_KERNEL) &&
7065 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7066 pops->dtps_mode == NULL) {
7067 cmn_err(CE_WARN, "failed to register provider '%s': need "
7068 "dtps_mode() op for given privilege attributes", name);
7069 return (EINVAL);
7072 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7073 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7074 (void) strcpy(provider->dtpv_name, name);
7076 provider->dtpv_attr = *pap;
7077 provider->dtpv_priv.dtpp_flags = priv;
7078 if (cr != NULL) {
7079 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7080 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7082 provider->dtpv_pops = *pops;
7084 if (pops->dtps_provide == NULL) {
7085 ASSERT(pops->dtps_provide_module != NULL);
7086 provider->dtpv_pops.dtps_provide =
7087 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7090 if (pops->dtps_provide_module == NULL) {
7091 ASSERT(pops->dtps_provide != NULL);
7092 provider->dtpv_pops.dtps_provide_module =
7093 (void (*)(void *, struct modctl *))dtrace_nullop;
7096 if (pops->dtps_suspend == NULL) {
7097 ASSERT(pops->dtps_resume == NULL);
7098 provider->dtpv_pops.dtps_suspend =
7099 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7100 provider->dtpv_pops.dtps_resume =
7101 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7104 provider->dtpv_arg = arg;
7105 *idp = (dtrace_provider_id_t)provider;
7107 if (pops == &dtrace_provider_ops) {
7108 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7109 ASSERT(MUTEX_HELD(&dtrace_lock));
7110 ASSERT(dtrace_anon.dta_enabling == NULL);
7113 * We make sure that the DTrace provider is at the head of
7114 * the provider chain.
7116 provider->dtpv_next = dtrace_provider;
7117 dtrace_provider = provider;
7118 return (0);
7121 mutex_enter(&dtrace_provider_lock);
7122 mutex_enter(&dtrace_lock);
7125 * If there is at least one provider registered, we'll add this
7126 * provider after the first provider.
7128 if (dtrace_provider != NULL) {
7129 provider->dtpv_next = dtrace_provider->dtpv_next;
7130 dtrace_provider->dtpv_next = provider;
7131 } else {
7132 dtrace_provider = provider;
7135 if (dtrace_retained != NULL) {
7136 dtrace_enabling_provide(provider);
7139 * Now we need to call dtrace_enabling_matchall() -- which
7140 * will acquire cpu_lock and dtrace_lock. We therefore need
7141 * to drop all of our locks before calling into it...
7143 mutex_exit(&dtrace_lock);
7144 mutex_exit(&dtrace_provider_lock);
7145 dtrace_enabling_matchall();
7147 return (0);
7150 mutex_exit(&dtrace_lock);
7151 mutex_exit(&dtrace_provider_lock);
7153 return (0);
7157 * Unregister the specified provider from the DTrace framework. This should
7158 * generally be called by DTrace providers in their detach(9E) entry point.
7161 dtrace_unregister(dtrace_provider_id_t id)
7163 dtrace_provider_t *old = (dtrace_provider_t *)id;
7164 dtrace_provider_t *prev = NULL;
7165 int i, self = 0, noreap = 0;
7166 dtrace_probe_t *probe, *first = NULL;
7168 if (old->dtpv_pops.dtps_enable ==
7169 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7171 * If DTrace itself is the provider, we're called with locks
7172 * already held.
7174 ASSERT(old == dtrace_provider);
7175 ASSERT(dtrace_devi != NULL);
7176 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7177 ASSERT(MUTEX_HELD(&dtrace_lock));
7178 self = 1;
7180 if (dtrace_provider->dtpv_next != NULL) {
7182 * There's another provider here; return failure.
7184 return (EBUSY);
7186 } else {
7187 mutex_enter(&dtrace_provider_lock);
7188 mutex_enter(&mod_lock);
7189 mutex_enter(&dtrace_lock);
7193 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7194 * probes, we refuse to let providers slither away, unless this
7195 * provider has already been explicitly invalidated.
7197 if (!old->dtpv_defunct &&
7198 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7199 dtrace_anon.dta_state->dts_necbs > 0))) {
7200 if (!self) {
7201 mutex_exit(&dtrace_lock);
7202 mutex_exit(&mod_lock);
7203 mutex_exit(&dtrace_provider_lock);
7205 return (EBUSY);
7209 * Attempt to destroy the probes associated with this provider.
7211 for (i = 0; i < dtrace_nprobes; i++) {
7212 if ((probe = dtrace_probes[i]) == NULL)
7213 continue;
7215 if (probe->dtpr_provider != old)
7216 continue;
7218 if (probe->dtpr_ecb == NULL)
7219 continue;
7222 * If we are trying to unregister a defunct provider, and the
7223 * provider was made defunct within the interval dictated by
7224 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7225 * attempt to reap our enablings. To denote that the provider
7226 * should reattempt to unregister itself at some point in the
7227 * future, we will return a differentiable error code (EAGAIN
7228 * instead of EBUSY) in this case.
7230 if (dtrace_gethrtime() - old->dtpv_defunct >
7231 dtrace_unregister_defunct_reap)
7232 noreap = 1;
7234 if (!self) {
7235 mutex_exit(&dtrace_lock);
7236 mutex_exit(&mod_lock);
7237 mutex_exit(&dtrace_provider_lock);
7240 if (noreap)
7241 return (EBUSY);
7243 (void) taskq_dispatch(dtrace_taskq,
7244 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7246 return (EAGAIN);
7250 * All of the probes for this provider are disabled; we can safely
7251 * remove all of them from their hash chains and from the probe array.
7253 for (i = 0; i < dtrace_nprobes; i++) {
7254 if ((probe = dtrace_probes[i]) == NULL)
7255 continue;
7257 if (probe->dtpr_provider != old)
7258 continue;
7260 dtrace_probes[i] = NULL;
7262 dtrace_hash_remove(dtrace_bymod, probe);
7263 dtrace_hash_remove(dtrace_byfunc, probe);
7264 dtrace_hash_remove(dtrace_byname, probe);
7266 if (first == NULL) {
7267 first = probe;
7268 probe->dtpr_nextmod = NULL;
7269 } else {
7270 probe->dtpr_nextmod = first;
7271 first = probe;
7276 * The provider's probes have been removed from the hash chains and
7277 * from the probe array. Now issue a dtrace_sync() to be sure that
7278 * everyone has cleared out from any probe array processing.
7280 dtrace_sync();
7282 for (probe = first; probe != NULL; probe = first) {
7283 first = probe->dtpr_nextmod;
7285 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7286 probe->dtpr_arg);
7287 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7288 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7289 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7290 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7291 kmem_free(probe, sizeof (dtrace_probe_t));
7294 if ((prev = dtrace_provider) == old) {
7295 ASSERT(self || dtrace_devi == NULL);
7296 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7297 dtrace_provider = old->dtpv_next;
7298 } else {
7299 while (prev != NULL && prev->dtpv_next != old)
7300 prev = prev->dtpv_next;
7302 if (prev == NULL) {
7303 panic("attempt to unregister non-existent "
7304 "dtrace provider %p\n", (void *)id);
7307 prev->dtpv_next = old->dtpv_next;
7310 if (!self) {
7311 mutex_exit(&dtrace_lock);
7312 mutex_exit(&mod_lock);
7313 mutex_exit(&dtrace_provider_lock);
7316 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7317 kmem_free(old, sizeof (dtrace_provider_t));
7319 return (0);
7323 * Invalidate the specified provider. All subsequent probe lookups for the
7324 * specified provider will fail, but its probes will not be removed.
7326 void
7327 dtrace_invalidate(dtrace_provider_id_t id)
7329 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7331 ASSERT(pvp->dtpv_pops.dtps_enable !=
7332 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7334 mutex_enter(&dtrace_provider_lock);
7335 mutex_enter(&dtrace_lock);
7337 pvp->dtpv_defunct = dtrace_gethrtime();
7339 mutex_exit(&dtrace_lock);
7340 mutex_exit(&dtrace_provider_lock);
7344 * Indicate whether or not DTrace has attached.
7347 dtrace_attached(void)
7350 * dtrace_provider will be non-NULL iff the DTrace driver has
7351 * attached. (It's non-NULL because DTrace is always itself a
7352 * provider.)
7354 return (dtrace_provider != NULL);
7358 * Remove all the unenabled probes for the given provider. This function is
7359 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7360 * -- just as many of its associated probes as it can.
7363 dtrace_condense(dtrace_provider_id_t id)
7365 dtrace_provider_t *prov = (dtrace_provider_t *)id;
7366 int i;
7367 dtrace_probe_t *probe;
7370 * Make sure this isn't the dtrace provider itself.
7372 ASSERT(prov->dtpv_pops.dtps_enable !=
7373 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7375 mutex_enter(&dtrace_provider_lock);
7376 mutex_enter(&dtrace_lock);
7379 * Attempt to destroy the probes associated with this provider.
7381 for (i = 0; i < dtrace_nprobes; i++) {
7382 if ((probe = dtrace_probes[i]) == NULL)
7383 continue;
7385 if (probe->dtpr_provider != prov)
7386 continue;
7388 if (probe->dtpr_ecb != NULL)
7389 continue;
7391 dtrace_probes[i] = NULL;
7393 dtrace_hash_remove(dtrace_bymod, probe);
7394 dtrace_hash_remove(dtrace_byfunc, probe);
7395 dtrace_hash_remove(dtrace_byname, probe);
7397 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7398 probe->dtpr_arg);
7399 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7400 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7401 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7402 kmem_free(probe, sizeof (dtrace_probe_t));
7403 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7406 mutex_exit(&dtrace_lock);
7407 mutex_exit(&dtrace_provider_lock);
7409 return (0);
7413 * DTrace Probe Management Functions
7415 * The functions in this section perform the DTrace probe management,
7416 * including functions to create probes, look-up probes, and call into the
7417 * providers to request that probes be provided. Some of these functions are
7418 * in the Provider-to-Framework API; these functions can be identified by the
7419 * fact that they are not declared "static".
7423 * Create a probe with the specified module name, function name, and name.
7425 dtrace_id_t
7426 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7427 const char *func, const char *name, int aframes, void *arg)
7429 dtrace_probe_t *probe, **probes;
7430 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7431 dtrace_id_t id;
7433 if (provider == dtrace_provider) {
7434 ASSERT(MUTEX_HELD(&dtrace_lock));
7435 } else {
7436 mutex_enter(&dtrace_lock);
7439 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7440 VM_BESTFIT | VM_SLEEP);
7441 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7443 probe->dtpr_id = id;
7444 probe->dtpr_gen = dtrace_probegen++;
7445 probe->dtpr_mod = dtrace_strdup(mod);
7446 probe->dtpr_func = dtrace_strdup(func);
7447 probe->dtpr_name = dtrace_strdup(name);
7448 probe->dtpr_arg = arg;
7449 probe->dtpr_aframes = aframes;
7450 probe->dtpr_provider = provider;
7452 dtrace_hash_add(dtrace_bymod, probe);
7453 dtrace_hash_add(dtrace_byfunc, probe);
7454 dtrace_hash_add(dtrace_byname, probe);
7456 if (id - 1 >= dtrace_nprobes) {
7457 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7458 size_t nsize = osize << 1;
7460 if (nsize == 0) {
7461 ASSERT(osize == 0);
7462 ASSERT(dtrace_probes == NULL);
7463 nsize = sizeof (dtrace_probe_t *);
7466 probes = kmem_zalloc(nsize, KM_SLEEP);
7468 if (dtrace_probes == NULL) {
7469 ASSERT(osize == 0);
7470 dtrace_probes = probes;
7471 dtrace_nprobes = 1;
7472 } else {
7473 dtrace_probe_t **oprobes = dtrace_probes;
7475 bcopy(oprobes, probes, osize);
7476 dtrace_membar_producer();
7477 dtrace_probes = probes;
7479 dtrace_sync();
7482 * All CPUs are now seeing the new probes array; we can
7483 * safely free the old array.
7485 kmem_free(oprobes, osize);
7486 dtrace_nprobes <<= 1;
7489 ASSERT(id - 1 < dtrace_nprobes);
7492 ASSERT(dtrace_probes[id - 1] == NULL);
7493 dtrace_probes[id - 1] = probe;
7495 if (provider != dtrace_provider)
7496 mutex_exit(&dtrace_lock);
7498 return (id);
7501 static dtrace_probe_t *
7502 dtrace_probe_lookup_id(dtrace_id_t id)
7504 ASSERT(MUTEX_HELD(&dtrace_lock));
7506 if (id == 0 || id > dtrace_nprobes)
7507 return (NULL);
7509 return (dtrace_probes[id - 1]);
7512 static int
7513 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7515 *((dtrace_id_t *)arg) = probe->dtpr_id;
7517 return (DTRACE_MATCH_DONE);
7521 * Look up a probe based on provider and one or more of module name, function
7522 * name and probe name.
7524 dtrace_id_t
7525 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7526 const char *func, const char *name)
7528 dtrace_probekey_t pkey;
7529 dtrace_id_t id;
7530 int match;
7532 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7533 pkey.dtpk_pmatch = &dtrace_match_string;
7534 pkey.dtpk_mod = mod;
7535 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7536 pkey.dtpk_func = func;
7537 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7538 pkey.dtpk_name = name;
7539 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7540 pkey.dtpk_id = DTRACE_IDNONE;
7542 mutex_enter(&dtrace_lock);
7543 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7544 dtrace_probe_lookup_match, &id);
7545 mutex_exit(&dtrace_lock);
7547 ASSERT(match == 1 || match == 0);
7548 return (match ? id : 0);
7552 * Returns the probe argument associated with the specified probe.
7554 void *
7555 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7557 dtrace_probe_t *probe;
7558 void *rval = NULL;
7560 mutex_enter(&dtrace_lock);
7562 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7563 probe->dtpr_provider == (dtrace_provider_t *)id)
7564 rval = probe->dtpr_arg;
7566 mutex_exit(&dtrace_lock);
7568 return (rval);
7572 * Copy a probe into a probe description.
7574 static void
7575 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7577 bzero(pdp, sizeof (dtrace_probedesc_t));
7578 pdp->dtpd_id = prp->dtpr_id;
7580 (void) strncpy(pdp->dtpd_provider,
7581 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7583 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7584 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7585 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7589 * Called to indicate that a probe -- or probes -- should be provided by a
7590 * specfied provider. If the specified description is NULL, the provider will
7591 * be told to provide all of its probes. (This is done whenever a new
7592 * consumer comes along, or whenever a retained enabling is to be matched.) If
7593 * the specified description is non-NULL, the provider is given the
7594 * opportunity to dynamically provide the specified probe, allowing providers
7595 * to support the creation of probes on-the-fly. (So-called _autocreated_
7596 * probes.) If the provider is NULL, the operations will be applied to all
7597 * providers; if the provider is non-NULL the operations will only be applied
7598 * to the specified provider. The dtrace_provider_lock must be held, and the
7599 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7600 * will need to grab the dtrace_lock when it reenters the framework through
7601 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7603 static void
7604 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7606 struct modctl *ctl;
7607 int all = 0;
7609 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7611 if (prv == NULL) {
7612 all = 1;
7613 prv = dtrace_provider;
7616 do {
7618 * First, call the blanket provide operation.
7620 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7623 * Now call the per-module provide operation. We will grab
7624 * mod_lock to prevent the list from being modified. Note
7625 * that this also prevents the mod_busy bits from changing.
7626 * (mod_busy can only be changed with mod_lock held.)
7628 mutex_enter(&mod_lock);
7630 ctl = &modules;
7631 do {
7632 if (ctl->mod_busy || ctl->mod_mp == NULL)
7633 continue;
7635 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7637 } while ((ctl = ctl->mod_next) != &modules);
7639 mutex_exit(&mod_lock);
7640 } while (all && (prv = prv->dtpv_next) != NULL);
7644 * Iterate over each probe, and call the Framework-to-Provider API function
7645 * denoted by offs.
7647 static void
7648 dtrace_probe_foreach(uintptr_t offs)
7650 dtrace_provider_t *prov;
7651 void (*func)(void *, dtrace_id_t, void *);
7652 dtrace_probe_t *probe;
7653 dtrace_icookie_t cookie;
7654 int i;
7657 * We disable interrupts to walk through the probe array. This is
7658 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7659 * won't see stale data.
7661 cookie = dtrace_interrupt_disable();
7663 for (i = 0; i < dtrace_nprobes; i++) {
7664 if ((probe = dtrace_probes[i]) == NULL)
7665 continue;
7667 if (probe->dtpr_ecb == NULL) {
7669 * This probe isn't enabled -- don't call the function.
7671 continue;
7674 prov = probe->dtpr_provider;
7675 func = *((void(**)(void *, dtrace_id_t, void *))
7676 ((uintptr_t)&prov->dtpv_pops + offs));
7678 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7681 dtrace_interrupt_enable(cookie);
7684 static int
7685 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7687 dtrace_probekey_t pkey;
7688 uint32_t priv;
7689 uid_t uid;
7690 zoneid_t zoneid;
7692 ASSERT(MUTEX_HELD(&dtrace_lock));
7693 dtrace_ecb_create_cache = NULL;
7695 if (desc == NULL) {
7697 * If we're passed a NULL description, we're being asked to
7698 * create an ECB with a NULL probe.
7700 (void) dtrace_ecb_create_enable(NULL, enab);
7701 return (0);
7704 dtrace_probekey(desc, &pkey);
7705 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7706 &priv, &uid, &zoneid);
7708 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7709 enab));
7713 * DTrace Helper Provider Functions
7715 static void
7716 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7718 attr->dtat_name = DOF_ATTR_NAME(dofattr);
7719 attr->dtat_data = DOF_ATTR_DATA(dofattr);
7720 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7723 static void
7724 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7725 const dof_provider_t *dofprov, char *strtab)
7727 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7728 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7729 dofprov->dofpv_provattr);
7730 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7731 dofprov->dofpv_modattr);
7732 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7733 dofprov->dofpv_funcattr);
7734 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7735 dofprov->dofpv_nameattr);
7736 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7737 dofprov->dofpv_argsattr);
7740 static void
7741 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7743 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7744 dof_hdr_t *dof = (dof_hdr_t *)daddr;
7745 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7746 dof_provider_t *provider;
7747 dof_probe_t *probe;
7748 uint32_t *off, *enoff;
7749 uint8_t *arg;
7750 char *strtab;
7751 uint_t i, nprobes;
7752 dtrace_helper_provdesc_t dhpv;
7753 dtrace_helper_probedesc_t dhpb;
7754 dtrace_meta_t *meta = dtrace_meta_pid;
7755 dtrace_mops_t *mops = &meta->dtm_mops;
7756 void *parg;
7758 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7759 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7760 provider->dofpv_strtab * dof->dofh_secsize);
7761 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7762 provider->dofpv_probes * dof->dofh_secsize);
7763 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7764 provider->dofpv_prargs * dof->dofh_secsize);
7765 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7766 provider->dofpv_proffs * dof->dofh_secsize);
7768 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7769 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7770 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7771 enoff = NULL;
7774 * See dtrace_helper_provider_validate().
7776 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7777 provider->dofpv_prenoffs != DOF_SECT_NONE) {
7778 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7779 provider->dofpv_prenoffs * dof->dofh_secsize);
7780 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7783 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7786 * Create the provider.
7788 dtrace_dofprov2hprov(&dhpv, provider, strtab);
7790 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7791 return;
7793 meta->dtm_count++;
7796 * Create the probes.
7798 for (i = 0; i < nprobes; i++) {
7799 probe = (dof_probe_t *)(uintptr_t)(daddr +
7800 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7802 dhpb.dthpb_mod = dhp->dofhp_mod;
7803 dhpb.dthpb_func = strtab + probe->dofpr_func;
7804 dhpb.dthpb_name = strtab + probe->dofpr_name;
7805 dhpb.dthpb_base = probe->dofpr_addr;
7806 dhpb.dthpb_offs = off + probe->dofpr_offidx;
7807 dhpb.dthpb_noffs = probe->dofpr_noffs;
7808 if (enoff != NULL) {
7809 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7810 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7811 } else {
7812 dhpb.dthpb_enoffs = NULL;
7813 dhpb.dthpb_nenoffs = 0;
7815 dhpb.dthpb_args = arg + probe->dofpr_argidx;
7816 dhpb.dthpb_nargc = probe->dofpr_nargc;
7817 dhpb.dthpb_xargc = probe->dofpr_xargc;
7818 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7819 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7821 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7825 static void
7826 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7828 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7829 dof_hdr_t *dof = (dof_hdr_t *)daddr;
7830 int i;
7832 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7834 for (i = 0; i < dof->dofh_secnum; i++) {
7835 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7836 dof->dofh_secoff + i * dof->dofh_secsize);
7838 if (sec->dofs_type != DOF_SECT_PROVIDER)
7839 continue;
7841 dtrace_helper_provide_one(dhp, sec, pid);
7845 * We may have just created probes, so we must now rematch against
7846 * any retained enablings. Note that this call will acquire both
7847 * cpu_lock and dtrace_lock; the fact that we are holding
7848 * dtrace_meta_lock now is what defines the ordering with respect to
7849 * these three locks.
7851 dtrace_enabling_matchall();
7854 static void
7855 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7857 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7858 dof_hdr_t *dof = (dof_hdr_t *)daddr;
7859 dof_sec_t *str_sec;
7860 dof_provider_t *provider;
7861 char *strtab;
7862 dtrace_helper_provdesc_t dhpv;
7863 dtrace_meta_t *meta = dtrace_meta_pid;
7864 dtrace_mops_t *mops = &meta->dtm_mops;
7866 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7867 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7868 provider->dofpv_strtab * dof->dofh_secsize);
7870 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7873 * Create the provider.
7875 dtrace_dofprov2hprov(&dhpv, provider, strtab);
7877 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7879 meta->dtm_count--;
7882 static void
7883 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7885 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7886 dof_hdr_t *dof = (dof_hdr_t *)daddr;
7887 int i;
7889 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7891 for (i = 0; i < dof->dofh_secnum; i++) {
7892 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7893 dof->dofh_secoff + i * dof->dofh_secsize);
7895 if (sec->dofs_type != DOF_SECT_PROVIDER)
7896 continue;
7898 dtrace_helper_provider_remove_one(dhp, sec, pid);
7903 * DTrace Meta Provider-to-Framework API Functions
7905 * These functions implement the Meta Provider-to-Framework API, as described
7906 * in <sys/dtrace.h>.
7909 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7910 dtrace_meta_provider_id_t *idp)
7912 dtrace_meta_t *meta;
7913 dtrace_helpers_t *help, *next;
7914 int i;
7916 *idp = DTRACE_METAPROVNONE;
7919 * We strictly don't need the name, but we hold onto it for
7920 * debuggability. All hail error queues!
7922 if (name == NULL) {
7923 cmn_err(CE_WARN, "failed to register meta-provider: "
7924 "invalid name");
7925 return (EINVAL);
7928 if (mops == NULL ||
7929 mops->dtms_create_probe == NULL ||
7930 mops->dtms_provide_pid == NULL ||
7931 mops->dtms_remove_pid == NULL) {
7932 cmn_err(CE_WARN, "failed to register meta-register %s: "
7933 "invalid ops", name);
7934 return (EINVAL);
7937 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7938 meta->dtm_mops = *mops;
7939 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7940 (void) strcpy(meta->dtm_name, name);
7941 meta->dtm_arg = arg;
7943 mutex_enter(&dtrace_meta_lock);
7944 mutex_enter(&dtrace_lock);
7946 if (dtrace_meta_pid != NULL) {
7947 mutex_exit(&dtrace_lock);
7948 mutex_exit(&dtrace_meta_lock);
7949 cmn_err(CE_WARN, "failed to register meta-register %s: "
7950 "user-land meta-provider exists", name);
7951 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7952 kmem_free(meta, sizeof (dtrace_meta_t));
7953 return (EINVAL);
7956 dtrace_meta_pid = meta;
7957 *idp = (dtrace_meta_provider_id_t)meta;
7960 * If there are providers and probes ready to go, pass them
7961 * off to the new meta provider now.
7964 help = dtrace_deferred_pid;
7965 dtrace_deferred_pid = NULL;
7967 mutex_exit(&dtrace_lock);
7969 while (help != NULL) {
7970 for (i = 0; i < help->dthps_nprovs; i++) {
7971 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7972 help->dthps_pid);
7975 next = help->dthps_next;
7976 help->dthps_next = NULL;
7977 help->dthps_prev = NULL;
7978 help->dthps_deferred = 0;
7979 help = next;
7982 mutex_exit(&dtrace_meta_lock);
7984 return (0);
7988 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7990 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7992 mutex_enter(&dtrace_meta_lock);
7993 mutex_enter(&dtrace_lock);
7995 if (old == dtrace_meta_pid) {
7996 pp = &dtrace_meta_pid;
7997 } else {
7998 panic("attempt to unregister non-existent "
7999 "dtrace meta-provider %p\n", (void *)old);
8002 if (old->dtm_count != 0) {
8003 mutex_exit(&dtrace_lock);
8004 mutex_exit(&dtrace_meta_lock);
8005 return (EBUSY);
8008 *pp = NULL;
8010 mutex_exit(&dtrace_lock);
8011 mutex_exit(&dtrace_meta_lock);
8013 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8014 kmem_free(old, sizeof (dtrace_meta_t));
8016 return (0);
8021 * DTrace DIF Object Functions
8023 static int
8024 dtrace_difo_err(uint_t pc, const char *format, ...)
8026 if (dtrace_err_verbose) {
8027 va_list alist;
8029 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8030 va_start(alist, format);
8031 (void) vuprintf(format, alist);
8032 va_end(alist);
8035 #ifdef DTRACE_ERRDEBUG
8036 dtrace_errdebug(format);
8037 #endif
8038 return (1);
8042 * Validate a DTrace DIF object by checking the IR instructions. The following
8043 * rules are currently enforced by dtrace_difo_validate():
8045 * 1. Each instruction must have a valid opcode
8046 * 2. Each register, string, variable, or subroutine reference must be valid
8047 * 3. No instruction can modify register %r0 (must be zero)
8048 * 4. All instruction reserved bits must be set to zero
8049 * 5. The last instruction must be a "ret" instruction
8050 * 6. All branch targets must reference a valid instruction _after_ the branch
8052 static int
8053 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8054 cred_t *cr)
8056 int err = 0, i;
8057 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8058 int kcheckload;
8059 uint_t pc;
8061 kcheckload = cr == NULL ||
8062 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8064 dp->dtdo_destructive = 0;
8066 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8067 dif_instr_t instr = dp->dtdo_buf[pc];
8069 uint_t r1 = DIF_INSTR_R1(instr);
8070 uint_t r2 = DIF_INSTR_R2(instr);
8071 uint_t rd = DIF_INSTR_RD(instr);
8072 uint_t rs = DIF_INSTR_RS(instr);
8073 uint_t label = DIF_INSTR_LABEL(instr);
8074 uint_t v = DIF_INSTR_VAR(instr);
8075 uint_t subr = DIF_INSTR_SUBR(instr);
8076 uint_t type = DIF_INSTR_TYPE(instr);
8077 uint_t op = DIF_INSTR_OP(instr);
8079 switch (op) {
8080 case DIF_OP_OR:
8081 case DIF_OP_XOR:
8082 case DIF_OP_AND:
8083 case DIF_OP_SLL:
8084 case DIF_OP_SRL:
8085 case DIF_OP_SRA:
8086 case DIF_OP_SUB:
8087 case DIF_OP_ADD:
8088 case DIF_OP_MUL:
8089 case DIF_OP_SDIV:
8090 case DIF_OP_UDIV:
8091 case DIF_OP_SREM:
8092 case DIF_OP_UREM:
8093 case DIF_OP_COPYS:
8094 if (r1 >= nregs)
8095 err += efunc(pc, "invalid register %u\n", r1);
8096 if (r2 >= nregs)
8097 err += efunc(pc, "invalid register %u\n", r2);
8098 if (rd >= nregs)
8099 err += efunc(pc, "invalid register %u\n", rd);
8100 if (rd == 0)
8101 err += efunc(pc, "cannot write to %r0\n");
8102 break;
8103 case DIF_OP_NOT:
8104 case DIF_OP_MOV:
8105 case DIF_OP_ALLOCS:
8106 if (r1 >= nregs)
8107 err += efunc(pc, "invalid register %u\n", r1);
8108 if (r2 != 0)
8109 err += efunc(pc, "non-zero reserved bits\n");
8110 if (rd >= nregs)
8111 err += efunc(pc, "invalid register %u\n", rd);
8112 if (rd == 0)
8113 err += efunc(pc, "cannot write to %r0\n");
8114 break;
8115 case DIF_OP_LDSB:
8116 case DIF_OP_LDSH:
8117 case DIF_OP_LDSW:
8118 case DIF_OP_LDUB:
8119 case DIF_OP_LDUH:
8120 case DIF_OP_LDUW:
8121 case DIF_OP_LDX:
8122 if (r1 >= nregs)
8123 err += efunc(pc, "invalid register %u\n", r1);
8124 if (r2 != 0)
8125 err += efunc(pc, "non-zero reserved bits\n");
8126 if (rd >= nregs)
8127 err += efunc(pc, "invalid register %u\n", rd);
8128 if (rd == 0)
8129 err += efunc(pc, "cannot write to %r0\n");
8130 if (kcheckload)
8131 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8132 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8133 break;
8134 case DIF_OP_RLDSB:
8135 case DIF_OP_RLDSH:
8136 case DIF_OP_RLDSW:
8137 case DIF_OP_RLDUB:
8138 case DIF_OP_RLDUH:
8139 case DIF_OP_RLDUW:
8140 case DIF_OP_RLDX:
8141 if (r1 >= nregs)
8142 err += efunc(pc, "invalid register %u\n", r1);
8143 if (r2 != 0)
8144 err += efunc(pc, "non-zero reserved bits\n");
8145 if (rd >= nregs)
8146 err += efunc(pc, "invalid register %u\n", rd);
8147 if (rd == 0)
8148 err += efunc(pc, "cannot write to %r0\n");
8149 break;
8150 case DIF_OP_ULDSB:
8151 case DIF_OP_ULDSH:
8152 case DIF_OP_ULDSW:
8153 case DIF_OP_ULDUB:
8154 case DIF_OP_ULDUH:
8155 case DIF_OP_ULDUW:
8156 case DIF_OP_ULDX:
8157 if (r1 >= nregs)
8158 err += efunc(pc, "invalid register %u\n", r1);
8159 if (r2 != 0)
8160 err += efunc(pc, "non-zero reserved bits\n");
8161 if (rd >= nregs)
8162 err += efunc(pc, "invalid register %u\n", rd);
8163 if (rd == 0)
8164 err += efunc(pc, "cannot write to %r0\n");
8165 break;
8166 case DIF_OP_STB:
8167 case DIF_OP_STH:
8168 case DIF_OP_STW:
8169 case DIF_OP_STX:
8170 if (r1 >= nregs)
8171 err += efunc(pc, "invalid register %u\n", r1);
8172 if (r2 != 0)
8173 err += efunc(pc, "non-zero reserved bits\n");
8174 if (rd >= nregs)
8175 err += efunc(pc, "invalid register %u\n", rd);
8176 if (rd == 0)
8177 err += efunc(pc, "cannot write to 0 address\n");
8178 break;
8179 case DIF_OP_CMP:
8180 case DIF_OP_SCMP:
8181 if (r1 >= nregs)
8182 err += efunc(pc, "invalid register %u\n", r1);
8183 if (r2 >= nregs)
8184 err += efunc(pc, "invalid register %u\n", r2);
8185 if (rd != 0)
8186 err += efunc(pc, "non-zero reserved bits\n");
8187 break;
8188 case DIF_OP_TST:
8189 if (r1 >= nregs)
8190 err += efunc(pc, "invalid register %u\n", r1);
8191 if (r2 != 0 || rd != 0)
8192 err += efunc(pc, "non-zero reserved bits\n");
8193 break;
8194 case DIF_OP_BA:
8195 case DIF_OP_BE:
8196 case DIF_OP_BNE:
8197 case DIF_OP_BG:
8198 case DIF_OP_BGU:
8199 case DIF_OP_BGE:
8200 case DIF_OP_BGEU:
8201 case DIF_OP_BL:
8202 case DIF_OP_BLU:
8203 case DIF_OP_BLE:
8204 case DIF_OP_BLEU:
8205 if (label >= dp->dtdo_len) {
8206 err += efunc(pc, "invalid branch target %u\n",
8207 label);
8209 if (label <= pc) {
8210 err += efunc(pc, "backward branch to %u\n",
8211 label);
8213 break;
8214 case DIF_OP_RET:
8215 if (r1 != 0 || r2 != 0)
8216 err += efunc(pc, "non-zero reserved bits\n");
8217 if (rd >= nregs)
8218 err += efunc(pc, "invalid register %u\n", rd);
8219 break;
8220 case DIF_OP_NOP:
8221 case DIF_OP_POPTS:
8222 case DIF_OP_FLUSHTS:
8223 if (r1 != 0 || r2 != 0 || rd != 0)
8224 err += efunc(pc, "non-zero reserved bits\n");
8225 break;
8226 case DIF_OP_SETX:
8227 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8228 err += efunc(pc, "invalid integer ref %u\n",
8229 DIF_INSTR_INTEGER(instr));
8231 if (rd >= nregs)
8232 err += efunc(pc, "invalid register %u\n", rd);
8233 if (rd == 0)
8234 err += efunc(pc, "cannot write to %r0\n");
8235 break;
8236 case DIF_OP_SETS:
8237 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8238 err += efunc(pc, "invalid string ref %u\n",
8239 DIF_INSTR_STRING(instr));
8241 if (rd >= nregs)
8242 err += efunc(pc, "invalid register %u\n", rd);
8243 if (rd == 0)
8244 err += efunc(pc, "cannot write to %r0\n");
8245 break;
8246 case DIF_OP_LDGA:
8247 case DIF_OP_LDTA:
8248 if (r1 > DIF_VAR_ARRAY_MAX)
8249 err += efunc(pc, "invalid array %u\n", r1);
8250 if (r2 >= nregs)
8251 err += efunc(pc, "invalid register %u\n", r2);
8252 if (rd >= nregs)
8253 err += efunc(pc, "invalid register %u\n", rd);
8254 if (rd == 0)
8255 err += efunc(pc, "cannot write to %r0\n");
8256 break;
8257 case DIF_OP_LDGS:
8258 case DIF_OP_LDTS:
8259 case DIF_OP_LDLS:
8260 case DIF_OP_LDGAA:
8261 case DIF_OP_LDTAA:
8262 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8263 err += efunc(pc, "invalid variable %u\n", v);
8264 if (rd >= nregs)
8265 err += efunc(pc, "invalid register %u\n", rd);
8266 if (rd == 0)
8267 err += efunc(pc, "cannot write to %r0\n");
8268 break;
8269 case DIF_OP_STGS:
8270 case DIF_OP_STTS:
8271 case DIF_OP_STLS:
8272 case DIF_OP_STGAA:
8273 case DIF_OP_STTAA:
8274 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8275 err += efunc(pc, "invalid variable %u\n", v);
8276 if (rs >= nregs)
8277 err += efunc(pc, "invalid register %u\n", rd);
8278 break;
8279 case DIF_OP_CALL:
8280 if (subr > DIF_SUBR_MAX)
8281 err += efunc(pc, "invalid subr %u\n", subr);
8282 if (rd >= nregs)
8283 err += efunc(pc, "invalid register %u\n", rd);
8284 if (rd == 0)
8285 err += efunc(pc, "cannot write to %r0\n");
8287 if (subr == DIF_SUBR_COPYOUT ||
8288 subr == DIF_SUBR_COPYOUTSTR) {
8289 dp->dtdo_destructive = 1;
8291 break;
8292 case DIF_OP_PUSHTR:
8293 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8294 err += efunc(pc, "invalid ref type %u\n", type);
8295 if (r2 >= nregs)
8296 err += efunc(pc, "invalid register %u\n", r2);
8297 if (rs >= nregs)
8298 err += efunc(pc, "invalid register %u\n", rs);
8299 break;
8300 case DIF_OP_PUSHTV:
8301 if (type != DIF_TYPE_CTF)
8302 err += efunc(pc, "invalid val type %u\n", type);
8303 if (r2 >= nregs)
8304 err += efunc(pc, "invalid register %u\n", r2);
8305 if (rs >= nregs)
8306 err += efunc(pc, "invalid register %u\n", rs);
8307 break;
8308 default:
8309 err += efunc(pc, "invalid opcode %u\n",
8310 DIF_INSTR_OP(instr));
8314 if (dp->dtdo_len != 0 &&
8315 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8316 err += efunc(dp->dtdo_len - 1,
8317 "expected 'ret' as last DIF instruction\n");
8320 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8322 * If we're not returning by reference, the size must be either
8323 * 0 or the size of one of the base types.
8325 switch (dp->dtdo_rtype.dtdt_size) {
8326 case 0:
8327 case sizeof (uint8_t):
8328 case sizeof (uint16_t):
8329 case sizeof (uint32_t):
8330 case sizeof (uint64_t):
8331 break;
8333 default:
8334 err += efunc(dp->dtdo_len - 1, "bad return size\n");
8338 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8339 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8340 dtrace_diftype_t *vt, *et;
8341 uint_t id, ndx;
8343 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8344 v->dtdv_scope != DIFV_SCOPE_THREAD &&
8345 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8346 err += efunc(i, "unrecognized variable scope %d\n",
8347 v->dtdv_scope);
8348 break;
8351 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8352 v->dtdv_kind != DIFV_KIND_SCALAR) {
8353 err += efunc(i, "unrecognized variable type %d\n",
8354 v->dtdv_kind);
8355 break;
8358 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8359 err += efunc(i, "%d exceeds variable id limit\n", id);
8360 break;
8363 if (id < DIF_VAR_OTHER_UBASE)
8364 continue;
8367 * For user-defined variables, we need to check that this
8368 * definition is identical to any previous definition that we
8369 * encountered.
8371 ndx = id - DIF_VAR_OTHER_UBASE;
8373 switch (v->dtdv_scope) {
8374 case DIFV_SCOPE_GLOBAL:
8375 if (ndx < vstate->dtvs_nglobals) {
8376 dtrace_statvar_t *svar;
8378 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8379 existing = &svar->dtsv_var;
8382 break;
8384 case DIFV_SCOPE_THREAD:
8385 if (ndx < vstate->dtvs_ntlocals)
8386 existing = &vstate->dtvs_tlocals[ndx];
8387 break;
8389 case DIFV_SCOPE_LOCAL:
8390 if (ndx < vstate->dtvs_nlocals) {
8391 dtrace_statvar_t *svar;
8393 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8394 existing = &svar->dtsv_var;
8397 break;
8400 vt = &v->dtdv_type;
8402 if (vt->dtdt_flags & DIF_TF_BYREF) {
8403 if (vt->dtdt_size == 0) {
8404 err += efunc(i, "zero-sized variable\n");
8405 break;
8408 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8409 vt->dtdt_size > dtrace_global_maxsize) {
8410 err += efunc(i, "oversized by-ref global\n");
8411 break;
8415 if (existing == NULL || existing->dtdv_id == 0)
8416 continue;
8418 ASSERT(existing->dtdv_id == v->dtdv_id);
8419 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8421 if (existing->dtdv_kind != v->dtdv_kind)
8422 err += efunc(i, "%d changed variable kind\n", id);
8424 et = &existing->dtdv_type;
8426 if (vt->dtdt_flags != et->dtdt_flags) {
8427 err += efunc(i, "%d changed variable type flags\n", id);
8428 break;
8431 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8432 err += efunc(i, "%d changed variable type size\n", id);
8433 break;
8437 return (err);
8441 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
8442 * are much more constrained than normal DIFOs. Specifically, they may
8443 * not:
8445 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8446 * miscellaneous string routines
8447 * 2. Access DTrace variables other than the args[] array, and the
8448 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8449 * 3. Have thread-local variables.
8450 * 4. Have dynamic variables.
8452 static int
8453 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8455 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8456 int err = 0;
8457 uint_t pc;
8459 for (pc = 0; pc < dp->dtdo_len; pc++) {
8460 dif_instr_t instr = dp->dtdo_buf[pc];
8462 uint_t v = DIF_INSTR_VAR(instr);
8463 uint_t subr = DIF_INSTR_SUBR(instr);
8464 uint_t op = DIF_INSTR_OP(instr);
8466 switch (op) {
8467 case DIF_OP_OR:
8468 case DIF_OP_XOR:
8469 case DIF_OP_AND:
8470 case DIF_OP_SLL:
8471 case DIF_OP_SRL:
8472 case DIF_OP_SRA:
8473 case DIF_OP_SUB:
8474 case DIF_OP_ADD:
8475 case DIF_OP_MUL:
8476 case DIF_OP_SDIV:
8477 case DIF_OP_UDIV:
8478 case DIF_OP_SREM:
8479 case DIF_OP_UREM:
8480 case DIF_OP_COPYS:
8481 case DIF_OP_NOT:
8482 case DIF_OP_MOV:
8483 case DIF_OP_RLDSB:
8484 case DIF_OP_RLDSH:
8485 case DIF_OP_RLDSW:
8486 case DIF_OP_RLDUB:
8487 case DIF_OP_RLDUH:
8488 case DIF_OP_RLDUW:
8489 case DIF_OP_RLDX:
8490 case DIF_OP_ULDSB:
8491 case DIF_OP_ULDSH:
8492 case DIF_OP_ULDSW:
8493 case DIF_OP_ULDUB:
8494 case DIF_OP_ULDUH:
8495 case DIF_OP_ULDUW:
8496 case DIF_OP_ULDX:
8497 case DIF_OP_STB:
8498 case DIF_OP_STH:
8499 case DIF_OP_STW:
8500 case DIF_OP_STX:
8501 case DIF_OP_ALLOCS:
8502 case DIF_OP_CMP:
8503 case DIF_OP_SCMP:
8504 case DIF_OP_TST:
8505 case DIF_OP_BA:
8506 case DIF_OP_BE:
8507 case DIF_OP_BNE:
8508 case DIF_OP_BG:
8509 case DIF_OP_BGU:
8510 case DIF_OP_BGE:
8511 case DIF_OP_BGEU:
8512 case DIF_OP_BL:
8513 case DIF_OP_BLU:
8514 case DIF_OP_BLE:
8515 case DIF_OP_BLEU:
8516 case DIF_OP_RET:
8517 case DIF_OP_NOP:
8518 case DIF_OP_POPTS:
8519 case DIF_OP_FLUSHTS:
8520 case DIF_OP_SETX:
8521 case DIF_OP_SETS:
8522 case DIF_OP_LDGA:
8523 case DIF_OP_LDLS:
8524 case DIF_OP_STGS:
8525 case DIF_OP_STLS:
8526 case DIF_OP_PUSHTR:
8527 case DIF_OP_PUSHTV:
8528 break;
8530 case DIF_OP_LDGS:
8531 if (v >= DIF_VAR_OTHER_UBASE)
8532 break;
8534 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8535 break;
8537 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8538 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8539 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8540 v == DIF_VAR_UID || v == DIF_VAR_GID)
8541 break;
8543 err += efunc(pc, "illegal variable %u\n", v);
8544 break;
8546 case DIF_OP_LDTA:
8547 case DIF_OP_LDTS:
8548 case DIF_OP_LDGAA:
8549 case DIF_OP_LDTAA:
8550 err += efunc(pc, "illegal dynamic variable load\n");
8551 break;
8553 case DIF_OP_STTS:
8554 case DIF_OP_STGAA:
8555 case DIF_OP_STTAA:
8556 err += efunc(pc, "illegal dynamic variable store\n");
8557 break;
8559 case DIF_OP_CALL:
8560 if (subr == DIF_SUBR_ALLOCA ||
8561 subr == DIF_SUBR_BCOPY ||
8562 subr == DIF_SUBR_COPYIN ||
8563 subr == DIF_SUBR_COPYINTO ||
8564 subr == DIF_SUBR_COPYINSTR ||
8565 subr == DIF_SUBR_INDEX ||
8566 subr == DIF_SUBR_INET_NTOA ||
8567 subr == DIF_SUBR_INET_NTOA6 ||
8568 subr == DIF_SUBR_INET_NTOP ||
8569 subr == DIF_SUBR_LLTOSTR ||
8570 subr == DIF_SUBR_RINDEX ||
8571 subr == DIF_SUBR_STRCHR ||
8572 subr == DIF_SUBR_STRJOIN ||
8573 subr == DIF_SUBR_STRRCHR ||
8574 subr == DIF_SUBR_STRSTR ||
8575 subr == DIF_SUBR_HTONS ||
8576 subr == DIF_SUBR_HTONL ||
8577 subr == DIF_SUBR_HTONLL ||
8578 subr == DIF_SUBR_NTOHS ||
8579 subr == DIF_SUBR_NTOHL ||
8580 subr == DIF_SUBR_NTOHLL)
8581 break;
8583 err += efunc(pc, "invalid subr %u\n", subr);
8584 break;
8586 default:
8587 err += efunc(pc, "invalid opcode %u\n",
8588 DIF_INSTR_OP(instr));
8592 return (err);
8596 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8597 * basis; 0 if not.
8599 static int
8600 dtrace_difo_cacheable(dtrace_difo_t *dp)
8602 int i;
8604 if (dp == NULL)
8605 return (0);
8607 for (i = 0; i < dp->dtdo_varlen; i++) {
8608 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8610 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8611 continue;
8613 switch (v->dtdv_id) {
8614 case DIF_VAR_CURTHREAD:
8615 case DIF_VAR_PID:
8616 case DIF_VAR_TID:
8617 case DIF_VAR_EXECNAME:
8618 case DIF_VAR_ZONENAME:
8619 break;
8621 default:
8622 return (0);
8627 * This DIF object may be cacheable. Now we need to look for any
8628 * array loading instructions, any memory loading instructions, or
8629 * any stores to thread-local variables.
8631 for (i = 0; i < dp->dtdo_len; i++) {
8632 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8634 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8635 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8636 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8637 op == DIF_OP_LDGA || op == DIF_OP_STTS)
8638 return (0);
8641 return (1);
8644 static void
8645 dtrace_difo_hold(dtrace_difo_t *dp)
8647 int i;
8649 ASSERT(MUTEX_HELD(&dtrace_lock));
8651 dp->dtdo_refcnt++;
8652 ASSERT(dp->dtdo_refcnt != 0);
8655 * We need to check this DIF object for references to the variable
8656 * DIF_VAR_VTIMESTAMP.
8658 for (i = 0; i < dp->dtdo_varlen; i++) {
8659 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8661 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8662 continue;
8664 if (dtrace_vtime_references++ == 0)
8665 dtrace_vtime_enable();
8670 * This routine calculates the dynamic variable chunksize for a given DIF
8671 * object. The calculation is not fool-proof, and can probably be tricked by
8672 * malicious DIF -- but it works for all compiler-generated DIF. Because this
8673 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8674 * if a dynamic variable size exceeds the chunksize.
8676 static void
8677 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8679 uint64_t sval;
8680 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8681 const dif_instr_t *text = dp->dtdo_buf;
8682 uint_t pc, srd = 0;
8683 uint_t ttop = 0;
8684 size_t size, ksize;
8685 uint_t id, i;
8687 for (pc = 0; pc < dp->dtdo_len; pc++) {
8688 dif_instr_t instr = text[pc];
8689 uint_t op = DIF_INSTR_OP(instr);
8690 uint_t rd = DIF_INSTR_RD(instr);
8691 uint_t r1 = DIF_INSTR_R1(instr);
8692 uint_t nkeys = 0;
8693 uchar_t scope;
8695 dtrace_key_t *key = tupregs;
8697 switch (op) {
8698 case DIF_OP_SETX:
8699 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8700 srd = rd;
8701 continue;
8703 case DIF_OP_STTS:
8704 key = &tupregs[DIF_DTR_NREGS];
8705 key[0].dttk_size = 0;
8706 key[1].dttk_size = 0;
8707 nkeys = 2;
8708 scope = DIFV_SCOPE_THREAD;
8709 break;
8711 case DIF_OP_STGAA:
8712 case DIF_OP_STTAA:
8713 nkeys = ttop;
8715 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8716 key[nkeys++].dttk_size = 0;
8718 key[nkeys++].dttk_size = 0;
8720 if (op == DIF_OP_STTAA) {
8721 scope = DIFV_SCOPE_THREAD;
8722 } else {
8723 scope = DIFV_SCOPE_GLOBAL;
8726 break;
8728 case DIF_OP_PUSHTR:
8729 if (ttop == DIF_DTR_NREGS)
8730 return;
8732 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8734 * If the register for the size of the "pushtr"
8735 * is %r0 (or the value is 0) and the type is
8736 * a string, we'll use the system-wide default
8737 * string size.
8739 tupregs[ttop++].dttk_size =
8740 dtrace_strsize_default;
8741 } else {
8742 if (srd == 0)
8743 return;
8745 tupregs[ttop++].dttk_size = sval;
8748 break;
8750 case DIF_OP_PUSHTV:
8751 if (ttop == DIF_DTR_NREGS)
8752 return;
8754 tupregs[ttop++].dttk_size = 0;
8755 break;
8757 case DIF_OP_FLUSHTS:
8758 ttop = 0;
8759 break;
8761 case DIF_OP_POPTS:
8762 if (ttop != 0)
8763 ttop--;
8764 break;
8767 sval = 0;
8768 srd = 0;
8770 if (nkeys == 0)
8771 continue;
8774 * We have a dynamic variable allocation; calculate its size.
8776 for (ksize = 0, i = 0; i < nkeys; i++)
8777 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8779 size = sizeof (dtrace_dynvar_t);
8780 size += sizeof (dtrace_key_t) * (nkeys - 1);
8781 size += ksize;
8784 * Now we need to determine the size of the stored data.
8786 id = DIF_INSTR_VAR(instr);
8788 for (i = 0; i < dp->dtdo_varlen; i++) {
8789 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8791 if (v->dtdv_id == id && v->dtdv_scope == scope) {
8792 size += v->dtdv_type.dtdt_size;
8793 break;
8797 if (i == dp->dtdo_varlen)
8798 return;
8801 * We have the size. If this is larger than the chunk size
8802 * for our dynamic variable state, reset the chunk size.
8804 size = P2ROUNDUP(size, sizeof (uint64_t));
8806 if (size > vstate->dtvs_dynvars.dtds_chunksize)
8807 vstate->dtvs_dynvars.dtds_chunksize = size;
8811 static void
8812 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8814 int i, oldsvars, osz, nsz, otlocals, ntlocals;
8815 uint_t id;
8817 ASSERT(MUTEX_HELD(&dtrace_lock));
8818 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8820 for (i = 0; i < dp->dtdo_varlen; i++) {
8821 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8822 dtrace_statvar_t *svar, ***svarp;
8823 size_t dsize = 0;
8824 uint8_t scope = v->dtdv_scope;
8825 int *np;
8827 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8828 continue;
8830 id -= DIF_VAR_OTHER_UBASE;
8832 switch (scope) {
8833 case DIFV_SCOPE_THREAD:
8834 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8835 dtrace_difv_t *tlocals;
8837 if ((ntlocals = (otlocals << 1)) == 0)
8838 ntlocals = 1;
8840 osz = otlocals * sizeof (dtrace_difv_t);
8841 nsz = ntlocals * sizeof (dtrace_difv_t);
8843 tlocals = kmem_zalloc(nsz, KM_SLEEP);
8845 if (osz != 0) {
8846 bcopy(vstate->dtvs_tlocals,
8847 tlocals, osz);
8848 kmem_free(vstate->dtvs_tlocals, osz);
8851 vstate->dtvs_tlocals = tlocals;
8852 vstate->dtvs_ntlocals = ntlocals;
8855 vstate->dtvs_tlocals[id] = *v;
8856 continue;
8858 case DIFV_SCOPE_LOCAL:
8859 np = &vstate->dtvs_nlocals;
8860 svarp = &vstate->dtvs_locals;
8862 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8863 dsize = NCPU * (v->dtdv_type.dtdt_size +
8864 sizeof (uint64_t));
8865 else
8866 dsize = NCPU * sizeof (uint64_t);
8868 break;
8870 case DIFV_SCOPE_GLOBAL:
8871 np = &vstate->dtvs_nglobals;
8872 svarp = &vstate->dtvs_globals;
8874 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8875 dsize = v->dtdv_type.dtdt_size +
8876 sizeof (uint64_t);
8878 break;
8880 default:
8881 ASSERT(0);
8884 while (id >= (oldsvars = *np)) {
8885 dtrace_statvar_t **statics;
8886 int newsvars, oldsize, newsize;
8888 if ((newsvars = (oldsvars << 1)) == 0)
8889 newsvars = 1;
8891 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8892 newsize = newsvars * sizeof (dtrace_statvar_t *);
8894 statics = kmem_zalloc(newsize, KM_SLEEP);
8896 if (oldsize != 0) {
8897 bcopy(*svarp, statics, oldsize);
8898 kmem_free(*svarp, oldsize);
8901 *svarp = statics;
8902 *np = newsvars;
8905 if ((svar = (*svarp)[id]) == NULL) {
8906 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8907 svar->dtsv_var = *v;
8909 if ((svar->dtsv_size = dsize) != 0) {
8910 svar->dtsv_data = (uint64_t)(uintptr_t)
8911 kmem_zalloc(dsize, KM_SLEEP);
8914 (*svarp)[id] = svar;
8917 svar->dtsv_refcnt++;
8920 dtrace_difo_chunksize(dp, vstate);
8921 dtrace_difo_hold(dp);
8924 static dtrace_difo_t *
8925 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8927 dtrace_difo_t *new;
8928 size_t sz;
8930 ASSERT(dp->dtdo_buf != NULL);
8931 ASSERT(dp->dtdo_refcnt != 0);
8933 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8935 ASSERT(dp->dtdo_buf != NULL);
8936 sz = dp->dtdo_len * sizeof (dif_instr_t);
8937 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8938 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8939 new->dtdo_len = dp->dtdo_len;
8941 if (dp->dtdo_strtab != NULL) {
8942 ASSERT(dp->dtdo_strlen != 0);
8943 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8944 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8945 new->dtdo_strlen = dp->dtdo_strlen;
8948 if (dp->dtdo_inttab != NULL) {
8949 ASSERT(dp->dtdo_intlen != 0);
8950 sz = dp->dtdo_intlen * sizeof (uint64_t);
8951 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8952 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8953 new->dtdo_intlen = dp->dtdo_intlen;
8956 if (dp->dtdo_vartab != NULL) {
8957 ASSERT(dp->dtdo_varlen != 0);
8958 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8959 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8960 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8961 new->dtdo_varlen = dp->dtdo_varlen;
8964 dtrace_difo_init(new, vstate);
8965 return (new);
8968 static void
8969 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8971 int i;
8973 ASSERT(dp->dtdo_refcnt == 0);
8975 for (i = 0; i < dp->dtdo_varlen; i++) {
8976 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8977 dtrace_statvar_t *svar, **svarp;
8978 uint_t id;
8979 uint8_t scope = v->dtdv_scope;
8980 int *np;
8982 switch (scope) {
8983 case DIFV_SCOPE_THREAD:
8984 continue;
8986 case DIFV_SCOPE_LOCAL:
8987 np = &vstate->dtvs_nlocals;
8988 svarp = vstate->dtvs_locals;
8989 break;
8991 case DIFV_SCOPE_GLOBAL:
8992 np = &vstate->dtvs_nglobals;
8993 svarp = vstate->dtvs_globals;
8994 break;
8996 default:
8997 ASSERT(0);
9000 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9001 continue;
9003 id -= DIF_VAR_OTHER_UBASE;
9004 ASSERT(id < *np);
9006 svar = svarp[id];
9007 ASSERT(svar != NULL);
9008 ASSERT(svar->dtsv_refcnt > 0);
9010 if (--svar->dtsv_refcnt > 0)
9011 continue;
9013 if (svar->dtsv_size != 0) {
9014 ASSERT(svar->dtsv_data != NULL);
9015 kmem_free((void *)(uintptr_t)svar->dtsv_data,
9016 svar->dtsv_size);
9019 kmem_free(svar, sizeof (dtrace_statvar_t));
9020 svarp[id] = NULL;
9023 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9024 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9025 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9026 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9028 kmem_free(dp, sizeof (dtrace_difo_t));
9031 static void
9032 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9034 int i;
9036 ASSERT(MUTEX_HELD(&dtrace_lock));
9037 ASSERT(dp->dtdo_refcnt != 0);
9039 for (i = 0; i < dp->dtdo_varlen; i++) {
9040 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9042 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9043 continue;
9045 ASSERT(dtrace_vtime_references > 0);
9046 if (--dtrace_vtime_references == 0)
9047 dtrace_vtime_disable();
9050 if (--dp->dtdo_refcnt == 0)
9051 dtrace_difo_destroy(dp, vstate);
9055 * DTrace Format Functions
9057 static uint16_t
9058 dtrace_format_add(dtrace_state_t *state, char *str)
9060 char *fmt, **new;
9061 uint16_t ndx, len = strlen(str) + 1;
9063 fmt = kmem_zalloc(len, KM_SLEEP);
9064 bcopy(str, fmt, len);
9066 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9067 if (state->dts_formats[ndx] == NULL) {
9068 state->dts_formats[ndx] = fmt;
9069 return (ndx + 1);
9073 if (state->dts_nformats == USHRT_MAX) {
9075 * This is only likely if a denial-of-service attack is being
9076 * attempted. As such, it's okay to fail silently here.
9078 kmem_free(fmt, len);
9079 return (0);
9083 * For simplicity, we always resize the formats array to be exactly the
9084 * number of formats.
9086 ndx = state->dts_nformats++;
9087 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9089 if (state->dts_formats != NULL) {
9090 ASSERT(ndx != 0);
9091 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9092 kmem_free(state->dts_formats, ndx * sizeof (char *));
9095 state->dts_formats = new;
9096 state->dts_formats[ndx] = fmt;
9098 return (ndx + 1);
9101 static void
9102 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9104 char *fmt;
9106 ASSERT(state->dts_formats != NULL);
9107 ASSERT(format <= state->dts_nformats);
9108 ASSERT(state->dts_formats[format - 1] != NULL);
9110 fmt = state->dts_formats[format - 1];
9111 kmem_free(fmt, strlen(fmt) + 1);
9112 state->dts_formats[format - 1] = NULL;
9115 static void
9116 dtrace_format_destroy(dtrace_state_t *state)
9118 int i;
9120 if (state->dts_nformats == 0) {
9121 ASSERT(state->dts_formats == NULL);
9122 return;
9125 ASSERT(state->dts_formats != NULL);
9127 for (i = 0; i < state->dts_nformats; i++) {
9128 char *fmt = state->dts_formats[i];
9130 if (fmt == NULL)
9131 continue;
9133 kmem_free(fmt, strlen(fmt) + 1);
9136 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9137 state->dts_nformats = 0;
9138 state->dts_formats = NULL;
9142 * DTrace Predicate Functions
9144 static dtrace_predicate_t *
9145 dtrace_predicate_create(dtrace_difo_t *dp)
9147 dtrace_predicate_t *pred;
9149 ASSERT(MUTEX_HELD(&dtrace_lock));
9150 ASSERT(dp->dtdo_refcnt != 0);
9152 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9153 pred->dtp_difo = dp;
9154 pred->dtp_refcnt = 1;
9156 if (!dtrace_difo_cacheable(dp))
9157 return (pred);
9159 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9161 * This is only theoretically possible -- we have had 2^32
9162 * cacheable predicates on this machine. We cannot allow any
9163 * more predicates to become cacheable: as unlikely as it is,
9164 * there may be a thread caching a (now stale) predicate cache
9165 * ID. (N.B.: the temptation is being successfully resisted to
9166 * have this cmn_err() "Holy shit -- we executed this code!")
9168 return (pred);
9171 pred->dtp_cacheid = dtrace_predcache_id++;
9173 return (pred);
9176 static void
9177 dtrace_predicate_hold(dtrace_predicate_t *pred)
9179 ASSERT(MUTEX_HELD(&dtrace_lock));
9180 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9181 ASSERT(pred->dtp_refcnt > 0);
9183 pred->dtp_refcnt++;
9186 static void
9187 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9189 dtrace_difo_t *dp = pred->dtp_difo;
9191 ASSERT(MUTEX_HELD(&dtrace_lock));
9192 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9193 ASSERT(pred->dtp_refcnt > 0);
9195 if (--pred->dtp_refcnt == 0) {
9196 dtrace_difo_release(pred->dtp_difo, vstate);
9197 kmem_free(pred, sizeof (dtrace_predicate_t));
9202 * DTrace Action Description Functions
9204 static dtrace_actdesc_t *
9205 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9206 uint64_t uarg, uint64_t arg)
9208 dtrace_actdesc_t *act;
9210 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9211 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9213 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9214 act->dtad_kind = kind;
9215 act->dtad_ntuple = ntuple;
9216 act->dtad_uarg = uarg;
9217 act->dtad_arg = arg;
9218 act->dtad_refcnt = 1;
9220 return (act);
9223 static void
9224 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9226 ASSERT(act->dtad_refcnt >= 1);
9227 act->dtad_refcnt++;
9230 static void
9231 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9233 dtrace_actkind_t kind = act->dtad_kind;
9234 dtrace_difo_t *dp;
9236 ASSERT(act->dtad_refcnt >= 1);
9238 if (--act->dtad_refcnt != 0)
9239 return;
9241 if ((dp = act->dtad_difo) != NULL)
9242 dtrace_difo_release(dp, vstate);
9244 if (DTRACEACT_ISPRINTFLIKE(kind)) {
9245 char *str = (char *)(uintptr_t)act->dtad_arg;
9247 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9248 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9250 if (str != NULL)
9251 kmem_free(str, strlen(str) + 1);
9254 kmem_free(act, sizeof (dtrace_actdesc_t));
9258 * DTrace ECB Functions
9260 static dtrace_ecb_t *
9261 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9263 dtrace_ecb_t *ecb;
9264 dtrace_epid_t epid;
9266 ASSERT(MUTEX_HELD(&dtrace_lock));
9268 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9269 ecb->dte_predicate = NULL;
9270 ecb->dte_probe = probe;
9273 * The default size is the size of the default action: recording
9274 * the epid.
9276 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9277 ecb->dte_alignment = sizeof (dtrace_epid_t);
9279 epid = state->dts_epid++;
9281 if (epid - 1 >= state->dts_necbs) {
9282 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9283 int necbs = state->dts_necbs << 1;
9285 ASSERT(epid == state->dts_necbs + 1);
9287 if (necbs == 0) {
9288 ASSERT(oecbs == NULL);
9289 necbs = 1;
9292 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9294 if (oecbs != NULL)
9295 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9297 dtrace_membar_producer();
9298 state->dts_ecbs = ecbs;
9300 if (oecbs != NULL) {
9302 * If this state is active, we must dtrace_sync()
9303 * before we can free the old dts_ecbs array: we're
9304 * coming in hot, and there may be active ring
9305 * buffer processing (which indexes into the dts_ecbs
9306 * array) on another CPU.
9308 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9309 dtrace_sync();
9311 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9314 dtrace_membar_producer();
9315 state->dts_necbs = necbs;
9318 ecb->dte_state = state;
9320 ASSERT(state->dts_ecbs[epid - 1] == NULL);
9321 dtrace_membar_producer();
9322 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9324 return (ecb);
9327 static int
9328 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9330 dtrace_probe_t *probe = ecb->dte_probe;
9332 ASSERT(MUTEX_HELD(&cpu_lock));
9333 ASSERT(MUTEX_HELD(&dtrace_lock));
9334 ASSERT(ecb->dte_next == NULL);
9336 if (probe == NULL) {
9338 * This is the NULL probe -- there's nothing to do.
9340 return (0);
9343 if (probe->dtpr_ecb == NULL) {
9344 dtrace_provider_t *prov = probe->dtpr_provider;
9347 * We're the first ECB on this probe.
9349 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9351 if (ecb->dte_predicate != NULL)
9352 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9354 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9355 probe->dtpr_id, probe->dtpr_arg));
9356 } else {
9358 * This probe is already active. Swing the last pointer to
9359 * point to the new ECB, and issue a dtrace_sync() to assure
9360 * that all CPUs have seen the change.
9362 ASSERT(probe->dtpr_ecb_last != NULL);
9363 probe->dtpr_ecb_last->dte_next = ecb;
9364 probe->dtpr_ecb_last = ecb;
9365 probe->dtpr_predcache = 0;
9367 dtrace_sync();
9368 return (0);
9372 static void
9373 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9375 uint32_t maxalign = sizeof (dtrace_epid_t);
9376 uint32_t align = sizeof (uint8_t), offs, diff;
9377 dtrace_action_t *act;
9378 int wastuple = 0;
9379 uint32_t aggbase = UINT32_MAX;
9380 dtrace_state_t *state = ecb->dte_state;
9383 * If we record anything, we always record the epid. (And we always
9384 * record it first.)
9386 offs = sizeof (dtrace_epid_t);
9387 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9389 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9390 dtrace_recdesc_t *rec = &act->dta_rec;
9392 if ((align = rec->dtrd_alignment) > maxalign)
9393 maxalign = align;
9395 if (!wastuple && act->dta_intuple) {
9397 * This is the first record in a tuple. Align the
9398 * offset to be at offset 4 in an 8-byte aligned
9399 * block.
9401 diff = offs + sizeof (dtrace_aggid_t);
9403 if (diff = (diff & (sizeof (uint64_t) - 1)))
9404 offs += sizeof (uint64_t) - diff;
9406 aggbase = offs - sizeof (dtrace_aggid_t);
9407 ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9410 /*LINTED*/
9411 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9413 * The current offset is not properly aligned; align it.
9415 offs += align - diff;
9418 rec->dtrd_offset = offs;
9420 if (offs + rec->dtrd_size > ecb->dte_needed) {
9421 ecb->dte_needed = offs + rec->dtrd_size;
9423 if (ecb->dte_needed > state->dts_needed)
9424 state->dts_needed = ecb->dte_needed;
9427 if (DTRACEACT_ISAGG(act->dta_kind)) {
9428 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9429 dtrace_action_t *first = agg->dtag_first, *prev;
9431 ASSERT(rec->dtrd_size != 0 && first != NULL);
9432 ASSERT(wastuple);
9433 ASSERT(aggbase != UINT32_MAX);
9435 agg->dtag_base = aggbase;
9437 while ((prev = first->dta_prev) != NULL &&
9438 DTRACEACT_ISAGG(prev->dta_kind)) {
9439 agg = (dtrace_aggregation_t *)prev;
9440 first = agg->dtag_first;
9443 if (prev != NULL) {
9444 offs = prev->dta_rec.dtrd_offset +
9445 prev->dta_rec.dtrd_size;
9446 } else {
9447 offs = sizeof (dtrace_epid_t);
9449 wastuple = 0;
9450 } else {
9451 if (!act->dta_intuple)
9452 ecb->dte_size = offs + rec->dtrd_size;
9454 offs += rec->dtrd_size;
9457 wastuple = act->dta_intuple;
9460 if ((act = ecb->dte_action) != NULL &&
9461 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9462 ecb->dte_size == sizeof (dtrace_epid_t)) {
9464 * If the size is still sizeof (dtrace_epid_t), then all
9465 * actions store no data; set the size to 0.
9467 ecb->dte_alignment = maxalign;
9468 ecb->dte_size = 0;
9471 * If the needed space is still sizeof (dtrace_epid_t), then
9472 * all actions need no additional space; set the needed
9473 * size to 0.
9475 if (ecb->dte_needed == sizeof (dtrace_epid_t))
9476 ecb->dte_needed = 0;
9478 return;
9482 * Set our alignment, and make sure that the dte_size and dte_needed
9483 * are aligned to the size of an EPID.
9485 ecb->dte_alignment = maxalign;
9486 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9487 ~(sizeof (dtrace_epid_t) - 1);
9488 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9489 ~(sizeof (dtrace_epid_t) - 1);
9490 ASSERT(ecb->dte_size <= ecb->dte_needed);
9493 static dtrace_action_t *
9494 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9496 dtrace_aggregation_t *agg;
9497 size_t size = sizeof (uint64_t);
9498 int ntuple = desc->dtad_ntuple;
9499 dtrace_action_t *act;
9500 dtrace_recdesc_t *frec;
9501 dtrace_aggid_t aggid;
9502 dtrace_state_t *state = ecb->dte_state;
9504 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9505 agg->dtag_ecb = ecb;
9507 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9509 switch (desc->dtad_kind) {
9510 case DTRACEAGG_MIN:
9511 agg->dtag_initial = INT64_MAX;
9512 agg->dtag_aggregate = dtrace_aggregate_min;
9513 break;
9515 case DTRACEAGG_MAX:
9516 agg->dtag_initial = INT64_MIN;
9517 agg->dtag_aggregate = dtrace_aggregate_max;
9518 break;
9520 case DTRACEAGG_COUNT:
9521 agg->dtag_aggregate = dtrace_aggregate_count;
9522 break;
9524 case DTRACEAGG_QUANTIZE:
9525 agg->dtag_aggregate = dtrace_aggregate_quantize;
9526 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9527 sizeof (uint64_t);
9528 break;
9530 case DTRACEAGG_LQUANTIZE: {
9531 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9532 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9534 agg->dtag_initial = desc->dtad_arg;
9535 agg->dtag_aggregate = dtrace_aggregate_lquantize;
9537 if (step == 0 || levels == 0)
9538 goto err;
9540 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9541 break;
9544 case DTRACEAGG_LLQUANTIZE: {
9545 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9546 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9547 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9548 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9549 int64_t v;
9551 agg->dtag_initial = desc->dtad_arg;
9552 agg->dtag_aggregate = dtrace_aggregate_llquantize;
9554 if (factor < 2 || low >= high || nsteps < factor)
9555 goto err;
9558 * Now check that the number of steps evenly divides a power
9559 * of the factor. (This assures both integer bucket size and
9560 * linearity within each magnitude.)
9562 for (v = factor; v < nsteps; v *= factor)
9563 continue;
9565 if ((v % nsteps) || (nsteps % factor))
9566 goto err;
9568 size = (dtrace_aggregate_llquantize_bucket(factor,
9569 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9570 break;
9573 case DTRACEAGG_AVG:
9574 agg->dtag_aggregate = dtrace_aggregate_avg;
9575 size = sizeof (uint64_t) * 2;
9576 break;
9578 case DTRACEAGG_STDDEV:
9579 agg->dtag_aggregate = dtrace_aggregate_stddev;
9580 size = sizeof (uint64_t) * 4;
9581 break;
9583 case DTRACEAGG_SUM:
9584 agg->dtag_aggregate = dtrace_aggregate_sum;
9585 break;
9587 default:
9588 goto err;
9591 agg->dtag_action.dta_rec.dtrd_size = size;
9593 if (ntuple == 0)
9594 goto err;
9597 * We must make sure that we have enough actions for the n-tuple.
9599 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9600 if (DTRACEACT_ISAGG(act->dta_kind))
9601 break;
9603 if (--ntuple == 0) {
9605 * This is the action with which our n-tuple begins.
9607 agg->dtag_first = act;
9608 goto success;
9613 * This n-tuple is short by ntuple elements. Return failure.
9615 ASSERT(ntuple != 0);
9616 err:
9617 kmem_free(agg, sizeof (dtrace_aggregation_t));
9618 return (NULL);
9620 success:
9622 * If the last action in the tuple has a size of zero, it's actually
9623 * an expression argument for the aggregating action.
9625 ASSERT(ecb->dte_action_last != NULL);
9626 act = ecb->dte_action_last;
9628 if (act->dta_kind == DTRACEACT_DIFEXPR) {
9629 ASSERT(act->dta_difo != NULL);
9631 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9632 agg->dtag_hasarg = 1;
9636 * We need to allocate an id for this aggregation.
9638 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9639 VM_BESTFIT | VM_SLEEP);
9641 if (aggid - 1 >= state->dts_naggregations) {
9642 dtrace_aggregation_t **oaggs = state->dts_aggregations;
9643 dtrace_aggregation_t **aggs;
9644 int naggs = state->dts_naggregations << 1;
9645 int onaggs = state->dts_naggregations;
9647 ASSERT(aggid == state->dts_naggregations + 1);
9649 if (naggs == 0) {
9650 ASSERT(oaggs == NULL);
9651 naggs = 1;
9654 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9656 if (oaggs != NULL) {
9657 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9658 kmem_free(oaggs, onaggs * sizeof (*aggs));
9661 state->dts_aggregations = aggs;
9662 state->dts_naggregations = naggs;
9665 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9666 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9668 frec = &agg->dtag_first->dta_rec;
9669 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9670 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9672 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9673 ASSERT(!act->dta_intuple);
9674 act->dta_intuple = 1;
9677 return (&agg->dtag_action);
9680 static void
9681 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9683 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9684 dtrace_state_t *state = ecb->dte_state;
9685 dtrace_aggid_t aggid = agg->dtag_id;
9687 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9688 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9690 ASSERT(state->dts_aggregations[aggid - 1] == agg);
9691 state->dts_aggregations[aggid - 1] = NULL;
9693 kmem_free(agg, sizeof (dtrace_aggregation_t));
9696 static int
9697 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9699 dtrace_action_t *action, *last;
9700 dtrace_difo_t *dp = desc->dtad_difo;
9701 uint32_t size = 0, align = sizeof (uint8_t), mask;
9702 uint16_t format = 0;
9703 dtrace_recdesc_t *rec;
9704 dtrace_state_t *state = ecb->dte_state;
9705 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9706 uint64_t arg = desc->dtad_arg;
9708 ASSERT(MUTEX_HELD(&dtrace_lock));
9709 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9711 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9713 * If this is an aggregating action, there must be neither
9714 * a speculate nor a commit on the action chain.
9716 dtrace_action_t *act;
9718 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9719 if (act->dta_kind == DTRACEACT_COMMIT)
9720 return (EINVAL);
9722 if (act->dta_kind == DTRACEACT_SPECULATE)
9723 return (EINVAL);
9726 action = dtrace_ecb_aggregation_create(ecb, desc);
9728 if (action == NULL)
9729 return (EINVAL);
9730 } else {
9731 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9732 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9733 dp != NULL && dp->dtdo_destructive)) {
9734 state->dts_destructive = 1;
9737 switch (desc->dtad_kind) {
9738 case DTRACEACT_PRINTF:
9739 case DTRACEACT_PRINTA:
9740 case DTRACEACT_SYSTEM:
9741 case DTRACEACT_FREOPEN:
9743 * We know that our arg is a string -- turn it into a
9744 * format.
9746 if (arg == NULL) {
9747 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9748 format = 0;
9749 } else {
9750 ASSERT(arg != NULL);
9751 ASSERT(arg > KERNELBASE);
9752 format = dtrace_format_add(state,
9753 (char *)(uintptr_t)arg);
9756 /*FALLTHROUGH*/
9757 case DTRACEACT_LIBACT:
9758 case DTRACEACT_DIFEXPR:
9759 if (dp == NULL)
9760 return (EINVAL);
9762 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9763 break;
9765 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9766 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9767 return (EINVAL);
9769 size = opt[DTRACEOPT_STRSIZE];
9772 break;
9774 case DTRACEACT_STACK:
9775 if ((nframes = arg) == 0) {
9776 nframes = opt[DTRACEOPT_STACKFRAMES];
9777 ASSERT(nframes > 0);
9778 arg = nframes;
9781 size = nframes * sizeof (pc_t);
9782 break;
9784 case DTRACEACT_JSTACK:
9785 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9786 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9788 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9789 nframes = opt[DTRACEOPT_JSTACKFRAMES];
9791 arg = DTRACE_USTACK_ARG(nframes, strsize);
9793 /*FALLTHROUGH*/
9794 case DTRACEACT_USTACK:
9795 if (desc->dtad_kind != DTRACEACT_JSTACK &&
9796 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9797 strsize = DTRACE_USTACK_STRSIZE(arg);
9798 nframes = opt[DTRACEOPT_USTACKFRAMES];
9799 ASSERT(nframes > 0);
9800 arg = DTRACE_USTACK_ARG(nframes, strsize);
9804 * Save a slot for the pid.
9806 size = (nframes + 1) * sizeof (uint64_t);
9807 size += DTRACE_USTACK_STRSIZE(arg);
9808 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9810 break;
9812 case DTRACEACT_SYM:
9813 case DTRACEACT_MOD:
9814 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9815 sizeof (uint64_t)) ||
9816 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9817 return (EINVAL);
9818 break;
9820 case DTRACEACT_USYM:
9821 case DTRACEACT_UMOD:
9822 case DTRACEACT_UADDR:
9823 if (dp == NULL ||
9824 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9825 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9826 return (EINVAL);
9829 * We have a slot for the pid, plus a slot for the
9830 * argument. To keep things simple (aligned with
9831 * bitness-neutral sizing), we store each as a 64-bit
9832 * quantity.
9834 size = 2 * sizeof (uint64_t);
9835 break;
9837 case DTRACEACT_STOP:
9838 case DTRACEACT_BREAKPOINT:
9839 case DTRACEACT_PANIC:
9840 break;
9842 case DTRACEACT_CHILL:
9843 case DTRACEACT_DISCARD:
9844 case DTRACEACT_RAISE:
9845 if (dp == NULL)
9846 return (EINVAL);
9847 break;
9849 case DTRACEACT_EXIT:
9850 if (dp == NULL ||
9851 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9852 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9853 return (EINVAL);
9854 break;
9856 case DTRACEACT_SPECULATE:
9857 if (ecb->dte_size > sizeof (dtrace_epid_t))
9858 return (EINVAL);
9860 if (dp == NULL)
9861 return (EINVAL);
9863 state->dts_speculates = 1;
9864 break;
9866 case DTRACEACT_COMMIT: {
9867 dtrace_action_t *act = ecb->dte_action;
9869 for (; act != NULL; act = act->dta_next) {
9870 if (act->dta_kind == DTRACEACT_COMMIT)
9871 return (EINVAL);
9874 if (dp == NULL)
9875 return (EINVAL);
9876 break;
9879 default:
9880 return (EINVAL);
9883 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9885 * If this is a data-storing action or a speculate,
9886 * we must be sure that there isn't a commit on the
9887 * action chain.
9889 dtrace_action_t *act = ecb->dte_action;
9891 for (; act != NULL; act = act->dta_next) {
9892 if (act->dta_kind == DTRACEACT_COMMIT)
9893 return (EINVAL);
9897 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9898 action->dta_rec.dtrd_size = size;
9901 action->dta_refcnt = 1;
9902 rec = &action->dta_rec;
9903 size = rec->dtrd_size;
9905 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9906 if (!(size & mask)) {
9907 align = mask + 1;
9908 break;
9912 action->dta_kind = desc->dtad_kind;
9914 if ((action->dta_difo = dp) != NULL)
9915 dtrace_difo_hold(dp);
9917 rec->dtrd_action = action->dta_kind;
9918 rec->dtrd_arg = arg;
9919 rec->dtrd_uarg = desc->dtad_uarg;
9920 rec->dtrd_alignment = (uint16_t)align;
9921 rec->dtrd_format = format;
9923 if ((last = ecb->dte_action_last) != NULL) {
9924 ASSERT(ecb->dte_action != NULL);
9925 action->dta_prev = last;
9926 last->dta_next = action;
9927 } else {
9928 ASSERT(ecb->dte_action == NULL);
9929 ecb->dte_action = action;
9932 ecb->dte_action_last = action;
9934 return (0);
9937 static void
9938 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9940 dtrace_action_t *act = ecb->dte_action, *next;
9941 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9942 dtrace_difo_t *dp;
9943 uint16_t format;
9945 if (act != NULL && act->dta_refcnt > 1) {
9946 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9947 act->dta_refcnt--;
9948 } else {
9949 for (; act != NULL; act = next) {
9950 next = act->dta_next;
9951 ASSERT(next != NULL || act == ecb->dte_action_last);
9952 ASSERT(act->dta_refcnt == 1);
9954 if ((format = act->dta_rec.dtrd_format) != 0)
9955 dtrace_format_remove(ecb->dte_state, format);
9957 if ((dp = act->dta_difo) != NULL)
9958 dtrace_difo_release(dp, vstate);
9960 if (DTRACEACT_ISAGG(act->dta_kind)) {
9961 dtrace_ecb_aggregation_destroy(ecb, act);
9962 } else {
9963 kmem_free(act, sizeof (dtrace_action_t));
9968 ecb->dte_action = NULL;
9969 ecb->dte_action_last = NULL;
9970 ecb->dte_size = sizeof (dtrace_epid_t);
9973 static void
9974 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9977 * We disable the ECB by removing it from its probe.
9979 dtrace_ecb_t *pecb, *prev = NULL;
9980 dtrace_probe_t *probe = ecb->dte_probe;
9982 ASSERT(MUTEX_HELD(&dtrace_lock));
9984 if (probe == NULL) {
9986 * This is the NULL probe; there is nothing to disable.
9988 return;
9991 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9992 if (pecb == ecb)
9993 break;
9994 prev = pecb;
9997 ASSERT(pecb != NULL);
9999 if (prev == NULL) {
10000 probe->dtpr_ecb = ecb->dte_next;
10001 } else {
10002 prev->dte_next = ecb->dte_next;
10005 if (ecb == probe->dtpr_ecb_last) {
10006 ASSERT(ecb->dte_next == NULL);
10007 probe->dtpr_ecb_last = prev;
10011 * The ECB has been disconnected from the probe; now sync to assure
10012 * that all CPUs have seen the change before returning.
10014 dtrace_sync();
10016 if (probe->dtpr_ecb == NULL) {
10018 * That was the last ECB on the probe; clear the predicate
10019 * cache ID for the probe, disable it and sync one more time
10020 * to assure that we'll never hit it again.
10022 dtrace_provider_t *prov = probe->dtpr_provider;
10024 ASSERT(ecb->dte_next == NULL);
10025 ASSERT(probe->dtpr_ecb_last == NULL);
10026 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10027 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10028 probe->dtpr_id, probe->dtpr_arg);
10029 dtrace_sync();
10030 } else {
10032 * There is at least one ECB remaining on the probe. If there
10033 * is _exactly_ one, set the probe's predicate cache ID to be
10034 * the predicate cache ID of the remaining ECB.
10036 ASSERT(probe->dtpr_ecb_last != NULL);
10037 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10039 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10040 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10042 ASSERT(probe->dtpr_ecb->dte_next == NULL);
10044 if (p != NULL)
10045 probe->dtpr_predcache = p->dtp_cacheid;
10048 ecb->dte_next = NULL;
10052 static void
10053 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10055 dtrace_state_t *state = ecb->dte_state;
10056 dtrace_vstate_t *vstate = &state->dts_vstate;
10057 dtrace_predicate_t *pred;
10058 dtrace_epid_t epid = ecb->dte_epid;
10060 ASSERT(MUTEX_HELD(&dtrace_lock));
10061 ASSERT(ecb->dte_next == NULL);
10062 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10064 if ((pred = ecb->dte_predicate) != NULL)
10065 dtrace_predicate_release(pred, vstate);
10067 dtrace_ecb_action_remove(ecb);
10069 ASSERT(state->dts_ecbs[epid - 1] == ecb);
10070 state->dts_ecbs[epid - 1] = NULL;
10072 kmem_free(ecb, sizeof (dtrace_ecb_t));
10075 static dtrace_ecb_t *
10076 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10077 dtrace_enabling_t *enab)
10079 dtrace_ecb_t *ecb;
10080 dtrace_predicate_t *pred;
10081 dtrace_actdesc_t *act;
10082 dtrace_provider_t *prov;
10083 dtrace_ecbdesc_t *desc = enab->dten_current;
10085 ASSERT(MUTEX_HELD(&dtrace_lock));
10086 ASSERT(state != NULL);
10088 ecb = dtrace_ecb_add(state, probe);
10089 ecb->dte_uarg = desc->dted_uarg;
10091 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10092 dtrace_predicate_hold(pred);
10093 ecb->dte_predicate = pred;
10096 if (probe != NULL) {
10098 * If the provider shows more leg than the consumer is old
10099 * enough to see, we need to enable the appropriate implicit
10100 * predicate bits to prevent the ecb from activating at
10101 * revealing times.
10103 * Providers specifying DTRACE_PRIV_USER at register time
10104 * are stating that they need the /proc-style privilege
10105 * model to be enforced, and this is what DTRACE_COND_OWNER
10106 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10108 prov = probe->dtpr_provider;
10109 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10110 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10111 ecb->dte_cond |= DTRACE_COND_OWNER;
10113 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10114 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10115 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10118 * If the provider shows us kernel innards and the user
10119 * is lacking sufficient privilege, enable the
10120 * DTRACE_COND_USERMODE implicit predicate.
10122 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10123 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10124 ecb->dte_cond |= DTRACE_COND_USERMODE;
10127 if (dtrace_ecb_create_cache != NULL) {
10129 * If we have a cached ecb, we'll use its action list instead
10130 * of creating our own (saving both time and space).
10132 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10133 dtrace_action_t *act = cached->dte_action;
10135 if (act != NULL) {
10136 ASSERT(act->dta_refcnt > 0);
10137 act->dta_refcnt++;
10138 ecb->dte_action = act;
10139 ecb->dte_action_last = cached->dte_action_last;
10140 ecb->dte_needed = cached->dte_needed;
10141 ecb->dte_size = cached->dte_size;
10142 ecb->dte_alignment = cached->dte_alignment;
10145 return (ecb);
10148 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10149 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10150 dtrace_ecb_destroy(ecb);
10151 return (NULL);
10155 dtrace_ecb_resize(ecb);
10157 return (dtrace_ecb_create_cache = ecb);
10160 static int
10161 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10163 dtrace_ecb_t *ecb;
10164 dtrace_enabling_t *enab = arg;
10165 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10167 ASSERT(state != NULL);
10169 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10171 * This probe was created in a generation for which this
10172 * enabling has previously created ECBs; we don't want to
10173 * enable it again, so just kick out.
10175 return (DTRACE_MATCH_NEXT);
10178 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10179 return (DTRACE_MATCH_DONE);
10181 if (dtrace_ecb_enable(ecb) < 0)
10182 return (DTRACE_MATCH_FAIL);
10184 return (DTRACE_MATCH_NEXT);
10187 static dtrace_ecb_t *
10188 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10190 dtrace_ecb_t *ecb;
10192 ASSERT(MUTEX_HELD(&dtrace_lock));
10194 if (id == 0 || id > state->dts_necbs)
10195 return (NULL);
10197 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10198 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10200 return (state->dts_ecbs[id - 1]);
10203 static dtrace_aggregation_t *
10204 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10206 dtrace_aggregation_t *agg;
10208 ASSERT(MUTEX_HELD(&dtrace_lock));
10210 if (id == 0 || id > state->dts_naggregations)
10211 return (NULL);
10213 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10214 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10215 agg->dtag_id == id);
10217 return (state->dts_aggregations[id - 1]);
10221 * DTrace Buffer Functions
10223 * The following functions manipulate DTrace buffers. Most of these functions
10224 * are called in the context of establishing or processing consumer state;
10225 * exceptions are explicitly noted.
10229 * Note: called from cross call context. This function switches the two
10230 * buffers on a given CPU. The atomicity of this operation is assured by
10231 * disabling interrupts while the actual switch takes place; the disabling of
10232 * interrupts serializes the execution with any execution of dtrace_probe() on
10233 * the same CPU.
10235 static void
10236 dtrace_buffer_switch(dtrace_buffer_t *buf)
10238 caddr_t tomax = buf->dtb_tomax;
10239 caddr_t xamot = buf->dtb_xamot;
10240 dtrace_icookie_t cookie;
10241 hrtime_t now = dtrace_gethrtime();
10243 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10244 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10246 cookie = dtrace_interrupt_disable();
10247 buf->dtb_tomax = xamot;
10248 buf->dtb_xamot = tomax;
10249 buf->dtb_xamot_drops = buf->dtb_drops;
10250 buf->dtb_xamot_offset = buf->dtb_offset;
10251 buf->dtb_xamot_errors = buf->dtb_errors;
10252 buf->dtb_xamot_flags = buf->dtb_flags;
10253 buf->dtb_offset = 0;
10254 buf->dtb_drops = 0;
10255 buf->dtb_errors = 0;
10256 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10257 buf->dtb_interval = now - buf->dtb_switched;
10258 buf->dtb_switched = now;
10259 dtrace_interrupt_enable(cookie);
10263 * Note: called from cross call context. This function activates a buffer
10264 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
10265 * is guaranteed by the disabling of interrupts.
10267 static void
10268 dtrace_buffer_activate(dtrace_state_t *state)
10270 dtrace_buffer_t *buf;
10271 dtrace_icookie_t cookie = dtrace_interrupt_disable();
10273 buf = &state->dts_buffer[CPU->cpu_id];
10275 if (buf->dtb_tomax != NULL) {
10277 * We might like to assert that the buffer is marked inactive,
10278 * but this isn't necessarily true: the buffer for the CPU
10279 * that processes the BEGIN probe has its buffer activated
10280 * manually. In this case, we take the (harmless) action
10281 * re-clearing the bit INACTIVE bit.
10283 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10286 dtrace_interrupt_enable(cookie);
10289 static int
10290 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10291 processorid_t cpu, int *factor)
10293 cpu_t *cp;
10294 dtrace_buffer_t *buf;
10295 int allocated = 0, desired = 0;
10297 ASSERT(MUTEX_HELD(&cpu_lock));
10298 ASSERT(MUTEX_HELD(&dtrace_lock));
10300 *factor = 1;
10302 if (size > dtrace_nonroot_maxsize &&
10303 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10304 return (EFBIG);
10306 cp = cpu_list;
10308 do {
10309 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10310 continue;
10312 buf = &bufs[cp->cpu_id];
10315 * If there is already a buffer allocated for this CPU, it
10316 * is only possible that this is a DR event. In this case,
10317 * the buffer size must match our specified size.
10319 if (buf->dtb_tomax != NULL) {
10320 ASSERT(buf->dtb_size == size);
10321 continue;
10324 ASSERT(buf->dtb_xamot == NULL);
10326 if ((buf->dtb_tomax = kmem_zalloc(size,
10327 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10328 goto err;
10330 buf->dtb_size = size;
10331 buf->dtb_flags = flags;
10332 buf->dtb_offset = 0;
10333 buf->dtb_drops = 0;
10335 if (flags & DTRACEBUF_NOSWITCH)
10336 continue;
10338 if ((buf->dtb_xamot = kmem_zalloc(size,
10339 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10340 goto err;
10341 } while ((cp = cp->cpu_next) != cpu_list);
10343 return (0);
10345 err:
10346 cp = cpu_list;
10348 do {
10349 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10350 continue;
10352 buf = &bufs[cp->cpu_id];
10353 desired += 2;
10355 if (buf->dtb_xamot != NULL) {
10356 ASSERT(buf->dtb_tomax != NULL);
10357 ASSERT(buf->dtb_size == size);
10358 kmem_free(buf->dtb_xamot, size);
10359 allocated++;
10362 if (buf->dtb_tomax != NULL) {
10363 ASSERT(buf->dtb_size == size);
10364 kmem_free(buf->dtb_tomax, size);
10365 allocated++;
10368 buf->dtb_tomax = NULL;
10369 buf->dtb_xamot = NULL;
10370 buf->dtb_size = 0;
10371 } while ((cp = cp->cpu_next) != cpu_list);
10373 *factor = desired / (allocated > 0 ? allocated : 1);
10375 return (ENOMEM);
10379 * Note: called from probe context. This function just increments the drop
10380 * count on a buffer. It has been made a function to allow for the
10381 * possibility of understanding the source of mysterious drop counts. (A
10382 * problem for which one may be particularly disappointed that DTrace cannot
10383 * be used to understand DTrace.)
10385 static void
10386 dtrace_buffer_drop(dtrace_buffer_t *buf)
10388 buf->dtb_drops++;
10392 * Note: called from probe context. This function is called to reserve space
10393 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
10394 * mstate. Returns the new offset in the buffer, or a negative value if an
10395 * error has occurred.
10397 static intptr_t
10398 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10399 dtrace_state_t *state, dtrace_mstate_t *mstate)
10401 intptr_t offs = buf->dtb_offset, soffs;
10402 intptr_t woffs;
10403 caddr_t tomax;
10404 size_t total;
10406 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10407 return (-1);
10409 if ((tomax = buf->dtb_tomax) == NULL) {
10410 dtrace_buffer_drop(buf);
10411 return (-1);
10414 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10415 while (offs & (align - 1)) {
10417 * Assert that our alignment is off by a number which
10418 * is itself sizeof (uint32_t) aligned.
10420 ASSERT(!((align - (offs & (align - 1))) &
10421 (sizeof (uint32_t) - 1)));
10422 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10423 offs += sizeof (uint32_t);
10426 if ((soffs = offs + needed) > buf->dtb_size) {
10427 dtrace_buffer_drop(buf);
10428 return (-1);
10431 if (mstate == NULL)
10432 return (offs);
10434 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10435 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10436 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10438 return (offs);
10441 if (buf->dtb_flags & DTRACEBUF_FILL) {
10442 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10443 (buf->dtb_flags & DTRACEBUF_FULL))
10444 return (-1);
10445 goto out;
10448 total = needed + (offs & (align - 1));
10451 * For a ring buffer, life is quite a bit more complicated. Before
10452 * we can store any padding, we need to adjust our wrapping offset.
10453 * (If we've never before wrapped or we're not about to, no adjustment
10454 * is required.)
10456 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10457 offs + total > buf->dtb_size) {
10458 woffs = buf->dtb_xamot_offset;
10460 if (offs + total > buf->dtb_size) {
10462 * We can't fit in the end of the buffer. First, a
10463 * sanity check that we can fit in the buffer at all.
10465 if (total > buf->dtb_size) {
10466 dtrace_buffer_drop(buf);
10467 return (-1);
10471 * We're going to be storing at the top of the buffer,
10472 * so now we need to deal with the wrapped offset. We
10473 * only reset our wrapped offset to 0 if it is
10474 * currently greater than the current offset. If it
10475 * is less than the current offset, it is because a
10476 * previous allocation induced a wrap -- but the
10477 * allocation didn't subsequently take the space due
10478 * to an error or false predicate evaluation. In this
10479 * case, we'll just leave the wrapped offset alone: if
10480 * the wrapped offset hasn't been advanced far enough
10481 * for this allocation, it will be adjusted in the
10482 * lower loop.
10484 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10485 if (woffs >= offs)
10486 woffs = 0;
10487 } else {
10488 woffs = 0;
10492 * Now we know that we're going to be storing to the
10493 * top of the buffer and that there is room for us
10494 * there. We need to clear the buffer from the current
10495 * offset to the end (there may be old gunk there).
10497 while (offs < buf->dtb_size)
10498 tomax[offs++] = 0;
10501 * We need to set our offset to zero. And because we
10502 * are wrapping, we need to set the bit indicating as
10503 * much. We can also adjust our needed space back
10504 * down to the space required by the ECB -- we know
10505 * that the top of the buffer is aligned.
10507 offs = 0;
10508 total = needed;
10509 buf->dtb_flags |= DTRACEBUF_WRAPPED;
10510 } else {
10512 * There is room for us in the buffer, so we simply
10513 * need to check the wrapped offset.
10515 if (woffs < offs) {
10517 * The wrapped offset is less than the offset.
10518 * This can happen if we allocated buffer space
10519 * that induced a wrap, but then we didn't
10520 * subsequently take the space due to an error
10521 * or false predicate evaluation. This is
10522 * okay; we know that _this_ allocation isn't
10523 * going to induce a wrap. We still can't
10524 * reset the wrapped offset to be zero,
10525 * however: the space may have been trashed in
10526 * the previous failed probe attempt. But at
10527 * least the wrapped offset doesn't need to
10528 * be adjusted at all...
10530 goto out;
10534 while (offs + total > woffs) {
10535 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10536 size_t size;
10538 if (epid == DTRACE_EPIDNONE) {
10539 size = sizeof (uint32_t);
10540 } else {
10541 ASSERT(epid <= state->dts_necbs);
10542 ASSERT(state->dts_ecbs[epid - 1] != NULL);
10544 size = state->dts_ecbs[epid - 1]->dte_size;
10547 ASSERT(woffs + size <= buf->dtb_size);
10548 ASSERT(size != 0);
10550 if (woffs + size == buf->dtb_size) {
10552 * We've reached the end of the buffer; we want
10553 * to set the wrapped offset to 0 and break
10554 * out. However, if the offs is 0, then we're
10555 * in a strange edge-condition: the amount of
10556 * space that we want to reserve plus the size
10557 * of the record that we're overwriting is
10558 * greater than the size of the buffer. This
10559 * is problematic because if we reserve the
10560 * space but subsequently don't consume it (due
10561 * to a failed predicate or error) the wrapped
10562 * offset will be 0 -- yet the EPID at offset 0
10563 * will not be committed. This situation is
10564 * relatively easy to deal with: if we're in
10565 * this case, the buffer is indistinguishable
10566 * from one that hasn't wrapped; we need only
10567 * finish the job by clearing the wrapped bit,
10568 * explicitly setting the offset to be 0, and
10569 * zero'ing out the old data in the buffer.
10571 if (offs == 0) {
10572 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10573 buf->dtb_offset = 0;
10574 woffs = total;
10576 while (woffs < buf->dtb_size)
10577 tomax[woffs++] = 0;
10580 woffs = 0;
10581 break;
10584 woffs += size;
10588 * We have a wrapped offset. It may be that the wrapped offset
10589 * has become zero -- that's okay.
10591 buf->dtb_xamot_offset = woffs;
10594 out:
10596 * Now we can plow the buffer with any necessary padding.
10598 while (offs & (align - 1)) {
10600 * Assert that our alignment is off by a number which
10601 * is itself sizeof (uint32_t) aligned.
10603 ASSERT(!((align - (offs & (align - 1))) &
10604 (sizeof (uint32_t) - 1)));
10605 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10606 offs += sizeof (uint32_t);
10609 if (buf->dtb_flags & DTRACEBUF_FILL) {
10610 if (offs + needed > buf->dtb_size - state->dts_reserve) {
10611 buf->dtb_flags |= DTRACEBUF_FULL;
10612 return (-1);
10616 if (mstate == NULL)
10617 return (offs);
10620 * For ring buffers and fill buffers, the scratch space is always
10621 * the inactive buffer.
10623 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10624 mstate->dtms_scratch_size = buf->dtb_size;
10625 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10627 return (offs);
10630 static void
10631 dtrace_buffer_polish(dtrace_buffer_t *buf)
10633 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10634 ASSERT(MUTEX_HELD(&dtrace_lock));
10636 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10637 return;
10640 * We need to polish the ring buffer. There are three cases:
10642 * - The first (and presumably most common) is that there is no gap
10643 * between the buffer offset and the wrapped offset. In this case,
10644 * there is nothing in the buffer that isn't valid data; we can
10645 * mark the buffer as polished and return.
10647 * - The second (less common than the first but still more common
10648 * than the third) is that there is a gap between the buffer offset
10649 * and the wrapped offset, and the wrapped offset is larger than the
10650 * buffer offset. This can happen because of an alignment issue, or
10651 * can happen because of a call to dtrace_buffer_reserve() that
10652 * didn't subsequently consume the buffer space. In this case,
10653 * we need to zero the data from the buffer offset to the wrapped
10654 * offset.
10656 * - The third (and least common) is that there is a gap between the
10657 * buffer offset and the wrapped offset, but the wrapped offset is
10658 * _less_ than the buffer offset. This can only happen because a
10659 * call to dtrace_buffer_reserve() induced a wrap, but the space
10660 * was not subsequently consumed. In this case, we need to zero the
10661 * space from the offset to the end of the buffer _and_ from the
10662 * top of the buffer to the wrapped offset.
10664 if (buf->dtb_offset < buf->dtb_xamot_offset) {
10665 bzero(buf->dtb_tomax + buf->dtb_offset,
10666 buf->dtb_xamot_offset - buf->dtb_offset);
10669 if (buf->dtb_offset > buf->dtb_xamot_offset) {
10670 bzero(buf->dtb_tomax + buf->dtb_offset,
10671 buf->dtb_size - buf->dtb_offset);
10672 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10677 * This routine determines if data generated at the specified time has likely
10678 * been entirely consumed at user-level. This routine is called to determine
10679 * if an ECB on a defunct probe (but for an active enabling) can be safely
10680 * disabled and destroyed.
10682 static int
10683 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10685 int i;
10687 for (i = 0; i < NCPU; i++) {
10688 dtrace_buffer_t *buf = &bufs[i];
10690 if (buf->dtb_size == 0)
10691 continue;
10693 if (buf->dtb_flags & DTRACEBUF_RING)
10694 return (0);
10696 if (!buf->dtb_switched && buf->dtb_offset != 0)
10697 return (0);
10699 if (buf->dtb_switched - buf->dtb_interval < when)
10700 return (0);
10703 return (1);
10706 static void
10707 dtrace_buffer_free(dtrace_buffer_t *bufs)
10709 int i;
10711 for (i = 0; i < NCPU; i++) {
10712 dtrace_buffer_t *buf = &bufs[i];
10714 if (buf->dtb_tomax == NULL) {
10715 ASSERT(buf->dtb_xamot == NULL);
10716 ASSERT(buf->dtb_size == 0);
10717 continue;
10720 if (buf->dtb_xamot != NULL) {
10721 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10722 kmem_free(buf->dtb_xamot, buf->dtb_size);
10725 kmem_free(buf->dtb_tomax, buf->dtb_size);
10726 buf->dtb_size = 0;
10727 buf->dtb_tomax = NULL;
10728 buf->dtb_xamot = NULL;
10733 * DTrace Enabling Functions
10735 static dtrace_enabling_t *
10736 dtrace_enabling_create(dtrace_vstate_t *vstate)
10738 dtrace_enabling_t *enab;
10740 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10741 enab->dten_vstate = vstate;
10743 return (enab);
10746 static void
10747 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10749 dtrace_ecbdesc_t **ndesc;
10750 size_t osize, nsize;
10753 * We can't add to enablings after we've enabled them, or after we've
10754 * retained them.
10756 ASSERT(enab->dten_probegen == 0);
10757 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10759 if (enab->dten_ndesc < enab->dten_maxdesc) {
10760 enab->dten_desc[enab->dten_ndesc++] = ecb;
10761 return;
10764 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10766 if (enab->dten_maxdesc == 0) {
10767 enab->dten_maxdesc = 1;
10768 } else {
10769 enab->dten_maxdesc <<= 1;
10772 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10774 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10775 ndesc = kmem_zalloc(nsize, KM_SLEEP);
10776 bcopy(enab->dten_desc, ndesc, osize);
10777 kmem_free(enab->dten_desc, osize);
10779 enab->dten_desc = ndesc;
10780 enab->dten_desc[enab->dten_ndesc++] = ecb;
10783 static void
10784 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10785 dtrace_probedesc_t *pd)
10787 dtrace_ecbdesc_t *new;
10788 dtrace_predicate_t *pred;
10789 dtrace_actdesc_t *act;
10792 * We're going to create a new ECB description that matches the
10793 * specified ECB in every way, but has the specified probe description.
10795 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10797 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10798 dtrace_predicate_hold(pred);
10800 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10801 dtrace_actdesc_hold(act);
10803 new->dted_action = ecb->dted_action;
10804 new->dted_pred = ecb->dted_pred;
10805 new->dted_probe = *pd;
10806 new->dted_uarg = ecb->dted_uarg;
10808 dtrace_enabling_add(enab, new);
10811 static void
10812 dtrace_enabling_dump(dtrace_enabling_t *enab)
10814 int i;
10816 for (i = 0; i < enab->dten_ndesc; i++) {
10817 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10819 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10820 desc->dtpd_provider, desc->dtpd_mod,
10821 desc->dtpd_func, desc->dtpd_name);
10825 static void
10826 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10828 int i;
10829 dtrace_ecbdesc_t *ep;
10830 dtrace_vstate_t *vstate = enab->dten_vstate;
10832 ASSERT(MUTEX_HELD(&dtrace_lock));
10834 for (i = 0; i < enab->dten_ndesc; i++) {
10835 dtrace_actdesc_t *act, *next;
10836 dtrace_predicate_t *pred;
10838 ep = enab->dten_desc[i];
10840 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10841 dtrace_predicate_release(pred, vstate);
10843 for (act = ep->dted_action; act != NULL; act = next) {
10844 next = act->dtad_next;
10845 dtrace_actdesc_release(act, vstate);
10848 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10851 kmem_free(enab->dten_desc,
10852 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10855 * If this was a retained enabling, decrement the dts_nretained count
10856 * and take it off of the dtrace_retained list.
10858 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10859 dtrace_retained == enab) {
10860 ASSERT(enab->dten_vstate->dtvs_state != NULL);
10861 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10862 enab->dten_vstate->dtvs_state->dts_nretained--;
10863 dtrace_retained_gen++;
10866 if (enab->dten_prev == NULL) {
10867 if (dtrace_retained == enab) {
10868 dtrace_retained = enab->dten_next;
10870 if (dtrace_retained != NULL)
10871 dtrace_retained->dten_prev = NULL;
10873 } else {
10874 ASSERT(enab != dtrace_retained);
10875 ASSERT(dtrace_retained != NULL);
10876 enab->dten_prev->dten_next = enab->dten_next;
10879 if (enab->dten_next != NULL) {
10880 ASSERT(dtrace_retained != NULL);
10881 enab->dten_next->dten_prev = enab->dten_prev;
10884 kmem_free(enab, sizeof (dtrace_enabling_t));
10887 static int
10888 dtrace_enabling_retain(dtrace_enabling_t *enab)
10890 dtrace_state_t *state;
10892 ASSERT(MUTEX_HELD(&dtrace_lock));
10893 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10894 ASSERT(enab->dten_vstate != NULL);
10896 state = enab->dten_vstate->dtvs_state;
10897 ASSERT(state != NULL);
10900 * We only allow each state to retain dtrace_retain_max enablings.
10902 if (state->dts_nretained >= dtrace_retain_max)
10903 return (ENOSPC);
10905 state->dts_nretained++;
10906 dtrace_retained_gen++;
10908 if (dtrace_retained == NULL) {
10909 dtrace_retained = enab;
10910 return (0);
10913 enab->dten_next = dtrace_retained;
10914 dtrace_retained->dten_prev = enab;
10915 dtrace_retained = enab;
10917 return (0);
10920 static int
10921 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10922 dtrace_probedesc_t *create)
10924 dtrace_enabling_t *new, *enab;
10925 int found = 0, err = ENOENT;
10927 ASSERT(MUTEX_HELD(&dtrace_lock));
10928 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10929 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10930 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10931 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10933 new = dtrace_enabling_create(&state->dts_vstate);
10936 * Iterate over all retained enablings, looking for enablings that
10937 * match the specified state.
10939 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10940 int i;
10943 * dtvs_state can only be NULL for helper enablings -- and
10944 * helper enablings can't be retained.
10946 ASSERT(enab->dten_vstate->dtvs_state != NULL);
10948 if (enab->dten_vstate->dtvs_state != state)
10949 continue;
10952 * Now iterate over each probe description; we're looking for
10953 * an exact match to the specified probe description.
10955 for (i = 0; i < enab->dten_ndesc; i++) {
10956 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10957 dtrace_probedesc_t *pd = &ep->dted_probe;
10959 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10960 continue;
10962 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10963 continue;
10965 if (strcmp(pd->dtpd_func, match->dtpd_func))
10966 continue;
10968 if (strcmp(pd->dtpd_name, match->dtpd_name))
10969 continue;
10972 * We have a winning probe! Add it to our growing
10973 * enabling.
10975 found = 1;
10976 dtrace_enabling_addlike(new, ep, create);
10980 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10981 dtrace_enabling_destroy(new);
10982 return (err);
10985 return (0);
10988 static void
10989 dtrace_enabling_retract(dtrace_state_t *state)
10991 dtrace_enabling_t *enab, *next;
10993 ASSERT(MUTEX_HELD(&dtrace_lock));
10996 * Iterate over all retained enablings, destroy the enablings retained
10997 * for the specified state.
10999 for (enab = dtrace_retained; enab != NULL; enab = next) {
11000 next = enab->dten_next;
11003 * dtvs_state can only be NULL for helper enablings -- and
11004 * helper enablings can't be retained.
11006 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11008 if (enab->dten_vstate->dtvs_state == state) {
11009 ASSERT(state->dts_nretained > 0);
11010 dtrace_enabling_destroy(enab);
11014 ASSERT(state->dts_nretained == 0);
11017 static int
11018 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11020 int i = 0;
11021 int total_matched = 0, matched = 0;
11023 ASSERT(MUTEX_HELD(&cpu_lock));
11024 ASSERT(MUTEX_HELD(&dtrace_lock));
11026 for (i = 0; i < enab->dten_ndesc; i++) {
11027 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11029 enab->dten_current = ep;
11030 enab->dten_error = 0;
11033 * If a provider failed to enable a probe then get out and
11034 * let the consumer know we failed.
11036 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11037 return (EBUSY);
11039 total_matched += matched;
11041 if (enab->dten_error != 0) {
11043 * If we get an error half-way through enabling the
11044 * probes, we kick out -- perhaps with some number of
11045 * them enabled. Leaving enabled probes enabled may
11046 * be slightly confusing for user-level, but we expect
11047 * that no one will attempt to actually drive on in
11048 * the face of such errors. If this is an anonymous
11049 * enabling (indicated with a NULL nmatched pointer),
11050 * we cmn_err() a message. We aren't expecting to
11051 * get such an error -- such as it can exist at all,
11052 * it would be a result of corrupted DOF in the driver
11053 * properties.
11055 if (nmatched == NULL) {
11056 cmn_err(CE_WARN, "dtrace_enabling_match() "
11057 "error on %p: %d", (void *)ep,
11058 enab->dten_error);
11061 return (enab->dten_error);
11065 enab->dten_probegen = dtrace_probegen;
11066 if (nmatched != NULL)
11067 *nmatched = total_matched;
11069 return (0);
11072 static void
11073 dtrace_enabling_matchall(void)
11075 dtrace_enabling_t *enab;
11077 mutex_enter(&cpu_lock);
11078 mutex_enter(&dtrace_lock);
11081 * Iterate over all retained enablings to see if any probes match
11082 * against them. We only perform this operation on enablings for which
11083 * we have sufficient permissions by virtue of being in the global zone
11084 * or in the same zone as the DTrace client. Because we can be called
11085 * after dtrace_detach() has been called, we cannot assert that there
11086 * are retained enablings. We can safely load from dtrace_retained,
11087 * however: the taskq_destroy() at the end of dtrace_detach() will
11088 * block pending our completion.
11090 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11091 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11092 cred_t *cr = dcr->dcr_cred;
11093 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
11095 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11096 (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11097 (void) dtrace_enabling_match(enab, NULL);
11100 mutex_exit(&dtrace_lock);
11101 mutex_exit(&cpu_lock);
11105 * If an enabling is to be enabled without having matched probes (that is, if
11106 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11107 * enabling must be _primed_ by creating an ECB for every ECB description.
11108 * This must be done to assure that we know the number of speculations, the
11109 * number of aggregations, the minimum buffer size needed, etc. before we
11110 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11111 * enabling any probes, we create ECBs for every ECB decription, but with a
11112 * NULL probe -- which is exactly what this function does.
11114 static void
11115 dtrace_enabling_prime(dtrace_state_t *state)
11117 dtrace_enabling_t *enab;
11118 int i;
11120 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11121 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11123 if (enab->dten_vstate->dtvs_state != state)
11124 continue;
11127 * We don't want to prime an enabling more than once, lest
11128 * we allow a malicious user to induce resource exhaustion.
11129 * (The ECBs that result from priming an enabling aren't
11130 * leaked -- but they also aren't deallocated until the
11131 * consumer state is destroyed.)
11133 if (enab->dten_primed)
11134 continue;
11136 for (i = 0; i < enab->dten_ndesc; i++) {
11137 enab->dten_current = enab->dten_desc[i];
11138 (void) dtrace_probe_enable(NULL, enab);
11141 enab->dten_primed = 1;
11146 * Called to indicate that probes should be provided due to retained
11147 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
11148 * must take an initial lap through the enabling calling the dtps_provide()
11149 * entry point explicitly to allow for autocreated probes.
11151 static void
11152 dtrace_enabling_provide(dtrace_provider_t *prv)
11154 int i, all = 0;
11155 dtrace_probedesc_t desc;
11156 dtrace_genid_t gen;
11158 ASSERT(MUTEX_HELD(&dtrace_lock));
11159 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11161 if (prv == NULL) {
11162 all = 1;
11163 prv = dtrace_provider;
11166 do {
11167 dtrace_enabling_t *enab;
11168 void *parg = prv->dtpv_arg;
11170 retry:
11171 gen = dtrace_retained_gen;
11172 for (enab = dtrace_retained; enab != NULL;
11173 enab = enab->dten_next) {
11174 for (i = 0; i < enab->dten_ndesc; i++) {
11175 desc = enab->dten_desc[i]->dted_probe;
11176 mutex_exit(&dtrace_lock);
11177 prv->dtpv_pops.dtps_provide(parg, &desc);
11178 mutex_enter(&dtrace_lock);
11180 * Process the retained enablings again if
11181 * they have changed while we weren't holding
11182 * dtrace_lock.
11184 if (gen != dtrace_retained_gen)
11185 goto retry;
11188 } while (all && (prv = prv->dtpv_next) != NULL);
11190 mutex_exit(&dtrace_lock);
11191 dtrace_probe_provide(NULL, all ? NULL : prv);
11192 mutex_enter(&dtrace_lock);
11196 * Called to reap ECBs that are attached to probes from defunct providers.
11198 static void
11199 dtrace_enabling_reap(void)
11201 dtrace_provider_t *prov;
11202 dtrace_probe_t *probe;
11203 dtrace_ecb_t *ecb;
11204 hrtime_t when;
11205 int i;
11207 mutex_enter(&cpu_lock);
11208 mutex_enter(&dtrace_lock);
11210 for (i = 0; i < dtrace_nprobes; i++) {
11211 if ((probe = dtrace_probes[i]) == NULL)
11212 continue;
11214 if (probe->dtpr_ecb == NULL)
11215 continue;
11217 prov = probe->dtpr_provider;
11219 if ((when = prov->dtpv_defunct) == 0)
11220 continue;
11223 * We have ECBs on a defunct provider: we want to reap these
11224 * ECBs to allow the provider to unregister. The destruction
11225 * of these ECBs must be done carefully: if we destroy the ECB
11226 * and the consumer later wishes to consume an EPID that
11227 * corresponds to the destroyed ECB (and if the EPID metadata
11228 * has not been previously consumed), the consumer will abort
11229 * processing on the unknown EPID. To reduce (but not, sadly,
11230 * eliminate) the possibility of this, we will only destroy an
11231 * ECB for a defunct provider if, for the state that
11232 * corresponds to the ECB:
11234 * (a) There is no speculative tracing (which can effectively
11235 * cache an EPID for an arbitrary amount of time).
11237 * (b) The principal buffers have been switched twice since the
11238 * provider became defunct.
11240 * (c) The aggregation buffers are of zero size or have been
11241 * switched twice since the provider became defunct.
11243 * We use dts_speculates to determine (a) and call a function
11244 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
11245 * that as soon as we've been unable to destroy one of the ECBs
11246 * associated with the probe, we quit trying -- reaping is only
11247 * fruitful in as much as we can destroy all ECBs associated
11248 * with the defunct provider's probes.
11250 while ((ecb = probe->dtpr_ecb) != NULL) {
11251 dtrace_state_t *state = ecb->dte_state;
11252 dtrace_buffer_t *buf = state->dts_buffer;
11253 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11255 if (state->dts_speculates)
11256 break;
11258 if (!dtrace_buffer_consumed(buf, when))
11259 break;
11261 if (!dtrace_buffer_consumed(aggbuf, when))
11262 break;
11264 dtrace_ecb_disable(ecb);
11265 ASSERT(probe->dtpr_ecb != ecb);
11266 dtrace_ecb_destroy(ecb);
11270 mutex_exit(&dtrace_lock);
11271 mutex_exit(&cpu_lock);
11275 * DTrace DOF Functions
11277 /*ARGSUSED*/
11278 static void
11279 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11281 if (dtrace_err_verbose)
11282 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11284 #ifdef DTRACE_ERRDEBUG
11285 dtrace_errdebug(str);
11286 #endif
11290 * Create DOF out of a currently enabled state. Right now, we only create
11291 * DOF containing the run-time options -- but this could be expanded to create
11292 * complete DOF representing the enabled state.
11294 static dof_hdr_t *
11295 dtrace_dof_create(dtrace_state_t *state)
11297 dof_hdr_t *dof;
11298 dof_sec_t *sec;
11299 dof_optdesc_t *opt;
11300 int i, len = sizeof (dof_hdr_t) +
11301 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11302 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11304 ASSERT(MUTEX_HELD(&dtrace_lock));
11306 dof = kmem_zalloc(len, KM_SLEEP);
11307 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11308 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11309 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11310 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11312 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11313 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11314 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11315 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11316 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11317 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11319 dof->dofh_flags = 0;
11320 dof->dofh_hdrsize = sizeof (dof_hdr_t);
11321 dof->dofh_secsize = sizeof (dof_sec_t);
11322 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
11323 dof->dofh_secoff = sizeof (dof_hdr_t);
11324 dof->dofh_loadsz = len;
11325 dof->dofh_filesz = len;
11326 dof->dofh_pad = 0;
11329 * Fill in the option section header...
11331 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11332 sec->dofs_type = DOF_SECT_OPTDESC;
11333 sec->dofs_align = sizeof (uint64_t);
11334 sec->dofs_flags = DOF_SECF_LOAD;
11335 sec->dofs_entsize = sizeof (dof_optdesc_t);
11337 opt = (dof_optdesc_t *)((uintptr_t)sec +
11338 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11340 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11341 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11343 for (i = 0; i < DTRACEOPT_MAX; i++) {
11344 opt[i].dofo_option = i;
11345 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11346 opt[i].dofo_value = state->dts_options[i];
11349 return (dof);
11352 static dof_hdr_t *
11353 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11355 dof_hdr_t hdr, *dof;
11357 ASSERT(!MUTEX_HELD(&dtrace_lock));
11360 * First, we're going to copyin() the sizeof (dof_hdr_t).
11362 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11363 dtrace_dof_error(NULL, "failed to copyin DOF header");
11364 *errp = EFAULT;
11365 return (NULL);
11369 * Now we'll allocate the entire DOF and copy it in -- provided
11370 * that the length isn't outrageous.
11372 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11373 dtrace_dof_error(&hdr, "load size exceeds maximum");
11374 *errp = E2BIG;
11375 return (NULL);
11378 if (hdr.dofh_loadsz < sizeof (hdr)) {
11379 dtrace_dof_error(&hdr, "invalid load size");
11380 *errp = EINVAL;
11381 return (NULL);
11384 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11386 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11387 dof->dofh_loadsz != hdr.dofh_loadsz) {
11388 kmem_free(dof, hdr.dofh_loadsz);
11389 *errp = EFAULT;
11390 return (NULL);
11393 return (dof);
11396 static dof_hdr_t *
11397 dtrace_dof_property(const char *name)
11399 uchar_t *buf;
11400 uint64_t loadsz;
11401 unsigned int len, i;
11402 dof_hdr_t *dof;
11405 * Unfortunately, array of values in .conf files are always (and
11406 * only) interpreted to be integer arrays. We must read our DOF
11407 * as an integer array, and then squeeze it into a byte array.
11409 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11410 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11411 return (NULL);
11413 for (i = 0; i < len; i++)
11414 buf[i] = (uchar_t)(((int *)buf)[i]);
11416 if (len < sizeof (dof_hdr_t)) {
11417 ddi_prop_free(buf);
11418 dtrace_dof_error(NULL, "truncated header");
11419 return (NULL);
11422 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11423 ddi_prop_free(buf);
11424 dtrace_dof_error(NULL, "truncated DOF");
11425 return (NULL);
11428 if (loadsz >= dtrace_dof_maxsize) {
11429 ddi_prop_free(buf);
11430 dtrace_dof_error(NULL, "oversized DOF");
11431 return (NULL);
11434 dof = kmem_alloc(loadsz, KM_SLEEP);
11435 bcopy(buf, dof, loadsz);
11436 ddi_prop_free(buf);
11438 return (dof);
11441 static void
11442 dtrace_dof_destroy(dof_hdr_t *dof)
11444 kmem_free(dof, dof->dofh_loadsz);
11448 * Return the dof_sec_t pointer corresponding to a given section index. If the
11449 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
11450 * a type other than DOF_SECT_NONE is specified, the header is checked against
11451 * this type and NULL is returned if the types do not match.
11453 static dof_sec_t *
11454 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11456 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11457 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11459 if (i >= dof->dofh_secnum) {
11460 dtrace_dof_error(dof, "referenced section index is invalid");
11461 return (NULL);
11464 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11465 dtrace_dof_error(dof, "referenced section is not loadable");
11466 return (NULL);
11469 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11470 dtrace_dof_error(dof, "referenced section is the wrong type");
11471 return (NULL);
11474 return (sec);
11477 static dtrace_probedesc_t *
11478 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11480 dof_probedesc_t *probe;
11481 dof_sec_t *strtab;
11482 uintptr_t daddr = (uintptr_t)dof;
11483 uintptr_t str;
11484 size_t size;
11486 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11487 dtrace_dof_error(dof, "invalid probe section");
11488 return (NULL);
11491 if (sec->dofs_align != sizeof (dof_secidx_t)) {
11492 dtrace_dof_error(dof, "bad alignment in probe description");
11493 return (NULL);
11496 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11497 dtrace_dof_error(dof, "truncated probe description");
11498 return (NULL);
11501 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11502 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11504 if (strtab == NULL)
11505 return (NULL);
11507 str = daddr + strtab->dofs_offset;
11508 size = strtab->dofs_size;
11510 if (probe->dofp_provider >= strtab->dofs_size) {
11511 dtrace_dof_error(dof, "corrupt probe provider");
11512 return (NULL);
11515 (void) strncpy(desc->dtpd_provider,
11516 (char *)(str + probe->dofp_provider),
11517 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11519 if (probe->dofp_mod >= strtab->dofs_size) {
11520 dtrace_dof_error(dof, "corrupt probe module");
11521 return (NULL);
11524 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11525 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11527 if (probe->dofp_func >= strtab->dofs_size) {
11528 dtrace_dof_error(dof, "corrupt probe function");
11529 return (NULL);
11532 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11533 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11535 if (probe->dofp_name >= strtab->dofs_size) {
11536 dtrace_dof_error(dof, "corrupt probe name");
11537 return (NULL);
11540 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11541 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11543 return (desc);
11546 static dtrace_difo_t *
11547 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11548 cred_t *cr)
11550 dtrace_difo_t *dp;
11551 size_t ttl = 0;
11552 dof_difohdr_t *dofd;
11553 uintptr_t daddr = (uintptr_t)dof;
11554 size_t max = dtrace_difo_maxsize;
11555 int i, l, n;
11557 static const struct {
11558 int section;
11559 int bufoffs;
11560 int lenoffs;
11561 int entsize;
11562 int align;
11563 const char *msg;
11564 } difo[] = {
11565 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11566 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11567 sizeof (dif_instr_t), "multiple DIF sections" },
11569 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11570 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11571 sizeof (uint64_t), "multiple integer tables" },
11573 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11574 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11575 sizeof (char), "multiple string tables" },
11577 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11578 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11579 sizeof (uint_t), "multiple variable tables" },
11581 { DOF_SECT_NONE, 0, 0, 0, NULL }
11584 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11585 dtrace_dof_error(dof, "invalid DIFO header section");
11586 return (NULL);
11589 if (sec->dofs_align != sizeof (dof_secidx_t)) {
11590 dtrace_dof_error(dof, "bad alignment in DIFO header");
11591 return (NULL);
11594 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11595 sec->dofs_size % sizeof (dof_secidx_t)) {
11596 dtrace_dof_error(dof, "bad size in DIFO header");
11597 return (NULL);
11600 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11601 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11603 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11604 dp->dtdo_rtype = dofd->dofd_rtype;
11606 for (l = 0; l < n; l++) {
11607 dof_sec_t *subsec;
11608 void **bufp;
11609 uint32_t *lenp;
11611 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11612 dofd->dofd_links[l])) == NULL)
11613 goto err; /* invalid section link */
11615 if (ttl + subsec->dofs_size > max) {
11616 dtrace_dof_error(dof, "exceeds maximum size");
11617 goto err;
11620 ttl += subsec->dofs_size;
11622 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11623 if (subsec->dofs_type != difo[i].section)
11624 continue;
11626 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11627 dtrace_dof_error(dof, "section not loaded");
11628 goto err;
11631 if (subsec->dofs_align != difo[i].align) {
11632 dtrace_dof_error(dof, "bad alignment");
11633 goto err;
11636 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11637 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11639 if (*bufp != NULL) {
11640 dtrace_dof_error(dof, difo[i].msg);
11641 goto err;
11644 if (difo[i].entsize != subsec->dofs_entsize) {
11645 dtrace_dof_error(dof, "entry size mismatch");
11646 goto err;
11649 if (subsec->dofs_entsize != 0 &&
11650 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11651 dtrace_dof_error(dof, "corrupt entry size");
11652 goto err;
11655 *lenp = subsec->dofs_size;
11656 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11657 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11658 *bufp, subsec->dofs_size);
11660 if (subsec->dofs_entsize != 0)
11661 *lenp /= subsec->dofs_entsize;
11663 break;
11667 * If we encounter a loadable DIFO sub-section that is not
11668 * known to us, assume this is a broken program and fail.
11670 if (difo[i].section == DOF_SECT_NONE &&
11671 (subsec->dofs_flags & DOF_SECF_LOAD)) {
11672 dtrace_dof_error(dof, "unrecognized DIFO subsection");
11673 goto err;
11677 if (dp->dtdo_buf == NULL) {
11679 * We can't have a DIF object without DIF text.
11681 dtrace_dof_error(dof, "missing DIF text");
11682 goto err;
11686 * Before we validate the DIF object, run through the variable table
11687 * looking for the strings -- if any of their size are under, we'll set
11688 * their size to be the system-wide default string size. Note that
11689 * this should _not_ happen if the "strsize" option has been set --
11690 * in this case, the compiler should have set the size to reflect the
11691 * setting of the option.
11693 for (i = 0; i < dp->dtdo_varlen; i++) {
11694 dtrace_difv_t *v = &dp->dtdo_vartab[i];
11695 dtrace_diftype_t *t = &v->dtdv_type;
11697 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11698 continue;
11700 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11701 t->dtdt_size = dtrace_strsize_default;
11704 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11705 goto err;
11707 dtrace_difo_init(dp, vstate);
11708 return (dp);
11710 err:
11711 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11712 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11713 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11714 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11716 kmem_free(dp, sizeof (dtrace_difo_t));
11717 return (NULL);
11720 static dtrace_predicate_t *
11721 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11722 cred_t *cr)
11724 dtrace_difo_t *dp;
11726 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11727 return (NULL);
11729 return (dtrace_predicate_create(dp));
11732 static dtrace_actdesc_t *
11733 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11734 cred_t *cr)
11736 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11737 dof_actdesc_t *desc;
11738 dof_sec_t *difosec;
11739 size_t offs;
11740 uintptr_t daddr = (uintptr_t)dof;
11741 uint64_t arg;
11742 dtrace_actkind_t kind;
11744 if (sec->dofs_type != DOF_SECT_ACTDESC) {
11745 dtrace_dof_error(dof, "invalid action section");
11746 return (NULL);
11749 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11750 dtrace_dof_error(dof, "truncated action description");
11751 return (NULL);
11754 if (sec->dofs_align != sizeof (uint64_t)) {
11755 dtrace_dof_error(dof, "bad alignment in action description");
11756 return (NULL);
11759 if (sec->dofs_size < sec->dofs_entsize) {
11760 dtrace_dof_error(dof, "section entry size exceeds total size");
11761 return (NULL);
11764 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11765 dtrace_dof_error(dof, "bad entry size in action description");
11766 return (NULL);
11769 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11770 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11771 return (NULL);
11774 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11775 desc = (dof_actdesc_t *)(daddr +
11776 (uintptr_t)sec->dofs_offset + offs);
11777 kind = (dtrace_actkind_t)desc->dofa_kind;
11779 if (DTRACEACT_ISPRINTFLIKE(kind) &&
11780 (kind != DTRACEACT_PRINTA ||
11781 desc->dofa_strtab != DOF_SECIDX_NONE)) {
11782 dof_sec_t *strtab;
11783 char *str, *fmt;
11784 uint64_t i;
11787 * printf()-like actions must have a format string.
11789 if ((strtab = dtrace_dof_sect(dof,
11790 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11791 goto err;
11793 str = (char *)((uintptr_t)dof +
11794 (uintptr_t)strtab->dofs_offset);
11796 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11797 if (str[i] == '\0')
11798 break;
11801 if (i >= strtab->dofs_size) {
11802 dtrace_dof_error(dof, "bogus format string");
11803 goto err;
11806 if (i == desc->dofa_arg) {
11807 dtrace_dof_error(dof, "empty format string");
11808 goto err;
11811 i -= desc->dofa_arg;
11812 fmt = kmem_alloc(i + 1, KM_SLEEP);
11813 bcopy(&str[desc->dofa_arg], fmt, i + 1);
11814 arg = (uint64_t)(uintptr_t)fmt;
11815 } else {
11816 if (kind == DTRACEACT_PRINTA) {
11817 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11818 arg = 0;
11819 } else {
11820 arg = desc->dofa_arg;
11824 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11825 desc->dofa_uarg, arg);
11827 if (last != NULL) {
11828 last->dtad_next = act;
11829 } else {
11830 first = act;
11833 last = act;
11835 if (desc->dofa_difo == DOF_SECIDX_NONE)
11836 continue;
11838 if ((difosec = dtrace_dof_sect(dof,
11839 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11840 goto err;
11842 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11844 if (act->dtad_difo == NULL)
11845 goto err;
11848 ASSERT(first != NULL);
11849 return (first);
11851 err:
11852 for (act = first; act != NULL; act = next) {
11853 next = act->dtad_next;
11854 dtrace_actdesc_release(act, vstate);
11857 return (NULL);
11860 static dtrace_ecbdesc_t *
11861 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11862 cred_t *cr)
11864 dtrace_ecbdesc_t *ep;
11865 dof_ecbdesc_t *ecb;
11866 dtrace_probedesc_t *desc;
11867 dtrace_predicate_t *pred = NULL;
11869 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11870 dtrace_dof_error(dof, "truncated ECB description");
11871 return (NULL);
11874 if (sec->dofs_align != sizeof (uint64_t)) {
11875 dtrace_dof_error(dof, "bad alignment in ECB description");
11876 return (NULL);
11879 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11880 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11882 if (sec == NULL)
11883 return (NULL);
11885 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11886 ep->dted_uarg = ecb->dofe_uarg;
11887 desc = &ep->dted_probe;
11889 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11890 goto err;
11892 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11893 if ((sec = dtrace_dof_sect(dof,
11894 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11895 goto err;
11897 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11898 goto err;
11900 ep->dted_pred.dtpdd_predicate = pred;
11903 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11904 if ((sec = dtrace_dof_sect(dof,
11905 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11906 goto err;
11908 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11910 if (ep->dted_action == NULL)
11911 goto err;
11914 return (ep);
11916 err:
11917 if (pred != NULL)
11918 dtrace_predicate_release(pred, vstate);
11919 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11920 return (NULL);
11924 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11925 * specified DOF. At present, this amounts to simply adding 'ubase' to the
11926 * site of any user SETX relocations to account for load object base address.
11927 * In the future, if we need other relocations, this function can be extended.
11929 static int
11930 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11932 uintptr_t daddr = (uintptr_t)dof;
11933 dof_relohdr_t *dofr =
11934 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11935 dof_sec_t *ss, *rs, *ts;
11936 dof_relodesc_t *r;
11937 uint_t i, n;
11939 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11940 sec->dofs_align != sizeof (dof_secidx_t)) {
11941 dtrace_dof_error(dof, "invalid relocation header");
11942 return (-1);
11945 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11946 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11947 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11949 if (ss == NULL || rs == NULL || ts == NULL)
11950 return (-1); /* dtrace_dof_error() has been called already */
11952 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11953 rs->dofs_align != sizeof (uint64_t)) {
11954 dtrace_dof_error(dof, "invalid relocation section");
11955 return (-1);
11958 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11959 n = rs->dofs_size / rs->dofs_entsize;
11961 for (i = 0; i < n; i++) {
11962 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11964 switch (r->dofr_type) {
11965 case DOF_RELO_NONE:
11966 break;
11967 case DOF_RELO_SETX:
11968 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11969 sizeof (uint64_t) > ts->dofs_size) {
11970 dtrace_dof_error(dof, "bad relocation offset");
11971 return (-1);
11974 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11975 dtrace_dof_error(dof, "misaligned setx relo");
11976 return (-1);
11979 *(uint64_t *)taddr += ubase;
11980 break;
11981 default:
11982 dtrace_dof_error(dof, "invalid relocation type");
11983 return (-1);
11986 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11989 return (0);
11993 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11994 * header: it should be at the front of a memory region that is at least
11995 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11996 * size. It need not be validated in any other way.
11998 static int
11999 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12000 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12002 uint64_t len = dof->dofh_loadsz, seclen;
12003 uintptr_t daddr = (uintptr_t)dof;
12004 dtrace_ecbdesc_t *ep;
12005 dtrace_enabling_t *enab;
12006 uint_t i;
12008 ASSERT(MUTEX_HELD(&dtrace_lock));
12009 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12012 * Check the DOF header identification bytes. In addition to checking
12013 * valid settings, we also verify that unused bits/bytes are zeroed so
12014 * we can use them later without fear of regressing existing binaries.
12016 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12017 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12018 dtrace_dof_error(dof, "DOF magic string mismatch");
12019 return (-1);
12022 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12023 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12024 dtrace_dof_error(dof, "DOF has invalid data model");
12025 return (-1);
12028 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12029 dtrace_dof_error(dof, "DOF encoding mismatch");
12030 return (-1);
12033 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12034 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12035 dtrace_dof_error(dof, "DOF version mismatch");
12036 return (-1);
12039 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12040 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12041 return (-1);
12044 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12045 dtrace_dof_error(dof, "DOF uses too many integer registers");
12046 return (-1);
12049 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12050 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12051 return (-1);
12054 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12055 if (dof->dofh_ident[i] != 0) {
12056 dtrace_dof_error(dof, "DOF has invalid ident byte set");
12057 return (-1);
12061 if (dof->dofh_flags & ~DOF_FL_VALID) {
12062 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12063 return (-1);
12066 if (dof->dofh_secsize == 0) {
12067 dtrace_dof_error(dof, "zero section header size");
12068 return (-1);
12072 * Check that the section headers don't exceed the amount of DOF
12073 * data. Note that we cast the section size and number of sections
12074 * to uint64_t's to prevent possible overflow in the multiplication.
12076 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12078 if (dof->dofh_secoff > len || seclen > len ||
12079 dof->dofh_secoff + seclen > len) {
12080 dtrace_dof_error(dof, "truncated section headers");
12081 return (-1);
12084 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12085 dtrace_dof_error(dof, "misaligned section headers");
12086 return (-1);
12089 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12090 dtrace_dof_error(dof, "misaligned section size");
12091 return (-1);
12095 * Take an initial pass through the section headers to be sure that
12096 * the headers don't have stray offsets. If the 'noprobes' flag is
12097 * set, do not permit sections relating to providers, probes, or args.
12099 for (i = 0; i < dof->dofh_secnum; i++) {
12100 dof_sec_t *sec = (dof_sec_t *)(daddr +
12101 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12103 if (noprobes) {
12104 switch (sec->dofs_type) {
12105 case DOF_SECT_PROVIDER:
12106 case DOF_SECT_PROBES:
12107 case DOF_SECT_PRARGS:
12108 case DOF_SECT_PROFFS:
12109 dtrace_dof_error(dof, "illegal sections "
12110 "for enabling");
12111 return (-1);
12115 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12116 !(sec->dofs_flags & DOF_SECF_LOAD)) {
12117 dtrace_dof_error(dof, "loadable section with load "
12118 "flag unset");
12119 return (-1);
12122 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12123 continue; /* just ignore non-loadable sections */
12125 if (sec->dofs_align & (sec->dofs_align - 1)) {
12126 dtrace_dof_error(dof, "bad section alignment");
12127 return (-1);
12130 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12131 dtrace_dof_error(dof, "misaligned section");
12132 return (-1);
12135 if (sec->dofs_offset > len || sec->dofs_size > len ||
12136 sec->dofs_offset + sec->dofs_size > len) {
12137 dtrace_dof_error(dof, "corrupt section header");
12138 return (-1);
12141 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12142 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12143 dtrace_dof_error(dof, "non-terminating string table");
12144 return (-1);
12149 * Take a second pass through the sections and locate and perform any
12150 * relocations that are present. We do this after the first pass to
12151 * be sure that all sections have had their headers validated.
12153 for (i = 0; i < dof->dofh_secnum; i++) {
12154 dof_sec_t *sec = (dof_sec_t *)(daddr +
12155 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12157 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12158 continue; /* skip sections that are not loadable */
12160 switch (sec->dofs_type) {
12161 case DOF_SECT_URELHDR:
12162 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12163 return (-1);
12164 break;
12168 if ((enab = *enabp) == NULL)
12169 enab = *enabp = dtrace_enabling_create(vstate);
12171 for (i = 0; i < dof->dofh_secnum; i++) {
12172 dof_sec_t *sec = (dof_sec_t *)(daddr +
12173 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12175 if (sec->dofs_type != DOF_SECT_ECBDESC)
12176 continue;
12178 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12179 dtrace_enabling_destroy(enab);
12180 *enabp = NULL;
12181 return (-1);
12184 dtrace_enabling_add(enab, ep);
12187 return (0);
12191 * Process DOF for any options. This routine assumes that the DOF has been
12192 * at least processed by dtrace_dof_slurp().
12194 static int
12195 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12197 int i, rval;
12198 uint32_t entsize;
12199 size_t offs;
12200 dof_optdesc_t *desc;
12202 for (i = 0; i < dof->dofh_secnum; i++) {
12203 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12204 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12206 if (sec->dofs_type != DOF_SECT_OPTDESC)
12207 continue;
12209 if (sec->dofs_align != sizeof (uint64_t)) {
12210 dtrace_dof_error(dof, "bad alignment in "
12211 "option description");
12212 return (EINVAL);
12215 if ((entsize = sec->dofs_entsize) == 0) {
12216 dtrace_dof_error(dof, "zeroed option entry size");
12217 return (EINVAL);
12220 if (entsize < sizeof (dof_optdesc_t)) {
12221 dtrace_dof_error(dof, "bad option entry size");
12222 return (EINVAL);
12225 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12226 desc = (dof_optdesc_t *)((uintptr_t)dof +
12227 (uintptr_t)sec->dofs_offset + offs);
12229 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12230 dtrace_dof_error(dof, "non-zero option string");
12231 return (EINVAL);
12234 if (desc->dofo_value == DTRACEOPT_UNSET) {
12235 dtrace_dof_error(dof, "unset option");
12236 return (EINVAL);
12239 if ((rval = dtrace_state_option(state,
12240 desc->dofo_option, desc->dofo_value)) != 0) {
12241 dtrace_dof_error(dof, "rejected option");
12242 return (rval);
12247 return (0);
12251 * DTrace Consumer State Functions
12254 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12256 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12257 void *base;
12258 uintptr_t limit;
12259 dtrace_dynvar_t *dvar, *next, *start;
12260 int i;
12262 ASSERT(MUTEX_HELD(&dtrace_lock));
12263 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12265 bzero(dstate, sizeof (dtrace_dstate_t));
12267 if ((dstate->dtds_chunksize = chunksize) == 0)
12268 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12270 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12271 size = min;
12273 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12274 return (ENOMEM);
12276 dstate->dtds_size = size;
12277 dstate->dtds_base = base;
12278 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12279 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12281 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12283 if (hashsize != 1 && (hashsize & 1))
12284 hashsize--;
12286 dstate->dtds_hashsize = hashsize;
12287 dstate->dtds_hash = dstate->dtds_base;
12290 * Set all of our hash buckets to point to the single sink, and (if
12291 * it hasn't already been set), set the sink's hash value to be the
12292 * sink sentinel value. The sink is needed for dynamic variable
12293 * lookups to know that they have iterated over an entire, valid hash
12294 * chain.
12296 for (i = 0; i < hashsize; i++)
12297 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12299 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12300 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12303 * Determine number of active CPUs. Divide free list evenly among
12304 * active CPUs.
12306 start = (dtrace_dynvar_t *)
12307 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12308 limit = (uintptr_t)base + size;
12310 maxper = (limit - (uintptr_t)start) / NCPU;
12311 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12313 for (i = 0; i < NCPU; i++) {
12314 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12317 * If we don't even have enough chunks to make it once through
12318 * NCPUs, we're just going to allocate everything to the first
12319 * CPU. And if we're on the last CPU, we're going to allocate
12320 * whatever is left over. In either case, we set the limit to
12321 * be the limit of the dynamic variable space.
12323 if (maxper == 0 || i == NCPU - 1) {
12324 limit = (uintptr_t)base + size;
12325 start = NULL;
12326 } else {
12327 limit = (uintptr_t)start + maxper;
12328 start = (dtrace_dynvar_t *)limit;
12331 ASSERT(limit <= (uintptr_t)base + size);
12333 for (;;) {
12334 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12335 dstate->dtds_chunksize);
12337 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12338 break;
12340 dvar->dtdv_next = next;
12341 dvar = next;
12344 if (maxper == 0)
12345 break;
12348 return (0);
12351 void
12352 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12354 ASSERT(MUTEX_HELD(&cpu_lock));
12356 if (dstate->dtds_base == NULL)
12357 return;
12359 kmem_free(dstate->dtds_base, dstate->dtds_size);
12360 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12363 static void
12364 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12367 * Logical XOR, where are you?
12369 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12371 if (vstate->dtvs_nglobals > 0) {
12372 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12373 sizeof (dtrace_statvar_t *));
12376 if (vstate->dtvs_ntlocals > 0) {
12377 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12378 sizeof (dtrace_difv_t));
12381 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12383 if (vstate->dtvs_nlocals > 0) {
12384 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12385 sizeof (dtrace_statvar_t *));
12389 static void
12390 dtrace_state_clean(dtrace_state_t *state)
12392 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12393 return;
12395 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12396 dtrace_speculation_clean(state);
12399 static void
12400 dtrace_state_deadman(dtrace_state_t *state)
12402 hrtime_t now;
12404 dtrace_sync();
12406 now = dtrace_gethrtime();
12408 if (state != dtrace_anon.dta_state &&
12409 now - state->dts_laststatus >= dtrace_deadman_user)
12410 return;
12413 * We must be sure that dts_alive never appears to be less than the
12414 * value upon entry to dtrace_state_deadman(), and because we lack a
12415 * dtrace_cas64(), we cannot store to it atomically. We thus instead
12416 * store INT64_MAX to it, followed by a memory barrier, followed by
12417 * the new value. This assures that dts_alive never appears to be
12418 * less than its true value, regardless of the order in which the
12419 * stores to the underlying storage are issued.
12421 state->dts_alive = INT64_MAX;
12422 dtrace_membar_producer();
12423 state->dts_alive = now;
12426 dtrace_state_t *
12427 dtrace_state_create(dev_t *devp, cred_t *cr)
12429 minor_t minor;
12430 major_t major;
12431 char c[30];
12432 dtrace_state_t *state;
12433 dtrace_optval_t *opt;
12434 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12436 ASSERT(MUTEX_HELD(&dtrace_lock));
12437 ASSERT(MUTEX_HELD(&cpu_lock));
12439 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12440 VM_BESTFIT | VM_SLEEP);
12442 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12443 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12444 return (NULL);
12447 state = ddi_get_soft_state(dtrace_softstate, minor);
12448 state->dts_epid = DTRACE_EPIDNONE + 1;
12450 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12451 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12452 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12454 if (devp != NULL) {
12455 major = getemajor(*devp);
12456 } else {
12457 major = ddi_driver_major(dtrace_devi);
12460 state->dts_dev = makedevice(major, minor);
12462 if (devp != NULL)
12463 *devp = state->dts_dev;
12466 * We allocate NCPU buffers. On the one hand, this can be quite
12467 * a bit of memory per instance (nearly 36K on a Starcat). On the
12468 * other hand, it saves an additional memory reference in the probe
12469 * path.
12471 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12472 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12473 state->dts_cleaner = CYCLIC_NONE;
12474 state->dts_deadman = CYCLIC_NONE;
12475 state->dts_vstate.dtvs_state = state;
12477 for (i = 0; i < DTRACEOPT_MAX; i++)
12478 state->dts_options[i] = DTRACEOPT_UNSET;
12481 * Set the default options.
12483 opt = state->dts_options;
12484 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12485 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12486 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12487 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12488 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12489 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12490 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12491 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12492 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12493 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12494 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12495 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12496 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12497 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12499 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12502 * Depending on the user credentials, we set flag bits which alter probe
12503 * visibility or the amount of destructiveness allowed. In the case of
12504 * actual anonymous tracing, or the possession of all privileges, all of
12505 * the normal checks are bypassed.
12507 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12508 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12509 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12510 } else {
12512 * Set up the credentials for this instantiation. We take a
12513 * hold on the credential to prevent it from disappearing on
12514 * us; this in turn prevents the zone_t referenced by this
12515 * credential from disappearing. This means that we can
12516 * examine the credential and the zone from probe context.
12518 crhold(cr);
12519 state->dts_cred.dcr_cred = cr;
12522 * CRA_PROC means "we have *some* privilege for dtrace" and
12523 * unlocks the use of variables like pid, zonename, etc.
12525 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12526 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12527 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12531 * dtrace_user allows use of syscall and profile providers.
12532 * If the user also has proc_owner and/or proc_zone, we
12533 * extend the scope to include additional visibility and
12534 * destructive power.
12536 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12537 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12538 state->dts_cred.dcr_visible |=
12539 DTRACE_CRV_ALLPROC;
12541 state->dts_cred.dcr_action |=
12542 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12545 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12546 state->dts_cred.dcr_visible |=
12547 DTRACE_CRV_ALLZONE;
12549 state->dts_cred.dcr_action |=
12550 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12554 * If we have all privs in whatever zone this is,
12555 * we can do destructive things to processes which
12556 * have altered credentials.
12558 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12559 cr->cr_zone->zone_privset)) {
12560 state->dts_cred.dcr_action |=
12561 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12566 * Holding the dtrace_kernel privilege also implies that
12567 * the user has the dtrace_user privilege from a visibility
12568 * perspective. But without further privileges, some
12569 * destructive actions are not available.
12571 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12573 * Make all probes in all zones visible. However,
12574 * this doesn't mean that all actions become available
12575 * to all zones.
12577 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12578 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12580 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12581 DTRACE_CRA_PROC;
12583 * Holding proc_owner means that destructive actions
12584 * for *this* zone are allowed.
12586 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12587 state->dts_cred.dcr_action |=
12588 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12591 * Holding proc_zone means that destructive actions
12592 * for this user/group ID in all zones is allowed.
12594 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12595 state->dts_cred.dcr_action |=
12596 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12599 * If we have all privs in whatever zone this is,
12600 * we can do destructive things to processes which
12601 * have altered credentials.
12603 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12604 cr->cr_zone->zone_privset)) {
12605 state->dts_cred.dcr_action |=
12606 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12611 * Holding the dtrace_proc privilege gives control over fasttrap
12612 * and pid providers. We need to grant wider destructive
12613 * privileges in the event that the user has proc_owner and/or
12614 * proc_zone.
12616 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12617 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12618 state->dts_cred.dcr_action |=
12619 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12621 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12622 state->dts_cred.dcr_action |=
12623 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12627 return (state);
12630 static int
12631 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12633 dtrace_optval_t *opt = state->dts_options, size;
12634 processorid_t cpu;
12635 int flags = 0, rval, factor, divisor = 1;
12637 ASSERT(MUTEX_HELD(&dtrace_lock));
12638 ASSERT(MUTEX_HELD(&cpu_lock));
12639 ASSERT(which < DTRACEOPT_MAX);
12640 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12641 (state == dtrace_anon.dta_state &&
12642 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12644 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12645 return (0);
12647 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12648 cpu = opt[DTRACEOPT_CPU];
12650 if (which == DTRACEOPT_SPECSIZE)
12651 flags |= DTRACEBUF_NOSWITCH;
12653 if (which == DTRACEOPT_BUFSIZE) {
12654 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12655 flags |= DTRACEBUF_RING;
12657 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12658 flags |= DTRACEBUF_FILL;
12660 if (state != dtrace_anon.dta_state ||
12661 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12662 flags |= DTRACEBUF_INACTIVE;
12665 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12667 * The size must be 8-byte aligned. If the size is not 8-byte
12668 * aligned, drop it down by the difference.
12670 if (size & (sizeof (uint64_t) - 1))
12671 size -= size & (sizeof (uint64_t) - 1);
12673 if (size < state->dts_reserve) {
12675 * Buffers always must be large enough to accommodate
12676 * their prereserved space. We return E2BIG instead
12677 * of ENOMEM in this case to allow for user-level
12678 * software to differentiate the cases.
12680 return (E2BIG);
12683 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
12685 if (rval != ENOMEM) {
12686 opt[which] = size;
12687 return (rval);
12690 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12691 return (rval);
12693 for (divisor = 2; divisor < factor; divisor <<= 1)
12694 continue;
12697 return (ENOMEM);
12700 static int
12701 dtrace_state_buffers(dtrace_state_t *state)
12703 dtrace_speculation_t *spec = state->dts_speculations;
12704 int rval, i;
12706 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12707 DTRACEOPT_BUFSIZE)) != 0)
12708 return (rval);
12710 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12711 DTRACEOPT_AGGSIZE)) != 0)
12712 return (rval);
12714 for (i = 0; i < state->dts_nspeculations; i++) {
12715 if ((rval = dtrace_state_buffer(state,
12716 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12717 return (rval);
12720 return (0);
12723 static void
12724 dtrace_state_prereserve(dtrace_state_t *state)
12726 dtrace_ecb_t *ecb;
12727 dtrace_probe_t *probe;
12729 state->dts_reserve = 0;
12731 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12732 return;
12735 * If our buffer policy is a "fill" buffer policy, we need to set the
12736 * prereserved space to be the space required by the END probes.
12738 probe = dtrace_probes[dtrace_probeid_end - 1];
12739 ASSERT(probe != NULL);
12741 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12742 if (ecb->dte_state != state)
12743 continue;
12745 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12749 static int
12750 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12752 dtrace_optval_t *opt = state->dts_options, sz, nspec;
12753 dtrace_speculation_t *spec;
12754 dtrace_buffer_t *buf;
12755 cyc_handler_t hdlr;
12756 cyc_time_t when;
12757 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12758 dtrace_icookie_t cookie;
12760 mutex_enter(&cpu_lock);
12761 mutex_enter(&dtrace_lock);
12763 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12764 rval = EBUSY;
12765 goto out;
12769 * Before we can perform any checks, we must prime all of the
12770 * retained enablings that correspond to this state.
12772 dtrace_enabling_prime(state);
12774 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12775 rval = EACCES;
12776 goto out;
12779 dtrace_state_prereserve(state);
12782 * Now we want to do is try to allocate our speculations.
12783 * We do not automatically resize the number of speculations; if
12784 * this fails, we will fail the operation.
12786 nspec = opt[DTRACEOPT_NSPEC];
12787 ASSERT(nspec != DTRACEOPT_UNSET);
12789 if (nspec > INT_MAX) {
12790 rval = ENOMEM;
12791 goto out;
12794 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
12795 KM_NOSLEEP | KM_NORMALPRI);
12797 if (spec == NULL) {
12798 rval = ENOMEM;
12799 goto out;
12802 state->dts_speculations = spec;
12803 state->dts_nspeculations = (int)nspec;
12805 for (i = 0; i < nspec; i++) {
12806 if ((buf = kmem_zalloc(bufsize,
12807 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
12808 rval = ENOMEM;
12809 goto err;
12812 spec[i].dtsp_buffer = buf;
12815 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12816 if (dtrace_anon.dta_state == NULL) {
12817 rval = ENOENT;
12818 goto out;
12821 if (state->dts_necbs != 0) {
12822 rval = EALREADY;
12823 goto out;
12826 state->dts_anon = dtrace_anon_grab();
12827 ASSERT(state->dts_anon != NULL);
12828 state = state->dts_anon;
12831 * We want "grabanon" to be set in the grabbed state, so we'll
12832 * copy that option value from the grabbing state into the
12833 * grabbed state.
12835 state->dts_options[DTRACEOPT_GRABANON] =
12836 opt[DTRACEOPT_GRABANON];
12838 *cpu = dtrace_anon.dta_beganon;
12841 * If the anonymous state is active (as it almost certainly
12842 * is if the anonymous enabling ultimately matched anything),
12843 * we don't allow any further option processing -- but we
12844 * don't return failure.
12846 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12847 goto out;
12850 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12851 opt[DTRACEOPT_AGGSIZE] != 0) {
12852 if (state->dts_aggregations == NULL) {
12854 * We're not going to create an aggregation buffer
12855 * because we don't have any ECBs that contain
12856 * aggregations -- set this option to 0.
12858 opt[DTRACEOPT_AGGSIZE] = 0;
12859 } else {
12861 * If we have an aggregation buffer, we must also have
12862 * a buffer to use as scratch.
12864 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12865 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12866 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12871 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12872 opt[DTRACEOPT_SPECSIZE] != 0) {
12873 if (!state->dts_speculates) {
12875 * We're not going to create speculation buffers
12876 * because we don't have any ECBs that actually
12877 * speculate -- set the speculation size to 0.
12879 opt[DTRACEOPT_SPECSIZE] = 0;
12884 * The bare minimum size for any buffer that we're actually going to
12885 * do anything to is sizeof (uint64_t).
12887 sz = sizeof (uint64_t);
12889 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12890 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12891 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12893 * A buffer size has been explicitly set to 0 (or to a size
12894 * that will be adjusted to 0) and we need the space -- we
12895 * need to return failure. We return ENOSPC to differentiate
12896 * it from failing to allocate a buffer due to failure to meet
12897 * the reserve (for which we return E2BIG).
12899 rval = ENOSPC;
12900 goto out;
12903 if ((rval = dtrace_state_buffers(state)) != 0)
12904 goto err;
12906 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12907 sz = dtrace_dstate_defsize;
12909 do {
12910 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12912 if (rval == 0)
12913 break;
12915 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12916 goto err;
12917 } while (sz >>= 1);
12919 opt[DTRACEOPT_DYNVARSIZE] = sz;
12921 if (rval != 0)
12922 goto err;
12924 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12925 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12927 if (opt[DTRACEOPT_CLEANRATE] == 0)
12928 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12930 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12931 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12933 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12934 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12936 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12937 hdlr.cyh_arg = state;
12938 hdlr.cyh_level = CY_LOW_LEVEL;
12940 when.cyt_when = 0;
12941 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12943 state->dts_cleaner = cyclic_add(&hdlr, &when);
12945 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12946 hdlr.cyh_arg = state;
12947 hdlr.cyh_level = CY_LOW_LEVEL;
12949 when.cyt_when = 0;
12950 when.cyt_interval = dtrace_deadman_interval;
12952 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12953 state->dts_deadman = cyclic_add(&hdlr, &when);
12955 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12958 * Now it's time to actually fire the BEGIN probe. We need to disable
12959 * interrupts here both to record the CPU on which we fired the BEGIN
12960 * probe (the data from this CPU will be processed first at user
12961 * level) and to manually activate the buffer for this CPU.
12963 cookie = dtrace_interrupt_disable();
12964 *cpu = CPU->cpu_id;
12965 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12966 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12968 dtrace_probe(dtrace_probeid_begin,
12969 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12970 dtrace_interrupt_enable(cookie);
12972 * We may have had an exit action from a BEGIN probe; only change our
12973 * state to ACTIVE if we're still in WARMUP.
12975 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12976 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12978 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12979 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12982 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12983 * want each CPU to transition its principal buffer out of the
12984 * INACTIVE state. Doing this assures that no CPU will suddenly begin
12985 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12986 * atomically transition from processing none of a state's ECBs to
12987 * processing all of them.
12989 dtrace_xcall(DTRACE_CPUALL,
12990 (dtrace_xcall_t)dtrace_buffer_activate, state);
12991 goto out;
12993 err:
12994 dtrace_buffer_free(state->dts_buffer);
12995 dtrace_buffer_free(state->dts_aggbuffer);
12997 if ((nspec = state->dts_nspeculations) == 0) {
12998 ASSERT(state->dts_speculations == NULL);
12999 goto out;
13002 spec = state->dts_speculations;
13003 ASSERT(spec != NULL);
13005 for (i = 0; i < state->dts_nspeculations; i++) {
13006 if ((buf = spec[i].dtsp_buffer) == NULL)
13007 break;
13009 dtrace_buffer_free(buf);
13010 kmem_free(buf, bufsize);
13013 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13014 state->dts_nspeculations = 0;
13015 state->dts_speculations = NULL;
13017 out:
13018 mutex_exit(&dtrace_lock);
13019 mutex_exit(&cpu_lock);
13021 return (rval);
13024 static int
13025 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13027 dtrace_icookie_t cookie;
13029 ASSERT(MUTEX_HELD(&dtrace_lock));
13031 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13032 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13033 return (EINVAL);
13036 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13037 * to be sure that every CPU has seen it. See below for the details
13038 * on why this is done.
13040 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13041 dtrace_sync();
13044 * By this point, it is impossible for any CPU to be still processing
13045 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13046 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13047 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13048 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13049 * iff we're in the END probe.
13051 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13052 dtrace_sync();
13053 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13056 * Finally, we can release the reserve and call the END probe. We
13057 * disable interrupts across calling the END probe to allow us to
13058 * return the CPU on which we actually called the END probe. This
13059 * allows user-land to be sure that this CPU's principal buffer is
13060 * processed last.
13062 state->dts_reserve = 0;
13064 cookie = dtrace_interrupt_disable();
13065 *cpu = CPU->cpu_id;
13066 dtrace_probe(dtrace_probeid_end,
13067 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13068 dtrace_interrupt_enable(cookie);
13070 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13071 dtrace_sync();
13073 return (0);
13076 static int
13077 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13078 dtrace_optval_t val)
13080 ASSERT(MUTEX_HELD(&dtrace_lock));
13082 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13083 return (EBUSY);
13085 if (option >= DTRACEOPT_MAX)
13086 return (EINVAL);
13088 if (option != DTRACEOPT_CPU && val < 0)
13089 return (EINVAL);
13091 switch (option) {
13092 case DTRACEOPT_DESTRUCTIVE:
13093 if (dtrace_destructive_disallow)
13094 return (EACCES);
13096 state->dts_cred.dcr_destructive = 1;
13097 break;
13099 case DTRACEOPT_BUFSIZE:
13100 case DTRACEOPT_DYNVARSIZE:
13101 case DTRACEOPT_AGGSIZE:
13102 case DTRACEOPT_SPECSIZE:
13103 case DTRACEOPT_STRSIZE:
13104 if (val < 0)
13105 return (EINVAL);
13107 if (val >= LONG_MAX) {
13109 * If this is an otherwise negative value, set it to
13110 * the highest multiple of 128m less than LONG_MAX.
13111 * Technically, we're adjusting the size without
13112 * regard to the buffer resizing policy, but in fact,
13113 * this has no effect -- if we set the buffer size to
13114 * ~LONG_MAX and the buffer policy is ultimately set to
13115 * be "manual", the buffer allocation is guaranteed to
13116 * fail, if only because the allocation requires two
13117 * buffers. (We set the the size to the highest
13118 * multiple of 128m because it ensures that the size
13119 * will remain a multiple of a megabyte when
13120 * repeatedly halved -- all the way down to 15m.)
13122 val = LONG_MAX - (1 << 27) + 1;
13126 state->dts_options[option] = val;
13128 return (0);
13131 static void
13132 dtrace_state_destroy(dtrace_state_t *state)
13134 dtrace_ecb_t *ecb;
13135 dtrace_vstate_t *vstate = &state->dts_vstate;
13136 minor_t minor = getminor(state->dts_dev);
13137 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13138 dtrace_speculation_t *spec = state->dts_speculations;
13139 int nspec = state->dts_nspeculations;
13140 uint32_t match;
13142 ASSERT(MUTEX_HELD(&dtrace_lock));
13143 ASSERT(MUTEX_HELD(&cpu_lock));
13146 * First, retract any retained enablings for this state.
13148 dtrace_enabling_retract(state);
13149 ASSERT(state->dts_nretained == 0);
13151 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13152 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13154 * We have managed to come into dtrace_state_destroy() on a
13155 * hot enabling -- almost certainly because of a disorderly
13156 * shutdown of a consumer. (That is, a consumer that is
13157 * exiting without having called dtrace_stop().) In this case,
13158 * we're going to set our activity to be KILLED, and then
13159 * issue a sync to be sure that everyone is out of probe
13160 * context before we start blowing away ECBs.
13162 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13163 dtrace_sync();
13167 * Release the credential hold we took in dtrace_state_create().
13169 if (state->dts_cred.dcr_cred != NULL)
13170 crfree(state->dts_cred.dcr_cred);
13173 * Now we can safely disable and destroy any enabled probes. Because
13174 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13175 * (especially if they're all enabled), we take two passes through the
13176 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13177 * in the second we disable whatever is left over.
13179 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13180 for (i = 0; i < state->dts_necbs; i++) {
13181 if ((ecb = state->dts_ecbs[i]) == NULL)
13182 continue;
13184 if (match && ecb->dte_probe != NULL) {
13185 dtrace_probe_t *probe = ecb->dte_probe;
13186 dtrace_provider_t *prov = probe->dtpr_provider;
13188 if (!(prov->dtpv_priv.dtpp_flags & match))
13189 continue;
13192 dtrace_ecb_disable(ecb);
13193 dtrace_ecb_destroy(ecb);
13196 if (!match)
13197 break;
13201 * Before we free the buffers, perform one more sync to assure that
13202 * every CPU is out of probe context.
13204 dtrace_sync();
13206 dtrace_buffer_free(state->dts_buffer);
13207 dtrace_buffer_free(state->dts_aggbuffer);
13209 for (i = 0; i < nspec; i++)
13210 dtrace_buffer_free(spec[i].dtsp_buffer);
13212 if (state->dts_cleaner != CYCLIC_NONE)
13213 cyclic_remove(state->dts_cleaner);
13215 if (state->dts_deadman != CYCLIC_NONE)
13216 cyclic_remove(state->dts_deadman);
13218 dtrace_dstate_fini(&vstate->dtvs_dynvars);
13219 dtrace_vstate_fini(vstate);
13220 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13222 if (state->dts_aggregations != NULL) {
13223 #ifdef DEBUG
13224 for (i = 0; i < state->dts_naggregations; i++)
13225 ASSERT(state->dts_aggregations[i] == NULL);
13226 #endif
13227 ASSERT(state->dts_naggregations > 0);
13228 kmem_free(state->dts_aggregations,
13229 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13232 kmem_free(state->dts_buffer, bufsize);
13233 kmem_free(state->dts_aggbuffer, bufsize);
13235 for (i = 0; i < nspec; i++)
13236 kmem_free(spec[i].dtsp_buffer, bufsize);
13238 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13240 dtrace_format_destroy(state);
13242 vmem_destroy(state->dts_aggid_arena);
13243 ddi_soft_state_free(dtrace_softstate, minor);
13244 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13248 * DTrace Anonymous Enabling Functions
13250 static dtrace_state_t *
13251 dtrace_anon_grab(void)
13253 dtrace_state_t *state;
13255 ASSERT(MUTEX_HELD(&dtrace_lock));
13257 if ((state = dtrace_anon.dta_state) == NULL) {
13258 ASSERT(dtrace_anon.dta_enabling == NULL);
13259 return (NULL);
13262 ASSERT(dtrace_anon.dta_enabling != NULL);
13263 ASSERT(dtrace_retained != NULL);
13265 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13266 dtrace_anon.dta_enabling = NULL;
13267 dtrace_anon.dta_state = NULL;
13269 return (state);
13272 static void
13273 dtrace_anon_property(void)
13275 int i, rv;
13276 dtrace_state_t *state;
13277 dof_hdr_t *dof;
13278 char c[32]; /* enough for "dof-data-" + digits */
13280 ASSERT(MUTEX_HELD(&dtrace_lock));
13281 ASSERT(MUTEX_HELD(&cpu_lock));
13283 for (i = 0; ; i++) {
13284 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
13286 dtrace_err_verbose = 1;
13288 if ((dof = dtrace_dof_property(c)) == NULL) {
13289 dtrace_err_verbose = 0;
13290 break;
13294 * We want to create anonymous state, so we need to transition
13295 * the kernel debugger to indicate that DTrace is active. If
13296 * this fails (e.g. because the debugger has modified text in
13297 * some way), we won't continue with the processing.
13299 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13300 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13301 "enabling ignored.");
13302 dtrace_dof_destroy(dof);
13303 break;
13307 * If we haven't allocated an anonymous state, we'll do so now.
13309 if ((state = dtrace_anon.dta_state) == NULL) {
13310 state = dtrace_state_create(NULL, NULL);
13311 dtrace_anon.dta_state = state;
13313 if (state == NULL) {
13315 * This basically shouldn't happen: the only
13316 * failure mode from dtrace_state_create() is a
13317 * failure of ddi_soft_state_zalloc() that
13318 * itself should never happen. Still, the
13319 * interface allows for a failure mode, and
13320 * we want to fail as gracefully as possible:
13321 * we'll emit an error message and cease
13322 * processing anonymous state in this case.
13324 cmn_err(CE_WARN, "failed to create "
13325 "anonymous state");
13326 dtrace_dof_destroy(dof);
13327 break;
13331 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13332 &dtrace_anon.dta_enabling, 0, B_TRUE);
13334 if (rv == 0)
13335 rv = dtrace_dof_options(dof, state);
13337 dtrace_err_verbose = 0;
13338 dtrace_dof_destroy(dof);
13340 if (rv != 0) {
13342 * This is malformed DOF; chuck any anonymous state
13343 * that we created.
13345 ASSERT(dtrace_anon.dta_enabling == NULL);
13346 dtrace_state_destroy(state);
13347 dtrace_anon.dta_state = NULL;
13348 break;
13351 ASSERT(dtrace_anon.dta_enabling != NULL);
13354 if (dtrace_anon.dta_enabling != NULL) {
13355 int rval;
13358 * dtrace_enabling_retain() can only fail because we are
13359 * trying to retain more enablings than are allowed -- but
13360 * we only have one anonymous enabling, and we are guaranteed
13361 * to be allowed at least one retained enabling; we assert
13362 * that dtrace_enabling_retain() returns success.
13364 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13365 ASSERT(rval == 0);
13367 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13372 * DTrace Helper Functions
13374 static void
13375 dtrace_helper_trace(dtrace_helper_action_t *helper,
13376 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13378 uint32_t size, next, nnext, i;
13379 dtrace_helptrace_t *ent;
13380 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13382 if (!dtrace_helptrace_enabled)
13383 return;
13385 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13388 * What would a tracing framework be without its own tracing
13389 * framework? (Well, a hell of a lot simpler, for starters...)
13391 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13392 sizeof (uint64_t) - sizeof (uint64_t);
13395 * Iterate until we can allocate a slot in the trace buffer.
13397 do {
13398 next = dtrace_helptrace_next;
13400 if (next + size < dtrace_helptrace_bufsize) {
13401 nnext = next + size;
13402 } else {
13403 nnext = size;
13405 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13408 * We have our slot; fill it in.
13410 if (nnext == size)
13411 next = 0;
13413 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13414 ent->dtht_helper = helper;
13415 ent->dtht_where = where;
13416 ent->dtht_nlocals = vstate->dtvs_nlocals;
13418 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13419 mstate->dtms_fltoffs : -1;
13420 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13421 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13423 for (i = 0; i < vstate->dtvs_nlocals; i++) {
13424 dtrace_statvar_t *svar;
13426 if ((svar = vstate->dtvs_locals[i]) == NULL)
13427 continue;
13429 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13430 ent->dtht_locals[i] =
13431 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13435 static uint64_t
13436 dtrace_helper(int which, dtrace_mstate_t *mstate,
13437 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13439 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13440 uint64_t sarg0 = mstate->dtms_arg[0];
13441 uint64_t sarg1 = mstate->dtms_arg[1];
13442 uint64_t rval;
13443 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13444 dtrace_helper_action_t *helper;
13445 dtrace_vstate_t *vstate;
13446 dtrace_difo_t *pred;
13447 int i, trace = dtrace_helptrace_enabled;
13449 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13451 if (helpers == NULL)
13452 return (0);
13454 if ((helper = helpers->dthps_actions[which]) == NULL)
13455 return (0);
13457 vstate = &helpers->dthps_vstate;
13458 mstate->dtms_arg[0] = arg0;
13459 mstate->dtms_arg[1] = arg1;
13462 * Now iterate over each helper. If its predicate evaluates to 'true',
13463 * we'll call the corresponding actions. Note that the below calls
13464 * to dtrace_dif_emulate() may set faults in machine state. This is
13465 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
13466 * the stored DIF offset with its own (which is the desired behavior).
13467 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13468 * from machine state; this is okay, too.
13470 for (; helper != NULL; helper = helper->dtha_next) {
13471 if ((pred = helper->dtha_predicate) != NULL) {
13472 if (trace)
13473 dtrace_helper_trace(helper, mstate, vstate, 0);
13475 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13476 goto next;
13478 if (*flags & CPU_DTRACE_FAULT)
13479 goto err;
13482 for (i = 0; i < helper->dtha_nactions; i++) {
13483 if (trace)
13484 dtrace_helper_trace(helper,
13485 mstate, vstate, i + 1);
13487 rval = dtrace_dif_emulate(helper->dtha_actions[i],
13488 mstate, vstate, state);
13490 if (*flags & CPU_DTRACE_FAULT)
13491 goto err;
13494 next:
13495 if (trace)
13496 dtrace_helper_trace(helper, mstate, vstate,
13497 DTRACE_HELPTRACE_NEXT);
13500 if (trace)
13501 dtrace_helper_trace(helper, mstate, vstate,
13502 DTRACE_HELPTRACE_DONE);
13505 * Restore the arg0 that we saved upon entry.
13507 mstate->dtms_arg[0] = sarg0;
13508 mstate->dtms_arg[1] = sarg1;
13510 return (rval);
13512 err:
13513 if (trace)
13514 dtrace_helper_trace(helper, mstate, vstate,
13515 DTRACE_HELPTRACE_ERR);
13518 * Restore the arg0 that we saved upon entry.
13520 mstate->dtms_arg[0] = sarg0;
13521 mstate->dtms_arg[1] = sarg1;
13523 return (NULL);
13526 static void
13527 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13528 dtrace_vstate_t *vstate)
13530 int i;
13532 if (helper->dtha_predicate != NULL)
13533 dtrace_difo_release(helper->dtha_predicate, vstate);
13535 for (i = 0; i < helper->dtha_nactions; i++) {
13536 ASSERT(helper->dtha_actions[i] != NULL);
13537 dtrace_difo_release(helper->dtha_actions[i], vstate);
13540 kmem_free(helper->dtha_actions,
13541 helper->dtha_nactions * sizeof (dtrace_difo_t *));
13542 kmem_free(helper, sizeof (dtrace_helper_action_t));
13545 static int
13546 dtrace_helper_destroygen(int gen)
13548 proc_t *p = curproc;
13549 dtrace_helpers_t *help = p->p_dtrace_helpers;
13550 dtrace_vstate_t *vstate;
13551 int i;
13553 ASSERT(MUTEX_HELD(&dtrace_lock));
13555 if (help == NULL || gen > help->dthps_generation)
13556 return (EINVAL);
13558 vstate = &help->dthps_vstate;
13560 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13561 dtrace_helper_action_t *last = NULL, *h, *next;
13563 for (h = help->dthps_actions[i]; h != NULL; h = next) {
13564 next = h->dtha_next;
13566 if (h->dtha_generation == gen) {
13567 if (last != NULL) {
13568 last->dtha_next = next;
13569 } else {
13570 help->dthps_actions[i] = next;
13573 dtrace_helper_action_destroy(h, vstate);
13574 } else {
13575 last = h;
13581 * Interate until we've cleared out all helper providers with the
13582 * given generation number.
13584 for (;;) {
13585 dtrace_helper_provider_t *prov;
13588 * Look for a helper provider with the right generation. We
13589 * have to start back at the beginning of the list each time
13590 * because we drop dtrace_lock. It's unlikely that we'll make
13591 * more than two passes.
13593 for (i = 0; i < help->dthps_nprovs; i++) {
13594 prov = help->dthps_provs[i];
13596 if (prov->dthp_generation == gen)
13597 break;
13601 * If there were no matches, we're done.
13603 if (i == help->dthps_nprovs)
13604 break;
13607 * Move the last helper provider into this slot.
13609 help->dthps_nprovs--;
13610 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13611 help->dthps_provs[help->dthps_nprovs] = NULL;
13613 mutex_exit(&dtrace_lock);
13616 * If we have a meta provider, remove this helper provider.
13618 mutex_enter(&dtrace_meta_lock);
13619 if (dtrace_meta_pid != NULL) {
13620 ASSERT(dtrace_deferred_pid == NULL);
13621 dtrace_helper_provider_remove(&prov->dthp_prov,
13622 p->p_pid);
13624 mutex_exit(&dtrace_meta_lock);
13626 dtrace_helper_provider_destroy(prov);
13628 mutex_enter(&dtrace_lock);
13631 return (0);
13634 static int
13635 dtrace_helper_validate(dtrace_helper_action_t *helper)
13637 int err = 0, i;
13638 dtrace_difo_t *dp;
13640 if ((dp = helper->dtha_predicate) != NULL)
13641 err += dtrace_difo_validate_helper(dp);
13643 for (i = 0; i < helper->dtha_nactions; i++)
13644 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13646 return (err == 0);
13649 static int
13650 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13652 dtrace_helpers_t *help;
13653 dtrace_helper_action_t *helper, *last;
13654 dtrace_actdesc_t *act;
13655 dtrace_vstate_t *vstate;
13656 dtrace_predicate_t *pred;
13657 int count = 0, nactions = 0, i;
13659 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13660 return (EINVAL);
13662 help = curproc->p_dtrace_helpers;
13663 last = help->dthps_actions[which];
13664 vstate = &help->dthps_vstate;
13666 for (count = 0; last != NULL; last = last->dtha_next) {
13667 count++;
13668 if (last->dtha_next == NULL)
13669 break;
13673 * If we already have dtrace_helper_actions_max helper actions for this
13674 * helper action type, we'll refuse to add a new one.
13676 if (count >= dtrace_helper_actions_max)
13677 return (ENOSPC);
13679 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13680 helper->dtha_generation = help->dthps_generation;
13682 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13683 ASSERT(pred->dtp_difo != NULL);
13684 dtrace_difo_hold(pred->dtp_difo);
13685 helper->dtha_predicate = pred->dtp_difo;
13688 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13689 if (act->dtad_kind != DTRACEACT_DIFEXPR)
13690 goto err;
13692 if (act->dtad_difo == NULL)
13693 goto err;
13695 nactions++;
13698 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13699 (helper->dtha_nactions = nactions), KM_SLEEP);
13701 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13702 dtrace_difo_hold(act->dtad_difo);
13703 helper->dtha_actions[i++] = act->dtad_difo;
13706 if (!dtrace_helper_validate(helper))
13707 goto err;
13709 if (last == NULL) {
13710 help->dthps_actions[which] = helper;
13711 } else {
13712 last->dtha_next = helper;
13715 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13716 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13717 dtrace_helptrace_next = 0;
13720 return (0);
13721 err:
13722 dtrace_helper_action_destroy(helper, vstate);
13723 return (EINVAL);
13726 static void
13727 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13728 dof_helper_t *dofhp)
13730 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
13732 mutex_enter(&dtrace_meta_lock);
13733 mutex_enter(&dtrace_lock);
13735 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13737 * If the dtrace module is loaded but not attached, or if
13738 * there aren't isn't a meta provider registered to deal with
13739 * these provider descriptions, we need to postpone creating
13740 * the actual providers until later.
13743 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13744 dtrace_deferred_pid != help) {
13745 help->dthps_deferred = 1;
13746 help->dthps_pid = p->p_pid;
13747 help->dthps_next = dtrace_deferred_pid;
13748 help->dthps_prev = NULL;
13749 if (dtrace_deferred_pid != NULL)
13750 dtrace_deferred_pid->dthps_prev = help;
13751 dtrace_deferred_pid = help;
13754 mutex_exit(&dtrace_lock);
13756 } else if (dofhp != NULL) {
13758 * If the dtrace module is loaded and we have a particular
13759 * helper provider description, pass that off to the
13760 * meta provider.
13763 mutex_exit(&dtrace_lock);
13765 dtrace_helper_provide(dofhp, p->p_pid);
13767 } else {
13769 * Otherwise, just pass all the helper provider descriptions
13770 * off to the meta provider.
13773 int i;
13774 mutex_exit(&dtrace_lock);
13776 for (i = 0; i < help->dthps_nprovs; i++) {
13777 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13778 p->p_pid);
13782 mutex_exit(&dtrace_meta_lock);
13785 static int
13786 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13788 dtrace_helpers_t *help;
13789 dtrace_helper_provider_t *hprov, **tmp_provs;
13790 uint_t tmp_maxprovs, i;
13792 ASSERT(MUTEX_HELD(&dtrace_lock));
13794 help = curproc->p_dtrace_helpers;
13795 ASSERT(help != NULL);
13798 * If we already have dtrace_helper_providers_max helper providers,
13799 * we're refuse to add a new one.
13801 if (help->dthps_nprovs >= dtrace_helper_providers_max)
13802 return (ENOSPC);
13805 * Check to make sure this isn't a duplicate.
13807 for (i = 0; i < help->dthps_nprovs; i++) {
13808 if (dofhp->dofhp_addr ==
13809 help->dthps_provs[i]->dthp_prov.dofhp_addr)
13810 return (EALREADY);
13813 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13814 hprov->dthp_prov = *dofhp;
13815 hprov->dthp_ref = 1;
13816 hprov->dthp_generation = gen;
13819 * Allocate a bigger table for helper providers if it's already full.
13821 if (help->dthps_maxprovs == help->dthps_nprovs) {
13822 tmp_maxprovs = help->dthps_maxprovs;
13823 tmp_provs = help->dthps_provs;
13825 if (help->dthps_maxprovs == 0)
13826 help->dthps_maxprovs = 2;
13827 else
13828 help->dthps_maxprovs *= 2;
13829 if (help->dthps_maxprovs > dtrace_helper_providers_max)
13830 help->dthps_maxprovs = dtrace_helper_providers_max;
13832 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13834 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13835 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13837 if (tmp_provs != NULL) {
13838 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13839 sizeof (dtrace_helper_provider_t *));
13840 kmem_free(tmp_provs, tmp_maxprovs *
13841 sizeof (dtrace_helper_provider_t *));
13845 help->dthps_provs[help->dthps_nprovs] = hprov;
13846 help->dthps_nprovs++;
13848 return (0);
13851 static void
13852 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13854 mutex_enter(&dtrace_lock);
13856 if (--hprov->dthp_ref == 0) {
13857 dof_hdr_t *dof;
13858 mutex_exit(&dtrace_lock);
13859 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13860 dtrace_dof_destroy(dof);
13861 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13862 } else {
13863 mutex_exit(&dtrace_lock);
13867 static int
13868 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13870 uintptr_t daddr = (uintptr_t)dof;
13871 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13872 dof_provider_t *provider;
13873 dof_probe_t *probe;
13874 uint8_t *arg;
13875 char *strtab, *typestr;
13876 dof_stridx_t typeidx;
13877 size_t typesz;
13878 uint_t nprobes, j, k;
13880 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13882 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13883 dtrace_dof_error(dof, "misaligned section offset");
13884 return (-1);
13888 * The section needs to be large enough to contain the DOF provider
13889 * structure appropriate for the given version.
13891 if (sec->dofs_size <
13892 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13893 offsetof(dof_provider_t, dofpv_prenoffs) :
13894 sizeof (dof_provider_t))) {
13895 dtrace_dof_error(dof, "provider section too small");
13896 return (-1);
13899 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13900 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13901 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13902 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13903 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13905 if (str_sec == NULL || prb_sec == NULL ||
13906 arg_sec == NULL || off_sec == NULL)
13907 return (-1);
13909 enoff_sec = NULL;
13911 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13912 provider->dofpv_prenoffs != DOF_SECT_NONE &&
13913 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13914 provider->dofpv_prenoffs)) == NULL)
13915 return (-1);
13917 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13919 if (provider->dofpv_name >= str_sec->dofs_size ||
13920 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13921 dtrace_dof_error(dof, "invalid provider name");
13922 return (-1);
13925 if (prb_sec->dofs_entsize == 0 ||
13926 prb_sec->dofs_entsize > prb_sec->dofs_size) {
13927 dtrace_dof_error(dof, "invalid entry size");
13928 return (-1);
13931 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13932 dtrace_dof_error(dof, "misaligned entry size");
13933 return (-1);
13936 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13937 dtrace_dof_error(dof, "invalid entry size");
13938 return (-1);
13941 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13942 dtrace_dof_error(dof, "misaligned section offset");
13943 return (-1);
13946 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13947 dtrace_dof_error(dof, "invalid entry size");
13948 return (-1);
13951 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13953 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13956 * Take a pass through the probes to check for errors.
13958 for (j = 0; j < nprobes; j++) {
13959 probe = (dof_probe_t *)(uintptr_t)(daddr +
13960 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13962 if (probe->dofpr_func >= str_sec->dofs_size) {
13963 dtrace_dof_error(dof, "invalid function name");
13964 return (-1);
13967 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13968 dtrace_dof_error(dof, "function name too long");
13969 return (-1);
13972 if (probe->dofpr_name >= str_sec->dofs_size ||
13973 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13974 dtrace_dof_error(dof, "invalid probe name");
13975 return (-1);
13979 * The offset count must not wrap the index, and the offsets
13980 * must also not overflow the section's data.
13982 if (probe->dofpr_offidx + probe->dofpr_noffs <
13983 probe->dofpr_offidx ||
13984 (probe->dofpr_offidx + probe->dofpr_noffs) *
13985 off_sec->dofs_entsize > off_sec->dofs_size) {
13986 dtrace_dof_error(dof, "invalid probe offset");
13987 return (-1);
13990 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13992 * If there's no is-enabled offset section, make sure
13993 * there aren't any is-enabled offsets. Otherwise
13994 * perform the same checks as for probe offsets
13995 * (immediately above).
13997 if (enoff_sec == NULL) {
13998 if (probe->dofpr_enoffidx != 0 ||
13999 probe->dofpr_nenoffs != 0) {
14000 dtrace_dof_error(dof, "is-enabled "
14001 "offsets with null section");
14002 return (-1);
14004 } else if (probe->dofpr_enoffidx +
14005 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14006 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14007 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14008 dtrace_dof_error(dof, "invalid is-enabled "
14009 "offset");
14010 return (-1);
14013 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14014 dtrace_dof_error(dof, "zero probe and "
14015 "is-enabled offsets");
14016 return (-1);
14018 } else if (probe->dofpr_noffs == 0) {
14019 dtrace_dof_error(dof, "zero probe offsets");
14020 return (-1);
14023 if (probe->dofpr_argidx + probe->dofpr_xargc <
14024 probe->dofpr_argidx ||
14025 (probe->dofpr_argidx + probe->dofpr_xargc) *
14026 arg_sec->dofs_entsize > arg_sec->dofs_size) {
14027 dtrace_dof_error(dof, "invalid args");
14028 return (-1);
14031 typeidx = probe->dofpr_nargv;
14032 typestr = strtab + probe->dofpr_nargv;
14033 for (k = 0; k < probe->dofpr_nargc; k++) {
14034 if (typeidx >= str_sec->dofs_size) {
14035 dtrace_dof_error(dof, "bad "
14036 "native argument type");
14037 return (-1);
14040 typesz = strlen(typestr) + 1;
14041 if (typesz > DTRACE_ARGTYPELEN) {
14042 dtrace_dof_error(dof, "native "
14043 "argument type too long");
14044 return (-1);
14046 typeidx += typesz;
14047 typestr += typesz;
14050 typeidx = probe->dofpr_xargv;
14051 typestr = strtab + probe->dofpr_xargv;
14052 for (k = 0; k < probe->dofpr_xargc; k++) {
14053 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14054 dtrace_dof_error(dof, "bad "
14055 "native argument index");
14056 return (-1);
14059 if (typeidx >= str_sec->dofs_size) {
14060 dtrace_dof_error(dof, "bad "
14061 "translated argument type");
14062 return (-1);
14065 typesz = strlen(typestr) + 1;
14066 if (typesz > DTRACE_ARGTYPELEN) {
14067 dtrace_dof_error(dof, "translated argument "
14068 "type too long");
14069 return (-1);
14072 typeidx += typesz;
14073 typestr += typesz;
14077 return (0);
14080 static int
14081 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14083 dtrace_helpers_t *help;
14084 dtrace_vstate_t *vstate;
14085 dtrace_enabling_t *enab = NULL;
14086 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14087 uintptr_t daddr = (uintptr_t)dof;
14089 ASSERT(MUTEX_HELD(&dtrace_lock));
14091 if ((help = curproc->p_dtrace_helpers) == NULL)
14092 help = dtrace_helpers_create(curproc);
14094 vstate = &help->dthps_vstate;
14096 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14097 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14098 dtrace_dof_destroy(dof);
14099 return (rv);
14103 * Look for helper providers and validate their descriptions.
14105 if (dhp != NULL) {
14106 for (i = 0; i < dof->dofh_secnum; i++) {
14107 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14108 dof->dofh_secoff + i * dof->dofh_secsize);
14110 if (sec->dofs_type != DOF_SECT_PROVIDER)
14111 continue;
14113 if (dtrace_helper_provider_validate(dof, sec) != 0) {
14114 dtrace_enabling_destroy(enab);
14115 dtrace_dof_destroy(dof);
14116 return (-1);
14119 nprovs++;
14124 * Now we need to walk through the ECB descriptions in the enabling.
14126 for (i = 0; i < enab->dten_ndesc; i++) {
14127 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14128 dtrace_probedesc_t *desc = &ep->dted_probe;
14130 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14131 continue;
14133 if (strcmp(desc->dtpd_mod, "helper") != 0)
14134 continue;
14136 if (strcmp(desc->dtpd_func, "ustack") != 0)
14137 continue;
14139 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14140 ep)) != 0) {
14142 * Adding this helper action failed -- we are now going
14143 * to rip out the entire generation and return failure.
14145 (void) dtrace_helper_destroygen(help->dthps_generation);
14146 dtrace_enabling_destroy(enab);
14147 dtrace_dof_destroy(dof);
14148 return (-1);
14151 nhelpers++;
14154 if (nhelpers < enab->dten_ndesc)
14155 dtrace_dof_error(dof, "unmatched helpers");
14157 gen = help->dthps_generation++;
14158 dtrace_enabling_destroy(enab);
14160 if (dhp != NULL && nprovs > 0) {
14161 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14162 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14163 mutex_exit(&dtrace_lock);
14164 dtrace_helper_provider_register(curproc, help, dhp);
14165 mutex_enter(&dtrace_lock);
14167 destroy = 0;
14171 if (destroy)
14172 dtrace_dof_destroy(dof);
14174 return (gen);
14177 static dtrace_helpers_t *
14178 dtrace_helpers_create(proc_t *p)
14180 dtrace_helpers_t *help;
14182 ASSERT(MUTEX_HELD(&dtrace_lock));
14183 ASSERT(p->p_dtrace_helpers == NULL);
14185 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14186 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14187 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14189 p->p_dtrace_helpers = help;
14190 dtrace_helpers++;
14192 return (help);
14195 static void
14196 dtrace_helpers_destroy(void)
14198 dtrace_helpers_t *help;
14199 dtrace_vstate_t *vstate;
14200 proc_t *p = curproc;
14201 int i;
14203 mutex_enter(&dtrace_lock);
14205 ASSERT(p->p_dtrace_helpers != NULL);
14206 ASSERT(dtrace_helpers > 0);
14208 help = p->p_dtrace_helpers;
14209 vstate = &help->dthps_vstate;
14212 * We're now going to lose the help from this process.
14214 p->p_dtrace_helpers = NULL;
14215 dtrace_sync();
14218 * Destory the helper actions.
14220 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14221 dtrace_helper_action_t *h, *next;
14223 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14224 next = h->dtha_next;
14225 dtrace_helper_action_destroy(h, vstate);
14226 h = next;
14230 mutex_exit(&dtrace_lock);
14233 * Destroy the helper providers.
14235 if (help->dthps_maxprovs > 0) {
14236 mutex_enter(&dtrace_meta_lock);
14237 if (dtrace_meta_pid != NULL) {
14238 ASSERT(dtrace_deferred_pid == NULL);
14240 for (i = 0; i < help->dthps_nprovs; i++) {
14241 dtrace_helper_provider_remove(
14242 &help->dthps_provs[i]->dthp_prov, p->p_pid);
14244 } else {
14245 mutex_enter(&dtrace_lock);
14246 ASSERT(help->dthps_deferred == 0 ||
14247 help->dthps_next != NULL ||
14248 help->dthps_prev != NULL ||
14249 help == dtrace_deferred_pid);
14252 * Remove the helper from the deferred list.
14254 if (help->dthps_next != NULL)
14255 help->dthps_next->dthps_prev = help->dthps_prev;
14256 if (help->dthps_prev != NULL)
14257 help->dthps_prev->dthps_next = help->dthps_next;
14258 if (dtrace_deferred_pid == help) {
14259 dtrace_deferred_pid = help->dthps_next;
14260 ASSERT(help->dthps_prev == NULL);
14263 mutex_exit(&dtrace_lock);
14266 mutex_exit(&dtrace_meta_lock);
14268 for (i = 0; i < help->dthps_nprovs; i++) {
14269 dtrace_helper_provider_destroy(help->dthps_provs[i]);
14272 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14273 sizeof (dtrace_helper_provider_t *));
14276 mutex_enter(&dtrace_lock);
14278 dtrace_vstate_fini(&help->dthps_vstate);
14279 kmem_free(help->dthps_actions,
14280 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14281 kmem_free(help, sizeof (dtrace_helpers_t));
14283 --dtrace_helpers;
14284 mutex_exit(&dtrace_lock);
14287 static void
14288 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14290 dtrace_helpers_t *help, *newhelp;
14291 dtrace_helper_action_t *helper, *new, *last;
14292 dtrace_difo_t *dp;
14293 dtrace_vstate_t *vstate;
14294 int i, j, sz, hasprovs = 0;
14296 mutex_enter(&dtrace_lock);
14297 ASSERT(from->p_dtrace_helpers != NULL);
14298 ASSERT(dtrace_helpers > 0);
14300 help = from->p_dtrace_helpers;
14301 newhelp = dtrace_helpers_create(to);
14302 ASSERT(to->p_dtrace_helpers != NULL);
14304 newhelp->dthps_generation = help->dthps_generation;
14305 vstate = &newhelp->dthps_vstate;
14308 * Duplicate the helper actions.
14310 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14311 if ((helper = help->dthps_actions[i]) == NULL)
14312 continue;
14314 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14315 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14316 KM_SLEEP);
14317 new->dtha_generation = helper->dtha_generation;
14319 if ((dp = helper->dtha_predicate) != NULL) {
14320 dp = dtrace_difo_duplicate(dp, vstate);
14321 new->dtha_predicate = dp;
14324 new->dtha_nactions = helper->dtha_nactions;
14325 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14326 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14328 for (j = 0; j < new->dtha_nactions; j++) {
14329 dtrace_difo_t *dp = helper->dtha_actions[j];
14331 ASSERT(dp != NULL);
14332 dp = dtrace_difo_duplicate(dp, vstate);
14333 new->dtha_actions[j] = dp;
14336 if (last != NULL) {
14337 last->dtha_next = new;
14338 } else {
14339 newhelp->dthps_actions[i] = new;
14342 last = new;
14347 * Duplicate the helper providers and register them with the
14348 * DTrace framework.
14350 if (help->dthps_nprovs > 0) {
14351 newhelp->dthps_nprovs = help->dthps_nprovs;
14352 newhelp->dthps_maxprovs = help->dthps_nprovs;
14353 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14354 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14355 for (i = 0; i < newhelp->dthps_nprovs; i++) {
14356 newhelp->dthps_provs[i] = help->dthps_provs[i];
14357 newhelp->dthps_provs[i]->dthp_ref++;
14360 hasprovs = 1;
14363 mutex_exit(&dtrace_lock);
14365 if (hasprovs)
14366 dtrace_helper_provider_register(to, newhelp, NULL);
14370 * DTrace Hook Functions
14372 static void
14373 dtrace_module_loaded(struct modctl *ctl)
14375 dtrace_provider_t *prv;
14377 mutex_enter(&dtrace_provider_lock);
14378 mutex_enter(&mod_lock);
14380 ASSERT(ctl->mod_busy);
14383 * We're going to call each providers per-module provide operation
14384 * specifying only this module.
14386 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14387 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14389 mutex_exit(&mod_lock);
14390 mutex_exit(&dtrace_provider_lock);
14393 * If we have any retained enablings, we need to match against them.
14394 * Enabling probes requires that cpu_lock be held, and we cannot hold
14395 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14396 * module. (In particular, this happens when loading scheduling
14397 * classes.) So if we have any retained enablings, we need to dispatch
14398 * our task queue to do the match for us.
14400 mutex_enter(&dtrace_lock);
14402 if (dtrace_retained == NULL) {
14403 mutex_exit(&dtrace_lock);
14404 return;
14407 (void) taskq_dispatch(dtrace_taskq,
14408 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14410 mutex_exit(&dtrace_lock);
14413 * And now, for a little heuristic sleaze: in general, we want to
14414 * match modules as soon as they load. However, we cannot guarantee
14415 * this, because it would lead us to the lock ordering violation
14416 * outlined above. The common case, of course, is that cpu_lock is
14417 * _not_ held -- so we delay here for a clock tick, hoping that that's
14418 * long enough for the task queue to do its work. If it's not, it's
14419 * not a serious problem -- it just means that the module that we
14420 * just loaded may not be immediately instrumentable.
14422 delay(1);
14425 static void
14426 dtrace_module_unloaded(struct modctl *ctl)
14428 dtrace_probe_t template, *probe, *first, *next;
14429 dtrace_provider_t *prov;
14431 template.dtpr_mod = ctl->mod_modname;
14433 mutex_enter(&dtrace_provider_lock);
14434 mutex_enter(&mod_lock);
14435 mutex_enter(&dtrace_lock);
14437 if (dtrace_bymod == NULL) {
14439 * The DTrace module is loaded (obviously) but not attached;
14440 * we don't have any work to do.
14442 mutex_exit(&dtrace_provider_lock);
14443 mutex_exit(&mod_lock);
14444 mutex_exit(&dtrace_lock);
14445 return;
14448 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14449 probe != NULL; probe = probe->dtpr_nextmod) {
14450 if (probe->dtpr_ecb != NULL) {
14451 mutex_exit(&dtrace_provider_lock);
14452 mutex_exit(&mod_lock);
14453 mutex_exit(&dtrace_lock);
14456 * This shouldn't _actually_ be possible -- we're
14457 * unloading a module that has an enabled probe in it.
14458 * (It's normally up to the provider to make sure that
14459 * this can't happen.) However, because dtps_enable()
14460 * doesn't have a failure mode, there can be an
14461 * enable/unload race. Upshot: we don't want to
14462 * assert, but we're not going to disable the
14463 * probe, either.
14465 if (dtrace_err_verbose) {
14466 cmn_err(CE_WARN, "unloaded module '%s' had "
14467 "enabled probes", ctl->mod_modname);
14470 return;
14474 probe = first;
14476 for (first = NULL; probe != NULL; probe = next) {
14477 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14479 dtrace_probes[probe->dtpr_id - 1] = NULL;
14481 next = probe->dtpr_nextmod;
14482 dtrace_hash_remove(dtrace_bymod, probe);
14483 dtrace_hash_remove(dtrace_byfunc, probe);
14484 dtrace_hash_remove(dtrace_byname, probe);
14486 if (first == NULL) {
14487 first = probe;
14488 probe->dtpr_nextmod = NULL;
14489 } else {
14490 probe->dtpr_nextmod = first;
14491 first = probe;
14496 * We've removed all of the module's probes from the hash chains and
14497 * from the probe array. Now issue a dtrace_sync() to be sure that
14498 * everyone has cleared out from any probe array processing.
14500 dtrace_sync();
14502 for (probe = first; probe != NULL; probe = first) {
14503 first = probe->dtpr_nextmod;
14504 prov = probe->dtpr_provider;
14505 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14506 probe->dtpr_arg);
14507 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14508 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14509 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14510 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14511 kmem_free(probe, sizeof (dtrace_probe_t));
14514 mutex_exit(&dtrace_lock);
14515 mutex_exit(&mod_lock);
14516 mutex_exit(&dtrace_provider_lock);
14519 void
14520 dtrace_suspend(void)
14522 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14525 void
14526 dtrace_resume(void)
14528 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14531 static int
14532 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14534 ASSERT(MUTEX_HELD(&cpu_lock));
14535 mutex_enter(&dtrace_lock);
14537 switch (what) {
14538 case CPU_CONFIG: {
14539 dtrace_state_t *state;
14540 dtrace_optval_t *opt, rs, c;
14543 * For now, we only allocate a new buffer for anonymous state.
14545 if ((state = dtrace_anon.dta_state) == NULL)
14546 break;
14548 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14549 break;
14551 opt = state->dts_options;
14552 c = opt[DTRACEOPT_CPU];
14554 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14555 break;
14558 * Regardless of what the actual policy is, we're going to
14559 * temporarily set our resize policy to be manual. We're
14560 * also going to temporarily set our CPU option to denote
14561 * the newly configured CPU.
14563 rs = opt[DTRACEOPT_BUFRESIZE];
14564 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14565 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14567 (void) dtrace_state_buffers(state);
14569 opt[DTRACEOPT_BUFRESIZE] = rs;
14570 opt[DTRACEOPT_CPU] = c;
14572 break;
14575 case CPU_UNCONFIG:
14577 * We don't free the buffer in the CPU_UNCONFIG case. (The
14578 * buffer will be freed when the consumer exits.)
14580 break;
14582 default:
14583 break;
14586 mutex_exit(&dtrace_lock);
14587 return (0);
14590 static void
14591 dtrace_cpu_setup_initial(processorid_t cpu)
14593 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14596 static void
14597 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14599 if (dtrace_toxranges >= dtrace_toxranges_max) {
14600 int osize, nsize;
14601 dtrace_toxrange_t *range;
14603 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14605 if (osize == 0) {
14606 ASSERT(dtrace_toxrange == NULL);
14607 ASSERT(dtrace_toxranges_max == 0);
14608 dtrace_toxranges_max = 1;
14609 } else {
14610 dtrace_toxranges_max <<= 1;
14613 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14614 range = kmem_zalloc(nsize, KM_SLEEP);
14616 if (dtrace_toxrange != NULL) {
14617 ASSERT(osize != 0);
14618 bcopy(dtrace_toxrange, range, osize);
14619 kmem_free(dtrace_toxrange, osize);
14622 dtrace_toxrange = range;
14625 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14626 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14628 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14629 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14630 dtrace_toxranges++;
14634 * DTrace Driver Cookbook Functions
14636 /*ARGSUSED*/
14637 static int
14638 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14640 dtrace_provider_id_t id;
14641 dtrace_state_t *state = NULL;
14642 dtrace_enabling_t *enab;
14644 mutex_enter(&cpu_lock);
14645 mutex_enter(&dtrace_provider_lock);
14646 mutex_enter(&dtrace_lock);
14648 if (ddi_soft_state_init(&dtrace_softstate,
14649 sizeof (dtrace_state_t), 0) != 0) {
14650 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14651 mutex_exit(&cpu_lock);
14652 mutex_exit(&dtrace_provider_lock);
14653 mutex_exit(&dtrace_lock);
14654 return (DDI_FAILURE);
14657 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14658 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14659 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14660 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14661 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14662 ddi_remove_minor_node(devi, NULL);
14663 ddi_soft_state_fini(&dtrace_softstate);
14664 mutex_exit(&cpu_lock);
14665 mutex_exit(&dtrace_provider_lock);
14666 mutex_exit(&dtrace_lock);
14667 return (DDI_FAILURE);
14670 ddi_report_dev(devi);
14671 dtrace_devi = devi;
14673 dtrace_modload = dtrace_module_loaded;
14674 dtrace_modunload = dtrace_module_unloaded;
14675 dtrace_cpu_init = dtrace_cpu_setup_initial;
14676 dtrace_helpers_cleanup = dtrace_helpers_destroy;
14677 dtrace_helpers_fork = dtrace_helpers_duplicate;
14678 dtrace_cpustart_init = dtrace_suspend;
14679 dtrace_cpustart_fini = dtrace_resume;
14680 dtrace_debugger_init = dtrace_suspend;
14681 dtrace_debugger_fini = dtrace_resume;
14683 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14685 ASSERT(MUTEX_HELD(&cpu_lock));
14687 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14688 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14689 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14690 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14691 VM_SLEEP | VMC_IDENTIFIER);
14692 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14693 1, INT_MAX, 0);
14695 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14696 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14697 NULL, NULL, NULL, NULL, NULL, 0);
14699 ASSERT(MUTEX_HELD(&cpu_lock));
14700 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14701 offsetof(dtrace_probe_t, dtpr_nextmod),
14702 offsetof(dtrace_probe_t, dtpr_prevmod));
14704 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14705 offsetof(dtrace_probe_t, dtpr_nextfunc),
14706 offsetof(dtrace_probe_t, dtpr_prevfunc));
14708 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
14709 offsetof(dtrace_probe_t, dtpr_nextname),
14710 offsetof(dtrace_probe_t, dtpr_prevname));
14712 if (dtrace_retain_max < 1) {
14713 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
14714 "setting to 1", dtrace_retain_max);
14715 dtrace_retain_max = 1;
14719 * Now discover our toxic ranges.
14721 dtrace_toxic_ranges(dtrace_toxrange_add);
14724 * Before we register ourselves as a provider to our own framework,
14725 * we would like to assert that dtrace_provider is NULL -- but that's
14726 * not true if we were loaded as a dependency of a DTrace provider.
14727 * Once we've registered, we can assert that dtrace_provider is our
14728 * pseudo provider.
14730 (void) dtrace_register("dtrace", &dtrace_provider_attr,
14731 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
14733 ASSERT(dtrace_provider != NULL);
14734 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
14736 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
14737 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
14738 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
14739 dtrace_provider, NULL, NULL, "END", 0, NULL);
14740 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
14741 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
14743 dtrace_anon_property();
14744 mutex_exit(&cpu_lock);
14747 * If DTrace helper tracing is enabled, we need to allocate the
14748 * trace buffer and initialize the values.
14750 if (dtrace_helptrace_enabled) {
14751 ASSERT(dtrace_helptrace_buffer == NULL);
14752 dtrace_helptrace_buffer =
14753 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
14754 dtrace_helptrace_next = 0;
14758 * If there are already providers, we must ask them to provide their
14759 * probes, and then match any anonymous enabling against them. Note
14760 * that there should be no other retained enablings at this time:
14761 * the only retained enablings at this time should be the anonymous
14762 * enabling.
14764 if (dtrace_anon.dta_enabling != NULL) {
14765 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
14767 dtrace_enabling_provide(NULL);
14768 state = dtrace_anon.dta_state;
14771 * We couldn't hold cpu_lock across the above call to
14772 * dtrace_enabling_provide(), but we must hold it to actually
14773 * enable the probes. We have to drop all of our locks, pick
14774 * up cpu_lock, and regain our locks before matching the
14775 * retained anonymous enabling.
14777 mutex_exit(&dtrace_lock);
14778 mutex_exit(&dtrace_provider_lock);
14780 mutex_enter(&cpu_lock);
14781 mutex_enter(&dtrace_provider_lock);
14782 mutex_enter(&dtrace_lock);
14784 if ((enab = dtrace_anon.dta_enabling) != NULL)
14785 (void) dtrace_enabling_match(enab, NULL);
14787 mutex_exit(&cpu_lock);
14790 mutex_exit(&dtrace_lock);
14791 mutex_exit(&dtrace_provider_lock);
14793 if (state != NULL) {
14795 * If we created any anonymous state, set it going now.
14797 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14800 return (DDI_SUCCESS);
14803 /*ARGSUSED*/
14804 static int
14805 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14807 dtrace_state_t *state;
14808 uint32_t priv;
14809 uid_t uid;
14810 zoneid_t zoneid;
14812 if (getminor(*devp) == DTRACEMNRN_HELPER)
14813 return (0);
14816 * If this wasn't an open with the "helper" minor, then it must be
14817 * the "dtrace" minor.
14819 if (getminor(*devp) != DTRACEMNRN_DTRACE)
14820 return (ENXIO);
14823 * If no DTRACE_PRIV_* bits are set in the credential, then the
14824 * caller lacks sufficient permission to do anything with DTrace.
14826 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14827 if (priv == DTRACE_PRIV_NONE)
14828 return (EACCES);
14831 * Ask all providers to provide all their probes.
14833 mutex_enter(&dtrace_provider_lock);
14834 dtrace_probe_provide(NULL, NULL);
14835 mutex_exit(&dtrace_provider_lock);
14837 mutex_enter(&cpu_lock);
14838 mutex_enter(&dtrace_lock);
14839 dtrace_opens++;
14840 dtrace_membar_producer();
14843 * If the kernel debugger is active (that is, if the kernel debugger
14844 * modified text in some way), we won't allow the open.
14846 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14847 dtrace_opens--;
14848 mutex_exit(&cpu_lock);
14849 mutex_exit(&dtrace_lock);
14850 return (EBUSY);
14853 state = dtrace_state_create(devp, cred_p);
14854 mutex_exit(&cpu_lock);
14856 if (state == NULL) {
14857 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14858 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14859 mutex_exit(&dtrace_lock);
14860 return (EAGAIN);
14863 mutex_exit(&dtrace_lock);
14865 return (0);
14868 /*ARGSUSED*/
14869 static int
14870 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14872 minor_t minor = getminor(dev);
14873 dtrace_state_t *state;
14875 if (minor == DTRACEMNRN_HELPER)
14876 return (0);
14878 state = ddi_get_soft_state(dtrace_softstate, minor);
14880 mutex_enter(&cpu_lock);
14881 mutex_enter(&dtrace_lock);
14883 if (state->dts_anon) {
14885 * There is anonymous state. Destroy that first.
14887 ASSERT(dtrace_anon.dta_state == NULL);
14888 dtrace_state_destroy(state->dts_anon);
14891 dtrace_state_destroy(state);
14892 ASSERT(dtrace_opens > 0);
14895 * Only relinquish control of the kernel debugger interface when there
14896 * are no consumers and no anonymous enablings.
14898 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14899 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14901 mutex_exit(&dtrace_lock);
14902 mutex_exit(&cpu_lock);
14904 return (0);
14907 /*ARGSUSED*/
14908 static int
14909 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14911 int rval;
14912 dof_helper_t help, *dhp = NULL;
14914 switch (cmd) {
14915 case DTRACEHIOC_ADDDOF:
14916 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14917 dtrace_dof_error(NULL, "failed to copyin DOF helper");
14918 return (EFAULT);
14921 dhp = &help;
14922 arg = (intptr_t)help.dofhp_dof;
14923 /*FALLTHROUGH*/
14925 case DTRACEHIOC_ADD: {
14926 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14928 if (dof == NULL)
14929 return (rval);
14931 mutex_enter(&dtrace_lock);
14934 * dtrace_helper_slurp() takes responsibility for the dof --
14935 * it may free it now or it may save it and free it later.
14937 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14938 *rv = rval;
14939 rval = 0;
14940 } else {
14941 rval = EINVAL;
14944 mutex_exit(&dtrace_lock);
14945 return (rval);
14948 case DTRACEHIOC_REMOVE: {
14949 mutex_enter(&dtrace_lock);
14950 rval = dtrace_helper_destroygen(arg);
14951 mutex_exit(&dtrace_lock);
14953 return (rval);
14956 default:
14957 break;
14960 return (ENOTTY);
14963 /*ARGSUSED*/
14964 static int
14965 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14967 minor_t minor = getminor(dev);
14968 dtrace_state_t *state;
14969 int rval;
14971 if (minor == DTRACEMNRN_HELPER)
14972 return (dtrace_ioctl_helper(cmd, arg, rv));
14974 state = ddi_get_soft_state(dtrace_softstate, minor);
14976 if (state->dts_anon) {
14977 ASSERT(dtrace_anon.dta_state == NULL);
14978 state = state->dts_anon;
14981 switch (cmd) {
14982 case DTRACEIOC_PROVIDER: {
14983 dtrace_providerdesc_t pvd;
14984 dtrace_provider_t *pvp;
14986 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14987 return (EFAULT);
14989 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14990 mutex_enter(&dtrace_provider_lock);
14992 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14993 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14994 break;
14997 mutex_exit(&dtrace_provider_lock);
14999 if (pvp == NULL)
15000 return (ESRCH);
15002 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15003 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15004 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15005 return (EFAULT);
15007 return (0);
15010 case DTRACEIOC_EPROBE: {
15011 dtrace_eprobedesc_t epdesc;
15012 dtrace_ecb_t *ecb;
15013 dtrace_action_t *act;
15014 void *buf;
15015 size_t size;
15016 uintptr_t dest;
15017 int nrecs;
15019 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15020 return (EFAULT);
15022 mutex_enter(&dtrace_lock);
15024 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15025 mutex_exit(&dtrace_lock);
15026 return (EINVAL);
15029 if (ecb->dte_probe == NULL) {
15030 mutex_exit(&dtrace_lock);
15031 return (EINVAL);
15034 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15035 epdesc.dtepd_uarg = ecb->dte_uarg;
15036 epdesc.dtepd_size = ecb->dte_size;
15038 nrecs = epdesc.dtepd_nrecs;
15039 epdesc.dtepd_nrecs = 0;
15040 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15041 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15042 continue;
15044 epdesc.dtepd_nrecs++;
15048 * Now that we have the size, we need to allocate a temporary
15049 * buffer in which to store the complete description. We need
15050 * the temporary buffer to be able to drop dtrace_lock()
15051 * across the copyout(), below.
15053 size = sizeof (dtrace_eprobedesc_t) +
15054 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15056 buf = kmem_alloc(size, KM_SLEEP);
15057 dest = (uintptr_t)buf;
15059 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15060 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15062 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15063 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15064 continue;
15066 if (nrecs-- == 0)
15067 break;
15069 bcopy(&act->dta_rec, (void *)dest,
15070 sizeof (dtrace_recdesc_t));
15071 dest += sizeof (dtrace_recdesc_t);
15074 mutex_exit(&dtrace_lock);
15076 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15077 kmem_free(buf, size);
15078 return (EFAULT);
15081 kmem_free(buf, size);
15082 return (0);
15085 case DTRACEIOC_AGGDESC: {
15086 dtrace_aggdesc_t aggdesc;
15087 dtrace_action_t *act;
15088 dtrace_aggregation_t *agg;
15089 int nrecs;
15090 uint32_t offs;
15091 dtrace_recdesc_t *lrec;
15092 void *buf;
15093 size_t size;
15094 uintptr_t dest;
15096 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15097 return (EFAULT);
15099 mutex_enter(&dtrace_lock);
15101 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15102 mutex_exit(&dtrace_lock);
15103 return (EINVAL);
15106 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15108 nrecs = aggdesc.dtagd_nrecs;
15109 aggdesc.dtagd_nrecs = 0;
15111 offs = agg->dtag_base;
15112 lrec = &agg->dtag_action.dta_rec;
15113 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15115 for (act = agg->dtag_first; ; act = act->dta_next) {
15116 ASSERT(act->dta_intuple ||
15117 DTRACEACT_ISAGG(act->dta_kind));
15120 * If this action has a record size of zero, it
15121 * denotes an argument to the aggregating action.
15122 * Because the presence of this record doesn't (or
15123 * shouldn't) affect the way the data is interpreted,
15124 * we don't copy it out to save user-level the
15125 * confusion of dealing with a zero-length record.
15127 if (act->dta_rec.dtrd_size == 0) {
15128 ASSERT(agg->dtag_hasarg);
15129 continue;
15132 aggdesc.dtagd_nrecs++;
15134 if (act == &agg->dtag_action)
15135 break;
15139 * Now that we have the size, we need to allocate a temporary
15140 * buffer in which to store the complete description. We need
15141 * the temporary buffer to be able to drop dtrace_lock()
15142 * across the copyout(), below.
15144 size = sizeof (dtrace_aggdesc_t) +
15145 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15147 buf = kmem_alloc(size, KM_SLEEP);
15148 dest = (uintptr_t)buf;
15150 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15151 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15153 for (act = agg->dtag_first; ; act = act->dta_next) {
15154 dtrace_recdesc_t rec = act->dta_rec;
15157 * See the comment in the above loop for why we pass
15158 * over zero-length records.
15160 if (rec.dtrd_size == 0) {
15161 ASSERT(agg->dtag_hasarg);
15162 continue;
15165 if (nrecs-- == 0)
15166 break;
15168 rec.dtrd_offset -= offs;
15169 bcopy(&rec, (void *)dest, sizeof (rec));
15170 dest += sizeof (dtrace_recdesc_t);
15172 if (act == &agg->dtag_action)
15173 break;
15176 mutex_exit(&dtrace_lock);
15178 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15179 kmem_free(buf, size);
15180 return (EFAULT);
15183 kmem_free(buf, size);
15184 return (0);
15187 case DTRACEIOC_ENABLE: {
15188 dof_hdr_t *dof;
15189 dtrace_enabling_t *enab = NULL;
15190 dtrace_vstate_t *vstate;
15191 int err = 0;
15193 *rv = 0;
15196 * If a NULL argument has been passed, we take this as our
15197 * cue to reevaluate our enablings.
15199 if (arg == NULL) {
15200 dtrace_enabling_matchall();
15202 return (0);
15205 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15206 return (rval);
15208 mutex_enter(&cpu_lock);
15209 mutex_enter(&dtrace_lock);
15210 vstate = &state->dts_vstate;
15212 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15213 mutex_exit(&dtrace_lock);
15214 mutex_exit(&cpu_lock);
15215 dtrace_dof_destroy(dof);
15216 return (EBUSY);
15219 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15220 mutex_exit(&dtrace_lock);
15221 mutex_exit(&cpu_lock);
15222 dtrace_dof_destroy(dof);
15223 return (EINVAL);
15226 if ((rval = dtrace_dof_options(dof, state)) != 0) {
15227 dtrace_enabling_destroy(enab);
15228 mutex_exit(&dtrace_lock);
15229 mutex_exit(&cpu_lock);
15230 dtrace_dof_destroy(dof);
15231 return (rval);
15234 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15235 err = dtrace_enabling_retain(enab);
15236 } else {
15237 dtrace_enabling_destroy(enab);
15240 mutex_exit(&cpu_lock);
15241 mutex_exit(&dtrace_lock);
15242 dtrace_dof_destroy(dof);
15244 return (err);
15247 case DTRACEIOC_REPLICATE: {
15248 dtrace_repldesc_t desc;
15249 dtrace_probedesc_t *match = &desc.dtrpd_match;
15250 dtrace_probedesc_t *create = &desc.dtrpd_create;
15251 int err;
15253 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15254 return (EFAULT);
15256 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15257 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15258 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15259 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15261 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15262 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15263 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15264 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15266 mutex_enter(&dtrace_lock);
15267 err = dtrace_enabling_replicate(state, match, create);
15268 mutex_exit(&dtrace_lock);
15270 return (err);
15273 case DTRACEIOC_PROBEMATCH:
15274 case DTRACEIOC_PROBES: {
15275 dtrace_probe_t *probe = NULL;
15276 dtrace_probedesc_t desc;
15277 dtrace_probekey_t pkey;
15278 dtrace_id_t i;
15279 int m = 0;
15280 uint32_t priv;
15281 uid_t uid;
15282 zoneid_t zoneid;
15284 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15285 return (EFAULT);
15287 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15288 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15289 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15290 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15293 * Before we attempt to match this probe, we want to give
15294 * all providers the opportunity to provide it.
15296 if (desc.dtpd_id == DTRACE_IDNONE) {
15297 mutex_enter(&dtrace_provider_lock);
15298 dtrace_probe_provide(&desc, NULL);
15299 mutex_exit(&dtrace_provider_lock);
15300 desc.dtpd_id++;
15303 if (cmd == DTRACEIOC_PROBEMATCH) {
15304 dtrace_probekey(&desc, &pkey);
15305 pkey.dtpk_id = DTRACE_IDNONE;
15308 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15310 mutex_enter(&dtrace_lock);
15312 if (cmd == DTRACEIOC_PROBEMATCH) {
15313 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15314 if ((probe = dtrace_probes[i - 1]) != NULL &&
15315 (m = dtrace_match_probe(probe, &pkey,
15316 priv, uid, zoneid)) != 0)
15317 break;
15320 if (m < 0) {
15321 mutex_exit(&dtrace_lock);
15322 return (EINVAL);
15325 } else {
15326 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15327 if ((probe = dtrace_probes[i - 1]) != NULL &&
15328 dtrace_match_priv(probe, priv, uid, zoneid))
15329 break;
15333 if (probe == NULL) {
15334 mutex_exit(&dtrace_lock);
15335 return (ESRCH);
15338 dtrace_probe_description(probe, &desc);
15339 mutex_exit(&dtrace_lock);
15341 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15342 return (EFAULT);
15344 return (0);
15347 case DTRACEIOC_PROBEARG: {
15348 dtrace_argdesc_t desc;
15349 dtrace_probe_t *probe;
15350 dtrace_provider_t *prov;
15352 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15353 return (EFAULT);
15355 if (desc.dtargd_id == DTRACE_IDNONE)
15356 return (EINVAL);
15358 if (desc.dtargd_ndx == DTRACE_ARGNONE)
15359 return (EINVAL);
15361 mutex_enter(&dtrace_provider_lock);
15362 mutex_enter(&mod_lock);
15363 mutex_enter(&dtrace_lock);
15365 if (desc.dtargd_id > dtrace_nprobes) {
15366 mutex_exit(&dtrace_lock);
15367 mutex_exit(&mod_lock);
15368 mutex_exit(&dtrace_provider_lock);
15369 return (EINVAL);
15372 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15373 mutex_exit(&dtrace_lock);
15374 mutex_exit(&mod_lock);
15375 mutex_exit(&dtrace_provider_lock);
15376 return (EINVAL);
15379 mutex_exit(&dtrace_lock);
15381 prov = probe->dtpr_provider;
15383 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15385 * There isn't any typed information for this probe.
15386 * Set the argument number to DTRACE_ARGNONE.
15388 desc.dtargd_ndx = DTRACE_ARGNONE;
15389 } else {
15390 desc.dtargd_native[0] = '\0';
15391 desc.dtargd_xlate[0] = '\0';
15392 desc.dtargd_mapping = desc.dtargd_ndx;
15394 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15395 probe->dtpr_id, probe->dtpr_arg, &desc);
15398 mutex_exit(&mod_lock);
15399 mutex_exit(&dtrace_provider_lock);
15401 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15402 return (EFAULT);
15404 return (0);
15407 case DTRACEIOC_GO: {
15408 processorid_t cpuid;
15409 rval = dtrace_state_go(state, &cpuid);
15411 if (rval != 0)
15412 return (rval);
15414 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15415 return (EFAULT);
15417 return (0);
15420 case DTRACEIOC_STOP: {
15421 processorid_t cpuid;
15423 mutex_enter(&dtrace_lock);
15424 rval = dtrace_state_stop(state, &cpuid);
15425 mutex_exit(&dtrace_lock);
15427 if (rval != 0)
15428 return (rval);
15430 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15431 return (EFAULT);
15433 return (0);
15436 case DTRACEIOC_DOFGET: {
15437 dof_hdr_t hdr, *dof;
15438 uint64_t len;
15440 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15441 return (EFAULT);
15443 mutex_enter(&dtrace_lock);
15444 dof = dtrace_dof_create(state);
15445 mutex_exit(&dtrace_lock);
15447 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15448 rval = copyout(dof, (void *)arg, len);
15449 dtrace_dof_destroy(dof);
15451 return (rval == 0 ? 0 : EFAULT);
15454 case DTRACEIOC_AGGSNAP:
15455 case DTRACEIOC_BUFSNAP: {
15456 dtrace_bufdesc_t desc;
15457 caddr_t cached;
15458 dtrace_buffer_t *buf;
15460 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15461 return (EFAULT);
15463 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15464 return (EINVAL);
15466 mutex_enter(&dtrace_lock);
15468 if (cmd == DTRACEIOC_BUFSNAP) {
15469 buf = &state->dts_buffer[desc.dtbd_cpu];
15470 } else {
15471 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15474 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15475 size_t sz = buf->dtb_offset;
15477 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15478 mutex_exit(&dtrace_lock);
15479 return (EBUSY);
15483 * If this buffer has already been consumed, we're
15484 * going to indicate that there's nothing left here
15485 * to consume.
15487 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15488 mutex_exit(&dtrace_lock);
15490 desc.dtbd_size = 0;
15491 desc.dtbd_drops = 0;
15492 desc.dtbd_errors = 0;
15493 desc.dtbd_oldest = 0;
15494 sz = sizeof (desc);
15496 if (copyout(&desc, (void *)arg, sz) != 0)
15497 return (EFAULT);
15499 return (0);
15503 * If this is a ring buffer that has wrapped, we want
15504 * to copy the whole thing out.
15506 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15507 dtrace_buffer_polish(buf);
15508 sz = buf->dtb_size;
15511 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15512 mutex_exit(&dtrace_lock);
15513 return (EFAULT);
15516 desc.dtbd_size = sz;
15517 desc.dtbd_drops = buf->dtb_drops;
15518 desc.dtbd_errors = buf->dtb_errors;
15519 desc.dtbd_oldest = buf->dtb_xamot_offset;
15521 mutex_exit(&dtrace_lock);
15523 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15524 return (EFAULT);
15526 buf->dtb_flags |= DTRACEBUF_CONSUMED;
15528 return (0);
15531 if (buf->dtb_tomax == NULL) {
15532 ASSERT(buf->dtb_xamot == NULL);
15533 mutex_exit(&dtrace_lock);
15534 return (ENOENT);
15537 cached = buf->dtb_tomax;
15538 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15540 dtrace_xcall(desc.dtbd_cpu,
15541 (dtrace_xcall_t)dtrace_buffer_switch, buf);
15543 state->dts_errors += buf->dtb_xamot_errors;
15546 * If the buffers did not actually switch, then the cross call
15547 * did not take place -- presumably because the given CPU is
15548 * not in the ready set. If this is the case, we'll return
15549 * ENOENT.
15551 if (buf->dtb_tomax == cached) {
15552 ASSERT(buf->dtb_xamot != cached);
15553 mutex_exit(&dtrace_lock);
15554 return (ENOENT);
15557 ASSERT(cached == buf->dtb_xamot);
15560 * We have our snapshot; now copy it out.
15562 if (copyout(buf->dtb_xamot, desc.dtbd_data,
15563 buf->dtb_xamot_offset) != 0) {
15564 mutex_exit(&dtrace_lock);
15565 return (EFAULT);
15568 desc.dtbd_size = buf->dtb_xamot_offset;
15569 desc.dtbd_drops = buf->dtb_xamot_drops;
15570 desc.dtbd_errors = buf->dtb_xamot_errors;
15571 desc.dtbd_oldest = 0;
15573 mutex_exit(&dtrace_lock);
15576 * Finally, copy out the buffer description.
15578 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15579 return (EFAULT);
15581 return (0);
15584 case DTRACEIOC_CONF: {
15585 dtrace_conf_t conf;
15587 bzero(&conf, sizeof (conf));
15588 conf.dtc_difversion = DIF_VERSION;
15589 conf.dtc_difintregs = DIF_DIR_NREGS;
15590 conf.dtc_diftupregs = DIF_DTR_NREGS;
15591 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15593 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15594 return (EFAULT);
15596 return (0);
15599 case DTRACEIOC_STATUS: {
15600 dtrace_status_t stat;
15601 dtrace_dstate_t *dstate;
15602 int i, j;
15603 uint64_t nerrs;
15606 * See the comment in dtrace_state_deadman() for the reason
15607 * for setting dts_laststatus to INT64_MAX before setting
15608 * it to the correct value.
15610 state->dts_laststatus = INT64_MAX;
15611 dtrace_membar_producer();
15612 state->dts_laststatus = dtrace_gethrtime();
15614 bzero(&stat, sizeof (stat));
15616 mutex_enter(&dtrace_lock);
15618 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15619 mutex_exit(&dtrace_lock);
15620 return (ENOENT);
15623 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15624 stat.dtst_exiting = 1;
15626 nerrs = state->dts_errors;
15627 dstate = &state->dts_vstate.dtvs_dynvars;
15629 for (i = 0; i < NCPU; i++) {
15630 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15632 stat.dtst_dyndrops += dcpu->dtdsc_drops;
15633 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15634 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15636 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15637 stat.dtst_filled++;
15639 nerrs += state->dts_buffer[i].dtb_errors;
15641 for (j = 0; j < state->dts_nspeculations; j++) {
15642 dtrace_speculation_t *spec;
15643 dtrace_buffer_t *buf;
15645 spec = &state->dts_speculations[j];
15646 buf = &spec->dtsp_buffer[i];
15647 stat.dtst_specdrops += buf->dtb_xamot_drops;
15651 stat.dtst_specdrops_busy = state->dts_speculations_busy;
15652 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15653 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15654 stat.dtst_dblerrors = state->dts_dblerrors;
15655 stat.dtst_killed =
15656 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15657 stat.dtst_errors = nerrs;
15659 mutex_exit(&dtrace_lock);
15661 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15662 return (EFAULT);
15664 return (0);
15667 case DTRACEIOC_FORMAT: {
15668 dtrace_fmtdesc_t fmt;
15669 char *str;
15670 int len;
15672 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15673 return (EFAULT);
15675 mutex_enter(&dtrace_lock);
15677 if (fmt.dtfd_format == 0 ||
15678 fmt.dtfd_format > state->dts_nformats) {
15679 mutex_exit(&dtrace_lock);
15680 return (EINVAL);
15684 * Format strings are allocated contiguously and they are
15685 * never freed; if a format index is less than the number
15686 * of formats, we can assert that the format map is non-NULL
15687 * and that the format for the specified index is non-NULL.
15689 ASSERT(state->dts_formats != NULL);
15690 str = state->dts_formats[fmt.dtfd_format - 1];
15691 ASSERT(str != NULL);
15693 len = strlen(str) + 1;
15695 if (len > fmt.dtfd_length) {
15696 fmt.dtfd_length = len;
15698 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15699 mutex_exit(&dtrace_lock);
15700 return (EINVAL);
15702 } else {
15703 if (copyout(str, fmt.dtfd_string, len) != 0) {
15704 mutex_exit(&dtrace_lock);
15705 return (EINVAL);
15709 mutex_exit(&dtrace_lock);
15710 return (0);
15713 default:
15714 break;
15717 return (ENOTTY);
15720 /*ARGSUSED*/
15721 static int
15722 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
15724 dtrace_state_t *state;
15726 switch (cmd) {
15727 case DDI_DETACH:
15728 break;
15730 case DDI_SUSPEND:
15731 return (DDI_SUCCESS);
15733 default:
15734 return (DDI_FAILURE);
15737 mutex_enter(&cpu_lock);
15738 mutex_enter(&dtrace_provider_lock);
15739 mutex_enter(&dtrace_lock);
15741 ASSERT(dtrace_opens == 0);
15743 if (dtrace_helpers > 0) {
15744 mutex_exit(&dtrace_provider_lock);
15745 mutex_exit(&dtrace_lock);
15746 mutex_exit(&cpu_lock);
15747 return (DDI_FAILURE);
15750 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
15751 mutex_exit(&dtrace_provider_lock);
15752 mutex_exit(&dtrace_lock);
15753 mutex_exit(&cpu_lock);
15754 return (DDI_FAILURE);
15757 dtrace_provider = NULL;
15759 if ((state = dtrace_anon_grab()) != NULL) {
15761 * If there were ECBs on this state, the provider should
15762 * have not been allowed to detach; assert that there is
15763 * none.
15765 ASSERT(state->dts_necbs == 0);
15766 dtrace_state_destroy(state);
15769 * If we're being detached with anonymous state, we need to
15770 * indicate to the kernel debugger that DTrace is now inactive.
15772 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15775 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15776 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15777 dtrace_cpu_init = NULL;
15778 dtrace_helpers_cleanup = NULL;
15779 dtrace_helpers_fork = NULL;
15780 dtrace_cpustart_init = NULL;
15781 dtrace_cpustart_fini = NULL;
15782 dtrace_debugger_init = NULL;
15783 dtrace_debugger_fini = NULL;
15784 dtrace_modload = NULL;
15785 dtrace_modunload = NULL;
15787 mutex_exit(&cpu_lock);
15789 if (dtrace_helptrace_enabled) {
15790 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15791 dtrace_helptrace_buffer = NULL;
15794 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15795 dtrace_probes = NULL;
15796 dtrace_nprobes = 0;
15798 dtrace_hash_destroy(dtrace_bymod);
15799 dtrace_hash_destroy(dtrace_byfunc);
15800 dtrace_hash_destroy(dtrace_byname);
15801 dtrace_bymod = NULL;
15802 dtrace_byfunc = NULL;
15803 dtrace_byname = NULL;
15805 kmem_cache_destroy(dtrace_state_cache);
15806 vmem_destroy(dtrace_minor);
15807 vmem_destroy(dtrace_arena);
15809 if (dtrace_toxrange != NULL) {
15810 kmem_free(dtrace_toxrange,
15811 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15812 dtrace_toxrange = NULL;
15813 dtrace_toxranges = 0;
15814 dtrace_toxranges_max = 0;
15817 ddi_remove_minor_node(dtrace_devi, NULL);
15818 dtrace_devi = NULL;
15820 ddi_soft_state_fini(&dtrace_softstate);
15822 ASSERT(dtrace_vtime_references == 0);
15823 ASSERT(dtrace_opens == 0);
15824 ASSERT(dtrace_retained == NULL);
15826 mutex_exit(&dtrace_lock);
15827 mutex_exit(&dtrace_provider_lock);
15830 * We don't destroy the task queue until after we have dropped our
15831 * locks (taskq_destroy() may block on running tasks). To prevent
15832 * attempting to do work after we have effectively detached but before
15833 * the task queue has been destroyed, all tasks dispatched via the
15834 * task queue must check that DTrace is still attached before
15835 * performing any operation.
15837 taskq_destroy(dtrace_taskq);
15838 dtrace_taskq = NULL;
15840 return (DDI_SUCCESS);
15843 /*ARGSUSED*/
15844 static int
15845 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15847 int error;
15849 switch (infocmd) {
15850 case DDI_INFO_DEVT2DEVINFO:
15851 *result = (void *)dtrace_devi;
15852 error = DDI_SUCCESS;
15853 break;
15854 case DDI_INFO_DEVT2INSTANCE:
15855 *result = (void *)0;
15856 error = DDI_SUCCESS;
15857 break;
15858 default:
15859 error = DDI_FAILURE;
15861 return (error);
15864 static struct cb_ops dtrace_cb_ops = {
15865 dtrace_open, /* open */
15866 dtrace_close, /* close */
15867 nulldev, /* strategy */
15868 nulldev, /* print */
15869 nodev, /* dump */
15870 nodev, /* read */
15871 nodev, /* write */
15872 dtrace_ioctl, /* ioctl */
15873 nodev, /* devmap */
15874 nodev, /* mmap */
15875 nodev, /* segmap */
15876 nochpoll, /* poll */
15877 ddi_prop_op, /* cb_prop_op */
15878 0, /* streamtab */
15879 D_NEW | D_MP /* Driver compatibility flag */
15882 static struct dev_ops dtrace_ops = {
15883 DEVO_REV, /* devo_rev */
15884 0, /* refcnt */
15885 dtrace_info, /* get_dev_info */
15886 nulldev, /* identify */
15887 nulldev, /* probe */
15888 dtrace_attach, /* attach */
15889 dtrace_detach, /* detach */
15890 nodev, /* reset */
15891 &dtrace_cb_ops, /* driver operations */
15892 NULL, /* bus operations */
15893 nodev, /* dev power */
15894 ddi_quiesce_not_needed, /* quiesce */
15897 static struct modldrv modldrv = {
15898 &mod_driverops, /* module type (this is a pseudo driver) */
15899 "Dynamic Tracing", /* name of module */
15900 &dtrace_ops, /* driver ops */
15903 static struct modlinkage modlinkage = {
15904 MODREV_1,
15905 (void *)&modldrv,
15906 NULL
15910 _init(void)
15912 return (mod_install(&modlinkage));
15916 _info(struct modinfo *modinfop)
15918 return (mod_info(&modlinkage, modinfop));
15922 _fini(void)
15924 return (mod_remove(&modlinkage));