6897693 deduplication can only go so far
[illumos-gate.git] / usr / src / uts / common / fs / zfs / spa_misc.c
blob09475c67f8413572b1c56cc951bd6d124d8b6fe9
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include <sys/ddt.h>
49 #include "zfs_prop.h"
52 * SPA locking
54 * There are four basic locks for managing spa_t structures:
56 * spa_namespace_lock (global mutex)
58 * This lock must be acquired to do any of the following:
60 * - Lookup a spa_t by name
61 * - Add or remove a spa_t from the namespace
62 * - Increase spa_refcount from non-zero
63 * - Check if spa_refcount is zero
64 * - Rename a spa_t
65 * - add/remove/attach/detach devices
66 * - Held for the duration of create/destroy/import/export
68 * It does not need to handle recursion. A create or destroy may
69 * reference objects (files or zvols) in other pools, but by
70 * definition they must have an existing reference, and will never need
71 * to lookup a spa_t by name.
73 * spa_refcount (per-spa refcount_t protected by mutex)
75 * This reference count keep track of any active users of the spa_t. The
76 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
77 * the refcount is never really 'zero' - opening a pool implicitly keeps
78 * some references in the DMU. Internally we check against spa_minref, but
79 * present the image of a zero/non-zero value to consumers.
81 * spa_config_lock[] (per-spa array of rwlocks)
83 * This protects the spa_t from config changes, and must be held in
84 * the following circumstances:
86 * - RW_READER to perform I/O to the spa
87 * - RW_WRITER to change the vdev config
89 * The locking order is fairly straightforward:
91 * spa_namespace_lock -> spa_refcount
93 * The namespace lock must be acquired to increase the refcount from 0
94 * or to check if it is zero.
96 * spa_refcount -> spa_config_lock[]
98 * There must be at least one valid reference on the spa_t to acquire
99 * the config lock.
101 * spa_namespace_lock -> spa_config_lock[]
103 * The namespace lock must always be taken before the config lock.
106 * The spa_namespace_lock can be acquired directly and is globally visible.
108 * The namespace is manipulated using the following functions, all of which
109 * require the spa_namespace_lock to be held.
111 * spa_lookup() Lookup a spa_t by name.
113 * spa_add() Create a new spa_t in the namespace.
115 * spa_remove() Remove a spa_t from the namespace. This also
116 * frees up any memory associated with the spa_t.
118 * spa_next() Returns the next spa_t in the system, or the
119 * first if NULL is passed.
121 * spa_evict_all() Shutdown and remove all spa_t structures in
122 * the system.
124 * spa_guid_exists() Determine whether a pool/device guid exists.
126 * The spa_refcount is manipulated using the following functions:
128 * spa_open_ref() Adds a reference to the given spa_t. Must be
129 * called with spa_namespace_lock held if the
130 * refcount is currently zero.
132 * spa_close() Remove a reference from the spa_t. This will
133 * not free the spa_t or remove it from the
134 * namespace. No locking is required.
136 * spa_refcount_zero() Returns true if the refcount is currently
137 * zero. Must be called with spa_namespace_lock
138 * held.
140 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
141 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
142 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
144 * To read the configuration, it suffices to hold one of these locks as reader.
145 * To modify the configuration, you must hold all locks as writer. To modify
146 * vdev state without altering the vdev tree's topology (e.g. online/offline),
147 * you must hold SCL_STATE and SCL_ZIO as writer.
149 * We use these distinct config locks to avoid recursive lock entry.
150 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
151 * block allocations (SCL_ALLOC), which may require reading space maps
152 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
154 * The spa config locks cannot be normal rwlocks because we need the
155 * ability to hand off ownership. For example, SCL_ZIO is acquired
156 * by the issuing thread and later released by an interrupt thread.
157 * They do, however, obey the usual write-wanted semantics to prevent
158 * writer (i.e. system administrator) starvation.
160 * The lock acquisition rules are as follows:
162 * SCL_CONFIG
163 * Protects changes to the vdev tree topology, such as vdev
164 * add/remove/attach/detach. Protects the dirty config list
165 * (spa_config_dirty_list) and the set of spares and l2arc devices.
167 * SCL_STATE
168 * Protects changes to pool state and vdev state, such as vdev
169 * online/offline/fault/degrade/clear. Protects the dirty state list
170 * (spa_state_dirty_list) and global pool state (spa_state).
172 * SCL_ALLOC
173 * Protects changes to metaslab groups and classes.
174 * Held as reader by metaslab_alloc() and metaslab_claim().
176 * SCL_ZIO
177 * Held by bp-level zios (those which have no io_vd upon entry)
178 * to prevent changes to the vdev tree. The bp-level zio implicitly
179 * protects all of its vdev child zios, which do not hold SCL_ZIO.
181 * SCL_FREE
182 * Protects changes to metaslab groups and classes.
183 * Held as reader by metaslab_free(). SCL_FREE is distinct from
184 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
185 * blocks in zio_done() while another i/o that holds either
186 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
188 * SCL_VDEV
189 * Held as reader to prevent changes to the vdev tree during trivial
190 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
191 * other locks, and lower than all of them, to ensure that it's safe
192 * to acquire regardless of caller context.
194 * In addition, the following rules apply:
196 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
197 * The lock ordering is SCL_CONFIG > spa_props_lock.
199 * (b) I/O operations on leaf vdevs. For any zio operation that takes
200 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
201 * or zio_write_phys() -- the caller must ensure that the config cannot
202 * cannot change in the interim, and that the vdev cannot be reopened.
203 * SCL_STATE as reader suffices for both.
205 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
207 * spa_vdev_enter() Acquire the namespace lock and the config lock
208 * for writing.
210 * spa_vdev_exit() Release the config lock, wait for all I/O
211 * to complete, sync the updated configs to the
212 * cache, and release the namespace lock.
214 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
215 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
216 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
218 * spa_rename() is also implemented within this file since is requires
219 * manipulation of the namespace.
222 static avl_tree_t spa_namespace_avl;
223 kmutex_t spa_namespace_lock;
224 static kcondvar_t spa_namespace_cv;
225 static int spa_active_count;
226 int spa_max_replication_override = SPA_DVAS_PER_BP;
228 static kmutex_t spa_spare_lock;
229 static avl_tree_t spa_spare_avl;
230 static kmutex_t spa_l2cache_lock;
231 static avl_tree_t spa_l2cache_avl;
233 kmem_cache_t *spa_buffer_pool;
234 int spa_mode_global;
236 #ifdef ZFS_DEBUG
237 /* Everything except dprintf is on by default in debug builds */
238 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
239 #else
240 int zfs_flags = 0;
241 #endif
244 * zfs_recover can be set to nonzero to attempt to recover from
245 * otherwise-fatal errors, typically caused by on-disk corruption. When
246 * set, calls to zfs_panic_recover() will turn into warning messages.
248 int zfs_recover = 0;
252 * ==========================================================================
253 * SPA config locking
254 * ==========================================================================
256 static void
257 spa_config_lock_init(spa_t *spa)
259 for (int i = 0; i < SCL_LOCKS; i++) {
260 spa_config_lock_t *scl = &spa->spa_config_lock[i];
261 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
262 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
263 refcount_create(&scl->scl_count);
264 scl->scl_writer = NULL;
265 scl->scl_write_wanted = 0;
269 static void
270 spa_config_lock_destroy(spa_t *spa)
272 for (int i = 0; i < SCL_LOCKS; i++) {
273 spa_config_lock_t *scl = &spa->spa_config_lock[i];
274 mutex_destroy(&scl->scl_lock);
275 cv_destroy(&scl->scl_cv);
276 refcount_destroy(&scl->scl_count);
277 ASSERT(scl->scl_writer == NULL);
278 ASSERT(scl->scl_write_wanted == 0);
283 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
285 for (int i = 0; i < SCL_LOCKS; i++) {
286 spa_config_lock_t *scl = &spa->spa_config_lock[i];
287 if (!(locks & (1 << i)))
288 continue;
289 mutex_enter(&scl->scl_lock);
290 if (rw == RW_READER) {
291 if (scl->scl_writer || scl->scl_write_wanted) {
292 mutex_exit(&scl->scl_lock);
293 spa_config_exit(spa, locks ^ (1 << i), tag);
294 return (0);
296 } else {
297 ASSERT(scl->scl_writer != curthread);
298 if (!refcount_is_zero(&scl->scl_count)) {
299 mutex_exit(&scl->scl_lock);
300 spa_config_exit(spa, locks ^ (1 << i), tag);
301 return (0);
303 scl->scl_writer = curthread;
305 (void) refcount_add(&scl->scl_count, tag);
306 mutex_exit(&scl->scl_lock);
308 return (1);
311 void
312 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
314 int wlocks_held = 0;
316 for (int i = 0; i < SCL_LOCKS; i++) {
317 spa_config_lock_t *scl = &spa->spa_config_lock[i];
318 if (scl->scl_writer == curthread)
319 wlocks_held |= (1 << i);
320 if (!(locks & (1 << i)))
321 continue;
322 mutex_enter(&scl->scl_lock);
323 if (rw == RW_READER) {
324 while (scl->scl_writer || scl->scl_write_wanted) {
325 cv_wait(&scl->scl_cv, &scl->scl_lock);
327 } else {
328 ASSERT(scl->scl_writer != curthread);
329 while (!refcount_is_zero(&scl->scl_count)) {
330 scl->scl_write_wanted++;
331 cv_wait(&scl->scl_cv, &scl->scl_lock);
332 scl->scl_write_wanted--;
334 scl->scl_writer = curthread;
336 (void) refcount_add(&scl->scl_count, tag);
337 mutex_exit(&scl->scl_lock);
339 ASSERT(wlocks_held <= locks);
342 void
343 spa_config_exit(spa_t *spa, int locks, void *tag)
345 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
346 spa_config_lock_t *scl = &spa->spa_config_lock[i];
347 if (!(locks & (1 << i)))
348 continue;
349 mutex_enter(&scl->scl_lock);
350 ASSERT(!refcount_is_zero(&scl->scl_count));
351 if (refcount_remove(&scl->scl_count, tag) == 0) {
352 ASSERT(scl->scl_writer == NULL ||
353 scl->scl_writer == curthread);
354 scl->scl_writer = NULL; /* OK in either case */
355 cv_broadcast(&scl->scl_cv);
357 mutex_exit(&scl->scl_lock);
362 spa_config_held(spa_t *spa, int locks, krw_t rw)
364 int locks_held = 0;
366 for (int i = 0; i < SCL_LOCKS; i++) {
367 spa_config_lock_t *scl = &spa->spa_config_lock[i];
368 if (!(locks & (1 << i)))
369 continue;
370 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
371 (rw == RW_WRITER && scl->scl_writer == curthread))
372 locks_held |= 1 << i;
375 return (locks_held);
379 * ==========================================================================
380 * SPA namespace functions
381 * ==========================================================================
385 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
386 * Returns NULL if no matching spa_t is found.
388 spa_t *
389 spa_lookup(const char *name)
391 static spa_t search; /* spa_t is large; don't allocate on stack */
392 spa_t *spa;
393 avl_index_t where;
394 char c;
395 char *cp;
397 ASSERT(MUTEX_HELD(&spa_namespace_lock));
400 * If it's a full dataset name, figure out the pool name and
401 * just use that.
403 cp = strpbrk(name, "/@");
404 if (cp) {
405 c = *cp;
406 *cp = '\0';
409 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
410 spa = avl_find(&spa_namespace_avl, &search, &where);
412 if (cp)
413 *cp = c;
415 return (spa);
419 * Create an uninitialized spa_t with the given name. Requires
420 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
421 * exist by calling spa_lookup() first.
423 spa_t *
424 spa_add(const char *name, nvlist_t *config, const char *altroot)
426 spa_t *spa;
427 spa_config_dirent_t *dp;
429 ASSERT(MUTEX_HELD(&spa_namespace_lock));
431 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
433 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
434 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
435 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
436 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
440 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
441 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
442 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
444 for (int t = 0; t < TXG_SIZE; t++)
445 bplist_init(&spa->spa_free_bplist[t]);
446 bplist_init(&spa->spa_deferred_bplist);
448 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
449 spa->spa_state = POOL_STATE_UNINITIALIZED;
450 spa->spa_freeze_txg = UINT64_MAX;
451 spa->spa_final_txg = UINT64_MAX;
452 spa->spa_load_max_txg = UINT64_MAX;
454 refcount_create(&spa->spa_refcount);
455 spa_config_lock_init(spa);
457 avl_add(&spa_namespace_avl, spa);
459 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
462 * Set the alternate root, if there is one.
464 if (altroot) {
465 spa->spa_root = spa_strdup(altroot);
466 spa_active_count++;
470 * Every pool starts with the default cachefile
472 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
473 offsetof(spa_config_dirent_t, scd_link));
475 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
476 dp->scd_path = spa_strdup(spa_config_path);
477 list_insert_head(&spa->spa_config_list, dp);
479 if (config != NULL)
480 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
482 return (spa);
486 * Removes a spa_t from the namespace, freeing up any memory used. Requires
487 * spa_namespace_lock. This is called only after the spa_t has been closed and
488 * deactivated.
490 void
491 spa_remove(spa_t *spa)
493 spa_config_dirent_t *dp;
495 ASSERT(MUTEX_HELD(&spa_namespace_lock));
496 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
498 avl_remove(&spa_namespace_avl, spa);
499 cv_broadcast(&spa_namespace_cv);
501 if (spa->spa_root) {
502 spa_strfree(spa->spa_root);
503 spa_active_count--;
506 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
507 list_remove(&spa->spa_config_list, dp);
508 if (dp->scd_path != NULL)
509 spa_strfree(dp->scd_path);
510 kmem_free(dp, sizeof (spa_config_dirent_t));
513 list_destroy(&spa->spa_config_list);
515 spa_config_set(spa, NULL);
517 refcount_destroy(&spa->spa_refcount);
519 spa_config_lock_destroy(spa);
521 for (int t = 0; t < TXG_SIZE; t++)
522 bplist_fini(&spa->spa_free_bplist[t]);
523 bplist_fini(&spa->spa_deferred_bplist);
525 cv_destroy(&spa->spa_async_cv);
526 cv_destroy(&spa->spa_scrub_io_cv);
527 cv_destroy(&spa->spa_suspend_cv);
529 mutex_destroy(&spa->spa_async_lock);
530 mutex_destroy(&spa->spa_scrub_lock);
531 mutex_destroy(&spa->spa_errlog_lock);
532 mutex_destroy(&spa->spa_errlist_lock);
533 mutex_destroy(&spa->spa_history_lock);
534 mutex_destroy(&spa->spa_props_lock);
535 mutex_destroy(&spa->spa_suspend_lock);
537 kmem_free(spa, sizeof (spa_t));
541 * Given a pool, return the next pool in the namespace, or NULL if there is
542 * none. If 'prev' is NULL, return the first pool.
544 spa_t *
545 spa_next(spa_t *prev)
547 ASSERT(MUTEX_HELD(&spa_namespace_lock));
549 if (prev)
550 return (AVL_NEXT(&spa_namespace_avl, prev));
551 else
552 return (avl_first(&spa_namespace_avl));
556 * ==========================================================================
557 * SPA refcount functions
558 * ==========================================================================
562 * Add a reference to the given spa_t. Must have at least one reference, or
563 * have the namespace lock held.
565 void
566 spa_open_ref(spa_t *spa, void *tag)
568 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
569 MUTEX_HELD(&spa_namespace_lock));
570 (void) refcount_add(&spa->spa_refcount, tag);
574 * Remove a reference to the given spa_t. Must have at least one reference, or
575 * have the namespace lock held.
577 void
578 spa_close(spa_t *spa, void *tag)
580 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
581 MUTEX_HELD(&spa_namespace_lock));
582 (void) refcount_remove(&spa->spa_refcount, tag);
586 * Check to see if the spa refcount is zero. Must be called with
587 * spa_namespace_lock held. We really compare against spa_minref, which is the
588 * number of references acquired when opening a pool
590 boolean_t
591 spa_refcount_zero(spa_t *spa)
593 ASSERT(MUTEX_HELD(&spa_namespace_lock));
595 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
599 * ==========================================================================
600 * SPA spare and l2cache tracking
601 * ==========================================================================
605 * Hot spares and cache devices are tracked using the same code below,
606 * for 'auxiliary' devices.
609 typedef struct spa_aux {
610 uint64_t aux_guid;
611 uint64_t aux_pool;
612 avl_node_t aux_avl;
613 int aux_count;
614 } spa_aux_t;
616 static int
617 spa_aux_compare(const void *a, const void *b)
619 const spa_aux_t *sa = a;
620 const spa_aux_t *sb = b;
622 if (sa->aux_guid < sb->aux_guid)
623 return (-1);
624 else if (sa->aux_guid > sb->aux_guid)
625 return (1);
626 else
627 return (0);
630 void
631 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
633 avl_index_t where;
634 spa_aux_t search;
635 spa_aux_t *aux;
637 search.aux_guid = vd->vdev_guid;
638 if ((aux = avl_find(avl, &search, &where)) != NULL) {
639 aux->aux_count++;
640 } else {
641 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
642 aux->aux_guid = vd->vdev_guid;
643 aux->aux_count = 1;
644 avl_insert(avl, aux, where);
648 void
649 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
651 spa_aux_t search;
652 spa_aux_t *aux;
653 avl_index_t where;
655 search.aux_guid = vd->vdev_guid;
656 aux = avl_find(avl, &search, &where);
658 ASSERT(aux != NULL);
660 if (--aux->aux_count == 0) {
661 avl_remove(avl, aux);
662 kmem_free(aux, sizeof (spa_aux_t));
663 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
664 aux->aux_pool = 0ULL;
668 boolean_t
669 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
671 spa_aux_t search, *found;
673 search.aux_guid = guid;
674 found = avl_find(avl, &search, NULL);
676 if (pool) {
677 if (found)
678 *pool = found->aux_pool;
679 else
680 *pool = 0ULL;
683 if (refcnt) {
684 if (found)
685 *refcnt = found->aux_count;
686 else
687 *refcnt = 0;
690 return (found != NULL);
693 void
694 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
696 spa_aux_t search, *found;
697 avl_index_t where;
699 search.aux_guid = vd->vdev_guid;
700 found = avl_find(avl, &search, &where);
701 ASSERT(found != NULL);
702 ASSERT(found->aux_pool == 0ULL);
704 found->aux_pool = spa_guid(vd->vdev_spa);
708 * Spares are tracked globally due to the following constraints:
710 * - A spare may be part of multiple pools.
711 * - A spare may be added to a pool even if it's actively in use within
712 * another pool.
713 * - A spare in use in any pool can only be the source of a replacement if
714 * the target is a spare in the same pool.
716 * We keep track of all spares on the system through the use of a reference
717 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
718 * spare, then we bump the reference count in the AVL tree. In addition, we set
719 * the 'vdev_isspare' member to indicate that the device is a spare (active or
720 * inactive). When a spare is made active (used to replace a device in the
721 * pool), we also keep track of which pool its been made a part of.
723 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
724 * called under the spa_namespace lock as part of vdev reconfiguration. The
725 * separate spare lock exists for the status query path, which does not need to
726 * be completely consistent with respect to other vdev configuration changes.
729 static int
730 spa_spare_compare(const void *a, const void *b)
732 return (spa_aux_compare(a, b));
735 void
736 spa_spare_add(vdev_t *vd)
738 mutex_enter(&spa_spare_lock);
739 ASSERT(!vd->vdev_isspare);
740 spa_aux_add(vd, &spa_spare_avl);
741 vd->vdev_isspare = B_TRUE;
742 mutex_exit(&spa_spare_lock);
745 void
746 spa_spare_remove(vdev_t *vd)
748 mutex_enter(&spa_spare_lock);
749 ASSERT(vd->vdev_isspare);
750 spa_aux_remove(vd, &spa_spare_avl);
751 vd->vdev_isspare = B_FALSE;
752 mutex_exit(&spa_spare_lock);
755 boolean_t
756 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
758 boolean_t found;
760 mutex_enter(&spa_spare_lock);
761 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
762 mutex_exit(&spa_spare_lock);
764 return (found);
767 void
768 spa_spare_activate(vdev_t *vd)
770 mutex_enter(&spa_spare_lock);
771 ASSERT(vd->vdev_isspare);
772 spa_aux_activate(vd, &spa_spare_avl);
773 mutex_exit(&spa_spare_lock);
777 * Level 2 ARC devices are tracked globally for the same reasons as spares.
778 * Cache devices currently only support one pool per cache device, and so
779 * for these devices the aux reference count is currently unused beyond 1.
782 static int
783 spa_l2cache_compare(const void *a, const void *b)
785 return (spa_aux_compare(a, b));
788 void
789 spa_l2cache_add(vdev_t *vd)
791 mutex_enter(&spa_l2cache_lock);
792 ASSERT(!vd->vdev_isl2cache);
793 spa_aux_add(vd, &spa_l2cache_avl);
794 vd->vdev_isl2cache = B_TRUE;
795 mutex_exit(&spa_l2cache_lock);
798 void
799 spa_l2cache_remove(vdev_t *vd)
801 mutex_enter(&spa_l2cache_lock);
802 ASSERT(vd->vdev_isl2cache);
803 spa_aux_remove(vd, &spa_l2cache_avl);
804 vd->vdev_isl2cache = B_FALSE;
805 mutex_exit(&spa_l2cache_lock);
808 boolean_t
809 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
811 boolean_t found;
813 mutex_enter(&spa_l2cache_lock);
814 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
815 mutex_exit(&spa_l2cache_lock);
817 return (found);
820 void
821 spa_l2cache_activate(vdev_t *vd)
823 mutex_enter(&spa_l2cache_lock);
824 ASSERT(vd->vdev_isl2cache);
825 spa_aux_activate(vd, &spa_l2cache_avl);
826 mutex_exit(&spa_l2cache_lock);
830 * ==========================================================================
831 * SPA vdev locking
832 * ==========================================================================
836 * Lock the given spa_t for the purpose of adding or removing a vdev.
837 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
838 * It returns the next transaction group for the spa_t.
840 uint64_t
841 spa_vdev_enter(spa_t *spa)
843 mutex_enter(&spa_namespace_lock);
844 return (spa_vdev_config_enter(spa));
848 * Internal implementation for spa_vdev_enter(). Used when a vdev
849 * operation requires multiple syncs (i.e. removing a device) while
850 * keeping the spa_namespace_lock held.
852 uint64_t
853 spa_vdev_config_enter(spa_t *spa)
855 ASSERT(MUTEX_HELD(&spa_namespace_lock));
857 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
859 return (spa_last_synced_txg(spa) + 1);
863 * Used in combination with spa_vdev_config_enter() to allow the syncing
864 * of multiple transactions without releasing the spa_namespace_lock.
866 void
867 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
869 ASSERT(MUTEX_HELD(&spa_namespace_lock));
871 int config_changed = B_FALSE;
873 ASSERT(txg > spa_last_synced_txg(spa));
875 spa->spa_pending_vdev = NULL;
878 * Reassess the DTLs.
880 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
883 * If the config changed, notify the scrub thread that it must restart.
885 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
886 dsl_pool_scrub_restart(spa->spa_dsl_pool);
887 config_changed = B_TRUE;
888 spa->spa_config_generation++;
892 * Verify the metaslab classes.
894 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
895 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
897 spa_config_exit(spa, SCL_ALL, spa);
900 * Panic the system if the specified tag requires it. This
901 * is useful for ensuring that configurations are updated
902 * transactionally.
904 if (zio_injection_enabled)
905 zio_handle_panic_injection(spa, tag);
908 * Note: this txg_wait_synced() is important because it ensures
909 * that there won't be more than one config change per txg.
910 * This allows us to use the txg as the generation number.
912 if (error == 0)
913 txg_wait_synced(spa->spa_dsl_pool, txg);
915 if (vd != NULL) {
916 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
917 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
918 vdev_free(vd);
919 spa_config_exit(spa, SCL_ALL, spa);
923 * If the config changed, update the config cache.
925 if (config_changed)
926 spa_config_sync(spa, B_FALSE, B_TRUE);
930 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
931 * locking of spa_vdev_enter(), we also want make sure the transactions have
932 * synced to disk, and then update the global configuration cache with the new
933 * information.
936 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
938 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
939 mutex_exit(&spa_namespace_lock);
941 return (error);
945 * Lock the given spa_t for the purpose of changing vdev state.
947 void
948 spa_vdev_state_enter(spa_t *spa, int oplocks)
950 int locks = SCL_STATE_ALL | oplocks;
952 spa_config_enter(spa, locks, spa, RW_WRITER);
953 spa->spa_vdev_locks = locks;
957 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
959 if (vd != NULL || error == 0)
960 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
961 0, 0, B_FALSE);
963 if (vd != NULL) {
964 vdev_state_dirty(vd->vdev_top);
965 spa->spa_config_generation++;
968 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
969 spa_config_exit(spa, spa->spa_vdev_locks, spa);
972 * If anything changed, wait for it to sync. This ensures that,
973 * from the system administrator's perspective, zpool(1M) commands
974 * are synchronous. This is important for things like zpool offline:
975 * when the command completes, you expect no further I/O from ZFS.
977 if (vd != NULL)
978 txg_wait_synced(spa->spa_dsl_pool, 0);
980 return (error);
984 * ==========================================================================
985 * Miscellaneous functions
986 * ==========================================================================
990 * Rename a spa_t.
993 spa_rename(const char *name, const char *newname)
995 spa_t *spa;
996 int err;
999 * Lookup the spa_t and grab the config lock for writing. We need to
1000 * actually open the pool so that we can sync out the necessary labels.
1001 * It's OK to call spa_open() with the namespace lock held because we
1002 * allow recursive calls for other reasons.
1004 mutex_enter(&spa_namespace_lock);
1005 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1006 mutex_exit(&spa_namespace_lock);
1007 return (err);
1010 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1012 avl_remove(&spa_namespace_avl, spa);
1013 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1014 avl_add(&spa_namespace_avl, spa);
1017 * Sync all labels to disk with the new names by marking the root vdev
1018 * dirty and waiting for it to sync. It will pick up the new pool name
1019 * during the sync.
1021 vdev_config_dirty(spa->spa_root_vdev);
1023 spa_config_exit(spa, SCL_ALL, FTAG);
1025 txg_wait_synced(spa->spa_dsl_pool, 0);
1028 * Sync the updated config cache.
1030 spa_config_sync(spa, B_FALSE, B_TRUE);
1032 spa_close(spa, FTAG);
1034 mutex_exit(&spa_namespace_lock);
1036 return (0);
1041 * Determine whether a pool with given pool_guid exists. If device_guid is
1042 * non-zero, determine whether the pool exists *and* contains a device with the
1043 * specified device_guid.
1045 boolean_t
1046 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1048 spa_t *spa;
1049 avl_tree_t *t = &spa_namespace_avl;
1051 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1053 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1054 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1055 continue;
1056 if (spa->spa_root_vdev == NULL)
1057 continue;
1058 if (spa_guid(spa) == pool_guid) {
1059 if (device_guid == 0)
1060 break;
1062 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1063 device_guid) != NULL)
1064 break;
1067 * Check any devices we may be in the process of adding.
1069 if (spa->spa_pending_vdev) {
1070 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1071 device_guid) != NULL)
1072 break;
1077 return (spa != NULL);
1080 char *
1081 spa_strdup(const char *s)
1083 size_t len;
1084 char *new;
1086 len = strlen(s);
1087 new = kmem_alloc(len + 1, KM_SLEEP);
1088 bcopy(s, new, len);
1089 new[len] = '\0';
1091 return (new);
1094 void
1095 spa_strfree(char *s)
1097 kmem_free(s, strlen(s) + 1);
1100 uint64_t
1101 spa_get_random(uint64_t range)
1103 uint64_t r;
1105 ASSERT(range != 0);
1107 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1109 return (r % range);
1112 void
1113 sprintf_blkptr(char *buf, const blkptr_t *bp)
1115 char *type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1116 char *checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1117 char *compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1119 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1122 void
1123 spa_freeze(spa_t *spa)
1125 uint64_t freeze_txg = 0;
1127 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1128 if (spa->spa_freeze_txg == UINT64_MAX) {
1129 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1130 spa->spa_freeze_txg = freeze_txg;
1132 spa_config_exit(spa, SCL_ALL, FTAG);
1133 if (freeze_txg != 0)
1134 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1137 void
1138 zfs_panic_recover(const char *fmt, ...)
1140 va_list adx;
1142 va_start(adx, fmt);
1143 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1144 va_end(adx);
1148 * ==========================================================================
1149 * Accessor functions
1150 * ==========================================================================
1153 boolean_t
1154 spa_shutting_down(spa_t *spa)
1156 return (spa->spa_async_suspended);
1159 dsl_pool_t *
1160 spa_get_dsl(spa_t *spa)
1162 return (spa->spa_dsl_pool);
1165 blkptr_t *
1166 spa_get_rootblkptr(spa_t *spa)
1168 return (&spa->spa_ubsync.ub_rootbp);
1171 void
1172 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1174 spa->spa_uberblock.ub_rootbp = *bp;
1177 void
1178 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1180 if (spa->spa_root == NULL)
1181 buf[0] = '\0';
1182 else
1183 (void) strncpy(buf, spa->spa_root, buflen);
1187 spa_sync_pass(spa_t *spa)
1189 return (spa->spa_sync_pass);
1192 char *
1193 spa_name(spa_t *spa)
1195 return (spa->spa_name);
1198 uint64_t
1199 spa_guid(spa_t *spa)
1202 * If we fail to parse the config during spa_load(), we can go through
1203 * the error path (which posts an ereport) and end up here with no root
1204 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1205 * this case.
1207 if (spa->spa_root_vdev != NULL)
1208 return (spa->spa_root_vdev->vdev_guid);
1209 else
1210 return (spa->spa_load_guid);
1213 uint64_t
1214 spa_last_synced_txg(spa_t *spa)
1216 return (spa->spa_ubsync.ub_txg);
1219 uint64_t
1220 spa_first_txg(spa_t *spa)
1222 return (spa->spa_first_txg);
1225 uint64_t
1226 spa_syncing_txg(spa_t *spa)
1228 return (spa->spa_syncing_txg);
1231 pool_state_t
1232 spa_state(spa_t *spa)
1234 return (spa->spa_state);
1237 uint64_t
1238 spa_freeze_txg(spa_t *spa)
1240 return (spa->spa_freeze_txg);
1243 /* ARGSUSED */
1244 uint64_t
1245 spa_get_asize(spa_t *spa, uint64_t lsize)
1248 * The worst case is single-sector max-parity RAID-Z blocks, in which
1249 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1250 * times the size; so just assume that. Add to this the fact that
1251 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1252 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1254 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1257 uint64_t
1258 spa_get_dspace(spa_t *spa)
1260 return (spa->spa_dspace);
1263 void
1264 spa_update_dspace(spa_t *spa)
1266 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1267 ddt_get_dedup_dspace(spa);
1271 * Return the failure mode that has been set to this pool. The default
1272 * behavior will be to block all I/Os when a complete failure occurs.
1274 uint8_t
1275 spa_get_failmode(spa_t *spa)
1277 return (spa->spa_failmode);
1280 boolean_t
1281 spa_suspended(spa_t *spa)
1283 return (spa->spa_suspended);
1286 uint64_t
1287 spa_version(spa_t *spa)
1289 return (spa->spa_ubsync.ub_version);
1292 boolean_t
1293 spa_deflate(spa_t *spa)
1295 return (spa->spa_deflate);
1298 metaslab_class_t *
1299 spa_normal_class(spa_t *spa)
1301 return (spa->spa_normal_class);
1304 metaslab_class_t *
1305 spa_log_class(spa_t *spa)
1307 return (spa->spa_log_class);
1311 spa_max_replication(spa_t *spa)
1314 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1315 * handle BPs with more than one DVA allocated. Set our max
1316 * replication level accordingly.
1318 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1319 return (1);
1320 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1323 uint64_t
1324 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1326 uint64_t asize = DVA_GET_ASIZE(dva);
1327 uint64_t dsize = asize;
1329 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1331 if (asize != 0 && spa->spa_deflate) {
1332 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1333 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1336 return (dsize);
1339 uint64_t
1340 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1342 uint64_t dsize = 0;
1344 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1345 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1347 return (dsize);
1350 uint64_t
1351 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1353 uint64_t dsize = 0;
1355 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1357 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1358 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1360 spa_config_exit(spa, SCL_VDEV, FTAG);
1362 return (dsize);
1366 * ==========================================================================
1367 * Initialization and Termination
1368 * ==========================================================================
1371 static int
1372 spa_name_compare(const void *a1, const void *a2)
1374 const spa_t *s1 = a1;
1375 const spa_t *s2 = a2;
1376 int s;
1378 s = strcmp(s1->spa_name, s2->spa_name);
1379 if (s > 0)
1380 return (1);
1381 if (s < 0)
1382 return (-1);
1383 return (0);
1387 spa_busy(void)
1389 return (spa_active_count);
1392 void
1393 spa_boot_init()
1395 spa_config_load();
1398 void
1399 spa_init(int mode)
1401 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1402 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1403 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1404 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1406 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1407 offsetof(spa_t, spa_avl));
1409 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1410 offsetof(spa_aux_t, aux_avl));
1412 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1413 offsetof(spa_aux_t, aux_avl));
1415 spa_mode_global = mode;
1417 refcount_init();
1418 unique_init();
1419 zio_init();
1420 dmu_init();
1421 zil_init();
1422 vdev_cache_stat_init();
1423 zfs_prop_init();
1424 zpool_prop_init();
1425 spa_config_load();
1426 l2arc_start();
1429 void
1430 spa_fini(void)
1432 l2arc_stop();
1434 spa_evict_all();
1436 vdev_cache_stat_fini();
1437 zil_fini();
1438 dmu_fini();
1439 zio_fini();
1440 unique_fini();
1441 refcount_fini();
1443 avl_destroy(&spa_namespace_avl);
1444 avl_destroy(&spa_spare_avl);
1445 avl_destroy(&spa_l2cache_avl);
1447 cv_destroy(&spa_namespace_cv);
1448 mutex_destroy(&spa_namespace_lock);
1449 mutex_destroy(&spa_spare_lock);
1450 mutex_destroy(&spa_l2cache_lock);
1454 * Return whether this pool has slogs. No locking needed.
1455 * It's not a problem if the wrong answer is returned as it's only for
1456 * performance and not correctness
1458 boolean_t
1459 spa_has_slogs(spa_t *spa)
1461 return (spa->spa_log_class->mc_rotor != NULL);
1464 spa_log_state_t
1465 spa_get_log_state(spa_t *spa)
1467 return (spa->spa_log_state);
1470 void
1471 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1473 spa->spa_log_state = state;
1476 boolean_t
1477 spa_is_root(spa_t *spa)
1479 return (spa->spa_is_root);
1482 boolean_t
1483 spa_writeable(spa_t *spa)
1485 return (!!(spa->spa_mode & FWRITE));
1489 spa_mode(spa_t *spa)
1491 return (spa->spa_mode);
1494 uint64_t
1495 spa_bootfs(spa_t *spa)
1497 return (spa->spa_bootfs);
1500 uint64_t
1501 spa_delegation(spa_t *spa)
1503 return (spa->spa_delegation);
1506 objset_t *
1507 spa_meta_objset(spa_t *spa)
1509 return (spa->spa_meta_objset);
1512 enum zio_checksum
1513 spa_dedup_checksum(spa_t *spa)
1515 return (spa->spa_dedup_checksum);