15325 bhyve upstream sync 2023 January
[illumos-gate.git] / usr / src / cmd / bhyve / pci_emul.c
blobb67b09a064be0e3184eaade13d52a8139a6cea08
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
28 * $FreeBSD$
31 * This file and its contents are supplied under the terms of the
32 * Common Development and Distribution License ("CDDL"), version 1.0.
33 * You may only use this file in accordance with the terms of version
34 * 1.0 of the CDDL.
36 * A full copy of the text of the CDDL should have accompanied this
37 * source. A copy of the CDDL is also available via the Internet at
38 * http://www.illumos.org/license/CDDL.
40 * Copyright 2014 Pluribus Networks Inc.
41 * Copyright 2018 Joyent, Inc.
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
47 #include <sys/param.h>
48 #include <sys/linker_set.h>
49 #include <sys/mman.h>
51 #include <ctype.h>
52 #include <err.h>
53 #include <errno.h>
54 #include <pthread.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <strings.h>
59 #include <assert.h>
60 #include <stdbool.h>
61 #include <sysexits.h>
63 #include <machine/vmm.h>
64 #include <vmmapi.h>
66 #include "acpi.h"
67 #include "bhyverun.h"
68 #include "config.h"
69 #include "debug.h"
70 #include "inout.h"
71 #include "ioapic.h"
72 #include "mem.h"
73 #include "pci_emul.h"
74 #include "pci_irq.h"
75 #include "pci_lpc.h"
77 #define CONF1_ADDR_PORT 0x0cf8
78 #define CONF1_DATA_PORT 0x0cfc
80 #define CONF1_ENABLE 0x80000000ul
82 #define MAXBUSES (PCI_BUSMAX + 1)
83 #define MAXSLOTS (PCI_SLOTMAX + 1)
84 #define MAXFUNCS (PCI_FUNCMAX + 1)
86 #define GB (1024 * 1024 * 1024UL)
88 struct funcinfo {
89 nvlist_t *fi_config;
90 struct pci_devemu *fi_pde;
91 struct pci_devinst *fi_devi;
94 struct intxinfo {
95 int ii_count;
96 int ii_pirq_pin;
97 int ii_ioapic_irq;
100 struct slotinfo {
101 struct intxinfo si_intpins[4];
102 struct funcinfo si_funcs[MAXFUNCS];
105 struct businfo {
106 uint16_t iobase, iolimit; /* I/O window */
107 uint32_t membase32, memlimit32; /* mmio window below 4GB */
108 uint64_t membase64, memlimit64; /* mmio window above 4GB */
109 struct slotinfo slotinfo[MAXSLOTS];
112 static struct businfo *pci_businfo[MAXBUSES];
114 SET_DECLARE(pci_devemu_set, struct pci_devemu);
116 static uint64_t pci_emul_iobase;
117 static uint8_t *pci_emul_rombase;
118 static uint64_t pci_emul_romoffset;
119 static uint8_t *pci_emul_romlim;
120 static uint64_t pci_emul_membase32;
121 static uint64_t pci_emul_membase64;
122 static uint64_t pci_emul_memlim64;
124 struct pci_bar_allocation {
125 TAILQ_ENTRY(pci_bar_allocation) chain;
126 struct pci_devinst *pdi;
127 int idx;
128 enum pcibar_type type;
129 uint64_t size;
132 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
133 TAILQ_HEAD_INITIALIZER(pci_bars);
135 #define PCI_EMUL_IOBASE 0x2000
136 #define PCI_EMUL_IOLIMIT 0x10000
138 #define PCI_EMUL_ROMSIZE 0x10000000
140 #define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */
141 #define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */
142 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
145 * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
146 * change this address without changing it in OVMF.
148 #define PCI_EMUL_MEMBASE32 0xC0000000
149 #define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE
150 #define PCI_EMUL_MEMSIZE64 (32*GB)
152 static struct pci_devemu *pci_emul_finddev(const char *name);
153 static void pci_lintr_route(struct pci_devinst *pi);
154 static void pci_lintr_update(struct pci_devinst *pi);
155 static void pci_cfgrw(struct vmctx *ctx, int in, int bus, int slot,
156 int func, int coff, int bytes, uint32_t *val);
158 static __inline void
159 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
162 if (bytes == 1)
163 pci_set_cfgdata8(pi, coff, val);
164 else if (bytes == 2)
165 pci_set_cfgdata16(pi, coff, val);
166 else
167 pci_set_cfgdata32(pi, coff, val);
170 static __inline uint32_t
171 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
174 if (bytes == 1)
175 return (pci_get_cfgdata8(pi, coff));
176 else if (bytes == 2)
177 return (pci_get_cfgdata16(pi, coff));
178 else
179 return (pci_get_cfgdata32(pi, coff));
182 static int
183 is_pcir_bar(int coff)
185 return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
188 static int
189 is_pcir_bios(int coff)
191 return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
195 * I/O access
199 * Slot options are in the form:
201 * <bus>:<slot>:<func>,<emul>[,<config>]
202 * <slot>[:<func>],<emul>[,<config>]
204 * slot is 0..31
205 * func is 0..7
206 * emul is a string describing the type of PCI device e.g. virtio-net
207 * config is an optional string, depending on the device, that can be
208 * used for configuration.
209 * Examples are:
210 * 1,virtio-net,tap0
211 * 3:0,dummy
213 static void
214 pci_parse_slot_usage(char *aopt)
217 EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
221 * Helper function to parse a list of comma-separated options where
222 * each option is formatted as "name[=value]". If no value is
223 * provided, the option is treated as a boolean and is given a value
224 * of true.
227 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
229 char *config, *name, *tofree, *value;
231 if (opt == NULL)
232 return (0);
234 config = tofree = strdup(opt);
235 while ((name = strsep(&config, ",")) != NULL) {
236 value = strchr(name, '=');
237 if (value != NULL) {
238 *value = '\0';
239 value++;
240 set_config_value_node(nvl, name, value);
241 } else
242 set_config_bool_node(nvl, name, true);
244 free(tofree);
245 return (0);
249 * PCI device configuration is stored in MIBs that encode the device's
250 * location:
252 * pci.<bus>.<slot>.<func>
254 * Where "bus", "slot", and "func" are all decimal values without
255 * leading zeroes. Each valid device must have a "device" node which
256 * identifies the driver model of the device.
258 * Device backends can provide a parser for the "config" string. If
259 * a custom parser is not provided, pci_parse_legacy_config() is used
260 * to parse the string.
263 pci_parse_slot(char *opt)
265 char node_name[sizeof("pci.XXX.XX.X")];
266 struct pci_devemu *pde;
267 char *emul, *config, *str, *cp;
268 int error, bnum, snum, fnum;
269 nvlist_t *nvl;
271 error = -1;
272 str = strdup(opt);
274 emul = config = NULL;
275 if ((cp = strchr(str, ',')) != NULL) {
276 *cp = '\0';
277 emul = cp + 1;
278 if ((cp = strchr(emul, ',')) != NULL) {
279 *cp = '\0';
280 config = cp + 1;
282 } else {
283 pci_parse_slot_usage(opt);
284 goto done;
287 /* <bus>:<slot>:<func> */
288 if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
289 bnum = 0;
290 /* <slot>:<func> */
291 if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
292 fnum = 0;
293 /* <slot> */
294 if (sscanf(str, "%d", &snum) != 1) {
295 snum = -1;
300 if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
301 fnum < 0 || fnum >= MAXFUNCS) {
302 pci_parse_slot_usage(opt);
303 goto done;
306 pde = pci_emul_finddev(emul);
307 if (pde == NULL) {
308 EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
309 fnum, emul);
310 goto done;
313 snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
314 fnum);
315 nvl = find_config_node(node_name);
316 if (nvl != NULL) {
317 EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
318 fnum);
319 goto done;
321 nvl = create_config_node(node_name);
322 if (pde->pe_alias != NULL)
323 set_config_value_node(nvl, "device", pde->pe_alias);
324 else
325 set_config_value_node(nvl, "device", pde->pe_emu);
327 if (pde->pe_legacy_config != NULL)
328 error = pde->pe_legacy_config(nvl, config);
329 else
330 error = pci_parse_legacy_config(nvl, config);
331 done:
332 free(str);
333 return (error);
336 void
337 pci_print_supported_devices(void)
339 struct pci_devemu **pdpp, *pdp;
341 SET_FOREACH(pdpp, pci_devemu_set) {
342 pdp = *pdpp;
343 printf("%s\n", pdp->pe_emu);
347 static int
348 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
351 if (offset < pi->pi_msix.pba_offset)
352 return (0);
354 if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
355 return (0);
358 return (1);
362 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
363 uint64_t value)
365 int msix_entry_offset;
366 int tab_index;
367 char *dest;
369 /* support only 4 or 8 byte writes */
370 if (size != 4 && size != 8)
371 return (-1);
374 * Return if table index is beyond what device supports
376 tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
377 if (tab_index >= pi->pi_msix.table_count)
378 return (-1);
380 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
382 /* support only aligned writes */
383 if ((msix_entry_offset % size) != 0)
384 return (-1);
386 dest = (char *)(pi->pi_msix.table + tab_index);
387 dest += msix_entry_offset;
389 if (size == 4)
390 *((uint32_t *)dest) = value;
391 else
392 *((uint64_t *)dest) = value;
394 return (0);
397 uint64_t
398 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
400 char *dest;
401 int msix_entry_offset;
402 int tab_index;
403 uint64_t retval = ~0;
406 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
407 * table but we also allow 1 byte access to accommodate reads from
408 * ddb.
410 if (size != 1 && size != 4 && size != 8)
411 return (retval);
413 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
415 /* support only aligned reads */
416 if ((msix_entry_offset % size) != 0) {
417 return (retval);
420 tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
422 if (tab_index < pi->pi_msix.table_count) {
423 /* valid MSI-X Table access */
424 dest = (char *)(pi->pi_msix.table + tab_index);
425 dest += msix_entry_offset;
427 if (size == 1)
428 retval = *((uint8_t *)dest);
429 else if (size == 4)
430 retval = *((uint32_t *)dest);
431 else
432 retval = *((uint64_t *)dest);
433 } else if (pci_valid_pba_offset(pi, offset)) {
434 /* return 0 for PBA access */
435 retval = 0;
438 return (retval);
442 pci_msix_table_bar(struct pci_devinst *pi)
445 if (pi->pi_msix.table != NULL)
446 return (pi->pi_msix.table_bar);
447 else
448 return (-1);
452 pci_msix_pba_bar(struct pci_devinst *pi)
455 if (pi->pi_msix.table != NULL)
456 return (pi->pi_msix.pba_bar);
457 else
458 return (-1);
461 static int
462 pci_emul_io_handler(struct vmctx *ctx, int in, int port,
463 int bytes, uint32_t *eax, void *arg)
465 struct pci_devinst *pdi = arg;
466 struct pci_devemu *pe = pdi->pi_d;
467 uint64_t offset;
468 int i;
470 assert(port >= 0);
472 for (i = 0; i <= PCI_BARMAX; i++) {
473 if (pdi->pi_bar[i].type == PCIBAR_IO &&
474 (uint64_t)port >= pdi->pi_bar[i].addr &&
475 (uint64_t)port + bytes <=
476 pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
477 offset = port - pdi->pi_bar[i].addr;
478 if (in)
479 *eax = (*pe->pe_barread)(ctx, pdi, i,
480 offset, bytes);
481 else
482 (*pe->pe_barwrite)(ctx, pdi, i, offset,
483 bytes, *eax);
484 return (0);
487 return (-1);
490 static int
491 pci_emul_mem_handler(struct vmctx *ctx, int vcpu __unused, int dir,
492 uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
494 struct pci_devinst *pdi = arg1;
495 struct pci_devemu *pe = pdi->pi_d;
496 uint64_t offset;
497 int bidx = (int) arg2;
499 assert(bidx <= PCI_BARMAX);
500 assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
501 pdi->pi_bar[bidx].type == PCIBAR_MEM64);
502 assert(addr >= pdi->pi_bar[bidx].addr &&
503 addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
505 offset = addr - pdi->pi_bar[bidx].addr;
507 if (dir == MEM_F_WRITE) {
508 if (size == 8) {
509 (*pe->pe_barwrite)(ctx, pdi, bidx, offset,
510 4, *val & 0xffffffff);
511 (*pe->pe_barwrite)(ctx, pdi, bidx, offset + 4,
512 4, *val >> 32);
513 } else {
514 (*pe->pe_barwrite)(ctx, pdi, bidx, offset,
515 size, *val);
517 } else {
518 if (size == 8) {
519 *val = (*pe->pe_barread)(ctx, pdi, bidx,
520 offset, 4);
521 *val |= (*pe->pe_barread)(ctx, pdi, bidx,
522 offset + 4, 4) << 32;
523 } else {
524 *val = (*pe->pe_barread)(ctx, pdi, bidx,
525 offset, size);
529 return (0);
533 static int
534 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
535 uint64_t *addr)
537 uint64_t base;
539 assert((size & (size - 1)) == 0); /* must be a power of 2 */
541 base = roundup2(*baseptr, size);
543 if (base + size <= limit) {
544 *addr = base;
545 *baseptr = base + size;
546 return (0);
547 } else
548 return (-1);
552 * Register (or unregister) the MMIO or I/O region associated with the BAR
553 * register 'idx' of an emulated pci device.
555 static void
556 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
558 struct pci_devemu *pe;
559 int error;
560 struct inout_port iop;
561 struct mem_range mr;
563 pe = pi->pi_d;
564 switch (pi->pi_bar[idx].type) {
565 case PCIBAR_IO:
566 bzero(&iop, sizeof(struct inout_port));
567 iop.name = pi->pi_name;
568 iop.port = pi->pi_bar[idx].addr;
569 iop.size = pi->pi_bar[idx].size;
570 if (registration) {
571 iop.flags = IOPORT_F_INOUT;
572 iop.handler = pci_emul_io_handler;
573 iop.arg = pi;
574 error = register_inout(&iop);
575 } else
576 error = unregister_inout(&iop);
577 if (pe->pe_baraddr != NULL)
578 (*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
579 pi->pi_bar[idx].addr);
580 break;
581 case PCIBAR_MEM32:
582 case PCIBAR_MEM64:
583 bzero(&mr, sizeof(struct mem_range));
584 mr.name = pi->pi_name;
585 mr.base = pi->pi_bar[idx].addr;
586 mr.size = pi->pi_bar[idx].size;
587 if (registration) {
588 mr.flags = MEM_F_RW;
589 mr.handler = pci_emul_mem_handler;
590 mr.arg1 = pi;
591 mr.arg2 = idx;
592 error = register_mem(&mr);
593 } else
594 error = unregister_mem(&mr);
595 if (pe->pe_baraddr != NULL)
596 (*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
597 pi->pi_bar[idx].addr);
598 break;
599 case PCIBAR_ROM:
600 error = 0;
601 if (pe->pe_baraddr != NULL)
602 (*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
603 pi->pi_bar[idx].addr);
604 break;
605 default:
606 error = EINVAL;
607 break;
609 assert(error == 0);
612 static void
613 unregister_bar(struct pci_devinst *pi, int idx)
616 modify_bar_registration(pi, idx, 0);
619 static void
620 register_bar(struct pci_devinst *pi, int idx)
623 modify_bar_registration(pi, idx, 1);
626 /* Is the ROM enabled for the emulated pci device? */
627 static int
628 romen(struct pci_devinst *pi)
630 return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
631 PCIM_BIOS_ENABLE;
634 /* Are we decoding i/o port accesses for the emulated pci device? */
635 static int
636 porten(struct pci_devinst *pi)
638 uint16_t cmd;
640 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
642 return (cmd & PCIM_CMD_PORTEN);
645 /* Are we decoding memory accesses for the emulated pci device? */
646 static int
647 memen(struct pci_devinst *pi)
649 uint16_t cmd;
651 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
653 return (cmd & PCIM_CMD_MEMEN);
657 * Update the MMIO or I/O address that is decoded by the BAR register.
659 * If the pci device has enabled the address space decoding then intercept
660 * the address range decoded by the BAR register.
662 static void
663 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
665 int decode;
667 if (pi->pi_bar[idx].type == PCIBAR_IO)
668 decode = porten(pi);
669 else
670 decode = memen(pi);
672 if (decode)
673 unregister_bar(pi, idx);
675 switch (type) {
676 case PCIBAR_IO:
677 case PCIBAR_MEM32:
678 pi->pi_bar[idx].addr = addr;
679 break;
680 case PCIBAR_MEM64:
681 pi->pi_bar[idx].addr &= ~0xffffffffUL;
682 pi->pi_bar[idx].addr |= addr;
683 break;
684 case PCIBAR_MEMHI64:
685 pi->pi_bar[idx].addr &= 0xffffffff;
686 pi->pi_bar[idx].addr |= addr;
687 break;
688 default:
689 assert(0);
692 if (decode)
693 register_bar(pi, idx);
697 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
698 uint64_t size)
700 assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
701 assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
703 if ((size & (size - 1)) != 0)
704 size = 1UL << flsl(size); /* round up to a power of 2 */
706 /* Enforce minimum BAR sizes required by the PCI standard */
707 if (type == PCIBAR_IO) {
708 if (size < 4)
709 size = 4;
710 } else if (type == PCIBAR_ROM) {
711 if (size < ~PCIM_BIOS_ADDR_MASK + 1)
712 size = ~PCIM_BIOS_ADDR_MASK + 1;
713 } else {
714 if (size < 16)
715 size = 16;
719 * To reduce fragmentation of the MMIO space, we allocate the BARs by
720 * size. Therefore, don't allocate the BAR yet. We create a list of all
721 * BAR allocation which is sorted by BAR size. When all PCI devices are
722 * initialized, we will assign an address to the BARs.
725 /* create a new list entry */
726 struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
727 memset(new_bar, 0, sizeof(*new_bar));
728 new_bar->pdi = pdi;
729 new_bar->idx = idx;
730 new_bar->type = type;
731 new_bar->size = size;
734 * Search for a BAR which size is lower than the size of our newly
735 * allocated BAR.
737 struct pci_bar_allocation *bar = NULL;
738 TAILQ_FOREACH(bar, &pci_bars, chain) {
739 if (bar->size < size) {
740 break;
744 if (bar == NULL) {
746 * Either the list is empty or new BAR is the smallest BAR of
747 * the list. Append it to the end of our list.
749 TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
750 } else {
752 * The found BAR is smaller than our new BAR. For that reason,
753 * insert our new BAR before the found BAR.
755 TAILQ_INSERT_BEFORE(bar, new_bar, chain);
759 * pci_passthru devices synchronize their physical and virtual command
760 * register on init. For that reason, the virtual cmd reg should be
761 * updated as early as possible.
763 uint16_t enbit = 0;
764 switch (type) {
765 case PCIBAR_IO:
766 enbit = PCIM_CMD_PORTEN;
767 break;
768 case PCIBAR_MEM64:
769 case PCIBAR_MEM32:
770 enbit = PCIM_CMD_MEMEN;
771 break;
772 default:
773 enbit = 0;
774 break;
777 const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
778 pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
780 return (0);
783 static int
784 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
785 const enum pcibar_type type, const uint64_t size)
787 int error;
788 uint64_t *baseptr, limit, addr, mask, lobits, bar;
790 switch (type) {
791 case PCIBAR_NONE:
792 baseptr = NULL;
793 addr = mask = lobits = 0;
794 break;
795 case PCIBAR_IO:
796 baseptr = &pci_emul_iobase;
797 limit = PCI_EMUL_IOLIMIT;
798 mask = PCIM_BAR_IO_BASE;
799 lobits = PCIM_BAR_IO_SPACE;
800 break;
801 case PCIBAR_MEM64:
803 * XXX
804 * Some drivers do not work well if the 64-bit BAR is allocated
805 * above 4GB. Allow for this by allocating small requests under
806 * 4GB unless then allocation size is larger than some arbitrary
807 * number (128MB currently).
809 if (size > 128 * 1024 * 1024) {
810 baseptr = &pci_emul_membase64;
811 limit = pci_emul_memlim64;
812 mask = PCIM_BAR_MEM_BASE;
813 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
814 PCIM_BAR_MEM_PREFETCH;
815 } else {
816 baseptr = &pci_emul_membase32;
817 limit = PCI_EMUL_MEMLIMIT32;
818 mask = PCIM_BAR_MEM_BASE;
819 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
821 break;
822 case PCIBAR_MEM32:
823 baseptr = &pci_emul_membase32;
824 limit = PCI_EMUL_MEMLIMIT32;
825 mask = PCIM_BAR_MEM_BASE;
826 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
827 break;
828 case PCIBAR_ROM:
829 /* do not claim memory for ROM. OVMF will do it for us. */
830 baseptr = NULL;
831 limit = 0;
832 mask = PCIM_BIOS_ADDR_MASK;
833 lobits = 0;
834 break;
835 default:
836 printf("pci_emul_alloc_base: invalid bar type %d\n", type);
837 #ifdef FreeBSD
838 assert(0);
839 #else
840 abort();
841 #endif
844 if (baseptr != NULL) {
845 error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
846 if (error != 0)
847 return (error);
848 } else {
849 addr = 0;
852 pdi->pi_bar[idx].type = type;
853 pdi->pi_bar[idx].addr = addr;
854 pdi->pi_bar[idx].size = size;
856 * passthru devices are using same lobits as physical device they set
857 * this property
859 if (pdi->pi_bar[idx].lobits != 0) {
860 lobits = pdi->pi_bar[idx].lobits;
861 } else {
862 pdi->pi_bar[idx].lobits = lobits;
865 /* Initialize the BAR register in config space */
866 bar = (addr & mask) | lobits;
867 pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
869 if (type == PCIBAR_MEM64) {
870 assert(idx + 1 <= PCI_BARMAX);
871 pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
872 pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
875 if (type != PCIBAR_ROM) {
876 register_bar(pdi, idx);
879 return (0);
883 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
884 void **const addr)
886 /* allocate ROM space once on first call */
887 if (pci_emul_rombase == 0) {
888 pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
889 "pcirom", PCI_EMUL_ROMSIZE);
890 if (pci_emul_rombase == MAP_FAILED) {
891 warnx("%s: failed to create rom segment", __func__);
892 return (-1);
894 pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
895 pci_emul_romoffset = 0;
898 /* ROM size should be a power of 2 and greater than 2 KB */
899 const uint64_t rom_size = MAX(1UL << flsl(size),
900 ~PCIM_BIOS_ADDR_MASK + 1);
902 /* check if ROM fits into ROM space */
903 if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
904 warnx("%s: no space left in rom segment:", __func__);
905 warnx("%16lu bytes left",
906 PCI_EMUL_ROMSIZE - pci_emul_romoffset);
907 warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
908 pdi->pi_slot, pdi->pi_func);
909 return (-1);
912 /* allocate ROM BAR */
913 const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
914 rom_size);
915 if (error)
916 return error;
918 /* return address */
919 *addr = pci_emul_rombase + pci_emul_romoffset;
921 /* save offset into ROM Space */
922 pdi->pi_romoffset = pci_emul_romoffset;
924 /* increase offset for next ROM */
925 pci_emul_romoffset += rom_size;
927 return (0);
930 #define CAP_START_OFFSET 0x40
931 static int
932 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
934 int i, capoff, reallen;
935 uint16_t sts;
937 assert(caplen > 0);
939 reallen = roundup2(caplen, 4); /* dword aligned */
941 sts = pci_get_cfgdata16(pi, PCIR_STATUS);
942 if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
943 capoff = CAP_START_OFFSET;
944 else
945 capoff = pi->pi_capend + 1;
947 /* Check if we have enough space */
948 if (capoff + reallen > PCI_REGMAX + 1)
949 return (-1);
951 /* Set the previous capability pointer */
952 if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
953 pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
954 pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
955 } else
956 pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
958 /* Copy the capability */
959 for (i = 0; i < caplen; i++)
960 pci_set_cfgdata8(pi, capoff + i, capdata[i]);
962 /* Set the next capability pointer */
963 pci_set_cfgdata8(pi, capoff + 1, 0);
965 pi->pi_prevcap = capoff;
966 pi->pi_capend = capoff + reallen - 1;
967 return (0);
970 static struct pci_devemu *
971 pci_emul_finddev(const char *name)
973 struct pci_devemu **pdpp, *pdp;
975 SET_FOREACH(pdpp, pci_devemu_set) {
976 pdp = *pdpp;
977 if (!strcmp(pdp->pe_emu, name)) {
978 return (pdp);
982 return (NULL);
985 static int
986 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
987 int func, struct funcinfo *fi)
989 struct pci_devinst *pdi;
990 int err;
992 pdi = calloc(1, sizeof(struct pci_devinst));
994 pdi->pi_vmctx = ctx;
995 pdi->pi_bus = bus;
996 pdi->pi_slot = slot;
997 pdi->pi_func = func;
998 pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
999 pdi->pi_lintr.pin = 0;
1000 pdi->pi_lintr.state = IDLE;
1001 pdi->pi_lintr.pirq_pin = 0;
1002 pdi->pi_lintr.ioapic_irq = 0;
1003 pdi->pi_d = pde;
1004 snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
1006 /* Disable legacy interrupts */
1007 pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
1008 pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
1010 pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
1012 err = (*pde->pe_init)(ctx, pdi, fi->fi_config);
1013 if (err == 0)
1014 fi->fi_devi = pdi;
1015 else
1016 free(pdi);
1018 return (err);
1021 void
1022 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1024 int mmc;
1026 /* Number of msi messages must be a power of 2 between 1 and 32 */
1027 assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1028 mmc = ffs(msgnum) - 1;
1030 bzero(msicap, sizeof(struct msicap));
1031 msicap->capid = PCIY_MSI;
1032 msicap->nextptr = nextptr;
1033 msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1037 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1039 struct msicap msicap;
1041 pci_populate_msicap(&msicap, msgnum, 0);
1043 return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1046 static void
1047 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1048 uint32_t msix_tab_size)
1051 assert(msix_tab_size % 4096 == 0);
1053 bzero(msixcap, sizeof(struct msixcap));
1054 msixcap->capid = PCIY_MSIX;
1057 * Message Control Register, all fields set to
1058 * zero except for the Table Size.
1059 * Note: Table size N is encoded as N-1
1061 msixcap->msgctrl = msgnum - 1;
1064 * MSI-X BAR setup:
1065 * - MSI-X table start at offset 0
1066 * - PBA table starts at a 4K aligned offset after the MSI-X table
1068 msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1069 msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1072 static void
1073 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1075 int i, table_size;
1077 assert(table_entries > 0);
1078 assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1080 table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1081 pi->pi_msix.table = calloc(1, table_size);
1083 /* set mask bit of vector control register */
1084 for (i = 0; i < table_entries; i++)
1085 pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1089 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1091 uint32_t tab_size;
1092 struct msixcap msixcap;
1094 assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1095 assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1097 tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1099 /* Align table size to nearest 4K */
1100 tab_size = roundup2(tab_size, 4096);
1102 pi->pi_msix.table_bar = barnum;
1103 pi->pi_msix.pba_bar = barnum;
1104 pi->pi_msix.table_offset = 0;
1105 pi->pi_msix.table_count = msgnum;
1106 pi->pi_msix.pba_offset = tab_size;
1107 pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1109 pci_msix_table_init(pi, msgnum);
1111 pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1113 /* allocate memory for MSI-X Table and PBA */
1114 pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1115 tab_size + pi->pi_msix.pba_size);
1117 return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1118 sizeof(msixcap)));
1121 static void
1122 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1123 int bytes, uint32_t val)
1125 uint16_t msgctrl, rwmask;
1126 int off;
1128 off = offset - capoff;
1129 /* Message Control Register */
1130 if (off == 2 && bytes == 2) {
1131 rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1132 msgctrl = pci_get_cfgdata16(pi, offset);
1133 msgctrl &= ~rwmask;
1134 msgctrl |= val & rwmask;
1135 val = msgctrl;
1137 pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1138 pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1139 pci_lintr_update(pi);
1142 CFGWRITE(pi, offset, val, bytes);
1145 static void
1146 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1147 int bytes, uint32_t val)
1149 uint16_t msgctrl, rwmask, msgdata, mme;
1150 uint32_t addrlo;
1153 * If guest is writing to the message control register make sure
1154 * we do not overwrite read-only fields.
1156 if ((offset - capoff) == 2 && bytes == 2) {
1157 rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1158 msgctrl = pci_get_cfgdata16(pi, offset);
1159 msgctrl &= ~rwmask;
1160 msgctrl |= val & rwmask;
1161 val = msgctrl;
1163 CFGWRITE(pi, offset, val, bytes);
1165 msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1166 addrlo = pci_get_cfgdata32(pi, capoff + 4);
1167 if (msgctrl & PCIM_MSICTRL_64BIT)
1168 msgdata = pci_get_cfgdata16(pi, capoff + 12);
1169 else
1170 msgdata = pci_get_cfgdata16(pi, capoff + 8);
1172 mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1173 pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1174 if (pi->pi_msi.enabled) {
1175 pi->pi_msi.addr = addrlo;
1176 pi->pi_msi.msg_data = msgdata;
1177 pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1178 } else {
1179 pi->pi_msi.maxmsgnum = 0;
1181 pci_lintr_update(pi);
1184 static void
1185 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1186 int bytes, uint32_t val)
1189 /* XXX don't write to the readonly parts */
1190 CFGWRITE(pi, offset, val, bytes);
1193 #define PCIECAP_VERSION 0x2
1195 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1197 int err;
1198 struct pciecap pciecap;
1200 bzero(&pciecap, sizeof(pciecap));
1203 * Use the integrated endpoint type for endpoints on a root complex bus.
1205 * NB: bhyve currently only supports a single PCI bus that is the root
1206 * complex bus, so all endpoints are integrated.
1208 if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1209 type = PCIEM_TYPE_ROOT_INT_EP;
1211 pciecap.capid = PCIY_EXPRESS;
1212 pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1213 if (type != PCIEM_TYPE_ROOT_INT_EP) {
1214 pciecap.link_capabilities = 0x411; /* gen1, x1 */
1215 pciecap.link_status = 0x11; /* gen1, x1 */
1218 err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1219 return (err);
1223 * This function assumes that 'coff' is in the capabilities region of the
1224 * config space. A capoff parameter of zero will force a search for the
1225 * offset and type.
1227 void
1228 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1229 uint8_t capoff, int capid)
1231 uint8_t nextoff;
1233 /* Do not allow un-aligned writes */
1234 if ((offset & (bytes - 1)) != 0)
1235 return;
1237 if (capoff == 0) {
1238 /* Find the capability that we want to update */
1239 capoff = CAP_START_OFFSET;
1240 while (1) {
1241 nextoff = pci_get_cfgdata8(pi, capoff + 1);
1242 if (nextoff == 0)
1243 break;
1244 if (offset >= capoff && offset < nextoff)
1245 break;
1247 capoff = nextoff;
1249 assert(offset >= capoff);
1250 capid = pci_get_cfgdata8(pi, capoff);
1254 * Capability ID and Next Capability Pointer are readonly.
1255 * However, some o/s's do 4-byte writes that include these.
1256 * For this case, trim the write back to 2 bytes and adjust
1257 * the data.
1259 if (offset == capoff || offset == capoff + 1) {
1260 if (offset == capoff && bytes == 4) {
1261 bytes = 2;
1262 offset += 2;
1263 val >>= 16;
1264 } else
1265 return;
1268 switch (capid) {
1269 case PCIY_MSI:
1270 msicap_cfgwrite(pi, capoff, offset, bytes, val);
1271 break;
1272 case PCIY_MSIX:
1273 msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1274 break;
1275 case PCIY_EXPRESS:
1276 pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1277 break;
1278 default:
1279 break;
1283 static int
1284 pci_emul_iscap(struct pci_devinst *pi, int offset)
1286 uint16_t sts;
1288 sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1289 if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1290 if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1291 return (1);
1293 return (0);
1296 static int
1297 pci_emul_fallback_handler(struct vmctx *ctx __unused, int vcpu __unused,
1298 int dir, uint64_t addr __unused, int size __unused, uint64_t *val,
1299 void *arg1 __unused, long arg2 __unused)
1302 * Ignore writes; return 0xff's for reads. The mem read code
1303 * will take care of truncating to the correct size.
1305 if (dir == MEM_F_READ) {
1306 *val = 0xffffffffffffffff;
1309 return (0);
1312 static int
1313 pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu __unused, int dir,
1314 uint64_t addr, int bytes, uint64_t *val, void *arg1 __unused,
1315 long arg2 __unused)
1317 int bus, slot, func, coff, in;
1319 coff = addr & 0xfff;
1320 func = (addr >> 12) & 0x7;
1321 slot = (addr >> 15) & 0x1f;
1322 bus = (addr >> 20) & 0xff;
1323 in = (dir == MEM_F_READ);
1324 if (in)
1325 *val = ~0UL;
1326 pci_cfgrw(ctx, in, bus, slot, func, coff, bytes, (uint32_t *)val);
1327 return (0);
1330 uint64_t
1331 pci_ecfg_base(void)
1334 return (PCI_EMUL_ECFG_BASE);
1337 #define BUSIO_ROUNDUP 32
1338 #define BUSMEM32_ROUNDUP (1024 * 1024)
1339 #define BUSMEM64_ROUNDUP (512 * 1024 * 1024)
1342 init_pci(struct vmctx *ctx)
1344 char node_name[sizeof("pci.XXX.XX.X")];
1345 struct mem_range mr;
1346 struct pci_devemu *pde;
1347 struct businfo *bi;
1348 struct slotinfo *si;
1349 struct funcinfo *fi;
1350 nvlist_t *nvl;
1351 const char *emul;
1352 size_t lowmem;
1353 int bus, slot, func;
1354 int error;
1356 if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1357 errx(EX_OSERR, "Invalid lowmem limit");
1359 pci_emul_iobase = PCI_EMUL_IOBASE;
1360 pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1362 pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
1363 pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1364 pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1366 for (bus = 0; bus < MAXBUSES; bus++) {
1367 snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1368 nvl = find_config_node(node_name);
1369 if (nvl == NULL)
1370 continue;
1371 pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1372 bi = pci_businfo[bus];
1375 * Keep track of the i/o and memory resources allocated to
1376 * this bus.
1378 bi->iobase = pci_emul_iobase;
1379 bi->membase32 = pci_emul_membase32;
1380 bi->membase64 = pci_emul_membase64;
1382 /* first run: init devices */
1383 for (slot = 0; slot < MAXSLOTS; slot++) {
1384 si = &bi->slotinfo[slot];
1385 for (func = 0; func < MAXFUNCS; func++) {
1386 fi = &si->si_funcs[func];
1387 snprintf(node_name, sizeof(node_name),
1388 "pci.%d.%d.%d", bus, slot, func);
1389 nvl = find_config_node(node_name);
1390 if (nvl == NULL)
1391 continue;
1393 fi->fi_config = nvl;
1394 emul = get_config_value_node(nvl, "device");
1395 if (emul == NULL) {
1396 EPRINTLN("pci slot %d:%d:%d: missing "
1397 "\"device\" value", bus, slot, func);
1398 return (EINVAL);
1400 pde = pci_emul_finddev(emul);
1401 if (pde == NULL) {
1402 EPRINTLN("pci slot %d:%d:%d: unknown "
1403 "device \"%s\"", bus, slot, func,
1404 emul);
1405 return (EINVAL);
1407 if (pde->pe_alias != NULL) {
1408 EPRINTLN("pci slot %d:%d:%d: legacy "
1409 "device \"%s\", use \"%s\" instead",
1410 bus, slot, func, emul,
1411 pde->pe_alias);
1412 return (EINVAL);
1414 fi->fi_pde = pde;
1415 error = pci_emul_init(ctx, pde, bus, slot,
1416 func, fi);
1417 if (error)
1418 return (error);
1422 /* second run: assign BARs and free list */
1423 struct pci_bar_allocation *bar;
1424 struct pci_bar_allocation *bar_tmp;
1425 TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1426 pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1427 bar->size);
1428 free(bar);
1430 TAILQ_INIT(&pci_bars);
1433 * Add some slop to the I/O and memory resources decoded by
1434 * this bus to give a guest some flexibility if it wants to
1435 * reprogram the BARs.
1437 pci_emul_iobase += BUSIO_ROUNDUP;
1438 pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1439 bi->iolimit = pci_emul_iobase;
1441 pci_emul_membase32 += BUSMEM32_ROUNDUP;
1442 pci_emul_membase32 = roundup2(pci_emul_membase32,
1443 BUSMEM32_ROUNDUP);
1444 bi->memlimit32 = pci_emul_membase32;
1446 pci_emul_membase64 += BUSMEM64_ROUNDUP;
1447 pci_emul_membase64 = roundup2(pci_emul_membase64,
1448 BUSMEM64_ROUNDUP);
1449 bi->memlimit64 = pci_emul_membase64;
1453 * PCI backends are initialized before routing INTx interrupts
1454 * so that LPC devices are able to reserve ISA IRQs before
1455 * routing PIRQ pins.
1457 for (bus = 0; bus < MAXBUSES; bus++) {
1458 if ((bi = pci_businfo[bus]) == NULL)
1459 continue;
1461 for (slot = 0; slot < MAXSLOTS; slot++) {
1462 si = &bi->slotinfo[slot];
1463 for (func = 0; func < MAXFUNCS; func++) {
1464 fi = &si->si_funcs[func];
1465 if (fi->fi_devi == NULL)
1466 continue;
1467 pci_lintr_route(fi->fi_devi);
1471 lpc_pirq_routed();
1474 * The guest physical memory map looks like the following:
1475 * [0, lowmem) guest system memory
1476 * [lowmem, 0xC0000000) memory hole (may be absent)
1477 * [0xC0000000, 0xE0000000) PCI hole (32-bit BAR allocation)
1478 * [0xE0000000, 0xF0000000) PCI extended config window
1479 * [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware
1480 * [4GB, 4GB + highmem)
1484 * Accesses to memory addresses that are not allocated to system
1485 * memory or PCI devices return 0xff's.
1487 lowmem = vm_get_lowmem_size(ctx);
1488 bzero(&mr, sizeof(struct mem_range));
1489 mr.name = "PCI hole";
1490 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1491 mr.base = lowmem;
1492 mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1493 mr.handler = pci_emul_fallback_handler;
1494 error = register_mem_fallback(&mr);
1495 assert(error == 0);
1497 /* PCI extended config space */
1498 bzero(&mr, sizeof(struct mem_range));
1499 mr.name = "PCI ECFG";
1500 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1501 mr.base = PCI_EMUL_ECFG_BASE;
1502 mr.size = PCI_EMUL_ECFG_SIZE;
1503 mr.handler = pci_emul_ecfg_handler;
1504 error = register_mem(&mr);
1505 assert(error == 0);
1507 return (0);
1510 static void
1511 pci_apic_prt_entry(int bus __unused, int slot, int pin, int pirq_pin __unused,
1512 int ioapic_irq, void *arg __unused)
1515 dsdt_line(" Package ()");
1516 dsdt_line(" {");
1517 dsdt_line(" 0x%X,", slot << 16 | 0xffff);
1518 dsdt_line(" 0x%02X,", pin - 1);
1519 dsdt_line(" Zero,");
1520 dsdt_line(" 0x%X", ioapic_irq);
1521 dsdt_line(" },");
1524 static void
1525 pci_pirq_prt_entry(int bus __unused, int slot, int pin, int pirq_pin,
1526 int ioapic_irq __unused, void *arg __unused)
1528 char *name;
1530 name = lpc_pirq_name(pirq_pin);
1531 if (name == NULL)
1532 return;
1533 dsdt_line(" Package ()");
1534 dsdt_line(" {");
1535 dsdt_line(" 0x%X,", slot << 16 | 0xffff);
1536 dsdt_line(" 0x%02X,", pin - 1);
1537 dsdt_line(" %s,", name);
1538 dsdt_line(" 0x00");
1539 dsdt_line(" },");
1540 free(name);
1544 * A bhyve virtual machine has a flat PCI hierarchy with a root port
1545 * corresponding to each PCI bus.
1547 static void
1548 pci_bus_write_dsdt(int bus)
1550 struct businfo *bi;
1551 struct slotinfo *si;
1552 struct pci_devinst *pi;
1553 int count, func, slot;
1556 * If there are no devices on this 'bus' then just return.
1558 if ((bi = pci_businfo[bus]) == NULL) {
1560 * Bus 0 is special because it decodes the I/O ports used
1561 * for PCI config space access even if there are no devices
1562 * on it.
1564 if (bus != 0)
1565 return;
1568 dsdt_line(" Device (PC%02X)", bus);
1569 dsdt_line(" {");
1570 dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))");
1572 dsdt_line(" Method (_BBN, 0, NotSerialized)");
1573 dsdt_line(" {");
1574 dsdt_line(" Return (0x%08X)", bus);
1575 dsdt_line(" }");
1576 dsdt_line(" Name (_CRS, ResourceTemplate ()");
1577 dsdt_line(" {");
1578 dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, "
1579 "MaxFixed, PosDecode,");
1580 dsdt_line(" 0x0000, // Granularity");
1581 dsdt_line(" 0x%04X, // Range Minimum", bus);
1582 dsdt_line(" 0x%04X, // Range Maximum", bus);
1583 dsdt_line(" 0x0000, // Translation Offset");
1584 dsdt_line(" 0x0001, // Length");
1585 dsdt_line(" ,, )");
1587 if (bus == 0) {
1588 dsdt_indent(3);
1589 dsdt_fixed_ioport(0xCF8, 8);
1590 dsdt_unindent(3);
1592 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
1593 "PosDecode, EntireRange,");
1594 dsdt_line(" 0x0000, // Granularity");
1595 dsdt_line(" 0x0000, // Range Minimum");
1596 dsdt_line(" 0x0CF7, // Range Maximum");
1597 dsdt_line(" 0x0000, // Translation Offset");
1598 dsdt_line(" 0x0CF8, // Length");
1599 dsdt_line(" ,, , TypeStatic)");
1601 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
1602 "PosDecode, EntireRange,");
1603 dsdt_line(" 0x0000, // Granularity");
1604 dsdt_line(" 0x0D00, // Range Minimum");
1605 dsdt_line(" 0x%04X, // Range Maximum",
1606 PCI_EMUL_IOBASE - 1);
1607 dsdt_line(" 0x0000, // Translation Offset");
1608 dsdt_line(" 0x%04X, // Length",
1609 PCI_EMUL_IOBASE - 0x0D00);
1610 dsdt_line(" ,, , TypeStatic)");
1612 if (bi == NULL) {
1613 dsdt_line(" })");
1614 goto done;
1617 assert(bi != NULL);
1619 /* i/o window */
1620 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
1621 "PosDecode, EntireRange,");
1622 dsdt_line(" 0x0000, // Granularity");
1623 dsdt_line(" 0x%04X, // Range Minimum", bi->iobase);
1624 dsdt_line(" 0x%04X, // Range Maximum",
1625 bi->iolimit - 1);
1626 dsdt_line(" 0x0000, // Translation Offset");
1627 dsdt_line(" 0x%04X, // Length",
1628 bi->iolimit - bi->iobase);
1629 dsdt_line(" ,, , TypeStatic)");
1631 /* mmio window (32-bit) */
1632 dsdt_line(" DWordMemory (ResourceProducer, PosDecode, "
1633 "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1634 dsdt_line(" 0x00000000, // Granularity");
1635 dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32);
1636 dsdt_line(" 0x%08X, // Range Maximum\n",
1637 bi->memlimit32 - 1);
1638 dsdt_line(" 0x00000000, // Translation Offset");
1639 dsdt_line(" 0x%08X, // Length\n",
1640 bi->memlimit32 - bi->membase32);
1641 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
1643 /* mmio window (64-bit) */
1644 dsdt_line(" QWordMemory (ResourceProducer, PosDecode, "
1645 "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1646 dsdt_line(" 0x0000000000000000, // Granularity");
1647 dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64);
1648 dsdt_line(" 0x%016lX, // Range Maximum\n",
1649 bi->memlimit64 - 1);
1650 dsdt_line(" 0x0000000000000000, // Translation Offset");
1651 dsdt_line(" 0x%016lX, // Length\n",
1652 bi->memlimit64 - bi->membase64);
1653 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
1654 dsdt_line(" })");
1656 count = pci_count_lintr(bus);
1657 if (count != 0) {
1658 dsdt_indent(2);
1659 dsdt_line("Name (PPRT, Package ()");
1660 dsdt_line("{");
1661 pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1662 dsdt_line("})");
1663 dsdt_line("Name (APRT, Package ()");
1664 dsdt_line("{");
1665 pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1666 dsdt_line("})");
1667 dsdt_line("Method (_PRT, 0, NotSerialized)");
1668 dsdt_line("{");
1669 dsdt_line(" If (PICM)");
1670 dsdt_line(" {");
1671 dsdt_line(" Return (APRT)");
1672 dsdt_line(" }");
1673 dsdt_line(" Else");
1674 dsdt_line(" {");
1675 dsdt_line(" Return (PPRT)");
1676 dsdt_line(" }");
1677 dsdt_line("}");
1678 dsdt_unindent(2);
1681 dsdt_indent(2);
1682 for (slot = 0; slot < MAXSLOTS; slot++) {
1683 si = &bi->slotinfo[slot];
1684 for (func = 0; func < MAXFUNCS; func++) {
1685 pi = si->si_funcs[func].fi_devi;
1686 if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1687 pi->pi_d->pe_write_dsdt(pi);
1690 dsdt_unindent(2);
1691 done:
1692 dsdt_line(" }");
1695 void
1696 pci_write_dsdt(void)
1698 int bus;
1700 dsdt_indent(1);
1701 dsdt_line("Name (PICM, 0x00)");
1702 dsdt_line("Method (_PIC, 1, NotSerialized)");
1703 dsdt_line("{");
1704 dsdt_line(" Store (Arg0, PICM)");
1705 dsdt_line("}");
1706 dsdt_line("");
1707 dsdt_line("Scope (_SB)");
1708 dsdt_line("{");
1709 for (bus = 0; bus < MAXBUSES; bus++)
1710 pci_bus_write_dsdt(bus);
1711 dsdt_line("}");
1712 dsdt_unindent(1);
1716 pci_bus_configured(int bus)
1718 assert(bus >= 0 && bus < MAXBUSES);
1719 return (pci_businfo[bus] != NULL);
1723 pci_msi_enabled(struct pci_devinst *pi)
1725 return (pi->pi_msi.enabled);
1729 pci_msi_maxmsgnum(struct pci_devinst *pi)
1731 if (pi->pi_msi.enabled)
1732 return (pi->pi_msi.maxmsgnum);
1733 else
1734 return (0);
1738 pci_msix_enabled(struct pci_devinst *pi)
1741 return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1744 void
1745 pci_generate_msix(struct pci_devinst *pi, int index)
1747 struct msix_table_entry *mte;
1749 if (!pci_msix_enabled(pi))
1750 return;
1752 if (pi->pi_msix.function_mask)
1753 return;
1755 if (index >= pi->pi_msix.table_count)
1756 return;
1758 mte = &pi->pi_msix.table[index];
1759 if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1760 /* XXX Set PBA bit if interrupt is disabled */
1761 vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1765 void
1766 pci_generate_msi(struct pci_devinst *pi, int index)
1769 if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1770 vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1771 pi->pi_msi.msg_data + index);
1775 static bool
1776 pci_lintr_permitted(struct pci_devinst *pi)
1778 uint16_t cmd;
1780 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1781 return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1782 (cmd & PCIM_CMD_INTxDIS)));
1785 void
1786 pci_lintr_request(struct pci_devinst *pi)
1788 struct businfo *bi;
1789 struct slotinfo *si;
1790 int bestpin, bestcount, pin;
1792 bi = pci_businfo[pi->pi_bus];
1793 assert(bi != NULL);
1796 * Just allocate a pin from our slot. The pin will be
1797 * assigned IRQs later when interrupts are routed.
1799 si = &bi->slotinfo[pi->pi_slot];
1800 bestpin = 0;
1801 bestcount = si->si_intpins[0].ii_count;
1802 for (pin = 1; pin < 4; pin++) {
1803 if (si->si_intpins[pin].ii_count < bestcount) {
1804 bestpin = pin;
1805 bestcount = si->si_intpins[pin].ii_count;
1809 si->si_intpins[bestpin].ii_count++;
1810 pi->pi_lintr.pin = bestpin + 1;
1811 pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1814 static void
1815 pci_lintr_route(struct pci_devinst *pi)
1817 struct businfo *bi;
1818 struct intxinfo *ii;
1820 if (pi->pi_lintr.pin == 0)
1821 return;
1823 bi = pci_businfo[pi->pi_bus];
1824 assert(bi != NULL);
1825 ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1828 * Attempt to allocate an I/O APIC pin for this intpin if one
1829 * is not yet assigned.
1831 if (ii->ii_ioapic_irq == 0)
1832 ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1833 assert(ii->ii_ioapic_irq > 0);
1836 * Attempt to allocate a PIRQ pin for this intpin if one is
1837 * not yet assigned.
1839 if (ii->ii_pirq_pin == 0)
1840 ii->ii_pirq_pin = pirq_alloc_pin(pi);
1841 assert(ii->ii_pirq_pin > 0);
1843 pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1844 pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1845 pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1848 void
1849 pci_lintr_assert(struct pci_devinst *pi)
1852 assert(pi->pi_lintr.pin > 0);
1854 pthread_mutex_lock(&pi->pi_lintr.lock);
1855 if (pi->pi_lintr.state == IDLE) {
1856 if (pci_lintr_permitted(pi)) {
1857 pi->pi_lintr.state = ASSERTED;
1858 pci_irq_assert(pi);
1859 } else
1860 pi->pi_lintr.state = PENDING;
1862 pthread_mutex_unlock(&pi->pi_lintr.lock);
1865 void
1866 pci_lintr_deassert(struct pci_devinst *pi)
1869 assert(pi->pi_lintr.pin > 0);
1871 pthread_mutex_lock(&pi->pi_lintr.lock);
1872 if (pi->pi_lintr.state == ASSERTED) {
1873 pi->pi_lintr.state = IDLE;
1874 pci_irq_deassert(pi);
1875 } else if (pi->pi_lintr.state == PENDING)
1876 pi->pi_lintr.state = IDLE;
1877 pthread_mutex_unlock(&pi->pi_lintr.lock);
1880 static void
1881 pci_lintr_update(struct pci_devinst *pi)
1884 pthread_mutex_lock(&pi->pi_lintr.lock);
1885 if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1886 pci_irq_deassert(pi);
1887 pi->pi_lintr.state = PENDING;
1888 } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1889 pi->pi_lintr.state = ASSERTED;
1890 pci_irq_assert(pi);
1892 pthread_mutex_unlock(&pi->pi_lintr.lock);
1893 #ifndef __FreeBSD__
1894 if (pi->pi_d->pe_lintrupdate != NULL) {
1895 pi->pi_d->pe_lintrupdate(pi);
1897 #endif /* __FreeBSD__ */
1901 pci_count_lintr(int bus)
1903 int count, slot, pin;
1904 struct slotinfo *slotinfo;
1906 count = 0;
1907 if (pci_businfo[bus] != NULL) {
1908 for (slot = 0; slot < MAXSLOTS; slot++) {
1909 slotinfo = &pci_businfo[bus]->slotinfo[slot];
1910 for (pin = 0; pin < 4; pin++) {
1911 if (slotinfo->si_intpins[pin].ii_count != 0)
1912 count++;
1916 return (count);
1919 void
1920 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1922 struct businfo *bi;
1923 struct slotinfo *si;
1924 struct intxinfo *ii;
1925 int slot, pin;
1927 if ((bi = pci_businfo[bus]) == NULL)
1928 return;
1930 for (slot = 0; slot < MAXSLOTS; slot++) {
1931 si = &bi->slotinfo[slot];
1932 for (pin = 0; pin < 4; pin++) {
1933 ii = &si->si_intpins[pin];
1934 if (ii->ii_count != 0)
1935 cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1936 ii->ii_ioapic_irq, arg);
1942 * Return 1 if the emulated device in 'slot' is a multi-function device.
1943 * Return 0 otherwise.
1945 static int
1946 pci_emul_is_mfdev(int bus, int slot)
1948 struct businfo *bi;
1949 struct slotinfo *si;
1950 int f, numfuncs;
1952 numfuncs = 0;
1953 if ((bi = pci_businfo[bus]) != NULL) {
1954 si = &bi->slotinfo[slot];
1955 for (f = 0; f < MAXFUNCS; f++) {
1956 if (si->si_funcs[f].fi_devi != NULL) {
1957 numfuncs++;
1961 return (numfuncs > 1);
1965 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1966 * whether or not is a multi-function being emulated in the pci 'slot'.
1968 static void
1969 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1971 int mfdev;
1973 if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1974 mfdev = pci_emul_is_mfdev(bus, slot);
1975 switch (bytes) {
1976 case 1:
1977 case 2:
1978 *rv &= ~PCIM_MFDEV;
1979 if (mfdev) {
1980 *rv |= PCIM_MFDEV;
1982 break;
1983 case 4:
1984 *rv &= ~(PCIM_MFDEV << 16);
1985 if (mfdev) {
1986 *rv |= (PCIM_MFDEV << 16);
1988 break;
1994 * Update device state in response to changes to the PCI command
1995 * register.
1997 void
1998 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
2000 int i;
2001 uint16_t changed, new;
2003 new = pci_get_cfgdata16(pi, PCIR_COMMAND);
2004 changed = old ^ new;
2007 * If the MMIO or I/O address space decoding has changed then
2008 * register/unregister all BARs that decode that address space.
2010 for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
2011 switch (pi->pi_bar[i].type) {
2012 case PCIBAR_NONE:
2013 case PCIBAR_MEMHI64:
2014 break;
2015 case PCIBAR_IO:
2016 /* I/O address space decoding changed? */
2017 if (changed & PCIM_CMD_PORTEN) {
2018 if (new & PCIM_CMD_PORTEN)
2019 register_bar(pi, i);
2020 else
2021 unregister_bar(pi, i);
2023 break;
2024 case PCIBAR_ROM:
2025 /* skip (un-)register of ROM if it disabled */
2026 if (!romen(pi))
2027 break;
2028 /* fallthrough */
2029 case PCIBAR_MEM32:
2030 case PCIBAR_MEM64:
2031 /* MMIO address space decoding changed? */
2032 if (changed & PCIM_CMD_MEMEN) {
2033 if (new & PCIM_CMD_MEMEN)
2034 register_bar(pi, i);
2035 else
2036 unregister_bar(pi, i);
2038 break;
2039 default:
2040 assert(0);
2045 * If INTx has been unmasked and is pending, assert the
2046 * interrupt.
2048 pci_lintr_update(pi);
2051 static void
2052 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2054 int rshift;
2055 uint32_t cmd, old, readonly;
2057 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */
2060 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2062 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2063 * 'write 1 to clear'. However these bits are not set to '1' by
2064 * any device emulation so it is simpler to treat them as readonly.
2066 rshift = (coff & 0x3) * 8;
2067 readonly = 0xFFFFF880 >> rshift;
2069 old = CFGREAD(pi, coff, bytes);
2070 new &= ~readonly;
2071 new |= (old & readonly);
2072 CFGWRITE(pi, coff, new, bytes); /* update config */
2074 pci_emul_cmd_changed(pi, cmd);
2077 static void
2078 pci_cfgrw(struct vmctx *ctx, int in, int bus, int slot, int func,
2079 int coff, int bytes, uint32_t *eax)
2081 struct businfo *bi;
2082 struct slotinfo *si;
2083 struct pci_devinst *pi;
2084 struct pci_devemu *pe;
2085 int idx, needcfg;
2086 uint64_t addr, mask;
2087 uint64_t bar = 0;
2089 if ((bi = pci_businfo[bus]) != NULL) {
2090 si = &bi->slotinfo[slot];
2091 pi = si->si_funcs[func].fi_devi;
2092 } else
2093 pi = NULL;
2096 * Just return if there is no device at this slot:func or if the
2097 * the guest is doing an un-aligned access.
2099 if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2100 (coff & (bytes - 1)) != 0) {
2101 if (in)
2102 *eax = 0xffffffff;
2103 return;
2107 * Ignore all writes beyond the standard config space and return all
2108 * ones on reads.
2110 if (coff >= PCI_REGMAX + 1) {
2111 if (in) {
2112 *eax = 0xffffffff;
2114 * Extended capabilities begin at offset 256 in config
2115 * space. Absence of extended capabilities is signaled
2116 * with all 0s in the extended capability header at
2117 * offset 256.
2119 if (coff <= PCI_REGMAX + 4)
2120 *eax = 0x00000000;
2122 return;
2125 pe = pi->pi_d;
2128 * Config read
2130 if (in) {
2131 /* Let the device emulation override the default handler */
2132 if (pe->pe_cfgread != NULL) {
2133 needcfg = pe->pe_cfgread(ctx, pi, coff, bytes, eax);
2134 } else {
2135 needcfg = 1;
2138 if (needcfg)
2139 *eax = CFGREAD(pi, coff, bytes);
2141 pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
2142 } else {
2143 /* Let the device emulation override the default handler */
2144 if (pe->pe_cfgwrite != NULL &&
2145 (*pe->pe_cfgwrite)(ctx, pi, coff, bytes, *eax) == 0)
2146 return;
2149 * Special handling for write to BAR and ROM registers
2151 if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2153 * Ignore writes to BAR registers that are not
2154 * 4-byte aligned.
2156 if (bytes != 4 || (coff & 0x3) != 0)
2157 return;
2159 if (is_pcir_bar(coff)) {
2160 idx = (coff - PCIR_BAR(0)) / 4;
2161 } else if (is_pcir_bios(coff)) {
2162 idx = PCI_ROM_IDX;
2163 } else {
2164 errx(4, "%s: invalid BAR offset %d", __func__,
2165 coff);
2168 mask = ~(pi->pi_bar[idx].size - 1);
2169 switch (pi->pi_bar[idx].type) {
2170 case PCIBAR_NONE:
2171 pi->pi_bar[idx].addr = bar = 0;
2172 break;
2173 case PCIBAR_IO:
2174 addr = *eax & mask;
2175 addr &= 0xffff;
2176 bar = addr | pi->pi_bar[idx].lobits;
2178 * Register the new BAR value for interception
2180 if (addr != pi->pi_bar[idx].addr) {
2181 update_bar_address(pi, addr, idx,
2182 PCIBAR_IO);
2184 break;
2185 case PCIBAR_MEM32:
2186 addr = bar = *eax & mask;
2187 bar |= pi->pi_bar[idx].lobits;
2188 if (addr != pi->pi_bar[idx].addr) {
2189 update_bar_address(pi, addr, idx,
2190 PCIBAR_MEM32);
2192 break;
2193 case PCIBAR_MEM64:
2194 addr = bar = *eax & mask;
2195 bar |= pi->pi_bar[idx].lobits;
2196 if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2197 update_bar_address(pi, addr, idx,
2198 PCIBAR_MEM64);
2200 break;
2201 case PCIBAR_MEMHI64:
2202 mask = ~(pi->pi_bar[idx - 1].size - 1);
2203 addr = ((uint64_t)*eax << 32) & mask;
2204 bar = addr >> 32;
2205 if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2206 update_bar_address(pi, addr, idx - 1,
2207 PCIBAR_MEMHI64);
2209 break;
2210 case PCIBAR_ROM:
2211 addr = bar = *eax & mask;
2212 if (memen(pi) && romen(pi)) {
2213 unregister_bar(pi, idx);
2215 pi->pi_bar[idx].addr = addr;
2216 pi->pi_bar[idx].lobits = *eax &
2217 PCIM_BIOS_ENABLE;
2218 /* romen could have changed it value */
2219 if (memen(pi) && romen(pi)) {
2220 register_bar(pi, idx);
2222 bar |= pi->pi_bar[idx].lobits;
2223 break;
2224 default:
2225 assert(0);
2227 pci_set_cfgdata32(pi, coff, bar);
2229 } else if (pci_emul_iscap(pi, coff)) {
2230 pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0);
2231 } else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2232 pci_emul_cmdsts_write(pi, coff, *eax, bytes);
2233 } else {
2234 CFGWRITE(pi, coff, *eax, bytes);
2239 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2241 static int
2242 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2243 int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2245 uint32_t x;
2247 if (bytes != 4) {
2248 if (in)
2249 *eax = (bytes == 2) ? 0xffff : 0xff;
2250 return (0);
2253 if (in) {
2254 x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2255 if (cfgenable)
2256 x |= CONF1_ENABLE;
2257 *eax = x;
2258 } else {
2259 x = *eax;
2260 cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2261 cfgoff = (x & PCI_REGMAX) & ~0x03;
2262 cfgfunc = (x >> 8) & PCI_FUNCMAX;
2263 cfgslot = (x >> 11) & PCI_SLOTMAX;
2264 cfgbus = (x >> 16) & PCI_BUSMAX;
2267 return (0);
2269 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2271 static int
2272 pci_emul_cfgdata(struct vmctx *ctx, int in, int port,
2273 int bytes, uint32_t *eax, void *arg __unused)
2275 int coff;
2277 assert(bytes == 1 || bytes == 2 || bytes == 4);
2279 coff = cfgoff + (port - CONF1_DATA_PORT);
2280 if (cfgenable) {
2281 pci_cfgrw(ctx, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
2282 eax);
2283 } else {
2284 /* Ignore accesses to cfgdata if not enabled by cfgaddr */
2285 if (in)
2286 *eax = 0xffffffff;
2288 return (0);
2291 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2292 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2293 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2294 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2296 #define PCI_EMUL_TEST
2297 #ifdef PCI_EMUL_TEST
2299 * Define a dummy test device
2301 #define DIOSZ 8
2302 #define DMEMSZ 4096
2303 struct pci_emul_dsoftc {
2304 uint8_t ioregs[DIOSZ];
2305 uint8_t memregs[2][DMEMSZ];
2308 #define PCI_EMUL_MSI_MSGS 4
2309 #define PCI_EMUL_MSIX_MSGS 16
2311 static int
2312 pci_emul_dinit(struct vmctx *ctx __unused, struct pci_devinst *pi,
2313 nvlist_t *nvl __unused)
2315 int error;
2316 struct pci_emul_dsoftc *sc;
2318 sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2320 pi->pi_arg = sc;
2322 pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2323 pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2324 pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2326 error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2327 assert(error == 0);
2329 error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2330 assert(error == 0);
2332 error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2333 assert(error == 0);
2335 error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2336 assert(error == 0);
2338 return (0);
2341 static void
2342 pci_emul_diow(struct vmctx *ctx __unused,
2343 struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2344 uint64_t value)
2346 int i;
2347 struct pci_emul_dsoftc *sc = pi->pi_arg;
2349 if (baridx == 0) {
2350 if (offset + size > DIOSZ) {
2351 printf("diow: iow too large, offset %ld size %d\n",
2352 offset, size);
2353 return;
2356 if (size == 1) {
2357 sc->ioregs[offset] = value & 0xff;
2358 } else if (size == 2) {
2359 *(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2360 } else if (size == 4) {
2361 *(uint32_t *)&sc->ioregs[offset] = value;
2362 } else {
2363 printf("diow: iow unknown size %d\n", size);
2367 * Special magic value to generate an interrupt
2369 if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2370 pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2372 if (value == 0xabcdef) {
2373 for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2374 pci_generate_msi(pi, i);
2378 if (baridx == 1 || baridx == 2) {
2379 if (offset + size > DMEMSZ) {
2380 printf("diow: memw too large, offset %ld size %d\n",
2381 offset, size);
2382 return;
2385 i = baridx - 1; /* 'memregs' index */
2387 if (size == 1) {
2388 sc->memregs[i][offset] = value;
2389 } else if (size == 2) {
2390 *(uint16_t *)&sc->memregs[i][offset] = value;
2391 } else if (size == 4) {
2392 *(uint32_t *)&sc->memregs[i][offset] = value;
2393 } else if (size == 8) {
2394 *(uint64_t *)&sc->memregs[i][offset] = value;
2395 } else {
2396 printf("diow: memw unknown size %d\n", size);
2400 * magic interrupt ??
2404 if (baridx > 2 || baridx < 0) {
2405 printf("diow: unknown bar idx %d\n", baridx);
2409 static uint64_t
2410 pci_emul_dior(struct vmctx *ctx __unused,
2411 struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2413 struct pci_emul_dsoftc *sc = pi->pi_arg;
2414 uint32_t value;
2415 int i;
2417 value = 0;
2418 if (baridx == 0) {
2419 if (offset + size > DIOSZ) {
2420 printf("dior: ior too large, offset %ld size %d\n",
2421 offset, size);
2422 return (0);
2425 value = 0;
2426 if (size == 1) {
2427 value = sc->ioregs[offset];
2428 } else if (size == 2) {
2429 value = *(uint16_t *) &sc->ioregs[offset];
2430 } else if (size == 4) {
2431 value = *(uint32_t *) &sc->ioregs[offset];
2432 } else {
2433 printf("dior: ior unknown size %d\n", size);
2437 if (baridx == 1 || baridx == 2) {
2438 if (offset + size > DMEMSZ) {
2439 printf("dior: memr too large, offset %ld size %d\n",
2440 offset, size);
2441 return (0);
2444 i = baridx - 1; /* 'memregs' index */
2446 if (size == 1) {
2447 value = sc->memregs[i][offset];
2448 } else if (size == 2) {
2449 value = *(uint16_t *) &sc->memregs[i][offset];
2450 } else if (size == 4) {
2451 value = *(uint32_t *) &sc->memregs[i][offset];
2452 } else if (size == 8) {
2453 value = *(uint64_t *) &sc->memregs[i][offset];
2454 } else {
2455 printf("dior: ior unknown size %d\n", size);
2460 if (baridx > 2 || baridx < 0) {
2461 printf("dior: unknown bar idx %d\n", baridx);
2462 return (0);
2465 return (value);
2468 static const struct pci_devemu pci_dummy = {
2469 .pe_emu = "dummy",
2470 .pe_init = pci_emul_dinit,
2471 .pe_barwrite = pci_emul_diow,
2472 .pe_barread = pci_emul_dior,
2474 PCI_EMUL_SET(pci_dummy);
2476 #endif /* PCI_EMUL_TEST */