763 FMD msg URLs should refer to something visible
[illumos-gate.git] / usr / src / uts / common / fs / zfs / spa.c
bloba4c61fc947d620bed4719ed9dff944e9cb45834e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
66 #ifdef _KERNEL
67 #include <sys/bootprops.h>
68 #include <sys/callb.h>
69 #include <sys/cpupart.h>
70 #include <sys/pool.h>
71 #include <sys/sysdc.h>
72 #include <sys/zone.h>
73 #endif /* _KERNEL */
75 #include "zfs_prop.h"
76 #include "zfs_comutil.h"
78 typedef enum zti_modes {
79 zti_mode_fixed, /* value is # of threads (min 1) */
80 zti_mode_online_percent, /* value is % of online CPUs */
81 zti_mode_batch, /* cpu-intensive; value is ignored */
82 zti_mode_null, /* don't create a taskq */
83 zti_nmodes
84 } zti_modes_t;
86 #define ZTI_FIX(n) { zti_mode_fixed, (n) }
87 #define ZTI_PCT(n) { zti_mode_online_percent, (n) }
88 #define ZTI_BATCH { zti_mode_batch, 0 }
89 #define ZTI_NULL { zti_mode_null, 0 }
91 #define ZTI_ONE ZTI_FIX(1)
93 typedef struct zio_taskq_info {
94 enum zti_modes zti_mode;
95 uint_t zti_value;
96 } zio_taskq_info_t;
98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
99 "issue", "issue_high", "intr", "intr_high"
103 * Define the taskq threads for the following I/O types:
104 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
107 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
108 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
109 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
110 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) },
111 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
112 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
116 static dsl_syncfunc_t spa_sync_props;
117 static boolean_t spa_has_active_shared_spare(spa_t *spa);
118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
119 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
120 char **ereport);
121 static void spa_vdev_resilver_done(spa_t *spa);
123 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
124 id_t zio_taskq_psrset_bind = PS_NONE;
125 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
126 uint_t zio_taskq_basedc = 80; /* base duty cycle */
128 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
131 * This (illegal) pool name is used when temporarily importing a spa_t in order
132 * to get the vdev stats associated with the imported devices.
134 #define TRYIMPORT_NAME "$import"
137 * ==========================================================================
138 * SPA properties routines
139 * ==========================================================================
143 * Add a (source=src, propname=propval) list to an nvlist.
145 static void
146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
147 uint64_t intval, zprop_source_t src)
149 const char *propname = zpool_prop_to_name(prop);
150 nvlist_t *propval;
152 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
153 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
155 if (strval != NULL)
156 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
157 else
158 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
160 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
161 nvlist_free(propval);
165 * Get property values from the spa configuration.
167 static void
168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
170 vdev_t *rvd = spa->spa_root_vdev;
171 uint64_t size;
172 uint64_t alloc;
173 uint64_t space;
174 uint64_t cap, version;
175 zprop_source_t src = ZPROP_SRC_NONE;
176 spa_config_dirent_t *dp;
178 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
180 if (rvd != NULL) {
181 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
182 size = metaslab_class_get_space(spa_normal_class(spa));
183 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
184 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
185 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
186 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
187 size - alloc, src);
189 space = 0;
190 for (int c = 0; c < rvd->vdev_children; c++) {
191 vdev_t *tvd = rvd->vdev_child[c];
192 space += tvd->vdev_max_asize - tvd->vdev_asize;
194 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
195 src);
197 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
198 (spa_mode(spa) == FREAD), src);
200 cap = (size == 0) ? 0 : (alloc * 100 / size);
201 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
203 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
204 ddt_get_pool_dedup_ratio(spa), src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
207 rvd->vdev_state, src);
209 version = spa_version(spa);
210 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
211 src = ZPROP_SRC_DEFAULT;
212 else
213 src = ZPROP_SRC_LOCAL;
214 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
217 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
219 if (spa->spa_comment != NULL) {
220 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
221 0, ZPROP_SRC_LOCAL);
224 if (spa->spa_root != NULL)
225 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
226 0, ZPROP_SRC_LOCAL);
228 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
229 if (dp->scd_path == NULL) {
230 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
231 "none", 0, ZPROP_SRC_LOCAL);
232 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
233 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
234 dp->scd_path, 0, ZPROP_SRC_LOCAL);
240 * Get zpool property values.
243 spa_prop_get(spa_t *spa, nvlist_t **nvp)
245 objset_t *mos = spa->spa_meta_objset;
246 zap_cursor_t zc;
247 zap_attribute_t za;
248 int err;
250 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
252 mutex_enter(&spa->spa_props_lock);
255 * Get properties from the spa config.
257 spa_prop_get_config(spa, nvp);
259 /* If no pool property object, no more prop to get. */
260 if (mos == NULL || spa->spa_pool_props_object == 0) {
261 mutex_exit(&spa->spa_props_lock);
262 return (0);
266 * Get properties from the MOS pool property object.
268 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
269 (err = zap_cursor_retrieve(&zc, &za)) == 0;
270 zap_cursor_advance(&zc)) {
271 uint64_t intval = 0;
272 char *strval = NULL;
273 zprop_source_t src = ZPROP_SRC_DEFAULT;
274 zpool_prop_t prop;
276 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
277 continue;
279 switch (za.za_integer_length) {
280 case 8:
281 /* integer property */
282 if (za.za_first_integer !=
283 zpool_prop_default_numeric(prop))
284 src = ZPROP_SRC_LOCAL;
286 if (prop == ZPOOL_PROP_BOOTFS) {
287 dsl_pool_t *dp;
288 dsl_dataset_t *ds = NULL;
290 dp = spa_get_dsl(spa);
291 rw_enter(&dp->dp_config_rwlock, RW_READER);
292 if (err = dsl_dataset_hold_obj(dp,
293 za.za_first_integer, FTAG, &ds)) {
294 rw_exit(&dp->dp_config_rwlock);
295 break;
298 strval = kmem_alloc(
299 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
300 KM_SLEEP);
301 dsl_dataset_name(ds, strval);
302 dsl_dataset_rele(ds, FTAG);
303 rw_exit(&dp->dp_config_rwlock);
304 } else {
305 strval = NULL;
306 intval = za.za_first_integer;
309 spa_prop_add_list(*nvp, prop, strval, intval, src);
311 if (strval != NULL)
312 kmem_free(strval,
313 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
315 break;
317 case 1:
318 /* string property */
319 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
320 err = zap_lookup(mos, spa->spa_pool_props_object,
321 za.za_name, 1, za.za_num_integers, strval);
322 if (err) {
323 kmem_free(strval, za.za_num_integers);
324 break;
326 spa_prop_add_list(*nvp, prop, strval, 0, src);
327 kmem_free(strval, za.za_num_integers);
328 break;
330 default:
331 break;
334 zap_cursor_fini(&zc);
335 mutex_exit(&spa->spa_props_lock);
336 out:
337 if (err && err != ENOENT) {
338 nvlist_free(*nvp);
339 *nvp = NULL;
340 return (err);
343 return (0);
347 * Validate the given pool properties nvlist and modify the list
348 * for the property values to be set.
350 static int
351 spa_prop_validate(spa_t *spa, nvlist_t *props)
353 nvpair_t *elem;
354 int error = 0, reset_bootfs = 0;
355 uint64_t objnum;
357 elem = NULL;
358 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
359 zpool_prop_t prop;
360 char *propname, *strval;
361 uint64_t intval;
362 objset_t *os;
363 char *slash, *check;
365 propname = nvpair_name(elem);
367 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
368 return (EINVAL);
370 switch (prop) {
371 case ZPOOL_PROP_VERSION:
372 error = nvpair_value_uint64(elem, &intval);
373 if (!error &&
374 (intval < spa_version(spa) || intval > SPA_VERSION))
375 error = EINVAL;
376 break;
378 case ZPOOL_PROP_DELEGATION:
379 case ZPOOL_PROP_AUTOREPLACE:
380 case ZPOOL_PROP_LISTSNAPS:
381 case ZPOOL_PROP_AUTOEXPAND:
382 error = nvpair_value_uint64(elem, &intval);
383 if (!error && intval > 1)
384 error = EINVAL;
385 break;
387 case ZPOOL_PROP_BOOTFS:
389 * If the pool version is less than SPA_VERSION_BOOTFS,
390 * or the pool is still being created (version == 0),
391 * the bootfs property cannot be set.
393 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
394 error = ENOTSUP;
395 break;
399 * Make sure the vdev config is bootable
401 if (!vdev_is_bootable(spa->spa_root_vdev)) {
402 error = ENOTSUP;
403 break;
406 reset_bootfs = 1;
408 error = nvpair_value_string(elem, &strval);
410 if (!error) {
411 uint64_t compress;
413 if (strval == NULL || strval[0] == '\0') {
414 objnum = zpool_prop_default_numeric(
415 ZPOOL_PROP_BOOTFS);
416 break;
419 if (error = dmu_objset_hold(strval, FTAG, &os))
420 break;
422 /* Must be ZPL and not gzip compressed. */
424 if (dmu_objset_type(os) != DMU_OST_ZFS) {
425 error = ENOTSUP;
426 } else if ((error = dsl_prop_get_integer(strval,
427 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
428 &compress, NULL)) == 0 &&
429 !BOOTFS_COMPRESS_VALID(compress)) {
430 error = ENOTSUP;
431 } else {
432 objnum = dmu_objset_id(os);
434 dmu_objset_rele(os, FTAG);
436 break;
438 case ZPOOL_PROP_FAILUREMODE:
439 error = nvpair_value_uint64(elem, &intval);
440 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
441 intval > ZIO_FAILURE_MODE_PANIC))
442 error = EINVAL;
445 * This is a special case which only occurs when
446 * the pool has completely failed. This allows
447 * the user to change the in-core failmode property
448 * without syncing it out to disk (I/Os might
449 * currently be blocked). We do this by returning
450 * EIO to the caller (spa_prop_set) to trick it
451 * into thinking we encountered a property validation
452 * error.
454 if (!error && spa_suspended(spa)) {
455 spa->spa_failmode = intval;
456 error = EIO;
458 break;
460 case ZPOOL_PROP_CACHEFILE:
461 if ((error = nvpair_value_string(elem, &strval)) != 0)
462 break;
464 if (strval[0] == '\0')
465 break;
467 if (strcmp(strval, "none") == 0)
468 break;
470 if (strval[0] != '/') {
471 error = EINVAL;
472 break;
475 slash = strrchr(strval, '/');
476 ASSERT(slash != NULL);
478 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
479 strcmp(slash, "/..") == 0)
480 error = EINVAL;
481 break;
483 case ZPOOL_PROP_COMMENT:
484 if ((error = nvpair_value_string(elem, &strval)) != 0)
485 break;
486 for (check = strval; *check != '\0'; check++) {
488 * The kernel doesn't have an easy isprint()
489 * check. For this kernel check, we merely
490 * check ASCII apart from DEL. Fix this if
491 * there is an easy-to-use kernel isprint().
493 if (*check >= 0x7f) {
494 error = EINVAL;
495 break;
497 check++;
499 if (strlen(strval) > ZPROP_MAX_COMMENT)
500 error = E2BIG;
501 break;
503 case ZPOOL_PROP_DEDUPDITTO:
504 if (spa_version(spa) < SPA_VERSION_DEDUP)
505 error = ENOTSUP;
506 else
507 error = nvpair_value_uint64(elem, &intval);
508 if (error == 0 &&
509 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
510 error = EINVAL;
511 break;
514 if (error)
515 break;
518 if (!error && reset_bootfs) {
519 error = nvlist_remove(props,
520 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
522 if (!error) {
523 error = nvlist_add_uint64(props,
524 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
528 return (error);
531 void
532 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
534 char *cachefile;
535 spa_config_dirent_t *dp;
537 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
538 &cachefile) != 0)
539 return;
541 dp = kmem_alloc(sizeof (spa_config_dirent_t),
542 KM_SLEEP);
544 if (cachefile[0] == '\0')
545 dp->scd_path = spa_strdup(spa_config_path);
546 else if (strcmp(cachefile, "none") == 0)
547 dp->scd_path = NULL;
548 else
549 dp->scd_path = spa_strdup(cachefile);
551 list_insert_head(&spa->spa_config_list, dp);
552 if (need_sync)
553 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
557 spa_prop_set(spa_t *spa, nvlist_t *nvp)
559 int error;
560 nvpair_t *elem;
561 boolean_t need_sync = B_FALSE;
562 zpool_prop_t prop;
564 if ((error = spa_prop_validate(spa, nvp)) != 0)
565 return (error);
567 elem = NULL;
568 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
569 if ((prop = zpool_name_to_prop(
570 nvpair_name(elem))) == ZPROP_INVAL)
571 return (EINVAL);
573 if (prop == ZPOOL_PROP_CACHEFILE ||
574 prop == ZPOOL_PROP_ALTROOT ||
575 prop == ZPOOL_PROP_READONLY)
576 continue;
578 need_sync = B_TRUE;
579 break;
582 if (need_sync)
583 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
584 spa, nvp, 3));
585 else
586 return (0);
590 * If the bootfs property value is dsobj, clear it.
592 void
593 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
595 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
596 VERIFY(zap_remove(spa->spa_meta_objset,
597 spa->spa_pool_props_object,
598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
599 spa->spa_bootfs = 0;
604 * Change the GUID for the pool. This is done so that we can later
605 * re-import a pool built from a clone of our own vdevs. We will modify
606 * the root vdev's guid, our own pool guid, and then mark all of our
607 * vdevs dirty. Note that we must make sure that all our vdevs are
608 * online when we do this, or else any vdevs that weren't present
609 * would be orphaned from our pool. We are also going to issue a
610 * sysevent to update any watchers.
613 spa_change_guid(spa_t *spa)
615 uint64_t oldguid, newguid;
616 uint64_t txg;
618 if (!(spa_mode_global & FWRITE))
619 return (EROFS);
621 txg = spa_vdev_enter(spa);
623 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
624 return (spa_vdev_exit(spa, NULL, txg, ENXIO));
626 oldguid = spa_guid(spa);
627 newguid = spa_generate_guid(NULL);
628 ASSERT3U(oldguid, !=, newguid);
630 spa->spa_root_vdev->vdev_guid = newguid;
631 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
633 vdev_config_dirty(spa->spa_root_vdev);
635 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
637 return (spa_vdev_exit(spa, NULL, txg, 0));
641 * ==========================================================================
642 * SPA state manipulation (open/create/destroy/import/export)
643 * ==========================================================================
646 static int
647 spa_error_entry_compare(const void *a, const void *b)
649 spa_error_entry_t *sa = (spa_error_entry_t *)a;
650 spa_error_entry_t *sb = (spa_error_entry_t *)b;
651 int ret;
653 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
654 sizeof (zbookmark_t));
656 if (ret < 0)
657 return (-1);
658 else if (ret > 0)
659 return (1);
660 else
661 return (0);
665 * Utility function which retrieves copies of the current logs and
666 * re-initializes them in the process.
668 void
669 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
671 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
673 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
674 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
676 avl_create(&spa->spa_errlist_scrub,
677 spa_error_entry_compare, sizeof (spa_error_entry_t),
678 offsetof(spa_error_entry_t, se_avl));
679 avl_create(&spa->spa_errlist_last,
680 spa_error_entry_compare, sizeof (spa_error_entry_t),
681 offsetof(spa_error_entry_t, se_avl));
684 static taskq_t *
685 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
686 uint_t value)
688 uint_t flags = 0;
689 boolean_t batch = B_FALSE;
691 switch (mode) {
692 case zti_mode_null:
693 return (NULL); /* no taskq needed */
695 case zti_mode_fixed:
696 ASSERT3U(value, >=, 1);
697 value = MAX(value, 1);
698 break;
700 case zti_mode_batch:
701 batch = B_TRUE;
702 flags |= TASKQ_THREADS_CPU_PCT;
703 value = zio_taskq_batch_pct;
704 break;
706 case zti_mode_online_percent:
707 flags |= TASKQ_THREADS_CPU_PCT;
708 break;
710 default:
711 panic("unrecognized mode for %s taskq (%u:%u) in "
712 "spa_activate()",
713 name, mode, value);
714 break;
717 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
718 if (batch)
719 flags |= TASKQ_DC_BATCH;
721 return (taskq_create_sysdc(name, value, 50, INT_MAX,
722 spa->spa_proc, zio_taskq_basedc, flags));
724 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
725 spa->spa_proc, flags));
728 static void
729 spa_create_zio_taskqs(spa_t *spa)
731 for (int t = 0; t < ZIO_TYPES; t++) {
732 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
733 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
734 enum zti_modes mode = ztip->zti_mode;
735 uint_t value = ztip->zti_value;
736 char name[32];
738 (void) snprintf(name, sizeof (name),
739 "%s_%s", zio_type_name[t], zio_taskq_types[q]);
741 spa->spa_zio_taskq[t][q] =
742 spa_taskq_create(spa, name, mode, value);
747 #ifdef _KERNEL
748 static void
749 spa_thread(void *arg)
751 callb_cpr_t cprinfo;
753 spa_t *spa = arg;
754 user_t *pu = PTOU(curproc);
756 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
757 spa->spa_name);
759 ASSERT(curproc != &p0);
760 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
761 "zpool-%s", spa->spa_name);
762 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
764 /* bind this thread to the requested psrset */
765 if (zio_taskq_psrset_bind != PS_NONE) {
766 pool_lock();
767 mutex_enter(&cpu_lock);
768 mutex_enter(&pidlock);
769 mutex_enter(&curproc->p_lock);
771 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
772 0, NULL, NULL) == 0) {
773 curthread->t_bind_pset = zio_taskq_psrset_bind;
774 } else {
775 cmn_err(CE_WARN,
776 "Couldn't bind process for zfs pool \"%s\" to "
777 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
780 mutex_exit(&curproc->p_lock);
781 mutex_exit(&pidlock);
782 mutex_exit(&cpu_lock);
783 pool_unlock();
786 if (zio_taskq_sysdc) {
787 sysdc_thread_enter(curthread, 100, 0);
790 spa->spa_proc = curproc;
791 spa->spa_did = curthread->t_did;
793 spa_create_zio_taskqs(spa);
795 mutex_enter(&spa->spa_proc_lock);
796 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
798 spa->spa_proc_state = SPA_PROC_ACTIVE;
799 cv_broadcast(&spa->spa_proc_cv);
801 CALLB_CPR_SAFE_BEGIN(&cprinfo);
802 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
803 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
804 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
806 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
807 spa->spa_proc_state = SPA_PROC_GONE;
808 spa->spa_proc = &p0;
809 cv_broadcast(&spa->spa_proc_cv);
810 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
812 mutex_enter(&curproc->p_lock);
813 lwp_exit();
815 #endif
818 * Activate an uninitialized pool.
820 static void
821 spa_activate(spa_t *spa, int mode)
823 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
825 spa->spa_state = POOL_STATE_ACTIVE;
826 spa->spa_mode = mode;
828 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
829 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
831 /* Try to create a covering process */
832 mutex_enter(&spa->spa_proc_lock);
833 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
834 ASSERT(spa->spa_proc == &p0);
835 spa->spa_did = 0;
837 /* Only create a process if we're going to be around a while. */
838 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
839 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
840 NULL, 0) == 0) {
841 spa->spa_proc_state = SPA_PROC_CREATED;
842 while (spa->spa_proc_state == SPA_PROC_CREATED) {
843 cv_wait(&spa->spa_proc_cv,
844 &spa->spa_proc_lock);
846 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
847 ASSERT(spa->spa_proc != &p0);
848 ASSERT(spa->spa_did != 0);
849 } else {
850 #ifdef _KERNEL
851 cmn_err(CE_WARN,
852 "Couldn't create process for zfs pool \"%s\"\n",
853 spa->spa_name);
854 #endif
857 mutex_exit(&spa->spa_proc_lock);
859 /* If we didn't create a process, we need to create our taskqs. */
860 if (spa->spa_proc == &p0) {
861 spa_create_zio_taskqs(spa);
864 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
865 offsetof(vdev_t, vdev_config_dirty_node));
866 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
867 offsetof(vdev_t, vdev_state_dirty_node));
869 txg_list_create(&spa->spa_vdev_txg_list,
870 offsetof(struct vdev, vdev_txg_node));
872 avl_create(&spa->spa_errlist_scrub,
873 spa_error_entry_compare, sizeof (spa_error_entry_t),
874 offsetof(spa_error_entry_t, se_avl));
875 avl_create(&spa->spa_errlist_last,
876 spa_error_entry_compare, sizeof (spa_error_entry_t),
877 offsetof(spa_error_entry_t, se_avl));
881 * Opposite of spa_activate().
883 static void
884 spa_deactivate(spa_t *spa)
886 ASSERT(spa->spa_sync_on == B_FALSE);
887 ASSERT(spa->spa_dsl_pool == NULL);
888 ASSERT(spa->spa_root_vdev == NULL);
889 ASSERT(spa->spa_async_zio_root == NULL);
890 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
892 txg_list_destroy(&spa->spa_vdev_txg_list);
894 list_destroy(&spa->spa_config_dirty_list);
895 list_destroy(&spa->spa_state_dirty_list);
897 for (int t = 0; t < ZIO_TYPES; t++) {
898 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
899 if (spa->spa_zio_taskq[t][q] != NULL)
900 taskq_destroy(spa->spa_zio_taskq[t][q]);
901 spa->spa_zio_taskq[t][q] = NULL;
905 metaslab_class_destroy(spa->spa_normal_class);
906 spa->spa_normal_class = NULL;
908 metaslab_class_destroy(spa->spa_log_class);
909 spa->spa_log_class = NULL;
912 * If this was part of an import or the open otherwise failed, we may
913 * still have errors left in the queues. Empty them just in case.
915 spa_errlog_drain(spa);
917 avl_destroy(&spa->spa_errlist_scrub);
918 avl_destroy(&spa->spa_errlist_last);
920 spa->spa_state = POOL_STATE_UNINITIALIZED;
922 mutex_enter(&spa->spa_proc_lock);
923 if (spa->spa_proc_state != SPA_PROC_NONE) {
924 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
925 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
926 cv_broadcast(&spa->spa_proc_cv);
927 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
928 ASSERT(spa->spa_proc != &p0);
929 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
931 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
932 spa->spa_proc_state = SPA_PROC_NONE;
934 ASSERT(spa->spa_proc == &p0);
935 mutex_exit(&spa->spa_proc_lock);
938 * We want to make sure spa_thread() has actually exited the ZFS
939 * module, so that the module can't be unloaded out from underneath
940 * it.
942 if (spa->spa_did != 0) {
943 thread_join(spa->spa_did);
944 spa->spa_did = 0;
949 * Verify a pool configuration, and construct the vdev tree appropriately. This
950 * will create all the necessary vdevs in the appropriate layout, with each vdev
951 * in the CLOSED state. This will prep the pool before open/creation/import.
952 * All vdev validation is done by the vdev_alloc() routine.
954 static int
955 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
956 uint_t id, int atype)
958 nvlist_t **child;
959 uint_t children;
960 int error;
962 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
963 return (error);
965 if ((*vdp)->vdev_ops->vdev_op_leaf)
966 return (0);
968 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
969 &child, &children);
971 if (error == ENOENT)
972 return (0);
974 if (error) {
975 vdev_free(*vdp);
976 *vdp = NULL;
977 return (EINVAL);
980 for (int c = 0; c < children; c++) {
981 vdev_t *vd;
982 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
983 atype)) != 0) {
984 vdev_free(*vdp);
985 *vdp = NULL;
986 return (error);
990 ASSERT(*vdp != NULL);
992 return (0);
996 * Opposite of spa_load().
998 static void
999 spa_unload(spa_t *spa)
1001 int i;
1003 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1006 * Stop async tasks.
1008 spa_async_suspend(spa);
1011 * Stop syncing.
1013 if (spa->spa_sync_on) {
1014 txg_sync_stop(spa->spa_dsl_pool);
1015 spa->spa_sync_on = B_FALSE;
1019 * Wait for any outstanding async I/O to complete.
1021 if (spa->spa_async_zio_root != NULL) {
1022 (void) zio_wait(spa->spa_async_zio_root);
1023 spa->spa_async_zio_root = NULL;
1026 bpobj_close(&spa->spa_deferred_bpobj);
1029 * Close the dsl pool.
1031 if (spa->spa_dsl_pool) {
1032 dsl_pool_close(spa->spa_dsl_pool);
1033 spa->spa_dsl_pool = NULL;
1034 spa->spa_meta_objset = NULL;
1037 ddt_unload(spa);
1039 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1042 * Drop and purge level 2 cache
1044 spa_l2cache_drop(spa);
1047 * Close all vdevs.
1049 if (spa->spa_root_vdev)
1050 vdev_free(spa->spa_root_vdev);
1051 ASSERT(spa->spa_root_vdev == NULL);
1053 for (i = 0; i < spa->spa_spares.sav_count; i++)
1054 vdev_free(spa->spa_spares.sav_vdevs[i]);
1055 if (spa->spa_spares.sav_vdevs) {
1056 kmem_free(spa->spa_spares.sav_vdevs,
1057 spa->spa_spares.sav_count * sizeof (void *));
1058 spa->spa_spares.sav_vdevs = NULL;
1060 if (spa->spa_spares.sav_config) {
1061 nvlist_free(spa->spa_spares.sav_config);
1062 spa->spa_spares.sav_config = NULL;
1064 spa->spa_spares.sav_count = 0;
1066 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1067 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1068 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1070 if (spa->spa_l2cache.sav_vdevs) {
1071 kmem_free(spa->spa_l2cache.sav_vdevs,
1072 spa->spa_l2cache.sav_count * sizeof (void *));
1073 spa->spa_l2cache.sav_vdevs = NULL;
1075 if (spa->spa_l2cache.sav_config) {
1076 nvlist_free(spa->spa_l2cache.sav_config);
1077 spa->spa_l2cache.sav_config = NULL;
1079 spa->spa_l2cache.sav_count = 0;
1081 spa->spa_async_suspended = 0;
1083 if (spa->spa_comment != NULL) {
1084 spa_strfree(spa->spa_comment);
1085 spa->spa_comment = NULL;
1088 spa_config_exit(spa, SCL_ALL, FTAG);
1092 * Load (or re-load) the current list of vdevs describing the active spares for
1093 * this pool. When this is called, we have some form of basic information in
1094 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1095 * then re-generate a more complete list including status information.
1097 static void
1098 spa_load_spares(spa_t *spa)
1100 nvlist_t **spares;
1101 uint_t nspares;
1102 int i;
1103 vdev_t *vd, *tvd;
1105 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1108 * First, close and free any existing spare vdevs.
1110 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1111 vd = spa->spa_spares.sav_vdevs[i];
1113 /* Undo the call to spa_activate() below */
1114 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1115 B_FALSE)) != NULL && tvd->vdev_isspare)
1116 spa_spare_remove(tvd);
1117 vdev_close(vd);
1118 vdev_free(vd);
1121 if (spa->spa_spares.sav_vdevs)
1122 kmem_free(spa->spa_spares.sav_vdevs,
1123 spa->spa_spares.sav_count * sizeof (void *));
1125 if (spa->spa_spares.sav_config == NULL)
1126 nspares = 0;
1127 else
1128 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1129 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1131 spa->spa_spares.sav_count = (int)nspares;
1132 spa->spa_spares.sav_vdevs = NULL;
1134 if (nspares == 0)
1135 return;
1138 * Construct the array of vdevs, opening them to get status in the
1139 * process. For each spare, there is potentially two different vdev_t
1140 * structures associated with it: one in the list of spares (used only
1141 * for basic validation purposes) and one in the active vdev
1142 * configuration (if it's spared in). During this phase we open and
1143 * validate each vdev on the spare list. If the vdev also exists in the
1144 * active configuration, then we also mark this vdev as an active spare.
1146 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1147 KM_SLEEP);
1148 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1149 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1150 VDEV_ALLOC_SPARE) == 0);
1151 ASSERT(vd != NULL);
1153 spa->spa_spares.sav_vdevs[i] = vd;
1155 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1156 B_FALSE)) != NULL) {
1157 if (!tvd->vdev_isspare)
1158 spa_spare_add(tvd);
1161 * We only mark the spare active if we were successfully
1162 * able to load the vdev. Otherwise, importing a pool
1163 * with a bad active spare would result in strange
1164 * behavior, because multiple pool would think the spare
1165 * is actively in use.
1167 * There is a vulnerability here to an equally bizarre
1168 * circumstance, where a dead active spare is later
1169 * brought back to life (onlined or otherwise). Given
1170 * the rarity of this scenario, and the extra complexity
1171 * it adds, we ignore the possibility.
1173 if (!vdev_is_dead(tvd))
1174 spa_spare_activate(tvd);
1177 vd->vdev_top = vd;
1178 vd->vdev_aux = &spa->spa_spares;
1180 if (vdev_open(vd) != 0)
1181 continue;
1183 if (vdev_validate_aux(vd) == 0)
1184 spa_spare_add(vd);
1188 * Recompute the stashed list of spares, with status information
1189 * this time.
1191 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1192 DATA_TYPE_NVLIST_ARRAY) == 0);
1194 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1195 KM_SLEEP);
1196 for (i = 0; i < spa->spa_spares.sav_count; i++)
1197 spares[i] = vdev_config_generate(spa,
1198 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1199 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1200 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1201 for (i = 0; i < spa->spa_spares.sav_count; i++)
1202 nvlist_free(spares[i]);
1203 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1207 * Load (or re-load) the current list of vdevs describing the active l2cache for
1208 * this pool. When this is called, we have some form of basic information in
1209 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1210 * then re-generate a more complete list including status information.
1211 * Devices which are already active have their details maintained, and are
1212 * not re-opened.
1214 static void
1215 spa_load_l2cache(spa_t *spa)
1217 nvlist_t **l2cache;
1218 uint_t nl2cache;
1219 int i, j, oldnvdevs;
1220 uint64_t guid;
1221 vdev_t *vd, **oldvdevs, **newvdevs;
1222 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1224 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1226 if (sav->sav_config != NULL) {
1227 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1228 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1229 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1230 } else {
1231 nl2cache = 0;
1234 oldvdevs = sav->sav_vdevs;
1235 oldnvdevs = sav->sav_count;
1236 sav->sav_vdevs = NULL;
1237 sav->sav_count = 0;
1240 * Process new nvlist of vdevs.
1242 for (i = 0; i < nl2cache; i++) {
1243 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1244 &guid) == 0);
1246 newvdevs[i] = NULL;
1247 for (j = 0; j < oldnvdevs; j++) {
1248 vd = oldvdevs[j];
1249 if (vd != NULL && guid == vd->vdev_guid) {
1251 * Retain previous vdev for add/remove ops.
1253 newvdevs[i] = vd;
1254 oldvdevs[j] = NULL;
1255 break;
1259 if (newvdevs[i] == NULL) {
1261 * Create new vdev
1263 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1264 VDEV_ALLOC_L2CACHE) == 0);
1265 ASSERT(vd != NULL);
1266 newvdevs[i] = vd;
1269 * Commit this vdev as an l2cache device,
1270 * even if it fails to open.
1272 spa_l2cache_add(vd);
1274 vd->vdev_top = vd;
1275 vd->vdev_aux = sav;
1277 spa_l2cache_activate(vd);
1279 if (vdev_open(vd) != 0)
1280 continue;
1282 (void) vdev_validate_aux(vd);
1284 if (!vdev_is_dead(vd))
1285 l2arc_add_vdev(spa, vd);
1290 * Purge vdevs that were dropped
1292 for (i = 0; i < oldnvdevs; i++) {
1293 uint64_t pool;
1295 vd = oldvdevs[i];
1296 if (vd != NULL) {
1297 ASSERT(vd->vdev_isl2cache);
1299 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1300 pool != 0ULL && l2arc_vdev_present(vd))
1301 l2arc_remove_vdev(vd);
1302 vdev_clear_stats(vd);
1303 vdev_free(vd);
1307 if (oldvdevs)
1308 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1310 if (sav->sav_config == NULL)
1311 goto out;
1313 sav->sav_vdevs = newvdevs;
1314 sav->sav_count = (int)nl2cache;
1317 * Recompute the stashed list of l2cache devices, with status
1318 * information this time.
1320 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1321 DATA_TYPE_NVLIST_ARRAY) == 0);
1323 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1324 for (i = 0; i < sav->sav_count; i++)
1325 l2cache[i] = vdev_config_generate(spa,
1326 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1327 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1328 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1329 out:
1330 for (i = 0; i < sav->sav_count; i++)
1331 nvlist_free(l2cache[i]);
1332 if (sav->sav_count)
1333 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1336 static int
1337 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1339 dmu_buf_t *db;
1340 char *packed = NULL;
1341 size_t nvsize = 0;
1342 int error;
1343 *value = NULL;
1345 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1346 nvsize = *(uint64_t *)db->db_data;
1347 dmu_buf_rele(db, FTAG);
1349 packed = kmem_alloc(nvsize, KM_SLEEP);
1350 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1351 DMU_READ_PREFETCH);
1352 if (error == 0)
1353 error = nvlist_unpack(packed, nvsize, value, 0);
1354 kmem_free(packed, nvsize);
1356 return (error);
1360 * Checks to see if the given vdev could not be opened, in which case we post a
1361 * sysevent to notify the autoreplace code that the device has been removed.
1363 static void
1364 spa_check_removed(vdev_t *vd)
1366 for (int c = 0; c < vd->vdev_children; c++)
1367 spa_check_removed(vd->vdev_child[c]);
1369 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1370 zfs_post_autoreplace(vd->vdev_spa, vd);
1371 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1376 * Validate the current config against the MOS config
1378 static boolean_t
1379 spa_config_valid(spa_t *spa, nvlist_t *config)
1381 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1382 nvlist_t *nv;
1384 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1386 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1387 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1389 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1392 * If we're doing a normal import, then build up any additional
1393 * diagnostic information about missing devices in this config.
1394 * We'll pass this up to the user for further processing.
1396 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1397 nvlist_t **child, *nv;
1398 uint64_t idx = 0;
1400 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1401 KM_SLEEP);
1402 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1404 for (int c = 0; c < rvd->vdev_children; c++) {
1405 vdev_t *tvd = rvd->vdev_child[c];
1406 vdev_t *mtvd = mrvd->vdev_child[c];
1408 if (tvd->vdev_ops == &vdev_missing_ops &&
1409 mtvd->vdev_ops != &vdev_missing_ops &&
1410 mtvd->vdev_islog)
1411 child[idx++] = vdev_config_generate(spa, mtvd,
1412 B_FALSE, 0);
1415 if (idx) {
1416 VERIFY(nvlist_add_nvlist_array(nv,
1417 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1418 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1419 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1421 for (int i = 0; i < idx; i++)
1422 nvlist_free(child[i]);
1424 nvlist_free(nv);
1425 kmem_free(child, rvd->vdev_children * sizeof (char **));
1429 * Compare the root vdev tree with the information we have
1430 * from the MOS config (mrvd). Check each top-level vdev
1431 * with the corresponding MOS config top-level (mtvd).
1433 for (int c = 0; c < rvd->vdev_children; c++) {
1434 vdev_t *tvd = rvd->vdev_child[c];
1435 vdev_t *mtvd = mrvd->vdev_child[c];
1438 * Resolve any "missing" vdevs in the current configuration.
1439 * If we find that the MOS config has more accurate information
1440 * about the top-level vdev then use that vdev instead.
1442 if (tvd->vdev_ops == &vdev_missing_ops &&
1443 mtvd->vdev_ops != &vdev_missing_ops) {
1445 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1446 continue;
1449 * Device specific actions.
1451 if (mtvd->vdev_islog) {
1452 spa_set_log_state(spa, SPA_LOG_CLEAR);
1453 } else {
1455 * XXX - once we have 'readonly' pool
1456 * support we should be able to handle
1457 * missing data devices by transitioning
1458 * the pool to readonly.
1460 continue;
1464 * Swap the missing vdev with the data we were
1465 * able to obtain from the MOS config.
1467 vdev_remove_child(rvd, tvd);
1468 vdev_remove_child(mrvd, mtvd);
1470 vdev_add_child(rvd, mtvd);
1471 vdev_add_child(mrvd, tvd);
1473 spa_config_exit(spa, SCL_ALL, FTAG);
1474 vdev_load(mtvd);
1475 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1477 vdev_reopen(rvd);
1478 } else if (mtvd->vdev_islog) {
1480 * Load the slog device's state from the MOS config
1481 * since it's possible that the label does not
1482 * contain the most up-to-date information.
1484 vdev_load_log_state(tvd, mtvd);
1485 vdev_reopen(tvd);
1488 vdev_free(mrvd);
1489 spa_config_exit(spa, SCL_ALL, FTAG);
1492 * Ensure we were able to validate the config.
1494 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1498 * Check for missing log devices
1500 static int
1501 spa_check_logs(spa_t *spa)
1503 switch (spa->spa_log_state) {
1504 case SPA_LOG_MISSING:
1505 /* need to recheck in case slog has been restored */
1506 case SPA_LOG_UNKNOWN:
1507 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1508 DS_FIND_CHILDREN)) {
1509 spa_set_log_state(spa, SPA_LOG_MISSING);
1510 return (1);
1512 break;
1514 return (0);
1517 static boolean_t
1518 spa_passivate_log(spa_t *spa)
1520 vdev_t *rvd = spa->spa_root_vdev;
1521 boolean_t slog_found = B_FALSE;
1523 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1525 if (!spa_has_slogs(spa))
1526 return (B_FALSE);
1528 for (int c = 0; c < rvd->vdev_children; c++) {
1529 vdev_t *tvd = rvd->vdev_child[c];
1530 metaslab_group_t *mg = tvd->vdev_mg;
1532 if (tvd->vdev_islog) {
1533 metaslab_group_passivate(mg);
1534 slog_found = B_TRUE;
1538 return (slog_found);
1541 static void
1542 spa_activate_log(spa_t *spa)
1544 vdev_t *rvd = spa->spa_root_vdev;
1546 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1548 for (int c = 0; c < rvd->vdev_children; c++) {
1549 vdev_t *tvd = rvd->vdev_child[c];
1550 metaslab_group_t *mg = tvd->vdev_mg;
1552 if (tvd->vdev_islog)
1553 metaslab_group_activate(mg);
1558 spa_offline_log(spa_t *spa)
1560 int error = 0;
1562 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1563 NULL, DS_FIND_CHILDREN)) == 0) {
1566 * We successfully offlined the log device, sync out the
1567 * current txg so that the "stubby" block can be removed
1568 * by zil_sync().
1570 txg_wait_synced(spa->spa_dsl_pool, 0);
1572 return (error);
1575 static void
1576 spa_aux_check_removed(spa_aux_vdev_t *sav)
1578 for (int i = 0; i < sav->sav_count; i++)
1579 spa_check_removed(sav->sav_vdevs[i]);
1582 void
1583 spa_claim_notify(zio_t *zio)
1585 spa_t *spa = zio->io_spa;
1587 if (zio->io_error)
1588 return;
1590 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1591 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1592 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1593 mutex_exit(&spa->spa_props_lock);
1596 typedef struct spa_load_error {
1597 uint64_t sle_meta_count;
1598 uint64_t sle_data_count;
1599 } spa_load_error_t;
1601 static void
1602 spa_load_verify_done(zio_t *zio)
1604 blkptr_t *bp = zio->io_bp;
1605 spa_load_error_t *sle = zio->io_private;
1606 dmu_object_type_t type = BP_GET_TYPE(bp);
1607 int error = zio->io_error;
1609 if (error) {
1610 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1611 type != DMU_OT_INTENT_LOG)
1612 atomic_add_64(&sle->sle_meta_count, 1);
1613 else
1614 atomic_add_64(&sle->sle_data_count, 1);
1616 zio_data_buf_free(zio->io_data, zio->io_size);
1619 /*ARGSUSED*/
1620 static int
1621 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1622 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1624 if (bp != NULL) {
1625 zio_t *rio = arg;
1626 size_t size = BP_GET_PSIZE(bp);
1627 void *data = zio_data_buf_alloc(size);
1629 zio_nowait(zio_read(rio, spa, bp, data, size,
1630 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1631 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1632 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1634 return (0);
1637 static int
1638 spa_load_verify(spa_t *spa)
1640 zio_t *rio;
1641 spa_load_error_t sle = { 0 };
1642 zpool_rewind_policy_t policy;
1643 boolean_t verify_ok = B_FALSE;
1644 int error;
1646 zpool_get_rewind_policy(spa->spa_config, &policy);
1648 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1649 return (0);
1651 rio = zio_root(spa, NULL, &sle,
1652 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1654 error = traverse_pool(spa, spa->spa_verify_min_txg,
1655 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1657 (void) zio_wait(rio);
1659 spa->spa_load_meta_errors = sle.sle_meta_count;
1660 spa->spa_load_data_errors = sle.sle_data_count;
1662 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1663 sle.sle_data_count <= policy.zrp_maxdata) {
1664 int64_t loss = 0;
1666 verify_ok = B_TRUE;
1667 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1668 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1670 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1671 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1672 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1673 VERIFY(nvlist_add_int64(spa->spa_load_info,
1674 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1675 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1676 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1677 } else {
1678 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1681 if (error) {
1682 if (error != ENXIO && error != EIO)
1683 error = EIO;
1684 return (error);
1687 return (verify_ok ? 0 : EIO);
1691 * Find a value in the pool props object.
1693 static void
1694 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1696 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1697 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1701 * Find a value in the pool directory object.
1703 static int
1704 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1706 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1707 name, sizeof (uint64_t), 1, val));
1710 static int
1711 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1713 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1714 return (err);
1718 * Fix up config after a partly-completed split. This is done with the
1719 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1720 * pool have that entry in their config, but only the splitting one contains
1721 * a list of all the guids of the vdevs that are being split off.
1723 * This function determines what to do with that list: either rejoin
1724 * all the disks to the pool, or complete the splitting process. To attempt
1725 * the rejoin, each disk that is offlined is marked online again, and
1726 * we do a reopen() call. If the vdev label for every disk that was
1727 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1728 * then we call vdev_split() on each disk, and complete the split.
1730 * Otherwise we leave the config alone, with all the vdevs in place in
1731 * the original pool.
1733 static void
1734 spa_try_repair(spa_t *spa, nvlist_t *config)
1736 uint_t extracted;
1737 uint64_t *glist;
1738 uint_t i, gcount;
1739 nvlist_t *nvl;
1740 vdev_t **vd;
1741 boolean_t attempt_reopen;
1743 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1744 return;
1746 /* check that the config is complete */
1747 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1748 &glist, &gcount) != 0)
1749 return;
1751 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1753 /* attempt to online all the vdevs & validate */
1754 attempt_reopen = B_TRUE;
1755 for (i = 0; i < gcount; i++) {
1756 if (glist[i] == 0) /* vdev is hole */
1757 continue;
1759 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1760 if (vd[i] == NULL) {
1762 * Don't bother attempting to reopen the disks;
1763 * just do the split.
1765 attempt_reopen = B_FALSE;
1766 } else {
1767 /* attempt to re-online it */
1768 vd[i]->vdev_offline = B_FALSE;
1772 if (attempt_reopen) {
1773 vdev_reopen(spa->spa_root_vdev);
1775 /* check each device to see what state it's in */
1776 for (extracted = 0, i = 0; i < gcount; i++) {
1777 if (vd[i] != NULL &&
1778 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1779 break;
1780 ++extracted;
1785 * If every disk has been moved to the new pool, or if we never
1786 * even attempted to look at them, then we split them off for
1787 * good.
1789 if (!attempt_reopen || gcount == extracted) {
1790 for (i = 0; i < gcount; i++)
1791 if (vd[i] != NULL)
1792 vdev_split(vd[i]);
1793 vdev_reopen(spa->spa_root_vdev);
1796 kmem_free(vd, gcount * sizeof (vdev_t *));
1799 static int
1800 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1801 boolean_t mosconfig)
1803 nvlist_t *config = spa->spa_config;
1804 char *ereport = FM_EREPORT_ZFS_POOL;
1805 char *comment;
1806 int error;
1807 uint64_t pool_guid;
1808 nvlist_t *nvl;
1810 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1811 return (EINVAL);
1813 ASSERT(spa->spa_comment == NULL);
1814 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1815 spa->spa_comment = spa_strdup(comment);
1818 * Versioning wasn't explicitly added to the label until later, so if
1819 * it's not present treat it as the initial version.
1821 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1822 &spa->spa_ubsync.ub_version) != 0)
1823 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1825 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1826 &spa->spa_config_txg);
1828 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1829 spa_guid_exists(pool_guid, 0)) {
1830 error = EEXIST;
1831 } else {
1832 spa->spa_config_guid = pool_guid;
1834 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1835 &nvl) == 0) {
1836 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1837 KM_SLEEP) == 0);
1840 gethrestime(&spa->spa_loaded_ts);
1841 error = spa_load_impl(spa, pool_guid, config, state, type,
1842 mosconfig, &ereport);
1845 spa->spa_minref = refcount_count(&spa->spa_refcount);
1846 if (error) {
1847 if (error != EEXIST) {
1848 spa->spa_loaded_ts.tv_sec = 0;
1849 spa->spa_loaded_ts.tv_nsec = 0;
1851 if (error != EBADF) {
1852 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1855 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1856 spa->spa_ena = 0;
1858 return (error);
1862 * Load an existing storage pool, using the pool's builtin spa_config as a
1863 * source of configuration information.
1865 static int
1866 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1867 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1868 char **ereport)
1870 int error = 0;
1871 nvlist_t *nvroot = NULL;
1872 vdev_t *rvd;
1873 uberblock_t *ub = &spa->spa_uberblock;
1874 uint64_t children, config_cache_txg = spa->spa_config_txg;
1875 int orig_mode = spa->spa_mode;
1876 int parse;
1877 uint64_t obj;
1880 * If this is an untrusted config, access the pool in read-only mode.
1881 * This prevents things like resilvering recently removed devices.
1883 if (!mosconfig)
1884 spa->spa_mode = FREAD;
1886 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1888 spa->spa_load_state = state;
1890 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1891 return (EINVAL);
1893 parse = (type == SPA_IMPORT_EXISTING ?
1894 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1897 * Create "The Godfather" zio to hold all async IOs
1899 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1900 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1903 * Parse the configuration into a vdev tree. We explicitly set the
1904 * value that will be returned by spa_version() since parsing the
1905 * configuration requires knowing the version number.
1907 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1908 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1909 spa_config_exit(spa, SCL_ALL, FTAG);
1911 if (error != 0)
1912 return (error);
1914 ASSERT(spa->spa_root_vdev == rvd);
1916 if (type != SPA_IMPORT_ASSEMBLE) {
1917 ASSERT(spa_guid(spa) == pool_guid);
1921 * Try to open all vdevs, loading each label in the process.
1923 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1924 error = vdev_open(rvd);
1925 spa_config_exit(spa, SCL_ALL, FTAG);
1926 if (error != 0)
1927 return (error);
1930 * We need to validate the vdev labels against the configuration that
1931 * we have in hand, which is dependent on the setting of mosconfig. If
1932 * mosconfig is true then we're validating the vdev labels based on
1933 * that config. Otherwise, we're validating against the cached config
1934 * (zpool.cache) that was read when we loaded the zfs module, and then
1935 * later we will recursively call spa_load() and validate against
1936 * the vdev config.
1938 * If we're assembling a new pool that's been split off from an
1939 * existing pool, the labels haven't yet been updated so we skip
1940 * validation for now.
1942 if (type != SPA_IMPORT_ASSEMBLE) {
1943 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1944 error = vdev_validate(rvd, mosconfig);
1945 spa_config_exit(spa, SCL_ALL, FTAG);
1947 if (error != 0)
1948 return (error);
1950 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1951 return (ENXIO);
1955 * Find the best uberblock.
1957 vdev_uberblock_load(NULL, rvd, ub);
1960 * If we weren't able to find a single valid uberblock, return failure.
1962 if (ub->ub_txg == 0)
1963 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1966 * If the pool is newer than the code, we can't open it.
1968 if (ub->ub_version > SPA_VERSION)
1969 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1972 * If the vdev guid sum doesn't match the uberblock, we have an
1973 * incomplete configuration. We first check to see if the pool
1974 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1975 * If it is, defer the vdev_guid_sum check till later so we
1976 * can handle missing vdevs.
1978 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1979 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1980 rvd->vdev_guid_sum != ub->ub_guid_sum)
1981 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1983 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1984 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1985 spa_try_repair(spa, config);
1986 spa_config_exit(spa, SCL_ALL, FTAG);
1987 nvlist_free(spa->spa_config_splitting);
1988 spa->spa_config_splitting = NULL;
1992 * Initialize internal SPA structures.
1994 spa->spa_state = POOL_STATE_ACTIVE;
1995 spa->spa_ubsync = spa->spa_uberblock;
1996 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1997 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1998 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1999 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2000 spa->spa_claim_max_txg = spa->spa_first_txg;
2001 spa->spa_prev_software_version = ub->ub_software_version;
2003 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2004 if (error)
2005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2006 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2008 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2009 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2011 if (!mosconfig) {
2012 uint64_t hostid;
2013 nvlist_t *policy = NULL, *nvconfig;
2015 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2018 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2019 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2020 char *hostname;
2021 unsigned long myhostid = 0;
2023 VERIFY(nvlist_lookup_string(nvconfig,
2024 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2026 #ifdef _KERNEL
2027 myhostid = zone_get_hostid(NULL);
2028 #else /* _KERNEL */
2030 * We're emulating the system's hostid in userland, so
2031 * we can't use zone_get_hostid().
2033 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2034 #endif /* _KERNEL */
2035 if (hostid != 0 && myhostid != 0 &&
2036 hostid != myhostid) {
2037 nvlist_free(nvconfig);
2038 cmn_err(CE_WARN, "pool '%s' could not be "
2039 "loaded as it was last accessed by "
2040 "another system (host: %s hostid: 0x%lx). "
2041 "See: http://illumos.org/msg/ZFS-8000-EY",
2042 spa_name(spa), hostname,
2043 (unsigned long)hostid);
2044 return (EBADF);
2047 if (nvlist_lookup_nvlist(spa->spa_config,
2048 ZPOOL_REWIND_POLICY, &policy) == 0)
2049 VERIFY(nvlist_add_nvlist(nvconfig,
2050 ZPOOL_REWIND_POLICY, policy) == 0);
2052 spa_config_set(spa, nvconfig);
2053 spa_unload(spa);
2054 spa_deactivate(spa);
2055 spa_activate(spa, orig_mode);
2057 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2060 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2061 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2062 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2063 if (error != 0)
2064 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2067 * Load the bit that tells us to use the new accounting function
2068 * (raid-z deflation). If we have an older pool, this will not
2069 * be present.
2071 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2072 if (error != 0 && error != ENOENT)
2073 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2075 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2076 &spa->spa_creation_version);
2077 if (error != 0 && error != ENOENT)
2078 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2081 * Load the persistent error log. If we have an older pool, this will
2082 * not be present.
2084 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2085 if (error != 0 && error != ENOENT)
2086 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2088 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2089 &spa->spa_errlog_scrub);
2090 if (error != 0 && error != ENOENT)
2091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2094 * Load the history object. If we have an older pool, this
2095 * will not be present.
2097 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2098 if (error != 0 && error != ENOENT)
2099 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2102 * If we're assembling the pool from the split-off vdevs of
2103 * an existing pool, we don't want to attach the spares & cache
2104 * devices.
2108 * Load any hot spares for this pool.
2110 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2111 if (error != 0 && error != ENOENT)
2112 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2113 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2114 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2115 if (load_nvlist(spa, spa->spa_spares.sav_object,
2116 &spa->spa_spares.sav_config) != 0)
2117 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2119 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2120 spa_load_spares(spa);
2121 spa_config_exit(spa, SCL_ALL, FTAG);
2122 } else if (error == 0) {
2123 spa->spa_spares.sav_sync = B_TRUE;
2127 * Load any level 2 ARC devices for this pool.
2129 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2130 &spa->spa_l2cache.sav_object);
2131 if (error != 0 && error != ENOENT)
2132 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2133 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2134 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2135 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2136 &spa->spa_l2cache.sav_config) != 0)
2137 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2139 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2140 spa_load_l2cache(spa);
2141 spa_config_exit(spa, SCL_ALL, FTAG);
2142 } else if (error == 0) {
2143 spa->spa_l2cache.sav_sync = B_TRUE;
2146 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2148 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2149 if (error && error != ENOENT)
2150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2152 if (error == 0) {
2153 uint64_t autoreplace;
2155 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2156 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2157 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2158 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2159 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2160 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2161 &spa->spa_dedup_ditto);
2163 spa->spa_autoreplace = (autoreplace != 0);
2167 * If the 'autoreplace' property is set, then post a resource notifying
2168 * the ZFS DE that it should not issue any faults for unopenable
2169 * devices. We also iterate over the vdevs, and post a sysevent for any
2170 * unopenable vdevs so that the normal autoreplace handler can take
2171 * over.
2173 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2174 spa_check_removed(spa->spa_root_vdev);
2176 * For the import case, this is done in spa_import(), because
2177 * at this point we're using the spare definitions from
2178 * the MOS config, not necessarily from the userland config.
2180 if (state != SPA_LOAD_IMPORT) {
2181 spa_aux_check_removed(&spa->spa_spares);
2182 spa_aux_check_removed(&spa->spa_l2cache);
2187 * Load the vdev state for all toplevel vdevs.
2189 vdev_load(rvd);
2192 * Propagate the leaf DTLs we just loaded all the way up the tree.
2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2196 spa_config_exit(spa, SCL_ALL, FTAG);
2199 * Load the DDTs (dedup tables).
2201 error = ddt_load(spa);
2202 if (error != 0)
2203 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2205 spa_update_dspace(spa);
2208 * Validate the config, using the MOS config to fill in any
2209 * information which might be missing. If we fail to validate
2210 * the config then declare the pool unfit for use. If we're
2211 * assembling a pool from a split, the log is not transferred
2212 * over.
2214 if (type != SPA_IMPORT_ASSEMBLE) {
2215 nvlist_t *nvconfig;
2217 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2218 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2220 if (!spa_config_valid(spa, nvconfig)) {
2221 nvlist_free(nvconfig);
2222 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2223 ENXIO));
2225 nvlist_free(nvconfig);
2228 * Now that we've validate the config, check the state of the
2229 * root vdev. If it can't be opened, it indicates one or
2230 * more toplevel vdevs are faulted.
2232 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2233 return (ENXIO);
2235 if (spa_check_logs(spa)) {
2236 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2237 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2242 * We've successfully opened the pool, verify that we're ready
2243 * to start pushing transactions.
2245 if (state != SPA_LOAD_TRYIMPORT) {
2246 if (error = spa_load_verify(spa))
2247 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2248 error));
2251 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2252 spa->spa_load_max_txg == UINT64_MAX)) {
2253 dmu_tx_t *tx;
2254 int need_update = B_FALSE;
2256 ASSERT(state != SPA_LOAD_TRYIMPORT);
2259 * Claim log blocks that haven't been committed yet.
2260 * This must all happen in a single txg.
2261 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2262 * invoked from zil_claim_log_block()'s i/o done callback.
2263 * Price of rollback is that we abandon the log.
2265 spa->spa_claiming = B_TRUE;
2267 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2268 spa_first_txg(spa));
2269 (void) dmu_objset_find(spa_name(spa),
2270 zil_claim, tx, DS_FIND_CHILDREN);
2271 dmu_tx_commit(tx);
2273 spa->spa_claiming = B_FALSE;
2275 spa_set_log_state(spa, SPA_LOG_GOOD);
2276 spa->spa_sync_on = B_TRUE;
2277 txg_sync_start(spa->spa_dsl_pool);
2280 * Wait for all claims to sync. We sync up to the highest
2281 * claimed log block birth time so that claimed log blocks
2282 * don't appear to be from the future. spa_claim_max_txg
2283 * will have been set for us by either zil_check_log_chain()
2284 * (invoked from spa_check_logs()) or zil_claim() above.
2286 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2289 * If the config cache is stale, or we have uninitialized
2290 * metaslabs (see spa_vdev_add()), then update the config.
2292 * If this is a verbatim import, trust the current
2293 * in-core spa_config and update the disk labels.
2295 if (config_cache_txg != spa->spa_config_txg ||
2296 state == SPA_LOAD_IMPORT ||
2297 state == SPA_LOAD_RECOVER ||
2298 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2299 need_update = B_TRUE;
2301 for (int c = 0; c < rvd->vdev_children; c++)
2302 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2303 need_update = B_TRUE;
2306 * Update the config cache asychronously in case we're the
2307 * root pool, in which case the config cache isn't writable yet.
2309 if (need_update)
2310 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2313 * Check all DTLs to see if anything needs resilvering.
2315 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2316 vdev_resilver_needed(rvd, NULL, NULL))
2317 spa_async_request(spa, SPA_ASYNC_RESILVER);
2320 * Delete any inconsistent datasets.
2322 (void) dmu_objset_find(spa_name(spa),
2323 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2326 * Clean up any stale temporary dataset userrefs.
2328 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2331 return (0);
2334 static int
2335 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2337 int mode = spa->spa_mode;
2339 spa_unload(spa);
2340 spa_deactivate(spa);
2342 spa->spa_load_max_txg--;
2344 spa_activate(spa, mode);
2345 spa_async_suspend(spa);
2347 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2350 static int
2351 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2352 uint64_t max_request, int rewind_flags)
2354 nvlist_t *config = NULL;
2355 int load_error, rewind_error;
2356 uint64_t safe_rewind_txg;
2357 uint64_t min_txg;
2359 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2360 spa->spa_load_max_txg = spa->spa_load_txg;
2361 spa_set_log_state(spa, SPA_LOG_CLEAR);
2362 } else {
2363 spa->spa_load_max_txg = max_request;
2366 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2367 mosconfig);
2368 if (load_error == 0)
2369 return (0);
2371 if (spa->spa_root_vdev != NULL)
2372 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2374 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2375 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2377 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2378 nvlist_free(config);
2379 return (load_error);
2382 /* Price of rolling back is discarding txgs, including log */
2383 if (state == SPA_LOAD_RECOVER)
2384 spa_set_log_state(spa, SPA_LOG_CLEAR);
2386 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2387 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2388 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2389 TXG_INITIAL : safe_rewind_txg;
2392 * Continue as long as we're finding errors, we're still within
2393 * the acceptable rewind range, and we're still finding uberblocks
2395 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2396 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2397 if (spa->spa_load_max_txg < safe_rewind_txg)
2398 spa->spa_extreme_rewind = B_TRUE;
2399 rewind_error = spa_load_retry(spa, state, mosconfig);
2402 spa->spa_extreme_rewind = B_FALSE;
2403 spa->spa_load_max_txg = UINT64_MAX;
2405 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2406 spa_config_set(spa, config);
2408 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2412 * Pool Open/Import
2414 * The import case is identical to an open except that the configuration is sent
2415 * down from userland, instead of grabbed from the configuration cache. For the
2416 * case of an open, the pool configuration will exist in the
2417 * POOL_STATE_UNINITIALIZED state.
2419 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2420 * the same time open the pool, without having to keep around the spa_t in some
2421 * ambiguous state.
2423 static int
2424 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2425 nvlist_t **config)
2427 spa_t *spa;
2428 spa_load_state_t state = SPA_LOAD_OPEN;
2429 int error;
2430 int locked = B_FALSE;
2432 *spapp = NULL;
2435 * As disgusting as this is, we need to support recursive calls to this
2436 * function because dsl_dir_open() is called during spa_load(), and ends
2437 * up calling spa_open() again. The real fix is to figure out how to
2438 * avoid dsl_dir_open() calling this in the first place.
2440 if (mutex_owner(&spa_namespace_lock) != curthread) {
2441 mutex_enter(&spa_namespace_lock);
2442 locked = B_TRUE;
2445 if ((spa = spa_lookup(pool)) == NULL) {
2446 if (locked)
2447 mutex_exit(&spa_namespace_lock);
2448 return (ENOENT);
2451 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2452 zpool_rewind_policy_t policy;
2454 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2455 &policy);
2456 if (policy.zrp_request & ZPOOL_DO_REWIND)
2457 state = SPA_LOAD_RECOVER;
2459 spa_activate(spa, spa_mode_global);
2461 if (state != SPA_LOAD_RECOVER)
2462 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2464 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2465 policy.zrp_request);
2467 if (error == EBADF) {
2469 * If vdev_validate() returns failure (indicated by
2470 * EBADF), it indicates that one of the vdevs indicates
2471 * that the pool has been exported or destroyed. If
2472 * this is the case, the config cache is out of sync and
2473 * we should remove the pool from the namespace.
2475 spa_unload(spa);
2476 spa_deactivate(spa);
2477 spa_config_sync(spa, B_TRUE, B_TRUE);
2478 spa_remove(spa);
2479 if (locked)
2480 mutex_exit(&spa_namespace_lock);
2481 return (ENOENT);
2484 if (error) {
2486 * We can't open the pool, but we still have useful
2487 * information: the state of each vdev after the
2488 * attempted vdev_open(). Return this to the user.
2490 if (config != NULL && spa->spa_config) {
2491 VERIFY(nvlist_dup(spa->spa_config, config,
2492 KM_SLEEP) == 0);
2493 VERIFY(nvlist_add_nvlist(*config,
2494 ZPOOL_CONFIG_LOAD_INFO,
2495 spa->spa_load_info) == 0);
2497 spa_unload(spa);
2498 spa_deactivate(spa);
2499 spa->spa_last_open_failed = error;
2500 if (locked)
2501 mutex_exit(&spa_namespace_lock);
2502 *spapp = NULL;
2503 return (error);
2507 spa_open_ref(spa, tag);
2509 if (config != NULL)
2510 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2513 * If we've recovered the pool, pass back any information we
2514 * gathered while doing the load.
2516 if (state == SPA_LOAD_RECOVER) {
2517 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2518 spa->spa_load_info) == 0);
2521 if (locked) {
2522 spa->spa_last_open_failed = 0;
2523 spa->spa_last_ubsync_txg = 0;
2524 spa->spa_load_txg = 0;
2525 mutex_exit(&spa_namespace_lock);
2528 *spapp = spa;
2530 return (0);
2534 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2535 nvlist_t **config)
2537 return (spa_open_common(name, spapp, tag, policy, config));
2541 spa_open(const char *name, spa_t **spapp, void *tag)
2543 return (spa_open_common(name, spapp, tag, NULL, NULL));
2547 * Lookup the given spa_t, incrementing the inject count in the process,
2548 * preventing it from being exported or destroyed.
2550 spa_t *
2551 spa_inject_addref(char *name)
2553 spa_t *spa;
2555 mutex_enter(&spa_namespace_lock);
2556 if ((spa = spa_lookup(name)) == NULL) {
2557 mutex_exit(&spa_namespace_lock);
2558 return (NULL);
2560 spa->spa_inject_ref++;
2561 mutex_exit(&spa_namespace_lock);
2563 return (spa);
2566 void
2567 spa_inject_delref(spa_t *spa)
2569 mutex_enter(&spa_namespace_lock);
2570 spa->spa_inject_ref--;
2571 mutex_exit(&spa_namespace_lock);
2575 * Add spares device information to the nvlist.
2577 static void
2578 spa_add_spares(spa_t *spa, nvlist_t *config)
2580 nvlist_t **spares;
2581 uint_t i, nspares;
2582 nvlist_t *nvroot;
2583 uint64_t guid;
2584 vdev_stat_t *vs;
2585 uint_t vsc;
2586 uint64_t pool;
2588 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2590 if (spa->spa_spares.sav_count == 0)
2591 return;
2593 VERIFY(nvlist_lookup_nvlist(config,
2594 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2595 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2596 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2597 if (nspares != 0) {
2598 VERIFY(nvlist_add_nvlist_array(nvroot,
2599 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2600 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2601 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2604 * Go through and find any spares which have since been
2605 * repurposed as an active spare. If this is the case, update
2606 * their status appropriately.
2608 for (i = 0; i < nspares; i++) {
2609 VERIFY(nvlist_lookup_uint64(spares[i],
2610 ZPOOL_CONFIG_GUID, &guid) == 0);
2611 if (spa_spare_exists(guid, &pool, NULL) &&
2612 pool != 0ULL) {
2613 VERIFY(nvlist_lookup_uint64_array(
2614 spares[i], ZPOOL_CONFIG_VDEV_STATS,
2615 (uint64_t **)&vs, &vsc) == 0);
2616 vs->vs_state = VDEV_STATE_CANT_OPEN;
2617 vs->vs_aux = VDEV_AUX_SPARED;
2624 * Add l2cache device information to the nvlist, including vdev stats.
2626 static void
2627 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2629 nvlist_t **l2cache;
2630 uint_t i, j, nl2cache;
2631 nvlist_t *nvroot;
2632 uint64_t guid;
2633 vdev_t *vd;
2634 vdev_stat_t *vs;
2635 uint_t vsc;
2637 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2639 if (spa->spa_l2cache.sav_count == 0)
2640 return;
2642 VERIFY(nvlist_lookup_nvlist(config,
2643 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2644 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2645 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2646 if (nl2cache != 0) {
2647 VERIFY(nvlist_add_nvlist_array(nvroot,
2648 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2649 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2650 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2653 * Update level 2 cache device stats.
2656 for (i = 0; i < nl2cache; i++) {
2657 VERIFY(nvlist_lookup_uint64(l2cache[i],
2658 ZPOOL_CONFIG_GUID, &guid) == 0);
2660 vd = NULL;
2661 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2662 if (guid ==
2663 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2664 vd = spa->spa_l2cache.sav_vdevs[j];
2665 break;
2668 ASSERT(vd != NULL);
2670 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2671 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2672 == 0);
2673 vdev_get_stats(vd, vs);
2679 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2681 int error;
2682 spa_t *spa;
2684 *config = NULL;
2685 error = spa_open_common(name, &spa, FTAG, NULL, config);
2687 if (spa != NULL) {
2689 * This still leaves a window of inconsistency where the spares
2690 * or l2cache devices could change and the config would be
2691 * self-inconsistent.
2693 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2695 if (*config != NULL) {
2696 uint64_t loadtimes[2];
2698 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2699 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2700 VERIFY(nvlist_add_uint64_array(*config,
2701 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2703 VERIFY(nvlist_add_uint64(*config,
2704 ZPOOL_CONFIG_ERRCOUNT,
2705 spa_get_errlog_size(spa)) == 0);
2707 if (spa_suspended(spa))
2708 VERIFY(nvlist_add_uint64(*config,
2709 ZPOOL_CONFIG_SUSPENDED,
2710 spa->spa_failmode) == 0);
2712 spa_add_spares(spa, *config);
2713 spa_add_l2cache(spa, *config);
2718 * We want to get the alternate root even for faulted pools, so we cheat
2719 * and call spa_lookup() directly.
2721 if (altroot) {
2722 if (spa == NULL) {
2723 mutex_enter(&spa_namespace_lock);
2724 spa = spa_lookup(name);
2725 if (spa)
2726 spa_altroot(spa, altroot, buflen);
2727 else
2728 altroot[0] = '\0';
2729 spa = NULL;
2730 mutex_exit(&spa_namespace_lock);
2731 } else {
2732 spa_altroot(spa, altroot, buflen);
2736 if (spa != NULL) {
2737 spa_config_exit(spa, SCL_CONFIG, FTAG);
2738 spa_close(spa, FTAG);
2741 return (error);
2745 * Validate that the auxiliary device array is well formed. We must have an
2746 * array of nvlists, each which describes a valid leaf vdev. If this is an
2747 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2748 * specified, as long as they are well-formed.
2750 static int
2751 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2752 spa_aux_vdev_t *sav, const char *config, uint64_t version,
2753 vdev_labeltype_t label)
2755 nvlist_t **dev;
2756 uint_t i, ndev;
2757 vdev_t *vd;
2758 int error;
2760 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2763 * It's acceptable to have no devs specified.
2765 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2766 return (0);
2768 if (ndev == 0)
2769 return (EINVAL);
2772 * Make sure the pool is formatted with a version that supports this
2773 * device type.
2775 if (spa_version(spa) < version)
2776 return (ENOTSUP);
2779 * Set the pending device list so we correctly handle device in-use
2780 * checking.
2782 sav->sav_pending = dev;
2783 sav->sav_npending = ndev;
2785 for (i = 0; i < ndev; i++) {
2786 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2787 mode)) != 0)
2788 goto out;
2790 if (!vd->vdev_ops->vdev_op_leaf) {
2791 vdev_free(vd);
2792 error = EINVAL;
2793 goto out;
2797 * The L2ARC currently only supports disk devices in
2798 * kernel context. For user-level testing, we allow it.
2800 #ifdef _KERNEL
2801 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2802 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2803 error = ENOTBLK;
2804 vdev_free(vd);
2805 goto out;
2807 #endif
2808 vd->vdev_top = vd;
2810 if ((error = vdev_open(vd)) == 0 &&
2811 (error = vdev_label_init(vd, crtxg, label)) == 0) {
2812 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2813 vd->vdev_guid) == 0);
2816 vdev_free(vd);
2818 if (error &&
2819 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2820 goto out;
2821 else
2822 error = 0;
2825 out:
2826 sav->sav_pending = NULL;
2827 sav->sav_npending = 0;
2828 return (error);
2831 static int
2832 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2834 int error;
2836 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2838 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2839 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2840 VDEV_LABEL_SPARE)) != 0) {
2841 return (error);
2844 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2845 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2846 VDEV_LABEL_L2CACHE));
2849 static void
2850 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2851 const char *config)
2853 int i;
2855 if (sav->sav_config != NULL) {
2856 nvlist_t **olddevs;
2857 uint_t oldndevs;
2858 nvlist_t **newdevs;
2861 * Generate new dev list by concatentating with the
2862 * current dev list.
2864 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2865 &olddevs, &oldndevs) == 0);
2867 newdevs = kmem_alloc(sizeof (void *) *
2868 (ndevs + oldndevs), KM_SLEEP);
2869 for (i = 0; i < oldndevs; i++)
2870 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2871 KM_SLEEP) == 0);
2872 for (i = 0; i < ndevs; i++)
2873 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2874 KM_SLEEP) == 0);
2876 VERIFY(nvlist_remove(sav->sav_config, config,
2877 DATA_TYPE_NVLIST_ARRAY) == 0);
2879 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2880 config, newdevs, ndevs + oldndevs) == 0);
2881 for (i = 0; i < oldndevs + ndevs; i++)
2882 nvlist_free(newdevs[i]);
2883 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2884 } else {
2886 * Generate a new dev list.
2888 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2889 KM_SLEEP) == 0);
2890 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2891 devs, ndevs) == 0);
2896 * Stop and drop level 2 ARC devices
2898 void
2899 spa_l2cache_drop(spa_t *spa)
2901 vdev_t *vd;
2902 int i;
2903 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2905 for (i = 0; i < sav->sav_count; i++) {
2906 uint64_t pool;
2908 vd = sav->sav_vdevs[i];
2909 ASSERT(vd != NULL);
2911 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2912 pool != 0ULL && l2arc_vdev_present(vd))
2913 l2arc_remove_vdev(vd);
2918 * Pool Creation
2921 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2922 const char *history_str, nvlist_t *zplprops)
2924 spa_t *spa;
2925 char *altroot = NULL;
2926 vdev_t *rvd;
2927 dsl_pool_t *dp;
2928 dmu_tx_t *tx;
2929 int error = 0;
2930 uint64_t txg = TXG_INITIAL;
2931 nvlist_t **spares, **l2cache;
2932 uint_t nspares, nl2cache;
2933 uint64_t version, obj;
2936 * If this pool already exists, return failure.
2938 mutex_enter(&spa_namespace_lock);
2939 if (spa_lookup(pool) != NULL) {
2940 mutex_exit(&spa_namespace_lock);
2941 return (EEXIST);
2945 * Allocate a new spa_t structure.
2947 (void) nvlist_lookup_string(props,
2948 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2949 spa = spa_add(pool, NULL, altroot);
2950 spa_activate(spa, spa_mode_global);
2952 if (props && (error = spa_prop_validate(spa, props))) {
2953 spa_deactivate(spa);
2954 spa_remove(spa);
2955 mutex_exit(&spa_namespace_lock);
2956 return (error);
2959 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2960 &version) != 0)
2961 version = SPA_VERSION;
2962 ASSERT(version <= SPA_VERSION);
2964 spa->spa_first_txg = txg;
2965 spa->spa_uberblock.ub_txg = txg - 1;
2966 spa->spa_uberblock.ub_version = version;
2967 spa->spa_ubsync = spa->spa_uberblock;
2970 * Create "The Godfather" zio to hold all async IOs
2972 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2973 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2976 * Create the root vdev.
2978 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2980 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2982 ASSERT(error != 0 || rvd != NULL);
2983 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2985 if (error == 0 && !zfs_allocatable_devs(nvroot))
2986 error = EINVAL;
2988 if (error == 0 &&
2989 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2990 (error = spa_validate_aux(spa, nvroot, txg,
2991 VDEV_ALLOC_ADD)) == 0) {
2992 for (int c = 0; c < rvd->vdev_children; c++) {
2993 vdev_metaslab_set_size(rvd->vdev_child[c]);
2994 vdev_expand(rvd->vdev_child[c], txg);
2998 spa_config_exit(spa, SCL_ALL, FTAG);
3000 if (error != 0) {
3001 spa_unload(spa);
3002 spa_deactivate(spa);
3003 spa_remove(spa);
3004 mutex_exit(&spa_namespace_lock);
3005 return (error);
3009 * Get the list of spares, if specified.
3011 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3012 &spares, &nspares) == 0) {
3013 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3014 KM_SLEEP) == 0);
3015 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3016 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3017 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3018 spa_load_spares(spa);
3019 spa_config_exit(spa, SCL_ALL, FTAG);
3020 spa->spa_spares.sav_sync = B_TRUE;
3024 * Get the list of level 2 cache devices, if specified.
3026 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3027 &l2cache, &nl2cache) == 0) {
3028 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3029 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3030 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3031 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3032 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3033 spa_load_l2cache(spa);
3034 spa_config_exit(spa, SCL_ALL, FTAG);
3035 spa->spa_l2cache.sav_sync = B_TRUE;
3038 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3039 spa->spa_meta_objset = dp->dp_meta_objset;
3042 * Create DDTs (dedup tables).
3044 ddt_create(spa);
3046 spa_update_dspace(spa);
3048 tx = dmu_tx_create_assigned(dp, txg);
3051 * Create the pool config object.
3053 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3054 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3055 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3057 if (zap_add(spa->spa_meta_objset,
3058 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3059 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3060 cmn_err(CE_PANIC, "failed to add pool config");
3063 if (zap_add(spa->spa_meta_objset,
3064 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3065 sizeof (uint64_t), 1, &version, tx) != 0) {
3066 cmn_err(CE_PANIC, "failed to add pool version");
3069 /* Newly created pools with the right version are always deflated. */
3070 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3071 spa->spa_deflate = TRUE;
3072 if (zap_add(spa->spa_meta_objset,
3073 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3074 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3075 cmn_err(CE_PANIC, "failed to add deflate");
3080 * Create the deferred-free bpobj. Turn off compression
3081 * because sync-to-convergence takes longer if the blocksize
3082 * keeps changing.
3084 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3085 dmu_object_set_compress(spa->spa_meta_objset, obj,
3086 ZIO_COMPRESS_OFF, tx);
3087 if (zap_add(spa->spa_meta_objset,
3088 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3089 sizeof (uint64_t), 1, &obj, tx) != 0) {
3090 cmn_err(CE_PANIC, "failed to add bpobj");
3092 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3093 spa->spa_meta_objset, obj));
3096 * Create the pool's history object.
3098 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3099 spa_history_create_obj(spa, tx);
3102 * Set pool properties.
3104 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3105 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3106 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3107 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3109 if (props != NULL) {
3110 spa_configfile_set(spa, props, B_FALSE);
3111 spa_sync_props(spa, props, tx);
3114 dmu_tx_commit(tx);
3116 spa->spa_sync_on = B_TRUE;
3117 txg_sync_start(spa->spa_dsl_pool);
3120 * We explicitly wait for the first transaction to complete so that our
3121 * bean counters are appropriately updated.
3123 txg_wait_synced(spa->spa_dsl_pool, txg);
3125 spa_config_sync(spa, B_FALSE, B_TRUE);
3127 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3128 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3129 spa_history_log_version(spa, LOG_POOL_CREATE);
3131 spa->spa_minref = refcount_count(&spa->spa_refcount);
3133 mutex_exit(&spa_namespace_lock);
3135 return (0);
3138 #ifdef _KERNEL
3140 * Get the root pool information from the root disk, then import the root pool
3141 * during the system boot up time.
3143 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3145 static nvlist_t *
3146 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3148 nvlist_t *config;
3149 nvlist_t *nvtop, *nvroot;
3150 uint64_t pgid;
3152 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3153 return (NULL);
3156 * Add this top-level vdev to the child array.
3158 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3159 &nvtop) == 0);
3160 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3161 &pgid) == 0);
3162 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3165 * Put this pool's top-level vdevs into a root vdev.
3167 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3168 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3169 VDEV_TYPE_ROOT) == 0);
3170 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3171 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3172 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3173 &nvtop, 1) == 0);
3176 * Replace the existing vdev_tree with the new root vdev in
3177 * this pool's configuration (remove the old, add the new).
3179 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3180 nvlist_free(nvroot);
3181 return (config);
3185 * Walk the vdev tree and see if we can find a device with "better"
3186 * configuration. A configuration is "better" if the label on that
3187 * device has a more recent txg.
3189 static void
3190 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3192 for (int c = 0; c < vd->vdev_children; c++)
3193 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3195 if (vd->vdev_ops->vdev_op_leaf) {
3196 nvlist_t *label;
3197 uint64_t label_txg;
3199 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3200 &label) != 0)
3201 return;
3203 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3204 &label_txg) == 0);
3207 * Do we have a better boot device?
3209 if (label_txg > *txg) {
3210 *txg = label_txg;
3211 *avd = vd;
3213 nvlist_free(label);
3218 * Import a root pool.
3220 * For x86. devpath_list will consist of devid and/or physpath name of
3221 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3222 * The GRUB "findroot" command will return the vdev we should boot.
3224 * For Sparc, devpath_list consists the physpath name of the booting device
3225 * no matter the rootpool is a single device pool or a mirrored pool.
3226 * e.g.
3227 * "/pci@1f,0/ide@d/disk@0,0:a"
3230 spa_import_rootpool(char *devpath, char *devid)
3232 spa_t *spa;
3233 vdev_t *rvd, *bvd, *avd = NULL;
3234 nvlist_t *config, *nvtop;
3235 uint64_t guid, txg;
3236 char *pname;
3237 int error;
3240 * Read the label from the boot device and generate a configuration.
3242 config = spa_generate_rootconf(devpath, devid, &guid);
3243 #if defined(_OBP) && defined(_KERNEL)
3244 if (config == NULL) {
3245 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3246 /* iscsi boot */
3247 get_iscsi_bootpath_phy(devpath);
3248 config = spa_generate_rootconf(devpath, devid, &guid);
3251 #endif
3252 if (config == NULL) {
3253 cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3254 devpath);
3255 return (EIO);
3258 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3259 &pname) == 0);
3260 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3262 mutex_enter(&spa_namespace_lock);
3263 if ((spa = spa_lookup(pname)) != NULL) {
3265 * Remove the existing root pool from the namespace so that we
3266 * can replace it with the correct config we just read in.
3268 spa_remove(spa);
3271 spa = spa_add(pname, config, NULL);
3272 spa->spa_is_root = B_TRUE;
3273 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3276 * Build up a vdev tree based on the boot device's label config.
3278 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3279 &nvtop) == 0);
3280 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3281 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3282 VDEV_ALLOC_ROOTPOOL);
3283 spa_config_exit(spa, SCL_ALL, FTAG);
3284 if (error) {
3285 mutex_exit(&spa_namespace_lock);
3286 nvlist_free(config);
3287 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3288 pname);
3289 return (error);
3293 * Get the boot vdev.
3295 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3296 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3297 (u_longlong_t)guid);
3298 error = ENOENT;
3299 goto out;
3303 * Determine if there is a better boot device.
3305 avd = bvd;
3306 spa_alt_rootvdev(rvd, &avd, &txg);
3307 if (avd != bvd) {
3308 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3309 "try booting from '%s'", avd->vdev_path);
3310 error = EINVAL;
3311 goto out;
3315 * If the boot device is part of a spare vdev then ensure that
3316 * we're booting off the active spare.
3318 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3319 !bvd->vdev_isspare) {
3320 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3321 "try booting from '%s'",
3322 bvd->vdev_parent->
3323 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3324 error = EINVAL;
3325 goto out;
3328 error = 0;
3329 spa_history_log_version(spa, LOG_POOL_IMPORT);
3330 out:
3331 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3332 vdev_free(rvd);
3333 spa_config_exit(spa, SCL_ALL, FTAG);
3334 mutex_exit(&spa_namespace_lock);
3336 nvlist_free(config);
3337 return (error);
3340 #endif
3343 * Import a non-root pool into the system.
3346 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3348 spa_t *spa;
3349 char *altroot = NULL;
3350 spa_load_state_t state = SPA_LOAD_IMPORT;
3351 zpool_rewind_policy_t policy;
3352 uint64_t mode = spa_mode_global;
3353 uint64_t readonly = B_FALSE;
3354 int error;
3355 nvlist_t *nvroot;
3356 nvlist_t **spares, **l2cache;
3357 uint_t nspares, nl2cache;
3360 * If a pool with this name exists, return failure.
3362 mutex_enter(&spa_namespace_lock);
3363 if (spa_lookup(pool) != NULL) {
3364 mutex_exit(&spa_namespace_lock);
3365 return (EEXIST);
3369 * Create and initialize the spa structure.
3371 (void) nvlist_lookup_string(props,
3372 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3373 (void) nvlist_lookup_uint64(props,
3374 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3375 if (readonly)
3376 mode = FREAD;
3377 spa = spa_add(pool, config, altroot);
3378 spa->spa_import_flags = flags;
3381 * Verbatim import - Take a pool and insert it into the namespace
3382 * as if it had been loaded at boot.
3384 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3385 if (props != NULL)
3386 spa_configfile_set(spa, props, B_FALSE);
3388 spa_config_sync(spa, B_FALSE, B_TRUE);
3390 mutex_exit(&spa_namespace_lock);
3391 spa_history_log_version(spa, LOG_POOL_IMPORT);
3393 return (0);
3396 spa_activate(spa, mode);
3399 * Don't start async tasks until we know everything is healthy.
3401 spa_async_suspend(spa);
3403 zpool_get_rewind_policy(config, &policy);
3404 if (policy.zrp_request & ZPOOL_DO_REWIND)
3405 state = SPA_LOAD_RECOVER;
3408 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3409 * because the user-supplied config is actually the one to trust when
3410 * doing an import.
3412 if (state != SPA_LOAD_RECOVER)
3413 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3415 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3416 policy.zrp_request);
3419 * Propagate anything learned while loading the pool and pass it
3420 * back to caller (i.e. rewind info, missing devices, etc).
3422 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3423 spa->spa_load_info) == 0);
3425 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3427 * Toss any existing sparelist, as it doesn't have any validity
3428 * anymore, and conflicts with spa_has_spare().
3430 if (spa->spa_spares.sav_config) {
3431 nvlist_free(spa->spa_spares.sav_config);
3432 spa->spa_spares.sav_config = NULL;
3433 spa_load_spares(spa);
3435 if (spa->spa_l2cache.sav_config) {
3436 nvlist_free(spa->spa_l2cache.sav_config);
3437 spa->spa_l2cache.sav_config = NULL;
3438 spa_load_l2cache(spa);
3441 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3442 &nvroot) == 0);
3443 if (error == 0)
3444 error = spa_validate_aux(spa, nvroot, -1ULL,
3445 VDEV_ALLOC_SPARE);
3446 if (error == 0)
3447 error = spa_validate_aux(spa, nvroot, -1ULL,
3448 VDEV_ALLOC_L2CACHE);
3449 spa_config_exit(spa, SCL_ALL, FTAG);
3451 if (props != NULL)
3452 spa_configfile_set(spa, props, B_FALSE);
3454 if (error != 0 || (props && spa_writeable(spa) &&
3455 (error = spa_prop_set(spa, props)))) {
3456 spa_unload(spa);
3457 spa_deactivate(spa);
3458 spa_remove(spa);
3459 mutex_exit(&spa_namespace_lock);
3460 return (error);
3463 spa_async_resume(spa);
3466 * Override any spares and level 2 cache devices as specified by
3467 * the user, as these may have correct device names/devids, etc.
3469 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3470 &spares, &nspares) == 0) {
3471 if (spa->spa_spares.sav_config)
3472 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3473 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3474 else
3475 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3476 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3477 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3478 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3480 spa_load_spares(spa);
3481 spa_config_exit(spa, SCL_ALL, FTAG);
3482 spa->spa_spares.sav_sync = B_TRUE;
3484 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3485 &l2cache, &nl2cache) == 0) {
3486 if (spa->spa_l2cache.sav_config)
3487 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3488 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3489 else
3490 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3491 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3492 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3493 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3495 spa_load_l2cache(spa);
3496 spa_config_exit(spa, SCL_ALL, FTAG);
3497 spa->spa_l2cache.sav_sync = B_TRUE;
3501 * Check for any removed devices.
3503 if (spa->spa_autoreplace) {
3504 spa_aux_check_removed(&spa->spa_spares);
3505 spa_aux_check_removed(&spa->spa_l2cache);
3508 if (spa_writeable(spa)) {
3510 * Update the config cache to include the newly-imported pool.
3512 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3516 * It's possible that the pool was expanded while it was exported.
3517 * We kick off an async task to handle this for us.
3519 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3521 mutex_exit(&spa_namespace_lock);
3522 spa_history_log_version(spa, LOG_POOL_IMPORT);
3524 return (0);
3527 nvlist_t *
3528 spa_tryimport(nvlist_t *tryconfig)
3530 nvlist_t *config = NULL;
3531 char *poolname;
3532 spa_t *spa;
3533 uint64_t state;
3534 int error;
3536 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3537 return (NULL);
3539 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3540 return (NULL);
3543 * Create and initialize the spa structure.
3545 mutex_enter(&spa_namespace_lock);
3546 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3547 spa_activate(spa, FREAD);
3550 * Pass off the heavy lifting to spa_load().
3551 * Pass TRUE for mosconfig because the user-supplied config
3552 * is actually the one to trust when doing an import.
3554 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3557 * If 'tryconfig' was at least parsable, return the current config.
3559 if (spa->spa_root_vdev != NULL) {
3560 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3561 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3562 poolname) == 0);
3563 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3564 state) == 0);
3565 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3566 spa->spa_uberblock.ub_timestamp) == 0);
3569 * If the bootfs property exists on this pool then we
3570 * copy it out so that external consumers can tell which
3571 * pools are bootable.
3573 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3574 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3577 * We have to play games with the name since the
3578 * pool was opened as TRYIMPORT_NAME.
3580 if (dsl_dsobj_to_dsname(spa_name(spa),
3581 spa->spa_bootfs, tmpname) == 0) {
3582 char *cp;
3583 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3585 cp = strchr(tmpname, '/');
3586 if (cp == NULL) {
3587 (void) strlcpy(dsname, tmpname,
3588 MAXPATHLEN);
3589 } else {
3590 (void) snprintf(dsname, MAXPATHLEN,
3591 "%s/%s", poolname, ++cp);
3593 VERIFY(nvlist_add_string(config,
3594 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3595 kmem_free(dsname, MAXPATHLEN);
3597 kmem_free(tmpname, MAXPATHLEN);
3601 * Add the list of hot spares and level 2 cache devices.
3603 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3604 spa_add_spares(spa, config);
3605 spa_add_l2cache(spa, config);
3606 spa_config_exit(spa, SCL_CONFIG, FTAG);
3609 spa_unload(spa);
3610 spa_deactivate(spa);
3611 spa_remove(spa);
3612 mutex_exit(&spa_namespace_lock);
3614 return (config);
3618 * Pool export/destroy
3620 * The act of destroying or exporting a pool is very simple. We make sure there
3621 * is no more pending I/O and any references to the pool are gone. Then, we
3622 * update the pool state and sync all the labels to disk, removing the
3623 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3624 * we don't sync the labels or remove the configuration cache.
3626 static int
3627 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3628 boolean_t force, boolean_t hardforce)
3630 spa_t *spa;
3632 if (oldconfig)
3633 *oldconfig = NULL;
3635 if (!(spa_mode_global & FWRITE))
3636 return (EROFS);
3638 mutex_enter(&spa_namespace_lock);
3639 if ((spa = spa_lookup(pool)) == NULL) {
3640 mutex_exit(&spa_namespace_lock);
3641 return (ENOENT);
3645 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3646 * reacquire the namespace lock, and see if we can export.
3648 spa_open_ref(spa, FTAG);
3649 mutex_exit(&spa_namespace_lock);
3650 spa_async_suspend(spa);
3651 mutex_enter(&spa_namespace_lock);
3652 spa_close(spa, FTAG);
3655 * The pool will be in core if it's openable,
3656 * in which case we can modify its state.
3658 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3660 * Objsets may be open only because they're dirty, so we
3661 * have to force it to sync before checking spa_refcnt.
3663 txg_wait_synced(spa->spa_dsl_pool, 0);
3666 * A pool cannot be exported or destroyed if there are active
3667 * references. If we are resetting a pool, allow references by
3668 * fault injection handlers.
3670 if (!spa_refcount_zero(spa) ||
3671 (spa->spa_inject_ref != 0 &&
3672 new_state != POOL_STATE_UNINITIALIZED)) {
3673 spa_async_resume(spa);
3674 mutex_exit(&spa_namespace_lock);
3675 return (EBUSY);
3679 * A pool cannot be exported if it has an active shared spare.
3680 * This is to prevent other pools stealing the active spare
3681 * from an exported pool. At user's own will, such pool can
3682 * be forcedly exported.
3684 if (!force && new_state == POOL_STATE_EXPORTED &&
3685 spa_has_active_shared_spare(spa)) {
3686 spa_async_resume(spa);
3687 mutex_exit(&spa_namespace_lock);
3688 return (EXDEV);
3692 * We want this to be reflected on every label,
3693 * so mark them all dirty. spa_unload() will do the
3694 * final sync that pushes these changes out.
3696 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3697 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3698 spa->spa_state = new_state;
3699 spa->spa_final_txg = spa_last_synced_txg(spa) +
3700 TXG_DEFER_SIZE + 1;
3701 vdev_config_dirty(spa->spa_root_vdev);
3702 spa_config_exit(spa, SCL_ALL, FTAG);
3706 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3708 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3709 spa_unload(spa);
3710 spa_deactivate(spa);
3713 if (oldconfig && spa->spa_config)
3714 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3716 if (new_state != POOL_STATE_UNINITIALIZED) {
3717 if (!hardforce)
3718 spa_config_sync(spa, B_TRUE, B_TRUE);
3719 spa_remove(spa);
3721 mutex_exit(&spa_namespace_lock);
3723 return (0);
3727 * Destroy a storage pool.
3730 spa_destroy(char *pool)
3732 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3733 B_FALSE, B_FALSE));
3737 * Export a storage pool.
3740 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3741 boolean_t hardforce)
3743 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3744 force, hardforce));
3748 * Similar to spa_export(), this unloads the spa_t without actually removing it
3749 * from the namespace in any way.
3752 spa_reset(char *pool)
3754 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3755 B_FALSE, B_FALSE));
3759 * ==========================================================================
3760 * Device manipulation
3761 * ==========================================================================
3765 * Add a device to a storage pool.
3768 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3770 uint64_t txg, id;
3771 int error;
3772 vdev_t *rvd = spa->spa_root_vdev;
3773 vdev_t *vd, *tvd;
3774 nvlist_t **spares, **l2cache;
3775 uint_t nspares, nl2cache;
3777 ASSERT(spa_writeable(spa));
3779 txg = spa_vdev_enter(spa);
3781 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3782 VDEV_ALLOC_ADD)) != 0)
3783 return (spa_vdev_exit(spa, NULL, txg, error));
3785 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
3787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3788 &nspares) != 0)
3789 nspares = 0;
3791 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3792 &nl2cache) != 0)
3793 nl2cache = 0;
3795 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3796 return (spa_vdev_exit(spa, vd, txg, EINVAL));
3798 if (vd->vdev_children != 0 &&
3799 (error = vdev_create(vd, txg, B_FALSE)) != 0)
3800 return (spa_vdev_exit(spa, vd, txg, error));
3803 * We must validate the spares and l2cache devices after checking the
3804 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
3806 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3807 return (spa_vdev_exit(spa, vd, txg, error));
3810 * Transfer each new top-level vdev from vd to rvd.
3812 for (int c = 0; c < vd->vdev_children; c++) {
3815 * Set the vdev id to the first hole, if one exists.
3817 for (id = 0; id < rvd->vdev_children; id++) {
3818 if (rvd->vdev_child[id]->vdev_ishole) {
3819 vdev_free(rvd->vdev_child[id]);
3820 break;
3823 tvd = vd->vdev_child[c];
3824 vdev_remove_child(vd, tvd);
3825 tvd->vdev_id = id;
3826 vdev_add_child(rvd, tvd);
3827 vdev_config_dirty(tvd);
3830 if (nspares != 0) {
3831 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3832 ZPOOL_CONFIG_SPARES);
3833 spa_load_spares(spa);
3834 spa->spa_spares.sav_sync = B_TRUE;
3837 if (nl2cache != 0) {
3838 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3839 ZPOOL_CONFIG_L2CACHE);
3840 spa_load_l2cache(spa);
3841 spa->spa_l2cache.sav_sync = B_TRUE;
3845 * We have to be careful when adding new vdevs to an existing pool.
3846 * If other threads start allocating from these vdevs before we
3847 * sync the config cache, and we lose power, then upon reboot we may
3848 * fail to open the pool because there are DVAs that the config cache
3849 * can't translate. Therefore, we first add the vdevs without
3850 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3851 * and then let spa_config_update() initialize the new metaslabs.
3853 * spa_load() checks for added-but-not-initialized vdevs, so that
3854 * if we lose power at any point in this sequence, the remaining
3855 * steps will be completed the next time we load the pool.
3857 (void) spa_vdev_exit(spa, vd, txg, 0);
3859 mutex_enter(&spa_namespace_lock);
3860 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3861 mutex_exit(&spa_namespace_lock);
3863 return (0);
3867 * Attach a device to a mirror. The arguments are the path to any device
3868 * in the mirror, and the nvroot for the new device. If the path specifies
3869 * a device that is not mirrored, we automatically insert the mirror vdev.
3871 * If 'replacing' is specified, the new device is intended to replace the
3872 * existing device; in this case the two devices are made into their own
3873 * mirror using the 'replacing' vdev, which is functionally identical to
3874 * the mirror vdev (it actually reuses all the same ops) but has a few
3875 * extra rules: you can't attach to it after it's been created, and upon
3876 * completion of resilvering, the first disk (the one being replaced)
3877 * is automatically detached.
3880 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3882 uint64_t txg, dtl_max_txg;
3883 vdev_t *rvd = spa->spa_root_vdev;
3884 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3885 vdev_ops_t *pvops;
3886 char *oldvdpath, *newvdpath;
3887 int newvd_isspare;
3888 int error;
3890 ASSERT(spa_writeable(spa));
3892 txg = spa_vdev_enter(spa);
3894 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3896 if (oldvd == NULL)
3897 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3899 if (!oldvd->vdev_ops->vdev_op_leaf)
3900 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3902 pvd = oldvd->vdev_parent;
3904 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3905 VDEV_ALLOC_ATTACH)) != 0)
3906 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3908 if (newrootvd->vdev_children != 1)
3909 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3911 newvd = newrootvd->vdev_child[0];
3913 if (!newvd->vdev_ops->vdev_op_leaf)
3914 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3916 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3917 return (spa_vdev_exit(spa, newrootvd, txg, error));
3920 * Spares can't replace logs
3922 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3923 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3925 if (!replacing) {
3927 * For attach, the only allowable parent is a mirror or the root
3928 * vdev.
3930 if (pvd->vdev_ops != &vdev_mirror_ops &&
3931 pvd->vdev_ops != &vdev_root_ops)
3932 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3934 pvops = &vdev_mirror_ops;
3935 } else {
3937 * Active hot spares can only be replaced by inactive hot
3938 * spares.
3940 if (pvd->vdev_ops == &vdev_spare_ops &&
3941 oldvd->vdev_isspare &&
3942 !spa_has_spare(spa, newvd->vdev_guid))
3943 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3946 * If the source is a hot spare, and the parent isn't already a
3947 * spare, then we want to create a new hot spare. Otherwise, we
3948 * want to create a replacing vdev. The user is not allowed to
3949 * attach to a spared vdev child unless the 'isspare' state is
3950 * the same (spare replaces spare, non-spare replaces
3951 * non-spare).
3953 if (pvd->vdev_ops == &vdev_replacing_ops &&
3954 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3955 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3956 } else if (pvd->vdev_ops == &vdev_spare_ops &&
3957 newvd->vdev_isspare != oldvd->vdev_isspare) {
3958 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3961 if (newvd->vdev_isspare)
3962 pvops = &vdev_spare_ops;
3963 else
3964 pvops = &vdev_replacing_ops;
3968 * Make sure the new device is big enough.
3970 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3971 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3974 * The new device cannot have a higher alignment requirement
3975 * than the top-level vdev.
3977 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3978 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3981 * If this is an in-place replacement, update oldvd's path and devid
3982 * to make it distinguishable from newvd, and unopenable from now on.
3984 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3985 spa_strfree(oldvd->vdev_path);
3986 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3987 KM_SLEEP);
3988 (void) sprintf(oldvd->vdev_path, "%s/%s",
3989 newvd->vdev_path, "old");
3990 if (oldvd->vdev_devid != NULL) {
3991 spa_strfree(oldvd->vdev_devid);
3992 oldvd->vdev_devid = NULL;
3996 /* mark the device being resilvered */
3997 newvd->vdev_resilvering = B_TRUE;
4000 * If the parent is not a mirror, or if we're replacing, insert the new
4001 * mirror/replacing/spare vdev above oldvd.
4003 if (pvd->vdev_ops != pvops)
4004 pvd = vdev_add_parent(oldvd, pvops);
4006 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4007 ASSERT(pvd->vdev_ops == pvops);
4008 ASSERT(oldvd->vdev_parent == pvd);
4011 * Extract the new device from its root and add it to pvd.
4013 vdev_remove_child(newrootvd, newvd);
4014 newvd->vdev_id = pvd->vdev_children;
4015 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4016 vdev_add_child(pvd, newvd);
4018 tvd = newvd->vdev_top;
4019 ASSERT(pvd->vdev_top == tvd);
4020 ASSERT(tvd->vdev_parent == rvd);
4022 vdev_config_dirty(tvd);
4025 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4026 * for any dmu_sync-ed blocks. It will propagate upward when
4027 * spa_vdev_exit() calls vdev_dtl_reassess().
4029 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4031 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4032 dtl_max_txg - TXG_INITIAL);
4034 if (newvd->vdev_isspare) {
4035 spa_spare_activate(newvd);
4036 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4039 oldvdpath = spa_strdup(oldvd->vdev_path);
4040 newvdpath = spa_strdup(newvd->vdev_path);
4041 newvd_isspare = newvd->vdev_isspare;
4044 * Mark newvd's DTL dirty in this txg.
4046 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4049 * Restart the resilver
4051 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4054 * Commit the config
4056 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4058 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4059 "%s vdev=%s %s vdev=%s",
4060 replacing && newvd_isspare ? "spare in" :
4061 replacing ? "replace" : "attach", newvdpath,
4062 replacing ? "for" : "to", oldvdpath);
4064 spa_strfree(oldvdpath);
4065 spa_strfree(newvdpath);
4067 if (spa->spa_bootfs)
4068 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4070 return (0);
4074 * Detach a device from a mirror or replacing vdev.
4075 * If 'replace_done' is specified, only detach if the parent
4076 * is a replacing vdev.
4079 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4081 uint64_t txg;
4082 int error;
4083 vdev_t *rvd = spa->spa_root_vdev;
4084 vdev_t *vd, *pvd, *cvd, *tvd;
4085 boolean_t unspare = B_FALSE;
4086 uint64_t unspare_guid;
4087 char *vdpath;
4089 ASSERT(spa_writeable(spa));
4091 txg = spa_vdev_enter(spa);
4093 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4095 if (vd == NULL)
4096 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4098 if (!vd->vdev_ops->vdev_op_leaf)
4099 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4101 pvd = vd->vdev_parent;
4104 * If the parent/child relationship is not as expected, don't do it.
4105 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4106 * vdev that's replacing B with C. The user's intent in replacing
4107 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4108 * the replace by detaching C, the expected behavior is to end up
4109 * M(A,B). But suppose that right after deciding to detach C,
4110 * the replacement of B completes. We would have M(A,C), and then
4111 * ask to detach C, which would leave us with just A -- not what
4112 * the user wanted. To prevent this, we make sure that the
4113 * parent/child relationship hasn't changed -- in this example,
4114 * that C's parent is still the replacing vdev R.
4116 if (pvd->vdev_guid != pguid && pguid != 0)
4117 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4120 * Only 'replacing' or 'spare' vdevs can be replaced.
4122 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4123 pvd->vdev_ops != &vdev_spare_ops)
4124 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4126 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4127 spa_version(spa) >= SPA_VERSION_SPARES);
4130 * Only mirror, replacing, and spare vdevs support detach.
4132 if (pvd->vdev_ops != &vdev_replacing_ops &&
4133 pvd->vdev_ops != &vdev_mirror_ops &&
4134 pvd->vdev_ops != &vdev_spare_ops)
4135 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4138 * If this device has the only valid copy of some data,
4139 * we cannot safely detach it.
4141 if (vdev_dtl_required(vd))
4142 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4144 ASSERT(pvd->vdev_children >= 2);
4147 * If we are detaching the second disk from a replacing vdev, then
4148 * check to see if we changed the original vdev's path to have "/old"
4149 * at the end in spa_vdev_attach(). If so, undo that change now.
4151 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4152 vd->vdev_path != NULL) {
4153 size_t len = strlen(vd->vdev_path);
4155 for (int c = 0; c < pvd->vdev_children; c++) {
4156 cvd = pvd->vdev_child[c];
4158 if (cvd == vd || cvd->vdev_path == NULL)
4159 continue;
4161 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4162 strcmp(cvd->vdev_path + len, "/old") == 0) {
4163 spa_strfree(cvd->vdev_path);
4164 cvd->vdev_path = spa_strdup(vd->vdev_path);
4165 break;
4171 * If we are detaching the original disk from a spare, then it implies
4172 * that the spare should become a real disk, and be removed from the
4173 * active spare list for the pool.
4175 if (pvd->vdev_ops == &vdev_spare_ops &&
4176 vd->vdev_id == 0 &&
4177 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4178 unspare = B_TRUE;
4181 * Erase the disk labels so the disk can be used for other things.
4182 * This must be done after all other error cases are handled,
4183 * but before we disembowel vd (so we can still do I/O to it).
4184 * But if we can't do it, don't treat the error as fatal --
4185 * it may be that the unwritability of the disk is the reason
4186 * it's being detached!
4188 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4191 * Remove vd from its parent and compact the parent's children.
4193 vdev_remove_child(pvd, vd);
4194 vdev_compact_children(pvd);
4197 * Remember one of the remaining children so we can get tvd below.
4199 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4202 * If we need to remove the remaining child from the list of hot spares,
4203 * do it now, marking the vdev as no longer a spare in the process.
4204 * We must do this before vdev_remove_parent(), because that can
4205 * change the GUID if it creates a new toplevel GUID. For a similar
4206 * reason, we must remove the spare now, in the same txg as the detach;
4207 * otherwise someone could attach a new sibling, change the GUID, and
4208 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4210 if (unspare) {
4211 ASSERT(cvd->vdev_isspare);
4212 spa_spare_remove(cvd);
4213 unspare_guid = cvd->vdev_guid;
4214 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4215 cvd->vdev_unspare = B_TRUE;
4219 * If the parent mirror/replacing vdev only has one child,
4220 * the parent is no longer needed. Remove it from the tree.
4222 if (pvd->vdev_children == 1) {
4223 if (pvd->vdev_ops == &vdev_spare_ops)
4224 cvd->vdev_unspare = B_FALSE;
4225 vdev_remove_parent(cvd);
4226 cvd->vdev_resilvering = B_FALSE;
4231 * We don't set tvd until now because the parent we just removed
4232 * may have been the previous top-level vdev.
4234 tvd = cvd->vdev_top;
4235 ASSERT(tvd->vdev_parent == rvd);
4238 * Reevaluate the parent vdev state.
4240 vdev_propagate_state(cvd);
4243 * If the 'autoexpand' property is set on the pool then automatically
4244 * try to expand the size of the pool. For example if the device we
4245 * just detached was smaller than the others, it may be possible to
4246 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4247 * first so that we can obtain the updated sizes of the leaf vdevs.
4249 if (spa->spa_autoexpand) {
4250 vdev_reopen(tvd);
4251 vdev_expand(tvd, txg);
4254 vdev_config_dirty(tvd);
4257 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4258 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4259 * But first make sure we're not on any *other* txg's DTL list, to
4260 * prevent vd from being accessed after it's freed.
4262 vdpath = spa_strdup(vd->vdev_path);
4263 for (int t = 0; t < TXG_SIZE; t++)
4264 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4265 vd->vdev_detached = B_TRUE;
4266 vdev_dirty(tvd, VDD_DTL, vd, txg);
4268 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4270 /* hang on to the spa before we release the lock */
4271 spa_open_ref(spa, FTAG);
4273 error = spa_vdev_exit(spa, vd, txg, 0);
4275 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4276 "vdev=%s", vdpath);
4277 spa_strfree(vdpath);
4280 * If this was the removal of the original device in a hot spare vdev,
4281 * then we want to go through and remove the device from the hot spare
4282 * list of every other pool.
4284 if (unspare) {
4285 spa_t *altspa = NULL;
4287 mutex_enter(&spa_namespace_lock);
4288 while ((altspa = spa_next(altspa)) != NULL) {
4289 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4290 altspa == spa)
4291 continue;
4293 spa_open_ref(altspa, FTAG);
4294 mutex_exit(&spa_namespace_lock);
4295 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4296 mutex_enter(&spa_namespace_lock);
4297 spa_close(altspa, FTAG);
4299 mutex_exit(&spa_namespace_lock);
4301 /* search the rest of the vdevs for spares to remove */
4302 spa_vdev_resilver_done(spa);
4305 /* all done with the spa; OK to release */
4306 mutex_enter(&spa_namespace_lock);
4307 spa_close(spa, FTAG);
4308 mutex_exit(&spa_namespace_lock);
4310 return (error);
4314 * Split a set of devices from their mirrors, and create a new pool from them.
4317 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4318 nvlist_t *props, boolean_t exp)
4320 int error = 0;
4321 uint64_t txg, *glist;
4322 spa_t *newspa;
4323 uint_t c, children, lastlog;
4324 nvlist_t **child, *nvl, *tmp;
4325 dmu_tx_t *tx;
4326 char *altroot = NULL;
4327 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4328 boolean_t activate_slog;
4330 ASSERT(spa_writeable(spa));
4332 txg = spa_vdev_enter(spa);
4334 /* clear the log and flush everything up to now */
4335 activate_slog = spa_passivate_log(spa);
4336 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4337 error = spa_offline_log(spa);
4338 txg = spa_vdev_config_enter(spa);
4340 if (activate_slog)
4341 spa_activate_log(spa);
4343 if (error != 0)
4344 return (spa_vdev_exit(spa, NULL, txg, error));
4346 /* check new spa name before going any further */
4347 if (spa_lookup(newname) != NULL)
4348 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4351 * scan through all the children to ensure they're all mirrors
4353 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4354 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4355 &children) != 0)
4356 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4358 /* first, check to ensure we've got the right child count */
4359 rvd = spa->spa_root_vdev;
4360 lastlog = 0;
4361 for (c = 0; c < rvd->vdev_children; c++) {
4362 vdev_t *vd = rvd->vdev_child[c];
4364 /* don't count the holes & logs as children */
4365 if (vd->vdev_islog || vd->vdev_ishole) {
4366 if (lastlog == 0)
4367 lastlog = c;
4368 continue;
4371 lastlog = 0;
4373 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4374 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4376 /* next, ensure no spare or cache devices are part of the split */
4377 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4378 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4379 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4381 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4382 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4384 /* then, loop over each vdev and validate it */
4385 for (c = 0; c < children; c++) {
4386 uint64_t is_hole = 0;
4388 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4389 &is_hole);
4391 if (is_hole != 0) {
4392 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4393 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4394 continue;
4395 } else {
4396 error = EINVAL;
4397 break;
4401 /* which disk is going to be split? */
4402 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4403 &glist[c]) != 0) {
4404 error = EINVAL;
4405 break;
4408 /* look it up in the spa */
4409 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4410 if (vml[c] == NULL) {
4411 error = ENODEV;
4412 break;
4415 /* make sure there's nothing stopping the split */
4416 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4417 vml[c]->vdev_islog ||
4418 vml[c]->vdev_ishole ||
4419 vml[c]->vdev_isspare ||
4420 vml[c]->vdev_isl2cache ||
4421 !vdev_writeable(vml[c]) ||
4422 vml[c]->vdev_children != 0 ||
4423 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4424 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4425 error = EINVAL;
4426 break;
4429 if (vdev_dtl_required(vml[c])) {
4430 error = EBUSY;
4431 break;
4434 /* we need certain info from the top level */
4435 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4436 vml[c]->vdev_top->vdev_ms_array) == 0);
4437 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4438 vml[c]->vdev_top->vdev_ms_shift) == 0);
4439 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4440 vml[c]->vdev_top->vdev_asize) == 0);
4441 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4442 vml[c]->vdev_top->vdev_ashift) == 0);
4445 if (error != 0) {
4446 kmem_free(vml, children * sizeof (vdev_t *));
4447 kmem_free(glist, children * sizeof (uint64_t));
4448 return (spa_vdev_exit(spa, NULL, txg, error));
4451 /* stop writers from using the disks */
4452 for (c = 0; c < children; c++) {
4453 if (vml[c] != NULL)
4454 vml[c]->vdev_offline = B_TRUE;
4456 vdev_reopen(spa->spa_root_vdev);
4459 * Temporarily record the splitting vdevs in the spa config. This
4460 * will disappear once the config is regenerated.
4462 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4463 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4464 glist, children) == 0);
4465 kmem_free(glist, children * sizeof (uint64_t));
4467 mutex_enter(&spa->spa_props_lock);
4468 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4469 nvl) == 0);
4470 mutex_exit(&spa->spa_props_lock);
4471 spa->spa_config_splitting = nvl;
4472 vdev_config_dirty(spa->spa_root_vdev);
4474 /* configure and create the new pool */
4475 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4476 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4477 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4478 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4479 spa_version(spa)) == 0);
4480 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4481 spa->spa_config_txg) == 0);
4482 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4483 spa_generate_guid(NULL)) == 0);
4484 (void) nvlist_lookup_string(props,
4485 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4487 /* add the new pool to the namespace */
4488 newspa = spa_add(newname, config, altroot);
4489 newspa->spa_config_txg = spa->spa_config_txg;
4490 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4492 /* release the spa config lock, retaining the namespace lock */
4493 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4495 if (zio_injection_enabled)
4496 zio_handle_panic_injection(spa, FTAG, 1);
4498 spa_activate(newspa, spa_mode_global);
4499 spa_async_suspend(newspa);
4501 /* create the new pool from the disks of the original pool */
4502 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4503 if (error)
4504 goto out;
4506 /* if that worked, generate a real config for the new pool */
4507 if (newspa->spa_root_vdev != NULL) {
4508 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4509 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4510 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4511 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4512 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4513 B_TRUE));
4516 /* set the props */
4517 if (props != NULL) {
4518 spa_configfile_set(newspa, props, B_FALSE);
4519 error = spa_prop_set(newspa, props);
4520 if (error)
4521 goto out;
4524 /* flush everything */
4525 txg = spa_vdev_config_enter(newspa);
4526 vdev_config_dirty(newspa->spa_root_vdev);
4527 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4529 if (zio_injection_enabled)
4530 zio_handle_panic_injection(spa, FTAG, 2);
4532 spa_async_resume(newspa);
4534 /* finally, update the original pool's config */
4535 txg = spa_vdev_config_enter(spa);
4536 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4537 error = dmu_tx_assign(tx, TXG_WAIT);
4538 if (error != 0)
4539 dmu_tx_abort(tx);
4540 for (c = 0; c < children; c++) {
4541 if (vml[c] != NULL) {
4542 vdev_split(vml[c]);
4543 if (error == 0)
4544 spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4545 spa, tx, "vdev=%s",
4546 vml[c]->vdev_path);
4547 vdev_free(vml[c]);
4550 vdev_config_dirty(spa->spa_root_vdev);
4551 spa->spa_config_splitting = NULL;
4552 nvlist_free(nvl);
4553 if (error == 0)
4554 dmu_tx_commit(tx);
4555 (void) spa_vdev_exit(spa, NULL, txg, 0);
4557 if (zio_injection_enabled)
4558 zio_handle_panic_injection(spa, FTAG, 3);
4560 /* split is complete; log a history record */
4561 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4562 "split new pool %s from pool %s", newname, spa_name(spa));
4564 kmem_free(vml, children * sizeof (vdev_t *));
4566 /* if we're not going to mount the filesystems in userland, export */
4567 if (exp)
4568 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4569 B_FALSE, B_FALSE);
4571 return (error);
4573 out:
4574 spa_unload(newspa);
4575 spa_deactivate(newspa);
4576 spa_remove(newspa);
4578 txg = spa_vdev_config_enter(spa);
4580 /* re-online all offlined disks */
4581 for (c = 0; c < children; c++) {
4582 if (vml[c] != NULL)
4583 vml[c]->vdev_offline = B_FALSE;
4585 vdev_reopen(spa->spa_root_vdev);
4587 nvlist_free(spa->spa_config_splitting);
4588 spa->spa_config_splitting = NULL;
4589 (void) spa_vdev_exit(spa, NULL, txg, error);
4591 kmem_free(vml, children * sizeof (vdev_t *));
4592 return (error);
4595 static nvlist_t *
4596 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4598 for (int i = 0; i < count; i++) {
4599 uint64_t guid;
4601 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4602 &guid) == 0);
4604 if (guid == target_guid)
4605 return (nvpp[i]);
4608 return (NULL);
4611 static void
4612 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4613 nvlist_t *dev_to_remove)
4615 nvlist_t **newdev = NULL;
4617 if (count > 1)
4618 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4620 for (int i = 0, j = 0; i < count; i++) {
4621 if (dev[i] == dev_to_remove)
4622 continue;
4623 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4626 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4627 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4629 for (int i = 0; i < count - 1; i++)
4630 nvlist_free(newdev[i]);
4632 if (count > 1)
4633 kmem_free(newdev, (count - 1) * sizeof (void *));
4637 * Evacuate the device.
4639 static int
4640 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4642 uint64_t txg;
4643 int error = 0;
4645 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4646 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4647 ASSERT(vd == vd->vdev_top);
4650 * Evacuate the device. We don't hold the config lock as writer
4651 * since we need to do I/O but we do keep the
4652 * spa_namespace_lock held. Once this completes the device
4653 * should no longer have any blocks allocated on it.
4655 if (vd->vdev_islog) {
4656 if (vd->vdev_stat.vs_alloc != 0)
4657 error = spa_offline_log(spa);
4658 } else {
4659 error = ENOTSUP;
4662 if (error)
4663 return (error);
4666 * The evacuation succeeded. Remove any remaining MOS metadata
4667 * associated with this vdev, and wait for these changes to sync.
4669 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4670 txg = spa_vdev_config_enter(spa);
4671 vd->vdev_removing = B_TRUE;
4672 vdev_dirty(vd, 0, NULL, txg);
4673 vdev_config_dirty(vd);
4674 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4676 return (0);
4680 * Complete the removal by cleaning up the namespace.
4682 static void
4683 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4685 vdev_t *rvd = spa->spa_root_vdev;
4686 uint64_t id = vd->vdev_id;
4687 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4689 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4690 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4691 ASSERT(vd == vd->vdev_top);
4694 * Only remove any devices which are empty.
4696 if (vd->vdev_stat.vs_alloc != 0)
4697 return;
4699 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4701 if (list_link_active(&vd->vdev_state_dirty_node))
4702 vdev_state_clean(vd);
4703 if (list_link_active(&vd->vdev_config_dirty_node))
4704 vdev_config_clean(vd);
4706 vdev_free(vd);
4708 if (last_vdev) {
4709 vdev_compact_children(rvd);
4710 } else {
4711 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4712 vdev_add_child(rvd, vd);
4714 vdev_config_dirty(rvd);
4717 * Reassess the health of our root vdev.
4719 vdev_reopen(rvd);
4723 * Remove a device from the pool -
4725 * Removing a device from the vdev namespace requires several steps
4726 * and can take a significant amount of time. As a result we use
4727 * the spa_vdev_config_[enter/exit] functions which allow us to
4728 * grab and release the spa_config_lock while still holding the namespace
4729 * lock. During each step the configuration is synced out.
4733 * Remove a device from the pool. Currently, this supports removing only hot
4734 * spares, slogs, and level 2 ARC devices.
4737 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4739 vdev_t *vd;
4740 metaslab_group_t *mg;
4741 nvlist_t **spares, **l2cache, *nv;
4742 uint64_t txg = 0;
4743 uint_t nspares, nl2cache;
4744 int error = 0;
4745 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4747 ASSERT(spa_writeable(spa));
4749 if (!locked)
4750 txg = spa_vdev_enter(spa);
4752 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4754 if (spa->spa_spares.sav_vdevs != NULL &&
4755 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4756 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4757 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4759 * Only remove the hot spare if it's not currently in use
4760 * in this pool.
4762 if (vd == NULL || unspare) {
4763 spa_vdev_remove_aux(spa->spa_spares.sav_config,
4764 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4765 spa_load_spares(spa);
4766 spa->spa_spares.sav_sync = B_TRUE;
4767 } else {
4768 error = EBUSY;
4770 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
4771 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4772 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4773 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4775 * Cache devices can always be removed.
4777 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4778 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4779 spa_load_l2cache(spa);
4780 spa->spa_l2cache.sav_sync = B_TRUE;
4781 } else if (vd != NULL && vd->vdev_islog) {
4782 ASSERT(!locked);
4783 ASSERT(vd == vd->vdev_top);
4786 * XXX - Once we have bp-rewrite this should
4787 * become the common case.
4790 mg = vd->vdev_mg;
4793 * Stop allocating from this vdev.
4795 metaslab_group_passivate(mg);
4798 * Wait for the youngest allocations and frees to sync,
4799 * and then wait for the deferral of those frees to finish.
4801 spa_vdev_config_exit(spa, NULL,
4802 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4805 * Attempt to evacuate the vdev.
4807 error = spa_vdev_remove_evacuate(spa, vd);
4809 txg = spa_vdev_config_enter(spa);
4812 * If we couldn't evacuate the vdev, unwind.
4814 if (error) {
4815 metaslab_group_activate(mg);
4816 return (spa_vdev_exit(spa, NULL, txg, error));
4820 * Clean up the vdev namespace.
4822 spa_vdev_remove_from_namespace(spa, vd);
4824 } else if (vd != NULL) {
4826 * Normal vdevs cannot be removed (yet).
4828 error = ENOTSUP;
4829 } else {
4831 * There is no vdev of any kind with the specified guid.
4833 error = ENOENT;
4836 if (!locked)
4837 return (spa_vdev_exit(spa, NULL, txg, error));
4839 return (error);
4843 * Find any device that's done replacing, or a vdev marked 'unspare' that's
4844 * current spared, so we can detach it.
4846 static vdev_t *
4847 spa_vdev_resilver_done_hunt(vdev_t *vd)
4849 vdev_t *newvd, *oldvd;
4851 for (int c = 0; c < vd->vdev_children; c++) {
4852 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4853 if (oldvd != NULL)
4854 return (oldvd);
4858 * Check for a completed replacement. We always consider the first
4859 * vdev in the list to be the oldest vdev, and the last one to be
4860 * the newest (see spa_vdev_attach() for how that works). In
4861 * the case where the newest vdev is faulted, we will not automatically
4862 * remove it after a resilver completes. This is OK as it will require
4863 * user intervention to determine which disk the admin wishes to keep.
4865 if (vd->vdev_ops == &vdev_replacing_ops) {
4866 ASSERT(vd->vdev_children > 1);
4868 newvd = vd->vdev_child[vd->vdev_children - 1];
4869 oldvd = vd->vdev_child[0];
4871 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4872 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4873 !vdev_dtl_required(oldvd))
4874 return (oldvd);
4878 * Check for a completed resilver with the 'unspare' flag set.
4880 if (vd->vdev_ops == &vdev_spare_ops) {
4881 vdev_t *first = vd->vdev_child[0];
4882 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4884 if (last->vdev_unspare) {
4885 oldvd = first;
4886 newvd = last;
4887 } else if (first->vdev_unspare) {
4888 oldvd = last;
4889 newvd = first;
4890 } else {
4891 oldvd = NULL;
4894 if (oldvd != NULL &&
4895 vdev_dtl_empty(newvd, DTL_MISSING) &&
4896 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4897 !vdev_dtl_required(oldvd))
4898 return (oldvd);
4901 * If there are more than two spares attached to a disk,
4902 * and those spares are not required, then we want to
4903 * attempt to free them up now so that they can be used
4904 * by other pools. Once we're back down to a single
4905 * disk+spare, we stop removing them.
4907 if (vd->vdev_children > 2) {
4908 newvd = vd->vdev_child[1];
4910 if (newvd->vdev_isspare && last->vdev_isspare &&
4911 vdev_dtl_empty(last, DTL_MISSING) &&
4912 vdev_dtl_empty(last, DTL_OUTAGE) &&
4913 !vdev_dtl_required(newvd))
4914 return (newvd);
4918 return (NULL);
4921 static void
4922 spa_vdev_resilver_done(spa_t *spa)
4924 vdev_t *vd, *pvd, *ppvd;
4925 uint64_t guid, sguid, pguid, ppguid;
4927 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4929 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4930 pvd = vd->vdev_parent;
4931 ppvd = pvd->vdev_parent;
4932 guid = vd->vdev_guid;
4933 pguid = pvd->vdev_guid;
4934 ppguid = ppvd->vdev_guid;
4935 sguid = 0;
4937 * If we have just finished replacing a hot spared device, then
4938 * we need to detach the parent's first child (the original hot
4939 * spare) as well.
4941 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4942 ppvd->vdev_children == 2) {
4943 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4944 sguid = ppvd->vdev_child[1]->vdev_guid;
4946 spa_config_exit(spa, SCL_ALL, FTAG);
4947 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4948 return;
4949 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4950 return;
4951 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4954 spa_config_exit(spa, SCL_ALL, FTAG);
4958 * Update the stored path or FRU for this vdev.
4961 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4962 boolean_t ispath)
4964 vdev_t *vd;
4965 boolean_t sync = B_FALSE;
4967 ASSERT(spa_writeable(spa));
4969 spa_vdev_state_enter(spa, SCL_ALL);
4971 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4972 return (spa_vdev_state_exit(spa, NULL, ENOENT));
4974 if (!vd->vdev_ops->vdev_op_leaf)
4975 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4977 if (ispath) {
4978 if (strcmp(value, vd->vdev_path) != 0) {
4979 spa_strfree(vd->vdev_path);
4980 vd->vdev_path = spa_strdup(value);
4981 sync = B_TRUE;
4983 } else {
4984 if (vd->vdev_fru == NULL) {
4985 vd->vdev_fru = spa_strdup(value);
4986 sync = B_TRUE;
4987 } else if (strcmp(value, vd->vdev_fru) != 0) {
4988 spa_strfree(vd->vdev_fru);
4989 vd->vdev_fru = spa_strdup(value);
4990 sync = B_TRUE;
4994 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4998 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5000 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5004 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5006 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5010 * ==========================================================================
5011 * SPA Scanning
5012 * ==========================================================================
5016 spa_scan_stop(spa_t *spa)
5018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5019 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5020 return (EBUSY);
5021 return (dsl_scan_cancel(spa->spa_dsl_pool));
5025 spa_scan(spa_t *spa, pool_scan_func_t func)
5027 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5029 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5030 return (ENOTSUP);
5033 * If a resilver was requested, but there is no DTL on a
5034 * writeable leaf device, we have nothing to do.
5036 if (func == POOL_SCAN_RESILVER &&
5037 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5038 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5039 return (0);
5042 return (dsl_scan(spa->spa_dsl_pool, func));
5046 * ==========================================================================
5047 * SPA async task processing
5048 * ==========================================================================
5051 static void
5052 spa_async_remove(spa_t *spa, vdev_t *vd)
5054 if (vd->vdev_remove_wanted) {
5055 vd->vdev_remove_wanted = B_FALSE;
5056 vd->vdev_delayed_close = B_FALSE;
5057 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5060 * We want to clear the stats, but we don't want to do a full
5061 * vdev_clear() as that will cause us to throw away
5062 * degraded/faulted state as well as attempt to reopen the
5063 * device, all of which is a waste.
5065 vd->vdev_stat.vs_read_errors = 0;
5066 vd->vdev_stat.vs_write_errors = 0;
5067 vd->vdev_stat.vs_checksum_errors = 0;
5069 vdev_state_dirty(vd->vdev_top);
5072 for (int c = 0; c < vd->vdev_children; c++)
5073 spa_async_remove(spa, vd->vdev_child[c]);
5076 static void
5077 spa_async_probe(spa_t *spa, vdev_t *vd)
5079 if (vd->vdev_probe_wanted) {
5080 vd->vdev_probe_wanted = B_FALSE;
5081 vdev_reopen(vd); /* vdev_open() does the actual probe */
5084 for (int c = 0; c < vd->vdev_children; c++)
5085 spa_async_probe(spa, vd->vdev_child[c]);
5088 static void
5089 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5091 sysevent_id_t eid;
5092 nvlist_t *attr;
5093 char *physpath;
5095 if (!spa->spa_autoexpand)
5096 return;
5098 for (int c = 0; c < vd->vdev_children; c++) {
5099 vdev_t *cvd = vd->vdev_child[c];
5100 spa_async_autoexpand(spa, cvd);
5103 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5104 return;
5106 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5107 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5109 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5110 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5112 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5113 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5115 nvlist_free(attr);
5116 kmem_free(physpath, MAXPATHLEN);
5119 static void
5120 spa_async_thread(spa_t *spa)
5122 int tasks;
5124 ASSERT(spa->spa_sync_on);
5126 mutex_enter(&spa->spa_async_lock);
5127 tasks = spa->spa_async_tasks;
5128 spa->spa_async_tasks = 0;
5129 mutex_exit(&spa->spa_async_lock);
5132 * See if the config needs to be updated.
5134 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5135 uint64_t old_space, new_space;
5137 mutex_enter(&spa_namespace_lock);
5138 old_space = metaslab_class_get_space(spa_normal_class(spa));
5139 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5140 new_space = metaslab_class_get_space(spa_normal_class(spa));
5141 mutex_exit(&spa_namespace_lock);
5144 * If the pool grew as a result of the config update,
5145 * then log an internal history event.
5147 if (new_space != old_space) {
5148 spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5149 spa, NULL,
5150 "pool '%s' size: %llu(+%llu)",
5151 spa_name(spa), new_space, new_space - old_space);
5156 * See if any devices need to be marked REMOVED.
5158 if (tasks & SPA_ASYNC_REMOVE) {
5159 spa_vdev_state_enter(spa, SCL_NONE);
5160 spa_async_remove(spa, spa->spa_root_vdev);
5161 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5162 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5163 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5164 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5165 (void) spa_vdev_state_exit(spa, NULL, 0);
5168 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5169 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5170 spa_async_autoexpand(spa, spa->spa_root_vdev);
5171 spa_config_exit(spa, SCL_CONFIG, FTAG);
5175 * See if any devices need to be probed.
5177 if (tasks & SPA_ASYNC_PROBE) {
5178 spa_vdev_state_enter(spa, SCL_NONE);
5179 spa_async_probe(spa, spa->spa_root_vdev);
5180 (void) spa_vdev_state_exit(spa, NULL, 0);
5184 * If any devices are done replacing, detach them.
5186 if (tasks & SPA_ASYNC_RESILVER_DONE)
5187 spa_vdev_resilver_done(spa);
5190 * Kick off a resilver.
5192 if (tasks & SPA_ASYNC_RESILVER)
5193 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5196 * Let the world know that we're done.
5198 mutex_enter(&spa->spa_async_lock);
5199 spa->spa_async_thread = NULL;
5200 cv_broadcast(&spa->spa_async_cv);
5201 mutex_exit(&spa->spa_async_lock);
5202 thread_exit();
5205 void
5206 spa_async_suspend(spa_t *spa)
5208 mutex_enter(&spa->spa_async_lock);
5209 spa->spa_async_suspended++;
5210 while (spa->spa_async_thread != NULL)
5211 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5212 mutex_exit(&spa->spa_async_lock);
5215 void
5216 spa_async_resume(spa_t *spa)
5218 mutex_enter(&spa->spa_async_lock);
5219 ASSERT(spa->spa_async_suspended != 0);
5220 spa->spa_async_suspended--;
5221 mutex_exit(&spa->spa_async_lock);
5224 static void
5225 spa_async_dispatch(spa_t *spa)
5227 mutex_enter(&spa->spa_async_lock);
5228 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5229 spa->spa_async_thread == NULL &&
5230 rootdir != NULL && !vn_is_readonly(rootdir))
5231 spa->spa_async_thread = thread_create(NULL, 0,
5232 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5233 mutex_exit(&spa->spa_async_lock);
5236 void
5237 spa_async_request(spa_t *spa, int task)
5239 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5240 mutex_enter(&spa->spa_async_lock);
5241 spa->spa_async_tasks |= task;
5242 mutex_exit(&spa->spa_async_lock);
5246 * ==========================================================================
5247 * SPA syncing routines
5248 * ==========================================================================
5251 static int
5252 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5254 bpobj_t *bpo = arg;
5255 bpobj_enqueue(bpo, bp, tx);
5256 return (0);
5259 static int
5260 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5262 zio_t *zio = arg;
5264 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5265 zio->io_flags));
5266 return (0);
5269 static void
5270 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5272 char *packed = NULL;
5273 size_t bufsize;
5274 size_t nvsize = 0;
5275 dmu_buf_t *db;
5277 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5280 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5281 * information. This avoids the dbuf_will_dirty() path and
5282 * saves us a pre-read to get data we don't actually care about.
5284 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5285 packed = kmem_alloc(bufsize, KM_SLEEP);
5287 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5288 KM_SLEEP) == 0);
5289 bzero(packed + nvsize, bufsize - nvsize);
5291 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5293 kmem_free(packed, bufsize);
5295 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5296 dmu_buf_will_dirty(db, tx);
5297 *(uint64_t *)db->db_data = nvsize;
5298 dmu_buf_rele(db, FTAG);
5301 static void
5302 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5303 const char *config, const char *entry)
5305 nvlist_t *nvroot;
5306 nvlist_t **list;
5307 int i;
5309 if (!sav->sav_sync)
5310 return;
5313 * Update the MOS nvlist describing the list of available devices.
5314 * spa_validate_aux() will have already made sure this nvlist is
5315 * valid and the vdevs are labeled appropriately.
5317 if (sav->sav_object == 0) {
5318 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5319 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5320 sizeof (uint64_t), tx);
5321 VERIFY(zap_update(spa->spa_meta_objset,
5322 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5323 &sav->sav_object, tx) == 0);
5326 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5327 if (sav->sav_count == 0) {
5328 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5329 } else {
5330 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5331 for (i = 0; i < sav->sav_count; i++)
5332 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5333 B_FALSE, VDEV_CONFIG_L2CACHE);
5334 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5335 sav->sav_count) == 0);
5336 for (i = 0; i < sav->sav_count; i++)
5337 nvlist_free(list[i]);
5338 kmem_free(list, sav->sav_count * sizeof (void *));
5341 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5342 nvlist_free(nvroot);
5344 sav->sav_sync = B_FALSE;
5347 static void
5348 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5350 nvlist_t *config;
5352 if (list_is_empty(&spa->spa_config_dirty_list))
5353 return;
5355 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5357 config = spa_config_generate(spa, spa->spa_root_vdev,
5358 dmu_tx_get_txg(tx), B_FALSE);
5360 spa_config_exit(spa, SCL_STATE, FTAG);
5362 if (spa->spa_config_syncing)
5363 nvlist_free(spa->spa_config_syncing);
5364 spa->spa_config_syncing = config;
5366 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5370 * Set zpool properties.
5372 static void
5373 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5375 spa_t *spa = arg1;
5376 objset_t *mos = spa->spa_meta_objset;
5377 nvlist_t *nvp = arg2;
5378 nvpair_t *elem;
5379 uint64_t intval;
5380 char *strval;
5381 zpool_prop_t prop;
5382 const char *propname;
5383 zprop_type_t proptype;
5385 mutex_enter(&spa->spa_props_lock);
5387 elem = NULL;
5388 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5389 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5390 case ZPOOL_PROP_VERSION:
5392 * Only set version for non-zpool-creation cases
5393 * (set/import). spa_create() needs special care
5394 * for version setting.
5396 if (tx->tx_txg != TXG_INITIAL) {
5397 VERIFY(nvpair_value_uint64(elem,
5398 &intval) == 0);
5399 ASSERT(intval <= SPA_VERSION);
5400 ASSERT(intval >= spa_version(spa));
5401 spa->spa_uberblock.ub_version = intval;
5402 vdev_config_dirty(spa->spa_root_vdev);
5404 break;
5406 case ZPOOL_PROP_ALTROOT:
5408 * 'altroot' is a non-persistent property. It should
5409 * have been set temporarily at creation or import time.
5411 ASSERT(spa->spa_root != NULL);
5412 break;
5414 case ZPOOL_PROP_READONLY:
5415 case ZPOOL_PROP_CACHEFILE:
5417 * 'readonly' and 'cachefile' are also non-persisitent
5418 * properties.
5420 break;
5421 case ZPOOL_PROP_COMMENT:
5422 VERIFY(nvpair_value_string(elem, &strval) == 0);
5423 if (spa->spa_comment != NULL)
5424 spa_strfree(spa->spa_comment);
5425 spa->spa_comment = spa_strdup(strval);
5427 * We need to dirty the configuration on all the vdevs
5428 * so that their labels get updated. It's unnecessary
5429 * to do this for pool creation since the vdev's
5430 * configuratoin has already been dirtied.
5432 if (tx->tx_txg != TXG_INITIAL)
5433 vdev_config_dirty(spa->spa_root_vdev);
5434 break;
5435 default:
5437 * Set pool property values in the poolprops mos object.
5439 if (spa->spa_pool_props_object == 0) {
5440 VERIFY((spa->spa_pool_props_object =
5441 zap_create(mos, DMU_OT_POOL_PROPS,
5442 DMU_OT_NONE, 0, tx)) > 0);
5444 VERIFY(zap_update(mos,
5445 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5446 8, 1, &spa->spa_pool_props_object, tx)
5447 == 0);
5450 /* normalize the property name */
5451 propname = zpool_prop_to_name(prop);
5452 proptype = zpool_prop_get_type(prop);
5454 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5455 ASSERT(proptype == PROP_TYPE_STRING);
5456 VERIFY(nvpair_value_string(elem, &strval) == 0);
5457 VERIFY(zap_update(mos,
5458 spa->spa_pool_props_object, propname,
5459 1, strlen(strval) + 1, strval, tx) == 0);
5461 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5462 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5464 if (proptype == PROP_TYPE_INDEX) {
5465 const char *unused;
5466 VERIFY(zpool_prop_index_to_string(
5467 prop, intval, &unused) == 0);
5469 VERIFY(zap_update(mos,
5470 spa->spa_pool_props_object, propname,
5471 8, 1, &intval, tx) == 0);
5472 } else {
5473 ASSERT(0); /* not allowed */
5476 switch (prop) {
5477 case ZPOOL_PROP_DELEGATION:
5478 spa->spa_delegation = intval;
5479 break;
5480 case ZPOOL_PROP_BOOTFS:
5481 spa->spa_bootfs = intval;
5482 break;
5483 case ZPOOL_PROP_FAILUREMODE:
5484 spa->spa_failmode = intval;
5485 break;
5486 case ZPOOL_PROP_AUTOEXPAND:
5487 spa->spa_autoexpand = intval;
5488 if (tx->tx_txg != TXG_INITIAL)
5489 spa_async_request(spa,
5490 SPA_ASYNC_AUTOEXPAND);
5491 break;
5492 case ZPOOL_PROP_DEDUPDITTO:
5493 spa->spa_dedup_ditto = intval;
5494 break;
5495 default:
5496 break;
5500 /* log internal history if this is not a zpool create */
5501 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5502 tx->tx_txg != TXG_INITIAL) {
5503 spa_history_log_internal(LOG_POOL_PROPSET,
5504 spa, tx, "%s %lld %s",
5505 nvpair_name(elem), intval, spa_name(spa));
5509 mutex_exit(&spa->spa_props_lock);
5513 * Perform one-time upgrade on-disk changes. spa_version() does not
5514 * reflect the new version this txg, so there must be no changes this
5515 * txg to anything that the upgrade code depends on after it executes.
5516 * Therefore this must be called after dsl_pool_sync() does the sync
5517 * tasks.
5519 static void
5520 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5522 dsl_pool_t *dp = spa->spa_dsl_pool;
5524 ASSERT(spa->spa_sync_pass == 1);
5526 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5527 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5528 dsl_pool_create_origin(dp, tx);
5530 /* Keeping the origin open increases spa_minref */
5531 spa->spa_minref += 3;
5534 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5535 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5536 dsl_pool_upgrade_clones(dp, tx);
5539 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5540 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5541 dsl_pool_upgrade_dir_clones(dp, tx);
5543 /* Keeping the freedir open increases spa_minref */
5544 spa->spa_minref += 3;
5549 * Sync the specified transaction group. New blocks may be dirtied as
5550 * part of the process, so we iterate until it converges.
5552 void
5553 spa_sync(spa_t *spa, uint64_t txg)
5555 dsl_pool_t *dp = spa->spa_dsl_pool;
5556 objset_t *mos = spa->spa_meta_objset;
5557 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5558 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5559 vdev_t *rvd = spa->spa_root_vdev;
5560 vdev_t *vd;
5561 dmu_tx_t *tx;
5562 int error;
5564 VERIFY(spa_writeable(spa));
5567 * Lock out configuration changes.
5569 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5571 spa->spa_syncing_txg = txg;
5572 spa->spa_sync_pass = 0;
5575 * If there are any pending vdev state changes, convert them
5576 * into config changes that go out with this transaction group.
5578 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5579 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5581 * We need the write lock here because, for aux vdevs,
5582 * calling vdev_config_dirty() modifies sav_config.
5583 * This is ugly and will become unnecessary when we
5584 * eliminate the aux vdev wart by integrating all vdevs
5585 * into the root vdev tree.
5587 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5588 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5589 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5590 vdev_state_clean(vd);
5591 vdev_config_dirty(vd);
5593 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5594 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5596 spa_config_exit(spa, SCL_STATE, FTAG);
5598 tx = dmu_tx_create_assigned(dp, txg);
5601 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5602 * set spa_deflate if we have no raid-z vdevs.
5604 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5605 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5606 int i;
5608 for (i = 0; i < rvd->vdev_children; i++) {
5609 vd = rvd->vdev_child[i];
5610 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5611 break;
5613 if (i == rvd->vdev_children) {
5614 spa->spa_deflate = TRUE;
5615 VERIFY(0 == zap_add(spa->spa_meta_objset,
5616 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5617 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5622 * If anything has changed in this txg, or if someone is waiting
5623 * for this txg to sync (eg, spa_vdev_remove()), push the
5624 * deferred frees from the previous txg. If not, leave them
5625 * alone so that we don't generate work on an otherwise idle
5626 * system.
5628 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5629 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5630 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5631 ((dsl_scan_active(dp->dp_scan) ||
5632 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5633 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5634 VERIFY3U(bpobj_iterate(defer_bpo,
5635 spa_free_sync_cb, zio, tx), ==, 0);
5636 VERIFY3U(zio_wait(zio), ==, 0);
5640 * Iterate to convergence.
5642 do {
5643 int pass = ++spa->spa_sync_pass;
5645 spa_sync_config_object(spa, tx);
5646 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5647 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5648 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5649 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5650 spa_errlog_sync(spa, txg);
5651 dsl_pool_sync(dp, txg);
5653 if (pass <= SYNC_PASS_DEFERRED_FREE) {
5654 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5655 bplist_iterate(free_bpl, spa_free_sync_cb,
5656 zio, tx);
5657 VERIFY(zio_wait(zio) == 0);
5658 } else {
5659 bplist_iterate(free_bpl, bpobj_enqueue_cb,
5660 defer_bpo, tx);
5663 ddt_sync(spa, txg);
5664 dsl_scan_sync(dp, tx);
5666 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5667 vdev_sync(vd, txg);
5669 if (pass == 1)
5670 spa_sync_upgrades(spa, tx);
5672 } while (dmu_objset_is_dirty(mos, txg));
5675 * Rewrite the vdev configuration (which includes the uberblock)
5676 * to commit the transaction group.
5678 * If there are no dirty vdevs, we sync the uberblock to a few
5679 * random top-level vdevs that are known to be visible in the
5680 * config cache (see spa_vdev_add() for a complete description).
5681 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5683 for (;;) {
5685 * We hold SCL_STATE to prevent vdev open/close/etc.
5686 * while we're attempting to write the vdev labels.
5688 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5690 if (list_is_empty(&spa->spa_config_dirty_list)) {
5691 vdev_t *svd[SPA_DVAS_PER_BP];
5692 int svdcount = 0;
5693 int children = rvd->vdev_children;
5694 int c0 = spa_get_random(children);
5696 for (int c = 0; c < children; c++) {
5697 vd = rvd->vdev_child[(c0 + c) % children];
5698 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5699 continue;
5700 svd[svdcount++] = vd;
5701 if (svdcount == SPA_DVAS_PER_BP)
5702 break;
5704 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5705 if (error != 0)
5706 error = vdev_config_sync(svd, svdcount, txg,
5707 B_TRUE);
5708 } else {
5709 error = vdev_config_sync(rvd->vdev_child,
5710 rvd->vdev_children, txg, B_FALSE);
5711 if (error != 0)
5712 error = vdev_config_sync(rvd->vdev_child,
5713 rvd->vdev_children, txg, B_TRUE);
5716 spa_config_exit(spa, SCL_STATE, FTAG);
5718 if (error == 0)
5719 break;
5720 zio_suspend(spa, NULL);
5721 zio_resume_wait(spa);
5723 dmu_tx_commit(tx);
5726 * Clear the dirty config list.
5728 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5729 vdev_config_clean(vd);
5732 * Now that the new config has synced transactionally,
5733 * let it become visible to the config cache.
5735 if (spa->spa_config_syncing != NULL) {
5736 spa_config_set(spa, spa->spa_config_syncing);
5737 spa->spa_config_txg = txg;
5738 spa->spa_config_syncing = NULL;
5741 spa->spa_ubsync = spa->spa_uberblock;
5743 dsl_pool_sync_done(dp, txg);
5746 * Update usable space statistics.
5748 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5749 vdev_sync_done(vd, txg);
5751 spa_update_dspace(spa);
5754 * It had better be the case that we didn't dirty anything
5755 * since vdev_config_sync().
5757 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5758 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5759 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5761 spa->spa_sync_pass = 0;
5763 spa_config_exit(spa, SCL_CONFIG, FTAG);
5765 spa_handle_ignored_writes(spa);
5768 * If any async tasks have been requested, kick them off.
5770 spa_async_dispatch(spa);
5774 * Sync all pools. We don't want to hold the namespace lock across these
5775 * operations, so we take a reference on the spa_t and drop the lock during the
5776 * sync.
5778 void
5779 spa_sync_allpools(void)
5781 spa_t *spa = NULL;
5782 mutex_enter(&spa_namespace_lock);
5783 while ((spa = spa_next(spa)) != NULL) {
5784 if (spa_state(spa) != POOL_STATE_ACTIVE ||
5785 !spa_writeable(spa) || spa_suspended(spa))
5786 continue;
5787 spa_open_ref(spa, FTAG);
5788 mutex_exit(&spa_namespace_lock);
5789 txg_wait_synced(spa_get_dsl(spa), 0);
5790 mutex_enter(&spa_namespace_lock);
5791 spa_close(spa, FTAG);
5793 mutex_exit(&spa_namespace_lock);
5797 * ==========================================================================
5798 * Miscellaneous routines
5799 * ==========================================================================
5803 * Remove all pools in the system.
5805 void
5806 spa_evict_all(void)
5808 spa_t *spa;
5811 * Remove all cached state. All pools should be closed now,
5812 * so every spa in the AVL tree should be unreferenced.
5814 mutex_enter(&spa_namespace_lock);
5815 while ((spa = spa_next(NULL)) != NULL) {
5817 * Stop async tasks. The async thread may need to detach
5818 * a device that's been replaced, which requires grabbing
5819 * spa_namespace_lock, so we must drop it here.
5821 spa_open_ref(spa, FTAG);
5822 mutex_exit(&spa_namespace_lock);
5823 spa_async_suspend(spa);
5824 mutex_enter(&spa_namespace_lock);
5825 spa_close(spa, FTAG);
5827 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5828 spa_unload(spa);
5829 spa_deactivate(spa);
5831 spa_remove(spa);
5833 mutex_exit(&spa_namespace_lock);
5836 vdev_t *
5837 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5839 vdev_t *vd;
5840 int i;
5842 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5843 return (vd);
5845 if (aux) {
5846 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5847 vd = spa->spa_l2cache.sav_vdevs[i];
5848 if (vd->vdev_guid == guid)
5849 return (vd);
5852 for (i = 0; i < spa->spa_spares.sav_count; i++) {
5853 vd = spa->spa_spares.sav_vdevs[i];
5854 if (vd->vdev_guid == guid)
5855 return (vd);
5859 return (NULL);
5862 void
5863 spa_upgrade(spa_t *spa, uint64_t version)
5865 ASSERT(spa_writeable(spa));
5867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5870 * This should only be called for a non-faulted pool, and since a
5871 * future version would result in an unopenable pool, this shouldn't be
5872 * possible.
5874 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5875 ASSERT(version >= spa->spa_uberblock.ub_version);
5877 spa->spa_uberblock.ub_version = version;
5878 vdev_config_dirty(spa->spa_root_vdev);
5880 spa_config_exit(spa, SCL_ALL, FTAG);
5882 txg_wait_synced(spa_get_dsl(spa), 0);
5885 boolean_t
5886 spa_has_spare(spa_t *spa, uint64_t guid)
5888 int i;
5889 uint64_t spareguid;
5890 spa_aux_vdev_t *sav = &spa->spa_spares;
5892 for (i = 0; i < sav->sav_count; i++)
5893 if (sav->sav_vdevs[i]->vdev_guid == guid)
5894 return (B_TRUE);
5896 for (i = 0; i < sav->sav_npending; i++) {
5897 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5898 &spareguid) == 0 && spareguid == guid)
5899 return (B_TRUE);
5902 return (B_FALSE);
5906 * Check if a pool has an active shared spare device.
5907 * Note: reference count of an active spare is 2, as a spare and as a replace
5909 static boolean_t
5910 spa_has_active_shared_spare(spa_t *spa)
5912 int i, refcnt;
5913 uint64_t pool;
5914 spa_aux_vdev_t *sav = &spa->spa_spares;
5916 for (i = 0; i < sav->sav_count; i++) {
5917 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5918 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5919 refcnt > 2)
5920 return (B_TRUE);
5923 return (B_FALSE);
5927 * Post a sysevent corresponding to the given event. The 'name' must be one of
5928 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
5929 * filled in from the spa and (optionally) the vdev. This doesn't do anything
5930 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5931 * or zdb as real changes.
5933 void
5934 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5936 #ifdef _KERNEL
5937 sysevent_t *ev;
5938 sysevent_attr_list_t *attr = NULL;
5939 sysevent_value_t value;
5940 sysevent_id_t eid;
5942 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5943 SE_SLEEP);
5945 value.value_type = SE_DATA_TYPE_STRING;
5946 value.value.sv_string = spa_name(spa);
5947 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5948 goto done;
5950 value.value_type = SE_DATA_TYPE_UINT64;
5951 value.value.sv_uint64 = spa_guid(spa);
5952 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5953 goto done;
5955 if (vd) {
5956 value.value_type = SE_DATA_TYPE_UINT64;
5957 value.value.sv_uint64 = vd->vdev_guid;
5958 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5959 SE_SLEEP) != 0)
5960 goto done;
5962 if (vd->vdev_path) {
5963 value.value_type = SE_DATA_TYPE_STRING;
5964 value.value.sv_string = vd->vdev_path;
5965 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5966 &value, SE_SLEEP) != 0)
5967 goto done;
5971 if (sysevent_attach_attributes(ev, attr) != 0)
5972 goto done;
5973 attr = NULL;
5975 (void) log_sysevent(ev, SE_SLEEP, &eid);
5977 done:
5978 if (attr)
5979 sysevent_free_attr(attr);
5980 sysevent_free(ev);
5981 #endif