15325 bhyve upstream sync 2023 January
[illumos-gate.git] / usr / src / cmd / bhyve / virtio.h
blob2220cc7492d1371e3a36687aacf3fa3c46e6ac26
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 * Copyright (c) 2013 Chris Torek <torek @ torek net>
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
28 * $FreeBSD$
31 #ifndef _BHYVE_VIRTIO_H_
32 #define _BHYVE_VIRTIO_H_
34 #include <pthread_np.h>
35 #include <machine/atomic.h>
37 #include <dev/virtio/virtio.h>
38 #ifdef __FreeBSD__
39 #include <dev/virtio/virtio_ring.h>
40 #include <dev/virtio/pci/virtio_pci_var.h>
41 #endif
44 * These are derived from several virtio specifications.
46 * Some useful links:
47 * https://github.com/rustyrussell/virtio-spec
48 * http://people.redhat.com/pbonzini/virtio-spec.pdf
52 * A virtual device has zero or more "virtual queues" (virtqueue).
53 * Each virtqueue uses at least two 4096-byte pages, laid out thus:
55 * +-----------------------------------------------+
56 * | "desc": <N> descriptors, 16 bytes each |
57 * | ----------------------------------------- |
58 * | "avail": 2 uint16; <N> uint16; 1 uint16 |
59 * | ----------------------------------------- |
60 * | pad to 4k boundary |
61 * +-----------------------------------------------+
62 * | "used": 2 x uint16; <N> elems; 1 uint16 |
63 * | ----------------------------------------- |
64 * | pad to 4k boundary |
65 * +-----------------------------------------------+
67 * The number <N> that appears here is always a power of two and is
68 * limited to no more than 32768 (as it must fit in a 16-bit field).
69 * If <N> is sufficiently large, the above will occupy more than
70 * two pages. In any case, all pages must be physically contiguous
71 * within the guest's physical address space.
73 * The <N> 16-byte "desc" descriptors consist of a 64-bit guest
74 * physical address <addr>, a 32-bit length <len>, a 16-bit
75 * <flags>, and a 16-bit <next> field (all in guest byte order).
77 * There are three flags that may be set :
78 * NEXT descriptor is chained, so use its "next" field
79 * WRITE descriptor is for host to write into guest RAM
80 * (else host is to read from guest RAM)
81 * INDIRECT descriptor address field is (guest physical)
82 * address of a linear array of descriptors
84 * Unless INDIRECT is set, <len> is the number of bytes that may
85 * be read/written from guest physical address <addr>. If
86 * INDIRECT is set, WRITE is ignored and <len> provides the length
87 * of the indirect descriptors (and <len> must be a multiple of
88 * 16). Note that NEXT may still be set in the main descriptor
89 * pointing to the indirect, and should be set in each indirect
90 * descriptor that uses the next descriptor (these should generally
91 * be numbered sequentially). However, INDIRECT must not be set
92 * in the indirect descriptors. Upon reaching an indirect descriptor
93 * without a NEXT bit, control returns to the direct descriptors.
95 * Except inside an indirect, each <next> value must be in the
96 * range [0 .. N) (i.e., the half-open interval). (Inside an
97 * indirect, each <next> must be in the range [0 .. <len>/16).)
99 * The "avail" data structures reside in the same pages as the
100 * "desc" structures since both together are used by the device to
101 * pass information to the hypervisor's virtual driver. These
102 * begin with a 16-bit <flags> field and 16-bit index <idx>, then
103 * have <N> 16-bit <ring> values, followed by one final 16-bit
104 * field <used_event>. The <N> <ring> entries are simply indices
105 * indices into the descriptor ring (and thus must meet the same
106 * constraints as each <next> value). However, <idx> is counted
107 * up from 0 (initially) and simply wraps around after 65535; it
108 * is taken mod <N> to find the next available entry.
110 * The "used" ring occupies a separate page or pages, and contains
111 * values written from the virtual driver back to the guest OS.
112 * This begins with a 16-bit <flags> and 16-bit <idx>, then there
113 * are <N> "vring_used" elements, followed by a 16-bit <avail_event>.
114 * The <N> "vring_used" elements consist of a 32-bit <id> and a
115 * 32-bit <len> (vu_tlen below). The <id> is simply the index of
116 * the head of a descriptor chain the guest made available
117 * earlier, and the <len> is the number of bytes actually written,
118 * e.g., in the case of a network driver that provided a large
119 * receive buffer but received only a small amount of data.
121 * The two event fields, <used_event> and <avail_event>, in the
122 * avail and used rings (respectively -- note the reversal!), are
123 * always provided, but are used only if the virtual device
124 * negotiates the VIRTIO_RING_F_EVENT_IDX feature during feature
125 * negotiation. Similarly, both rings provide a flag --
126 * VRING_AVAIL_F_NO_INTERRUPT and VRING_USED_F_NO_NOTIFY -- in
127 * their <flags> field, indicating that the guest does not need an
128 * interrupt, or that the hypervisor driver does not need a
129 * notify, when descriptors are added to the corresponding ring.
130 * (These are provided only for interrupt optimization and need
131 * not be implemented.)
133 #define VRING_ALIGN 4096
136 * The address of any given virtual queue is determined by a single
137 * Page Frame Number register. The guest writes the PFN into the
138 * PCI config space. However, a device that has two or more
139 * virtqueues can have a different PFN, and size, for each queue.
140 * The number of queues is determinable via the PCI config space
141 * VTCFG_R_QSEL register. Writes to QSEL select the queue: 0 means
142 * queue #0, 1 means queue#1, etc. Once a queue is selected, the
143 * remaining PFN and QNUM registers refer to that queue.
145 * QNUM is a read-only register containing a nonzero power of two
146 * that indicates the (hypervisor's) queue size. Or, if reading it
147 * produces zero, the hypervisor does not have a corresponding
148 * queue. (The number of possible queues depends on the virtual
149 * device. The block device has just one; the network device
150 * provides either two -- 0 = receive, 1 = transmit -- or three,
151 * with 2 = control.)
153 * PFN is a read/write register giving the physical page address of
154 * the virtqueue in guest memory (the guest must allocate enough space
155 * based on the hypervisor's provided QNUM).
157 * QNOTIFY is effectively write-only: when the guest writes a queue
158 * number to the register, the hypervisor should scan the specified
159 * virtqueue. (Reading QNOTIFY currently always gets 0).
163 * PFN register shift amount
165 #define VRING_PFN 12
168 * PCI vendor/device IDs
170 #define VIRTIO_VENDOR 0x1AF4
171 #define VIRTIO_DEV_NET 0x1000
172 #define VIRTIO_DEV_BLOCK 0x1001
173 #define VIRTIO_DEV_CONSOLE 0x1003
174 #define VIRTIO_DEV_SCSI 0x1004
175 #define VIRTIO_DEV_RANDOM 0x1005
176 #define VIRTIO_DEV_9P 0x1009
177 #define VIRTIO_DEV_INPUT 0x1052
180 * PCI revision IDs
182 #define VIRTIO_REV_INPUT 1
185 * PCI subvendor IDs
187 #define VIRTIO_SUBVEN_INPUT 0x108E
190 * PCI subdevice IDs
192 #define VIRTIO_SUBDEV_INPUT 0x1100
194 /* From section 2.3, "Virtqueue Configuration", of the virtio specification */
195 static inline int
196 vring_size_aligned(u_int qsz)
198 return (roundup2(vring_size(qsz, VRING_ALIGN), VRING_ALIGN));
201 struct vmctx;
202 struct pci_devinst;
203 struct vqueue_info;
206 * A virtual device, with some number (possibly 0) of virtual
207 * queues and some size (possibly 0) of configuration-space
208 * registers private to the device. The virtio_softc should come
209 * at the front of each "derived class", so that a pointer to the
210 * virtio_softc is also a pointer to the more specific, derived-
211 * from-virtio driver's softc.
213 * Note: inside each hypervisor virtio driver, changes to these
214 * data structures must be locked against other threads, if any.
215 * Except for PCI config space register read/write, we assume each
216 * driver does the required locking, but we need a pointer to the
217 * lock (if there is one) for PCI config space read/write ops.
219 * When the guest reads or writes the device's config space, the
220 * generic layer checks for operations on the special registers
221 * described above. If the offset of the register(s) being read
222 * or written is past the CFG area (CFG0 or CFG1), the request is
223 * passed on to the virtual device, after subtracting off the
224 * generic-layer size. (So, drivers can just use the offset as
225 * an offset into "struct config", for instance.)
227 * (The virtio layer also makes sure that the read or write is to/
228 * from a "good" config offset, hence vc_cfgsize, and on BAR #0.
229 * However, the driver must verify the read or write size and offset
230 * and that no one is writing a readonly register.)
232 * The BROKED flag ("this thing done gone and broked") is for future
233 * use.
235 #define VIRTIO_USE_MSIX 0x01
236 #define VIRTIO_EVENT_IDX 0x02 /* use the event-index values */
237 #define VIRTIO_BROKED 0x08 /* ??? */
239 struct virtio_softc {
240 struct virtio_consts *vs_vc; /* constants (see below) */
241 int vs_flags; /* VIRTIO_* flags from above */
242 pthread_mutex_t *vs_mtx; /* POSIX mutex, if any */
243 struct pci_devinst *vs_pi; /* PCI device instance */
244 uint32_t vs_negotiated_caps; /* negotiated capabilities */
245 struct vqueue_info *vs_queues; /* one per vc_nvq */
246 int vs_curq; /* current queue */
247 uint8_t vs_status; /* value from last status write */
248 uint8_t vs_isr; /* ISR flags, if not MSI-X */
249 uint16_t vs_msix_cfg_idx; /* MSI-X vector for config event */
252 #define VS_LOCK(vs) \
253 do { \
254 if (vs->vs_mtx) \
255 pthread_mutex_lock(vs->vs_mtx); \
256 } while (0)
258 #define VS_UNLOCK(vs) \
259 do { \
260 if (vs->vs_mtx) \
261 pthread_mutex_unlock(vs->vs_mtx); \
262 } while (0)
264 struct virtio_consts {
265 const char *vc_name; /* name of driver (for diagnostics) */
266 int vc_nvq; /* number of virtual queues */
267 size_t vc_cfgsize; /* size of dev-specific config regs */
268 void (*vc_reset)(void *); /* called on virtual device reset */
269 void (*vc_qnotify)(void *, struct vqueue_info *);
270 /* called on QNOTIFY if no VQ notify */
271 int (*vc_cfgread)(void *, int, int, uint32_t *);
272 /* called to read config regs */
273 int (*vc_cfgwrite)(void *, int, int, uint32_t);
274 /* called to write config regs */
275 void (*vc_apply_features)(void *, uint64_t);
276 /* called to apply negotiated features */
277 uint64_t vc_hv_caps; /* hypervisor-provided capabilities */
281 * Data structure allocated (statically) per virtual queue.
283 * Drivers may change vq_qsize after a reset. When the guest OS
284 * requests a device reset, the hypervisor first calls
285 * vs->vs_vc->vc_reset(); then the data structure below is
286 * reinitialized (for each virtqueue: vs->vs_vc->vc_nvq).
288 * The remaining fields should only be fussed-with by the generic
289 * code.
291 * Note: the addresses of vq_desc, vq_avail, and vq_used are all
292 * computable from each other, but it's a lot simpler if we just
293 * keep a pointer to each one. The event indices are similarly
294 * (but more easily) computable, and this time we'll compute them:
295 * they're just XX_ring[N].
297 #define VQ_ALLOC 0x01 /* set once we have a pfn */
298 #define VQ_BROKED 0x02 /* ??? */
299 struct vqueue_info {
300 uint16_t vq_qsize; /* size of this queue (a power of 2) */
301 void (*vq_notify)(void *, struct vqueue_info *);
302 /* called instead of vc_notify, if not NULL */
304 struct virtio_softc *vq_vs; /* backpointer to softc */
305 uint16_t vq_num; /* we're the num'th queue in the softc */
307 uint16_t vq_flags; /* flags (see above) */
308 uint16_t vq_last_avail; /* a recent value of vq_avail->idx */
309 uint16_t vq_next_used; /* index of the next used slot to be filled */
310 uint16_t vq_save_used; /* saved vq_used->idx; see vq_endchains */
311 uint16_t vq_msix_idx; /* MSI-X index, or VIRTIO_MSI_NO_VECTOR */
313 uint32_t vq_pfn; /* PFN of virt queue (not shifted!) */
315 struct vring_desc *vq_desc; /* descriptor array */
316 struct vring_avail *vq_avail; /* the "avail" ring */
317 struct vring_used *vq_used; /* the "used" ring */
320 /* as noted above, these are sort of backwards, name-wise */
321 #define VQ_AVAIL_EVENT_IDX(vq) \
322 (*(uint16_t *)&(vq)->vq_used->ring[(vq)->vq_qsize])
323 #define VQ_USED_EVENT_IDX(vq) \
324 ((vq)->vq_avail->ring[(vq)->vq_qsize])
327 * Is this ring ready for I/O?
329 static inline int
330 vq_ring_ready(struct vqueue_info *vq)
333 return (vq->vq_flags & VQ_ALLOC);
337 * Are there "available" descriptors? (This does not count
338 * how many, just returns True if there are some.)
340 static inline int
341 vq_has_descs(struct vqueue_info *vq)
344 return (vq_ring_ready(vq) && vq->vq_last_avail !=
345 vq->vq_avail->idx);
349 * Deliver an interrupt to the guest for a specific MSI-X queue or
350 * event.
352 static inline void
353 vi_interrupt(struct virtio_softc *vs, uint8_t isr, uint16_t msix_idx)
356 if (pci_msix_enabled(vs->vs_pi))
357 pci_generate_msix(vs->vs_pi, msix_idx);
358 else {
359 #ifndef __FreeBSD__
360 boolean_t unlock = B_FALSE;
362 if (vs->vs_mtx && !pthread_mutex_isowned_np(vs->vs_mtx)) {
363 unlock = B_TRUE;
364 pthread_mutex_lock(vs->vs_mtx);
366 #else
367 VS_LOCK(vs);
368 #endif
369 vs->vs_isr |= isr;
370 pci_generate_msi(vs->vs_pi, 0);
371 pci_lintr_assert(vs->vs_pi);
372 #ifndef __FreeBSD__
373 if (unlock)
374 pthread_mutex_unlock(vs->vs_mtx);
375 #else
376 VS_UNLOCK(vs);
377 #endif
382 * Deliver an interrupt to the guest on the given virtual queue (if
383 * possible, or a generic MSI interrupt if not using MSI-X).
385 static inline void
386 vq_interrupt(struct virtio_softc *vs, struct vqueue_info *vq)
389 vi_interrupt(vs, VIRTIO_PCI_ISR_INTR, vq->vq_msix_idx);
392 static inline void
393 vq_kick_enable(struct vqueue_info *vq)
396 vq->vq_used->flags &= ~VRING_USED_F_NO_NOTIFY;
398 * Full memory barrier to make sure the store to vq_used->flags
399 * happens before the load from vq_avail->idx, which results from a
400 * subsequent call to vq_has_descs().
402 atomic_thread_fence_seq_cst();
405 static inline void
406 vq_kick_disable(struct vqueue_info *vq)
409 vq->vq_used->flags |= VRING_USED_F_NO_NOTIFY;
412 struct iovec;
415 * Request description returned by vq_getchain.
417 * Writable iovecs start at iov[req.readable].
419 struct vi_req {
420 int readable; /* num of readable iovecs */
421 int writable; /* num of writable iovecs */
422 unsigned int idx; /* ring index */
425 void vi_softc_linkup(struct virtio_softc *vs, struct virtio_consts *vc,
426 void *dev_softc, struct pci_devinst *pi,
427 struct vqueue_info *queues);
428 int vi_intr_init(struct virtio_softc *vs, int barnum, int use_msix);
429 void vi_reset_dev(struct virtio_softc *);
430 void vi_set_io_bar(struct virtio_softc *, int);
432 int vq_getchain(struct vqueue_info *vq, struct iovec *iov, int niov,
433 struct vi_req *reqp);
434 void vq_retchains(struct vqueue_info *vq, uint16_t n_chains);
435 void vq_relchain_prepare(struct vqueue_info *vq, uint16_t idx,
436 uint32_t iolen);
437 void vq_relchain_publish(struct vqueue_info *vq);
438 void vq_relchain(struct vqueue_info *vq, uint16_t idx, uint32_t iolen);
439 void vq_endchains(struct vqueue_info *vq, int used_all_avail);
441 uint64_t vi_pci_read(struct vmctx *ctx, struct pci_devinst *pi,
442 int baridx, uint64_t offset, int size);
443 void vi_pci_write(struct vmctx *ctx, struct pci_devinst *pi,
444 int baridx, uint64_t offset, int size, uint64_t value);
445 #endif /* _BHYVE_VIRTIO_H_ */