6334 Cannot unlink files when over quota
[illumos-gate.git] / usr / src / uts / common / fs / zfs / zfs_vnops.c
blob8f461c521f839cedc592868aabd83230040786d6
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
85 * Programming rules.
87 * Each vnode op performs some logical unit of work. To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory. The example below illustrates the following Big Rules:
95 * (1) A check must be made in each zfs thread for a mounted file system.
96 * This is done avoiding races using ZFS_ENTER(zfsvfs).
97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
99 * can return EIO from the calling function.
101 * (2) VN_RELE() should always be the last thing except for zil_commit()
102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 * First, if it's the last reference, the vnode/znode
104 * can be freed, so the zp may point to freed memory. Second, the last
105 * reference will call zfs_zinactive(), which may induce a lot of work --
106 * pushing cached pages (which acquires range locks) and syncing out
107 * cached atime changes. Third, zfs_zinactive() may require a new tx,
108 * which could deadlock the system if you were already holding one.
109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
111 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
112 * as they can span dmu_tx_assign() calls.
114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115 * dmu_tx_assign(). This is critical because we don't want to block
116 * while holding locks.
118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
119 * reduces lock contention and CPU usage when we must wait (note that if
120 * throughput is constrained by the storage, nearly every transaction
121 * must wait).
123 * Note, in particular, that if a lock is sometimes acquired before
124 * the tx assigns, and sometimes after (e.g. z_lock), then failing
125 * to use a non-blocking assign can deadlock the system. The scenario:
127 * Thread A has grabbed a lock before calling dmu_tx_assign().
128 * Thread B is in an already-assigned tx, and blocks for this lock.
129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130 * forever, because the previous txg can't quiesce until B's tx commits.
132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135 * to indicate that this operation has already called dmu_tx_wait().
136 * This will ensure that we don't retry forever, waiting a short bit
137 * each time.
139 * (5) If the operation succeeded, generate the intent log entry for it
140 * before dropping locks. This ensures that the ordering of events
141 * in the intent log matches the order in which they actually occurred.
142 * During ZIL replay the zfs_log_* functions will update the sequence
143 * number to indicate the zil transaction has replayed.
145 * (6) At the end of each vnode op, the DMU tx must always commit,
146 * regardless of whether there were any errors.
148 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
149 * to ensure that synchronous semantics are provided when necessary.
151 * In general, this is how things should be ordered in each vnode op:
153 * ZFS_ENTER(zfsvfs); // exit if unmounted
154 * top:
155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
156 * rw_enter(...); // grab any other locks you need
157 * tx = dmu_tx_create(...); // get DMU tx
158 * dmu_tx_hold_*(); // hold each object you might modify
159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160 * if (error) {
161 * rw_exit(...); // drop locks
162 * zfs_dirent_unlock(dl); // unlock directory entry
163 * VN_RELE(...); // release held vnodes
164 * if (error == ERESTART) {
165 * waited = B_TRUE;
166 * dmu_tx_wait(tx);
167 * dmu_tx_abort(tx);
168 * goto top;
170 * dmu_tx_abort(tx); // abort DMU tx
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // really out of space
174 * error = do_real_work(); // do whatever this VOP does
175 * if (error == 0)
176 * zfs_log_*(...); // on success, make ZIL entry
177 * dmu_tx_commit(tx); // commit DMU tx -- error or not
178 * rw_exit(...); // drop locks
179 * zfs_dirent_unlock(dl); // unlock directory entry
180 * VN_RELE(...); // release held vnodes
181 * zil_commit(zilog, foid); // synchronous when necessary
182 * ZFS_EXIT(zfsvfs); // finished in zfs
183 * return (error); // done, report error
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
190 znode_t *zp = VTOZ(*vpp);
191 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
193 ZFS_ENTER(zfsvfs);
194 ZFS_VERIFY_ZP(zp);
196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 ((flag & FAPPEND) == 0)) {
198 ZFS_EXIT(zfsvfs);
199 return (SET_ERROR(EPERM));
202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 ZTOV(zp)->v_type == VREG &&
204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 if (fs_vscan(*vpp, cr, 0) != 0) {
206 ZFS_EXIT(zfsvfs);
207 return (SET_ERROR(EACCES));
211 /* Keep a count of the synchronous opens in the znode */
212 if (flag & (FSYNC | FDSYNC))
213 atomic_inc_32(&zp->z_sync_cnt);
215 ZFS_EXIT(zfsvfs);
216 return (0);
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222 caller_context_t *ct)
224 znode_t *zp = VTOZ(vp);
225 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
228 * Clean up any locks held by this process on the vp.
230 cleanlocks(vp, ddi_get_pid(), 0);
231 cleanshares(vp, ddi_get_pid());
233 ZFS_ENTER(zfsvfs);
234 ZFS_VERIFY_ZP(zp);
236 /* Decrement the synchronous opens in the znode */
237 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 atomic_dec_32(&zp->z_sync_cnt);
240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 ZTOV(zp)->v_type == VREG &&
242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 VERIFY(fs_vscan(vp, cr, 1) == 0);
245 ZFS_EXIT(zfsvfs);
246 return (0);
250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
256 znode_t *zp = VTOZ(vp);
257 uint64_t noff = (uint64_t)*off; /* new offset */
258 uint64_t file_sz;
259 int error;
260 boolean_t hole;
262 file_sz = zp->z_size;
263 if (noff >= file_sz) {
264 return (SET_ERROR(ENXIO));
267 if (cmd == _FIO_SEEK_HOLE)
268 hole = B_TRUE;
269 else
270 hole = B_FALSE;
272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
274 if (error == ESRCH)
275 return (SET_ERROR(ENXIO));
278 * We could find a hole that begins after the logical end-of-file,
279 * because dmu_offset_next() only works on whole blocks. If the
280 * EOF falls mid-block, then indicate that the "virtual hole"
281 * at the end of the file begins at the logical EOF, rather than
282 * at the end of the last block.
284 if (noff > file_sz) {
285 ASSERT(hole);
286 noff = file_sz;
289 if (noff < *off)
290 return (error);
291 *off = noff;
292 return (error);
295 /* ARGSUSED */
296 static int
297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298 int *rvalp, caller_context_t *ct)
300 offset_t off;
301 offset_t ndata;
302 dmu_object_info_t doi;
303 int error;
304 zfsvfs_t *zfsvfs;
305 znode_t *zp;
307 switch (com) {
308 case _FIOFFS:
310 return (zfs_sync(vp->v_vfsp, 0, cred));
313 * The following two ioctls are used by bfu. Faking out,
314 * necessary to avoid bfu errors.
317 case _FIOGDIO:
318 case _FIOSDIO:
320 return (0);
323 case _FIO_SEEK_DATA:
324 case _FIO_SEEK_HOLE:
326 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
327 return (SET_ERROR(EFAULT));
329 zp = VTOZ(vp);
330 zfsvfs = zp->z_zfsvfs;
331 ZFS_ENTER(zfsvfs);
332 ZFS_VERIFY_ZP(zp);
334 /* offset parameter is in/out */
335 error = zfs_holey(vp, com, &off);
336 ZFS_EXIT(zfsvfs);
337 if (error)
338 return (error);
339 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
340 return (SET_ERROR(EFAULT));
341 return (0);
343 case _FIO_COUNT_FILLED:
346 * _FIO_COUNT_FILLED adds a new ioctl command which
347 * exposes the number of filled blocks in a
348 * ZFS object.
350 zp = VTOZ(vp);
351 zfsvfs = zp->z_zfsvfs;
352 ZFS_ENTER(zfsvfs);
353 ZFS_VERIFY_ZP(zp);
356 * Wait for all dirty blocks for this object
357 * to get synced out to disk, and the DMU info
358 * updated.
360 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
361 if (error) {
362 ZFS_EXIT(zfsvfs);
363 return (error);
367 * Retrieve fill count from DMU object.
369 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
370 if (error) {
371 ZFS_EXIT(zfsvfs);
372 return (error);
375 ndata = doi.doi_fill_count;
377 ZFS_EXIT(zfsvfs);
378 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
379 return (SET_ERROR(EFAULT));
380 return (0);
383 return (SET_ERROR(ENOTTY));
387 * Utility functions to map and unmap a single physical page. These
388 * are used to manage the mappable copies of ZFS file data, and therefore
389 * do not update ref/mod bits.
391 caddr_t
392 zfs_map_page(page_t *pp, enum seg_rw rw)
394 if (kpm_enable)
395 return (hat_kpm_mapin(pp, 0));
396 ASSERT(rw == S_READ || rw == S_WRITE);
397 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
398 (caddr_t)-1));
401 void
402 zfs_unmap_page(page_t *pp, caddr_t addr)
404 if (kpm_enable) {
405 hat_kpm_mapout(pp, 0, addr);
406 } else {
407 ppmapout(addr);
412 * When a file is memory mapped, we must keep the IO data synchronized
413 * between the DMU cache and the memory mapped pages. What this means:
415 * On Write: If we find a memory mapped page, we write to *both*
416 * the page and the dmu buffer.
418 static void
419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
421 int64_t off;
423 off = start & PAGEOFFSET;
424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 page_t *pp;
426 uint64_t nbytes = MIN(PAGESIZE - off, len);
428 if (pp = page_lookup(vp, start, SE_SHARED)) {
429 caddr_t va;
431 va = zfs_map_page(pp, S_WRITE);
432 (void) dmu_read(os, oid, start+off, nbytes, va+off,
433 DMU_READ_PREFETCH);
434 zfs_unmap_page(pp, va);
435 page_unlock(pp);
437 len -= nbytes;
438 off = 0;
443 * When a file is memory mapped, we must keep the IO data synchronized
444 * between the DMU cache and the memory mapped pages. What this means:
446 * On Read: We "read" preferentially from memory mapped pages,
447 * else we default from the dmu buffer.
449 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
450 * the file is memory mapped.
452 static int
453 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
455 znode_t *zp = VTOZ(vp);
456 int64_t start, off;
457 int len = nbytes;
458 int error = 0;
460 start = uio->uio_loffset;
461 off = start & PAGEOFFSET;
462 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
463 page_t *pp;
464 uint64_t bytes = MIN(PAGESIZE - off, len);
466 if (pp = page_lookup(vp, start, SE_SHARED)) {
467 caddr_t va;
469 va = zfs_map_page(pp, S_READ);
470 error = uiomove(va + off, bytes, UIO_READ, uio);
471 zfs_unmap_page(pp, va);
472 page_unlock(pp);
473 } else {
474 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
475 uio, bytes);
477 len -= bytes;
478 off = 0;
479 if (error)
480 break;
482 return (error);
485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
488 * Read bytes from specified file into supplied buffer.
490 * IN: vp - vnode of file to be read from.
491 * uio - structure supplying read location, range info,
492 * and return buffer.
493 * ioflag - SYNC flags; used to provide FRSYNC semantics.
494 * cr - credentials of caller.
495 * ct - caller context
497 * OUT: uio - updated offset and range, buffer filled.
499 * RETURN: 0 on success, error code on failure.
501 * Side Effects:
502 * vp - atime updated if byte count > 0
504 /* ARGSUSED */
505 static int
506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
508 znode_t *zp = VTOZ(vp);
509 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
510 ssize_t n, nbytes;
511 int error = 0;
512 rl_t *rl;
513 xuio_t *xuio = NULL;
515 ZFS_ENTER(zfsvfs);
516 ZFS_VERIFY_ZP(zp);
518 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
519 ZFS_EXIT(zfsvfs);
520 return (SET_ERROR(EACCES));
524 * Validate file offset
526 if (uio->uio_loffset < (offset_t)0) {
527 ZFS_EXIT(zfsvfs);
528 return (SET_ERROR(EINVAL));
532 * Fasttrack empty reads
534 if (uio->uio_resid == 0) {
535 ZFS_EXIT(zfsvfs);
536 return (0);
540 * Check for mandatory locks
542 if (MANDMODE(zp->z_mode)) {
543 if (error = chklock(vp, FREAD,
544 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
545 ZFS_EXIT(zfsvfs);
546 return (error);
551 * If we're in FRSYNC mode, sync out this znode before reading it.
553 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
554 zil_commit(zfsvfs->z_log, zp->z_id);
557 * Lock the range against changes.
559 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
562 * If we are reading past end-of-file we can skip
563 * to the end; but we might still need to set atime.
565 if (uio->uio_loffset >= zp->z_size) {
566 error = 0;
567 goto out;
570 ASSERT(uio->uio_loffset < zp->z_size);
571 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
573 if ((uio->uio_extflg == UIO_XUIO) &&
574 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
575 int nblk;
576 int blksz = zp->z_blksz;
577 uint64_t offset = uio->uio_loffset;
579 xuio = (xuio_t *)uio;
580 if ((ISP2(blksz))) {
581 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
582 blksz)) / blksz;
583 } else {
584 ASSERT(offset + n <= blksz);
585 nblk = 1;
587 (void) dmu_xuio_init(xuio, nblk);
589 if (vn_has_cached_data(vp)) {
591 * For simplicity, we always allocate a full buffer
592 * even if we only expect to read a portion of a block.
594 while (--nblk >= 0) {
595 (void) dmu_xuio_add(xuio,
596 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
597 blksz), 0, blksz);
602 while (n > 0) {
603 nbytes = MIN(n, zfs_read_chunk_size -
604 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
606 if (vn_has_cached_data(vp)) {
607 error = mappedread(vp, nbytes, uio);
608 } else {
609 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
610 uio, nbytes);
612 if (error) {
613 /* convert checksum errors into IO errors */
614 if (error == ECKSUM)
615 error = SET_ERROR(EIO);
616 break;
619 n -= nbytes;
621 out:
622 zfs_range_unlock(rl);
624 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
625 ZFS_EXIT(zfsvfs);
626 return (error);
630 * Write the bytes to a file.
632 * IN: vp - vnode of file to be written to.
633 * uio - structure supplying write location, range info,
634 * and data buffer.
635 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
636 * set if in append mode.
637 * cr - credentials of caller.
638 * ct - caller context (NFS/CIFS fem monitor only)
640 * OUT: uio - updated offset and range.
642 * RETURN: 0 on success, error code on failure.
644 * Timestamps:
645 * vp - ctime|mtime updated if byte count > 0
648 /* ARGSUSED */
649 static int
650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
652 znode_t *zp = VTOZ(vp);
653 rlim64_t limit = uio->uio_llimit;
654 ssize_t start_resid = uio->uio_resid;
655 ssize_t tx_bytes;
656 uint64_t end_size;
657 dmu_tx_t *tx;
658 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
659 zilog_t *zilog;
660 offset_t woff;
661 ssize_t n, nbytes;
662 rl_t *rl;
663 int max_blksz = zfsvfs->z_max_blksz;
664 int error = 0;
665 arc_buf_t *abuf;
666 iovec_t *aiov = NULL;
667 xuio_t *xuio = NULL;
668 int i_iov = 0;
669 int iovcnt = uio->uio_iovcnt;
670 iovec_t *iovp = uio->uio_iov;
671 int write_eof;
672 int count = 0;
673 sa_bulk_attr_t bulk[4];
674 uint64_t mtime[2], ctime[2];
677 * Fasttrack empty write
679 n = start_resid;
680 if (n == 0)
681 return (0);
683 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
684 limit = MAXOFFSET_T;
686 ZFS_ENTER(zfsvfs);
687 ZFS_VERIFY_ZP(zp);
689 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
690 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
692 &zp->z_size, 8);
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
694 &zp->z_pflags, 8);
697 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
698 * callers might not be able to detect properly that we are read-only,
699 * so check it explicitly here.
701 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
702 ZFS_EXIT(zfsvfs);
703 return (SET_ERROR(EROFS));
707 * If immutable or not appending then return EPERM
709 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
710 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
711 (uio->uio_loffset < zp->z_size))) {
712 ZFS_EXIT(zfsvfs);
713 return (SET_ERROR(EPERM));
716 zilog = zfsvfs->z_log;
719 * Validate file offset
721 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
722 if (woff < 0) {
723 ZFS_EXIT(zfsvfs);
724 return (SET_ERROR(EINVAL));
728 * Check for mandatory locks before calling zfs_range_lock()
729 * in order to prevent a deadlock with locks set via fcntl().
731 if (MANDMODE((mode_t)zp->z_mode) &&
732 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
733 ZFS_EXIT(zfsvfs);
734 return (error);
738 * Pre-fault the pages to ensure slow (eg NFS) pages
739 * don't hold up txg.
740 * Skip this if uio contains loaned arc_buf.
742 if ((uio->uio_extflg == UIO_XUIO) &&
743 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
744 xuio = (xuio_t *)uio;
745 else
746 uio_prefaultpages(MIN(n, max_blksz), uio);
749 * If in append mode, set the io offset pointer to eof.
751 if (ioflag & FAPPEND) {
753 * Obtain an appending range lock to guarantee file append
754 * semantics. We reset the write offset once we have the lock.
756 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
757 woff = rl->r_off;
758 if (rl->r_len == UINT64_MAX) {
760 * We overlocked the file because this write will cause
761 * the file block size to increase.
762 * Note that zp_size cannot change with this lock held.
764 woff = zp->z_size;
766 uio->uio_loffset = woff;
767 } else {
769 * Note that if the file block size will change as a result of
770 * this write, then this range lock will lock the entire file
771 * so that we can re-write the block safely.
773 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
776 if (woff >= limit) {
777 zfs_range_unlock(rl);
778 ZFS_EXIT(zfsvfs);
779 return (SET_ERROR(EFBIG));
782 if ((woff + n) > limit || woff > (limit - n))
783 n = limit - woff;
785 /* Will this write extend the file length? */
786 write_eof = (woff + n > zp->z_size);
788 end_size = MAX(zp->z_size, woff + n);
791 * Write the file in reasonable size chunks. Each chunk is written
792 * in a separate transaction; this keeps the intent log records small
793 * and allows us to do more fine-grained space accounting.
795 while (n > 0) {
796 abuf = NULL;
797 woff = uio->uio_loffset;
798 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
799 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
800 if (abuf != NULL)
801 dmu_return_arcbuf(abuf);
802 error = SET_ERROR(EDQUOT);
803 break;
806 if (xuio && abuf == NULL) {
807 ASSERT(i_iov < iovcnt);
808 aiov = &iovp[i_iov];
809 abuf = dmu_xuio_arcbuf(xuio, i_iov);
810 dmu_xuio_clear(xuio, i_iov);
811 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
812 iovec_t *, aiov, arc_buf_t *, abuf);
813 ASSERT((aiov->iov_base == abuf->b_data) ||
814 ((char *)aiov->iov_base - (char *)abuf->b_data +
815 aiov->iov_len == arc_buf_size(abuf)));
816 i_iov++;
817 } else if (abuf == NULL && n >= max_blksz &&
818 woff >= zp->z_size &&
819 P2PHASE(woff, max_blksz) == 0 &&
820 zp->z_blksz == max_blksz) {
822 * This write covers a full block. "Borrow" a buffer
823 * from the dmu so that we can fill it before we enter
824 * a transaction. This avoids the possibility of
825 * holding up the transaction if the data copy hangs
826 * up on a pagefault (e.g., from an NFS server mapping).
828 size_t cbytes;
830 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
831 max_blksz);
832 ASSERT(abuf != NULL);
833 ASSERT(arc_buf_size(abuf) == max_blksz);
834 if (error = uiocopy(abuf->b_data, max_blksz,
835 UIO_WRITE, uio, &cbytes)) {
836 dmu_return_arcbuf(abuf);
837 break;
839 ASSERT(cbytes == max_blksz);
843 * Start a transaction.
845 tx = dmu_tx_create(zfsvfs->z_os);
846 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
847 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
848 zfs_sa_upgrade_txholds(tx, zp);
849 error = dmu_tx_assign(tx, TXG_WAIT);
850 if (error) {
851 dmu_tx_abort(tx);
852 if (abuf != NULL)
853 dmu_return_arcbuf(abuf);
854 break;
858 * If zfs_range_lock() over-locked we grow the blocksize
859 * and then reduce the lock range. This will only happen
860 * on the first iteration since zfs_range_reduce() will
861 * shrink down r_len to the appropriate size.
863 if (rl->r_len == UINT64_MAX) {
864 uint64_t new_blksz;
866 if (zp->z_blksz > max_blksz) {
868 * File's blocksize is already larger than the
869 * "recordsize" property. Only let it grow to
870 * the next power of 2.
872 ASSERT(!ISP2(zp->z_blksz));
873 new_blksz = MIN(end_size,
874 1 << highbit64(zp->z_blksz));
875 } else {
876 new_blksz = MIN(end_size, max_blksz);
878 zfs_grow_blocksize(zp, new_blksz, tx);
879 zfs_range_reduce(rl, woff, n);
883 * XXX - should we really limit each write to z_max_blksz?
884 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
886 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
888 if (abuf == NULL) {
889 tx_bytes = uio->uio_resid;
890 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
891 uio, nbytes, tx);
892 tx_bytes -= uio->uio_resid;
893 } else {
894 tx_bytes = nbytes;
895 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
897 * If this is not a full block write, but we are
898 * extending the file past EOF and this data starts
899 * block-aligned, use assign_arcbuf(). Otherwise,
900 * write via dmu_write().
902 if (tx_bytes < max_blksz && (!write_eof ||
903 aiov->iov_base != abuf->b_data)) {
904 ASSERT(xuio);
905 dmu_write(zfsvfs->z_os, zp->z_id, woff,
906 aiov->iov_len, aiov->iov_base, tx);
907 dmu_return_arcbuf(abuf);
908 xuio_stat_wbuf_copied();
909 } else {
910 ASSERT(xuio || tx_bytes == max_blksz);
911 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
912 woff, abuf, tx);
914 ASSERT(tx_bytes <= uio->uio_resid);
915 uioskip(uio, tx_bytes);
917 if (tx_bytes && vn_has_cached_data(vp)) {
918 update_pages(vp, woff,
919 tx_bytes, zfsvfs->z_os, zp->z_id);
923 * If we made no progress, we're done. If we made even
924 * partial progress, update the znode and ZIL accordingly.
926 if (tx_bytes == 0) {
927 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
928 (void *)&zp->z_size, sizeof (uint64_t), tx);
929 dmu_tx_commit(tx);
930 ASSERT(error != 0);
931 break;
935 * Clear Set-UID/Set-GID bits on successful write if not
936 * privileged and at least one of the excute bits is set.
938 * It would be nice to to this after all writes have
939 * been done, but that would still expose the ISUID/ISGID
940 * to another app after the partial write is committed.
942 * Note: we don't call zfs_fuid_map_id() here because
943 * user 0 is not an ephemeral uid.
945 mutex_enter(&zp->z_acl_lock);
946 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
947 (S_IXUSR >> 6))) != 0 &&
948 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
949 secpolicy_vnode_setid_retain(cr,
950 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
951 uint64_t newmode;
952 zp->z_mode &= ~(S_ISUID | S_ISGID);
953 newmode = zp->z_mode;
954 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
955 (void *)&newmode, sizeof (uint64_t), tx);
957 mutex_exit(&zp->z_acl_lock);
959 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
960 B_TRUE);
963 * Update the file size (zp_size) if it has changed;
964 * account for possible concurrent updates.
966 while ((end_size = zp->z_size) < uio->uio_loffset) {
967 (void) atomic_cas_64(&zp->z_size, end_size,
968 uio->uio_loffset);
969 ASSERT(error == 0);
972 * If we are replaying and eof is non zero then force
973 * the file size to the specified eof. Note, there's no
974 * concurrency during replay.
976 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
977 zp->z_size = zfsvfs->z_replay_eof;
979 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
981 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
982 dmu_tx_commit(tx);
984 if (error != 0)
985 break;
986 ASSERT(tx_bytes == nbytes);
987 n -= nbytes;
989 if (!xuio && n > 0)
990 uio_prefaultpages(MIN(n, max_blksz), uio);
993 zfs_range_unlock(rl);
996 * If we're in replay mode, or we made no progress, return error.
997 * Otherwise, it's at least a partial write, so it's successful.
999 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1000 ZFS_EXIT(zfsvfs);
1001 return (error);
1004 if (ioflag & (FSYNC | FDSYNC) ||
1005 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1006 zil_commit(zilog, zp->z_id);
1008 ZFS_EXIT(zfsvfs);
1009 return (0);
1012 void
1013 zfs_get_done(zgd_t *zgd, int error)
1015 znode_t *zp = zgd->zgd_private;
1016 objset_t *os = zp->z_zfsvfs->z_os;
1018 if (zgd->zgd_db)
1019 dmu_buf_rele(zgd->zgd_db, zgd);
1021 zfs_range_unlock(zgd->zgd_rl);
1024 * Release the vnode asynchronously as we currently have the
1025 * txg stopped from syncing.
1027 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1029 if (error == 0 && zgd->zgd_bp)
1030 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1032 kmem_free(zgd, sizeof (zgd_t));
1035 #ifdef DEBUG
1036 static int zil_fault_io = 0;
1037 #endif
1040 * Get data to generate a TX_WRITE intent log record.
1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1045 zfsvfs_t *zfsvfs = arg;
1046 objset_t *os = zfsvfs->z_os;
1047 znode_t *zp;
1048 uint64_t object = lr->lr_foid;
1049 uint64_t offset = lr->lr_offset;
1050 uint64_t size = lr->lr_length;
1051 blkptr_t *bp = &lr->lr_blkptr;
1052 dmu_buf_t *db;
1053 zgd_t *zgd;
1054 int error = 0;
1056 ASSERT(zio != NULL);
1057 ASSERT(size != 0);
1060 * Nothing to do if the file has been removed
1062 if (zfs_zget(zfsvfs, object, &zp) != 0)
1063 return (SET_ERROR(ENOENT));
1064 if (zp->z_unlinked) {
1066 * Release the vnode asynchronously as we currently have the
1067 * txg stopped from syncing.
1069 VN_RELE_ASYNC(ZTOV(zp),
1070 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1071 return (SET_ERROR(ENOENT));
1074 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1075 zgd->zgd_zilog = zfsvfs->z_log;
1076 zgd->zgd_private = zp;
1079 * Write records come in two flavors: immediate and indirect.
1080 * For small writes it's cheaper to store the data with the
1081 * log record (immediate); for large writes it's cheaper to
1082 * sync the data and get a pointer to it (indirect) so that
1083 * we don't have to write the data twice.
1085 if (buf != NULL) { /* immediate write */
1086 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1087 /* test for truncation needs to be done while range locked */
1088 if (offset >= zp->z_size) {
1089 error = SET_ERROR(ENOENT);
1090 } else {
1091 error = dmu_read(os, object, offset, size, buf,
1092 DMU_READ_NO_PREFETCH);
1094 ASSERT(error == 0 || error == ENOENT);
1095 } else { /* indirect write */
1097 * Have to lock the whole block to ensure when it's
1098 * written out and it's checksum is being calculated
1099 * that no one can change the data. We need to re-check
1100 * blocksize after we get the lock in case it's changed!
1102 for (;;) {
1103 uint64_t blkoff;
1104 size = zp->z_blksz;
1105 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1106 offset -= blkoff;
1107 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1108 RL_READER);
1109 if (zp->z_blksz == size)
1110 break;
1111 offset += blkoff;
1112 zfs_range_unlock(zgd->zgd_rl);
1114 /* test for truncation needs to be done while range locked */
1115 if (lr->lr_offset >= zp->z_size)
1116 error = SET_ERROR(ENOENT);
1117 #ifdef DEBUG
1118 if (zil_fault_io) {
1119 error = SET_ERROR(EIO);
1120 zil_fault_io = 0;
1122 #endif
1123 if (error == 0)
1124 error = dmu_buf_hold(os, object, offset, zgd, &db,
1125 DMU_READ_NO_PREFETCH);
1127 if (error == 0) {
1128 blkptr_t *obp = dmu_buf_get_blkptr(db);
1129 if (obp) {
1130 ASSERT(BP_IS_HOLE(bp));
1131 *bp = *obp;
1134 zgd->zgd_db = db;
1135 zgd->zgd_bp = bp;
1137 ASSERT(db->db_offset == offset);
1138 ASSERT(db->db_size == size);
1140 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1141 zfs_get_done, zgd);
1142 ASSERT(error || lr->lr_length <= zp->z_blksz);
1145 * On success, we need to wait for the write I/O
1146 * initiated by dmu_sync() to complete before we can
1147 * release this dbuf. We will finish everything up
1148 * in the zfs_get_done() callback.
1150 if (error == 0)
1151 return (0);
1153 if (error == EALREADY) {
1154 lr->lr_common.lrc_txtype = TX_WRITE2;
1155 error = 0;
1160 zfs_get_done(zgd, error);
1162 return (error);
1165 /*ARGSUSED*/
1166 static int
1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1168 caller_context_t *ct)
1170 znode_t *zp = VTOZ(vp);
1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1172 int error;
1174 ZFS_ENTER(zfsvfs);
1175 ZFS_VERIFY_ZP(zp);
1177 if (flag & V_ACE_MASK)
1178 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1179 else
1180 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1182 ZFS_EXIT(zfsvfs);
1183 return (error);
1187 * If vnode is for a device return a specfs vnode instead.
1189 static int
1190 specvp_check(vnode_t **vpp, cred_t *cr)
1192 int error = 0;
1194 if (IS_DEVVP(*vpp)) {
1195 struct vnode *svp;
1197 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198 VN_RELE(*vpp);
1199 if (svp == NULL)
1200 error = SET_ERROR(ENOSYS);
1201 *vpp = svp;
1203 return (error);
1208 * Lookup an entry in a directory, or an extended attribute directory.
1209 * If it exists, return a held vnode reference for it.
1211 * IN: dvp - vnode of directory to search.
1212 * nm - name of entry to lookup.
1213 * pnp - full pathname to lookup [UNUSED].
1214 * flags - LOOKUP_XATTR set if looking for an attribute.
1215 * rdir - root directory vnode [UNUSED].
1216 * cr - credentials of caller.
1217 * ct - caller context
1218 * direntflags - directory lookup flags
1219 * realpnp - returned pathname.
1221 * OUT: vpp - vnode of located entry, NULL if not found.
1223 * RETURN: 0 on success, error code on failure.
1225 * Timestamps:
1226 * NA
1228 /* ARGSUSED */
1229 static int
1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1231 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1232 int *direntflags, pathname_t *realpnp)
1234 znode_t *zdp = VTOZ(dvp);
1235 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1236 int error = 0;
1238 /* fast path */
1239 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1241 if (dvp->v_type != VDIR) {
1242 return (SET_ERROR(ENOTDIR));
1243 } else if (zdp->z_sa_hdl == NULL) {
1244 return (SET_ERROR(EIO));
1247 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1248 error = zfs_fastaccesschk_execute(zdp, cr);
1249 if (!error) {
1250 *vpp = dvp;
1251 VN_HOLD(*vpp);
1252 return (0);
1254 return (error);
1255 } else {
1256 vnode_t *tvp = dnlc_lookup(dvp, nm);
1258 if (tvp) {
1259 error = zfs_fastaccesschk_execute(zdp, cr);
1260 if (error) {
1261 VN_RELE(tvp);
1262 return (error);
1264 if (tvp == DNLC_NO_VNODE) {
1265 VN_RELE(tvp);
1266 return (SET_ERROR(ENOENT));
1267 } else {
1268 *vpp = tvp;
1269 return (specvp_check(vpp, cr));
1275 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1277 ZFS_ENTER(zfsvfs);
1278 ZFS_VERIFY_ZP(zdp);
1280 *vpp = NULL;
1282 if (flags & LOOKUP_XATTR) {
1284 * If the xattr property is off, refuse the lookup request.
1286 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1287 ZFS_EXIT(zfsvfs);
1288 return (SET_ERROR(EINVAL));
1292 * We don't allow recursive attributes..
1293 * Maybe someday we will.
1295 if (zdp->z_pflags & ZFS_XATTR) {
1296 ZFS_EXIT(zfsvfs);
1297 return (SET_ERROR(EINVAL));
1300 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1301 ZFS_EXIT(zfsvfs);
1302 return (error);
1306 * Do we have permission to get into attribute directory?
1309 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1310 B_FALSE, cr)) {
1311 VN_RELE(*vpp);
1312 *vpp = NULL;
1315 ZFS_EXIT(zfsvfs);
1316 return (error);
1319 if (dvp->v_type != VDIR) {
1320 ZFS_EXIT(zfsvfs);
1321 return (SET_ERROR(ENOTDIR));
1325 * Check accessibility of directory.
1328 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1329 ZFS_EXIT(zfsvfs);
1330 return (error);
1333 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1334 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1335 ZFS_EXIT(zfsvfs);
1336 return (SET_ERROR(EILSEQ));
1339 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1340 if (error == 0)
1341 error = specvp_check(vpp, cr);
1343 ZFS_EXIT(zfsvfs);
1344 return (error);
1348 * Attempt to create a new entry in a directory. If the entry
1349 * already exists, truncate the file if permissible, else return
1350 * an error. Return the vp of the created or trunc'd file.
1352 * IN: dvp - vnode of directory to put new file entry in.
1353 * name - name of new file entry.
1354 * vap - attributes of new file.
1355 * excl - flag indicating exclusive or non-exclusive mode.
1356 * mode - mode to open file with.
1357 * cr - credentials of caller.
1358 * flag - large file flag [UNUSED].
1359 * ct - caller context
1360 * vsecp - ACL to be set
1362 * OUT: vpp - vnode of created or trunc'd entry.
1364 * RETURN: 0 on success, error code on failure.
1366 * Timestamps:
1367 * dvp - ctime|mtime updated if new entry created
1368 * vp - ctime|mtime always, atime if new
1371 /* ARGSUSED */
1372 static int
1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1374 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1375 vsecattr_t *vsecp)
1377 znode_t *zp, *dzp = VTOZ(dvp);
1378 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1379 zilog_t *zilog;
1380 objset_t *os;
1381 zfs_dirlock_t *dl;
1382 dmu_tx_t *tx;
1383 int error;
1384 ksid_t *ksid;
1385 uid_t uid;
1386 gid_t gid = crgetgid(cr);
1387 zfs_acl_ids_t acl_ids;
1388 boolean_t fuid_dirtied;
1389 boolean_t have_acl = B_FALSE;
1390 boolean_t waited = B_FALSE;
1393 * If we have an ephemeral id, ACL, or XVATTR then
1394 * make sure file system is at proper version
1397 ksid = crgetsid(cr, KSID_OWNER);
1398 if (ksid)
1399 uid = ksid_getid(ksid);
1400 else
1401 uid = crgetuid(cr);
1403 if (zfsvfs->z_use_fuids == B_FALSE &&
1404 (vsecp || (vap->va_mask & AT_XVATTR) ||
1405 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1406 return (SET_ERROR(EINVAL));
1408 ZFS_ENTER(zfsvfs);
1409 ZFS_VERIFY_ZP(dzp);
1410 os = zfsvfs->z_os;
1411 zilog = zfsvfs->z_log;
1413 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1414 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1415 ZFS_EXIT(zfsvfs);
1416 return (SET_ERROR(EILSEQ));
1419 if (vap->va_mask & AT_XVATTR) {
1420 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1421 crgetuid(cr), cr, vap->va_type)) != 0) {
1422 ZFS_EXIT(zfsvfs);
1423 return (error);
1426 top:
1427 *vpp = NULL;
1429 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1430 vap->va_mode &= ~VSVTX;
1432 if (*name == '\0') {
1434 * Null component name refers to the directory itself.
1436 VN_HOLD(dvp);
1437 zp = dzp;
1438 dl = NULL;
1439 error = 0;
1440 } else {
1441 /* possible VN_HOLD(zp) */
1442 int zflg = 0;
1444 if (flag & FIGNORECASE)
1445 zflg |= ZCILOOK;
1447 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1448 NULL, NULL);
1449 if (error) {
1450 if (have_acl)
1451 zfs_acl_ids_free(&acl_ids);
1452 if (strcmp(name, "..") == 0)
1453 error = SET_ERROR(EISDIR);
1454 ZFS_EXIT(zfsvfs);
1455 return (error);
1459 if (zp == NULL) {
1460 uint64_t txtype;
1463 * Create a new file object and update the directory
1464 * to reference it.
1466 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1467 if (have_acl)
1468 zfs_acl_ids_free(&acl_ids);
1469 goto out;
1473 * We only support the creation of regular files in
1474 * extended attribute directories.
1477 if ((dzp->z_pflags & ZFS_XATTR) &&
1478 (vap->va_type != VREG)) {
1479 if (have_acl)
1480 zfs_acl_ids_free(&acl_ids);
1481 error = SET_ERROR(EINVAL);
1482 goto out;
1485 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1486 cr, vsecp, &acl_ids)) != 0)
1487 goto out;
1488 have_acl = B_TRUE;
1490 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1491 zfs_acl_ids_free(&acl_ids);
1492 error = SET_ERROR(EDQUOT);
1493 goto out;
1496 tx = dmu_tx_create(os);
1498 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1499 ZFS_SA_BASE_ATTR_SIZE);
1501 fuid_dirtied = zfsvfs->z_fuid_dirty;
1502 if (fuid_dirtied)
1503 zfs_fuid_txhold(zfsvfs, tx);
1504 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1505 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1506 if (!zfsvfs->z_use_sa &&
1507 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1508 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1509 0, acl_ids.z_aclp->z_acl_bytes);
1511 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1512 if (error) {
1513 zfs_dirent_unlock(dl);
1514 if (error == ERESTART) {
1515 waited = B_TRUE;
1516 dmu_tx_wait(tx);
1517 dmu_tx_abort(tx);
1518 goto top;
1520 zfs_acl_ids_free(&acl_ids);
1521 dmu_tx_abort(tx);
1522 ZFS_EXIT(zfsvfs);
1523 return (error);
1525 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1527 if (fuid_dirtied)
1528 zfs_fuid_sync(zfsvfs, tx);
1530 (void) zfs_link_create(dl, zp, tx, ZNEW);
1531 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1532 if (flag & FIGNORECASE)
1533 txtype |= TX_CI;
1534 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1535 vsecp, acl_ids.z_fuidp, vap);
1536 zfs_acl_ids_free(&acl_ids);
1537 dmu_tx_commit(tx);
1538 } else {
1539 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1541 if (have_acl)
1542 zfs_acl_ids_free(&acl_ids);
1543 have_acl = B_FALSE;
1546 * A directory entry already exists for this name.
1549 * Can't truncate an existing file if in exclusive mode.
1551 if (excl == EXCL) {
1552 error = SET_ERROR(EEXIST);
1553 goto out;
1556 * Can't open a directory for writing.
1558 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1559 error = SET_ERROR(EISDIR);
1560 goto out;
1563 * Verify requested access to file.
1565 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1566 goto out;
1569 mutex_enter(&dzp->z_lock);
1570 dzp->z_seq++;
1571 mutex_exit(&dzp->z_lock);
1574 * Truncate regular files if requested.
1576 if ((ZTOV(zp)->v_type == VREG) &&
1577 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1578 /* we can't hold any locks when calling zfs_freesp() */
1579 zfs_dirent_unlock(dl);
1580 dl = NULL;
1581 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1582 if (error == 0) {
1583 vnevent_create(ZTOV(zp), ct);
1587 out:
1589 if (dl)
1590 zfs_dirent_unlock(dl);
1592 if (error) {
1593 if (zp)
1594 VN_RELE(ZTOV(zp));
1595 } else {
1596 *vpp = ZTOV(zp);
1597 error = specvp_check(vpp, cr);
1600 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1601 zil_commit(zilog, 0);
1603 ZFS_EXIT(zfsvfs);
1604 return (error);
1608 * Remove an entry from a directory.
1610 * IN: dvp - vnode of directory to remove entry from.
1611 * name - name of entry to remove.
1612 * cr - credentials of caller.
1613 * ct - caller context
1614 * flags - case flags
1616 * RETURN: 0 on success, error code on failure.
1618 * Timestamps:
1619 * dvp - ctime|mtime
1620 * vp - ctime (if nlink > 0)
1623 uint64_t null_xattr = 0;
1625 /*ARGSUSED*/
1626 static int
1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1628 int flags)
1630 znode_t *zp, *dzp = VTOZ(dvp);
1631 znode_t *xzp;
1632 vnode_t *vp;
1633 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1634 zilog_t *zilog;
1635 uint64_t acl_obj, xattr_obj;
1636 uint64_t xattr_obj_unlinked = 0;
1637 uint64_t obj = 0;
1638 zfs_dirlock_t *dl;
1639 dmu_tx_t *tx;
1640 boolean_t may_delete_now, delete_now = FALSE;
1641 boolean_t unlinked, toobig = FALSE;
1642 uint64_t txtype;
1643 pathname_t *realnmp = NULL;
1644 pathname_t realnm;
1645 int error;
1646 int zflg = ZEXISTS;
1647 boolean_t waited = B_FALSE;
1649 ZFS_ENTER(zfsvfs);
1650 ZFS_VERIFY_ZP(dzp);
1651 zilog = zfsvfs->z_log;
1653 if (flags & FIGNORECASE) {
1654 zflg |= ZCILOOK;
1655 pn_alloc(&realnm);
1656 realnmp = &realnm;
1659 top:
1660 xattr_obj = 0;
1661 xzp = NULL;
1663 * Attempt to lock directory; fail if entry doesn't exist.
1665 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1666 NULL, realnmp)) {
1667 if (realnmp)
1668 pn_free(realnmp);
1669 ZFS_EXIT(zfsvfs);
1670 return (error);
1673 vp = ZTOV(zp);
1675 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1676 goto out;
1680 * Need to use rmdir for removing directories.
1682 if (vp->v_type == VDIR) {
1683 error = SET_ERROR(EPERM);
1684 goto out;
1687 vnevent_remove(vp, dvp, name, ct);
1689 if (realnmp)
1690 dnlc_remove(dvp, realnmp->pn_buf);
1691 else
1692 dnlc_remove(dvp, name);
1694 mutex_enter(&vp->v_lock);
1695 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1696 mutex_exit(&vp->v_lock);
1699 * We may delete the znode now, or we may put it in the unlinked set;
1700 * it depends on whether we're the last link, and on whether there are
1701 * other holds on the vnode. So we dmu_tx_hold() the right things to
1702 * allow for either case.
1704 obj = zp->z_id;
1705 tx = dmu_tx_create(zfsvfs->z_os);
1706 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1707 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1708 zfs_sa_upgrade_txholds(tx, zp);
1709 zfs_sa_upgrade_txholds(tx, dzp);
1710 if (may_delete_now) {
1711 toobig =
1712 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1713 /* if the file is too big, only hold_free a token amount */
1714 dmu_tx_hold_free(tx, zp->z_id, 0,
1715 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1718 /* are there any extended attributes? */
1719 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1720 &xattr_obj, sizeof (xattr_obj));
1721 if (error == 0 && xattr_obj) {
1722 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1723 ASSERT0(error);
1724 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1725 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1728 mutex_enter(&zp->z_lock);
1729 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1730 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1731 mutex_exit(&zp->z_lock);
1733 /* charge as an update -- would be nice not to charge at all */
1734 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1737 * Mark this transaction as typically resulting in a net free of space
1739 dmu_tx_mark_netfree(tx);
1741 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1742 if (error) {
1743 zfs_dirent_unlock(dl);
1744 VN_RELE(vp);
1745 if (xzp)
1746 VN_RELE(ZTOV(xzp));
1747 if (error == ERESTART) {
1748 waited = B_TRUE;
1749 dmu_tx_wait(tx);
1750 dmu_tx_abort(tx);
1751 goto top;
1753 if (realnmp)
1754 pn_free(realnmp);
1755 dmu_tx_abort(tx);
1756 ZFS_EXIT(zfsvfs);
1757 return (error);
1761 * Remove the directory entry.
1763 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1765 if (error) {
1766 dmu_tx_commit(tx);
1767 goto out;
1770 if (unlinked) {
1772 * Hold z_lock so that we can make sure that the ACL obj
1773 * hasn't changed. Could have been deleted due to
1774 * zfs_sa_upgrade().
1776 mutex_enter(&zp->z_lock);
1777 mutex_enter(&vp->v_lock);
1778 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1779 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1780 delete_now = may_delete_now && !toobig &&
1781 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1782 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1783 acl_obj;
1784 mutex_exit(&vp->v_lock);
1787 if (delete_now) {
1788 if (xattr_obj_unlinked) {
1789 ASSERT3U(xzp->z_links, ==, 2);
1790 mutex_enter(&xzp->z_lock);
1791 xzp->z_unlinked = 1;
1792 xzp->z_links = 0;
1793 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1794 &xzp->z_links, sizeof (xzp->z_links), tx);
1795 ASSERT3U(error, ==, 0);
1796 mutex_exit(&xzp->z_lock);
1797 zfs_unlinked_add(xzp, tx);
1799 if (zp->z_is_sa)
1800 error = sa_remove(zp->z_sa_hdl,
1801 SA_ZPL_XATTR(zfsvfs), tx);
1802 else
1803 error = sa_update(zp->z_sa_hdl,
1804 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1805 sizeof (uint64_t), tx);
1806 ASSERT0(error);
1808 mutex_enter(&vp->v_lock);
1809 vp->v_count--;
1810 ASSERT0(vp->v_count);
1811 mutex_exit(&vp->v_lock);
1812 mutex_exit(&zp->z_lock);
1813 zfs_znode_delete(zp, tx);
1814 } else if (unlinked) {
1815 mutex_exit(&zp->z_lock);
1816 zfs_unlinked_add(zp, tx);
1819 txtype = TX_REMOVE;
1820 if (flags & FIGNORECASE)
1821 txtype |= TX_CI;
1822 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1824 dmu_tx_commit(tx);
1825 out:
1826 if (realnmp)
1827 pn_free(realnmp);
1829 zfs_dirent_unlock(dl);
1831 if (!delete_now)
1832 VN_RELE(vp);
1833 if (xzp)
1834 VN_RELE(ZTOV(xzp));
1836 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1837 zil_commit(zilog, 0);
1839 ZFS_EXIT(zfsvfs);
1840 return (error);
1844 * Create a new directory and insert it into dvp using the name
1845 * provided. Return a pointer to the inserted directory.
1847 * IN: dvp - vnode of directory to add subdir to.
1848 * dirname - name of new directory.
1849 * vap - attributes of new directory.
1850 * cr - credentials of caller.
1851 * ct - caller context
1852 * flags - case flags
1853 * vsecp - ACL to be set
1855 * OUT: vpp - vnode of created directory.
1857 * RETURN: 0 on success, error code on failure.
1859 * Timestamps:
1860 * dvp - ctime|mtime updated
1861 * vp - ctime|mtime|atime updated
1863 /*ARGSUSED*/
1864 static int
1865 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1866 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1868 znode_t *zp, *dzp = VTOZ(dvp);
1869 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1870 zilog_t *zilog;
1871 zfs_dirlock_t *dl;
1872 uint64_t txtype;
1873 dmu_tx_t *tx;
1874 int error;
1875 int zf = ZNEW;
1876 ksid_t *ksid;
1877 uid_t uid;
1878 gid_t gid = crgetgid(cr);
1879 zfs_acl_ids_t acl_ids;
1880 boolean_t fuid_dirtied;
1881 boolean_t waited = B_FALSE;
1883 ASSERT(vap->va_type == VDIR);
1886 * If we have an ephemeral id, ACL, or XVATTR then
1887 * make sure file system is at proper version
1890 ksid = crgetsid(cr, KSID_OWNER);
1891 if (ksid)
1892 uid = ksid_getid(ksid);
1893 else
1894 uid = crgetuid(cr);
1895 if (zfsvfs->z_use_fuids == B_FALSE &&
1896 (vsecp || (vap->va_mask & AT_XVATTR) ||
1897 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1898 return (SET_ERROR(EINVAL));
1900 ZFS_ENTER(zfsvfs);
1901 ZFS_VERIFY_ZP(dzp);
1902 zilog = zfsvfs->z_log;
1904 if (dzp->z_pflags & ZFS_XATTR) {
1905 ZFS_EXIT(zfsvfs);
1906 return (SET_ERROR(EINVAL));
1909 if (zfsvfs->z_utf8 && u8_validate(dirname,
1910 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1911 ZFS_EXIT(zfsvfs);
1912 return (SET_ERROR(EILSEQ));
1914 if (flags & FIGNORECASE)
1915 zf |= ZCILOOK;
1917 if (vap->va_mask & AT_XVATTR) {
1918 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1919 crgetuid(cr), cr, vap->va_type)) != 0) {
1920 ZFS_EXIT(zfsvfs);
1921 return (error);
1925 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1926 vsecp, &acl_ids)) != 0) {
1927 ZFS_EXIT(zfsvfs);
1928 return (error);
1931 * First make sure the new directory doesn't exist.
1933 * Existence is checked first to make sure we don't return
1934 * EACCES instead of EEXIST which can cause some applications
1935 * to fail.
1937 top:
1938 *vpp = NULL;
1940 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1941 NULL, NULL)) {
1942 zfs_acl_ids_free(&acl_ids);
1943 ZFS_EXIT(zfsvfs);
1944 return (error);
1947 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1948 zfs_acl_ids_free(&acl_ids);
1949 zfs_dirent_unlock(dl);
1950 ZFS_EXIT(zfsvfs);
1951 return (error);
1954 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1955 zfs_acl_ids_free(&acl_ids);
1956 zfs_dirent_unlock(dl);
1957 ZFS_EXIT(zfsvfs);
1958 return (SET_ERROR(EDQUOT));
1962 * Add a new entry to the directory.
1964 tx = dmu_tx_create(zfsvfs->z_os);
1965 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1966 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1967 fuid_dirtied = zfsvfs->z_fuid_dirty;
1968 if (fuid_dirtied)
1969 zfs_fuid_txhold(zfsvfs, tx);
1970 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1971 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1972 acl_ids.z_aclp->z_acl_bytes);
1975 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1976 ZFS_SA_BASE_ATTR_SIZE);
1978 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1979 if (error) {
1980 zfs_dirent_unlock(dl);
1981 if (error == ERESTART) {
1982 waited = B_TRUE;
1983 dmu_tx_wait(tx);
1984 dmu_tx_abort(tx);
1985 goto top;
1987 zfs_acl_ids_free(&acl_ids);
1988 dmu_tx_abort(tx);
1989 ZFS_EXIT(zfsvfs);
1990 return (error);
1994 * Create new node.
1996 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1998 if (fuid_dirtied)
1999 zfs_fuid_sync(zfsvfs, tx);
2002 * Now put new name in parent dir.
2004 (void) zfs_link_create(dl, zp, tx, ZNEW);
2006 *vpp = ZTOV(zp);
2008 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2009 if (flags & FIGNORECASE)
2010 txtype |= TX_CI;
2011 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2012 acl_ids.z_fuidp, vap);
2014 zfs_acl_ids_free(&acl_ids);
2016 dmu_tx_commit(tx);
2018 zfs_dirent_unlock(dl);
2020 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2021 zil_commit(zilog, 0);
2023 ZFS_EXIT(zfsvfs);
2024 return (0);
2028 * Remove a directory subdir entry. If the current working
2029 * directory is the same as the subdir to be removed, the
2030 * remove will fail.
2032 * IN: dvp - vnode of directory to remove from.
2033 * name - name of directory to be removed.
2034 * cwd - vnode of current working directory.
2035 * cr - credentials of caller.
2036 * ct - caller context
2037 * flags - case flags
2039 * RETURN: 0 on success, error code on failure.
2041 * Timestamps:
2042 * dvp - ctime|mtime updated
2044 /*ARGSUSED*/
2045 static int
2046 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2047 caller_context_t *ct, int flags)
2049 znode_t *dzp = VTOZ(dvp);
2050 znode_t *zp;
2051 vnode_t *vp;
2052 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2053 zilog_t *zilog;
2054 zfs_dirlock_t *dl;
2055 dmu_tx_t *tx;
2056 int error;
2057 int zflg = ZEXISTS;
2058 boolean_t waited = B_FALSE;
2060 ZFS_ENTER(zfsvfs);
2061 ZFS_VERIFY_ZP(dzp);
2062 zilog = zfsvfs->z_log;
2064 if (flags & FIGNORECASE)
2065 zflg |= ZCILOOK;
2066 top:
2067 zp = NULL;
2070 * Attempt to lock directory; fail if entry doesn't exist.
2072 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2073 NULL, NULL)) {
2074 ZFS_EXIT(zfsvfs);
2075 return (error);
2078 vp = ZTOV(zp);
2080 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2081 goto out;
2084 if (vp->v_type != VDIR) {
2085 error = SET_ERROR(ENOTDIR);
2086 goto out;
2089 if (vp == cwd) {
2090 error = SET_ERROR(EINVAL);
2091 goto out;
2094 vnevent_rmdir(vp, dvp, name, ct);
2097 * Grab a lock on the directory to make sure that noone is
2098 * trying to add (or lookup) entries while we are removing it.
2100 rw_enter(&zp->z_name_lock, RW_WRITER);
2103 * Grab a lock on the parent pointer to make sure we play well
2104 * with the treewalk and directory rename code.
2106 rw_enter(&zp->z_parent_lock, RW_WRITER);
2108 tx = dmu_tx_create(zfsvfs->z_os);
2109 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2110 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2111 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2112 zfs_sa_upgrade_txholds(tx, zp);
2113 zfs_sa_upgrade_txholds(tx, dzp);
2114 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2115 if (error) {
2116 rw_exit(&zp->z_parent_lock);
2117 rw_exit(&zp->z_name_lock);
2118 zfs_dirent_unlock(dl);
2119 VN_RELE(vp);
2120 if (error == ERESTART) {
2121 waited = B_TRUE;
2122 dmu_tx_wait(tx);
2123 dmu_tx_abort(tx);
2124 goto top;
2126 dmu_tx_abort(tx);
2127 ZFS_EXIT(zfsvfs);
2128 return (error);
2131 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2133 if (error == 0) {
2134 uint64_t txtype = TX_RMDIR;
2135 if (flags & FIGNORECASE)
2136 txtype |= TX_CI;
2137 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2140 dmu_tx_commit(tx);
2142 rw_exit(&zp->z_parent_lock);
2143 rw_exit(&zp->z_name_lock);
2144 out:
2145 zfs_dirent_unlock(dl);
2147 VN_RELE(vp);
2149 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2150 zil_commit(zilog, 0);
2152 ZFS_EXIT(zfsvfs);
2153 return (error);
2157 * Read as many directory entries as will fit into the provided
2158 * buffer from the given directory cursor position (specified in
2159 * the uio structure).
2161 * IN: vp - vnode of directory to read.
2162 * uio - structure supplying read location, range info,
2163 * and return buffer.
2164 * cr - credentials of caller.
2165 * ct - caller context
2166 * flags - case flags
2168 * OUT: uio - updated offset and range, buffer filled.
2169 * eofp - set to true if end-of-file detected.
2171 * RETURN: 0 on success, error code on failure.
2173 * Timestamps:
2174 * vp - atime updated
2176 * Note that the low 4 bits of the cookie returned by zap is always zero.
2177 * This allows us to use the low range for "special" directory entries:
2178 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2179 * we use the offset 2 for the '.zfs' directory.
2181 /* ARGSUSED */
2182 static int
2183 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2184 caller_context_t *ct, int flags)
2186 znode_t *zp = VTOZ(vp);
2187 iovec_t *iovp;
2188 edirent_t *eodp;
2189 dirent64_t *odp;
2190 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2191 objset_t *os;
2192 caddr_t outbuf;
2193 size_t bufsize;
2194 zap_cursor_t zc;
2195 zap_attribute_t zap;
2196 uint_t bytes_wanted;
2197 uint64_t offset; /* must be unsigned; checks for < 1 */
2198 uint64_t parent;
2199 int local_eof;
2200 int outcount;
2201 int error;
2202 uint8_t prefetch;
2203 boolean_t check_sysattrs;
2205 ZFS_ENTER(zfsvfs);
2206 ZFS_VERIFY_ZP(zp);
2208 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2209 &parent, sizeof (parent))) != 0) {
2210 ZFS_EXIT(zfsvfs);
2211 return (error);
2215 * If we are not given an eof variable,
2216 * use a local one.
2218 if (eofp == NULL)
2219 eofp = &local_eof;
2222 * Check for valid iov_len.
2224 if (uio->uio_iov->iov_len <= 0) {
2225 ZFS_EXIT(zfsvfs);
2226 return (SET_ERROR(EINVAL));
2230 * Quit if directory has been removed (posix)
2232 if ((*eofp = zp->z_unlinked) != 0) {
2233 ZFS_EXIT(zfsvfs);
2234 return (0);
2237 error = 0;
2238 os = zfsvfs->z_os;
2239 offset = uio->uio_loffset;
2240 prefetch = zp->z_zn_prefetch;
2243 * Initialize the iterator cursor.
2245 if (offset <= 3) {
2247 * Start iteration from the beginning of the directory.
2249 zap_cursor_init(&zc, os, zp->z_id);
2250 } else {
2252 * The offset is a serialized cursor.
2254 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2258 * Get space to change directory entries into fs independent format.
2260 iovp = uio->uio_iov;
2261 bytes_wanted = iovp->iov_len;
2262 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2263 bufsize = bytes_wanted;
2264 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2265 odp = (struct dirent64 *)outbuf;
2266 } else {
2267 bufsize = bytes_wanted;
2268 outbuf = NULL;
2269 odp = (struct dirent64 *)iovp->iov_base;
2271 eodp = (struct edirent *)odp;
2274 * If this VFS supports the system attribute view interface; and
2275 * we're looking at an extended attribute directory; and we care
2276 * about normalization conflicts on this vfs; then we must check
2277 * for normalization conflicts with the sysattr name space.
2279 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2280 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2281 (flags & V_RDDIR_ENTFLAGS);
2284 * Transform to file-system independent format
2286 outcount = 0;
2287 while (outcount < bytes_wanted) {
2288 ino64_t objnum;
2289 ushort_t reclen;
2290 off64_t *next = NULL;
2293 * Special case `.', `..', and `.zfs'.
2295 if (offset == 0) {
2296 (void) strcpy(zap.za_name, ".");
2297 zap.za_normalization_conflict = 0;
2298 objnum = zp->z_id;
2299 } else if (offset == 1) {
2300 (void) strcpy(zap.za_name, "..");
2301 zap.za_normalization_conflict = 0;
2302 objnum = parent;
2303 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2304 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2305 zap.za_normalization_conflict = 0;
2306 objnum = ZFSCTL_INO_ROOT;
2307 } else {
2309 * Grab next entry.
2311 if (error = zap_cursor_retrieve(&zc, &zap)) {
2312 if ((*eofp = (error == ENOENT)) != 0)
2313 break;
2314 else
2315 goto update;
2318 if (zap.za_integer_length != 8 ||
2319 zap.za_num_integers != 1) {
2320 cmn_err(CE_WARN, "zap_readdir: bad directory "
2321 "entry, obj = %lld, offset = %lld\n",
2322 (u_longlong_t)zp->z_id,
2323 (u_longlong_t)offset);
2324 error = SET_ERROR(ENXIO);
2325 goto update;
2328 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2330 * MacOS X can extract the object type here such as:
2331 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2334 if (check_sysattrs && !zap.za_normalization_conflict) {
2335 zap.za_normalization_conflict =
2336 xattr_sysattr_casechk(zap.za_name);
2340 if (flags & V_RDDIR_ACCFILTER) {
2342 * If we have no access at all, don't include
2343 * this entry in the returned information
2345 znode_t *ezp;
2346 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2347 goto skip_entry;
2348 if (!zfs_has_access(ezp, cr)) {
2349 VN_RELE(ZTOV(ezp));
2350 goto skip_entry;
2352 VN_RELE(ZTOV(ezp));
2355 if (flags & V_RDDIR_ENTFLAGS)
2356 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2357 else
2358 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2361 * Will this entry fit in the buffer?
2363 if (outcount + reclen > bufsize) {
2365 * Did we manage to fit anything in the buffer?
2367 if (!outcount) {
2368 error = SET_ERROR(EINVAL);
2369 goto update;
2371 break;
2373 if (flags & V_RDDIR_ENTFLAGS) {
2375 * Add extended flag entry:
2377 eodp->ed_ino = objnum;
2378 eodp->ed_reclen = reclen;
2379 /* NOTE: ed_off is the offset for the *next* entry */
2380 next = &(eodp->ed_off);
2381 eodp->ed_eflags = zap.za_normalization_conflict ?
2382 ED_CASE_CONFLICT : 0;
2383 (void) strncpy(eodp->ed_name, zap.za_name,
2384 EDIRENT_NAMELEN(reclen));
2385 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2386 } else {
2388 * Add normal entry:
2390 odp->d_ino = objnum;
2391 odp->d_reclen = reclen;
2392 /* NOTE: d_off is the offset for the *next* entry */
2393 next = &(odp->d_off);
2394 (void) strncpy(odp->d_name, zap.za_name,
2395 DIRENT64_NAMELEN(reclen));
2396 odp = (dirent64_t *)((intptr_t)odp + reclen);
2398 outcount += reclen;
2400 ASSERT(outcount <= bufsize);
2402 /* Prefetch znode */
2403 if (prefetch)
2404 dmu_prefetch(os, objnum, 0, 0, 0,
2405 ZIO_PRIORITY_SYNC_READ);
2407 skip_entry:
2409 * Move to the next entry, fill in the previous offset.
2411 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2412 zap_cursor_advance(&zc);
2413 offset = zap_cursor_serialize(&zc);
2414 } else {
2415 offset += 1;
2417 if (next)
2418 *next = offset;
2420 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2422 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2423 iovp->iov_base += outcount;
2424 iovp->iov_len -= outcount;
2425 uio->uio_resid -= outcount;
2426 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2428 * Reset the pointer.
2430 offset = uio->uio_loffset;
2433 update:
2434 zap_cursor_fini(&zc);
2435 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2436 kmem_free(outbuf, bufsize);
2438 if (error == ENOENT)
2439 error = 0;
2441 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2443 uio->uio_loffset = offset;
2444 ZFS_EXIT(zfsvfs);
2445 return (error);
2448 ulong_t zfs_fsync_sync_cnt = 4;
2450 static int
2451 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2453 znode_t *zp = VTOZ(vp);
2454 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2457 * Regardless of whether this is required for standards conformance,
2458 * this is the logical behavior when fsync() is called on a file with
2459 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2460 * going to be pushed out as part of the zil_commit().
2462 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2463 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2464 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2466 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2468 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2469 ZFS_ENTER(zfsvfs);
2470 ZFS_VERIFY_ZP(zp);
2471 zil_commit(zfsvfs->z_log, zp->z_id);
2472 ZFS_EXIT(zfsvfs);
2474 return (0);
2479 * Get the requested file attributes and place them in the provided
2480 * vattr structure.
2482 * IN: vp - vnode of file.
2483 * vap - va_mask identifies requested attributes.
2484 * If AT_XVATTR set, then optional attrs are requested
2485 * flags - ATTR_NOACLCHECK (CIFS server context)
2486 * cr - credentials of caller.
2487 * ct - caller context
2489 * OUT: vap - attribute values.
2491 * RETURN: 0 (always succeeds).
2493 /* ARGSUSED */
2494 static int
2495 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2496 caller_context_t *ct)
2498 znode_t *zp = VTOZ(vp);
2499 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2500 int error = 0;
2501 uint64_t links;
2502 uint64_t mtime[2], ctime[2];
2503 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2504 xoptattr_t *xoap = NULL;
2505 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2506 sa_bulk_attr_t bulk[2];
2507 int count = 0;
2509 ZFS_ENTER(zfsvfs);
2510 ZFS_VERIFY_ZP(zp);
2512 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2514 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2515 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2517 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2518 ZFS_EXIT(zfsvfs);
2519 return (error);
2523 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2524 * Also, if we are the owner don't bother, since owner should
2525 * always be allowed to read basic attributes of file.
2527 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2528 (vap->va_uid != crgetuid(cr))) {
2529 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2530 skipaclchk, cr)) {
2531 ZFS_EXIT(zfsvfs);
2532 return (error);
2537 * Return all attributes. It's cheaper to provide the answer
2538 * than to determine whether we were asked the question.
2541 mutex_enter(&zp->z_lock);
2542 vap->va_type = vp->v_type;
2543 vap->va_mode = zp->z_mode & MODEMASK;
2544 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2545 vap->va_nodeid = zp->z_id;
2546 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2547 links = zp->z_links + 1;
2548 else
2549 links = zp->z_links;
2550 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2551 vap->va_size = zp->z_size;
2552 vap->va_rdev = vp->v_rdev;
2553 vap->va_seq = zp->z_seq;
2556 * Add in any requested optional attributes and the create time.
2557 * Also set the corresponding bits in the returned attribute bitmap.
2559 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2560 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2561 xoap->xoa_archive =
2562 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2563 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2566 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2567 xoap->xoa_readonly =
2568 ((zp->z_pflags & ZFS_READONLY) != 0);
2569 XVA_SET_RTN(xvap, XAT_READONLY);
2572 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2573 xoap->xoa_system =
2574 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2575 XVA_SET_RTN(xvap, XAT_SYSTEM);
2578 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2579 xoap->xoa_hidden =
2580 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2581 XVA_SET_RTN(xvap, XAT_HIDDEN);
2584 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2585 xoap->xoa_nounlink =
2586 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2587 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2590 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2591 xoap->xoa_immutable =
2592 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2593 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2596 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2597 xoap->xoa_appendonly =
2598 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2599 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2602 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2603 xoap->xoa_nodump =
2604 ((zp->z_pflags & ZFS_NODUMP) != 0);
2605 XVA_SET_RTN(xvap, XAT_NODUMP);
2608 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2609 xoap->xoa_opaque =
2610 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2611 XVA_SET_RTN(xvap, XAT_OPAQUE);
2614 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2615 xoap->xoa_av_quarantined =
2616 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2617 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2620 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2621 xoap->xoa_av_modified =
2622 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2623 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2626 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2627 vp->v_type == VREG) {
2628 zfs_sa_get_scanstamp(zp, xvap);
2631 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2632 uint64_t times[2];
2634 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2635 times, sizeof (times));
2636 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2637 XVA_SET_RTN(xvap, XAT_CREATETIME);
2640 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2641 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2642 XVA_SET_RTN(xvap, XAT_REPARSE);
2644 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2645 xoap->xoa_generation = zp->z_gen;
2646 XVA_SET_RTN(xvap, XAT_GEN);
2649 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2650 xoap->xoa_offline =
2651 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2652 XVA_SET_RTN(xvap, XAT_OFFLINE);
2655 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2656 xoap->xoa_sparse =
2657 ((zp->z_pflags & ZFS_SPARSE) != 0);
2658 XVA_SET_RTN(xvap, XAT_SPARSE);
2662 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2663 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2664 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2666 mutex_exit(&zp->z_lock);
2668 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2670 if (zp->z_blksz == 0) {
2672 * Block size hasn't been set; suggest maximal I/O transfers.
2674 vap->va_blksize = zfsvfs->z_max_blksz;
2677 ZFS_EXIT(zfsvfs);
2678 return (0);
2682 * Set the file attributes to the values contained in the
2683 * vattr structure.
2685 * IN: vp - vnode of file to be modified.
2686 * vap - new attribute values.
2687 * If AT_XVATTR set, then optional attrs are being set
2688 * flags - ATTR_UTIME set if non-default time values provided.
2689 * - ATTR_NOACLCHECK (CIFS context only).
2690 * cr - credentials of caller.
2691 * ct - caller context
2693 * RETURN: 0 on success, error code on failure.
2695 * Timestamps:
2696 * vp - ctime updated, mtime updated if size changed.
2698 /* ARGSUSED */
2699 static int
2700 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2701 caller_context_t *ct)
2703 znode_t *zp = VTOZ(vp);
2704 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2705 zilog_t *zilog;
2706 dmu_tx_t *tx;
2707 vattr_t oldva;
2708 xvattr_t tmpxvattr;
2709 uint_t mask = vap->va_mask;
2710 uint_t saved_mask = 0;
2711 int trim_mask = 0;
2712 uint64_t new_mode;
2713 uint64_t new_uid, new_gid;
2714 uint64_t xattr_obj;
2715 uint64_t mtime[2], ctime[2];
2716 znode_t *attrzp;
2717 int need_policy = FALSE;
2718 int err, err2;
2719 zfs_fuid_info_t *fuidp = NULL;
2720 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2721 xoptattr_t *xoap;
2722 zfs_acl_t *aclp;
2723 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2724 boolean_t fuid_dirtied = B_FALSE;
2725 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2726 int count = 0, xattr_count = 0;
2728 if (mask == 0)
2729 return (0);
2731 if (mask & AT_NOSET)
2732 return (SET_ERROR(EINVAL));
2734 ZFS_ENTER(zfsvfs);
2735 ZFS_VERIFY_ZP(zp);
2737 zilog = zfsvfs->z_log;
2740 * Make sure that if we have ephemeral uid/gid or xvattr specified
2741 * that file system is at proper version level
2744 if (zfsvfs->z_use_fuids == B_FALSE &&
2745 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2746 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2747 (mask & AT_XVATTR))) {
2748 ZFS_EXIT(zfsvfs);
2749 return (SET_ERROR(EINVAL));
2752 if (mask & AT_SIZE && vp->v_type == VDIR) {
2753 ZFS_EXIT(zfsvfs);
2754 return (SET_ERROR(EISDIR));
2757 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2758 ZFS_EXIT(zfsvfs);
2759 return (SET_ERROR(EINVAL));
2763 * If this is an xvattr_t, then get a pointer to the structure of
2764 * optional attributes. If this is NULL, then we have a vattr_t.
2766 xoap = xva_getxoptattr(xvap);
2768 xva_init(&tmpxvattr);
2771 * Immutable files can only alter immutable bit and atime
2773 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2774 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2775 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2776 ZFS_EXIT(zfsvfs);
2777 return (SET_ERROR(EPERM));
2780 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2781 ZFS_EXIT(zfsvfs);
2782 return (SET_ERROR(EPERM));
2786 * Verify timestamps doesn't overflow 32 bits.
2787 * ZFS can handle large timestamps, but 32bit syscalls can't
2788 * handle times greater than 2039. This check should be removed
2789 * once large timestamps are fully supported.
2791 if (mask & (AT_ATIME | AT_MTIME)) {
2792 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2793 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2794 ZFS_EXIT(zfsvfs);
2795 return (SET_ERROR(EOVERFLOW));
2799 top:
2800 attrzp = NULL;
2801 aclp = NULL;
2803 /* Can this be moved to before the top label? */
2804 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2805 ZFS_EXIT(zfsvfs);
2806 return (SET_ERROR(EROFS));
2810 * First validate permissions
2813 if (mask & AT_SIZE) {
2814 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2815 if (err) {
2816 ZFS_EXIT(zfsvfs);
2817 return (err);
2820 * XXX - Note, we are not providing any open
2821 * mode flags here (like FNDELAY), so we may
2822 * block if there are locks present... this
2823 * should be addressed in openat().
2825 /* XXX - would it be OK to generate a log record here? */
2826 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2827 if (err) {
2828 ZFS_EXIT(zfsvfs);
2829 return (err);
2832 if (vap->va_size == 0)
2833 vnevent_truncate(ZTOV(zp), ct);
2836 if (mask & (AT_ATIME|AT_MTIME) ||
2837 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2838 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2839 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2840 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2841 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2842 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2843 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2844 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2845 skipaclchk, cr);
2848 if (mask & (AT_UID|AT_GID)) {
2849 int idmask = (mask & (AT_UID|AT_GID));
2850 int take_owner;
2851 int take_group;
2854 * NOTE: even if a new mode is being set,
2855 * we may clear S_ISUID/S_ISGID bits.
2858 if (!(mask & AT_MODE))
2859 vap->va_mode = zp->z_mode;
2862 * Take ownership or chgrp to group we are a member of
2865 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2866 take_group = (mask & AT_GID) &&
2867 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2870 * If both AT_UID and AT_GID are set then take_owner and
2871 * take_group must both be set in order to allow taking
2872 * ownership.
2874 * Otherwise, send the check through secpolicy_vnode_setattr()
2878 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2879 ((idmask == AT_UID) && take_owner) ||
2880 ((idmask == AT_GID) && take_group)) {
2881 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2882 skipaclchk, cr) == 0) {
2884 * Remove setuid/setgid for non-privileged users
2886 secpolicy_setid_clear(vap, cr);
2887 trim_mask = (mask & (AT_UID|AT_GID));
2888 } else {
2889 need_policy = TRUE;
2891 } else {
2892 need_policy = TRUE;
2896 mutex_enter(&zp->z_lock);
2897 oldva.va_mode = zp->z_mode;
2898 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2899 if (mask & AT_XVATTR) {
2901 * Update xvattr mask to include only those attributes
2902 * that are actually changing.
2904 * the bits will be restored prior to actually setting
2905 * the attributes so the caller thinks they were set.
2907 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2908 if (xoap->xoa_appendonly !=
2909 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2910 need_policy = TRUE;
2911 } else {
2912 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2913 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2917 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2918 if (xoap->xoa_nounlink !=
2919 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2920 need_policy = TRUE;
2921 } else {
2922 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2923 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2927 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2928 if (xoap->xoa_immutable !=
2929 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2930 need_policy = TRUE;
2931 } else {
2932 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2933 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2937 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2938 if (xoap->xoa_nodump !=
2939 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2940 need_policy = TRUE;
2941 } else {
2942 XVA_CLR_REQ(xvap, XAT_NODUMP);
2943 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2947 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2948 if (xoap->xoa_av_modified !=
2949 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2950 need_policy = TRUE;
2951 } else {
2952 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2953 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2957 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2958 if ((vp->v_type != VREG &&
2959 xoap->xoa_av_quarantined) ||
2960 xoap->xoa_av_quarantined !=
2961 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2962 need_policy = TRUE;
2963 } else {
2964 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2965 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2969 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2970 mutex_exit(&zp->z_lock);
2971 ZFS_EXIT(zfsvfs);
2972 return (SET_ERROR(EPERM));
2975 if (need_policy == FALSE &&
2976 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2977 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2978 need_policy = TRUE;
2982 mutex_exit(&zp->z_lock);
2984 if (mask & AT_MODE) {
2985 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2986 err = secpolicy_setid_setsticky_clear(vp, vap,
2987 &oldva, cr);
2988 if (err) {
2989 ZFS_EXIT(zfsvfs);
2990 return (err);
2992 trim_mask |= AT_MODE;
2993 } else {
2994 need_policy = TRUE;
2998 if (need_policy) {
3000 * If trim_mask is set then take ownership
3001 * has been granted or write_acl is present and user
3002 * has the ability to modify mode. In that case remove
3003 * UID|GID and or MODE from mask so that
3004 * secpolicy_vnode_setattr() doesn't revoke it.
3007 if (trim_mask) {
3008 saved_mask = vap->va_mask;
3009 vap->va_mask &= ~trim_mask;
3011 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3012 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3013 if (err) {
3014 ZFS_EXIT(zfsvfs);
3015 return (err);
3018 if (trim_mask)
3019 vap->va_mask |= saved_mask;
3023 * secpolicy_vnode_setattr, or take ownership may have
3024 * changed va_mask
3026 mask = vap->va_mask;
3028 if ((mask & (AT_UID | AT_GID))) {
3029 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3030 &xattr_obj, sizeof (xattr_obj));
3032 if (err == 0 && xattr_obj) {
3033 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3034 if (err)
3035 goto out2;
3037 if (mask & AT_UID) {
3038 new_uid = zfs_fuid_create(zfsvfs,
3039 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3040 if (new_uid != zp->z_uid &&
3041 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3042 if (attrzp)
3043 VN_RELE(ZTOV(attrzp));
3044 err = SET_ERROR(EDQUOT);
3045 goto out2;
3049 if (mask & AT_GID) {
3050 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3051 cr, ZFS_GROUP, &fuidp);
3052 if (new_gid != zp->z_gid &&
3053 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3054 if (attrzp)
3055 VN_RELE(ZTOV(attrzp));
3056 err = SET_ERROR(EDQUOT);
3057 goto out2;
3061 tx = dmu_tx_create(zfsvfs->z_os);
3063 if (mask & AT_MODE) {
3064 uint64_t pmode = zp->z_mode;
3065 uint64_t acl_obj;
3066 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3068 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3069 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3070 err = SET_ERROR(EPERM);
3071 goto out;
3074 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3075 goto out;
3077 mutex_enter(&zp->z_lock);
3078 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3080 * Are we upgrading ACL from old V0 format
3081 * to V1 format?
3083 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3084 zfs_znode_acl_version(zp) ==
3085 ZFS_ACL_VERSION_INITIAL) {
3086 dmu_tx_hold_free(tx, acl_obj, 0,
3087 DMU_OBJECT_END);
3088 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3089 0, aclp->z_acl_bytes);
3090 } else {
3091 dmu_tx_hold_write(tx, acl_obj, 0,
3092 aclp->z_acl_bytes);
3094 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3095 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3096 0, aclp->z_acl_bytes);
3098 mutex_exit(&zp->z_lock);
3099 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3100 } else {
3101 if ((mask & AT_XVATTR) &&
3102 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3103 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3104 else
3105 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3108 if (attrzp) {
3109 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3112 fuid_dirtied = zfsvfs->z_fuid_dirty;
3113 if (fuid_dirtied)
3114 zfs_fuid_txhold(zfsvfs, tx);
3116 zfs_sa_upgrade_txholds(tx, zp);
3118 err = dmu_tx_assign(tx, TXG_WAIT);
3119 if (err)
3120 goto out;
3122 count = 0;
3124 * Set each attribute requested.
3125 * We group settings according to the locks they need to acquire.
3127 * Note: you cannot set ctime directly, although it will be
3128 * updated as a side-effect of calling this function.
3132 if (mask & (AT_UID|AT_GID|AT_MODE))
3133 mutex_enter(&zp->z_acl_lock);
3134 mutex_enter(&zp->z_lock);
3136 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3137 &zp->z_pflags, sizeof (zp->z_pflags));
3139 if (attrzp) {
3140 if (mask & (AT_UID|AT_GID|AT_MODE))
3141 mutex_enter(&attrzp->z_acl_lock);
3142 mutex_enter(&attrzp->z_lock);
3143 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3144 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3145 sizeof (attrzp->z_pflags));
3148 if (mask & (AT_UID|AT_GID)) {
3150 if (mask & AT_UID) {
3151 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3152 &new_uid, sizeof (new_uid));
3153 zp->z_uid = new_uid;
3154 if (attrzp) {
3155 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3156 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3157 sizeof (new_uid));
3158 attrzp->z_uid = new_uid;
3162 if (mask & AT_GID) {
3163 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3164 NULL, &new_gid, sizeof (new_gid));
3165 zp->z_gid = new_gid;
3166 if (attrzp) {
3167 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3168 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3169 sizeof (new_gid));
3170 attrzp->z_gid = new_gid;
3173 if (!(mask & AT_MODE)) {
3174 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3175 NULL, &new_mode, sizeof (new_mode));
3176 new_mode = zp->z_mode;
3178 err = zfs_acl_chown_setattr(zp);
3179 ASSERT(err == 0);
3180 if (attrzp) {
3181 err = zfs_acl_chown_setattr(attrzp);
3182 ASSERT(err == 0);
3186 if (mask & AT_MODE) {
3187 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3188 &new_mode, sizeof (new_mode));
3189 zp->z_mode = new_mode;
3190 ASSERT3U((uintptr_t)aclp, !=, NULL);
3191 err = zfs_aclset_common(zp, aclp, cr, tx);
3192 ASSERT0(err);
3193 if (zp->z_acl_cached)
3194 zfs_acl_free(zp->z_acl_cached);
3195 zp->z_acl_cached = aclp;
3196 aclp = NULL;
3200 if (mask & AT_ATIME) {
3201 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3202 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3203 &zp->z_atime, sizeof (zp->z_atime));
3206 if (mask & AT_MTIME) {
3207 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3208 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3209 mtime, sizeof (mtime));
3212 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3213 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3215 NULL, mtime, sizeof (mtime));
3216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3217 &ctime, sizeof (ctime));
3218 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3219 B_TRUE);
3220 } else if (mask != 0) {
3221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3222 &ctime, sizeof (ctime));
3223 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3224 B_TRUE);
3225 if (attrzp) {
3226 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3227 SA_ZPL_CTIME(zfsvfs), NULL,
3228 &ctime, sizeof (ctime));
3229 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3230 mtime, ctime, B_TRUE);
3234 * Do this after setting timestamps to prevent timestamp
3235 * update from toggling bit
3238 if (xoap && (mask & AT_XVATTR)) {
3241 * restore trimmed off masks
3242 * so that return masks can be set for caller.
3245 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3246 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3248 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3249 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3251 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3252 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3254 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3255 XVA_SET_REQ(xvap, XAT_NODUMP);
3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3258 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3261 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3264 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3265 ASSERT(vp->v_type == VREG);
3267 zfs_xvattr_set(zp, xvap, tx);
3270 if (fuid_dirtied)
3271 zfs_fuid_sync(zfsvfs, tx);
3273 if (mask != 0)
3274 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3276 mutex_exit(&zp->z_lock);
3277 if (mask & (AT_UID|AT_GID|AT_MODE))
3278 mutex_exit(&zp->z_acl_lock);
3280 if (attrzp) {
3281 if (mask & (AT_UID|AT_GID|AT_MODE))
3282 mutex_exit(&attrzp->z_acl_lock);
3283 mutex_exit(&attrzp->z_lock);
3285 out:
3286 if (err == 0 && attrzp) {
3287 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3288 xattr_count, tx);
3289 ASSERT(err2 == 0);
3292 if (attrzp)
3293 VN_RELE(ZTOV(attrzp));
3295 if (aclp)
3296 zfs_acl_free(aclp);
3298 if (fuidp) {
3299 zfs_fuid_info_free(fuidp);
3300 fuidp = NULL;
3303 if (err) {
3304 dmu_tx_abort(tx);
3305 if (err == ERESTART)
3306 goto top;
3307 } else {
3308 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3309 dmu_tx_commit(tx);
3312 out2:
3313 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3314 zil_commit(zilog, 0);
3316 ZFS_EXIT(zfsvfs);
3317 return (err);
3320 typedef struct zfs_zlock {
3321 krwlock_t *zl_rwlock; /* lock we acquired */
3322 znode_t *zl_znode; /* znode we held */
3323 struct zfs_zlock *zl_next; /* next in list */
3324 } zfs_zlock_t;
3327 * Drop locks and release vnodes that were held by zfs_rename_lock().
3329 static void
3330 zfs_rename_unlock(zfs_zlock_t **zlpp)
3332 zfs_zlock_t *zl;
3334 while ((zl = *zlpp) != NULL) {
3335 if (zl->zl_znode != NULL)
3336 VN_RELE(ZTOV(zl->zl_znode));
3337 rw_exit(zl->zl_rwlock);
3338 *zlpp = zl->zl_next;
3339 kmem_free(zl, sizeof (*zl));
3344 * Search back through the directory tree, using the ".." entries.
3345 * Lock each directory in the chain to prevent concurrent renames.
3346 * Fail any attempt to move a directory into one of its own descendants.
3347 * XXX - z_parent_lock can overlap with map or grow locks
3349 static int
3350 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3352 zfs_zlock_t *zl;
3353 znode_t *zp = tdzp;
3354 uint64_t rootid = zp->z_zfsvfs->z_root;
3355 uint64_t oidp = zp->z_id;
3356 krwlock_t *rwlp = &szp->z_parent_lock;
3357 krw_t rw = RW_WRITER;
3360 * First pass write-locks szp and compares to zp->z_id.
3361 * Later passes read-lock zp and compare to zp->z_parent.
3363 do {
3364 if (!rw_tryenter(rwlp, rw)) {
3366 * Another thread is renaming in this path.
3367 * Note that if we are a WRITER, we don't have any
3368 * parent_locks held yet.
3370 if (rw == RW_READER && zp->z_id > szp->z_id) {
3372 * Drop our locks and restart
3374 zfs_rename_unlock(&zl);
3375 *zlpp = NULL;
3376 zp = tdzp;
3377 oidp = zp->z_id;
3378 rwlp = &szp->z_parent_lock;
3379 rw = RW_WRITER;
3380 continue;
3381 } else {
3383 * Wait for other thread to drop its locks
3385 rw_enter(rwlp, rw);
3389 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3390 zl->zl_rwlock = rwlp;
3391 zl->zl_znode = NULL;
3392 zl->zl_next = *zlpp;
3393 *zlpp = zl;
3395 if (oidp == szp->z_id) /* We're a descendant of szp */
3396 return (SET_ERROR(EINVAL));
3398 if (oidp == rootid) /* We've hit the top */
3399 return (0);
3401 if (rw == RW_READER) { /* i.e. not the first pass */
3402 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3403 if (error)
3404 return (error);
3405 zl->zl_znode = zp;
3407 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3408 &oidp, sizeof (oidp));
3409 rwlp = &zp->z_parent_lock;
3410 rw = RW_READER;
3412 } while (zp->z_id != sdzp->z_id);
3414 return (0);
3418 * Move an entry from the provided source directory to the target
3419 * directory. Change the entry name as indicated.
3421 * IN: sdvp - Source directory containing the "old entry".
3422 * snm - Old entry name.
3423 * tdvp - Target directory to contain the "new entry".
3424 * tnm - New entry name.
3425 * cr - credentials of caller.
3426 * ct - caller context
3427 * flags - case flags
3429 * RETURN: 0 on success, error code on failure.
3431 * Timestamps:
3432 * sdvp,tdvp - ctime|mtime updated
3434 /*ARGSUSED*/
3435 static int
3436 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3437 caller_context_t *ct, int flags)
3439 znode_t *tdzp, *szp, *tzp;
3440 znode_t *sdzp = VTOZ(sdvp);
3441 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3442 zilog_t *zilog;
3443 vnode_t *realvp;
3444 zfs_dirlock_t *sdl, *tdl;
3445 dmu_tx_t *tx;
3446 zfs_zlock_t *zl;
3447 int cmp, serr, terr;
3448 int error = 0;
3449 int zflg = 0;
3450 boolean_t waited = B_FALSE;
3452 ZFS_ENTER(zfsvfs);
3453 ZFS_VERIFY_ZP(sdzp);
3454 zilog = zfsvfs->z_log;
3457 * Make sure we have the real vp for the target directory.
3459 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3460 tdvp = realvp;
3462 tdzp = VTOZ(tdvp);
3463 ZFS_VERIFY_ZP(tdzp);
3466 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3467 * ctldir appear to have the same v_vfsp.
3469 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3470 ZFS_EXIT(zfsvfs);
3471 return (SET_ERROR(EXDEV));
3474 if (zfsvfs->z_utf8 && u8_validate(tnm,
3475 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3476 ZFS_EXIT(zfsvfs);
3477 return (SET_ERROR(EILSEQ));
3480 if (flags & FIGNORECASE)
3481 zflg |= ZCILOOK;
3483 top:
3484 szp = NULL;
3485 tzp = NULL;
3486 zl = NULL;
3489 * This is to prevent the creation of links into attribute space
3490 * by renaming a linked file into/outof an attribute directory.
3491 * See the comment in zfs_link() for why this is considered bad.
3493 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3494 ZFS_EXIT(zfsvfs);
3495 return (SET_ERROR(EINVAL));
3499 * Lock source and target directory entries. To prevent deadlock,
3500 * a lock ordering must be defined. We lock the directory with
3501 * the smallest object id first, or if it's a tie, the one with
3502 * the lexically first name.
3504 if (sdzp->z_id < tdzp->z_id) {
3505 cmp = -1;
3506 } else if (sdzp->z_id > tdzp->z_id) {
3507 cmp = 1;
3508 } else {
3510 * First compare the two name arguments without
3511 * considering any case folding.
3513 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3515 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3516 ASSERT(error == 0 || !zfsvfs->z_utf8);
3517 if (cmp == 0) {
3519 * POSIX: "If the old argument and the new argument
3520 * both refer to links to the same existing file,
3521 * the rename() function shall return successfully
3522 * and perform no other action."
3524 ZFS_EXIT(zfsvfs);
3525 return (0);
3528 * If the file system is case-folding, then we may
3529 * have some more checking to do. A case-folding file
3530 * system is either supporting mixed case sensitivity
3531 * access or is completely case-insensitive. Note
3532 * that the file system is always case preserving.
3534 * In mixed sensitivity mode case sensitive behavior
3535 * is the default. FIGNORECASE must be used to
3536 * explicitly request case insensitive behavior.
3538 * If the source and target names provided differ only
3539 * by case (e.g., a request to rename 'tim' to 'Tim'),
3540 * we will treat this as a special case in the
3541 * case-insensitive mode: as long as the source name
3542 * is an exact match, we will allow this to proceed as
3543 * a name-change request.
3545 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3546 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3547 flags & FIGNORECASE)) &&
3548 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3549 &error) == 0) {
3551 * case preserving rename request, require exact
3552 * name matches
3554 zflg |= ZCIEXACT;
3555 zflg &= ~ZCILOOK;
3560 * If the source and destination directories are the same, we should
3561 * grab the z_name_lock of that directory only once.
3563 if (sdzp == tdzp) {
3564 zflg |= ZHAVELOCK;
3565 rw_enter(&sdzp->z_name_lock, RW_READER);
3568 if (cmp < 0) {
3569 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3570 ZEXISTS | zflg, NULL, NULL);
3571 terr = zfs_dirent_lock(&tdl,
3572 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3573 } else {
3574 terr = zfs_dirent_lock(&tdl,
3575 tdzp, tnm, &tzp, zflg, NULL, NULL);
3576 serr = zfs_dirent_lock(&sdl,
3577 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3578 NULL, NULL);
3581 if (serr) {
3583 * Source entry invalid or not there.
3585 if (!terr) {
3586 zfs_dirent_unlock(tdl);
3587 if (tzp)
3588 VN_RELE(ZTOV(tzp));
3591 if (sdzp == tdzp)
3592 rw_exit(&sdzp->z_name_lock);
3594 if (strcmp(snm, "..") == 0)
3595 serr = SET_ERROR(EINVAL);
3596 ZFS_EXIT(zfsvfs);
3597 return (serr);
3599 if (terr) {
3600 zfs_dirent_unlock(sdl);
3601 VN_RELE(ZTOV(szp));
3603 if (sdzp == tdzp)
3604 rw_exit(&sdzp->z_name_lock);
3606 if (strcmp(tnm, "..") == 0)
3607 terr = SET_ERROR(EINVAL);
3608 ZFS_EXIT(zfsvfs);
3609 return (terr);
3613 * Must have write access at the source to remove the old entry
3614 * and write access at the target to create the new entry.
3615 * Note that if target and source are the same, this can be
3616 * done in a single check.
3619 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3620 goto out;
3622 if (ZTOV(szp)->v_type == VDIR) {
3624 * Check to make sure rename is valid.
3625 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3627 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3628 goto out;
3632 * Does target exist?
3634 if (tzp) {
3636 * Source and target must be the same type.
3638 if (ZTOV(szp)->v_type == VDIR) {
3639 if (ZTOV(tzp)->v_type != VDIR) {
3640 error = SET_ERROR(ENOTDIR);
3641 goto out;
3643 } else {
3644 if (ZTOV(tzp)->v_type == VDIR) {
3645 error = SET_ERROR(EISDIR);
3646 goto out;
3650 * POSIX dictates that when the source and target
3651 * entries refer to the same file object, rename
3652 * must do nothing and exit without error.
3654 if (szp->z_id == tzp->z_id) {
3655 error = 0;
3656 goto out;
3660 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3661 if (tzp)
3662 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3665 * notify the target directory if it is not the same
3666 * as source directory.
3668 if (tdvp != sdvp) {
3669 vnevent_rename_dest_dir(tdvp, ct);
3672 tx = dmu_tx_create(zfsvfs->z_os);
3673 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3674 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3675 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3676 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3677 if (sdzp != tdzp) {
3678 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3679 zfs_sa_upgrade_txholds(tx, tdzp);
3681 if (tzp) {
3682 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3683 zfs_sa_upgrade_txholds(tx, tzp);
3686 zfs_sa_upgrade_txholds(tx, szp);
3687 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3688 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3689 if (error) {
3690 if (zl != NULL)
3691 zfs_rename_unlock(&zl);
3692 zfs_dirent_unlock(sdl);
3693 zfs_dirent_unlock(tdl);
3695 if (sdzp == tdzp)
3696 rw_exit(&sdzp->z_name_lock);
3698 VN_RELE(ZTOV(szp));
3699 if (tzp)
3700 VN_RELE(ZTOV(tzp));
3701 if (error == ERESTART) {
3702 waited = B_TRUE;
3703 dmu_tx_wait(tx);
3704 dmu_tx_abort(tx);
3705 goto top;
3707 dmu_tx_abort(tx);
3708 ZFS_EXIT(zfsvfs);
3709 return (error);
3712 if (tzp) /* Attempt to remove the existing target */
3713 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3715 if (error == 0) {
3716 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3717 if (error == 0) {
3718 szp->z_pflags |= ZFS_AV_MODIFIED;
3720 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3721 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3722 ASSERT0(error);
3724 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3725 if (error == 0) {
3726 zfs_log_rename(zilog, tx, TX_RENAME |
3727 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3728 sdl->dl_name, tdzp, tdl->dl_name, szp);
3731 * Update path information for the target vnode
3733 vn_renamepath(tdvp, ZTOV(szp), tnm,
3734 strlen(tnm));
3735 } else {
3737 * At this point, we have successfully created
3738 * the target name, but have failed to remove
3739 * the source name. Since the create was done
3740 * with the ZRENAMING flag, there are
3741 * complications; for one, the link count is
3742 * wrong. The easiest way to deal with this
3743 * is to remove the newly created target, and
3744 * return the original error. This must
3745 * succeed; fortunately, it is very unlikely to
3746 * fail, since we just created it.
3748 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3749 ZRENAMING, NULL), ==, 0);
3754 dmu_tx_commit(tx);
3755 out:
3756 if (zl != NULL)
3757 zfs_rename_unlock(&zl);
3759 zfs_dirent_unlock(sdl);
3760 zfs_dirent_unlock(tdl);
3762 if (sdzp == tdzp)
3763 rw_exit(&sdzp->z_name_lock);
3766 VN_RELE(ZTOV(szp));
3767 if (tzp)
3768 VN_RELE(ZTOV(tzp));
3770 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3771 zil_commit(zilog, 0);
3773 ZFS_EXIT(zfsvfs);
3774 return (error);
3778 * Insert the indicated symbolic reference entry into the directory.
3780 * IN: dvp - Directory to contain new symbolic link.
3781 * link - Name for new symlink entry.
3782 * vap - Attributes of new entry.
3783 * cr - credentials of caller.
3784 * ct - caller context
3785 * flags - case flags
3787 * RETURN: 0 on success, error code on failure.
3789 * Timestamps:
3790 * dvp - ctime|mtime updated
3792 /*ARGSUSED*/
3793 static int
3794 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3795 caller_context_t *ct, int flags)
3797 znode_t *zp, *dzp = VTOZ(dvp);
3798 zfs_dirlock_t *dl;
3799 dmu_tx_t *tx;
3800 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3801 zilog_t *zilog;
3802 uint64_t len = strlen(link);
3803 int error;
3804 int zflg = ZNEW;
3805 zfs_acl_ids_t acl_ids;
3806 boolean_t fuid_dirtied;
3807 uint64_t txtype = TX_SYMLINK;
3808 boolean_t waited = B_FALSE;
3810 ASSERT(vap->va_type == VLNK);
3812 ZFS_ENTER(zfsvfs);
3813 ZFS_VERIFY_ZP(dzp);
3814 zilog = zfsvfs->z_log;
3816 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3817 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3818 ZFS_EXIT(zfsvfs);
3819 return (SET_ERROR(EILSEQ));
3821 if (flags & FIGNORECASE)
3822 zflg |= ZCILOOK;
3824 if (len > MAXPATHLEN) {
3825 ZFS_EXIT(zfsvfs);
3826 return (SET_ERROR(ENAMETOOLONG));
3829 if ((error = zfs_acl_ids_create(dzp, 0,
3830 vap, cr, NULL, &acl_ids)) != 0) {
3831 ZFS_EXIT(zfsvfs);
3832 return (error);
3834 top:
3836 * Attempt to lock directory; fail if entry already exists.
3838 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3839 if (error) {
3840 zfs_acl_ids_free(&acl_ids);
3841 ZFS_EXIT(zfsvfs);
3842 return (error);
3845 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3846 zfs_acl_ids_free(&acl_ids);
3847 zfs_dirent_unlock(dl);
3848 ZFS_EXIT(zfsvfs);
3849 return (error);
3852 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3853 zfs_acl_ids_free(&acl_ids);
3854 zfs_dirent_unlock(dl);
3855 ZFS_EXIT(zfsvfs);
3856 return (SET_ERROR(EDQUOT));
3858 tx = dmu_tx_create(zfsvfs->z_os);
3859 fuid_dirtied = zfsvfs->z_fuid_dirty;
3860 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3861 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3862 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3863 ZFS_SA_BASE_ATTR_SIZE + len);
3864 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3865 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3866 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3867 acl_ids.z_aclp->z_acl_bytes);
3869 if (fuid_dirtied)
3870 zfs_fuid_txhold(zfsvfs, tx);
3871 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3872 if (error) {
3873 zfs_dirent_unlock(dl);
3874 if (error == ERESTART) {
3875 waited = B_TRUE;
3876 dmu_tx_wait(tx);
3877 dmu_tx_abort(tx);
3878 goto top;
3880 zfs_acl_ids_free(&acl_ids);
3881 dmu_tx_abort(tx);
3882 ZFS_EXIT(zfsvfs);
3883 return (error);
3887 * Create a new object for the symlink.
3888 * for version 4 ZPL datsets the symlink will be an SA attribute
3890 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3892 if (fuid_dirtied)
3893 zfs_fuid_sync(zfsvfs, tx);
3895 mutex_enter(&zp->z_lock);
3896 if (zp->z_is_sa)
3897 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3898 link, len, tx);
3899 else
3900 zfs_sa_symlink(zp, link, len, tx);
3901 mutex_exit(&zp->z_lock);
3903 zp->z_size = len;
3904 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3905 &zp->z_size, sizeof (zp->z_size), tx);
3907 * Insert the new object into the directory.
3909 (void) zfs_link_create(dl, zp, tx, ZNEW);
3911 if (flags & FIGNORECASE)
3912 txtype |= TX_CI;
3913 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3915 zfs_acl_ids_free(&acl_ids);
3917 dmu_tx_commit(tx);
3919 zfs_dirent_unlock(dl);
3921 VN_RELE(ZTOV(zp));
3923 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3924 zil_commit(zilog, 0);
3926 ZFS_EXIT(zfsvfs);
3927 return (error);
3931 * Return, in the buffer contained in the provided uio structure,
3932 * the symbolic path referred to by vp.
3934 * IN: vp - vnode of symbolic link.
3935 * uio - structure to contain the link path.
3936 * cr - credentials of caller.
3937 * ct - caller context
3939 * OUT: uio - structure containing the link path.
3941 * RETURN: 0 on success, error code on failure.
3943 * Timestamps:
3944 * vp - atime updated
3946 /* ARGSUSED */
3947 static int
3948 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3950 znode_t *zp = VTOZ(vp);
3951 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3952 int error;
3954 ZFS_ENTER(zfsvfs);
3955 ZFS_VERIFY_ZP(zp);
3957 mutex_enter(&zp->z_lock);
3958 if (zp->z_is_sa)
3959 error = sa_lookup_uio(zp->z_sa_hdl,
3960 SA_ZPL_SYMLINK(zfsvfs), uio);
3961 else
3962 error = zfs_sa_readlink(zp, uio);
3963 mutex_exit(&zp->z_lock);
3965 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3967 ZFS_EXIT(zfsvfs);
3968 return (error);
3972 * Insert a new entry into directory tdvp referencing svp.
3974 * IN: tdvp - Directory to contain new entry.
3975 * svp - vnode of new entry.
3976 * name - name of new entry.
3977 * cr - credentials of caller.
3978 * ct - caller context
3980 * RETURN: 0 on success, error code on failure.
3982 * Timestamps:
3983 * tdvp - ctime|mtime updated
3984 * svp - ctime updated
3986 /* ARGSUSED */
3987 static int
3988 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3989 caller_context_t *ct, int flags)
3991 znode_t *dzp = VTOZ(tdvp);
3992 znode_t *tzp, *szp;
3993 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3994 zilog_t *zilog;
3995 zfs_dirlock_t *dl;
3996 dmu_tx_t *tx;
3997 vnode_t *realvp;
3998 int error;
3999 int zf = ZNEW;
4000 uint64_t parent;
4001 uid_t owner;
4002 boolean_t waited = B_FALSE;
4004 ASSERT(tdvp->v_type == VDIR);
4006 ZFS_ENTER(zfsvfs);
4007 ZFS_VERIFY_ZP(dzp);
4008 zilog = zfsvfs->z_log;
4010 if (VOP_REALVP(svp, &realvp, ct) == 0)
4011 svp = realvp;
4014 * POSIX dictates that we return EPERM here.
4015 * Better choices include ENOTSUP or EISDIR.
4017 if (svp->v_type == VDIR) {
4018 ZFS_EXIT(zfsvfs);
4019 return (SET_ERROR(EPERM));
4022 szp = VTOZ(svp);
4023 ZFS_VERIFY_ZP(szp);
4026 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4027 * ctldir appear to have the same v_vfsp.
4029 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4030 ZFS_EXIT(zfsvfs);
4031 return (SET_ERROR(EXDEV));
4034 /* Prevent links to .zfs/shares files */
4036 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4037 &parent, sizeof (uint64_t))) != 0) {
4038 ZFS_EXIT(zfsvfs);
4039 return (error);
4041 if (parent == zfsvfs->z_shares_dir) {
4042 ZFS_EXIT(zfsvfs);
4043 return (SET_ERROR(EPERM));
4046 if (zfsvfs->z_utf8 && u8_validate(name,
4047 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4048 ZFS_EXIT(zfsvfs);
4049 return (SET_ERROR(EILSEQ));
4051 if (flags & FIGNORECASE)
4052 zf |= ZCILOOK;
4055 * We do not support links between attributes and non-attributes
4056 * because of the potential security risk of creating links
4057 * into "normal" file space in order to circumvent restrictions
4058 * imposed in attribute space.
4060 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4061 ZFS_EXIT(zfsvfs);
4062 return (SET_ERROR(EINVAL));
4066 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4067 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4068 ZFS_EXIT(zfsvfs);
4069 return (SET_ERROR(EPERM));
4072 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4073 ZFS_EXIT(zfsvfs);
4074 return (error);
4077 top:
4079 * Attempt to lock directory; fail if entry already exists.
4081 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4082 if (error) {
4083 ZFS_EXIT(zfsvfs);
4084 return (error);
4087 tx = dmu_tx_create(zfsvfs->z_os);
4088 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4089 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4090 zfs_sa_upgrade_txholds(tx, szp);
4091 zfs_sa_upgrade_txholds(tx, dzp);
4092 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4093 if (error) {
4094 zfs_dirent_unlock(dl);
4095 if (error == ERESTART) {
4096 waited = B_TRUE;
4097 dmu_tx_wait(tx);
4098 dmu_tx_abort(tx);
4099 goto top;
4101 dmu_tx_abort(tx);
4102 ZFS_EXIT(zfsvfs);
4103 return (error);
4106 error = zfs_link_create(dl, szp, tx, 0);
4108 if (error == 0) {
4109 uint64_t txtype = TX_LINK;
4110 if (flags & FIGNORECASE)
4111 txtype |= TX_CI;
4112 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4115 dmu_tx_commit(tx);
4117 zfs_dirent_unlock(dl);
4119 if (error == 0) {
4120 vnevent_link(svp, ct);
4123 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4124 zil_commit(zilog, 0);
4126 ZFS_EXIT(zfsvfs);
4127 return (error);
4131 * zfs_null_putapage() is used when the file system has been force
4132 * unmounted. It just drops the pages.
4134 /* ARGSUSED */
4135 static int
4136 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4137 size_t *lenp, int flags, cred_t *cr)
4139 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4140 return (0);
4144 * Push a page out to disk, klustering if possible.
4146 * IN: vp - file to push page to.
4147 * pp - page to push.
4148 * flags - additional flags.
4149 * cr - credentials of caller.
4151 * OUT: offp - start of range pushed.
4152 * lenp - len of range pushed.
4154 * RETURN: 0 on success, error code on failure.
4156 * NOTE: callers must have locked the page to be pushed. On
4157 * exit, the page (and all other pages in the kluster) must be
4158 * unlocked.
4160 /* ARGSUSED */
4161 static int
4162 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4163 size_t *lenp, int flags, cred_t *cr)
4165 znode_t *zp = VTOZ(vp);
4166 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4167 dmu_tx_t *tx;
4168 u_offset_t off, koff;
4169 size_t len, klen;
4170 int err;
4172 off = pp->p_offset;
4173 len = PAGESIZE;
4175 * If our blocksize is bigger than the page size, try to kluster
4176 * multiple pages so that we write a full block (thus avoiding
4177 * a read-modify-write).
4179 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4180 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4181 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4182 ASSERT(koff <= zp->z_size);
4183 if (koff + klen > zp->z_size)
4184 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4185 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4187 ASSERT3U(btop(len), ==, btopr(len));
4190 * Can't push pages past end-of-file.
4192 if (off >= zp->z_size) {
4193 /* ignore all pages */
4194 err = 0;
4195 goto out;
4196 } else if (off + len > zp->z_size) {
4197 int npages = btopr(zp->z_size - off);
4198 page_t *trunc;
4200 page_list_break(&pp, &trunc, npages);
4201 /* ignore pages past end of file */
4202 if (trunc)
4203 pvn_write_done(trunc, flags);
4204 len = zp->z_size - off;
4207 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4208 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4209 err = SET_ERROR(EDQUOT);
4210 goto out;
4212 tx = dmu_tx_create(zfsvfs->z_os);
4213 dmu_tx_hold_write(tx, zp->z_id, off, len);
4215 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4216 zfs_sa_upgrade_txholds(tx, zp);
4217 err = dmu_tx_assign(tx, TXG_WAIT);
4218 if (err != 0) {
4219 dmu_tx_abort(tx);
4220 goto out;
4223 if (zp->z_blksz <= PAGESIZE) {
4224 caddr_t va = zfs_map_page(pp, S_READ);
4225 ASSERT3U(len, <=, PAGESIZE);
4226 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4227 zfs_unmap_page(pp, va);
4228 } else {
4229 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4232 if (err == 0) {
4233 uint64_t mtime[2], ctime[2];
4234 sa_bulk_attr_t bulk[3];
4235 int count = 0;
4237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4238 &mtime, 16);
4239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4240 &ctime, 16);
4241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4242 &zp->z_pflags, 8);
4243 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4244 B_TRUE);
4245 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4247 dmu_tx_commit(tx);
4249 out:
4250 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4251 if (offp)
4252 *offp = off;
4253 if (lenp)
4254 *lenp = len;
4256 return (err);
4260 * Copy the portion of the file indicated from pages into the file.
4261 * The pages are stored in a page list attached to the files vnode.
4263 * IN: vp - vnode of file to push page data to.
4264 * off - position in file to put data.
4265 * len - amount of data to write.
4266 * flags - flags to control the operation.
4267 * cr - credentials of caller.
4268 * ct - caller context.
4270 * RETURN: 0 on success, error code on failure.
4272 * Timestamps:
4273 * vp - ctime|mtime updated
4275 /*ARGSUSED*/
4276 static int
4277 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4278 caller_context_t *ct)
4280 znode_t *zp = VTOZ(vp);
4281 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4282 page_t *pp;
4283 size_t io_len;
4284 u_offset_t io_off;
4285 uint_t blksz;
4286 rl_t *rl;
4287 int error = 0;
4289 ZFS_ENTER(zfsvfs);
4290 ZFS_VERIFY_ZP(zp);
4293 * There's nothing to do if no data is cached.
4295 if (!vn_has_cached_data(vp)) {
4296 ZFS_EXIT(zfsvfs);
4297 return (0);
4301 * Align this request to the file block size in case we kluster.
4302 * XXX - this can result in pretty aggresive locking, which can
4303 * impact simultanious read/write access. One option might be
4304 * to break up long requests (len == 0) into block-by-block
4305 * operations to get narrower locking.
4307 blksz = zp->z_blksz;
4308 if (ISP2(blksz))
4309 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4310 else
4311 io_off = 0;
4312 if (len > 0 && ISP2(blksz))
4313 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4314 else
4315 io_len = 0;
4317 if (io_len == 0) {
4319 * Search the entire vp list for pages >= io_off.
4321 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4322 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4323 goto out;
4325 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4327 if (off > zp->z_size) {
4328 /* past end of file */
4329 zfs_range_unlock(rl);
4330 ZFS_EXIT(zfsvfs);
4331 return (0);
4334 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4336 for (off = io_off; io_off < off + len; io_off += io_len) {
4337 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4338 pp = page_lookup(vp, io_off,
4339 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4340 } else {
4341 pp = page_lookup_nowait(vp, io_off,
4342 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4345 if (pp != NULL && pvn_getdirty(pp, flags)) {
4346 int err;
4349 * Found a dirty page to push
4351 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4352 if (err)
4353 error = err;
4354 } else {
4355 io_len = PAGESIZE;
4358 out:
4359 zfs_range_unlock(rl);
4360 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4361 zil_commit(zfsvfs->z_log, zp->z_id);
4362 ZFS_EXIT(zfsvfs);
4363 return (error);
4366 /*ARGSUSED*/
4367 void
4368 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4370 znode_t *zp = VTOZ(vp);
4371 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4372 int error;
4374 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4375 if (zp->z_sa_hdl == NULL) {
4377 * The fs has been unmounted, or we did a
4378 * suspend/resume and this file no longer exists.
4380 if (vn_has_cached_data(vp)) {
4381 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4382 B_INVAL, cr);
4385 mutex_enter(&zp->z_lock);
4386 mutex_enter(&vp->v_lock);
4387 ASSERT(vp->v_count == 1);
4388 vp->v_count = 0;
4389 mutex_exit(&vp->v_lock);
4390 mutex_exit(&zp->z_lock);
4391 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4392 zfs_znode_free(zp);
4393 return;
4397 * Attempt to push any data in the page cache. If this fails
4398 * we will get kicked out later in zfs_zinactive().
4400 if (vn_has_cached_data(vp)) {
4401 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4402 cr);
4405 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4406 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4408 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4409 zfs_sa_upgrade_txholds(tx, zp);
4410 error = dmu_tx_assign(tx, TXG_WAIT);
4411 if (error) {
4412 dmu_tx_abort(tx);
4413 } else {
4414 mutex_enter(&zp->z_lock);
4415 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4416 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4417 zp->z_atime_dirty = 0;
4418 mutex_exit(&zp->z_lock);
4419 dmu_tx_commit(tx);
4423 zfs_zinactive(zp);
4424 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4428 * Bounds-check the seek operation.
4430 * IN: vp - vnode seeking within
4431 * ooff - old file offset
4432 * noffp - pointer to new file offset
4433 * ct - caller context
4435 * RETURN: 0 on success, EINVAL if new offset invalid.
4437 /* ARGSUSED */
4438 static int
4439 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4440 caller_context_t *ct)
4442 if (vp->v_type == VDIR)
4443 return (0);
4444 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4448 * Pre-filter the generic locking function to trap attempts to place
4449 * a mandatory lock on a memory mapped file.
4451 static int
4452 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4453 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4455 znode_t *zp = VTOZ(vp);
4456 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4458 ZFS_ENTER(zfsvfs);
4459 ZFS_VERIFY_ZP(zp);
4462 * We are following the UFS semantics with respect to mapcnt
4463 * here: If we see that the file is mapped already, then we will
4464 * return an error, but we don't worry about races between this
4465 * function and zfs_map().
4467 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4468 ZFS_EXIT(zfsvfs);
4469 return (SET_ERROR(EAGAIN));
4471 ZFS_EXIT(zfsvfs);
4472 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4476 * If we can't find a page in the cache, we will create a new page
4477 * and fill it with file data. For efficiency, we may try to fill
4478 * multiple pages at once (klustering) to fill up the supplied page
4479 * list. Note that the pages to be filled are held with an exclusive
4480 * lock to prevent access by other threads while they are being filled.
4482 static int
4483 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4484 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4486 znode_t *zp = VTOZ(vp);
4487 page_t *pp, *cur_pp;
4488 objset_t *os = zp->z_zfsvfs->z_os;
4489 u_offset_t io_off, total;
4490 size_t io_len;
4491 int err;
4493 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4495 * We only have a single page, don't bother klustering
4497 io_off = off;
4498 io_len = PAGESIZE;
4499 pp = page_create_va(vp, io_off, io_len,
4500 PG_EXCL | PG_WAIT, seg, addr);
4501 } else {
4503 * Try to find enough pages to fill the page list
4505 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4506 &io_len, off, plsz, 0);
4508 if (pp == NULL) {
4510 * The page already exists, nothing to do here.
4512 *pl = NULL;
4513 return (0);
4517 * Fill the pages in the kluster.
4519 cur_pp = pp;
4520 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4521 caddr_t va;
4523 ASSERT3U(io_off, ==, cur_pp->p_offset);
4524 va = zfs_map_page(cur_pp, S_WRITE);
4525 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4526 DMU_READ_PREFETCH);
4527 zfs_unmap_page(cur_pp, va);
4528 if (err) {
4529 /* On error, toss the entire kluster */
4530 pvn_read_done(pp, B_ERROR);
4531 /* convert checksum errors into IO errors */
4532 if (err == ECKSUM)
4533 err = SET_ERROR(EIO);
4534 return (err);
4536 cur_pp = cur_pp->p_next;
4540 * Fill in the page list array from the kluster starting
4541 * from the desired offset `off'.
4542 * NOTE: the page list will always be null terminated.
4544 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4545 ASSERT(pl == NULL || (*pl)->p_offset == off);
4547 return (0);
4551 * Return pointers to the pages for the file region [off, off + len]
4552 * in the pl array. If plsz is greater than len, this function may
4553 * also return page pointers from after the specified region
4554 * (i.e. the region [off, off + plsz]). These additional pages are
4555 * only returned if they are already in the cache, or were created as
4556 * part of a klustered read.
4558 * IN: vp - vnode of file to get data from.
4559 * off - position in file to get data from.
4560 * len - amount of data to retrieve.
4561 * plsz - length of provided page list.
4562 * seg - segment to obtain pages for.
4563 * addr - virtual address of fault.
4564 * rw - mode of created pages.
4565 * cr - credentials of caller.
4566 * ct - caller context.
4568 * OUT: protp - protection mode of created pages.
4569 * pl - list of pages created.
4571 * RETURN: 0 on success, error code on failure.
4573 * Timestamps:
4574 * vp - atime updated
4576 /* ARGSUSED */
4577 static int
4578 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4579 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4580 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4582 znode_t *zp = VTOZ(vp);
4583 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4584 page_t **pl0 = pl;
4585 int err = 0;
4587 /* we do our own caching, faultahead is unnecessary */
4588 if (pl == NULL)
4589 return (0);
4590 else if (len > plsz)
4591 len = plsz;
4592 else
4593 len = P2ROUNDUP(len, PAGESIZE);
4594 ASSERT(plsz >= len);
4596 ZFS_ENTER(zfsvfs);
4597 ZFS_VERIFY_ZP(zp);
4599 if (protp)
4600 *protp = PROT_ALL;
4603 * Loop through the requested range [off, off + len) looking
4604 * for pages. If we don't find a page, we will need to create
4605 * a new page and fill it with data from the file.
4607 while (len > 0) {
4608 if (*pl = page_lookup(vp, off, SE_SHARED))
4609 *(pl+1) = NULL;
4610 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4611 goto out;
4612 while (*pl) {
4613 ASSERT3U((*pl)->p_offset, ==, off);
4614 off += PAGESIZE;
4615 addr += PAGESIZE;
4616 if (len > 0) {
4617 ASSERT3U(len, >=, PAGESIZE);
4618 len -= PAGESIZE;
4620 ASSERT3U(plsz, >=, PAGESIZE);
4621 plsz -= PAGESIZE;
4622 pl++;
4627 * Fill out the page array with any pages already in the cache.
4629 while (plsz > 0 &&
4630 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4631 off += PAGESIZE;
4632 plsz -= PAGESIZE;
4634 out:
4635 if (err) {
4637 * Release any pages we have previously locked.
4639 while (pl > pl0)
4640 page_unlock(*--pl);
4641 } else {
4642 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4645 *pl = NULL;
4647 ZFS_EXIT(zfsvfs);
4648 return (err);
4652 * Request a memory map for a section of a file. This code interacts
4653 * with common code and the VM system as follows:
4655 * - common code calls mmap(), which ends up in smmap_common()
4656 * - this calls VOP_MAP(), which takes you into (say) zfs
4657 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4658 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4659 * - zfs_addmap() updates z_mapcnt
4661 /*ARGSUSED*/
4662 static int
4663 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4664 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4665 caller_context_t *ct)
4667 znode_t *zp = VTOZ(vp);
4668 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4669 segvn_crargs_t vn_a;
4670 int error;
4672 ZFS_ENTER(zfsvfs);
4673 ZFS_VERIFY_ZP(zp);
4675 if ((prot & PROT_WRITE) && (zp->z_pflags &
4676 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4677 ZFS_EXIT(zfsvfs);
4678 return (SET_ERROR(EPERM));
4681 if ((prot & (PROT_READ | PROT_EXEC)) &&
4682 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4683 ZFS_EXIT(zfsvfs);
4684 return (SET_ERROR(EACCES));
4687 if (vp->v_flag & VNOMAP) {
4688 ZFS_EXIT(zfsvfs);
4689 return (SET_ERROR(ENOSYS));
4692 if (off < 0 || len > MAXOFFSET_T - off) {
4693 ZFS_EXIT(zfsvfs);
4694 return (SET_ERROR(ENXIO));
4697 if (vp->v_type != VREG) {
4698 ZFS_EXIT(zfsvfs);
4699 return (SET_ERROR(ENODEV));
4703 * If file is locked, disallow mapping.
4705 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4706 ZFS_EXIT(zfsvfs);
4707 return (SET_ERROR(EAGAIN));
4710 as_rangelock(as);
4711 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4712 if (error != 0) {
4713 as_rangeunlock(as);
4714 ZFS_EXIT(zfsvfs);
4715 return (error);
4718 vn_a.vp = vp;
4719 vn_a.offset = (u_offset_t)off;
4720 vn_a.type = flags & MAP_TYPE;
4721 vn_a.prot = prot;
4722 vn_a.maxprot = maxprot;
4723 vn_a.cred = cr;
4724 vn_a.amp = NULL;
4725 vn_a.flags = flags & ~MAP_TYPE;
4726 vn_a.szc = 0;
4727 vn_a.lgrp_mem_policy_flags = 0;
4729 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4731 as_rangeunlock(as);
4732 ZFS_EXIT(zfsvfs);
4733 return (error);
4736 /* ARGSUSED */
4737 static int
4738 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4739 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4740 caller_context_t *ct)
4742 uint64_t pages = btopr(len);
4744 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4745 return (0);
4749 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4750 * more accurate mtime for the associated file. Since we don't have a way of
4751 * detecting when the data was actually modified, we have to resort to
4752 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4753 * last page is pushed. The problem occurs when the msync() call is omitted,
4754 * which by far the most common case:
4756 * open()
4757 * mmap()
4758 * <modify memory>
4759 * munmap()
4760 * close()
4761 * <time lapse>
4762 * putpage() via fsflush
4764 * If we wait until fsflush to come along, we can have a modification time that
4765 * is some arbitrary point in the future. In order to prevent this in the
4766 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4767 * torn down.
4769 /* ARGSUSED */
4770 static int
4771 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4772 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4773 caller_context_t *ct)
4775 uint64_t pages = btopr(len);
4777 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4778 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4780 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4781 vn_has_cached_data(vp))
4782 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4784 return (0);
4788 * Free or allocate space in a file. Currently, this function only
4789 * supports the `F_FREESP' command. However, this command is somewhat
4790 * misnamed, as its functionality includes the ability to allocate as
4791 * well as free space.
4793 * IN: vp - vnode of file to free data in.
4794 * cmd - action to take (only F_FREESP supported).
4795 * bfp - section of file to free/alloc.
4796 * flag - current file open mode flags.
4797 * offset - current file offset.
4798 * cr - credentials of caller [UNUSED].
4799 * ct - caller context.
4801 * RETURN: 0 on success, error code on failure.
4803 * Timestamps:
4804 * vp - ctime|mtime updated
4806 /* ARGSUSED */
4807 static int
4808 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4809 offset_t offset, cred_t *cr, caller_context_t *ct)
4811 znode_t *zp = VTOZ(vp);
4812 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4813 uint64_t off, len;
4814 int error;
4816 ZFS_ENTER(zfsvfs);
4817 ZFS_VERIFY_ZP(zp);
4819 if (cmd != F_FREESP) {
4820 ZFS_EXIT(zfsvfs);
4821 return (SET_ERROR(EINVAL));
4825 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4826 * callers might not be able to detect properly that we are read-only,
4827 * so check it explicitly here.
4829 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4830 ZFS_EXIT(zfsvfs);
4831 return (SET_ERROR(EROFS));
4834 if (error = convoff(vp, bfp, 0, offset)) {
4835 ZFS_EXIT(zfsvfs);
4836 return (error);
4839 if (bfp->l_len < 0) {
4840 ZFS_EXIT(zfsvfs);
4841 return (SET_ERROR(EINVAL));
4844 off = bfp->l_start;
4845 len = bfp->l_len; /* 0 means from off to end of file */
4847 error = zfs_freesp(zp, off, len, flag, TRUE);
4849 if (error == 0 && off == 0 && len == 0)
4850 vnevent_truncate(ZTOV(zp), ct);
4852 ZFS_EXIT(zfsvfs);
4853 return (error);
4856 /*ARGSUSED*/
4857 static int
4858 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4860 znode_t *zp = VTOZ(vp);
4861 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4862 uint32_t gen;
4863 uint64_t gen64;
4864 uint64_t object = zp->z_id;
4865 zfid_short_t *zfid;
4866 int size, i, error;
4868 ZFS_ENTER(zfsvfs);
4869 ZFS_VERIFY_ZP(zp);
4871 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4872 &gen64, sizeof (uint64_t))) != 0) {
4873 ZFS_EXIT(zfsvfs);
4874 return (error);
4877 gen = (uint32_t)gen64;
4879 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4880 if (fidp->fid_len < size) {
4881 fidp->fid_len = size;
4882 ZFS_EXIT(zfsvfs);
4883 return (SET_ERROR(ENOSPC));
4886 zfid = (zfid_short_t *)fidp;
4888 zfid->zf_len = size;
4890 for (i = 0; i < sizeof (zfid->zf_object); i++)
4891 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4893 /* Must have a non-zero generation number to distinguish from .zfs */
4894 if (gen == 0)
4895 gen = 1;
4896 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4897 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4899 if (size == LONG_FID_LEN) {
4900 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4901 zfid_long_t *zlfid;
4903 zlfid = (zfid_long_t *)fidp;
4905 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4906 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4908 /* XXX - this should be the generation number for the objset */
4909 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4910 zlfid->zf_setgen[i] = 0;
4913 ZFS_EXIT(zfsvfs);
4914 return (0);
4917 static int
4918 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4919 caller_context_t *ct)
4921 znode_t *zp, *xzp;
4922 zfsvfs_t *zfsvfs;
4923 zfs_dirlock_t *dl;
4924 int error;
4926 switch (cmd) {
4927 case _PC_LINK_MAX:
4928 *valp = ULONG_MAX;
4929 return (0);
4931 case _PC_FILESIZEBITS:
4932 *valp = 64;
4933 return (0);
4935 case _PC_XATTR_EXISTS:
4936 zp = VTOZ(vp);
4937 zfsvfs = zp->z_zfsvfs;
4938 ZFS_ENTER(zfsvfs);
4939 ZFS_VERIFY_ZP(zp);
4940 *valp = 0;
4941 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4942 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4943 if (error == 0) {
4944 zfs_dirent_unlock(dl);
4945 if (!zfs_dirempty(xzp))
4946 *valp = 1;
4947 VN_RELE(ZTOV(xzp));
4948 } else if (error == ENOENT) {
4950 * If there aren't extended attributes, it's the
4951 * same as having zero of them.
4953 error = 0;
4955 ZFS_EXIT(zfsvfs);
4956 return (error);
4958 case _PC_SATTR_ENABLED:
4959 case _PC_SATTR_EXISTS:
4960 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4961 (vp->v_type == VREG || vp->v_type == VDIR);
4962 return (0);
4964 case _PC_ACCESS_FILTERING:
4965 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4966 vp->v_type == VDIR;
4967 return (0);
4969 case _PC_ACL_ENABLED:
4970 *valp = _ACL_ACE_ENABLED;
4971 return (0);
4973 case _PC_MIN_HOLE_SIZE:
4974 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4975 return (0);
4977 case _PC_TIMESTAMP_RESOLUTION:
4978 /* nanosecond timestamp resolution */
4979 *valp = 1L;
4980 return (0);
4982 default:
4983 return (fs_pathconf(vp, cmd, valp, cr, ct));
4987 /*ARGSUSED*/
4988 static int
4989 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4990 caller_context_t *ct)
4992 znode_t *zp = VTOZ(vp);
4993 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4994 int error;
4995 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4997 ZFS_ENTER(zfsvfs);
4998 ZFS_VERIFY_ZP(zp);
4999 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5000 ZFS_EXIT(zfsvfs);
5002 return (error);
5005 /*ARGSUSED*/
5006 static int
5007 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5008 caller_context_t *ct)
5010 znode_t *zp = VTOZ(vp);
5011 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5012 int error;
5013 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5014 zilog_t *zilog = zfsvfs->z_log;
5016 ZFS_ENTER(zfsvfs);
5017 ZFS_VERIFY_ZP(zp);
5019 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5021 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5022 zil_commit(zilog, 0);
5024 ZFS_EXIT(zfsvfs);
5025 return (error);
5029 * The smallest read we may consider to loan out an arcbuf.
5030 * This must be a power of 2.
5032 int zcr_blksz_min = (1 << 10); /* 1K */
5034 * If set to less than the file block size, allow loaning out of an
5035 * arcbuf for a partial block read. This must be a power of 2.
5037 int zcr_blksz_max = (1 << 17); /* 128K */
5039 /*ARGSUSED*/
5040 static int
5041 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5042 caller_context_t *ct)
5044 znode_t *zp = VTOZ(vp);
5045 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5046 int max_blksz = zfsvfs->z_max_blksz;
5047 uio_t *uio = &xuio->xu_uio;
5048 ssize_t size = uio->uio_resid;
5049 offset_t offset = uio->uio_loffset;
5050 int blksz;
5051 int fullblk, i;
5052 arc_buf_t *abuf;
5053 ssize_t maxsize;
5054 int preamble, postamble;
5056 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5057 return (SET_ERROR(EINVAL));
5059 ZFS_ENTER(zfsvfs);
5060 ZFS_VERIFY_ZP(zp);
5061 switch (ioflag) {
5062 case UIO_WRITE:
5064 * Loan out an arc_buf for write if write size is bigger than
5065 * max_blksz, and the file's block size is also max_blksz.
5067 blksz = max_blksz;
5068 if (size < blksz || zp->z_blksz != blksz) {
5069 ZFS_EXIT(zfsvfs);
5070 return (SET_ERROR(EINVAL));
5073 * Caller requests buffers for write before knowing where the
5074 * write offset might be (e.g. NFS TCP write).
5076 if (offset == -1) {
5077 preamble = 0;
5078 } else {
5079 preamble = P2PHASE(offset, blksz);
5080 if (preamble) {
5081 preamble = blksz - preamble;
5082 size -= preamble;
5086 postamble = P2PHASE(size, blksz);
5087 size -= postamble;
5089 fullblk = size / blksz;
5090 (void) dmu_xuio_init(xuio,
5091 (preamble != 0) + fullblk + (postamble != 0));
5092 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5093 int, postamble, int,
5094 (preamble != 0) + fullblk + (postamble != 0));
5097 * Have to fix iov base/len for partial buffers. They
5098 * currently represent full arc_buf's.
5100 if (preamble) {
5101 /* data begins in the middle of the arc_buf */
5102 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5103 blksz);
5104 ASSERT(abuf);
5105 (void) dmu_xuio_add(xuio, abuf,
5106 blksz - preamble, preamble);
5109 for (i = 0; i < fullblk; i++) {
5110 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5111 blksz);
5112 ASSERT(abuf);
5113 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5116 if (postamble) {
5117 /* data ends in the middle of the arc_buf */
5118 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5119 blksz);
5120 ASSERT(abuf);
5121 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5123 break;
5124 case UIO_READ:
5126 * Loan out an arc_buf for read if the read size is larger than
5127 * the current file block size. Block alignment is not
5128 * considered. Partial arc_buf will be loaned out for read.
5130 blksz = zp->z_blksz;
5131 if (blksz < zcr_blksz_min)
5132 blksz = zcr_blksz_min;
5133 if (blksz > zcr_blksz_max)
5134 blksz = zcr_blksz_max;
5135 /* avoid potential complexity of dealing with it */
5136 if (blksz > max_blksz) {
5137 ZFS_EXIT(zfsvfs);
5138 return (SET_ERROR(EINVAL));
5141 maxsize = zp->z_size - uio->uio_loffset;
5142 if (size > maxsize)
5143 size = maxsize;
5145 if (size < blksz || vn_has_cached_data(vp)) {
5146 ZFS_EXIT(zfsvfs);
5147 return (SET_ERROR(EINVAL));
5149 break;
5150 default:
5151 ZFS_EXIT(zfsvfs);
5152 return (SET_ERROR(EINVAL));
5155 uio->uio_extflg = UIO_XUIO;
5156 XUIO_XUZC_RW(xuio) = ioflag;
5157 ZFS_EXIT(zfsvfs);
5158 return (0);
5161 /*ARGSUSED*/
5162 static int
5163 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5165 int i;
5166 arc_buf_t *abuf;
5167 int ioflag = XUIO_XUZC_RW(xuio);
5169 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5171 i = dmu_xuio_cnt(xuio);
5172 while (i-- > 0) {
5173 abuf = dmu_xuio_arcbuf(xuio, i);
5175 * if abuf == NULL, it must be a write buffer
5176 * that has been returned in zfs_write().
5178 if (abuf)
5179 dmu_return_arcbuf(abuf);
5180 ASSERT(abuf || ioflag == UIO_WRITE);
5183 dmu_xuio_fini(xuio);
5184 return (0);
5188 * Predeclare these here so that the compiler assumes that
5189 * this is an "old style" function declaration that does
5190 * not include arguments => we won't get type mismatch errors
5191 * in the initializations that follow.
5193 static int zfs_inval();
5194 static int zfs_isdir();
5196 static int
5197 zfs_inval()
5199 return (SET_ERROR(EINVAL));
5202 static int
5203 zfs_isdir()
5205 return (SET_ERROR(EISDIR));
5208 * Directory vnode operations template
5210 vnodeops_t *zfs_dvnodeops;
5211 const fs_operation_def_t zfs_dvnodeops_template[] = {
5212 VOPNAME_OPEN, { .vop_open = zfs_open },
5213 VOPNAME_CLOSE, { .vop_close = zfs_close },
5214 VOPNAME_READ, { .error = zfs_isdir },
5215 VOPNAME_WRITE, { .error = zfs_isdir },
5216 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5217 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5218 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5219 VOPNAME_ACCESS, { .vop_access = zfs_access },
5220 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5221 VOPNAME_CREATE, { .vop_create = zfs_create },
5222 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5223 VOPNAME_LINK, { .vop_link = zfs_link },
5224 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5225 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5226 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5227 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5228 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5229 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5230 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5231 VOPNAME_FID, { .vop_fid = zfs_fid },
5232 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5233 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5234 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5235 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5236 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5237 NULL, NULL
5241 * Regular file vnode operations template
5243 vnodeops_t *zfs_fvnodeops;
5244 const fs_operation_def_t zfs_fvnodeops_template[] = {
5245 VOPNAME_OPEN, { .vop_open = zfs_open },
5246 VOPNAME_CLOSE, { .vop_close = zfs_close },
5247 VOPNAME_READ, { .vop_read = zfs_read },
5248 VOPNAME_WRITE, { .vop_write = zfs_write },
5249 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5250 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5251 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5252 VOPNAME_ACCESS, { .vop_access = zfs_access },
5253 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5254 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5255 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5256 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5257 VOPNAME_FID, { .vop_fid = zfs_fid },
5258 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5259 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5260 VOPNAME_SPACE, { .vop_space = zfs_space },
5261 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5262 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5263 VOPNAME_MAP, { .vop_map = zfs_map },
5264 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5265 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5266 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5267 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5268 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5269 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5270 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5271 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5272 NULL, NULL
5276 * Symbolic link vnode operations template
5278 vnodeops_t *zfs_symvnodeops;
5279 const fs_operation_def_t zfs_symvnodeops_template[] = {
5280 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5281 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5282 VOPNAME_ACCESS, { .vop_access = zfs_access },
5283 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5284 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5285 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5286 VOPNAME_FID, { .vop_fid = zfs_fid },
5287 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5288 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5289 NULL, NULL
5293 * special share hidden files vnode operations template
5295 vnodeops_t *zfs_sharevnodeops;
5296 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5297 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5298 VOPNAME_ACCESS, { .vop_access = zfs_access },
5299 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5300 VOPNAME_FID, { .vop_fid = zfs_fid },
5301 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5302 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5303 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5304 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5305 NULL, NULL
5309 * Extended attribute directory vnode operations template
5311 * This template is identical to the directory vnodes
5312 * operation template except for restricted operations:
5313 * VOP_MKDIR()
5314 * VOP_SYMLINK()
5316 * Note that there are other restrictions embedded in:
5317 * zfs_create() - restrict type to VREG
5318 * zfs_link() - no links into/out of attribute space
5319 * zfs_rename() - no moves into/out of attribute space
5321 vnodeops_t *zfs_xdvnodeops;
5322 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5323 VOPNAME_OPEN, { .vop_open = zfs_open },
5324 VOPNAME_CLOSE, { .vop_close = zfs_close },
5325 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5326 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5327 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5328 VOPNAME_ACCESS, { .vop_access = zfs_access },
5329 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5330 VOPNAME_CREATE, { .vop_create = zfs_create },
5331 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5332 VOPNAME_LINK, { .vop_link = zfs_link },
5333 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5334 VOPNAME_MKDIR, { .error = zfs_inval },
5335 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5336 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5337 VOPNAME_SYMLINK, { .error = zfs_inval },
5338 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5339 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5340 VOPNAME_FID, { .vop_fid = zfs_fid },
5341 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5342 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5343 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5344 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5345 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5346 NULL, NULL
5350 * Error vnode operations template
5352 vnodeops_t *zfs_evnodeops;
5353 const fs_operation_def_t zfs_evnodeops_template[] = {
5354 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5355 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5356 NULL, NULL