5955 pat_sync is clever enough to check for X86FSET_PAT
[illumos-gate.git] / usr / src / uts / i86pc / os / fakebop.c
blobd38bcb046f749f2e330d1dd05bdb420c8b13a5dc
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 * Copyright (c) 2010, Intel Corporation.
28 * All rights reserved.
32 * This file contains the functionality that mimics the boot operations
33 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
34 * The x86 kernel now does everything on its own.
37 #include <sys/types.h>
38 #include <sys/bootconf.h>
39 #include <sys/bootsvcs.h>
40 #include <sys/bootinfo.h>
41 #include <sys/multiboot.h>
42 #include <sys/bootvfs.h>
43 #include <sys/bootprops.h>
44 #include <sys/varargs.h>
45 #include <sys/param.h>
46 #include <sys/machparam.h>
47 #include <sys/machsystm.h>
48 #include <sys/archsystm.h>
49 #include <sys/boot_console.h>
50 #include <sys/cmn_err.h>
51 #include <sys/systm.h>
52 #include <sys/promif.h>
53 #include <sys/archsystm.h>
54 #include <sys/x86_archext.h>
55 #include <sys/kobj.h>
56 #include <sys/privregs.h>
57 #include <sys/sysmacros.h>
58 #include <sys/ctype.h>
59 #include <sys/fastboot.h>
60 #ifdef __xpv
61 #include <sys/hypervisor.h>
62 #include <net/if.h>
63 #endif
64 #include <vm/kboot_mmu.h>
65 #include <vm/hat_pte.h>
66 #include <sys/kobj.h>
67 #include <sys/kobj_lex.h>
68 #include <sys/pci_cfgspace_impl.h>
69 #include "acpi_fw.h"
71 static int have_console = 0; /* set once primitive console is initialized */
72 static char *boot_args = "";
75 * Debugging macros
77 static uint_t kbm_debug = 0;
78 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
79 #define DBG(x) { if (kbm_debug) \
80 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
83 #define PUT_STRING(s) { \
84 char *cp; \
85 for (cp = (s); *cp; ++cp) \
86 bcons_putchar(*cp); \
89 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */
90 bootops_t bootop; /* simple bootops we'll pass on to kernel */
91 struct bsys_mem bm;
93 static uintptr_t next_virt; /* next available virtual address */
94 static paddr_t next_phys; /* next available physical address from dboot */
95 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
98 * buffer for vsnprintf for console I/O
100 #define BUFFERSIZE 256
101 static char buffer[BUFFERSIZE];
103 * stuff to store/report/manipulate boot property settings.
105 typedef struct bootprop {
106 struct bootprop *bp_next;
107 char *bp_name;
108 uint_t bp_vlen;
109 char *bp_value;
110 } bootprop_t;
112 static bootprop_t *bprops = NULL;
113 static char *curr_page = NULL; /* ptr to avail bprop memory */
114 static int curr_space = 0; /* amount of memory at curr_page */
116 #ifdef __xpv
117 start_info_t *xen_info;
118 shared_info_t *HYPERVISOR_shared_info;
119 #endif
122 * some allocator statistics
124 static ulong_t total_bop_alloc_scratch = 0;
125 static ulong_t total_bop_alloc_kernel = 0;
127 static void build_firmware_properties(void);
129 static int early_allocation = 1;
131 int force_fastreboot = 0;
132 volatile int fastreboot_onpanic = 0;
133 int post_fastreboot = 0;
134 #ifdef __xpv
135 volatile int fastreboot_capable = 0;
136 #else
137 volatile int fastreboot_capable = 1;
138 #endif
141 * Information saved from current boot for fast reboot.
142 * If the information size exceeds what we have allocated, fast reboot
143 * will not be supported.
145 multiboot_info_t saved_mbi;
146 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
147 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
148 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
149 int saved_cmdline_len = 0;
150 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
153 * Turn off fastreboot_onpanic to avoid panic loop.
155 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
156 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
159 * Pointers to where System Resource Affinity Table (SRAT), System Locality
160 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
161 * are mapped into virtual memory
163 struct srat *srat_ptr = NULL;
164 struct slit *slit_ptr = NULL;
165 struct msct *msct_ptr = NULL;
168 * Allocate aligned physical memory at boot time. This allocator allocates
169 * from the highest possible addresses. This avoids exhausting memory that
170 * would be useful for DMA buffers.
172 paddr_t
173 do_bop_phys_alloc(uint64_t size, uint64_t align)
175 paddr_t pa = 0;
176 paddr_t start;
177 paddr_t end;
178 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
181 * Be careful if high memory usage is limited in startup.c
182 * Since there are holes in the low part of the physical address
183 * space we can treat physmem as a pfn (not just a pgcnt) and
184 * get a conservative upper limit.
186 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
187 high_phys = pfn_to_pa(physmem);
190 * find the lowest or highest available memory in physinstalled
191 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
193 #if defined(__i386)
194 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
195 high_phys = FOUR_GIG;
196 #endif
199 * find the highest available memory in physinstalled
201 size = P2ROUNDUP(size, align);
202 for (; ml; ml = ml->ml_next) {
203 start = P2ROUNDUP(ml->ml_address, align);
204 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
205 if (start < next_phys)
206 start = P2ROUNDUP(next_phys, align);
207 if (end > high_phys)
208 end = P2ALIGN(high_phys, align);
210 if (end <= start)
211 continue;
212 if (end - start < size)
213 continue;
216 * Early allocations need to use low memory, since
217 * physmem might be further limited by bootenv.rc
219 if (early_allocation) {
220 if (pa == 0 || start < pa)
221 pa = start;
222 } else {
223 if (end - size > pa)
224 pa = end - size;
227 if (pa != 0) {
228 if (early_allocation)
229 next_phys = pa + size;
230 else
231 high_phys = pa;
232 return (pa);
234 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
235 ") Out of memory\n", size, align);
236 /*NOTREACHED*/
239 uintptr_t
240 alloc_vaddr(size_t size, paddr_t align)
242 uintptr_t rv;
244 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
245 rv = (uintptr_t)next_virt;
246 next_virt += size;
247 return (rv);
251 * Allocate virtual memory. The size is always rounded up to a multiple
252 * of base pagesize.
255 /*ARGSUSED*/
256 static caddr_t
257 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
259 paddr_t a = align; /* same type as pa for masking */
260 uint_t pgsize;
261 paddr_t pa;
262 uintptr_t va;
263 ssize_t s; /* the aligned size */
264 uint_t level;
265 uint_t is_kernel = (virthint != 0);
267 if (a < MMU_PAGESIZE)
268 a = MMU_PAGESIZE;
269 else if (!ISP2(a))
270 prom_panic("do_bsys_alloc() incorrect alignment");
271 size = P2ROUNDUP(size, MMU_PAGESIZE);
274 * Use the next aligned virtual address if we weren't given one.
276 if (virthint == NULL) {
277 virthint = (caddr_t)alloc_vaddr(size, a);
278 total_bop_alloc_scratch += size;
279 } else {
280 total_bop_alloc_kernel += size;
284 * allocate the physical memory
286 pa = do_bop_phys_alloc(size, a);
289 * Add the mappings to the page tables, try large pages first.
291 va = (uintptr_t)virthint;
292 s = size;
293 level = 1;
294 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
295 if (xbootp->bi_use_largepage && a == pgsize) {
296 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
297 s >= pgsize) {
298 kbm_map(va, pa, level, is_kernel);
299 va += pgsize;
300 pa += pgsize;
301 s -= pgsize;
306 * Map remaining pages use small mappings
308 level = 0;
309 pgsize = MMU_PAGESIZE;
310 while (s > 0) {
311 kbm_map(va, pa, level, is_kernel);
312 va += pgsize;
313 pa += pgsize;
314 s -= pgsize;
316 return (virthint);
320 * Free virtual memory - we'll just ignore these.
322 /*ARGSUSED*/
323 static void
324 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
326 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
327 (void *)virt, size);
331 * Old interface
333 /*ARGSUSED*/
334 static caddr_t
335 do_bsys_ealloc(
336 bootops_t *bop,
337 caddr_t virthint,
338 size_t size,
339 int align,
340 int flags)
342 prom_panic("unsupported call to BOP_EALLOC()\n");
343 return (0);
347 static void
348 bsetprop(char *name, int nlen, void *value, int vlen)
350 uint_t size;
351 uint_t need_size;
352 bootprop_t *b;
355 * align the size to 16 byte boundary
357 size = sizeof (bootprop_t) + nlen + 1 + vlen;
358 size = (size + 0xf) & ~0xf;
359 if (size > curr_space) {
360 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
361 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
362 curr_space = need_size;
366 * use a bootprop_t at curr_page and link into list
368 b = (bootprop_t *)curr_page;
369 curr_page += sizeof (bootprop_t);
370 curr_space -= sizeof (bootprop_t);
371 b->bp_next = bprops;
372 bprops = b;
375 * follow by name and ending zero byte
377 b->bp_name = curr_page;
378 bcopy(name, curr_page, nlen);
379 curr_page += nlen;
380 *curr_page++ = 0;
381 curr_space -= nlen + 1;
384 * copy in value, but no ending zero byte
386 b->bp_value = curr_page;
387 b->bp_vlen = vlen;
388 if (vlen > 0) {
389 bcopy(value, curr_page, vlen);
390 curr_page += vlen;
391 curr_space -= vlen;
395 * align new values of curr_page, curr_space
397 while (curr_space & 0xf) {
398 ++curr_page;
399 --curr_space;
403 static void
404 bsetprops(char *name, char *value)
406 bsetprop(name, strlen(name), value, strlen(value) + 1);
409 static void
410 bsetprop64(char *name, uint64_t value)
412 bsetprop(name, strlen(name), (void *)&value, sizeof (value));
415 static void
416 bsetpropsi(char *name, int value)
418 char prop_val[32];
420 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
421 bsetprops(name, prop_val);
425 * to find the size of the buffer to allocate
427 /*ARGSUSED*/
429 do_bsys_getproplen(bootops_t *bop, const char *name)
431 bootprop_t *b;
433 for (b = bprops; b; b = b->bp_next) {
434 if (strcmp(name, b->bp_name) != 0)
435 continue;
436 return (b->bp_vlen);
438 return (-1);
442 * get the value associated with this name
444 /*ARGSUSED*/
446 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
448 bootprop_t *b;
450 for (b = bprops; b; b = b->bp_next) {
451 if (strcmp(name, b->bp_name) != 0)
452 continue;
453 bcopy(b->bp_value, value, b->bp_vlen);
454 return (0);
456 return (-1);
460 * get the name of the next property in succession from the standalone
462 /*ARGSUSED*/
463 static char *
464 do_bsys_nextprop(bootops_t *bop, char *name)
466 bootprop_t *b;
469 * A null name is a special signal for the 1st boot property
471 if (name == NULL || strlen(name) == 0) {
472 if (bprops == NULL)
473 return (NULL);
474 return (bprops->bp_name);
477 for (b = bprops; b; b = b->bp_next) {
478 if (name != b->bp_name)
479 continue;
480 b = b->bp_next;
481 if (b == NULL)
482 return (NULL);
483 return (b->bp_name);
485 return (NULL);
489 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
491 static int
492 parse_value(char *p, uint64_t *retval)
494 int adjust = 0;
495 uint64_t tmp = 0;
496 int digit;
497 int radix = 10;
499 *retval = 0;
500 if (*p == '-' || *p == '~')
501 adjust = *p++;
503 if (*p == '0') {
504 ++p;
505 if (*p == 0)
506 return (0);
507 if (*p == 'x' || *p == 'X') {
508 radix = 16;
509 ++p;
510 } else {
511 radix = 8;
512 ++p;
515 while (*p) {
516 if ('0' <= *p && *p <= '9')
517 digit = *p - '0';
518 else if ('a' <= *p && *p <= 'f')
519 digit = 10 + *p - 'a';
520 else if ('A' <= *p && *p <= 'F')
521 digit = 10 + *p - 'A';
522 else
523 return (-1);
524 if (digit >= radix)
525 return (-1);
526 tmp = tmp * radix + digit;
527 ++p;
529 if (adjust == '-')
530 tmp = -tmp;
531 else if (adjust == '~')
532 tmp = ~tmp;
533 *retval = tmp;
534 return (0);
538 * 2nd part of building the table of boot properties. This includes:
539 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
541 * lines look like one of:
542 * ^$
543 * ^# comment till end of line
544 * setprop name 'value'
545 * setprop name value
546 * setprop name "value"
548 * we do single character I/O since this is really just looking at memory
550 void
551 boot_prop_finish(void)
553 int fd;
554 char *line;
555 int c;
556 int bytes_read;
557 char *name;
558 int n_len;
559 char *value;
560 int v_len;
561 char *inputdev; /* these override the command line if serial ports */
562 char *outputdev;
563 char *consoledev;
564 uint64_t lvalue;
565 int use_xencons = 0;
567 #ifdef __xpv
568 if (!DOMAIN_IS_INITDOMAIN(xen_info))
569 use_xencons = 1;
570 #endif /* __xpv */
572 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
573 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
574 DBG(fd);
576 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
577 while (fd >= 0) {
580 * get a line
582 for (c = 0; ; ++c) {
583 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
584 if (bytes_read == 0) {
585 if (c == 0)
586 goto done;
587 break;
589 if (line[c] == '\n')
590 break;
592 line[c] = 0;
595 * ignore comment lines
597 c = 0;
598 while (ISSPACE(line[c]))
599 ++c;
600 if (line[c] == '#' || line[c] == 0)
601 continue;
604 * must have "setprop " or "setprop\t"
606 if (strncmp(line + c, "setprop ", 8) != 0 &&
607 strncmp(line + c, "setprop\t", 8) != 0)
608 continue;
609 c += 8;
610 while (ISSPACE(line[c]))
611 ++c;
612 if (line[c] == 0)
613 continue;
616 * gather up the property name
618 name = line + c;
619 n_len = 0;
620 while (line[c] && !ISSPACE(line[c]))
621 ++n_len, ++c;
624 * gather up the value, if any
626 value = "";
627 v_len = 0;
628 while (ISSPACE(line[c]))
629 ++c;
630 if (line[c] != 0) {
631 value = line + c;
632 while (line[c] && !ISSPACE(line[c]))
633 ++v_len, ++c;
636 if (v_len >= 2 && value[0] == value[v_len - 1] &&
637 (value[0] == '\'' || value[0] == '"')) {
638 ++value;
639 v_len -= 2;
641 name[n_len] = 0;
642 if (v_len > 0)
643 value[v_len] = 0;
644 else
645 continue;
648 * ignore "boot-file" property, it's now meaningless
650 if (strcmp(name, "boot-file") == 0)
651 continue;
652 if (strcmp(name, "boot-args") == 0 &&
653 strlen(boot_args) > 0)
654 continue;
657 * If a property was explicitly set on the command line
658 * it will override a setting in bootenv.rc
660 if (do_bsys_getproplen(NULL, name) > 0)
661 continue;
663 bsetprop(name, n_len, value, v_len + 1);
665 done:
666 if (fd >= 0)
667 BRD_CLOSE(bfs_ops, fd);
670 * Check if we have to limit the boot time allocator
672 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
673 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
674 parse_value(line, &lvalue) != -1) {
675 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
676 physmem = (pgcnt_t)lvalue;
677 DBG(physmem);
680 early_allocation = 0;
683 * check to see if we have to override the default value of the console
685 if (!use_xencons) {
686 inputdev = line;
687 v_len = do_bsys_getproplen(NULL, "input-device");
688 if (v_len > 0)
689 (void) do_bsys_getprop(NULL, "input-device", inputdev);
690 else
691 v_len = 0;
692 inputdev[v_len] = 0;
694 outputdev = inputdev + v_len + 1;
695 v_len = do_bsys_getproplen(NULL, "output-device");
696 if (v_len > 0)
697 (void) do_bsys_getprop(NULL, "output-device",
698 outputdev);
699 else
700 v_len = 0;
701 outputdev[v_len] = 0;
703 consoledev = outputdev + v_len + 1;
704 v_len = do_bsys_getproplen(NULL, "console");
705 if (v_len > 0) {
706 (void) do_bsys_getprop(NULL, "console", consoledev);
707 if (post_fastreboot &&
708 strcmp(consoledev, "graphics") == 0) {
709 bsetprops("console", "text");
710 v_len = strlen("text");
711 bcopy("text", consoledev, v_len);
713 } else {
714 v_len = 0;
716 consoledev[v_len] = 0;
717 bcons_init2(inputdev, outputdev, consoledev);
718 } else {
720 * Ensure console property exists
721 * If not create it as "hypervisor"
723 v_len = do_bsys_getproplen(NULL, "console");
724 if (v_len < 0)
725 bsetprops("console", "hypervisor");
726 inputdev = outputdev = consoledev = "hypervisor";
727 bcons_init2(inputdev, outputdev, consoledev);
730 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
731 value = line;
732 bop_printf(NULL, "\nBoot properties:\n");
733 name = "";
734 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
735 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
736 (void) do_bsys_getprop(NULL, name, value);
737 v_len = do_bsys_getproplen(NULL, name);
738 bop_printf(NULL, "len=%d ", v_len);
739 value[v_len] = 0;
740 bop_printf(NULL, "%s\n", value);
746 * print formatted output
748 /*PRINTFLIKE2*/
749 /*ARGSUSED*/
750 void
751 bop_printf(bootops_t *bop, const char *fmt, ...)
753 va_list ap;
755 if (have_console == 0)
756 return;
758 va_start(ap, fmt);
759 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
760 va_end(ap);
761 PUT_STRING(buffer);
765 * Another panic() variant; this one can be used even earlier during boot than
766 * prom_panic().
768 /*PRINTFLIKE1*/
769 void
770 bop_panic(const char *fmt, ...)
772 va_list ap;
774 va_start(ap, fmt);
775 bop_printf(NULL, fmt, ap);
776 va_end(ap);
778 bop_printf(NULL, "\nPress any key to reboot.\n");
779 (void) bcons_getchar();
780 bop_printf(NULL, "Resetting...\n");
781 pc_reset();
785 * Do a real mode interrupt BIOS call
787 typedef struct bios_regs {
788 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
789 } bios_regs_t;
790 typedef int (*bios_func_t)(int, bios_regs_t *);
792 /*ARGSUSED*/
793 static void
794 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
796 #if defined(__xpv)
797 prom_panic("unsupported call to BOP_DOINT()\n");
798 #else /* __xpv */
799 static int firsttime = 1;
800 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
801 bios_regs_t br;
804 * The first time we do this, we have to copy the pre-packaged
805 * low memory bios call code image into place.
807 if (firsttime) {
808 extern char bios_image[];
809 extern uint32_t bios_size;
811 bcopy(bios_image, (void *)bios_func, bios_size);
812 firsttime = 0;
815 br.ax = rp->eax.word.ax;
816 br.bx = rp->ebx.word.bx;
817 br.cx = rp->ecx.word.cx;
818 br.dx = rp->edx.word.dx;
819 br.bp = rp->ebp.word.bp;
820 br.si = rp->esi.word.si;
821 br.di = rp->edi.word.di;
822 br.ds = rp->ds;
823 br.es = rp->es;
825 DBG_MSG("Doing BIOS call...");
826 DBG(br.ax);
827 DBG(br.bx);
828 DBG(br.dx);
829 rp->eflags = bios_func(intnum, &br);
830 DBG_MSG("done\n");
832 rp->eax.word.ax = br.ax;
833 rp->ebx.word.bx = br.bx;
834 rp->ecx.word.cx = br.cx;
835 rp->edx.word.dx = br.dx;
836 rp->ebp.word.bp = br.bp;
837 rp->esi.word.si = br.si;
838 rp->edi.word.di = br.di;
839 rp->ds = br.ds;
840 rp->es = br.es;
841 #endif /* __xpv */
844 static struct boot_syscalls bop_sysp = {
845 bcons_getchar,
846 bcons_putchar,
847 bcons_ischar,
850 static char *whoami;
852 #define BUFLEN 64
854 #if defined(__xpv)
856 static char namebuf[32];
858 static void
859 xen_parse_props(char *s, char *prop_map[], int n_prop)
861 char **prop_name = prop_map;
862 char *cp = s, *scp;
864 do {
865 scp = cp;
866 while ((*cp != NULL) && (*cp != ':'))
867 cp++;
869 if ((scp != cp) && (*prop_name != NULL)) {
870 *cp = NULL;
871 bsetprops(*prop_name, scp);
874 cp++;
875 prop_name++;
876 n_prop--;
877 } while (n_prop > 0);
880 #define VBDPATHLEN 64
883 * parse the 'xpv-root' property to create properties used by
884 * ufs_mountroot.
886 static void
887 xen_vbdroot_props(char *s)
889 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
890 const char lnamefix[] = "/dev/dsk/c0d";
891 char *pnp;
892 char *prop_p;
893 char mi;
894 short minor;
895 long addr = 0;
897 pnp = vbdpath + strlen(vbdpath);
898 prop_p = s + strlen(lnamefix);
899 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
900 addr = addr * 10 + *prop_p++ - '0';
901 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
902 pnp = vbdpath + strlen(vbdpath);
903 if (*prop_p == 's')
904 mi = 'a';
905 else if (*prop_p == 'p')
906 mi = 'q';
907 else
908 ASSERT(0); /* shouldn't be here */
909 prop_p++;
910 ASSERT(*prop_p != '\0');
911 if (ISDIGIT(*prop_p)) {
912 minor = *prop_p - '0';
913 prop_p++;
914 if (ISDIGIT(*prop_p)) {
915 minor = minor * 10 + *prop_p - '0';
917 } else {
918 /* malformed root path, use 0 as default */
919 minor = 0;
921 ASSERT(minor < 16); /* at most 16 partitions */
922 mi += minor;
923 *pnp++ = ':';
924 *pnp++ = mi;
925 *pnp++ = '\0';
926 bsetprops("fstype", "ufs");
927 bsetprops("bootpath", vbdpath);
929 DBG_MSG("VBD bootpath set to ");
930 DBG_MSG(vbdpath);
931 DBG_MSG("\n");
935 * parse the xpv-nfsroot property to create properties used by
936 * nfs_mountroot.
938 static void
939 xen_nfsroot_props(char *s)
941 char *prop_map[] = {
942 BP_SERVER_IP, /* server IP address */
943 BP_SERVER_NAME, /* server hostname */
944 BP_SERVER_PATH, /* root path */
946 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
948 bsetprop("fstype", 6, "nfs", 4);
950 xen_parse_props(s, prop_map, n_prop);
953 * If a server name wasn't specified, use a default.
955 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
956 bsetprops(BP_SERVER_NAME, "unknown");
960 * Extract our IP address, etc. from the "xpv-ip" property.
962 static void
963 xen_ip_props(char *s)
965 char *prop_map[] = {
966 BP_HOST_IP, /* IP address */
967 NULL, /* NFS server IP address (ignored in */
968 /* favour of xpv-nfsroot) */
969 BP_ROUTER_IP, /* IP gateway */
970 BP_SUBNET_MASK, /* IP subnet mask */
971 "xpv-hostname", /* hostname (ignored) */
972 BP_NETWORK_INTERFACE, /* interface name */
973 "xpv-hcp", /* host configuration protocol */
975 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
976 char ifname[IFNAMSIZ];
978 xen_parse_props(s, prop_map, n_prop);
981 * A Linux dom0 administrator expects all interfaces to be
982 * called "ethX", which is not the case here.
984 * If the interface name specified is "eth0", presume that
985 * this is really intended to be "xnf0" (the first domU ->
986 * dom0 interface for this domain).
988 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
989 (strcmp("eth0", ifname) == 0)) {
990 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
991 bop_printf(NULL,
992 "network interface name 'eth0' replaced with 'xnf0'\n");
996 #else /* __xpv */
998 static void
999 setup_rarp_props(struct sol_netinfo *sip)
1001 char buf[BUFLEN]; /* to hold ip/mac addrs */
1002 uint8_t *val;
1004 val = (uint8_t *)&sip->sn_ciaddr;
1005 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1006 val[0], val[1], val[2], val[3]);
1007 bsetprops(BP_HOST_IP, buf);
1009 val = (uint8_t *)&sip->sn_siaddr;
1010 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1011 val[0], val[1], val[2], val[3]);
1012 bsetprops(BP_SERVER_IP, buf);
1014 if (sip->sn_giaddr != 0) {
1015 val = (uint8_t *)&sip->sn_giaddr;
1016 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1017 val[0], val[1], val[2], val[3]);
1018 bsetprops(BP_ROUTER_IP, buf);
1021 if (sip->sn_netmask != 0) {
1022 val = (uint8_t *)&sip->sn_netmask;
1023 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1024 val[0], val[1], val[2], val[3]);
1025 bsetprops(BP_SUBNET_MASK, buf);
1028 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1029 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1030 sip->sn_mactype, sip->sn_maclen);
1031 } else {
1032 val = sip->sn_macaddr;
1033 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1034 val[0], val[1], val[2], val[3], val[4], val[5]);
1035 bsetprops(BP_BOOT_MAC, buf);
1039 #endif /* __xpv */
1041 static void
1042 build_panic_cmdline(const char *cmd, int cmdlen)
1044 int proplen;
1045 size_t arglen;
1047 arglen = sizeof (fastreboot_onpanic_args);
1049 * If we allready have fastreboot-onpanic set to zero,
1050 * don't add them again.
1052 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1053 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1054 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1055 fastreboot_onpanic_cmdline);
1056 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1057 arglen = 1;
1061 * construct fastreboot_onpanic_cmdline
1063 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1064 DBG_MSG("Command line too long: clearing "
1065 FASTREBOOT_ONPANIC "\n");
1066 fastreboot_onpanic = 0;
1067 } else {
1068 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1069 if (arglen != 1)
1070 bcopy(fastreboot_onpanic_args,
1071 fastreboot_onpanic_cmdline + cmdlen, arglen);
1072 else
1073 fastreboot_onpanic_cmdline[cmdlen] = 0;
1078 #ifndef __xpv
1080 * Construct boot command line for Fast Reboot
1082 static void
1083 build_fastboot_cmdline(void)
1085 saved_cmdline_len = strlen(xbootp->bi_cmdline) + 1;
1086 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1087 DBG(saved_cmdline_len);
1088 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1089 fastreboot_capable = 0;
1090 } else {
1091 bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1092 saved_cmdline_len);
1093 saved_cmdline[saved_cmdline_len - 1] = '\0';
1094 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1099 * Save memory layout, disk drive information, unix and boot archive sizes for
1100 * Fast Reboot.
1102 static void
1103 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi)
1105 struct boot_modules *modp;
1106 int i;
1108 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1109 if (mbi->mmap_length > sizeof (saved_mmap)) {
1110 DBG_MSG("mbi->mmap_length too big: clearing "
1111 "fastreboot_capable\n");
1112 fastreboot_capable = 0;
1113 } else {
1114 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1115 mbi->mmap_length);
1118 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1119 if (mbi->drives_length > sizeof (saved_drives)) {
1120 DBG(mbi->drives_length);
1121 DBG_MSG("mbi->drives_length too big: clearing "
1122 "fastreboot_capable\n");
1123 fastreboot_capable = 0;
1124 } else {
1125 bcopy((void *)(uintptr_t)mbi->drives_addr,
1126 (void *)saved_drives, mbi->drives_length);
1128 } else {
1129 saved_mbi.drives_length = 0;
1130 saved_mbi.drives_addr = NULL;
1134 * Current file sizes. Used by fastboot.c to figure out how much
1135 * memory to reserve for panic reboot.
1136 * Use the module list from the dboot-constructed xboot_info
1137 * instead of the list referenced by the multiboot structure
1138 * because that structure may not be addressable now.
1140 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1141 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1142 i < xbi->bi_module_cnt; i++, modp++) {
1143 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1146 #endif /* __xpv */
1150 * 1st pass at building the table of boot properties. This includes:
1151 * - values set on the command line: -B a=x,b=y,c=z ....
1152 * - known values we just compute (ie. from xbootp)
1153 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1155 * the grub command line looked like:
1156 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1158 * whoami is the same as boot-file
1160 static void
1161 build_boot_properties(void)
1163 char *name;
1164 int name_len;
1165 char *value;
1166 int value_len;
1167 struct boot_modules *bm;
1168 char *propbuf;
1169 int quoted = 0;
1170 int boot_arg_len;
1171 #ifndef __xpv
1172 static int stdout_val = 0;
1173 uchar_t boot_device;
1174 char str[3];
1175 multiboot_info_t *mbi;
1176 int netboot;
1177 struct sol_netinfo *sip;
1178 #endif
1181 * These have to be done first, so that kobj_mount_root() works
1183 DBG_MSG("Building boot properties\n");
1184 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1185 DBG((uintptr_t)propbuf);
1186 if (xbootp->bi_module_cnt > 0) {
1187 bm = xbootp->bi_modules;
1188 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr);
1189 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr +
1190 bm->bm_size);
1193 DBG_MSG("Parsing command line for boot properties\n");
1194 value = xbootp->bi_cmdline;
1197 * allocate memory to collect boot_args into
1199 boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1200 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1201 boot_args[0] = 0;
1202 boot_arg_len = 0;
1204 #ifdef __xpv
1206 * Xen puts a lot of device information in front of the kernel name
1207 * let's grab them and make them boot properties. The first
1208 * string w/o an "=" in it will be the boot-file property.
1210 (void) strcpy(namebuf, "xpv-");
1211 for (;;) {
1213 * get to next property
1215 while (ISSPACE(*value))
1216 ++value;
1217 name = value;
1219 * look for an "="
1221 while (*value && !ISSPACE(*value) && *value != '=') {
1222 value++;
1224 if (*value != '=') { /* no "=" in the property */
1225 value = name;
1226 break;
1228 name_len = value - name;
1229 value_len = 0;
1231 * skip over the "="
1233 value++;
1234 while (value[value_len] && !ISSPACE(value[value_len])) {
1235 ++value_len;
1238 * build property name with "xpv-" prefix
1240 if (name_len + 4 > 32) { /* skip if name too long */
1241 value += value_len;
1242 continue;
1244 bcopy(name, &namebuf[4], name_len);
1245 name_len += 4;
1246 namebuf[name_len] = 0;
1247 bcopy(value, propbuf, value_len);
1248 propbuf[value_len] = 0;
1249 bsetprops(namebuf, propbuf);
1252 * xpv-root is set to the logical disk name of the xen
1253 * VBD when booting from a disk-based filesystem.
1255 if (strcmp(namebuf, "xpv-root") == 0)
1256 xen_vbdroot_props(propbuf);
1258 * While we're here, if we have a "xpv-nfsroot" property
1259 * then we need to set "fstype" to "nfs" so we mount
1260 * our root from the nfs server. Also parse the xpv-nfsroot
1261 * property to create the properties that nfs_mountroot will
1262 * need to find the root and mount it.
1264 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1265 xen_nfsroot_props(propbuf);
1267 if (strcmp(namebuf, "xpv-ip") == 0)
1268 xen_ip_props(propbuf);
1269 value += value_len;
1271 #endif
1273 while (ISSPACE(*value))
1274 ++value;
1276 * value now points at the boot-file
1278 value_len = 0;
1279 while (value[value_len] && !ISSPACE(value[value_len]))
1280 ++value_len;
1281 if (value_len > 0) {
1282 whoami = propbuf;
1283 bcopy(value, whoami, value_len);
1284 whoami[value_len] = 0;
1285 bsetprops("boot-file", whoami);
1287 * strip leading path stuff from whoami, so running from
1288 * PXE/miniroot makes sense.
1290 if (strstr(whoami, "/platform/") != NULL)
1291 whoami = strstr(whoami, "/platform/");
1292 bsetprops("whoami", whoami);
1296 * Values forcibly set boot properties on the command line via -B.
1297 * Allow use of quotes in values. Other stuff goes on kernel
1298 * command line.
1300 name = value + value_len;
1301 while (*name != 0) {
1303 * anything not " -B" is copied to the command line
1305 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1306 boot_args[boot_arg_len++] = *name;
1307 boot_args[boot_arg_len] = 0;
1308 ++name;
1309 continue;
1313 * skip the " -B" and following white space
1315 name += 3;
1316 while (ISSPACE(*name))
1317 ++name;
1318 while (*name && !ISSPACE(*name)) {
1319 value = strstr(name, "=");
1320 if (value == NULL)
1321 break;
1322 name_len = value - name;
1323 ++value;
1324 value_len = 0;
1325 quoted = 0;
1326 for (; ; ++value_len) {
1327 if (!value[value_len])
1328 break;
1331 * is this value quoted?
1333 if (value_len == 0 &&
1334 (value[0] == '\'' || value[0] == '"')) {
1335 quoted = value[0];
1336 ++value_len;
1340 * In the quote accept any character,
1341 * but look for ending quote.
1343 if (quoted) {
1344 if (value[value_len] == quoted)
1345 quoted = 0;
1346 continue;
1350 * a comma or white space ends the value
1352 if (value[value_len] == ',' ||
1353 ISSPACE(value[value_len]))
1354 break;
1357 if (value_len == 0) {
1358 bsetprop(name, name_len, "true", 5);
1359 } else {
1360 char *v = value;
1361 int l = value_len;
1362 if (v[0] == v[l - 1] &&
1363 (v[0] == '\'' || v[0] == '"')) {
1364 ++v;
1365 l -= 2;
1367 bcopy(v, propbuf, l);
1368 propbuf[l] = '\0';
1369 bsetprop(name, name_len, propbuf,
1370 l + 1);
1372 name = value + value_len;
1373 while (*name == ',')
1374 ++name;
1379 * set boot-args property
1380 * 1275 name is bootargs, so set
1381 * that too
1383 bsetprops("boot-args", boot_args);
1384 bsetprops("bootargs", boot_args);
1386 #ifndef __xpv
1388 * set the BIOS boot device from GRUB
1390 netboot = 0;
1391 mbi = xbootp->bi_mb_info;
1394 * Build boot command line for Fast Reboot
1396 build_fastboot_cmdline();
1399 * Save various boot information for Fast Reboot
1401 save_boot_info(mbi, xbootp);
1403 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1404 boot_device = mbi->boot_device >> 24;
1405 if (boot_device == 0x20)
1406 netboot++;
1407 str[0] = (boot_device >> 4) + '0';
1408 str[1] = (boot_device & 0xf) + '0';
1409 str[2] = 0;
1410 bsetprops("bios-boot-device", str);
1411 } else {
1412 netboot = 1;
1416 * In the netboot case, drives_info is overloaded with the dhcp ack.
1417 * This is not multiboot compliant and requires special pxegrub!
1419 if (netboot && mbi->drives_length != 0) {
1420 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1421 if (sip->sn_infotype == SN_TYPE_BOOTP)
1422 bsetprop("bootp-response", sizeof ("bootp-response"),
1423 (void *)(uintptr_t)mbi->drives_addr,
1424 mbi->drives_length);
1425 else if (sip->sn_infotype == SN_TYPE_RARP)
1426 setup_rarp_props(sip);
1428 bsetprop("stdout", strlen("stdout"),
1429 &stdout_val, sizeof (stdout_val));
1430 #endif /* __xpv */
1433 * more conjured up values for made up things....
1435 #if defined(__xpv)
1436 bsetprops("mfg-name", "i86xpv");
1437 bsetprops("impl-arch-name", "i86xpv");
1438 #else
1439 bsetprops("mfg-name", "i86pc");
1440 bsetprops("impl-arch-name", "i86pc");
1441 #endif
1444 * Build firmware-provided system properties
1446 build_firmware_properties();
1449 * XXPV
1451 * Find out what these are:
1452 * - cpuid_feature_ecx_include
1453 * - cpuid_feature_ecx_exclude
1454 * - cpuid_feature_edx_include
1455 * - cpuid_feature_edx_exclude
1457 * Find out what these are in multiboot:
1458 * - netdev-path
1459 * - fstype
1463 #ifdef __xpv
1465 * Under the Hypervisor, memory usable for DMA may be scarce. One
1466 * very likely large pool of DMA friendly memory is occupied by
1467 * the boot_archive, as it was loaded by grub into low MFNs.
1469 * Here we free up that memory by copying the boot archive to what are
1470 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1472 #define PFN_2GIG 0x80000
1473 static void
1474 relocate_boot_archive(void)
1476 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1477 struct boot_modules *bm = xbootp->bi_modules;
1478 uintptr_t va;
1479 pfn_t va_pfn;
1480 mfn_t va_mfn;
1481 caddr_t copy;
1482 pfn_t copy_pfn;
1483 mfn_t copy_mfn;
1484 size_t len;
1485 int slop;
1486 int total = 0;
1487 int relocated = 0;
1488 int mmu_update_return;
1489 mmu_update_t t[2];
1490 x86pte_t pte;
1493 * If all MFN's are below 2Gig, don't bother doing this.
1495 if (max_mfn < PFN_2GIG)
1496 return;
1497 if (xbootp->bi_module_cnt < 1) {
1498 DBG_MSG("no boot_archive!");
1499 return;
1502 DBG_MSG("moving boot_archive to high MFN memory\n");
1503 va = (uintptr_t)bm->bm_addr;
1504 len = bm->bm_size;
1505 slop = va & MMU_PAGEOFFSET;
1506 if (slop) {
1507 va += MMU_PAGESIZE - slop;
1508 len -= MMU_PAGESIZE - slop;
1510 len = P2ALIGN(len, MMU_PAGESIZE);
1513 * Go through all boot_archive pages, swapping any low MFN pages
1514 * with memory at next_phys.
1516 while (len != 0) {
1517 ++total;
1518 va_pfn = mmu_btop(va - ONE_GIG);
1519 va_mfn = mfn_list[va_pfn];
1520 if (mfn_list[va_pfn] < PFN_2GIG) {
1521 copy = kbm_remap_window(next_phys, 1);
1522 bcopy((void *)va, copy, MMU_PAGESIZE);
1523 copy_pfn = mmu_btop(next_phys);
1524 copy_mfn = mfn_list[copy_pfn];
1526 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1527 if (HYPERVISOR_update_va_mapping(va, pte,
1528 UVMF_INVLPG | UVMF_LOCAL))
1529 bop_panic("relocate_boot_archive(): "
1530 "HYPERVISOR_update_va_mapping() failed");
1532 mfn_list[va_pfn] = copy_mfn;
1533 mfn_list[copy_pfn] = va_mfn;
1535 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1536 t[0].val = va_pfn;
1537 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1538 t[1].val = copy_pfn;
1539 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1540 DOMID_SELF) != 0 || mmu_update_return != 2)
1541 bop_panic("relocate_boot_archive(): "
1542 "HYPERVISOR_mmu_update() failed");
1544 next_phys += MMU_PAGESIZE;
1545 ++relocated;
1547 len -= MMU_PAGESIZE;
1548 va += MMU_PAGESIZE;
1550 DBG_MSG("Relocated pages:\n");
1551 DBG(relocated);
1552 DBG_MSG("Out of total pages:\n");
1553 DBG(total);
1555 #endif /* __xpv */
1557 #if !defined(__xpv)
1559 * Install a temporary IDT that lets us catch errors in the boot time code.
1560 * We shouldn't get any faults at all while this is installed, so we'll
1561 * just generate a traceback and exit.
1563 #ifdef __amd64
1564 static const int bcode_sel = B64CODE_SEL;
1565 #else
1566 static const int bcode_sel = B32CODE_SEL;
1567 #endif
1570 * simple description of a stack frame (args are 32 bit only currently)
1572 typedef struct bop_frame {
1573 struct bop_frame *old_frame;
1574 pc_t retaddr;
1575 long arg[1];
1576 } bop_frame_t;
1578 void
1579 bop_traceback(bop_frame_t *frame)
1581 pc_t pc;
1582 int cnt;
1583 char *ksym;
1584 ulong_t off;
1585 #if defined(__i386)
1586 int a;
1587 #endif
1589 bop_printf(NULL, "Stack traceback:\n");
1590 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1591 pc = frame->retaddr;
1592 if (pc == 0)
1593 break;
1594 ksym = kobj_getsymname(pc, &off);
1595 if (ksym)
1596 bop_printf(NULL, " %s+%lx", ksym, off);
1597 else
1598 bop_printf(NULL, " 0x%lx", pc);
1600 frame = frame->old_frame;
1601 if (frame == 0) {
1602 bop_printf(NULL, "\n");
1603 break;
1605 #if defined(__i386)
1606 for (a = 0; a < 6; ++a) { /* try for 6 args */
1607 if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1608 break;
1609 if (a == 0)
1610 bop_printf(NULL, "(");
1611 else
1612 bop_printf(NULL, ",");
1613 bop_printf(NULL, "0x%lx", frame->arg[a]);
1615 bop_printf(NULL, ")");
1616 #endif
1617 bop_printf(NULL, "\n");
1621 struct trapframe {
1622 ulong_t error_code; /* optional */
1623 ulong_t inst_ptr;
1624 ulong_t code_seg;
1625 ulong_t flags_reg;
1626 #ifdef __amd64
1627 ulong_t stk_ptr;
1628 ulong_t stk_seg;
1629 #endif
1632 void
1633 bop_trap(ulong_t *tfp)
1635 struct trapframe *tf = (struct trapframe *)tfp;
1636 bop_frame_t fakeframe;
1637 static int depth = 0;
1640 * Check for an infinite loop of traps.
1642 if (++depth > 2)
1643 bop_panic("Nested trap");
1645 bop_printf(NULL, "Unexpected trap\n");
1648 * adjust the tf for optional error_code by detecting the code selector
1650 if (tf->code_seg != bcode_sel)
1651 tf = (struct trapframe *)(tfp - 1);
1652 else
1653 bop_printf(NULL, "error code 0x%lx\n",
1654 tf->error_code & 0xffffffff);
1656 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
1657 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
1658 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
1659 #ifdef __amd64
1660 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
1661 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
1662 #endif
1664 /* grab %[er]bp pushed by our code from the stack */
1665 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1666 fakeframe.retaddr = (pc_t)tf->inst_ptr;
1667 bop_printf(NULL, "Attempting stack backtrace:\n");
1668 bop_traceback(&fakeframe);
1669 bop_panic("unexpected trap in early boot");
1672 extern void bop_trap_handler(void);
1674 static gate_desc_t *bop_idt;
1676 static desctbr_t bop_idt_info;
1678 static void
1679 bop_idt_init(void)
1681 int t;
1683 bop_idt = (gate_desc_t *)
1684 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1685 bzero(bop_idt, MMU_PAGESIZE);
1686 for (t = 0; t < NIDT; ++t) {
1688 * Note that since boot runs without a TSS, the
1689 * double fault handler cannot use an alternate stack
1690 * (64-bit) or a task gate (32-bit).
1692 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1693 SDT_SYSIGT, TRP_KPL, 0);
1695 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1696 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1697 wr_idtr(&bop_idt_info);
1699 #endif /* !defined(__xpv) */
1702 * This is where we enter the kernel. It dummies up the boot_ops and
1703 * boot_syscalls vectors and jumps off to _kobj_boot()
1705 void
1706 _start(struct xboot_info *xbp)
1708 bootops_t *bops = &bootop;
1709 extern void _kobj_boot();
1712 * 1st off - initialize the console for any error messages
1714 xbootp = xbp;
1715 #ifdef __xpv
1716 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1717 xen_info = xbootp->bi_xen_start_info;
1718 #endif
1720 #ifndef __xpv
1721 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1722 FASTBOOT_MAGIC) {
1723 post_fastreboot = 1;
1724 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1726 #endif
1728 bcons_init((void *)xbootp->bi_cmdline);
1729 have_console = 1;
1732 * enable debugging
1734 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1735 kbm_debug = 1;
1737 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1738 DBG_MSG((char *)xbootp->bi_cmdline);
1739 DBG_MSG("\n\n\n");
1742 * physavail is no longer used by startup
1744 bm.physinstalled = xbp->bi_phys_install;
1745 bm.pcimem = xbp->bi_pcimem;
1746 bm.rsvdmem = xbp->bi_rsvdmem;
1747 bm.physavail = NULL;
1750 * initialize the boot time allocator
1752 next_phys = xbootp->bi_next_paddr;
1753 DBG(next_phys);
1754 next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1755 DBG(next_virt);
1756 DBG_MSG("Initializing boot time memory management...");
1757 #ifdef __xpv
1759 xen_platform_parameters_t p;
1761 /* This call shouldn't fail, dboot already did it once. */
1762 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1763 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1764 DBG(xen_virt_start);
1766 #endif
1767 kbm_init(xbootp);
1768 DBG_MSG("done\n");
1771 * Fill in the bootops vector
1773 bops->bsys_version = BO_VERSION;
1774 bops->boot_mem = &bm;
1775 bops->bsys_alloc = do_bsys_alloc;
1776 bops->bsys_free = do_bsys_free;
1777 bops->bsys_getproplen = do_bsys_getproplen;
1778 bops->bsys_getprop = do_bsys_getprop;
1779 bops->bsys_nextprop = do_bsys_nextprop;
1780 bops->bsys_printf = bop_printf;
1781 bops->bsys_doint = do_bsys_doint;
1784 * BOP_EALLOC() is no longer needed
1786 bops->bsys_ealloc = do_bsys_ealloc;
1788 #ifdef __xpv
1790 * On domain 0 we need to free up some physical memory that is
1791 * usable for DMA. Since GRUB loaded the boot_archive, it is
1792 * sitting in low MFN memory. We'll relocated the boot archive
1793 * pages to high PFN memory.
1795 if (DOMAIN_IS_INITDOMAIN(xen_info))
1796 relocate_boot_archive();
1797 #endif
1799 #ifndef __xpv
1801 * Install an IDT to catch early pagefaults (shouldn't have any).
1802 * Also needed for kmdb.
1804 bop_idt_init();
1805 #endif
1808 * Start building the boot properties from the command line
1810 DBG_MSG("Initializing boot properties:\n");
1811 build_boot_properties();
1813 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1814 char *name;
1815 char *value;
1816 char *cp;
1817 int len;
1819 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1820 bop_printf(NULL, "\nBoot properties:\n");
1821 name = "";
1822 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1823 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1824 (void) do_bsys_getprop(NULL, name, value);
1825 len = do_bsys_getproplen(NULL, name);
1826 bop_printf(NULL, "len=%d ", len);
1827 value[len] = 0;
1828 for (cp = value; *cp; ++cp) {
1829 if (' ' <= *cp && *cp <= '~')
1830 bop_printf(NULL, "%c", *cp);
1831 else
1832 bop_printf(NULL, "-0x%x-", *cp);
1834 bop_printf(NULL, "\n");
1839 * jump into krtld...
1841 _kobj_boot(&bop_sysp, NULL, bops, NULL);
1845 /*ARGSUSED*/
1846 static caddr_t
1847 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1849 panic("Attempt to bsys_alloc() too late\n");
1850 return (NULL);
1853 /*ARGSUSED*/
1854 static void
1855 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1857 panic("Attempt to bsys_free() too late\n");
1860 void
1861 bop_no_more_mem(void)
1863 DBG(total_bop_alloc_scratch);
1864 DBG(total_bop_alloc_kernel);
1865 bootops->bsys_alloc = no_more_alloc;
1866 bootops->bsys_free = no_more_free;
1871 * Set ACPI firmware properties
1874 static caddr_t
1875 vmap_phys(size_t length, paddr_t pa)
1877 paddr_t start, end;
1878 caddr_t va;
1879 size_t len, page;
1881 #ifdef __xpv
1882 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
1883 #endif
1884 start = P2ALIGN(pa, MMU_PAGESIZE);
1885 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1886 len = end - start;
1887 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1888 for (page = 0; page < len; page += MMU_PAGESIZE)
1889 kbm_map((uintptr_t)va + page, start + page, 0, 0);
1890 return (va + (pa & MMU_PAGEOFFSET));
1893 static uint8_t
1894 checksum_table(uint8_t *tp, size_t len)
1896 uint8_t sum = 0;
1898 while (len-- > 0)
1899 sum += *tp++;
1901 return (sum);
1904 static int
1905 valid_rsdp(struct rsdp *rp)
1908 /* validate the V1.x checksum */
1909 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0)
1910 return (0);
1912 /* If pre-ACPI 2.0, this is a valid RSDP */
1913 if (rp->v1.revision < 2)
1914 return (1);
1916 /* validate the V2.x checksum */
1917 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0)
1918 return (0);
1920 return (1);
1924 * Scan memory range for an RSDP;
1925 * see ACPI 3.0 Spec, 5.2.5.1
1927 static struct rsdp *
1928 scan_rsdp(paddr_t start, paddr_t end)
1930 size_t len = end - start + 1;
1931 caddr_t ptr;
1933 ptr = vmap_phys(len, start);
1934 while (len > 0) {
1935 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0)
1936 if (valid_rsdp((struct rsdp *)ptr))
1937 return ((struct rsdp *)ptr);
1938 ptr += 16;
1939 len -= 16;
1942 return (NULL);
1946 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1948 static struct rsdp *
1949 find_rsdp() {
1950 struct rsdp *rsdp;
1951 uint16_t *ebda_seg;
1952 paddr_t ebda_addr;
1955 * Get the EBDA segment and scan the first 1K
1957 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR);
1958 ebda_addr = *ebda_seg << 4;
1959 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1);
1960 if (rsdp == NULL)
1961 /* if EBDA doesn't contain RSDP, look in BIOS memory */
1962 rsdp = scan_rsdp(0xe0000, 0xfffff);
1963 return (rsdp);
1966 static struct table_header *
1967 map_fw_table(paddr_t table_addr)
1969 struct table_header *tp;
1970 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE);
1973 * Map at least a page; if the table is larger than this, remap it
1975 tp = (struct table_header *)vmap_phys(len, table_addr);
1976 if (tp->len > len)
1977 tp = (struct table_header *)vmap_phys(tp->len, table_addr);
1978 return (tp);
1981 static struct table_header *
1982 find_fw_table(char *signature)
1984 static int revision = 0;
1985 static struct xsdt *xsdt;
1986 static int len;
1987 paddr_t xsdt_addr;
1988 struct rsdp *rsdp;
1989 struct table_header *tp;
1990 paddr_t table_addr;
1991 int n;
1993 if (strlen(signature) != ACPI_TABLE_SIG_LEN)
1994 return (NULL);
1997 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
1998 * understand this code. If we haven't already found the RSDT/XSDT,
1999 * revision will be 0. Find the RSDP and check the revision
2000 * to find out whether to use the RSDT or XSDT. If revision is
2001 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2002 * use the XSDT. If the XSDT address is 0, though, fall back to
2003 * revision 1 and use the RSDT.
2005 if (revision == 0) {
2006 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) {
2007 revision = rsdp->v1.revision;
2008 switch (revision) {
2009 case 2:
2011 * Use the XSDT unless BIOS is buggy and
2012 * claims to be rev 2 but has a null XSDT
2013 * address
2015 xsdt_addr = rsdp->xsdt;
2016 if (xsdt_addr != 0)
2017 break;
2018 /* FALLTHROUGH */
2019 case 0:
2020 /* treat RSDP rev 0 as revision 1 internally */
2021 revision = 1;
2022 /* FALLTHROUGH */
2023 case 1:
2024 /* use the RSDT for rev 0/1 */
2025 xsdt_addr = rsdp->v1.rsdt;
2026 break;
2027 default:
2028 /* unknown revision */
2029 revision = 0;
2030 break;
2033 if (revision == 0)
2034 return (NULL);
2036 /* cache the XSDT info */
2037 xsdt = (struct xsdt *)map_fw_table(xsdt_addr);
2038 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) /
2039 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2043 * Scan the table headers looking for a signature match
2045 for (n = 0; n < len; n++) {
2046 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n];
2047 if (table_addr == 0)
2048 continue;
2049 tp = map_fw_table(table_addr);
2050 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) {
2051 return (tp);
2054 return (NULL);
2057 static void
2058 process_mcfg(struct mcfg *tp)
2060 struct cfg_base_addr_alloc *cfg_baap;
2061 char *cfg_baa_endp;
2062 int64_t ecfginfo[4];
2064 cfg_baap = tp->CfgBaseAddrAllocList;
2065 cfg_baa_endp = ((char *)tp) + tp->Length;
2066 while ((char *)cfg_baap < cfg_baa_endp) {
2067 if (cfg_baap->base_addr != 0 && cfg_baap->segment == 0) {
2068 ecfginfo[0] = cfg_baap->base_addr;
2069 ecfginfo[1] = cfg_baap->segment;
2070 ecfginfo[2] = cfg_baap->start_bno;
2071 ecfginfo[3] = cfg_baap->end_bno;
2072 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2073 ecfginfo, sizeof (ecfginfo));
2074 break;
2076 cfg_baap++;
2080 #ifndef __xpv
2081 static void
2082 process_madt(struct madt *tp)
2084 struct madt_processor *cpu, *end;
2085 uint32_t cpu_count = 0;
2086 uint32_t cpu_possible_count = 0;
2087 uint8_t cpu_apicid_array[UINT8_MAX + 1];
2089 if (tp != NULL) {
2091 * Determine number of CPUs and keep track of "final" APIC ID
2092 * for each CPU by walking through ACPI MADT processor list
2094 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp);
2095 cpu = tp->list;
2096 while (cpu < end) {
2097 if (cpu->type == MADT_PROCESSOR) {
2098 if (cpu->flags & 1) {
2099 if (cpu_count < UINT8_MAX)
2100 cpu_apicid_array[cpu_count] =
2101 cpu->apic_id;
2102 cpu_count++;
2104 cpu_possible_count++;
2107 cpu = (struct madt_processor *)
2108 (cpu->len + (uintptr_t)cpu);
2112 * Make boot property for array of "final" APIC IDs for each
2113 * CPU
2115 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2116 cpu_apicid_array, cpu_count * sizeof (uint8_t));
2120 * Check whehter property plat-max-ncpus is already set.
2122 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2124 * Set plat-max-ncpus to number of maximum possible CPUs given
2125 * in MADT if it hasn't been set.
2126 * There's no formal way to detect max possible CPUs supported
2127 * by platform according to ACPI spec3.0b. So current CPU
2128 * hotplug implementation expects that all possible CPUs will
2129 * have an entry in MADT table and set plat-max-ncpus to number
2130 * of entries in MADT.
2131 * With introducing of ACPI4.0, Maximum System Capability Table
2132 * (MSCT) provides maximum number of CPUs supported by platform.
2133 * If MSCT is unavailable, fall back to old way.
2135 if (tp != NULL)
2136 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2140 * Set boot property boot-max-ncpus to number of CPUs existing at
2141 * boot time. boot-max-ncpus is mainly used for optimization.
2143 if (tp != NULL)
2144 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2147 * User-set boot-ncpus overrides firmware count
2149 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2150 return;
2153 * Set boot property boot-ncpus to number of active CPUs given in MADT
2154 * if it hasn't been set yet.
2156 if (tp != NULL)
2157 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2160 static void
2161 process_srat(struct srat *tp)
2163 struct srat_item *item, *end;
2164 int i;
2165 int proc_num, mem_num;
2166 #pragma pack(1)
2167 struct {
2168 uint32_t domain;
2169 uint32_t apic_id;
2170 uint32_t sapic_id;
2171 } processor;
2172 struct {
2173 uint32_t domain;
2174 uint32_t x2apic_id;
2175 } x2apic;
2176 struct {
2177 uint32_t domain;
2178 uint64_t addr;
2179 uint64_t length;
2180 uint32_t flags;
2181 } memory;
2182 #pragma pack()
2183 char prop_name[30];
2184 uint64_t maxmem = 0;
2186 if (tp == NULL)
2187 return;
2189 proc_num = mem_num = 0;
2190 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2191 item = tp->list;
2192 while (item < end) {
2193 switch (item->type) {
2194 case SRAT_PROCESSOR:
2195 if (!(item->i.p.flags & SRAT_ENABLED))
2196 break;
2197 processor.domain = item->i.p.domain1;
2198 for (i = 0; i < 3; i++)
2199 processor.domain +=
2200 item->i.p.domain2[i] << ((i + 1) * 8);
2201 processor.apic_id = item->i.p.apic_id;
2202 processor.sapic_id = item->i.p.local_sapic_eid;
2203 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2204 proc_num);
2205 bsetprop(prop_name, strlen(prop_name), &processor,
2206 sizeof (processor));
2207 proc_num++;
2208 break;
2209 case SRAT_MEMORY:
2210 if (!(item->i.m.flags & SRAT_ENABLED))
2211 break;
2212 memory.domain = item->i.m.domain;
2213 memory.addr = item->i.m.base_addr;
2214 memory.length = item->i.m.len;
2215 memory.flags = item->i.m.flags;
2216 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2217 mem_num);
2218 bsetprop(prop_name, strlen(prop_name), &memory,
2219 sizeof (memory));
2220 if ((item->i.m.flags & SRAT_HOT_PLUG) &&
2221 (memory.addr + memory.length > maxmem)) {
2222 maxmem = memory.addr + memory.length;
2224 mem_num++;
2225 break;
2226 case SRAT_X2APIC:
2227 if (!(item->i.xp.flags & SRAT_ENABLED))
2228 break;
2229 x2apic.domain = item->i.xp.domain;
2230 x2apic.x2apic_id = item->i.xp.x2apic_id;
2231 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2232 proc_num);
2233 bsetprop(prop_name, strlen(prop_name), &x2apic,
2234 sizeof (x2apic));
2235 proc_num++;
2236 break;
2239 item = (struct srat_item *)
2240 (item->len + (caddr_t)item);
2244 * The maximum physical address calculated from the SRAT table is more
2245 * accurate than that calculated from the MSCT table.
2247 if (maxmem != 0) {
2248 plat_dr_physmax = btop(maxmem);
2252 static void
2253 process_slit(struct slit *tp)
2257 * Check the number of localities; if it's too huge, we just
2258 * return and locality enumeration code will handle this later,
2259 * if possible.
2261 * Note that the size of the table is the square of the
2262 * number of localities; if the number of localities exceeds
2263 * UINT16_MAX, the table size may overflow an int when being
2264 * passed to bsetprop() below.
2266 if (tp->number >= SLIT_LOCALITIES_MAX)
2267 return;
2269 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number,
2270 sizeof (tp->number));
2271 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry,
2272 tp->number * tp->number);
2275 static struct msct *
2276 process_msct(struct msct *tp)
2278 int last_seen = 0;
2279 int proc_num = 0;
2280 struct msct_proximity_domain *item, *end;
2281 extern uint64_t plat_dr_options;
2283 ASSERT(tp != NULL);
2285 end = (void *)(tp->hdr.len + (uintptr_t)tp);
2286 for (item = (void *)((uintptr_t)tp + tp->proximity_domain_offset);
2287 item < end;
2288 item = (void *)(item->length + (uintptr_t)item)) {
2290 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2291 * Revision 1
2292 * Length 22
2294 if (item->revision != 1 || item->length != 22) {
2295 cmn_err(CE_CONT,
2296 "?boot: unknown proximity domain structure in MSCT "
2297 "with rev(%d), len(%d).\n",
2298 (int)item->revision, (int)item->length);
2299 return (NULL);
2300 } else if (item->domain_min > item->domain_max) {
2301 cmn_err(CE_CONT,
2302 "?boot: invalid proximity domain structure in MSCT "
2303 "with domain_min(%u), domain_max(%u).\n",
2304 item->domain_min, item->domain_max);
2305 return (NULL);
2306 } else if (item->domain_min != last_seen) {
2308 * Items must be organized in ascending order of the
2309 * proximity domain enumerations.
2311 cmn_err(CE_CONT,
2312 "?boot: invalid proximity domain structure in MSCT,"
2313 " items are not orginized in ascending order.\n");
2314 return (NULL);
2318 * If processor_max is 0 then there would be no CPUs in this
2319 * domain.
2321 if (item->processor_max != 0) {
2322 proc_num += (item->domain_max - item->domain_min + 1) *
2323 item->processor_max;
2326 last_seen = item->domain_max - item->domain_min + 1;
2328 * Break out if all proximity domains have been processed.
2329 * Some BIOSes may have unused items at the end of MSCT table.
2331 if (last_seen > tp->maximum_proximity_domains) {
2332 break;
2335 if (last_seen != tp->maximum_proximity_domains + 1) {
2336 cmn_err(CE_CONT,
2337 "?boot: invalid proximity domain structure in MSCT, "
2338 "proximity domain count doesn't match.\n");
2339 return (NULL);
2343 * Set plat-max-ncpus property if it hasn't been set yet.
2345 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2346 if (proc_num != 0) {
2347 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2352 * Use Maximum Physical Address from the MSCT table as upper limit for
2353 * memory hot-adding by default. It may be overridden by value from
2354 * the SRAT table or the "plat-dr-physmax" boot option.
2356 plat_dr_physmax = btop(tp->maximum_physical_address + 1);
2359 * Existence of MSCT implies CPU/memory hotplug-capability for the
2360 * platform.
2362 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2363 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2365 return (tp);
2368 #else /* __xpv */
2369 static void
2370 enumerate_xen_cpus()
2372 processorid_t id, max_id;
2375 * User-set boot-ncpus overrides enumeration
2377 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2378 return;
2381 * Probe every possible virtual CPU id and remember the
2382 * highest id present; the count of CPUs is one greater
2383 * than this. This tacitly assumes at least cpu 0 is present.
2385 max_id = 0;
2386 for (id = 0; id < MAX_VIRT_CPUS; id++)
2387 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2388 max_id = id;
2390 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2393 #endif /* __xpv */
2395 static void
2396 build_firmware_properties(void)
2398 struct table_header *tp = NULL;
2400 #ifndef __xpv
2401 if ((msct_ptr = (struct msct *)find_fw_table("MSCT")) != NULL)
2402 msct_ptr = process_msct(msct_ptr);
2404 if ((tp = find_fw_table("APIC")) != NULL)
2405 process_madt((struct madt *)tp);
2407 if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL)
2408 process_srat(srat_ptr);
2410 if (slit_ptr = (struct slit *)find_fw_table("SLIT"))
2411 process_slit(slit_ptr);
2413 tp = find_fw_table("MCFG");
2414 #else /* __xpv */
2415 enumerate_xen_cpus();
2416 if (DOMAIN_IS_INITDOMAIN(xen_info))
2417 tp = find_fw_table("MCFG");
2418 #endif /* __xpv */
2419 if (tp != NULL)
2420 process_mcfg((struct mcfg *)tp);
2424 * fake up a boot property for deferred early console output
2425 * this is used by both graphical boot and the (developer only)
2426 * USB serial console
2428 void *
2429 defcons_init(size_t size)
2431 static char *p = NULL;
2433 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2434 *p = 0;
2435 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2436 &p, sizeof (p));
2437 return (p);
2440 /*ARGSUSED*/
2442 boot_compinfo(int fd, struct compinfo *cbp)
2444 cbp->iscmp = 0;
2445 cbp->blksize = MAXBSIZE;
2446 return (0);
2449 #define BP_MAX_STRLEN 32
2452 * Get value for given boot property
2455 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2457 int boot_prop_len;
2458 char str[BP_MAX_STRLEN];
2459 u_longlong_t value;
2461 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2462 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2463 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2464 kobj_getvalue(str, &value) == -1)
2465 return (-1);
2467 if (prop_value)
2468 *prop_value = value;
2470 return (0);