15325 bhyve upstream sync 2023 January
[illumos-gate.git] / usr / src / cmd / bhyve / pci_e82545.c
blob6a9ca2442d35cf01079cf52114bdec7941411f1a
1 /*
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5 * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6 * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7 * All rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer
14 * in this position and unchanged.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
35 #include <sys/types.h>
36 #ifndef WITHOUT_CAPSICUM
37 #include <sys/capsicum.h>
38 #endif
39 #include <sys/limits.h>
40 #include <sys/ioctl.h>
41 #include <sys/uio.h>
42 #include <net/ethernet.h>
43 #include <netinet/in.h>
44 #include <netinet/tcp.h>
46 #ifndef WITHOUT_CAPSICUM
47 #include <capsicum_helpers.h>
48 #endif
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <md5.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <sysexits.h>
58 #include <unistd.h>
59 #include <pthread.h>
60 #include <pthread_np.h>
62 #include "e1000_regs.h"
63 #include "e1000_defines.h"
64 #include "mii.h"
66 #include "bhyverun.h"
67 #include "config.h"
68 #include "debug.h"
69 #include "pci_emul.h"
70 #include "mevent.h"
71 #include "net_utils.h"
72 #include "net_backends.h"
74 /* Hardware/register definitions XXX: move some to common code. */
75 #define E82545_VENDOR_ID_INTEL 0x8086
76 #define E82545_DEV_ID_82545EM_COPPER 0x100F
77 #define E82545_SUBDEV_ID 0x1008
79 #define E82545_REVISION_4 4
81 #define E82545_MDIC_DATA_MASK 0x0000FFFF
82 #define E82545_MDIC_OP_MASK 0x0c000000
83 #define E82545_MDIC_IE 0x20000000
85 #define E82545_EECD_FWE_DIS 0x00000010 /* Flash writes disabled */
86 #define E82545_EECD_FWE_EN 0x00000020 /* Flash writes enabled */
87 #define E82545_EECD_FWE_MASK 0x00000030 /* Flash writes mask */
89 #define E82545_BAR_REGISTER 0
90 #define E82545_BAR_REGISTER_LEN (128*1024)
91 #define E82545_BAR_FLASH 1
92 #define E82545_BAR_FLASH_LEN (64*1024)
93 #define E82545_BAR_IO 2
94 #define E82545_BAR_IO_LEN 8
96 #define E82545_IOADDR 0x00000000
97 #define E82545_IODATA 0x00000004
98 #define E82545_IO_REGISTER_MAX 0x0001FFFF
99 #define E82545_IO_FLASH_BASE 0x00080000
100 #define E82545_IO_FLASH_MAX 0x000FFFFF
102 #define E82545_ARRAY_ENTRY(reg, offset) (reg + (offset<<2))
103 #define E82545_RAR_MAX 15
104 #define E82545_MTA_MAX 127
105 #define E82545_VFTA_MAX 127
107 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
108 * followed by 6 address bits.
109 * TODO: make opcode bits and addr bits configurable?
110 * NVM Commands - Microwire */
111 #define E82545_NVM_OPCODE_BITS 3
112 #define E82545_NVM_ADDR_BITS 6
113 #define E82545_NVM_DATA_BITS 16
114 #define E82545_NVM_OPADDR_BITS (E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
115 #define E82545_NVM_ADDR_MASK ((1 << E82545_NVM_ADDR_BITS)-1)
116 #define E82545_NVM_OPCODE_MASK \
117 (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
118 #define E82545_NVM_OPCODE_READ (0x6 << E82545_NVM_ADDR_BITS) /* read */
119 #define E82545_NVM_OPCODE_WRITE (0x5 << E82545_NVM_ADDR_BITS) /* write */
120 #define E82545_NVM_OPCODE_ERASE (0x7 << E82545_NVM_ADDR_BITS) /* erase */
121 #define E82545_NVM_OPCODE_EWEN (0x4 << E82545_NVM_ADDR_BITS) /* wr-enable */
123 #define E82545_NVM_EEPROM_SIZE 64 /* 64 * 16-bit values == 128K */
125 #define E1000_ICR_SRPD 0x00010000
127 /* This is an arbitrary number. There is no hard limit on the chip. */
128 #define I82545_MAX_TXSEGS 64
130 /* Legacy receive descriptor */
131 struct e1000_rx_desc {
132 uint64_t buffer_addr; /* Address of the descriptor's data buffer */
133 uint16_t length; /* Length of data DMAed into data buffer */
134 uint16_t csum; /* Packet checksum */
135 uint8_t status; /* Descriptor status */
136 uint8_t errors; /* Descriptor Errors */
137 uint16_t special;
140 /* Transmit descriptor types */
141 #define E1000_TXD_MASK (E1000_TXD_CMD_DEXT | 0x00F00000)
142 #define E1000_TXD_TYP_L (0)
143 #define E1000_TXD_TYP_C (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
144 #define E1000_TXD_TYP_D (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
146 /* Legacy transmit descriptor */
147 struct e1000_tx_desc {
148 uint64_t buffer_addr; /* Address of the descriptor's data buffer */
149 union {
150 uint32_t data;
151 struct {
152 uint16_t length; /* Data buffer length */
153 uint8_t cso; /* Checksum offset */
154 uint8_t cmd; /* Descriptor control */
155 } flags;
156 } lower;
157 union {
158 uint32_t data;
159 struct {
160 uint8_t status; /* Descriptor status */
161 uint8_t css; /* Checksum start */
162 uint16_t special;
163 } fields;
164 } upper;
167 /* Context descriptor */
168 struct e1000_context_desc {
169 union {
170 uint32_t ip_config;
171 struct {
172 uint8_t ipcss; /* IP checksum start */
173 uint8_t ipcso; /* IP checksum offset */
174 uint16_t ipcse; /* IP checksum end */
175 } ip_fields;
176 } lower_setup;
177 union {
178 uint32_t tcp_config;
179 struct {
180 uint8_t tucss; /* TCP checksum start */
181 uint8_t tucso; /* TCP checksum offset */
182 uint16_t tucse; /* TCP checksum end */
183 } tcp_fields;
184 } upper_setup;
185 uint32_t cmd_and_length;
186 union {
187 uint32_t data;
188 struct {
189 uint8_t status; /* Descriptor status */
190 uint8_t hdr_len; /* Header length */
191 uint16_t mss; /* Maximum segment size */
192 } fields;
193 } tcp_seg_setup;
196 /* Data descriptor */
197 struct e1000_data_desc {
198 uint64_t buffer_addr; /* Address of the descriptor's buffer address */
199 union {
200 uint32_t data;
201 struct {
202 uint16_t length; /* Data buffer length */
203 uint8_t typ_len_ext;
204 uint8_t cmd;
205 } flags;
206 } lower;
207 union {
208 uint32_t data;
209 struct {
210 uint8_t status; /* Descriptor status */
211 uint8_t popts; /* Packet Options */
212 uint16_t special;
213 } fields;
214 } upper;
217 union e1000_tx_udesc {
218 struct e1000_tx_desc td;
219 struct e1000_context_desc cd;
220 struct e1000_data_desc dd;
223 /* Tx checksum info for a packet. */
224 struct ck_info {
225 int ck_valid; /* ck_info is valid */
226 uint8_t ck_start; /* start byte of cksum calcuation */
227 uint8_t ck_off; /* offset of cksum insertion */
228 uint16_t ck_len; /* length of cksum calc: 0 is to packet-end */
232 * Debug printf
234 static int e82545_debug = 0;
235 #define WPRINTF(msg,params...) PRINTLN("e82545: " msg, ##params)
236 #define DPRINTF(msg,params...) if (e82545_debug) WPRINTF(msg, params)
238 #define MIN(a,b) (((a)<(b))?(a):(b))
239 #define MAX(a,b) (((a)>(b))?(a):(b))
241 /* s/w representation of the RAL/RAH regs */
242 struct eth_uni {
243 int eu_valid;
244 int eu_addrsel;
245 struct ether_addr eu_eth;
249 struct e82545_softc {
250 struct pci_devinst *esc_pi;
251 struct vmctx *esc_ctx;
252 struct mevent *esc_mevpitr;
253 pthread_mutex_t esc_mtx;
254 struct ether_addr esc_mac;
255 net_backend_t *esc_be;
257 /* General */
258 uint32_t esc_CTRL; /* x0000 device ctl */
259 uint32_t esc_FCAL; /* x0028 flow ctl addr lo */
260 uint32_t esc_FCAH; /* x002C flow ctl addr hi */
261 uint32_t esc_FCT; /* x0030 flow ctl type */
262 uint32_t esc_VET; /* x0038 VLAN eth type */
263 uint32_t esc_FCTTV; /* x0170 flow ctl tx timer */
264 uint32_t esc_LEDCTL; /* x0E00 LED control */
265 uint32_t esc_PBA; /* x1000 pkt buffer allocation */
267 /* Interrupt control */
268 int esc_irq_asserted;
269 uint32_t esc_ICR; /* x00C0 cause read/clear */
270 uint32_t esc_ITR; /* x00C4 intr throttling */
271 uint32_t esc_ICS; /* x00C8 cause set */
272 uint32_t esc_IMS; /* x00D0 mask set/read */
273 uint32_t esc_IMC; /* x00D8 mask clear */
275 /* Transmit */
276 union e1000_tx_udesc *esc_txdesc;
277 struct e1000_context_desc esc_txctx;
278 pthread_t esc_tx_tid;
279 pthread_cond_t esc_tx_cond;
280 int esc_tx_enabled;
281 int esc_tx_active;
282 uint32_t esc_TXCW; /* x0178 transmit config */
283 uint32_t esc_TCTL; /* x0400 transmit ctl */
284 uint32_t esc_TIPG; /* x0410 inter-packet gap */
285 uint16_t esc_AIT; /* x0458 Adaptive Interframe Throttle */
286 uint64_t esc_tdba; /* verified 64-bit desc table addr */
287 uint32_t esc_TDBAL; /* x3800 desc table addr, low bits */
288 uint32_t esc_TDBAH; /* x3804 desc table addr, hi 32-bits */
289 uint32_t esc_TDLEN; /* x3808 # descriptors in bytes */
290 uint16_t esc_TDH; /* x3810 desc table head idx */
291 uint16_t esc_TDHr; /* internal read version of TDH */
292 uint16_t esc_TDT; /* x3818 desc table tail idx */
293 uint32_t esc_TIDV; /* x3820 intr delay */
294 uint32_t esc_TXDCTL; /* x3828 desc control */
295 uint32_t esc_TADV; /* x382C intr absolute delay */
297 /* L2 frame acceptance */
298 struct eth_uni esc_uni[16]; /* 16 x unicast MAC addresses */
299 uint32_t esc_fmcast[128]; /* Multicast filter bit-match */
300 uint32_t esc_fvlan[128]; /* VLAN 4096-bit filter */
302 /* Receive */
303 struct e1000_rx_desc *esc_rxdesc;
304 pthread_cond_t esc_rx_cond;
305 int esc_rx_enabled;
306 int esc_rx_active;
307 int esc_rx_loopback;
308 uint32_t esc_RCTL; /* x0100 receive ctl */
309 uint32_t esc_FCRTL; /* x2160 flow cntl thresh, low */
310 uint32_t esc_FCRTH; /* x2168 flow cntl thresh, hi */
311 uint64_t esc_rdba; /* verified 64-bit desc table addr */
312 uint32_t esc_RDBAL; /* x2800 desc table addr, low bits */
313 uint32_t esc_RDBAH; /* x2804 desc table addr, hi 32-bits*/
314 uint32_t esc_RDLEN; /* x2808 #descriptors */
315 uint16_t esc_RDH; /* x2810 desc table head idx */
316 uint16_t esc_RDT; /* x2818 desc table tail idx */
317 uint32_t esc_RDTR; /* x2820 intr delay */
318 uint32_t esc_RXDCTL; /* x2828 desc control */
319 uint32_t esc_RADV; /* x282C intr absolute delay */
320 uint32_t esc_RSRPD; /* x2C00 recv small packet detect */
321 uint32_t esc_RXCSUM; /* x5000 receive cksum ctl */
323 /* IO Port register access */
324 uint32_t io_addr;
326 /* Shadow copy of MDIC */
327 uint32_t mdi_control;
328 /* Shadow copy of EECD */
329 uint32_t eeprom_control;
330 /* Latest NVM in/out */
331 uint16_t nvm_data;
332 uint16_t nvm_opaddr;
333 /* stats */
334 uint32_t missed_pkt_count; /* dropped for no room in rx queue */
335 uint32_t pkt_rx_by_size[6];
336 uint32_t pkt_tx_by_size[6];
337 uint32_t good_pkt_rx_count;
338 uint32_t bcast_pkt_rx_count;
339 uint32_t mcast_pkt_rx_count;
340 uint32_t good_pkt_tx_count;
341 uint32_t bcast_pkt_tx_count;
342 uint32_t mcast_pkt_tx_count;
343 uint32_t oversize_rx_count;
344 uint32_t tso_tx_count;
345 uint64_t good_octets_rx;
346 uint64_t good_octets_tx;
347 uint64_t missed_octets; /* counts missed and oversized */
349 uint8_t nvm_bits:6; /* number of bits remaining in/out */
350 uint8_t nvm_mode:2;
351 #define E82545_NVM_MODE_OPADDR 0x0
352 #define E82545_NVM_MODE_DATAIN 0x1
353 #define E82545_NVM_MODE_DATAOUT 0x2
354 /* EEPROM data */
355 uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
358 static void e82545_reset(struct e82545_softc *sc, int dev);
359 static void e82545_rx_enable(struct e82545_softc *sc);
360 static void e82545_rx_disable(struct e82545_softc *sc);
361 static void e82545_rx_callback(int fd, enum ev_type type, void *param);
362 static void e82545_tx_start(struct e82545_softc *sc);
363 static void e82545_tx_enable(struct e82545_softc *sc);
364 static void e82545_tx_disable(struct e82545_softc *sc);
366 static inline int __unused
367 e82545_size_stat_index(uint32_t size)
369 if (size <= 64) {
370 return 0;
371 } else if (size >= 1024) {
372 return 5;
373 } else {
374 /* should be 1-4 */
375 return (ffs(size) - 6);
379 static void
380 e82545_init_eeprom(struct e82545_softc *sc)
382 uint16_t checksum, i;
384 /* mac addr */
385 sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
386 (((uint16_t)sc->esc_mac.octet[1]) << 8);
387 sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
388 (((uint16_t)sc->esc_mac.octet[3]) << 8);
389 sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
390 (((uint16_t)sc->esc_mac.octet[5]) << 8);
392 /* pci ids */
393 sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
394 sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
395 sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
396 sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
398 /* fill in the checksum */
399 checksum = 0;
400 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
401 checksum += sc->eeprom_data[i];
403 checksum = NVM_SUM - checksum;
404 sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
405 DPRINTF("eeprom checksum: 0x%x", checksum);
408 static void
409 e82545_write_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr,
410 uint8_t phy_addr, uint32_t data)
412 DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x", reg_addr, phy_addr, data);
415 static uint32_t
416 e82545_read_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr,
417 uint8_t phy_addr)
419 //DPRINTF("Read mdi reg:0x%x phy:0x%x", reg_addr, phy_addr);
420 switch (reg_addr) {
421 case PHY_STATUS:
422 return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
423 MII_SR_AUTONEG_COMPLETE);
424 case PHY_AUTONEG_ADV:
425 return NWAY_AR_SELECTOR_FIELD;
426 case PHY_LP_ABILITY:
427 return 0;
428 case PHY_1000T_STATUS:
429 return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
430 SR_1000T_LOCAL_RX_STATUS);
431 case PHY_ID1:
432 return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
433 case PHY_ID2:
434 return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
435 default:
436 DPRINTF("Unknown mdi read reg:0x%x phy:0x%x", reg_addr, phy_addr);
437 return 0;
439 /* not reached */
442 static void
443 e82545_eecd_strobe(struct e82545_softc *sc)
445 /* Microwire state machine */
447 DPRINTF("eeprom state machine srtobe "
448 "0x%x 0x%x 0x%x 0x%x",
449 sc->nvm_mode, sc->nvm_bits,
450 sc->nvm_opaddr, sc->nvm_data);*/
452 if (sc->nvm_bits == 0) {
453 DPRINTF("eeprom state machine not expecting data! "
454 "0x%x 0x%x 0x%x 0x%x",
455 sc->nvm_mode, sc->nvm_bits,
456 sc->nvm_opaddr, sc->nvm_data);
457 return;
459 sc->nvm_bits--;
460 if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
461 /* shifting out */
462 if (sc->nvm_data & 0x8000) {
463 sc->eeprom_control |= E1000_EECD_DO;
464 } else {
465 sc->eeprom_control &= ~E1000_EECD_DO;
467 sc->nvm_data <<= 1;
468 if (sc->nvm_bits == 0) {
469 /* read done, back to opcode mode. */
470 sc->nvm_opaddr = 0;
471 sc->nvm_mode = E82545_NVM_MODE_OPADDR;
472 sc->nvm_bits = E82545_NVM_OPADDR_BITS;
474 } else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
475 /* shifting in */
476 sc->nvm_data <<= 1;
477 if (sc->eeprom_control & E1000_EECD_DI) {
478 sc->nvm_data |= 1;
480 if (sc->nvm_bits == 0) {
481 /* eeprom write */
482 uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
483 uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
484 if (op != E82545_NVM_OPCODE_WRITE) {
485 DPRINTF("Illegal eeprom write op 0x%x",
486 sc->nvm_opaddr);
487 } else if (addr >= E82545_NVM_EEPROM_SIZE) {
488 DPRINTF("Illegal eeprom write addr 0x%x",
489 sc->nvm_opaddr);
490 } else {
491 DPRINTF("eeprom write eeprom[0x%x] = 0x%x",
492 addr, sc->nvm_data);
493 sc->eeprom_data[addr] = sc->nvm_data;
495 /* back to opcode mode */
496 sc->nvm_opaddr = 0;
497 sc->nvm_mode = E82545_NVM_MODE_OPADDR;
498 sc->nvm_bits = E82545_NVM_OPADDR_BITS;
500 } else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
501 sc->nvm_opaddr <<= 1;
502 if (sc->eeprom_control & E1000_EECD_DI) {
503 sc->nvm_opaddr |= 1;
505 if (sc->nvm_bits == 0) {
506 uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
507 switch (op) {
508 case E82545_NVM_OPCODE_EWEN:
509 DPRINTF("eeprom write enable: 0x%x",
510 sc->nvm_opaddr);
511 /* back to opcode mode */
512 sc->nvm_opaddr = 0;
513 sc->nvm_mode = E82545_NVM_MODE_OPADDR;
514 sc->nvm_bits = E82545_NVM_OPADDR_BITS;
515 break;
516 case E82545_NVM_OPCODE_READ:
518 uint16_t addr = sc->nvm_opaddr &
519 E82545_NVM_ADDR_MASK;
520 sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
521 sc->nvm_bits = E82545_NVM_DATA_BITS;
522 if (addr < E82545_NVM_EEPROM_SIZE) {
523 sc->nvm_data = sc->eeprom_data[addr];
524 DPRINTF("eeprom read: eeprom[0x%x] = 0x%x",
525 addr, sc->nvm_data);
526 } else {
527 DPRINTF("eeprom illegal read: 0x%x",
528 sc->nvm_opaddr);
529 sc->nvm_data = 0;
531 break;
533 case E82545_NVM_OPCODE_WRITE:
534 sc->nvm_mode = E82545_NVM_MODE_DATAIN;
535 sc->nvm_bits = E82545_NVM_DATA_BITS;
536 sc->nvm_data = 0;
537 break;
538 default:
539 DPRINTF("eeprom unknown op: 0x%x",
540 sc->nvm_opaddr);
541 /* back to opcode mode */
542 sc->nvm_opaddr = 0;
543 sc->nvm_mode = E82545_NVM_MODE_OPADDR;
544 sc->nvm_bits = E82545_NVM_OPADDR_BITS;
547 } else {
548 DPRINTF("eeprom state machine wrong state! "
549 "0x%x 0x%x 0x%x 0x%x",
550 sc->nvm_mode, sc->nvm_bits,
551 sc->nvm_opaddr, sc->nvm_data);
555 static void
556 e82545_itr_callback(int fd __unused, enum ev_type type __unused, void *param)
558 uint32_t new;
559 struct e82545_softc *sc = param;
561 pthread_mutex_lock(&sc->esc_mtx);
562 new = sc->esc_ICR & sc->esc_IMS;
563 if (new && !sc->esc_irq_asserted) {
564 DPRINTF("itr callback: lintr assert %x", new);
565 sc->esc_irq_asserted = 1;
566 pci_lintr_assert(sc->esc_pi);
567 } else {
568 mevent_delete(sc->esc_mevpitr);
569 sc->esc_mevpitr = NULL;
571 pthread_mutex_unlock(&sc->esc_mtx);
574 static void
575 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
577 uint32_t new;
579 DPRINTF("icr assert: 0x%x", bits);
582 * An interrupt is only generated if bits are set that
583 * aren't already in the ICR, these bits are unmasked,
584 * and there isn't an interrupt already pending.
586 new = bits & ~sc->esc_ICR & sc->esc_IMS;
587 sc->esc_ICR |= bits;
589 if (new == 0) {
590 DPRINTF("icr assert: masked %x, ims %x", new, sc->esc_IMS);
591 } else if (sc->esc_mevpitr != NULL) {
592 DPRINTF("icr assert: throttled %x, ims %x", new, sc->esc_IMS);
593 } else if (!sc->esc_irq_asserted) {
594 DPRINTF("icr assert: lintr assert %x", new);
595 sc->esc_irq_asserted = 1;
596 pci_lintr_assert(sc->esc_pi);
597 if (sc->esc_ITR != 0) {
598 sc->esc_mevpitr = mevent_add(
599 (sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */
600 EVF_TIMER, e82545_itr_callback, sc);
605 static void
606 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
608 uint32_t new;
611 * Changing the mask may allow previously asserted
612 * but masked interrupt requests to generate an interrupt.
614 new = bits & sc->esc_ICR & ~sc->esc_IMS;
615 sc->esc_IMS |= bits;
617 if (new == 0) {
618 DPRINTF("ims change: masked %x, ims %x", new, sc->esc_IMS);
619 } else if (sc->esc_mevpitr != NULL) {
620 DPRINTF("ims change: throttled %x, ims %x", new, sc->esc_IMS);
621 } else if (!sc->esc_irq_asserted) {
622 DPRINTF("ims change: lintr assert %x", new);
623 sc->esc_irq_asserted = 1;
624 pci_lintr_assert(sc->esc_pi);
625 if (sc->esc_ITR != 0) {
626 sc->esc_mevpitr = mevent_add(
627 (sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */
628 EVF_TIMER, e82545_itr_callback, sc);
633 static void
634 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
637 DPRINTF("icr deassert: 0x%x", bits);
638 sc->esc_ICR &= ~bits;
641 * If there are no longer any interrupt sources and there
642 * was an asserted interrupt, clear it
644 if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
645 DPRINTF("icr deassert: lintr deassert %x", bits);
646 pci_lintr_deassert(sc->esc_pi);
647 sc->esc_irq_asserted = 0;
651 static void
652 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
655 DPRINTF("intr_write: off %x, val %x", offset, value);
657 switch (offset) {
658 case E1000_ICR:
659 e82545_icr_deassert(sc, value);
660 break;
661 case E1000_ITR:
662 sc->esc_ITR = value;
663 break;
664 case E1000_ICS:
665 sc->esc_ICS = value; /* not used: store for debug */
666 e82545_icr_assert(sc, value);
667 break;
668 case E1000_IMS:
669 e82545_ims_change(sc, value);
670 break;
671 case E1000_IMC:
672 sc->esc_IMC = value; /* for debug */
673 sc->esc_IMS &= ~value;
674 // XXX clear interrupts if all ICR bits now masked
675 // and interrupt was pending ?
676 break;
677 default:
678 break;
682 static uint32_t
683 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
685 uint32_t retval;
687 retval = 0;
689 DPRINTF("intr_read: off %x", offset);
691 switch (offset) {
692 case E1000_ICR:
693 retval = sc->esc_ICR;
694 sc->esc_ICR = 0;
695 e82545_icr_deassert(sc, ~0);
696 break;
697 case E1000_ITR:
698 retval = sc->esc_ITR;
699 break;
700 case E1000_ICS:
701 /* write-only register */
702 break;
703 case E1000_IMS:
704 retval = sc->esc_IMS;
705 break;
706 case E1000_IMC:
707 /* write-only register */
708 break;
709 default:
710 break;
713 return (retval);
716 static void
717 e82545_devctl(struct e82545_softc *sc, uint32_t val)
720 sc->esc_CTRL = val & ~E1000_CTRL_RST;
722 if (val & E1000_CTRL_RST) {
723 DPRINTF("e1k: s/w reset, ctl %x", val);
724 e82545_reset(sc, 1);
726 /* XXX check for phy reset ? */
729 static void
730 e82545_rx_update_rdba(struct e82545_softc *sc)
733 /* XXX verify desc base/len within phys mem range */
734 sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
735 sc->esc_RDBAL;
737 /* Cache host mapping of guest descriptor array */
738 sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
739 sc->esc_rdba, sc->esc_RDLEN);
742 static void
743 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
745 int on;
747 on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
749 /* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
750 sc->esc_RCTL = val & ~0xF9204c01;
752 DPRINTF("rx_ctl - %s RCTL %x, val %x",
753 on ? "on" : "off", sc->esc_RCTL, val);
755 /* state change requested */
756 if (on != sc->esc_rx_enabled) {
757 if (on) {
758 /* Catch disallowed/unimplemented settings */
759 //assert(!(val & E1000_RCTL_LBM_TCVR));
761 if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
762 sc->esc_rx_loopback = 1;
763 } else {
764 sc->esc_rx_loopback = 0;
767 e82545_rx_update_rdba(sc);
768 e82545_rx_enable(sc);
769 } else {
770 e82545_rx_disable(sc);
771 sc->esc_rx_loopback = 0;
772 sc->esc_rdba = 0;
773 sc->esc_rxdesc = NULL;
778 static void
779 e82545_tx_update_tdba(struct e82545_softc *sc)
782 /* XXX verify desc base/len within phys mem range */
783 sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
785 /* Cache host mapping of guest descriptor array */
786 sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
787 sc->esc_TDLEN);
790 static void
791 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
793 int on;
795 on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
797 /* ignore TCTL_EN settings that don't change state */
798 if (on == sc->esc_tx_enabled)
799 return;
801 if (on) {
802 e82545_tx_update_tdba(sc);
803 e82545_tx_enable(sc);
804 } else {
805 e82545_tx_disable(sc);
806 sc->esc_tdba = 0;
807 sc->esc_txdesc = NULL;
810 /* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
811 sc->esc_TCTL = val & ~0xFE800005;
814 static int
815 e82545_bufsz(uint32_t rctl)
818 switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
819 case (E1000_RCTL_SZ_2048): return (2048);
820 case (E1000_RCTL_SZ_1024): return (1024);
821 case (E1000_RCTL_SZ_512): return (512);
822 case (E1000_RCTL_SZ_256): return (256);
823 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
824 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
825 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
827 return (256); /* Forbidden value. */
830 /* XXX one packet at a time until this is debugged */
831 static void
832 e82545_rx_callback(int fd __unused, enum ev_type type __unused, void *param)
834 struct e82545_softc *sc = param;
835 struct e1000_rx_desc *rxd;
836 struct iovec vec[64];
837 ssize_t len;
838 int left, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
839 uint32_t cause = 0;
840 uint16_t *tp, tag, head;
842 pthread_mutex_lock(&sc->esc_mtx);
843 DPRINTF("rx_run: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
845 if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
846 DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped",
847 sc->esc_rx_enabled, sc->esc_rx_loopback);
848 while (netbe_rx_discard(sc->esc_be) > 0) {
850 goto done1;
852 bufsz = e82545_bufsz(sc->esc_RCTL);
853 maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
854 maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
855 size = sc->esc_RDLEN / 16;
856 head = sc->esc_RDH;
857 left = (size + sc->esc_RDT - head) % size;
858 if (left < maxpktdesc) {
859 DPRINTF("rx overflow (%d < %d) -- packet(s) dropped",
860 left, maxpktdesc);
861 while (netbe_rx_discard(sc->esc_be) > 0) {
863 goto done1;
866 sc->esc_rx_active = 1;
867 pthread_mutex_unlock(&sc->esc_mtx);
869 for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
871 /* Grab rx descriptor pointed to by the head pointer */
872 for (i = 0; i < maxpktdesc; i++) {
873 rxd = &sc->esc_rxdesc[(head + i) % size];
874 vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
875 rxd->buffer_addr, bufsz);
876 vec[i].iov_len = bufsz;
878 len = netbe_recv(sc->esc_be, vec, maxpktdesc);
879 if (len <= 0) {
880 DPRINTF("netbe_recv() returned %zd", len);
881 goto done;
885 * Adjust the packet length based on whether the CRC needs
886 * to be stripped or if the packet is less than the minimum
887 * eth packet size.
889 if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
890 len = ETHER_MIN_LEN - ETHER_CRC_LEN;
891 if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
892 len += ETHER_CRC_LEN;
893 n = (len + bufsz - 1) / bufsz;
895 DPRINTF("packet read %zd bytes, %d segs, head %d",
896 len, n, head);
898 /* Apply VLAN filter. */
899 tp = (uint16_t *)vec[0].iov_base + 6;
900 if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
901 (ntohs(tp[0]) == sc->esc_VET)) {
902 tag = ntohs(tp[1]) & 0x0fff;
903 if ((sc->esc_fvlan[tag >> 5] &
904 (1 << (tag & 0x1f))) != 0) {
905 DPRINTF("known VLAN %d", tag);
906 } else {
907 DPRINTF("unknown VLAN %d", tag);
908 n = 0;
909 continue;
913 /* Update all consumed descriptors. */
914 for (i = 0; i < n - 1; i++) {
915 rxd = &sc->esc_rxdesc[(head + i) % size];
916 rxd->length = bufsz;
917 rxd->csum = 0;
918 rxd->errors = 0;
919 rxd->special = 0;
920 rxd->status = E1000_RXD_STAT_DD;
922 rxd = &sc->esc_rxdesc[(head + i) % size];
923 rxd->length = len % bufsz;
924 rxd->csum = 0;
925 rxd->errors = 0;
926 rxd->special = 0;
927 /* XXX signal no checksum for now */
928 rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
929 E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
931 /* Schedule receive interrupts. */
932 if ((uint32_t)len <= sc->esc_RSRPD) {
933 cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
934 } else {
935 /* XXX: RDRT and RADV timers should be here. */
936 cause |= E1000_ICR_RXT0;
939 head = (head + n) % size;
940 left -= n;
943 done:
944 pthread_mutex_lock(&sc->esc_mtx);
945 sc->esc_rx_active = 0;
946 if (sc->esc_rx_enabled == 0)
947 pthread_cond_signal(&sc->esc_rx_cond);
949 sc->esc_RDH = head;
950 /* Respect E1000_RCTL_RDMTS */
951 left = (size + sc->esc_RDT - head) % size;
952 if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
953 cause |= E1000_ICR_RXDMT0;
954 /* Assert all accumulated interrupts. */
955 if (cause != 0)
956 e82545_icr_assert(sc, cause);
957 done1:
958 DPRINTF("rx_run done: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
959 pthread_mutex_unlock(&sc->esc_mtx);
962 static uint16_t
963 e82545_carry(uint32_t sum)
966 sum = (sum & 0xFFFF) + (sum >> 16);
967 if (sum > 0xFFFF)
968 sum -= 0xFFFF;
969 return (sum);
972 static uint16_t
973 e82545_buf_checksum(uint8_t *buf, int len)
975 int i;
976 uint32_t sum = 0;
978 /* Checksum all the pairs of bytes first... */
979 for (i = 0; i < (len & ~1); i += 2)
980 sum += *((u_int16_t *)(buf + i));
983 * If there's a single byte left over, checksum it, too.
984 * Network byte order is big-endian, so the remaining byte is
985 * the high byte.
987 if (i < len)
988 sum += htons(buf[i] << 8);
990 return (e82545_carry(sum));
993 static uint16_t
994 e82545_iov_checksum(struct iovec *iov, int iovcnt, unsigned int off,
995 unsigned int len)
997 unsigned int now, odd;
998 uint32_t sum = 0, s;
1000 /* Skip completely unneeded vectors. */
1001 while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
1002 off -= iov->iov_len;
1003 iov++;
1004 iovcnt--;
1007 /* Calculate checksum of requested range. */
1008 odd = 0;
1009 while (len > 0 && iovcnt > 0) {
1010 now = MIN(len, iov->iov_len - off);
1011 s = e82545_buf_checksum((uint8_t *)iov->iov_base + off, now);
1012 sum += odd ? (s << 8) : s;
1013 odd ^= (now & 1);
1014 len -= now;
1015 off = 0;
1016 iov++;
1017 iovcnt--;
1020 return (e82545_carry(sum));
1024 * Return the transmit descriptor type.
1026 static int
1027 e82545_txdesc_type(uint32_t lower)
1029 int type;
1031 type = 0;
1033 if (lower & E1000_TXD_CMD_DEXT)
1034 type = lower & E1000_TXD_MASK;
1036 return (type);
1039 static void
1040 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1042 uint16_t cksum;
1043 unsigned int cklen;
1045 DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d",
1046 iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1047 cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1U : UINT_MAX;
1048 cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1049 *(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1052 static void
1053 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1056 if (sc->esc_be == NULL)
1057 return;
1059 (void) netbe_send(sc->esc_be, iov, iovcnt);
1062 static void
1063 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1064 uint16_t dsize, int *tdwb)
1066 union e1000_tx_udesc *dsc;
1068 for ( ; head != tail; head = (head + 1) % dsize) {
1069 dsc = &sc->esc_txdesc[head];
1070 if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1071 dsc->td.upper.data |= E1000_TXD_STAT_DD;
1072 *tdwb = 1;
1077 static int
1078 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1079 uint16_t dsize, uint16_t *rhead, int *tdwb)
1081 uint8_t *hdr, *hdrp;
1082 struct iovec iovb[I82545_MAX_TXSEGS + 2];
1083 struct iovec tiov[I82545_MAX_TXSEGS + 2];
1084 struct e1000_context_desc *cd;
1085 struct ck_info ckinfo[2];
1086 struct iovec *iov;
1087 union e1000_tx_udesc *dsc;
1088 int desc, dtype, ntype, iovcnt, tcp, tso, paylen, seg, tiovcnt, pv;
1089 unsigned hdrlen, vlen, pktlen, len, left, mss, now, nnow, nleft, pvoff;
1090 uint32_t tcpsum, tcpseq;
1091 uint16_t ipcs, tcpcs, ipid, ohead;
1092 bool invalid;
1094 ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1095 iovcnt = 0;
1096 ntype = 0;
1097 tso = 0;
1098 pktlen = 0;
1099 ohead = head;
1100 invalid = false;
1102 /* iovb[0/1] may be used for writable copy of headers. */
1103 iov = &iovb[2];
1105 for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1106 if (head == tail) {
1107 *rhead = head;
1108 return (0);
1110 dsc = &sc->esc_txdesc[head];
1111 dtype = e82545_txdesc_type(dsc->td.lower.data);
1113 if (desc == 0) {
1114 switch (dtype) {
1115 case E1000_TXD_TYP_C:
1116 DPRINTF("tx ctxt desc idx %d: %016jx "
1117 "%08x%08x",
1118 head, dsc->td.buffer_addr,
1119 dsc->td.upper.data, dsc->td.lower.data);
1120 /* Save context and return */
1121 sc->esc_txctx = dsc->cd;
1122 goto done;
1123 case E1000_TXD_TYP_L:
1124 DPRINTF("tx legacy desc idx %d: %08x%08x",
1125 head, dsc->td.upper.data, dsc->td.lower.data);
1127 * legacy cksum start valid in first descriptor
1129 ntype = dtype;
1130 ckinfo[0].ck_start = dsc->td.upper.fields.css;
1131 break;
1132 case E1000_TXD_TYP_D:
1133 DPRINTF("tx data desc idx %d: %08x%08x",
1134 head, dsc->td.upper.data, dsc->td.lower.data);
1135 ntype = dtype;
1136 break;
1137 default:
1138 break;
1140 } else {
1141 /* Descriptor type must be consistent */
1142 assert(dtype == ntype);
1143 DPRINTF("tx next desc idx %d: %08x%08x",
1144 head, dsc->td.upper.data, dsc->td.lower.data);
1147 len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1148 dsc->dd.lower.data & 0xFFFFF;
1150 /* Strip checksum supplied by guest. */
1151 if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1152 (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0) {
1153 if (len <= 2) {
1154 WPRINTF("final descriptor too short (%d) -- dropped",
1155 len);
1156 invalid = true;
1157 } else
1158 len -= 2;
1161 if (len > 0 && iovcnt < I82545_MAX_TXSEGS) {
1162 iov[iovcnt].iov_base = paddr_guest2host(sc->esc_ctx,
1163 dsc->td.buffer_addr, len);
1164 iov[iovcnt].iov_len = len;
1165 iovcnt++;
1166 pktlen += len;
1170 * Pull out info that is valid in the final descriptor
1171 * and exit descriptor loop.
1173 if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1174 if (dtype == E1000_TXD_TYP_L) {
1175 if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1176 ckinfo[0].ck_valid = 1;
1177 ckinfo[0].ck_off =
1178 dsc->td.lower.flags.cso;
1179 ckinfo[0].ck_len = 0;
1181 } else {
1182 cd = &sc->esc_txctx;
1183 if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1184 tso = 1;
1185 if (dsc->dd.upper.fields.popts &
1186 E1000_TXD_POPTS_IXSM)
1187 ckinfo[0].ck_valid = 1;
1188 if (dsc->dd.upper.fields.popts &
1189 E1000_TXD_POPTS_IXSM || tso) {
1190 ckinfo[0].ck_start =
1191 cd->lower_setup.ip_fields.ipcss;
1192 ckinfo[0].ck_off =
1193 cd->lower_setup.ip_fields.ipcso;
1194 ckinfo[0].ck_len =
1195 cd->lower_setup.ip_fields.ipcse;
1197 if (dsc->dd.upper.fields.popts &
1198 E1000_TXD_POPTS_TXSM)
1199 ckinfo[1].ck_valid = 1;
1200 if (dsc->dd.upper.fields.popts &
1201 E1000_TXD_POPTS_TXSM || tso) {
1202 ckinfo[1].ck_start =
1203 cd->upper_setup.tcp_fields.tucss;
1204 ckinfo[1].ck_off =
1205 cd->upper_setup.tcp_fields.tucso;
1206 ckinfo[1].ck_len =
1207 cd->upper_setup.tcp_fields.tucse;
1210 break;
1214 if (invalid)
1215 goto done;
1217 if (iovcnt > I82545_MAX_TXSEGS) {
1218 WPRINTF("tx too many descriptors (%d > %d) -- dropped",
1219 iovcnt, I82545_MAX_TXSEGS);
1220 goto done;
1223 hdrlen = vlen = 0;
1224 /* Estimate writable space for VLAN header insertion. */
1225 if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1226 (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1227 hdrlen = ETHER_ADDR_LEN*2;
1228 vlen = ETHER_VLAN_ENCAP_LEN;
1230 if (!tso) {
1231 /* Estimate required writable space for checksums. */
1232 if (ckinfo[0].ck_valid)
1233 hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2U);
1234 if (ckinfo[1].ck_valid)
1235 hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2U);
1236 /* Round up writable space to the first vector. */
1237 if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1238 iov[0].iov_len < hdrlen + 100)
1239 hdrlen = iov[0].iov_len;
1240 } else {
1241 /* In case of TSO header length provided by software. */
1242 hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1245 * Cap the header length at 240 based on 7.2.4.5 of
1246 * the Intel 82576EB (Rev 2.63) datasheet.
1248 if (hdrlen > 240) {
1249 WPRINTF("TSO hdrlen too large: %d", hdrlen);
1250 goto done;
1254 * If VLAN insertion is requested, ensure the header
1255 * at least holds the amount of data copied during
1256 * VLAN insertion below.
1258 * XXX: Realistic packets will include a full Ethernet
1259 * header before the IP header at ckinfo[0].ck_start,
1260 * but this check is sufficient to prevent
1261 * out-of-bounds access below.
1263 if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) {
1264 WPRINTF("TSO hdrlen too small for vlan insertion "
1265 "(%d vs %d) -- dropped", hdrlen,
1266 ETHER_ADDR_LEN*2);
1267 goto done;
1271 * Ensure that the header length covers the used fields
1272 * in the IP and TCP headers as well as the IP and TCP
1273 * checksums. The following fields are accessed below:
1275 * Header | Field | Offset | Length
1276 * -------+-------+--------+-------
1277 * IPv4 | len | 2 | 2
1278 * IPv4 | ID | 4 | 2
1279 * IPv6 | len | 4 | 2
1280 * TCP | seq # | 4 | 4
1281 * TCP | flags | 13 | 1
1282 * UDP | len | 4 | 4
1284 if (hdrlen < ckinfo[0].ck_start + 6U ||
1285 hdrlen < ckinfo[0].ck_off + 2U) {
1286 WPRINTF("TSO hdrlen too small for IP fields (%d) "
1287 "-- dropped", hdrlen);
1288 goto done;
1290 if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) {
1291 if (hdrlen < ckinfo[1].ck_start + 14U) {
1292 WPRINTF("TSO hdrlen too small for TCP fields "
1293 "(%d) -- dropped", hdrlen);
1294 goto done;
1296 } else {
1297 if (hdrlen < ckinfo[1].ck_start + 8U) {
1298 WPRINTF("TSO hdrlen too small for UDP fields "
1299 "(%d) -- dropped", hdrlen);
1300 goto done;
1303 if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2U) {
1304 WPRINTF("TSO hdrlen too small for TCP/UDP fields "
1305 "(%d) -- dropped", hdrlen);
1306 goto done;
1308 if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2) {
1309 WPRINTF("TSO hdrlen too small for TCP/UDP fields "
1310 "(%d) -- dropped", hdrlen);
1311 goto done;
1315 if (pktlen < hdrlen + vlen) {
1316 WPRINTF("packet too small for writable header");
1317 goto done;
1320 /* Allocate, fill and prepend writable header vector. */
1321 if (hdrlen + vlen != 0) {
1322 hdr = __builtin_alloca(hdrlen + vlen);
1323 hdr += vlen;
1324 for (left = hdrlen, hdrp = hdr; left > 0;
1325 left -= now, hdrp += now) {
1326 now = MIN(left, iov->iov_len);
1327 memcpy(hdrp, iov->iov_base, now);
1328 #ifdef __FreeBSD__
1329 iov->iov_base = (uint8_t *)iov->iov_base + now;
1330 #else
1332 * The type of iov_base changed in SUS (XPG4v2) from
1333 * caddr_t (char * - note signed) to 'void *'. On
1334 * illumos, bhyve is not currently compiled with XPG4v2
1335 * or higher, and so we can't cast the RHS to unsigned.
1336 * error: pointer targets in assignment differ in
1337 * signedness
1338 * This also means that we need to apply some casts to
1339 * (caddr_t) below.
1341 iov->iov_base += now;
1342 #endif
1343 iov->iov_len -= now;
1344 if (iov->iov_len == 0) {
1345 iov++;
1346 iovcnt--;
1349 iov--;
1350 iovcnt++;
1351 #ifdef __FreeBSD__
1352 iov->iov_base = hdr;
1353 #else
1354 iov->iov_base = (caddr_t)hdr;
1355 #endif
1356 iov->iov_len = hdrlen;
1357 } else
1358 hdr = NULL;
1360 /* Insert VLAN tag. */
1361 if (vlen != 0) {
1362 hdr -= ETHER_VLAN_ENCAP_LEN;
1363 memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1364 hdrlen += ETHER_VLAN_ENCAP_LEN;
1365 hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1366 hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1367 hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1368 hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1369 #ifdef __FreeBSD__
1370 iov->iov_base = hdr;
1371 #else
1372 iov->iov_base = (caddr_t)hdr;
1373 #endif
1374 iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1375 /* Correct checksum offsets after VLAN tag insertion. */
1376 ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1377 ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1378 if (ckinfo[0].ck_len != 0)
1379 ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1380 ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1381 ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1382 if (ckinfo[1].ck_len != 0)
1383 ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1386 /* Simple non-TSO case. */
1387 if (!tso) {
1388 /* Calculate checksums and transmit. */
1389 if (ckinfo[0].ck_valid)
1390 e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1391 if (ckinfo[1].ck_valid)
1392 e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1393 e82545_transmit_backend(sc, iov, iovcnt);
1394 goto done;
1397 /* Doing TSO. */
1398 tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1399 mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1400 paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1401 DPRINTF("tx %s segmentation offload %d+%d/%u bytes %d iovs",
1402 tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1403 ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1404 tcpseq = 0;
1405 if (tcp)
1406 tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1407 ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1408 tcpcs = 0;
1409 if (ckinfo[1].ck_valid) /* Save partial pseudo-header checksum. */
1410 tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1411 pv = 1;
1412 pvoff = 0;
1413 for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1414 now = MIN(left, mss);
1416 /* Construct IOVs for the segment. */
1417 /* Include whole original header. */
1418 #ifdef __FreeBSD__
1419 tiov[0].iov_base = hdr;
1420 #else
1421 tiov[0].iov_base = (caddr_t)hdr;
1422 #endif
1423 tiov[0].iov_len = hdrlen;
1424 tiovcnt = 1;
1425 /* Include respective part of payload IOV. */
1426 for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1427 nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1428 #ifdef __FreeBSD__
1429 tiov[tiovcnt].iov_base = (uint8_t *)iov[pv].iov_base +
1430 pvoff;
1431 #else
1432 tiov[tiovcnt].iov_base += pvoff;
1433 #endif
1434 tiov[tiovcnt++].iov_len = nnow;
1435 if (pvoff + nnow == iov[pv].iov_len) {
1436 pv++;
1437 pvoff = 0;
1438 } else
1439 pvoff += nnow;
1441 DPRINTF("tx segment %d %d+%d bytes %d iovs",
1442 seg, hdrlen, now, tiovcnt);
1444 /* Update IP header. */
1445 if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1446 /* IPv4 -- set length and ID */
1447 *(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1448 htons(hdrlen - ckinfo[0].ck_start + now);
1449 *(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1450 htons(ipid + seg);
1451 } else {
1452 /* IPv6 -- set length */
1453 *(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1454 htons(hdrlen - ckinfo[0].ck_start - 40 +
1455 now);
1458 /* Update pseudo-header checksum. */
1459 tcpsum = tcpcs;
1460 tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1462 /* Update TCP/UDP headers. */
1463 if (tcp) {
1464 /* Update sequence number and FIN/PUSH flags. */
1465 *(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1466 htonl(tcpseq + paylen - left);
1467 if (now < left) {
1468 hdr[ckinfo[1].ck_start + 13] &=
1469 ~(TH_FIN | TH_PUSH);
1471 } else {
1472 /* Update payload length. */
1473 *(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1474 hdrlen - ckinfo[1].ck_start + now;
1477 /* Calculate checksums and transmit. */
1478 if (ckinfo[0].ck_valid) {
1479 *(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1480 e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1482 if (ckinfo[1].ck_valid) {
1483 *(uint16_t *)&hdr[ckinfo[1].ck_off] =
1484 e82545_carry(tcpsum);
1485 e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1487 e82545_transmit_backend(sc, tiov, tiovcnt);
1490 done:
1491 head = (head + 1) % dsize;
1492 e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1494 *rhead = head;
1495 return (desc + 1);
1498 static void
1499 e82545_tx_run(struct e82545_softc *sc)
1501 uint32_t cause;
1502 uint16_t head, rhead, tail, size;
1503 int lim, tdwb, sent;
1505 size = sc->esc_TDLEN / 16;
1506 if (size == 0)
1507 return;
1509 head = sc->esc_TDH % size;
1510 tail = sc->esc_TDT % size;
1511 DPRINTF("tx_run: head %x, rhead %x, tail %x",
1512 sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1514 pthread_mutex_unlock(&sc->esc_mtx);
1515 rhead = head;
1516 tdwb = 0;
1517 for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1518 sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1519 if (sent == 0)
1520 break;
1521 head = rhead;
1523 pthread_mutex_lock(&sc->esc_mtx);
1525 sc->esc_TDH = head;
1526 sc->esc_TDHr = rhead;
1527 cause = 0;
1528 if (tdwb)
1529 cause |= E1000_ICR_TXDW;
1530 if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1531 cause |= E1000_ICR_TXQE;
1532 if (cause)
1533 e82545_icr_assert(sc, cause);
1535 DPRINTF("tx_run done: head %x, rhead %x, tail %x",
1536 sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1539 static _Noreturn void *
1540 e82545_tx_thread(void *param)
1542 struct e82545_softc *sc = param;
1544 pthread_mutex_lock(&sc->esc_mtx);
1545 for (;;) {
1546 while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1547 if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1548 break;
1549 sc->esc_tx_active = 0;
1550 if (sc->esc_tx_enabled == 0)
1551 pthread_cond_signal(&sc->esc_tx_cond);
1552 pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1554 sc->esc_tx_active = 1;
1556 /* Process some tx descriptors. Lock dropped inside. */
1557 e82545_tx_run(sc);
1561 static void
1562 e82545_tx_start(struct e82545_softc *sc)
1565 if (sc->esc_tx_active == 0)
1566 pthread_cond_signal(&sc->esc_tx_cond);
1569 static void
1570 e82545_tx_enable(struct e82545_softc *sc)
1573 sc->esc_tx_enabled = 1;
1576 static void
1577 e82545_tx_disable(struct e82545_softc *sc)
1580 sc->esc_tx_enabled = 0;
1581 while (sc->esc_tx_active)
1582 pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1585 static void
1586 e82545_rx_enable(struct e82545_softc *sc)
1589 sc->esc_rx_enabled = 1;
1592 static void
1593 e82545_rx_disable(struct e82545_softc *sc)
1596 sc->esc_rx_enabled = 0;
1597 while (sc->esc_rx_active)
1598 pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1601 static void
1602 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1604 struct eth_uni *eu;
1605 int idx;
1607 idx = reg >> 1;
1608 assert(idx < 15);
1610 eu = &sc->esc_uni[idx];
1612 if (reg & 0x1) {
1613 /* RAH */
1614 eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1615 eu->eu_addrsel = (wval >> 16) & 0x3;
1616 eu->eu_eth.octet[5] = wval >> 8;
1617 eu->eu_eth.octet[4] = wval;
1618 } else {
1619 /* RAL */
1620 eu->eu_eth.octet[3] = wval >> 24;
1621 eu->eu_eth.octet[2] = wval >> 16;
1622 eu->eu_eth.octet[1] = wval >> 8;
1623 eu->eu_eth.octet[0] = wval;
1627 static uint32_t
1628 e82545_read_ra(struct e82545_softc *sc, int reg)
1630 struct eth_uni *eu;
1631 uint32_t retval;
1632 int idx;
1634 idx = reg >> 1;
1635 assert(idx < 15);
1637 eu = &sc->esc_uni[idx];
1639 if (reg & 0x1) {
1640 /* RAH */
1641 retval = (eu->eu_valid << 31) |
1642 (eu->eu_addrsel << 16) |
1643 (eu->eu_eth.octet[5] << 8) |
1644 eu->eu_eth.octet[4];
1645 } else {
1646 /* RAL */
1647 retval = (eu->eu_eth.octet[3] << 24) |
1648 (eu->eu_eth.octet[2] << 16) |
1649 (eu->eu_eth.octet[1] << 8) |
1650 eu->eu_eth.octet[0];
1653 return (retval);
1656 static void
1657 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1659 int ridx;
1661 if (offset & 0x3) {
1662 DPRINTF("Unaligned register write offset:0x%x value:0x%x", offset, value);
1663 return;
1665 DPRINTF("Register write: 0x%x value: 0x%x", offset, value);
1667 switch (offset) {
1668 case E1000_CTRL:
1669 case E1000_CTRL_DUP:
1670 e82545_devctl(sc, value);
1671 break;
1672 case E1000_FCAL:
1673 sc->esc_FCAL = value;
1674 break;
1675 case E1000_FCAH:
1676 sc->esc_FCAH = value & ~0xFFFF0000;
1677 break;
1678 case E1000_FCT:
1679 sc->esc_FCT = value & ~0xFFFF0000;
1680 break;
1681 case E1000_VET:
1682 sc->esc_VET = value & ~0xFFFF0000;
1683 break;
1684 case E1000_FCTTV:
1685 sc->esc_FCTTV = value & ~0xFFFF0000;
1686 break;
1687 case E1000_LEDCTL:
1688 sc->esc_LEDCTL = value & ~0x30303000;
1689 break;
1690 case E1000_PBA:
1691 sc->esc_PBA = value & 0x0000FF80;
1692 break;
1693 case E1000_ICR:
1694 case E1000_ITR:
1695 case E1000_ICS:
1696 case E1000_IMS:
1697 case E1000_IMC:
1698 e82545_intr_write(sc, offset, value);
1699 break;
1700 case E1000_RCTL:
1701 e82545_rx_ctl(sc, value);
1702 break;
1703 case E1000_FCRTL:
1704 sc->esc_FCRTL = value & ~0xFFFF0007;
1705 break;
1706 case E1000_FCRTH:
1707 sc->esc_FCRTH = value & ~0xFFFF0007;
1708 break;
1709 case E1000_RDBAL(0):
1710 sc->esc_RDBAL = value & ~0xF;
1711 if (sc->esc_rx_enabled) {
1712 /* Apparently legal: update cached address */
1713 e82545_rx_update_rdba(sc);
1715 break;
1716 case E1000_RDBAH(0):
1717 assert(!sc->esc_rx_enabled);
1718 sc->esc_RDBAH = value;
1719 break;
1720 case E1000_RDLEN(0):
1721 assert(!sc->esc_rx_enabled);
1722 sc->esc_RDLEN = value & ~0xFFF0007F;
1723 break;
1724 case E1000_RDH(0):
1725 /* XXX should only ever be zero ? Range check ? */
1726 sc->esc_RDH = value;
1727 break;
1728 case E1000_RDT(0):
1729 /* XXX if this opens up the rx ring, do something ? */
1730 sc->esc_RDT = value;
1731 break;
1732 case E1000_RDTR:
1733 /* ignore FPD bit 31 */
1734 sc->esc_RDTR = value & ~0xFFFF0000;
1735 break;
1736 case E1000_RXDCTL(0):
1737 sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1738 break;
1739 case E1000_RADV:
1740 sc->esc_RADV = value & ~0xFFFF0000;
1741 break;
1742 case E1000_RSRPD:
1743 sc->esc_RSRPD = value & ~0xFFFFF000;
1744 break;
1745 case E1000_RXCSUM:
1746 sc->esc_RXCSUM = value & ~0xFFFFF800;
1747 break;
1748 case E1000_TXCW:
1749 sc->esc_TXCW = value & ~0x3FFF0000;
1750 break;
1751 case E1000_TCTL:
1752 e82545_tx_ctl(sc, value);
1753 break;
1754 case E1000_TIPG:
1755 sc->esc_TIPG = value;
1756 break;
1757 case E1000_AIT:
1758 sc->esc_AIT = value;
1759 break;
1760 case E1000_TDBAL(0):
1761 sc->esc_TDBAL = value & ~0xF;
1762 if (sc->esc_tx_enabled)
1763 e82545_tx_update_tdba(sc);
1764 break;
1765 case E1000_TDBAH(0):
1766 sc->esc_TDBAH = value;
1767 if (sc->esc_tx_enabled)
1768 e82545_tx_update_tdba(sc);
1769 break;
1770 case E1000_TDLEN(0):
1771 sc->esc_TDLEN = value & ~0xFFF0007F;
1772 if (sc->esc_tx_enabled)
1773 e82545_tx_update_tdba(sc);
1774 break;
1775 case E1000_TDH(0):
1776 if (sc->esc_tx_enabled) {
1777 WPRINTF("ignoring write to TDH while transmit enabled");
1778 break;
1780 if (value != 0) {
1781 WPRINTF("ignoring non-zero value written to TDH");
1782 break;
1784 sc->esc_TDHr = sc->esc_TDH = value;
1785 break;
1786 case E1000_TDT(0):
1787 sc->esc_TDT = value;
1788 if (sc->esc_tx_enabled)
1789 e82545_tx_start(sc);
1790 break;
1791 case E1000_TIDV:
1792 sc->esc_TIDV = value & ~0xFFFF0000;
1793 break;
1794 case E1000_TXDCTL(0):
1795 //assert(!sc->esc_tx_enabled);
1796 sc->esc_TXDCTL = value & ~0xC0C0C0;
1797 break;
1798 case E1000_TADV:
1799 sc->esc_TADV = value & ~0xFFFF0000;
1800 break;
1801 case E1000_RAL(0) ... E1000_RAH(15):
1802 /* convert to u32 offset */
1803 ridx = (offset - E1000_RAL(0)) >> 2;
1804 e82545_write_ra(sc, ridx, value);
1805 break;
1806 case E1000_MTA ... (E1000_MTA + (127*4)):
1807 sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1808 break;
1809 case E1000_VFTA ... (E1000_VFTA + (127*4)):
1810 sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1811 break;
1812 case E1000_EECD:
1814 //DPRINTF("EECD write 0x%x -> 0x%x", sc->eeprom_control, value);
1815 /* edge triggered low->high */
1816 uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1817 0 : (value & E1000_EECD_SK));
1818 uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1819 E1000_EECD_DI|E1000_EECD_REQ);
1820 sc->eeprom_control &= ~eecd_mask;
1821 sc->eeprom_control |= (value & eecd_mask);
1822 /* grant/revoke immediately */
1823 if (value & E1000_EECD_REQ) {
1824 sc->eeprom_control |= E1000_EECD_GNT;
1825 } else {
1826 sc->eeprom_control &= ~E1000_EECD_GNT;
1828 if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1829 e82545_eecd_strobe(sc);
1831 return;
1833 case E1000_MDIC:
1835 uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1836 E1000_MDIC_REG_SHIFT);
1837 uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1838 E1000_MDIC_PHY_SHIFT);
1839 sc->mdi_control =
1840 (value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1841 if ((value & E1000_MDIC_READY) != 0) {
1842 DPRINTF("Incorrect MDIC ready bit: 0x%x", value);
1843 return;
1845 switch (value & E82545_MDIC_OP_MASK) {
1846 case E1000_MDIC_OP_READ:
1847 sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1848 sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1849 break;
1850 case E1000_MDIC_OP_WRITE:
1851 e82545_write_mdi(sc, reg_addr, phy_addr,
1852 value & E82545_MDIC_DATA_MASK);
1853 break;
1854 default:
1855 DPRINTF("Unknown MDIC op: 0x%x", value);
1856 return;
1858 /* TODO: barrier? */
1859 sc->mdi_control |= E1000_MDIC_READY;
1860 if (value & E82545_MDIC_IE) {
1861 // TODO: generate interrupt
1863 return;
1865 case E1000_MANC:
1866 case E1000_STATUS:
1867 return;
1868 default:
1869 DPRINTF("Unknown write register: 0x%x value:%x", offset, value);
1870 return;
1874 static uint32_t
1875 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1877 uint32_t retval;
1878 int ridx;
1880 if (offset & 0x3) {
1881 DPRINTF("Unaligned register read offset:0x%x", offset);
1882 return 0;
1885 DPRINTF("Register read: 0x%x", offset);
1887 switch (offset) {
1888 case E1000_CTRL:
1889 retval = sc->esc_CTRL;
1890 break;
1891 case E1000_STATUS:
1892 retval = E1000_STATUS_FD | E1000_STATUS_LU |
1893 E1000_STATUS_SPEED_1000;
1894 break;
1895 case E1000_FCAL:
1896 retval = sc->esc_FCAL;
1897 break;
1898 case E1000_FCAH:
1899 retval = sc->esc_FCAH;
1900 break;
1901 case E1000_FCT:
1902 retval = sc->esc_FCT;
1903 break;
1904 case E1000_VET:
1905 retval = sc->esc_VET;
1906 break;
1907 case E1000_FCTTV:
1908 retval = sc->esc_FCTTV;
1909 break;
1910 case E1000_LEDCTL:
1911 retval = sc->esc_LEDCTL;
1912 break;
1913 case E1000_PBA:
1914 retval = sc->esc_PBA;
1915 break;
1916 case E1000_ICR:
1917 case E1000_ITR:
1918 case E1000_ICS:
1919 case E1000_IMS:
1920 case E1000_IMC:
1921 retval = e82545_intr_read(sc, offset);
1922 break;
1923 case E1000_RCTL:
1924 retval = sc->esc_RCTL;
1925 break;
1926 case E1000_FCRTL:
1927 retval = sc->esc_FCRTL;
1928 break;
1929 case E1000_FCRTH:
1930 retval = sc->esc_FCRTH;
1931 break;
1932 case E1000_RDBAL(0):
1933 retval = sc->esc_RDBAL;
1934 break;
1935 case E1000_RDBAH(0):
1936 retval = sc->esc_RDBAH;
1937 break;
1938 case E1000_RDLEN(0):
1939 retval = sc->esc_RDLEN;
1940 break;
1941 case E1000_RDH(0):
1942 retval = sc->esc_RDH;
1943 break;
1944 case E1000_RDT(0):
1945 retval = sc->esc_RDT;
1946 break;
1947 case E1000_RDTR:
1948 retval = sc->esc_RDTR;
1949 break;
1950 case E1000_RXDCTL(0):
1951 retval = sc->esc_RXDCTL;
1952 break;
1953 case E1000_RADV:
1954 retval = sc->esc_RADV;
1955 break;
1956 case E1000_RSRPD:
1957 retval = sc->esc_RSRPD;
1958 break;
1959 case E1000_RXCSUM:
1960 retval = sc->esc_RXCSUM;
1961 break;
1962 case E1000_TXCW:
1963 retval = sc->esc_TXCW;
1964 break;
1965 case E1000_TCTL:
1966 retval = sc->esc_TCTL;
1967 break;
1968 case E1000_TIPG:
1969 retval = sc->esc_TIPG;
1970 break;
1971 case E1000_AIT:
1972 retval = sc->esc_AIT;
1973 break;
1974 case E1000_TDBAL(0):
1975 retval = sc->esc_TDBAL;
1976 break;
1977 case E1000_TDBAH(0):
1978 retval = sc->esc_TDBAH;
1979 break;
1980 case E1000_TDLEN(0):
1981 retval = sc->esc_TDLEN;
1982 break;
1983 case E1000_TDH(0):
1984 retval = sc->esc_TDH;
1985 break;
1986 case E1000_TDT(0):
1987 retval = sc->esc_TDT;
1988 break;
1989 case E1000_TIDV:
1990 retval = sc->esc_TIDV;
1991 break;
1992 case E1000_TXDCTL(0):
1993 retval = sc->esc_TXDCTL;
1994 break;
1995 case E1000_TADV:
1996 retval = sc->esc_TADV;
1997 break;
1998 case E1000_RAL(0) ... E1000_RAH(15):
1999 /* convert to u32 offset */
2000 ridx = (offset - E1000_RAL(0)) >> 2;
2001 retval = e82545_read_ra(sc, ridx);
2002 break;
2003 case E1000_MTA ... (E1000_MTA + (127*4)):
2004 retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
2005 break;
2006 case E1000_VFTA ... (E1000_VFTA + (127*4)):
2007 retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
2008 break;
2009 case E1000_EECD:
2010 //DPRINTF("EECD read %x", sc->eeprom_control);
2011 retval = sc->eeprom_control;
2012 break;
2013 case E1000_MDIC:
2014 retval = sc->mdi_control;
2015 break;
2016 case E1000_MANC:
2017 retval = 0;
2018 break;
2019 /* stats that we emulate. */
2020 case E1000_MPC:
2021 retval = sc->missed_pkt_count;
2022 break;
2023 case E1000_PRC64:
2024 retval = sc->pkt_rx_by_size[0];
2025 break;
2026 case E1000_PRC127:
2027 retval = sc->pkt_rx_by_size[1];
2028 break;
2029 case E1000_PRC255:
2030 retval = sc->pkt_rx_by_size[2];
2031 break;
2032 case E1000_PRC511:
2033 retval = sc->pkt_rx_by_size[3];
2034 break;
2035 case E1000_PRC1023:
2036 retval = sc->pkt_rx_by_size[4];
2037 break;
2038 case E1000_PRC1522:
2039 retval = sc->pkt_rx_by_size[5];
2040 break;
2041 case E1000_GPRC:
2042 retval = sc->good_pkt_rx_count;
2043 break;
2044 case E1000_BPRC:
2045 retval = sc->bcast_pkt_rx_count;
2046 break;
2047 case E1000_MPRC:
2048 retval = sc->mcast_pkt_rx_count;
2049 break;
2050 case E1000_GPTC:
2051 case E1000_TPT:
2052 retval = sc->good_pkt_tx_count;
2053 break;
2054 case E1000_GORCL:
2055 retval = (uint32_t)sc->good_octets_rx;
2056 break;
2057 case E1000_GORCH:
2058 retval = (uint32_t)(sc->good_octets_rx >> 32);
2059 break;
2060 case E1000_TOTL:
2061 case E1000_GOTCL:
2062 retval = (uint32_t)sc->good_octets_tx;
2063 break;
2064 case E1000_TOTH:
2065 case E1000_GOTCH:
2066 retval = (uint32_t)(sc->good_octets_tx >> 32);
2067 break;
2068 case E1000_ROC:
2069 retval = sc->oversize_rx_count;
2070 break;
2071 case E1000_TORL:
2072 retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
2073 break;
2074 case E1000_TORH:
2075 retval = (uint32_t)((sc->good_octets_rx +
2076 sc->missed_octets) >> 32);
2077 break;
2078 case E1000_TPR:
2079 retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
2080 sc->oversize_rx_count;
2081 break;
2082 case E1000_PTC64:
2083 retval = sc->pkt_tx_by_size[0];
2084 break;
2085 case E1000_PTC127:
2086 retval = sc->pkt_tx_by_size[1];
2087 break;
2088 case E1000_PTC255:
2089 retval = sc->pkt_tx_by_size[2];
2090 break;
2091 case E1000_PTC511:
2092 retval = sc->pkt_tx_by_size[3];
2093 break;
2094 case E1000_PTC1023:
2095 retval = sc->pkt_tx_by_size[4];
2096 break;
2097 case E1000_PTC1522:
2098 retval = sc->pkt_tx_by_size[5];
2099 break;
2100 case E1000_MPTC:
2101 retval = sc->mcast_pkt_tx_count;
2102 break;
2103 case E1000_BPTC:
2104 retval = sc->bcast_pkt_tx_count;
2105 break;
2106 case E1000_TSCTC:
2107 retval = sc->tso_tx_count;
2108 break;
2109 /* stats that are always 0. */
2110 case E1000_CRCERRS:
2111 case E1000_ALGNERRC:
2112 case E1000_SYMERRS:
2113 case E1000_RXERRC:
2114 case E1000_SCC:
2115 case E1000_ECOL:
2116 case E1000_MCC:
2117 case E1000_LATECOL:
2118 case E1000_COLC:
2119 case E1000_DC:
2120 case E1000_TNCRS:
2121 case E1000_SEC:
2122 case E1000_CEXTERR:
2123 case E1000_RLEC:
2124 case E1000_XONRXC:
2125 case E1000_XONTXC:
2126 case E1000_XOFFRXC:
2127 case E1000_XOFFTXC:
2128 case E1000_FCRUC:
2129 case E1000_RNBC:
2130 case E1000_RUC:
2131 case E1000_RFC:
2132 case E1000_RJC:
2133 case E1000_MGTPRC:
2134 case E1000_MGTPDC:
2135 case E1000_MGTPTC:
2136 case E1000_TSCTFC:
2137 retval = 0;
2138 break;
2139 default:
2140 DPRINTF("Unknown read register: 0x%x", offset);
2141 retval = 0;
2142 break;
2145 return (retval);
2148 static void
2149 e82545_write(struct vmctx *ctx __unused,
2150 struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2151 uint64_t value)
2153 struct e82545_softc *sc;
2155 //DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d", baridx, offset, value, size);
2157 sc = pi->pi_arg;
2159 pthread_mutex_lock(&sc->esc_mtx);
2161 switch (baridx) {
2162 case E82545_BAR_IO:
2163 switch (offset) {
2164 case E82545_IOADDR:
2165 if (size != 4) {
2166 DPRINTF("Wrong io addr write sz:%d value:0x%lx", size, value);
2167 } else
2168 sc->io_addr = (uint32_t)value;
2169 break;
2170 case E82545_IODATA:
2171 if (size != 4) {
2172 DPRINTF("Wrong io data write size:%d value:0x%lx", size, value);
2173 } else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2174 DPRINTF("Non-register io write addr:0x%x value:0x%lx", sc->io_addr, value);
2175 } else
2176 e82545_write_register(sc, sc->io_addr,
2177 (uint32_t)value);
2178 break;
2179 default:
2180 DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d", offset, value, size);
2181 break;
2183 break;
2184 case E82545_BAR_REGISTER:
2185 if (size != 4) {
2186 DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx", size, offset, value);
2187 } else
2188 e82545_write_register(sc, (uint32_t)offset,
2189 (uint32_t)value);
2190 break;
2191 default:
2192 DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d",
2193 baridx, offset, value, size);
2196 pthread_mutex_unlock(&sc->esc_mtx);
2199 static uint64_t
2200 e82545_read(struct vmctx *ctx __unused,
2201 struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2203 struct e82545_softc *sc;
2204 uint64_t retval;
2206 //DPRINTF("Read bar:%d offset:0x%lx size:%d", baridx, offset, size);
2207 sc = pi->pi_arg;
2208 retval = 0;
2210 pthread_mutex_lock(&sc->esc_mtx);
2212 switch (baridx) {
2213 case E82545_BAR_IO:
2214 switch (offset) {
2215 case E82545_IOADDR:
2216 if (size != 4) {
2217 DPRINTF("Wrong io addr read sz:%d", size);
2218 } else
2219 retval = sc->io_addr;
2220 break;
2221 case E82545_IODATA:
2222 if (size != 4) {
2223 DPRINTF("Wrong io data read sz:%d", size);
2225 if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2226 DPRINTF("Non-register io read addr:0x%x",
2227 sc->io_addr);
2228 } else
2229 retval = e82545_read_register(sc, sc->io_addr);
2230 break;
2231 default:
2232 DPRINTF("Unknown io bar read offset:0x%lx size:%d",
2233 offset, size);
2234 break;
2236 break;
2237 case E82545_BAR_REGISTER:
2238 if (size != 4) {
2239 DPRINTF("Wrong register read size:%d offset:0x%lx",
2240 size, offset);
2241 } else
2242 retval = e82545_read_register(sc, (uint32_t)offset);
2243 break;
2244 default:
2245 DPRINTF("Unknown read bar:%d offset:0x%lx size:%d",
2246 baridx, offset, size);
2247 break;
2250 pthread_mutex_unlock(&sc->esc_mtx);
2252 return (retval);
2255 static void
2256 e82545_reset(struct e82545_softc *sc, int drvr)
2258 int i;
2260 e82545_rx_disable(sc);
2261 e82545_tx_disable(sc);
2263 /* clear outstanding interrupts */
2264 if (sc->esc_irq_asserted)
2265 pci_lintr_deassert(sc->esc_pi);
2267 /* misc */
2268 if (!drvr) {
2269 sc->esc_FCAL = 0;
2270 sc->esc_FCAH = 0;
2271 sc->esc_FCT = 0;
2272 sc->esc_VET = 0;
2273 sc->esc_FCTTV = 0;
2275 sc->esc_LEDCTL = 0x07061302;
2276 sc->esc_PBA = 0x00100030;
2278 /* start nvm in opcode mode. */
2279 sc->nvm_opaddr = 0;
2280 sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2281 sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2282 sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2283 e82545_init_eeprom(sc);
2285 /* interrupt */
2286 sc->esc_ICR = 0;
2287 sc->esc_ITR = 250;
2288 sc->esc_ICS = 0;
2289 sc->esc_IMS = 0;
2290 sc->esc_IMC = 0;
2292 /* L2 filters */
2293 if (!drvr) {
2294 memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2295 memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2296 memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2298 /* XXX not necessary on 82545 ?? */
2299 sc->esc_uni[0].eu_valid = 1;
2300 memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2301 ETHER_ADDR_LEN);
2302 } else {
2303 /* Clear RAH valid bits */
2304 for (i = 0; i < 16; i++)
2305 sc->esc_uni[i].eu_valid = 0;
2308 /* receive */
2309 if (!drvr) {
2310 sc->esc_RDBAL = 0;
2311 sc->esc_RDBAH = 0;
2313 sc->esc_RCTL = 0;
2314 sc->esc_FCRTL = 0;
2315 sc->esc_FCRTH = 0;
2316 sc->esc_RDLEN = 0;
2317 sc->esc_RDH = 0;
2318 sc->esc_RDT = 0;
2319 sc->esc_RDTR = 0;
2320 sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2321 sc->esc_RADV = 0;
2322 sc->esc_RXCSUM = 0;
2324 /* transmit */
2325 if (!drvr) {
2326 sc->esc_TDBAL = 0;
2327 sc->esc_TDBAH = 0;
2328 sc->esc_TIPG = 0;
2329 sc->esc_AIT = 0;
2330 sc->esc_TIDV = 0;
2331 sc->esc_TADV = 0;
2333 sc->esc_tdba = 0;
2334 sc->esc_txdesc = NULL;
2335 sc->esc_TXCW = 0;
2336 sc->esc_TCTL = 0;
2337 sc->esc_TDLEN = 0;
2338 sc->esc_TDT = 0;
2339 sc->esc_TDHr = sc->esc_TDH = 0;
2340 sc->esc_TXDCTL = 0;
2343 static int
2344 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl)
2346 char nstr[80];
2347 struct e82545_softc *sc;
2348 const char *mac;
2349 int err;
2351 /* Setup our softc */
2352 sc = calloc(1, sizeof(*sc));
2354 pi->pi_arg = sc;
2355 sc->esc_pi = pi;
2356 sc->esc_ctx = ctx;
2358 pthread_mutex_init(&sc->esc_mtx, NULL);
2359 pthread_cond_init(&sc->esc_rx_cond, NULL);
2360 pthread_cond_init(&sc->esc_tx_cond, NULL);
2361 pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2362 snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2363 pi->pi_func);
2364 pthread_set_name_np(sc->esc_tx_tid, nstr);
2366 pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2367 pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2368 pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_NETWORK);
2369 pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2370 pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2371 pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2373 pci_set_cfgdata8(pi, PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2374 pci_set_cfgdata8(pi, PCIR_INTPIN, 0x1);
2376 /* TODO: this card also supports msi, but the freebsd driver for it
2377 * does not, so I have not implemented it. */
2378 pci_lintr_request(pi);
2380 pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2381 E82545_BAR_REGISTER_LEN);
2382 pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2383 E82545_BAR_FLASH_LEN);
2384 pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2385 E82545_BAR_IO_LEN);
2387 mac = get_config_value_node(nvl, "mac");
2388 if (mac != NULL) {
2389 err = net_parsemac(mac, sc->esc_mac.octet);
2390 if (err) {
2391 free(sc);
2392 return (err);
2394 } else
2395 net_genmac(pi, sc->esc_mac.octet);
2397 err = netbe_init(&sc->esc_be, nvl, e82545_rx_callback, sc);
2398 if (err) {
2399 free(sc);
2400 return (err);
2403 #ifndef __FreeBSD__
2404 size_t buflen = sizeof (sc->esc_mac.octet);
2406 err = netbe_get_mac(sc->esc_be, sc->esc_mac.octet, &buflen);
2407 if (err != 0) {
2408 free(sc);
2409 return (err);
2411 #endif
2413 netbe_rx_enable(sc->esc_be);
2415 /* H/w initiated reset */
2416 e82545_reset(sc, 0);
2418 return (0);
2421 static const struct pci_devemu pci_de_e82545 = {
2422 .pe_emu = "e1000",
2423 .pe_init = e82545_init,
2424 .pe_legacy_config = netbe_legacy_config,
2425 .pe_barwrite = e82545_write,
2426 .pe_barread = e82545_read,
2428 PCI_EMUL_SET(pci_de_e82545);