6897693 deduplication can only go so far
[illumos-gate.git] / usr / src / uts / common / fs / zfs / spa.c
bloba70254f6cab255b1bd988e85b463398baa9c0566
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/ddt.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_synctask.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/arc.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
65 #ifdef _KERNEL
66 #include <sys/zone.h>
67 #include <sys/bootprops.h>
68 #endif /* _KERNEL */
70 #include "zfs_prop.h"
71 #include "zfs_comutil.h"
73 enum zti_modes {
74 zti_mode_fixed, /* value is # of threads (min 1) */
75 zti_mode_online_percent, /* value is % of online CPUs */
76 zti_mode_tune, /* fill from zio_taskq_tune_* */
77 zti_nmodes
80 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) }
81 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) }
82 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 }
84 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1)
86 typedef struct zio_taskq_info {
87 const char *zti_name;
88 struct {
89 enum zti_modes zti_mode;
90 uint_t zti_value;
91 } zti_nthreads[ZIO_TASKQ_TYPES];
92 } zio_taskq_info_t;
94 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
95 "issue", "intr"
98 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
99 /* ISSUE INTR */
100 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
101 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } },
102 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } },
103 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
104 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
105 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
108 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
109 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */
111 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
112 static boolean_t spa_has_active_shared_spare(spa_t *spa);
115 * ==========================================================================
116 * SPA properties routines
117 * ==========================================================================
121 * Add a (source=src, propname=propval) list to an nvlist.
123 static void
124 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
125 uint64_t intval, zprop_source_t src)
127 const char *propname = zpool_prop_to_name(prop);
128 nvlist_t *propval;
130 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
131 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
133 if (strval != NULL)
134 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
135 else
136 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
138 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
139 nvlist_free(propval);
143 * Get property values from the spa configuration.
145 static void
146 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
148 uint64_t size;
149 uint64_t alloc;
150 uint64_t cap, version;
151 zprop_source_t src = ZPROP_SRC_NONE;
152 spa_config_dirent_t *dp;
154 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
156 if (spa->spa_root_vdev != NULL) {
157 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
158 size = metaslab_class_get_space(spa_normal_class(spa));
159 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
160 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
161 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
162 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
163 size - alloc, src);
165 cap = (size == 0) ? 0 : (alloc * 100 / size);
166 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
168 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
169 ddt_get_pool_dedup_ratio(spa), src);
171 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
172 spa->spa_root_vdev->vdev_state, src);
174 version = spa_version(spa);
175 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
176 src = ZPROP_SRC_DEFAULT;
177 else
178 src = ZPROP_SRC_LOCAL;
179 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
182 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
184 if (spa->spa_root != NULL)
185 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
186 0, ZPROP_SRC_LOCAL);
188 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
189 if (dp->scd_path == NULL) {
190 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
191 "none", 0, ZPROP_SRC_LOCAL);
192 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
193 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
194 dp->scd_path, 0, ZPROP_SRC_LOCAL);
200 * Get zpool property values.
203 spa_prop_get(spa_t *spa, nvlist_t **nvp)
205 objset_t *mos = spa->spa_meta_objset;
206 zap_cursor_t zc;
207 zap_attribute_t za;
208 int err;
210 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
212 mutex_enter(&spa->spa_props_lock);
215 * Get properties from the spa config.
217 spa_prop_get_config(spa, nvp);
219 /* If no pool property object, no more prop to get. */
220 if (spa->spa_pool_props_object == 0) {
221 mutex_exit(&spa->spa_props_lock);
222 return (0);
226 * Get properties from the MOS pool property object.
228 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
229 (err = zap_cursor_retrieve(&zc, &za)) == 0;
230 zap_cursor_advance(&zc)) {
231 uint64_t intval = 0;
232 char *strval = NULL;
233 zprop_source_t src = ZPROP_SRC_DEFAULT;
234 zpool_prop_t prop;
236 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
237 continue;
239 switch (za.za_integer_length) {
240 case 8:
241 /* integer property */
242 if (za.za_first_integer !=
243 zpool_prop_default_numeric(prop))
244 src = ZPROP_SRC_LOCAL;
246 if (prop == ZPOOL_PROP_BOOTFS) {
247 dsl_pool_t *dp;
248 dsl_dataset_t *ds = NULL;
250 dp = spa_get_dsl(spa);
251 rw_enter(&dp->dp_config_rwlock, RW_READER);
252 if (err = dsl_dataset_hold_obj(dp,
253 za.za_first_integer, FTAG, &ds)) {
254 rw_exit(&dp->dp_config_rwlock);
255 break;
258 strval = kmem_alloc(
259 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
260 KM_SLEEP);
261 dsl_dataset_name(ds, strval);
262 dsl_dataset_rele(ds, FTAG);
263 rw_exit(&dp->dp_config_rwlock);
264 } else {
265 strval = NULL;
266 intval = za.za_first_integer;
269 spa_prop_add_list(*nvp, prop, strval, intval, src);
271 if (strval != NULL)
272 kmem_free(strval,
273 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
275 break;
277 case 1:
278 /* string property */
279 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
280 err = zap_lookup(mos, spa->spa_pool_props_object,
281 za.za_name, 1, za.za_num_integers, strval);
282 if (err) {
283 kmem_free(strval, za.za_num_integers);
284 break;
286 spa_prop_add_list(*nvp, prop, strval, 0, src);
287 kmem_free(strval, za.za_num_integers);
288 break;
290 default:
291 break;
294 zap_cursor_fini(&zc);
295 mutex_exit(&spa->spa_props_lock);
296 out:
297 if (err && err != ENOENT) {
298 nvlist_free(*nvp);
299 *nvp = NULL;
300 return (err);
303 return (0);
307 * Validate the given pool properties nvlist and modify the list
308 * for the property values to be set.
310 static int
311 spa_prop_validate(spa_t *spa, nvlist_t *props)
313 nvpair_t *elem;
314 int error = 0, reset_bootfs = 0;
315 uint64_t objnum;
317 elem = NULL;
318 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
319 zpool_prop_t prop;
320 char *propname, *strval;
321 uint64_t intval;
322 objset_t *os;
323 char *slash;
325 propname = nvpair_name(elem);
327 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
328 return (EINVAL);
330 switch (prop) {
331 case ZPOOL_PROP_VERSION:
332 error = nvpair_value_uint64(elem, &intval);
333 if (!error &&
334 (intval < spa_version(spa) || intval > SPA_VERSION))
335 error = EINVAL;
336 break;
338 case ZPOOL_PROP_DELEGATION:
339 case ZPOOL_PROP_AUTOREPLACE:
340 case ZPOOL_PROP_LISTSNAPS:
341 case ZPOOL_PROP_AUTOEXPAND:
342 error = nvpair_value_uint64(elem, &intval);
343 if (!error && intval > 1)
344 error = EINVAL;
345 break;
347 case ZPOOL_PROP_BOOTFS:
349 * If the pool version is less than SPA_VERSION_BOOTFS,
350 * or the pool is still being created (version == 0),
351 * the bootfs property cannot be set.
353 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
354 error = ENOTSUP;
355 break;
359 * Make sure the vdev config is bootable
361 if (!vdev_is_bootable(spa->spa_root_vdev)) {
362 error = ENOTSUP;
363 break;
366 reset_bootfs = 1;
368 error = nvpair_value_string(elem, &strval);
370 if (!error) {
371 uint64_t compress;
373 if (strval == NULL || strval[0] == '\0') {
374 objnum = zpool_prop_default_numeric(
375 ZPOOL_PROP_BOOTFS);
376 break;
379 if (error = dmu_objset_hold(strval, FTAG, &os))
380 break;
382 /* Must be ZPL and not gzip compressed. */
384 if (dmu_objset_type(os) != DMU_OST_ZFS) {
385 error = ENOTSUP;
386 } else if ((error = dsl_prop_get_integer(strval,
387 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
388 &compress, NULL)) == 0 &&
389 !BOOTFS_COMPRESS_VALID(compress)) {
390 error = ENOTSUP;
391 } else {
392 objnum = dmu_objset_id(os);
394 dmu_objset_rele(os, FTAG);
396 break;
398 case ZPOOL_PROP_FAILUREMODE:
399 error = nvpair_value_uint64(elem, &intval);
400 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
401 intval > ZIO_FAILURE_MODE_PANIC))
402 error = EINVAL;
405 * This is a special case which only occurs when
406 * the pool has completely failed. This allows
407 * the user to change the in-core failmode property
408 * without syncing it out to disk (I/Os might
409 * currently be blocked). We do this by returning
410 * EIO to the caller (spa_prop_set) to trick it
411 * into thinking we encountered a property validation
412 * error.
414 if (!error && spa_suspended(spa)) {
415 spa->spa_failmode = intval;
416 error = EIO;
418 break;
420 case ZPOOL_PROP_CACHEFILE:
421 if ((error = nvpair_value_string(elem, &strval)) != 0)
422 break;
424 if (strval[0] == '\0')
425 break;
427 if (strcmp(strval, "none") == 0)
428 break;
430 if (strval[0] != '/') {
431 error = EINVAL;
432 break;
435 slash = strrchr(strval, '/');
436 ASSERT(slash != NULL);
438 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
439 strcmp(slash, "/..") == 0)
440 error = EINVAL;
441 break;
443 case ZPOOL_PROP_DEDUPDITTO:
444 if (spa_version(spa) < SPA_VERSION_DEDUP)
445 error = ENOTSUP;
446 else
447 error = nvpair_value_uint64(elem, &intval);
448 if (error == 0 &&
449 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
450 error = EINVAL;
451 break;
454 if (error)
455 break;
458 if (!error && reset_bootfs) {
459 error = nvlist_remove(props,
460 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
462 if (!error) {
463 error = nvlist_add_uint64(props,
464 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
468 return (error);
471 void
472 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
474 char *cachefile;
475 spa_config_dirent_t *dp;
477 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
478 &cachefile) != 0)
479 return;
481 dp = kmem_alloc(sizeof (spa_config_dirent_t),
482 KM_SLEEP);
484 if (cachefile[0] == '\0')
485 dp->scd_path = spa_strdup(spa_config_path);
486 else if (strcmp(cachefile, "none") == 0)
487 dp->scd_path = NULL;
488 else
489 dp->scd_path = spa_strdup(cachefile);
491 list_insert_head(&spa->spa_config_list, dp);
492 if (need_sync)
493 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
497 spa_prop_set(spa_t *spa, nvlist_t *nvp)
499 int error;
500 nvpair_t *elem;
501 boolean_t need_sync = B_FALSE;
502 zpool_prop_t prop;
504 if ((error = spa_prop_validate(spa, nvp)) != 0)
505 return (error);
507 elem = NULL;
508 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
509 if ((prop = zpool_name_to_prop(
510 nvpair_name(elem))) == ZPROP_INVAL)
511 return (EINVAL);
513 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
514 continue;
516 need_sync = B_TRUE;
517 break;
520 if (need_sync)
521 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
522 spa, nvp, 3));
523 else
524 return (0);
528 * If the bootfs property value is dsobj, clear it.
530 void
531 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
533 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
534 VERIFY(zap_remove(spa->spa_meta_objset,
535 spa->spa_pool_props_object,
536 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
537 spa->spa_bootfs = 0;
542 * ==========================================================================
543 * SPA state manipulation (open/create/destroy/import/export)
544 * ==========================================================================
547 static int
548 spa_error_entry_compare(const void *a, const void *b)
550 spa_error_entry_t *sa = (spa_error_entry_t *)a;
551 spa_error_entry_t *sb = (spa_error_entry_t *)b;
552 int ret;
554 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
555 sizeof (zbookmark_t));
557 if (ret < 0)
558 return (-1);
559 else if (ret > 0)
560 return (1);
561 else
562 return (0);
566 * Utility function which retrieves copies of the current logs and
567 * re-initializes them in the process.
569 void
570 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
572 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
574 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
575 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
577 avl_create(&spa->spa_errlist_scrub,
578 spa_error_entry_compare, sizeof (spa_error_entry_t),
579 offsetof(spa_error_entry_t, se_avl));
580 avl_create(&spa->spa_errlist_last,
581 spa_error_entry_compare, sizeof (spa_error_entry_t),
582 offsetof(spa_error_entry_t, se_avl));
586 * Activate an uninitialized pool.
588 static void
589 spa_activate(spa_t *spa, int mode)
591 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
593 spa->spa_state = POOL_STATE_ACTIVE;
594 spa->spa_mode = mode;
596 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
597 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
599 for (int t = 0; t < ZIO_TYPES; t++) {
600 const zio_taskq_info_t *ztip = &zio_taskqs[t];
601 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
602 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
603 uint_t value = ztip->zti_nthreads[q].zti_value;
604 char name[32];
606 (void) snprintf(name, sizeof (name),
607 "%s_%s", ztip->zti_name, zio_taskq_types[q]);
609 if (mode == zti_mode_tune) {
610 mode = zio_taskq_tune_mode;
611 value = zio_taskq_tune_value;
612 if (mode == zti_mode_tune)
613 mode = zti_mode_online_percent;
616 switch (mode) {
617 case zti_mode_fixed:
618 ASSERT3U(value, >=, 1);
619 value = MAX(value, 1);
621 spa->spa_zio_taskq[t][q] = taskq_create(name,
622 value, maxclsyspri, 50, INT_MAX,
623 TASKQ_PREPOPULATE);
624 break;
626 case zti_mode_online_percent:
627 spa->spa_zio_taskq[t][q] = taskq_create(name,
628 value, maxclsyspri, 50, INT_MAX,
629 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
630 break;
632 case zti_mode_tune:
633 default:
634 panic("unrecognized mode for "
635 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
636 "in spa_activate()",
637 t, q, mode, value);
638 break;
643 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
644 offsetof(vdev_t, vdev_config_dirty_node));
645 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
646 offsetof(vdev_t, vdev_state_dirty_node));
648 txg_list_create(&spa->spa_vdev_txg_list,
649 offsetof(struct vdev, vdev_txg_node));
651 avl_create(&spa->spa_errlist_scrub,
652 spa_error_entry_compare, sizeof (spa_error_entry_t),
653 offsetof(spa_error_entry_t, se_avl));
654 avl_create(&spa->spa_errlist_last,
655 spa_error_entry_compare, sizeof (spa_error_entry_t),
656 offsetof(spa_error_entry_t, se_avl));
660 * Opposite of spa_activate().
662 static void
663 spa_deactivate(spa_t *spa)
665 ASSERT(spa->spa_sync_on == B_FALSE);
666 ASSERT(spa->spa_dsl_pool == NULL);
667 ASSERT(spa->spa_root_vdev == NULL);
668 ASSERT(spa->spa_async_zio_root == NULL);
669 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
671 txg_list_destroy(&spa->spa_vdev_txg_list);
673 list_destroy(&spa->spa_config_dirty_list);
674 list_destroy(&spa->spa_state_dirty_list);
676 for (int t = 0; t < ZIO_TYPES; t++) {
677 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
678 taskq_destroy(spa->spa_zio_taskq[t][q]);
679 spa->spa_zio_taskq[t][q] = NULL;
683 metaslab_class_destroy(spa->spa_normal_class);
684 spa->spa_normal_class = NULL;
686 metaslab_class_destroy(spa->spa_log_class);
687 spa->spa_log_class = NULL;
690 * If this was part of an import or the open otherwise failed, we may
691 * still have errors left in the queues. Empty them just in case.
693 spa_errlog_drain(spa);
695 avl_destroy(&spa->spa_errlist_scrub);
696 avl_destroy(&spa->spa_errlist_last);
698 spa->spa_state = POOL_STATE_UNINITIALIZED;
702 * Verify a pool configuration, and construct the vdev tree appropriately. This
703 * will create all the necessary vdevs in the appropriate layout, with each vdev
704 * in the CLOSED state. This will prep the pool before open/creation/import.
705 * All vdev validation is done by the vdev_alloc() routine.
707 static int
708 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
709 uint_t id, int atype)
711 nvlist_t **child;
712 uint_t children;
713 int error;
715 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
716 return (error);
718 if ((*vdp)->vdev_ops->vdev_op_leaf)
719 return (0);
721 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
722 &child, &children);
724 if (error == ENOENT)
725 return (0);
727 if (error) {
728 vdev_free(*vdp);
729 *vdp = NULL;
730 return (EINVAL);
733 for (int c = 0; c < children; c++) {
734 vdev_t *vd;
735 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
736 atype)) != 0) {
737 vdev_free(*vdp);
738 *vdp = NULL;
739 return (error);
743 ASSERT(*vdp != NULL);
745 return (0);
749 * Opposite of spa_load().
751 static void
752 spa_unload(spa_t *spa)
754 int i;
756 ASSERT(MUTEX_HELD(&spa_namespace_lock));
759 * Stop async tasks.
761 spa_async_suspend(spa);
764 * Stop syncing.
766 if (spa->spa_sync_on) {
767 txg_sync_stop(spa->spa_dsl_pool);
768 spa->spa_sync_on = B_FALSE;
772 * Wait for any outstanding async I/O to complete.
774 if (spa->spa_async_zio_root != NULL) {
775 (void) zio_wait(spa->spa_async_zio_root);
776 spa->spa_async_zio_root = NULL;
780 * Close the dsl pool.
782 if (spa->spa_dsl_pool) {
783 dsl_pool_close(spa->spa_dsl_pool);
784 spa->spa_dsl_pool = NULL;
787 ddt_unload(spa);
789 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
792 * Drop and purge level 2 cache
794 spa_l2cache_drop(spa);
797 * Close all vdevs.
799 if (spa->spa_root_vdev)
800 vdev_free(spa->spa_root_vdev);
801 ASSERT(spa->spa_root_vdev == NULL);
803 for (i = 0; i < spa->spa_spares.sav_count; i++)
804 vdev_free(spa->spa_spares.sav_vdevs[i]);
805 if (spa->spa_spares.sav_vdevs) {
806 kmem_free(spa->spa_spares.sav_vdevs,
807 spa->spa_spares.sav_count * sizeof (void *));
808 spa->spa_spares.sav_vdevs = NULL;
810 if (spa->spa_spares.sav_config) {
811 nvlist_free(spa->spa_spares.sav_config);
812 spa->spa_spares.sav_config = NULL;
814 spa->spa_spares.sav_count = 0;
816 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
817 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
818 if (spa->spa_l2cache.sav_vdevs) {
819 kmem_free(spa->spa_l2cache.sav_vdevs,
820 spa->spa_l2cache.sav_count * sizeof (void *));
821 spa->spa_l2cache.sav_vdevs = NULL;
823 if (spa->spa_l2cache.sav_config) {
824 nvlist_free(spa->spa_l2cache.sav_config);
825 spa->spa_l2cache.sav_config = NULL;
827 spa->spa_l2cache.sav_count = 0;
829 spa->spa_async_suspended = 0;
831 spa_config_exit(spa, SCL_ALL, FTAG);
835 * Load (or re-load) the current list of vdevs describing the active spares for
836 * this pool. When this is called, we have some form of basic information in
837 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
838 * then re-generate a more complete list including status information.
840 static void
841 spa_load_spares(spa_t *spa)
843 nvlist_t **spares;
844 uint_t nspares;
845 int i;
846 vdev_t *vd, *tvd;
848 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
851 * First, close and free any existing spare vdevs.
853 for (i = 0; i < spa->spa_spares.sav_count; i++) {
854 vd = spa->spa_spares.sav_vdevs[i];
856 /* Undo the call to spa_activate() below */
857 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
858 B_FALSE)) != NULL && tvd->vdev_isspare)
859 spa_spare_remove(tvd);
860 vdev_close(vd);
861 vdev_free(vd);
864 if (spa->spa_spares.sav_vdevs)
865 kmem_free(spa->spa_spares.sav_vdevs,
866 spa->spa_spares.sav_count * sizeof (void *));
868 if (spa->spa_spares.sav_config == NULL)
869 nspares = 0;
870 else
871 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
872 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
874 spa->spa_spares.sav_count = (int)nspares;
875 spa->spa_spares.sav_vdevs = NULL;
877 if (nspares == 0)
878 return;
881 * Construct the array of vdevs, opening them to get status in the
882 * process. For each spare, there is potentially two different vdev_t
883 * structures associated with it: one in the list of spares (used only
884 * for basic validation purposes) and one in the active vdev
885 * configuration (if it's spared in). During this phase we open and
886 * validate each vdev on the spare list. If the vdev also exists in the
887 * active configuration, then we also mark this vdev as an active spare.
889 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
890 KM_SLEEP);
891 for (i = 0; i < spa->spa_spares.sav_count; i++) {
892 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
893 VDEV_ALLOC_SPARE) == 0);
894 ASSERT(vd != NULL);
896 spa->spa_spares.sav_vdevs[i] = vd;
898 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
899 B_FALSE)) != NULL) {
900 if (!tvd->vdev_isspare)
901 spa_spare_add(tvd);
904 * We only mark the spare active if we were successfully
905 * able to load the vdev. Otherwise, importing a pool
906 * with a bad active spare would result in strange
907 * behavior, because multiple pool would think the spare
908 * is actively in use.
910 * There is a vulnerability here to an equally bizarre
911 * circumstance, where a dead active spare is later
912 * brought back to life (onlined or otherwise). Given
913 * the rarity of this scenario, and the extra complexity
914 * it adds, we ignore the possibility.
916 if (!vdev_is_dead(tvd))
917 spa_spare_activate(tvd);
920 vd->vdev_top = vd;
921 vd->vdev_aux = &spa->spa_spares;
923 if (vdev_open(vd) != 0)
924 continue;
926 if (vdev_validate_aux(vd) == 0)
927 spa_spare_add(vd);
931 * Recompute the stashed list of spares, with status information
932 * this time.
934 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
935 DATA_TYPE_NVLIST_ARRAY) == 0);
937 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
938 KM_SLEEP);
939 for (i = 0; i < spa->spa_spares.sav_count; i++)
940 spares[i] = vdev_config_generate(spa,
941 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
942 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
943 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
944 for (i = 0; i < spa->spa_spares.sav_count; i++)
945 nvlist_free(spares[i]);
946 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
950 * Load (or re-load) the current list of vdevs describing the active l2cache for
951 * this pool. When this is called, we have some form of basic information in
952 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
953 * then re-generate a more complete list including status information.
954 * Devices which are already active have their details maintained, and are
955 * not re-opened.
957 static void
958 spa_load_l2cache(spa_t *spa)
960 nvlist_t **l2cache;
961 uint_t nl2cache;
962 int i, j, oldnvdevs;
963 uint64_t guid;
964 vdev_t *vd, **oldvdevs, **newvdevs;
965 spa_aux_vdev_t *sav = &spa->spa_l2cache;
967 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
969 if (sav->sav_config != NULL) {
970 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
971 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
972 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
973 } else {
974 nl2cache = 0;
977 oldvdevs = sav->sav_vdevs;
978 oldnvdevs = sav->sav_count;
979 sav->sav_vdevs = NULL;
980 sav->sav_count = 0;
983 * Process new nvlist of vdevs.
985 for (i = 0; i < nl2cache; i++) {
986 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
987 &guid) == 0);
989 newvdevs[i] = NULL;
990 for (j = 0; j < oldnvdevs; j++) {
991 vd = oldvdevs[j];
992 if (vd != NULL && guid == vd->vdev_guid) {
994 * Retain previous vdev for add/remove ops.
996 newvdevs[i] = vd;
997 oldvdevs[j] = NULL;
998 break;
1002 if (newvdevs[i] == NULL) {
1004 * Create new vdev
1006 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1007 VDEV_ALLOC_L2CACHE) == 0);
1008 ASSERT(vd != NULL);
1009 newvdevs[i] = vd;
1012 * Commit this vdev as an l2cache device,
1013 * even if it fails to open.
1015 spa_l2cache_add(vd);
1017 vd->vdev_top = vd;
1018 vd->vdev_aux = sav;
1020 spa_l2cache_activate(vd);
1022 if (vdev_open(vd) != 0)
1023 continue;
1025 (void) vdev_validate_aux(vd);
1027 if (!vdev_is_dead(vd))
1028 l2arc_add_vdev(spa, vd);
1033 * Purge vdevs that were dropped
1035 for (i = 0; i < oldnvdevs; i++) {
1036 uint64_t pool;
1038 vd = oldvdevs[i];
1039 if (vd != NULL) {
1040 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1041 pool != 0ULL && l2arc_vdev_present(vd))
1042 l2arc_remove_vdev(vd);
1043 (void) vdev_close(vd);
1044 spa_l2cache_remove(vd);
1048 if (oldvdevs)
1049 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1051 if (sav->sav_config == NULL)
1052 goto out;
1054 sav->sav_vdevs = newvdevs;
1055 sav->sav_count = (int)nl2cache;
1058 * Recompute the stashed list of l2cache devices, with status
1059 * information this time.
1061 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1062 DATA_TYPE_NVLIST_ARRAY) == 0);
1064 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1065 for (i = 0; i < sav->sav_count; i++)
1066 l2cache[i] = vdev_config_generate(spa,
1067 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1068 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1069 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1070 out:
1071 for (i = 0; i < sav->sav_count; i++)
1072 nvlist_free(l2cache[i]);
1073 if (sav->sav_count)
1074 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1077 static int
1078 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1080 dmu_buf_t *db;
1081 char *packed = NULL;
1082 size_t nvsize = 0;
1083 int error;
1084 *value = NULL;
1086 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1087 nvsize = *(uint64_t *)db->db_data;
1088 dmu_buf_rele(db, FTAG);
1090 packed = kmem_alloc(nvsize, KM_SLEEP);
1091 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1092 DMU_READ_PREFETCH);
1093 if (error == 0)
1094 error = nvlist_unpack(packed, nvsize, value, 0);
1095 kmem_free(packed, nvsize);
1097 return (error);
1101 * Checks to see if the given vdev could not be opened, in which case we post a
1102 * sysevent to notify the autoreplace code that the device has been removed.
1104 static void
1105 spa_check_removed(vdev_t *vd)
1107 for (int c = 0; c < vd->vdev_children; c++)
1108 spa_check_removed(vd->vdev_child[c]);
1110 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1111 zfs_post_autoreplace(vd->vdev_spa, vd);
1112 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1117 * Load the slog device state from the config object since it's possible
1118 * that the label does not contain the most up-to-date information.
1120 void
1121 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1123 vdev_t *ovd, *rvd = spa->spa_root_vdev;
1126 * Load the original root vdev tree from the passed config.
1128 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1129 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1131 for (int c = 0; c < rvd->vdev_children; c++) {
1132 vdev_t *cvd = rvd->vdev_child[c];
1133 if (cvd->vdev_islog)
1134 vdev_load_log_state(cvd, ovd->vdev_child[c]);
1136 vdev_free(ovd);
1137 spa_config_exit(spa, SCL_ALL, FTAG);
1141 * Check for missing log devices
1144 spa_check_logs(spa_t *spa)
1146 switch (spa->spa_log_state) {
1147 case SPA_LOG_MISSING:
1148 /* need to recheck in case slog has been restored */
1149 case SPA_LOG_UNKNOWN:
1150 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1151 DS_FIND_CHILDREN)) {
1152 spa->spa_log_state = SPA_LOG_MISSING;
1153 return (1);
1155 break;
1157 return (0);
1160 static void
1161 spa_aux_check_removed(spa_aux_vdev_t *sav)
1163 for (int i = 0; i < sav->sav_count; i++)
1164 spa_check_removed(sav->sav_vdevs[i]);
1167 void
1168 spa_claim_notify(zio_t *zio)
1170 spa_t *spa = zio->io_spa;
1172 if (zio->io_error)
1173 return;
1175 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1176 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1177 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1178 mutex_exit(&spa->spa_props_lock);
1181 typedef struct spa_load_error {
1182 uint64_t sle_metadata_count;
1183 uint64_t sle_data_count;
1184 } spa_load_error_t;
1186 static void
1187 spa_load_verify_done(zio_t *zio)
1189 blkptr_t *bp = zio->io_bp;
1190 spa_load_error_t *sle = zio->io_private;
1191 dmu_object_type_t type = BP_GET_TYPE(bp);
1192 int error = zio->io_error;
1194 if (error) {
1195 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1196 type != DMU_OT_INTENT_LOG)
1197 atomic_add_64(&sle->sle_metadata_count, 1);
1198 else
1199 atomic_add_64(&sle->sle_data_count, 1);
1201 zio_data_buf_free(zio->io_data, zio->io_size);
1204 /*ARGSUSED*/
1205 static int
1206 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1207 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1209 if (bp != NULL) {
1210 zio_t *rio = arg;
1211 size_t size = BP_GET_PSIZE(bp);
1212 void *data = zio_data_buf_alloc(size);
1214 zio_nowait(zio_read(rio, spa, bp, data, size,
1215 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1216 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1217 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1219 return (0);
1222 static int
1223 spa_load_verify(spa_t *spa)
1225 zio_t *rio;
1226 spa_load_error_t sle = { 0 };
1227 zpool_rewind_policy_t policy;
1228 boolean_t verify_ok = B_FALSE;
1229 int error;
1231 rio = zio_root(spa, NULL, &sle,
1232 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1234 error = traverse_pool(spa, spa_load_verify_cb, rio,
1235 spa->spa_verify_min_txg);
1237 (void) zio_wait(rio);
1239 zpool_get_rewind_policy(spa->spa_config, &policy);
1241 spa->spa_load_meta_errors = sle.sle_metadata_count;
1242 spa->spa_load_data_errors = sle.sle_data_count;
1244 if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta &&
1245 sle.sle_data_count <= policy.zrp_maxdata) {
1246 verify_ok = B_TRUE;
1247 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1248 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1251 if (error) {
1252 if (error != ENXIO && error != EIO)
1253 error = EIO;
1254 return (error);
1257 return (verify_ok ? 0 : EIO);
1261 * Load an existing storage pool, using the pool's builtin spa_config as a
1262 * source of configuration information.
1264 static int
1265 spa_load(spa_t *spa, spa_load_state_t state, int mosconfig)
1267 int error = 0;
1268 nvlist_t *nvconfig, *nvroot = NULL;
1269 vdev_t *rvd;
1270 uberblock_t *ub = &spa->spa_uberblock;
1271 uint64_t config_cache_txg = spa->spa_config_txg;
1272 uint64_t pool_guid;
1273 uint64_t version;
1274 uint64_t autoreplace = 0;
1275 int orig_mode = spa->spa_mode;
1276 char *ereport = FM_EREPORT_ZFS_POOL;
1277 nvlist_t *config = spa->spa_config;
1280 * If this is an untrusted config, access the pool in read-only mode.
1281 * This prevents things like resilvering recently removed devices.
1283 if (!mosconfig)
1284 spa->spa_mode = FREAD;
1286 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1288 spa->spa_load_state = state;
1290 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1291 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1292 error = EINVAL;
1293 goto out;
1297 * Versioning wasn't explicitly added to the label until later, so if
1298 * it's not present treat it as the initial version.
1300 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1301 version = SPA_VERSION_INITIAL;
1303 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1304 &spa->spa_config_txg);
1306 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1307 spa_guid_exists(pool_guid, 0)) {
1308 error = EEXIST;
1309 goto out;
1312 spa->spa_load_guid = pool_guid;
1315 * Create "The Godfather" zio to hold all async IOs
1317 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1318 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1321 * Parse the configuration into a vdev tree. We explicitly set the
1322 * value that will be returned by spa_version() since parsing the
1323 * configuration requires knowing the version number.
1325 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1326 spa->spa_ubsync.ub_version = version;
1327 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1328 spa_config_exit(spa, SCL_ALL, FTAG);
1330 if (error != 0)
1331 goto out;
1333 ASSERT(spa->spa_root_vdev == rvd);
1334 ASSERT(spa_guid(spa) == pool_guid);
1337 * Try to open all vdevs, loading each label in the process.
1339 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1340 error = vdev_open(rvd);
1341 spa_config_exit(spa, SCL_ALL, FTAG);
1342 if (error != 0)
1343 goto out;
1346 * We need to validate the vdev labels against the configuration that
1347 * we have in hand, which is dependent on the setting of mosconfig. If
1348 * mosconfig is true then we're validating the vdev labels based on
1349 * that config. Otherwise, we're validating against the cached config
1350 * (zpool.cache) that was read when we loaded the zfs module, and then
1351 * later we will recursively call spa_load() and validate against
1352 * the vdev config.
1354 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1355 error = vdev_validate(rvd);
1356 spa_config_exit(spa, SCL_ALL, FTAG);
1357 if (error != 0)
1358 goto out;
1360 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1361 error = ENXIO;
1362 goto out;
1366 * Find the best uberblock.
1368 vdev_uberblock_load(NULL, rvd, ub);
1371 * If we weren't able to find a single valid uberblock, return failure.
1373 if (ub->ub_txg == 0) {
1374 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375 VDEV_AUX_CORRUPT_DATA);
1376 error = ENXIO;
1377 goto out;
1381 * If the pool is newer than the code, we can't open it.
1383 if (ub->ub_version > SPA_VERSION) {
1384 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1385 VDEV_AUX_VERSION_NEWER);
1386 error = ENOTSUP;
1387 goto out;
1391 * If the vdev guid sum doesn't match the uberblock, we have an
1392 * incomplete configuration.
1394 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1395 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396 VDEV_AUX_BAD_GUID_SUM);
1397 error = ENXIO;
1398 goto out;
1402 * Initialize internal SPA structures.
1404 spa->spa_state = POOL_STATE_ACTIVE;
1405 spa->spa_ubsync = spa->spa_uberblock;
1406 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1407 TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE;
1408 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1409 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1410 spa->spa_claim_max_txg = spa->spa_first_txg;
1412 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1413 if (error) {
1414 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1415 VDEV_AUX_CORRUPT_DATA);
1416 error = EIO;
1417 goto out;
1419 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1421 if (zap_lookup(spa->spa_meta_objset,
1422 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1423 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1424 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425 VDEV_AUX_CORRUPT_DATA);
1426 error = EIO;
1427 goto out;
1430 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) {
1431 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1432 VDEV_AUX_CORRUPT_DATA);
1433 error = EIO;
1434 goto out;
1437 if (!mosconfig) {
1438 uint64_t hostid;
1440 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1441 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1442 char *hostname;
1443 unsigned long myhostid = 0;
1445 VERIFY(nvlist_lookup_string(nvconfig,
1446 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1448 #ifdef _KERNEL
1449 myhostid = zone_get_hostid(NULL);
1450 #else /* _KERNEL */
1452 * We're emulating the system's hostid in userland, so
1453 * we can't use zone_get_hostid().
1455 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1456 #endif /* _KERNEL */
1457 if (hostid != 0 && myhostid != 0 &&
1458 hostid != myhostid) {
1459 cmn_err(CE_WARN, "pool '%s' could not be "
1460 "loaded as it was last accessed by "
1461 "another system (host: %s hostid: 0x%lx). "
1462 "See: http://www.sun.com/msg/ZFS-8000-EY",
1463 spa_name(spa), hostname,
1464 (unsigned long)hostid);
1465 error = EBADF;
1466 goto out;
1470 spa_config_set(spa, nvconfig);
1471 spa_unload(spa);
1472 spa_deactivate(spa);
1473 spa_activate(spa, orig_mode);
1475 return (spa_load(spa, state, B_TRUE));
1478 if (zap_lookup(spa->spa_meta_objset,
1479 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1480 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj) != 0) {
1481 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1482 VDEV_AUX_CORRUPT_DATA);
1483 error = EIO;
1484 goto out;
1488 * Load the bit that tells us to use the new accounting function
1489 * (raid-z deflation). If we have an older pool, this will not
1490 * be present.
1492 error = zap_lookup(spa->spa_meta_objset,
1493 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1494 sizeof (uint64_t), 1, &spa->spa_deflate);
1495 if (error != 0 && error != ENOENT) {
1496 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1497 VDEV_AUX_CORRUPT_DATA);
1498 error = EIO;
1499 goto out;
1503 * Load the persistent error log. If we have an older pool, this will
1504 * not be present.
1506 error = zap_lookup(spa->spa_meta_objset,
1507 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1508 sizeof (uint64_t), 1, &spa->spa_errlog_last);
1509 if (error != 0 && error != ENOENT) {
1510 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1511 VDEV_AUX_CORRUPT_DATA);
1512 error = EIO;
1513 goto out;
1516 error = zap_lookup(spa->spa_meta_objset,
1517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1518 sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1519 if (error != 0 && error != ENOENT) {
1520 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1521 VDEV_AUX_CORRUPT_DATA);
1522 error = EIO;
1523 goto out;
1527 * Load the history object. If we have an older pool, this
1528 * will not be present.
1530 error = zap_lookup(spa->spa_meta_objset,
1531 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1532 sizeof (uint64_t), 1, &spa->spa_history);
1533 if (error != 0 && error != ENOENT) {
1534 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1535 VDEV_AUX_CORRUPT_DATA);
1536 error = EIO;
1537 goto out;
1541 * Load any hot spares for this pool.
1543 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1544 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1545 if (error != 0 && error != ENOENT) {
1546 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1547 VDEV_AUX_CORRUPT_DATA);
1548 error = EIO;
1549 goto out;
1551 if (error == 0) {
1552 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1553 if (load_nvlist(spa, spa->spa_spares.sav_object,
1554 &spa->spa_spares.sav_config) != 0) {
1555 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1556 VDEV_AUX_CORRUPT_DATA);
1557 error = EIO;
1558 goto out;
1561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1562 spa_load_spares(spa);
1563 spa_config_exit(spa, SCL_ALL, FTAG);
1567 * Load any level 2 ARC devices for this pool.
1569 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1570 DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1571 &spa->spa_l2cache.sav_object);
1572 if (error != 0 && error != ENOENT) {
1573 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1574 VDEV_AUX_CORRUPT_DATA);
1575 error = EIO;
1576 goto out;
1578 if (error == 0) {
1579 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1580 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1581 &spa->spa_l2cache.sav_config) != 0) {
1582 vdev_set_state(rvd, B_TRUE,
1583 VDEV_STATE_CANT_OPEN,
1584 VDEV_AUX_CORRUPT_DATA);
1585 error = EIO;
1586 goto out;
1589 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1590 spa_load_l2cache(spa);
1591 spa_config_exit(spa, SCL_ALL, FTAG);
1594 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1596 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1597 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1599 if (error && error != ENOENT) {
1600 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1601 VDEV_AUX_CORRUPT_DATA);
1602 error = EIO;
1603 goto out;
1606 if (error == 0) {
1607 (void) zap_lookup(spa->spa_meta_objset,
1608 spa->spa_pool_props_object,
1609 zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1610 sizeof (uint64_t), 1, &spa->spa_bootfs);
1611 (void) zap_lookup(spa->spa_meta_objset,
1612 spa->spa_pool_props_object,
1613 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1614 sizeof (uint64_t), 1, &autoreplace);
1615 spa->spa_autoreplace = (autoreplace != 0);
1616 (void) zap_lookup(spa->spa_meta_objset,
1617 spa->spa_pool_props_object,
1618 zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1619 sizeof (uint64_t), 1, &spa->spa_delegation);
1620 (void) zap_lookup(spa->spa_meta_objset,
1621 spa->spa_pool_props_object,
1622 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1623 sizeof (uint64_t), 1, &spa->spa_failmode);
1624 (void) zap_lookup(spa->spa_meta_objset,
1625 spa->spa_pool_props_object,
1626 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1627 sizeof (uint64_t), 1, &spa->spa_autoexpand);
1628 (void) zap_lookup(spa->spa_meta_objset,
1629 spa->spa_pool_props_object,
1630 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO),
1631 sizeof (uint64_t), 1, &spa->spa_dedup_ditto);
1635 * If the 'autoreplace' property is set, then post a resource notifying
1636 * the ZFS DE that it should not issue any faults for unopenable
1637 * devices. We also iterate over the vdevs, and post a sysevent for any
1638 * unopenable vdevs so that the normal autoreplace handler can take
1639 * over.
1641 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1642 spa_check_removed(spa->spa_root_vdev);
1644 * For the import case, this is done in spa_import(), because
1645 * at this point we're using the spare definitions from
1646 * the MOS config, not necessarily from the userland config.
1648 if (state != SPA_LOAD_IMPORT) {
1649 spa_aux_check_removed(&spa->spa_spares);
1650 spa_aux_check_removed(&spa->spa_l2cache);
1655 * Load the vdev state for all toplevel vdevs.
1657 vdev_load(rvd);
1660 * Propagate the leaf DTLs we just loaded all the way up the tree.
1662 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1663 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1664 spa_config_exit(spa, SCL_ALL, FTAG);
1667 * Check the state of the root vdev. If it can't be opened, it
1668 * indicates one or more toplevel vdevs are faulted.
1670 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1671 error = ENXIO;
1672 goto out;
1676 * Load the DDTs (dedup tables).
1678 error = ddt_load(spa);
1679 if (error != 0) {
1680 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1681 VDEV_AUX_CORRUPT_DATA);
1682 error = EIO;
1683 goto out;
1686 spa_update_dspace(spa);
1688 if (state != SPA_LOAD_TRYIMPORT) {
1689 error = spa_load_verify(spa);
1690 if (error) {
1691 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692 VDEV_AUX_CORRUPT_DATA);
1693 goto out;
1698 * Load the intent log state and check log integrity.
1700 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
1701 &nvroot) == 0);
1702 spa_load_log_state(spa, nvroot);
1703 nvlist_free(nvconfig);
1705 if (spa_check_logs(spa)) {
1706 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1707 VDEV_AUX_BAD_LOG);
1708 error = ENXIO;
1709 ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1710 goto out;
1713 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
1714 spa->spa_load_max_txg == UINT64_MAX)) {
1715 dmu_tx_t *tx;
1716 int need_update = B_FALSE;
1718 ASSERT(state != SPA_LOAD_TRYIMPORT);
1721 * Claim log blocks that haven't been committed yet.
1722 * This must all happen in a single txg.
1723 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
1724 * invoked from zil_claim_log_block()'s i/o done callback.
1725 * Price of rollback is that we abandon the log.
1727 spa->spa_claiming = B_TRUE;
1729 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1730 spa_first_txg(spa));
1731 (void) dmu_objset_find(spa_name(spa),
1732 zil_claim, tx, DS_FIND_CHILDREN);
1733 dmu_tx_commit(tx);
1735 spa->spa_claiming = B_FALSE;
1737 spa->spa_log_state = SPA_LOG_GOOD;
1738 spa->spa_sync_on = B_TRUE;
1739 txg_sync_start(spa->spa_dsl_pool);
1742 * Wait for all claims to sync. We sync up to the highest
1743 * claimed log block birth time so that claimed log blocks
1744 * don't appear to be from the future. spa_claim_max_txg
1745 * will have been set for us by either zil_check_log_chain()
1746 * (invoked from spa_check_logs()) or zil_claim() above.
1748 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
1751 * If the config cache is stale, or we have uninitialized
1752 * metaslabs (see spa_vdev_add()), then update the config.
1754 * If spa_load_verbatim is true, trust the current
1755 * in-core spa_config and update the disk labels.
1757 if (config_cache_txg != spa->spa_config_txg ||
1758 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
1759 state == SPA_LOAD_RECOVER)
1760 need_update = B_TRUE;
1762 for (int c = 0; c < rvd->vdev_children; c++)
1763 if (rvd->vdev_child[c]->vdev_ms_array == 0)
1764 need_update = B_TRUE;
1767 * Update the config cache asychronously in case we're the
1768 * root pool, in which case the config cache isn't writable yet.
1770 if (need_update)
1771 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1774 * Check all DTLs to see if anything needs resilvering.
1776 if (vdev_resilver_needed(rvd, NULL, NULL))
1777 spa_async_request(spa, SPA_ASYNC_RESILVER);
1780 * Delete any inconsistent datasets.
1782 (void) dmu_objset_find(spa_name(spa),
1783 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
1786 * Clean up any stale temporary dataset userrefs.
1788 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
1791 error = 0;
1792 out:
1794 spa->spa_minref = refcount_count(&spa->spa_refcount);
1795 if (error && error != EBADF)
1796 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1797 spa->spa_load_state = SPA_LOAD_NONE;
1798 spa->spa_ena = 0;
1800 return (error);
1803 static int
1804 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
1806 spa_unload(spa);
1807 spa_deactivate(spa);
1809 spa->spa_load_max_txg--;
1811 spa_activate(spa, spa_mode_global);
1812 spa_async_suspend(spa);
1814 return (spa_load(spa, state, mosconfig));
1817 static int
1818 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
1819 uint64_t max_request, boolean_t extreme)
1821 nvlist_t *config = NULL;
1822 int load_error, rewind_error;
1823 uint64_t safe_rollback_txg;
1824 uint64_t min_txg;
1826 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER)
1827 spa->spa_load_max_txg = spa->spa_load_txg;
1828 else
1829 spa->spa_load_max_txg = max_request;
1831 load_error = rewind_error = spa_load(spa, state, mosconfig);
1832 if (load_error == 0)
1833 return (0);
1835 if (spa->spa_root_vdev != NULL)
1836 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1838 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
1839 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
1841 /* specific txg requested */
1842 if (spa->spa_load_max_txg != UINT64_MAX && !extreme) {
1843 nvlist_free(config);
1844 return (load_error);
1847 /* Price of rolling back is discarding txgs, including log */
1848 if (state == SPA_LOAD_RECOVER)
1849 spa->spa_log_state = SPA_LOG_CLEAR;
1851 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1852 safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE;
1854 min_txg = extreme ? TXG_INITIAL : safe_rollback_txg;
1855 while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) {
1856 if (spa->spa_load_max_txg < safe_rollback_txg)
1857 spa->spa_extreme_rewind = B_TRUE;
1858 rewind_error = spa_load_retry(spa, state, mosconfig);
1861 if (config)
1862 spa_rewind_data_to_nvlist(spa, config);
1864 spa->spa_extreme_rewind = B_FALSE;
1865 spa->spa_load_max_txg = UINT64_MAX;
1867 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
1868 spa_config_set(spa, config);
1870 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
1874 * Pool Open/Import
1876 * The import case is identical to an open except that the configuration is sent
1877 * down from userland, instead of grabbed from the configuration cache. For the
1878 * case of an open, the pool configuration will exist in the
1879 * POOL_STATE_UNINITIALIZED state.
1881 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1882 * the same time open the pool, without having to keep around the spa_t in some
1883 * ambiguous state.
1885 static int
1886 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
1887 nvlist_t **config)
1889 spa_t *spa;
1890 boolean_t norewind;
1891 boolean_t extreme;
1892 zpool_rewind_policy_t policy;
1893 spa_load_state_t state = SPA_LOAD_OPEN;
1894 int error;
1895 int locked = B_FALSE;
1897 *spapp = NULL;
1899 zpool_get_rewind_policy(nvpolicy, &policy);
1900 if (policy.zrp_request & ZPOOL_DO_REWIND)
1901 state = SPA_LOAD_RECOVER;
1902 norewind = (policy.zrp_request == ZPOOL_NO_REWIND);
1903 extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0);
1906 * As disgusting as this is, we need to support recursive calls to this
1907 * function because dsl_dir_open() is called during spa_load(), and ends
1908 * up calling spa_open() again. The real fix is to figure out how to
1909 * avoid dsl_dir_open() calling this in the first place.
1911 if (mutex_owner(&spa_namespace_lock) != curthread) {
1912 mutex_enter(&spa_namespace_lock);
1913 locked = B_TRUE;
1916 if ((spa = spa_lookup(pool)) == NULL) {
1917 if (locked)
1918 mutex_exit(&spa_namespace_lock);
1919 return (ENOENT);
1922 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1924 spa_activate(spa, spa_mode_global);
1926 if (spa->spa_last_open_failed && norewind) {
1927 if (config != NULL && spa->spa_config)
1928 VERIFY(nvlist_dup(spa->spa_config,
1929 config, KM_SLEEP) == 0);
1930 spa_deactivate(spa);
1931 if (locked)
1932 mutex_exit(&spa_namespace_lock);
1933 return (spa->spa_last_open_failed);
1936 if (state != SPA_LOAD_RECOVER)
1937 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
1939 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
1940 extreme);
1942 if (error == EBADF) {
1944 * If vdev_validate() returns failure (indicated by
1945 * EBADF), it indicates that one of the vdevs indicates
1946 * that the pool has been exported or destroyed. If
1947 * this is the case, the config cache is out of sync and
1948 * we should remove the pool from the namespace.
1950 spa_unload(spa);
1951 spa_deactivate(spa);
1952 spa_config_sync(spa, B_TRUE, B_TRUE);
1953 spa_remove(spa);
1954 if (locked)
1955 mutex_exit(&spa_namespace_lock);
1956 return (ENOENT);
1959 if (error) {
1961 * We can't open the pool, but we still have useful
1962 * information: the state of each vdev after the
1963 * attempted vdev_open(). Return this to the user.
1965 if (config != NULL && spa->spa_config)
1966 VERIFY(nvlist_dup(spa->spa_config, config,
1967 KM_SLEEP) == 0);
1968 spa_unload(spa);
1969 spa_deactivate(spa);
1970 spa->spa_last_open_failed = error;
1971 if (locked)
1972 mutex_exit(&spa_namespace_lock);
1973 *spapp = NULL;
1974 return (error);
1979 spa_open_ref(spa, tag);
1981 spa->spa_last_open_failed = 0;
1983 if (config != NULL)
1984 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1986 spa->spa_last_ubsync_txg = 0;
1987 spa->spa_load_txg = 0;
1989 if (locked)
1990 mutex_exit(&spa_namespace_lock);
1992 *spapp = spa;
1994 return (0);
1998 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
1999 nvlist_t **config)
2001 return (spa_open_common(name, spapp, tag, policy, config));
2005 spa_open(const char *name, spa_t **spapp, void *tag)
2007 return (spa_open_common(name, spapp, tag, NULL, NULL));
2011 * Lookup the given spa_t, incrementing the inject count in the process,
2012 * preventing it from being exported or destroyed.
2014 spa_t *
2015 spa_inject_addref(char *name)
2017 spa_t *spa;
2019 mutex_enter(&spa_namespace_lock);
2020 if ((spa = spa_lookup(name)) == NULL) {
2021 mutex_exit(&spa_namespace_lock);
2022 return (NULL);
2024 spa->spa_inject_ref++;
2025 mutex_exit(&spa_namespace_lock);
2027 return (spa);
2030 void
2031 spa_inject_delref(spa_t *spa)
2033 mutex_enter(&spa_namespace_lock);
2034 spa->spa_inject_ref--;
2035 mutex_exit(&spa_namespace_lock);
2039 * Add spares device information to the nvlist.
2041 static void
2042 spa_add_spares(spa_t *spa, nvlist_t *config)
2044 nvlist_t **spares;
2045 uint_t i, nspares;
2046 nvlist_t *nvroot;
2047 uint64_t guid;
2048 vdev_stat_t *vs;
2049 uint_t vsc;
2050 uint64_t pool;
2052 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2054 if (spa->spa_spares.sav_count == 0)
2055 return;
2057 VERIFY(nvlist_lookup_nvlist(config,
2058 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2059 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2060 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2061 if (nspares != 0) {
2062 VERIFY(nvlist_add_nvlist_array(nvroot,
2063 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2064 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2065 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2068 * Go through and find any spares which have since been
2069 * repurposed as an active spare. If this is the case, update
2070 * their status appropriately.
2072 for (i = 0; i < nspares; i++) {
2073 VERIFY(nvlist_lookup_uint64(spares[i],
2074 ZPOOL_CONFIG_GUID, &guid) == 0);
2075 if (spa_spare_exists(guid, &pool, NULL) &&
2076 pool != 0ULL) {
2077 VERIFY(nvlist_lookup_uint64_array(
2078 spares[i], ZPOOL_CONFIG_STATS,
2079 (uint64_t **)&vs, &vsc) == 0);
2080 vs->vs_state = VDEV_STATE_CANT_OPEN;
2081 vs->vs_aux = VDEV_AUX_SPARED;
2088 * Add l2cache device information to the nvlist, including vdev stats.
2090 static void
2091 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2093 nvlist_t **l2cache;
2094 uint_t i, j, nl2cache;
2095 nvlist_t *nvroot;
2096 uint64_t guid;
2097 vdev_t *vd;
2098 vdev_stat_t *vs;
2099 uint_t vsc;
2101 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2103 if (spa->spa_l2cache.sav_count == 0)
2104 return;
2106 VERIFY(nvlist_lookup_nvlist(config,
2107 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2108 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2109 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2110 if (nl2cache != 0) {
2111 VERIFY(nvlist_add_nvlist_array(nvroot,
2112 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2113 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2114 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2117 * Update level 2 cache device stats.
2120 for (i = 0; i < nl2cache; i++) {
2121 VERIFY(nvlist_lookup_uint64(l2cache[i],
2122 ZPOOL_CONFIG_GUID, &guid) == 0);
2124 vd = NULL;
2125 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2126 if (guid ==
2127 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2128 vd = spa->spa_l2cache.sav_vdevs[j];
2129 break;
2132 ASSERT(vd != NULL);
2134 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2135 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2136 vdev_get_stats(vd, vs);
2142 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2144 int error;
2145 spa_t *spa;
2147 *config = NULL;
2148 error = spa_open_common(name, &spa, FTAG, NULL, config);
2150 if (spa != NULL) {
2152 * This still leaves a window of inconsistency where the spares
2153 * or l2cache devices could change and the config would be
2154 * self-inconsistent.
2156 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2158 if (*config != NULL) {
2159 VERIFY(nvlist_add_uint64(*config,
2160 ZPOOL_CONFIG_ERRCOUNT,
2161 spa_get_errlog_size(spa)) == 0);
2163 if (spa_suspended(spa))
2164 VERIFY(nvlist_add_uint64(*config,
2165 ZPOOL_CONFIG_SUSPENDED,
2166 spa->spa_failmode) == 0);
2168 spa_add_spares(spa, *config);
2169 spa_add_l2cache(spa, *config);
2174 * We want to get the alternate root even for faulted pools, so we cheat
2175 * and call spa_lookup() directly.
2177 if (altroot) {
2178 if (spa == NULL) {
2179 mutex_enter(&spa_namespace_lock);
2180 spa = spa_lookup(name);
2181 if (spa)
2182 spa_altroot(spa, altroot, buflen);
2183 else
2184 altroot[0] = '\0';
2185 spa = NULL;
2186 mutex_exit(&spa_namespace_lock);
2187 } else {
2188 spa_altroot(spa, altroot, buflen);
2192 if (spa != NULL) {
2193 spa_config_exit(spa, SCL_CONFIG, FTAG);
2194 spa_close(spa, FTAG);
2197 return (error);
2201 * Validate that the auxiliary device array is well formed. We must have an
2202 * array of nvlists, each which describes a valid leaf vdev. If this is an
2203 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2204 * specified, as long as they are well-formed.
2206 static int
2207 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2208 spa_aux_vdev_t *sav, const char *config, uint64_t version,
2209 vdev_labeltype_t label)
2211 nvlist_t **dev;
2212 uint_t i, ndev;
2213 vdev_t *vd;
2214 int error;
2216 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2219 * It's acceptable to have no devs specified.
2221 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2222 return (0);
2224 if (ndev == 0)
2225 return (EINVAL);
2228 * Make sure the pool is formatted with a version that supports this
2229 * device type.
2231 if (spa_version(spa) < version)
2232 return (ENOTSUP);
2235 * Set the pending device list so we correctly handle device in-use
2236 * checking.
2238 sav->sav_pending = dev;
2239 sav->sav_npending = ndev;
2241 for (i = 0; i < ndev; i++) {
2242 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2243 mode)) != 0)
2244 goto out;
2246 if (!vd->vdev_ops->vdev_op_leaf) {
2247 vdev_free(vd);
2248 error = EINVAL;
2249 goto out;
2253 * The L2ARC currently only supports disk devices in
2254 * kernel context. For user-level testing, we allow it.
2256 #ifdef _KERNEL
2257 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2258 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2259 error = ENOTBLK;
2260 goto out;
2262 #endif
2263 vd->vdev_top = vd;
2265 if ((error = vdev_open(vd)) == 0 &&
2266 (error = vdev_label_init(vd, crtxg, label)) == 0) {
2267 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2268 vd->vdev_guid) == 0);
2271 vdev_free(vd);
2273 if (error &&
2274 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2275 goto out;
2276 else
2277 error = 0;
2280 out:
2281 sav->sav_pending = NULL;
2282 sav->sav_npending = 0;
2283 return (error);
2286 static int
2287 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2289 int error;
2291 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2293 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2294 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2295 VDEV_LABEL_SPARE)) != 0) {
2296 return (error);
2299 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2300 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2301 VDEV_LABEL_L2CACHE));
2304 static void
2305 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2306 const char *config)
2308 int i;
2310 if (sav->sav_config != NULL) {
2311 nvlist_t **olddevs;
2312 uint_t oldndevs;
2313 nvlist_t **newdevs;
2316 * Generate new dev list by concatentating with the
2317 * current dev list.
2319 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2320 &olddevs, &oldndevs) == 0);
2322 newdevs = kmem_alloc(sizeof (void *) *
2323 (ndevs + oldndevs), KM_SLEEP);
2324 for (i = 0; i < oldndevs; i++)
2325 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2326 KM_SLEEP) == 0);
2327 for (i = 0; i < ndevs; i++)
2328 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2329 KM_SLEEP) == 0);
2331 VERIFY(nvlist_remove(sav->sav_config, config,
2332 DATA_TYPE_NVLIST_ARRAY) == 0);
2334 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2335 config, newdevs, ndevs + oldndevs) == 0);
2336 for (i = 0; i < oldndevs + ndevs; i++)
2337 nvlist_free(newdevs[i]);
2338 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2339 } else {
2341 * Generate a new dev list.
2343 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2344 KM_SLEEP) == 0);
2345 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2346 devs, ndevs) == 0);
2351 * Stop and drop level 2 ARC devices
2353 void
2354 spa_l2cache_drop(spa_t *spa)
2356 vdev_t *vd;
2357 int i;
2358 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2360 for (i = 0; i < sav->sav_count; i++) {
2361 uint64_t pool;
2363 vd = sav->sav_vdevs[i];
2364 ASSERT(vd != NULL);
2366 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2367 pool != 0ULL && l2arc_vdev_present(vd))
2368 l2arc_remove_vdev(vd);
2369 if (vd->vdev_isl2cache)
2370 spa_l2cache_remove(vd);
2371 vdev_clear_stats(vd);
2372 (void) vdev_close(vd);
2377 * Pool Creation
2380 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2381 const char *history_str, nvlist_t *zplprops)
2383 spa_t *spa;
2384 char *altroot = NULL;
2385 vdev_t *rvd;
2386 dsl_pool_t *dp;
2387 dmu_tx_t *tx;
2388 int error = 0;
2389 uint64_t txg = TXG_INITIAL;
2390 nvlist_t **spares, **l2cache;
2391 uint_t nspares, nl2cache;
2392 uint64_t version;
2395 * If this pool already exists, return failure.
2397 mutex_enter(&spa_namespace_lock);
2398 if (spa_lookup(pool) != NULL) {
2399 mutex_exit(&spa_namespace_lock);
2400 return (EEXIST);
2404 * Allocate a new spa_t structure.
2406 (void) nvlist_lookup_string(props,
2407 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2408 spa = spa_add(pool, NULL, altroot);
2409 spa_activate(spa, spa_mode_global);
2411 if (props && (error = spa_prop_validate(spa, props))) {
2412 spa_deactivate(spa);
2413 spa_remove(spa);
2414 mutex_exit(&spa_namespace_lock);
2415 return (error);
2418 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2419 &version) != 0)
2420 version = SPA_VERSION;
2421 ASSERT(version <= SPA_VERSION);
2423 spa->spa_first_txg = txg;
2424 spa->spa_uberblock.ub_txg = txg - 1;
2425 spa->spa_uberblock.ub_version = version;
2426 spa->spa_ubsync = spa->spa_uberblock;
2429 * Create "The Godfather" zio to hold all async IOs
2431 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2432 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2435 * Create the root vdev.
2437 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2439 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2441 ASSERT(error != 0 || rvd != NULL);
2442 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2444 if (error == 0 && !zfs_allocatable_devs(nvroot))
2445 error = EINVAL;
2447 if (error == 0 &&
2448 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2449 (error = spa_validate_aux(spa, nvroot, txg,
2450 VDEV_ALLOC_ADD)) == 0) {
2451 for (int c = 0; c < rvd->vdev_children; c++) {
2452 vdev_metaslab_set_size(rvd->vdev_child[c]);
2453 vdev_expand(rvd->vdev_child[c], txg);
2457 spa_config_exit(spa, SCL_ALL, FTAG);
2459 if (error != 0) {
2460 spa_unload(spa);
2461 spa_deactivate(spa);
2462 spa_remove(spa);
2463 mutex_exit(&spa_namespace_lock);
2464 return (error);
2468 * Get the list of spares, if specified.
2470 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2471 &spares, &nspares) == 0) {
2472 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2473 KM_SLEEP) == 0);
2474 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2475 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2477 spa_load_spares(spa);
2478 spa_config_exit(spa, SCL_ALL, FTAG);
2479 spa->spa_spares.sav_sync = B_TRUE;
2483 * Get the list of level 2 cache devices, if specified.
2485 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2486 &l2cache, &nl2cache) == 0) {
2487 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2488 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2489 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2490 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2492 spa_load_l2cache(spa);
2493 spa_config_exit(spa, SCL_ALL, FTAG);
2494 spa->spa_l2cache.sav_sync = B_TRUE;
2497 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2498 spa->spa_meta_objset = dp->dp_meta_objset;
2501 * Create DDTs (dedup tables).
2503 ddt_create(spa);
2505 spa_update_dspace(spa);
2507 tx = dmu_tx_create_assigned(dp, txg);
2510 * Create the pool config object.
2512 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2513 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2514 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2516 if (zap_add(spa->spa_meta_objset,
2517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2518 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2519 cmn_err(CE_PANIC, "failed to add pool config");
2522 /* Newly created pools with the right version are always deflated. */
2523 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2524 spa->spa_deflate = TRUE;
2525 if (zap_add(spa->spa_meta_objset,
2526 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2527 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2528 cmn_err(CE_PANIC, "failed to add deflate");
2533 * Create the deferred-free bplist object. Turn off compression
2534 * because sync-to-convergence takes longer if the blocksize
2535 * keeps changing.
2537 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2538 1 << 14, tx);
2539 dmu_object_set_compress(spa->spa_meta_objset,
2540 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2542 if (zap_add(spa->spa_meta_objset,
2543 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2544 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2545 cmn_err(CE_PANIC, "failed to add bplist");
2549 * Create the pool's history object.
2551 if (version >= SPA_VERSION_ZPOOL_HISTORY)
2552 spa_history_create_obj(spa, tx);
2555 * Set pool properties.
2557 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2558 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2559 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2560 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2562 if (props != NULL) {
2563 spa_configfile_set(spa, props, B_FALSE);
2564 spa_sync_props(spa, props, CRED(), tx);
2567 dmu_tx_commit(tx);
2569 spa->spa_sync_on = B_TRUE;
2570 txg_sync_start(spa->spa_dsl_pool);
2573 * We explicitly wait for the first transaction to complete so that our
2574 * bean counters are appropriately updated.
2576 txg_wait_synced(spa->spa_dsl_pool, txg);
2578 spa_config_sync(spa, B_FALSE, B_TRUE);
2580 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2581 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2582 spa_history_log_version(spa, LOG_POOL_CREATE);
2584 spa->spa_minref = refcount_count(&spa->spa_refcount);
2586 mutex_exit(&spa_namespace_lock);
2588 return (0);
2591 #ifdef _KERNEL
2593 * Get the root pool information from the root disk, then import the root pool
2594 * during the system boot up time.
2596 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2598 static nvlist_t *
2599 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2601 nvlist_t *config;
2602 nvlist_t *nvtop, *nvroot;
2603 uint64_t pgid;
2605 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2606 return (NULL);
2609 * Add this top-level vdev to the child array.
2611 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2612 &nvtop) == 0);
2613 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2614 &pgid) == 0);
2615 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2618 * Put this pool's top-level vdevs into a root vdev.
2620 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2621 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2622 VDEV_TYPE_ROOT) == 0);
2623 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2624 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2625 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2626 &nvtop, 1) == 0);
2629 * Replace the existing vdev_tree with the new root vdev in
2630 * this pool's configuration (remove the old, add the new).
2632 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2633 nvlist_free(nvroot);
2634 return (config);
2638 * Walk the vdev tree and see if we can find a device with "better"
2639 * configuration. A configuration is "better" if the label on that
2640 * device has a more recent txg.
2642 static void
2643 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2645 for (int c = 0; c < vd->vdev_children; c++)
2646 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2648 if (vd->vdev_ops->vdev_op_leaf) {
2649 nvlist_t *label;
2650 uint64_t label_txg;
2652 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2653 &label) != 0)
2654 return;
2656 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2657 &label_txg) == 0);
2660 * Do we have a better boot device?
2662 if (label_txg > *txg) {
2663 *txg = label_txg;
2664 *avd = vd;
2666 nvlist_free(label);
2671 * Import a root pool.
2673 * For x86. devpath_list will consist of devid and/or physpath name of
2674 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2675 * The GRUB "findroot" command will return the vdev we should boot.
2677 * For Sparc, devpath_list consists the physpath name of the booting device
2678 * no matter the rootpool is a single device pool or a mirrored pool.
2679 * e.g.
2680 * "/pci@1f,0/ide@d/disk@0,0:a"
2683 spa_import_rootpool(char *devpath, char *devid)
2685 spa_t *spa;
2686 vdev_t *rvd, *bvd, *avd = NULL;
2687 nvlist_t *config, *nvtop;
2688 uint64_t guid, txg;
2689 char *pname;
2690 int error;
2693 * Read the label from the boot device and generate a configuration.
2695 config = spa_generate_rootconf(devpath, devid, &guid);
2696 #if defined(_OBP) && defined(_KERNEL)
2697 if (config == NULL) {
2698 if (strstr(devpath, "/iscsi/ssd") != NULL) {
2699 /* iscsi boot */
2700 get_iscsi_bootpath_phy(devpath);
2701 config = spa_generate_rootconf(devpath, devid, &guid);
2704 #endif
2705 if (config == NULL) {
2706 cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2707 devpath);
2708 return (EIO);
2711 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2712 &pname) == 0);
2713 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2715 mutex_enter(&spa_namespace_lock);
2716 if ((spa = spa_lookup(pname)) != NULL) {
2718 * Remove the existing root pool from the namespace so that we
2719 * can replace it with the correct config we just read in.
2721 spa_remove(spa);
2724 spa = spa_add(pname, config, NULL);
2725 spa->spa_is_root = B_TRUE;
2726 spa->spa_load_verbatim = B_TRUE;
2729 * Build up a vdev tree based on the boot device's label config.
2731 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2732 &nvtop) == 0);
2733 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2734 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2735 VDEV_ALLOC_ROOTPOOL);
2736 spa_config_exit(spa, SCL_ALL, FTAG);
2737 if (error) {
2738 mutex_exit(&spa_namespace_lock);
2739 nvlist_free(config);
2740 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2741 pname);
2742 return (error);
2746 * Get the boot vdev.
2748 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2749 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2750 (u_longlong_t)guid);
2751 error = ENOENT;
2752 goto out;
2756 * Determine if there is a better boot device.
2758 avd = bvd;
2759 spa_alt_rootvdev(rvd, &avd, &txg);
2760 if (avd != bvd) {
2761 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2762 "try booting from '%s'", avd->vdev_path);
2763 error = EINVAL;
2764 goto out;
2768 * If the boot device is part of a spare vdev then ensure that
2769 * we're booting off the active spare.
2771 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2772 !bvd->vdev_isspare) {
2773 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2774 "try booting from '%s'",
2775 bvd->vdev_parent->vdev_child[1]->vdev_path);
2776 error = EINVAL;
2777 goto out;
2780 error = 0;
2781 spa_history_log_version(spa, LOG_POOL_IMPORT);
2782 out:
2783 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2784 vdev_free(rvd);
2785 spa_config_exit(spa, SCL_ALL, FTAG);
2786 mutex_exit(&spa_namespace_lock);
2788 nvlist_free(config);
2789 return (error);
2792 #endif
2795 * Take a pool and insert it into the namespace as if it had been loaded at
2796 * boot.
2799 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2801 spa_t *spa;
2802 zpool_rewind_policy_t policy;
2803 char *altroot = NULL;
2805 mutex_enter(&spa_namespace_lock);
2806 if (spa_lookup(pool) != NULL) {
2807 mutex_exit(&spa_namespace_lock);
2808 return (EEXIST);
2811 (void) nvlist_lookup_string(props,
2812 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2813 spa = spa_add(pool, config, altroot);
2815 zpool_get_rewind_policy(config, &policy);
2816 spa->spa_load_max_txg = policy.zrp_txg;
2818 spa->spa_load_verbatim = B_TRUE;
2820 if (props != NULL)
2821 spa_configfile_set(spa, props, B_FALSE);
2823 spa_config_sync(spa, B_FALSE, B_TRUE);
2825 mutex_exit(&spa_namespace_lock);
2826 spa_history_log_version(spa, LOG_POOL_IMPORT);
2828 return (0);
2832 * Import a non-root pool into the system.
2835 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2837 spa_t *spa;
2838 char *altroot = NULL;
2839 spa_load_state_t state = SPA_LOAD_IMPORT;
2840 zpool_rewind_policy_t policy;
2841 int error;
2842 nvlist_t *nvroot;
2843 nvlist_t **spares, **l2cache;
2844 uint_t nspares, nl2cache;
2847 * If a pool with this name exists, return failure.
2849 mutex_enter(&spa_namespace_lock);
2850 if ((spa = spa_lookup(pool)) != NULL) {
2851 mutex_exit(&spa_namespace_lock);
2852 return (EEXIST);
2855 zpool_get_rewind_policy(config, &policy);
2856 if (policy.zrp_request & ZPOOL_DO_REWIND)
2857 state = SPA_LOAD_RECOVER;
2860 * Create and initialize the spa structure.
2862 (void) nvlist_lookup_string(props,
2863 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2864 spa = spa_add(pool, config, altroot);
2865 spa_activate(spa, spa_mode_global);
2868 * Don't start async tasks until we know everything is healthy.
2870 spa_async_suspend(spa);
2873 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
2874 * because the user-supplied config is actually the one to trust when
2875 * doing an import.
2877 if (state != SPA_LOAD_RECOVER)
2878 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2879 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
2880 ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0));
2883 * Propagate anything learned about failing or best txgs
2884 * back to caller
2886 spa_rewind_data_to_nvlist(spa, config);
2888 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2890 * Toss any existing sparelist, as it doesn't have any validity
2891 * anymore, and conflicts with spa_has_spare().
2893 if (spa->spa_spares.sav_config) {
2894 nvlist_free(spa->spa_spares.sav_config);
2895 spa->spa_spares.sav_config = NULL;
2896 spa_load_spares(spa);
2898 if (spa->spa_l2cache.sav_config) {
2899 nvlist_free(spa->spa_l2cache.sav_config);
2900 spa->spa_l2cache.sav_config = NULL;
2901 spa_load_l2cache(spa);
2904 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2905 &nvroot) == 0);
2906 if (error == 0)
2907 error = spa_validate_aux(spa, nvroot, -1ULL,
2908 VDEV_ALLOC_SPARE);
2909 if (error == 0)
2910 error = spa_validate_aux(spa, nvroot, -1ULL,
2911 VDEV_ALLOC_L2CACHE);
2912 spa_config_exit(spa, SCL_ALL, FTAG);
2914 if (props != NULL)
2915 spa_configfile_set(spa, props, B_FALSE);
2917 if (error != 0 || (props && spa_writeable(spa) &&
2918 (error = spa_prop_set(spa, props)))) {
2919 spa_unload(spa);
2920 spa_deactivate(spa);
2921 spa_remove(spa);
2922 mutex_exit(&spa_namespace_lock);
2923 return (error);
2926 spa_async_resume(spa);
2929 * Override any spares and level 2 cache devices as specified by
2930 * the user, as these may have correct device names/devids, etc.
2932 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2933 &spares, &nspares) == 0) {
2934 if (spa->spa_spares.sav_config)
2935 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2936 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2937 else
2938 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2939 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2940 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2941 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2942 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2943 spa_load_spares(spa);
2944 spa_config_exit(spa, SCL_ALL, FTAG);
2945 spa->spa_spares.sav_sync = B_TRUE;
2947 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2948 &l2cache, &nl2cache) == 0) {
2949 if (spa->spa_l2cache.sav_config)
2950 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2951 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2952 else
2953 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2954 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2955 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2956 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2957 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2958 spa_load_l2cache(spa);
2959 spa_config_exit(spa, SCL_ALL, FTAG);
2960 spa->spa_l2cache.sav_sync = B_TRUE;
2964 * Check for any removed devices.
2966 if (spa->spa_autoreplace) {
2967 spa_aux_check_removed(&spa->spa_spares);
2968 spa_aux_check_removed(&spa->spa_l2cache);
2971 if (spa_writeable(spa)) {
2973 * Update the config cache to include the newly-imported pool.
2975 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2979 * It's possible that the pool was expanded while it was exported.
2980 * We kick off an async task to handle this for us.
2982 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2984 mutex_exit(&spa_namespace_lock);
2985 spa_history_log_version(spa, LOG_POOL_IMPORT);
2987 return (0);
2992 * This (illegal) pool name is used when temporarily importing a spa_t in order
2993 * to get the vdev stats associated with the imported devices.
2995 #define TRYIMPORT_NAME "$import"
2997 nvlist_t *
2998 spa_tryimport(nvlist_t *tryconfig)
3000 nvlist_t *config = NULL;
3001 char *poolname;
3002 spa_t *spa;
3003 uint64_t state;
3004 int error;
3006 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3007 return (NULL);
3009 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3010 return (NULL);
3013 * Create and initialize the spa structure.
3015 mutex_enter(&spa_namespace_lock);
3016 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3017 spa_activate(spa, FREAD);
3020 * Pass off the heavy lifting to spa_load().
3021 * Pass TRUE for mosconfig because the user-supplied config
3022 * is actually the one to trust when doing an import.
3024 error = spa_load(spa, SPA_LOAD_TRYIMPORT, B_TRUE);
3027 * If 'tryconfig' was at least parsable, return the current config.
3029 if (spa->spa_root_vdev != NULL) {
3030 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3031 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3032 poolname) == 0);
3033 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3034 state) == 0);
3035 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3036 spa->spa_uberblock.ub_timestamp) == 0);
3039 * If the bootfs property exists on this pool then we
3040 * copy it out so that external consumers can tell which
3041 * pools are bootable.
3043 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3044 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3047 * We have to play games with the name since the
3048 * pool was opened as TRYIMPORT_NAME.
3050 if (dsl_dsobj_to_dsname(spa_name(spa),
3051 spa->spa_bootfs, tmpname) == 0) {
3052 char *cp;
3053 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3055 cp = strchr(tmpname, '/');
3056 if (cp == NULL) {
3057 (void) strlcpy(dsname, tmpname,
3058 MAXPATHLEN);
3059 } else {
3060 (void) snprintf(dsname, MAXPATHLEN,
3061 "%s/%s", poolname, ++cp);
3063 VERIFY(nvlist_add_string(config,
3064 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3065 kmem_free(dsname, MAXPATHLEN);
3067 kmem_free(tmpname, MAXPATHLEN);
3071 * Add the list of hot spares and level 2 cache devices.
3073 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3074 spa_add_spares(spa, config);
3075 spa_add_l2cache(spa, config);
3076 spa_config_exit(spa, SCL_CONFIG, FTAG);
3079 spa_unload(spa);
3080 spa_deactivate(spa);
3081 spa_remove(spa);
3082 mutex_exit(&spa_namespace_lock);
3084 return (config);
3088 * Pool export/destroy
3090 * The act of destroying or exporting a pool is very simple. We make sure there
3091 * is no more pending I/O and any references to the pool are gone. Then, we
3092 * update the pool state and sync all the labels to disk, removing the
3093 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3094 * we don't sync the labels or remove the configuration cache.
3096 static int
3097 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3098 boolean_t force, boolean_t hardforce)
3100 spa_t *spa;
3102 if (oldconfig)
3103 *oldconfig = NULL;
3105 if (!(spa_mode_global & FWRITE))
3106 return (EROFS);
3108 mutex_enter(&spa_namespace_lock);
3109 if ((spa = spa_lookup(pool)) == NULL) {
3110 mutex_exit(&spa_namespace_lock);
3111 return (ENOENT);
3115 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3116 * reacquire the namespace lock, and see if we can export.
3118 spa_open_ref(spa, FTAG);
3119 mutex_exit(&spa_namespace_lock);
3120 spa_async_suspend(spa);
3121 mutex_enter(&spa_namespace_lock);
3122 spa_close(spa, FTAG);
3125 * The pool will be in core if it's openable,
3126 * in which case we can modify its state.
3128 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3130 * Objsets may be open only because they're dirty, so we
3131 * have to force it to sync before checking spa_refcnt.
3133 txg_wait_synced(spa->spa_dsl_pool, 0);
3136 * A pool cannot be exported or destroyed if there are active
3137 * references. If we are resetting a pool, allow references by
3138 * fault injection handlers.
3140 if (!spa_refcount_zero(spa) ||
3141 (spa->spa_inject_ref != 0 &&
3142 new_state != POOL_STATE_UNINITIALIZED)) {
3143 spa_async_resume(spa);
3144 mutex_exit(&spa_namespace_lock);
3145 return (EBUSY);
3149 * A pool cannot be exported if it has an active shared spare.
3150 * This is to prevent other pools stealing the active spare
3151 * from an exported pool. At user's own will, such pool can
3152 * be forcedly exported.
3154 if (!force && new_state == POOL_STATE_EXPORTED &&
3155 spa_has_active_shared_spare(spa)) {
3156 spa_async_resume(spa);
3157 mutex_exit(&spa_namespace_lock);
3158 return (EXDEV);
3162 * We want this to be reflected on every label,
3163 * so mark them all dirty. spa_unload() will do the
3164 * final sync that pushes these changes out.
3166 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3167 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3168 spa->spa_state = new_state;
3169 spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3170 vdev_config_dirty(spa->spa_root_vdev);
3171 spa_config_exit(spa, SCL_ALL, FTAG);
3175 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3177 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3178 spa_unload(spa);
3179 spa_deactivate(spa);
3182 if (oldconfig && spa->spa_config)
3183 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3185 if (new_state != POOL_STATE_UNINITIALIZED) {
3186 if (!hardforce)
3187 spa_config_sync(spa, B_TRUE, B_TRUE);
3188 spa_remove(spa);
3190 mutex_exit(&spa_namespace_lock);
3192 return (0);
3196 * Destroy a storage pool.
3199 spa_destroy(char *pool)
3201 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3202 B_FALSE, B_FALSE));
3206 * Export a storage pool.
3209 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3210 boolean_t hardforce)
3212 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3213 force, hardforce));
3217 * Similar to spa_export(), this unloads the spa_t without actually removing it
3218 * from the namespace in any way.
3221 spa_reset(char *pool)
3223 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3224 B_FALSE, B_FALSE));
3228 * ==========================================================================
3229 * Device manipulation
3230 * ==========================================================================
3234 * Add a device to a storage pool.
3237 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3239 uint64_t txg, id;
3240 int error;
3241 vdev_t *rvd = spa->spa_root_vdev;
3242 vdev_t *vd, *tvd;
3243 nvlist_t **spares, **l2cache;
3244 uint_t nspares, nl2cache;
3246 txg = spa_vdev_enter(spa);
3248 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3249 VDEV_ALLOC_ADD)) != 0)
3250 return (spa_vdev_exit(spa, NULL, txg, error));
3252 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
3254 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3255 &nspares) != 0)
3256 nspares = 0;
3258 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3259 &nl2cache) != 0)
3260 nl2cache = 0;
3262 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3263 return (spa_vdev_exit(spa, vd, txg, EINVAL));
3265 if (vd->vdev_children != 0 &&
3266 (error = vdev_create(vd, txg, B_FALSE)) != 0)
3267 return (spa_vdev_exit(spa, vd, txg, error));
3270 * We must validate the spares and l2cache devices after checking the
3271 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
3273 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3274 return (spa_vdev_exit(spa, vd, txg, error));
3277 * Transfer each new top-level vdev from vd to rvd.
3279 for (int c = 0; c < vd->vdev_children; c++) {
3282 * Set the vdev id to the first hole, if one exists.
3284 for (id = 0; id < rvd->vdev_children; id++) {
3285 if (rvd->vdev_child[id]->vdev_ishole) {
3286 vdev_free(rvd->vdev_child[id]);
3287 break;
3290 tvd = vd->vdev_child[c];
3291 vdev_remove_child(vd, tvd);
3292 tvd->vdev_id = id;
3293 vdev_add_child(rvd, tvd);
3294 vdev_config_dirty(tvd);
3297 if (nspares != 0) {
3298 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3299 ZPOOL_CONFIG_SPARES);
3300 spa_load_spares(spa);
3301 spa->spa_spares.sav_sync = B_TRUE;
3304 if (nl2cache != 0) {
3305 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3306 ZPOOL_CONFIG_L2CACHE);
3307 spa_load_l2cache(spa);
3308 spa->spa_l2cache.sav_sync = B_TRUE;
3312 * We have to be careful when adding new vdevs to an existing pool.
3313 * If other threads start allocating from these vdevs before we
3314 * sync the config cache, and we lose power, then upon reboot we may
3315 * fail to open the pool because there are DVAs that the config cache
3316 * can't translate. Therefore, we first add the vdevs without
3317 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3318 * and then let spa_config_update() initialize the new metaslabs.
3320 * spa_load() checks for added-but-not-initialized vdevs, so that
3321 * if we lose power at any point in this sequence, the remaining
3322 * steps will be completed the next time we load the pool.
3324 (void) spa_vdev_exit(spa, vd, txg, 0);
3326 mutex_enter(&spa_namespace_lock);
3327 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3328 mutex_exit(&spa_namespace_lock);
3330 return (0);
3334 * Attach a device to a mirror. The arguments are the path to any device
3335 * in the mirror, and the nvroot for the new device. If the path specifies
3336 * a device that is not mirrored, we automatically insert the mirror vdev.
3338 * If 'replacing' is specified, the new device is intended to replace the
3339 * existing device; in this case the two devices are made into their own
3340 * mirror using the 'replacing' vdev, which is functionally identical to
3341 * the mirror vdev (it actually reuses all the same ops) but has a few
3342 * extra rules: you can't attach to it after it's been created, and upon
3343 * completion of resilvering, the first disk (the one being replaced)
3344 * is automatically detached.
3347 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3349 uint64_t txg, open_txg;
3350 vdev_t *rvd = spa->spa_root_vdev;
3351 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3352 vdev_ops_t *pvops;
3353 char *oldvdpath, *newvdpath;
3354 int newvd_isspare;
3355 int error;
3357 txg = spa_vdev_enter(spa);
3359 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3361 if (oldvd == NULL)
3362 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3364 if (!oldvd->vdev_ops->vdev_op_leaf)
3365 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3367 pvd = oldvd->vdev_parent;
3369 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3370 VDEV_ALLOC_ADD)) != 0)
3371 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3373 if (newrootvd->vdev_children != 1)
3374 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3376 newvd = newrootvd->vdev_child[0];
3378 if (!newvd->vdev_ops->vdev_op_leaf)
3379 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3381 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3382 return (spa_vdev_exit(spa, newrootvd, txg, error));
3385 * Spares can't replace logs
3387 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3388 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3390 if (!replacing) {
3392 * For attach, the only allowable parent is a mirror or the root
3393 * vdev.
3395 if (pvd->vdev_ops != &vdev_mirror_ops &&
3396 pvd->vdev_ops != &vdev_root_ops)
3397 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3399 pvops = &vdev_mirror_ops;
3400 } else {
3402 * Active hot spares can only be replaced by inactive hot
3403 * spares.
3405 if (pvd->vdev_ops == &vdev_spare_ops &&
3406 pvd->vdev_child[1] == oldvd &&
3407 !spa_has_spare(spa, newvd->vdev_guid))
3408 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3411 * If the source is a hot spare, and the parent isn't already a
3412 * spare, then we want to create a new hot spare. Otherwise, we
3413 * want to create a replacing vdev. The user is not allowed to
3414 * attach to a spared vdev child unless the 'isspare' state is
3415 * the same (spare replaces spare, non-spare replaces
3416 * non-spare).
3418 if (pvd->vdev_ops == &vdev_replacing_ops)
3419 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3420 else if (pvd->vdev_ops == &vdev_spare_ops &&
3421 newvd->vdev_isspare != oldvd->vdev_isspare)
3422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3423 else if (pvd->vdev_ops != &vdev_spare_ops &&
3424 newvd->vdev_isspare)
3425 pvops = &vdev_spare_ops;
3426 else
3427 pvops = &vdev_replacing_ops;
3431 * Make sure the new device is big enough.
3433 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3434 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3437 * The new device cannot have a higher alignment requirement
3438 * than the top-level vdev.
3440 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3441 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3444 * If this is an in-place replacement, update oldvd's path and devid
3445 * to make it distinguishable from newvd, and unopenable from now on.
3447 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3448 spa_strfree(oldvd->vdev_path);
3449 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3450 KM_SLEEP);
3451 (void) sprintf(oldvd->vdev_path, "%s/%s",
3452 newvd->vdev_path, "old");
3453 if (oldvd->vdev_devid != NULL) {
3454 spa_strfree(oldvd->vdev_devid);
3455 oldvd->vdev_devid = NULL;
3460 * If the parent is not a mirror, or if we're replacing, insert the new
3461 * mirror/replacing/spare vdev above oldvd.
3463 if (pvd->vdev_ops != pvops)
3464 pvd = vdev_add_parent(oldvd, pvops);
3466 ASSERT(pvd->vdev_top->vdev_parent == rvd);
3467 ASSERT(pvd->vdev_ops == pvops);
3468 ASSERT(oldvd->vdev_parent == pvd);
3471 * Extract the new device from its root and add it to pvd.
3473 vdev_remove_child(newrootvd, newvd);
3474 newvd->vdev_id = pvd->vdev_children;
3475 newvd->vdev_crtxg = oldvd->vdev_crtxg;
3476 vdev_add_child(pvd, newvd);
3478 tvd = newvd->vdev_top;
3479 ASSERT(pvd->vdev_top == tvd);
3480 ASSERT(tvd->vdev_parent == rvd);
3482 vdev_config_dirty(tvd);
3485 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate
3486 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3488 open_txg = txg + TXG_CONCURRENT_STATES - 1;
3490 vdev_dtl_dirty(newvd, DTL_MISSING,
3491 TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3493 if (newvd->vdev_isspare) {
3494 spa_spare_activate(newvd);
3495 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3498 oldvdpath = spa_strdup(oldvd->vdev_path);
3499 newvdpath = spa_strdup(newvd->vdev_path);
3500 newvd_isspare = newvd->vdev_isspare;
3503 * Mark newvd's DTL dirty in this txg.
3505 vdev_dirty(tvd, VDD_DTL, newvd, txg);
3507 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3509 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3510 CRED(), "%s vdev=%s %s vdev=%s",
3511 replacing && newvd_isspare ? "spare in" :
3512 replacing ? "replace" : "attach", newvdpath,
3513 replacing ? "for" : "to", oldvdpath);
3515 spa_strfree(oldvdpath);
3516 spa_strfree(newvdpath);
3519 * Kick off a resilver to update newvd.
3521 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3523 return (0);
3527 * Detach a device from a mirror or replacing vdev.
3528 * If 'replace_done' is specified, only detach if the parent
3529 * is a replacing vdev.
3532 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3534 uint64_t txg;
3535 int error;
3536 vdev_t *rvd = spa->spa_root_vdev;
3537 vdev_t *vd, *pvd, *cvd, *tvd;
3538 boolean_t unspare = B_FALSE;
3539 uint64_t unspare_guid;
3540 size_t len;
3542 txg = spa_vdev_enter(spa);
3544 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3546 if (vd == NULL)
3547 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3549 if (!vd->vdev_ops->vdev_op_leaf)
3550 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3552 pvd = vd->vdev_parent;
3555 * If the parent/child relationship is not as expected, don't do it.
3556 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3557 * vdev that's replacing B with C. The user's intent in replacing
3558 * is to go from M(A,B) to M(A,C). If the user decides to cancel
3559 * the replace by detaching C, the expected behavior is to end up
3560 * M(A,B). But suppose that right after deciding to detach C,
3561 * the replacement of B completes. We would have M(A,C), and then
3562 * ask to detach C, which would leave us with just A -- not what
3563 * the user wanted. To prevent this, we make sure that the
3564 * parent/child relationship hasn't changed -- in this example,
3565 * that C's parent is still the replacing vdev R.
3567 if (pvd->vdev_guid != pguid && pguid != 0)
3568 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3571 * If replace_done is specified, only remove this device if it's
3572 * the first child of a replacing vdev. For the 'spare' vdev, either
3573 * disk can be removed.
3575 if (replace_done) {
3576 if (pvd->vdev_ops == &vdev_replacing_ops) {
3577 if (vd->vdev_id != 0)
3578 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3579 } else if (pvd->vdev_ops != &vdev_spare_ops) {
3580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3584 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3585 spa_version(spa) >= SPA_VERSION_SPARES);
3588 * Only mirror, replacing, and spare vdevs support detach.
3590 if (pvd->vdev_ops != &vdev_replacing_ops &&
3591 pvd->vdev_ops != &vdev_mirror_ops &&
3592 pvd->vdev_ops != &vdev_spare_ops)
3593 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3596 * If this device has the only valid copy of some data,
3597 * we cannot safely detach it.
3599 if (vdev_dtl_required(vd))
3600 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3602 ASSERT(pvd->vdev_children >= 2);
3605 * If we are detaching the second disk from a replacing vdev, then
3606 * check to see if we changed the original vdev's path to have "/old"
3607 * at the end in spa_vdev_attach(). If so, undo that change now.
3609 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3610 pvd->vdev_child[0]->vdev_path != NULL &&
3611 pvd->vdev_child[1]->vdev_path != NULL) {
3612 ASSERT(pvd->vdev_child[1] == vd);
3613 cvd = pvd->vdev_child[0];
3614 len = strlen(vd->vdev_path);
3615 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3616 strcmp(cvd->vdev_path + len, "/old") == 0) {
3617 spa_strfree(cvd->vdev_path);
3618 cvd->vdev_path = spa_strdup(vd->vdev_path);
3623 * If we are detaching the original disk from a spare, then it implies
3624 * that the spare should become a real disk, and be removed from the
3625 * active spare list for the pool.
3627 if (pvd->vdev_ops == &vdev_spare_ops &&
3628 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3629 unspare = B_TRUE;
3632 * Erase the disk labels so the disk can be used for other things.
3633 * This must be done after all other error cases are handled,
3634 * but before we disembowel vd (so we can still do I/O to it).
3635 * But if we can't do it, don't treat the error as fatal --
3636 * it may be that the unwritability of the disk is the reason
3637 * it's being detached!
3639 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3642 * Remove vd from its parent and compact the parent's children.
3644 vdev_remove_child(pvd, vd);
3645 vdev_compact_children(pvd);
3648 * Remember one of the remaining children so we can get tvd below.
3650 cvd = pvd->vdev_child[0];
3653 * If we need to remove the remaining child from the list of hot spares,
3654 * do it now, marking the vdev as no longer a spare in the process.
3655 * We must do this before vdev_remove_parent(), because that can
3656 * change the GUID if it creates a new toplevel GUID. For a similar
3657 * reason, we must remove the spare now, in the same txg as the detach;
3658 * otherwise someone could attach a new sibling, change the GUID, and
3659 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3661 if (unspare) {
3662 ASSERT(cvd->vdev_isspare);
3663 spa_spare_remove(cvd);
3664 unspare_guid = cvd->vdev_guid;
3665 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3669 * If the parent mirror/replacing vdev only has one child,
3670 * the parent is no longer needed. Remove it from the tree.
3672 if (pvd->vdev_children == 1)
3673 vdev_remove_parent(cvd);
3676 * We don't set tvd until now because the parent we just removed
3677 * may have been the previous top-level vdev.
3679 tvd = cvd->vdev_top;
3680 ASSERT(tvd->vdev_parent == rvd);
3683 * Reevaluate the parent vdev state.
3685 vdev_propagate_state(cvd);
3688 * If the 'autoexpand' property is set on the pool then automatically
3689 * try to expand the size of the pool. For example if the device we
3690 * just detached was smaller than the others, it may be possible to
3691 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3692 * first so that we can obtain the updated sizes of the leaf vdevs.
3694 if (spa->spa_autoexpand) {
3695 vdev_reopen(tvd);
3696 vdev_expand(tvd, txg);
3699 vdev_config_dirty(tvd);
3702 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
3703 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3704 * But first make sure we're not on any *other* txg's DTL list, to
3705 * prevent vd from being accessed after it's freed.
3707 for (int t = 0; t < TXG_SIZE; t++)
3708 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3709 vd->vdev_detached = B_TRUE;
3710 vdev_dirty(tvd, VDD_DTL, vd, txg);
3712 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3714 error = spa_vdev_exit(spa, vd, txg, 0);
3717 * If this was the removal of the original device in a hot spare vdev,
3718 * then we want to go through and remove the device from the hot spare
3719 * list of every other pool.
3721 if (unspare) {
3722 spa_t *myspa = spa;
3723 spa = NULL;
3724 mutex_enter(&spa_namespace_lock);
3725 while ((spa = spa_next(spa)) != NULL) {
3726 if (spa->spa_state != POOL_STATE_ACTIVE)
3727 continue;
3728 if (spa == myspa)
3729 continue;
3730 spa_open_ref(spa, FTAG);
3731 mutex_exit(&spa_namespace_lock);
3732 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3733 mutex_enter(&spa_namespace_lock);
3734 spa_close(spa, FTAG);
3736 mutex_exit(&spa_namespace_lock);
3739 return (error);
3742 static nvlist_t *
3743 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3745 for (int i = 0; i < count; i++) {
3746 uint64_t guid;
3748 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3749 &guid) == 0);
3751 if (guid == target_guid)
3752 return (nvpp[i]);
3755 return (NULL);
3758 static void
3759 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3760 nvlist_t *dev_to_remove)
3762 nvlist_t **newdev = NULL;
3764 if (count > 1)
3765 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3767 for (int i = 0, j = 0; i < count; i++) {
3768 if (dev[i] == dev_to_remove)
3769 continue;
3770 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3773 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3774 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3776 for (int i = 0; i < count - 1; i++)
3777 nvlist_free(newdev[i]);
3779 if (count > 1)
3780 kmem_free(newdev, (count - 1) * sizeof (void *));
3784 * Removing a device from the vdev namespace requires several steps
3785 * and can take a significant amount of time. As a result we use
3786 * the spa_vdev_config_[enter/exit] functions which allow us to
3787 * grab and release the spa_config_lock while still holding the namespace
3788 * lock. During each step the configuration is synced out.
3792 * Initial phase of device removal - stop future allocations from this device.
3794 void
3795 spa_vdev_remove_start(spa_t *spa, vdev_t *vd)
3797 metaslab_group_t *mg = vd->vdev_mg;
3799 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3800 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3801 ASSERT(vd == vd->vdev_top);
3804 * Remove our vdev from the allocatable vdevs
3806 if (mg)
3807 metaslab_class_remove(mg->mg_class, mg);
3811 * Evacuate the device.
3814 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
3816 uint64_t txg;
3817 int error;
3819 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3820 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3821 ASSERT(vd == vd->vdev_top);
3824 * Evacuate the device. We don't hold the config lock as writer
3825 * since we need to do I/O but we do keep the
3826 * spa_namespace_lock held. Once this completes the device
3827 * should no longer have any blocks allocated on it.
3829 if (vd->vdev_islog) {
3831 * Evacuate the device.
3833 if (error = dmu_objset_find(spa_name(spa),
3834 zil_vdev_offline, NULL, DS_FIND_CHILDREN)) {
3835 uint64_t txg;
3837 txg = spa_vdev_config_enter(spa);
3838 metaslab_class_add(spa->spa_log_class,
3839 vd->vdev_mg);
3840 return (spa_vdev_exit(spa, NULL, txg, error));
3842 txg_wait_synced(spa_get_dsl(spa), 0);
3846 * Remove any remaining MOS metadata associated with the device.
3848 txg = spa_vdev_config_enter(spa);
3849 vd->vdev_removing = B_TRUE;
3850 vdev_dirty(vd, 0, NULL, txg);
3851 vdev_config_dirty(vd);
3852 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3854 return (0);
3858 * Complete the removal by cleaning up the namespace.
3860 void
3861 spa_vdev_remove_done(spa_t *spa, vdev_t *vd)
3863 vdev_t *rvd = spa->spa_root_vdev;
3864 metaslab_group_t *mg = vd->vdev_mg;
3865 uint64_t id = vd->vdev_id;
3866 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
3868 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3869 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3870 ASSERT(vd == vd->vdev_top);
3872 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3874 if (list_link_active(&vd->vdev_state_dirty_node))
3875 vdev_state_clean(vd);
3876 if (list_link_active(&vd->vdev_config_dirty_node))
3877 vdev_config_clean(vd);
3879 vdev_free(vd);
3882 * It's possible that another thread is trying todo a spa_vdev_add()
3883 * at the same time we're trying remove it. As a result the
3884 * added vdev may not have initialized its metaslabs yet.
3886 if (mg != NULL)
3887 metaslab_group_destroy(mg);
3889 if (last_vdev) {
3890 vdev_compact_children(rvd);
3891 } else {
3892 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
3893 vdev_add_child(rvd, vd);
3895 vdev_config_dirty(rvd);
3898 * Reassess the health of our root vdev.
3900 vdev_reopen(rvd);
3904 * Remove a device from the pool. Currently, this supports removing only hot
3905 * spares, slogs, and level 2 ARC devices.
3908 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3910 vdev_t *vd;
3911 nvlist_t **spares, **l2cache, *nv;
3912 uint64_t txg = 0;
3913 uint_t nspares, nl2cache;
3914 int error = 0;
3915 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3917 if (!locked)
3918 txg = spa_vdev_enter(spa);
3920 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3922 if (spa->spa_spares.sav_vdevs != NULL &&
3923 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3924 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3925 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3927 * Only remove the hot spare if it's not currently in use
3928 * in this pool.
3930 if (vd == NULL || unspare) {
3931 spa_vdev_remove_aux(spa->spa_spares.sav_config,
3932 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3933 spa_load_spares(spa);
3934 spa->spa_spares.sav_sync = B_TRUE;
3935 } else {
3936 error = EBUSY;
3938 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
3939 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3940 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3941 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3943 * Cache devices can always be removed.
3945 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3946 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3947 spa_load_l2cache(spa);
3948 spa->spa_l2cache.sav_sync = B_TRUE;
3949 } else if (vd != NULL && vd->vdev_islog) {
3950 ASSERT(!locked);
3951 ASSERT(vd == vd->vdev_top);
3954 * XXX - Once we have bp-rewrite this should
3955 * become the common case.
3959 * 1. Stop allocations
3960 * 2. Evacuate the device (i.e. kill off stubby and
3961 * metadata) and wait for it to complete (i.e. sync).
3962 * 3. Cleanup the vdev namespace.
3964 spa_vdev_remove_start(spa, vd);
3967 * Wait for the youngest allocations and frees to sync,
3968 * and then wait for the deferral of those frees to finish.
3970 spa_vdev_config_exit(spa, NULL,
3971 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
3973 if ((error = spa_vdev_remove_evacuate(spa, vd)) != 0)
3974 return (error);
3975 txg = spa_vdev_config_enter(spa);
3977 spa_vdev_remove_done(spa, vd);
3979 } else if (vd != NULL) {
3981 * Normal vdevs cannot be removed (yet).
3983 error = ENOTSUP;
3984 } else {
3986 * There is no vdev of any kind with the specified guid.
3988 error = ENOENT;
3991 if (!locked)
3992 return (spa_vdev_exit(spa, NULL, txg, error));
3994 return (error);
3998 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3999 * current spared, so we can detach it.
4001 static vdev_t *
4002 spa_vdev_resilver_done_hunt(vdev_t *vd)
4004 vdev_t *newvd, *oldvd;
4006 for (int c = 0; c < vd->vdev_children; c++) {
4007 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4008 if (oldvd != NULL)
4009 return (oldvd);
4013 * Check for a completed replacement.
4015 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4016 oldvd = vd->vdev_child[0];
4017 newvd = vd->vdev_child[1];
4019 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4020 !vdev_dtl_required(oldvd))
4021 return (oldvd);
4025 * Check for a completed resilver with the 'unspare' flag set.
4027 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4028 newvd = vd->vdev_child[0];
4029 oldvd = vd->vdev_child[1];
4031 if (newvd->vdev_unspare &&
4032 vdev_dtl_empty(newvd, DTL_MISSING) &&
4033 !vdev_dtl_required(oldvd)) {
4034 newvd->vdev_unspare = 0;
4035 return (oldvd);
4039 return (NULL);
4042 static void
4043 spa_vdev_resilver_done(spa_t *spa)
4045 vdev_t *vd, *pvd, *ppvd;
4046 uint64_t guid, sguid, pguid, ppguid;
4048 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4050 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4051 pvd = vd->vdev_parent;
4052 ppvd = pvd->vdev_parent;
4053 guid = vd->vdev_guid;
4054 pguid = pvd->vdev_guid;
4055 ppguid = ppvd->vdev_guid;
4056 sguid = 0;
4058 * If we have just finished replacing a hot spared device, then
4059 * we need to detach the parent's first child (the original hot
4060 * spare) as well.
4062 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4063 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4064 ASSERT(ppvd->vdev_children == 2);
4065 sguid = ppvd->vdev_child[1]->vdev_guid;
4067 spa_config_exit(spa, SCL_ALL, FTAG);
4068 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4069 return;
4070 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4071 return;
4072 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4075 spa_config_exit(spa, SCL_ALL, FTAG);
4079 * Update the stored path or FRU for this vdev. Dirty the vdev configuration,
4080 * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
4083 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4084 boolean_t ispath)
4086 vdev_t *vd;
4087 uint64_t txg;
4089 txg = spa_vdev_enter(spa);
4091 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4092 return (spa_vdev_exit(spa, NULL, txg, ENOENT));
4094 if (!vd->vdev_ops->vdev_op_leaf)
4095 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4097 if (ispath) {
4098 spa_strfree(vd->vdev_path);
4099 vd->vdev_path = spa_strdup(value);
4100 } else {
4101 if (vd->vdev_fru != NULL)
4102 spa_strfree(vd->vdev_fru);
4103 vd->vdev_fru = spa_strdup(value);
4106 vdev_config_dirty(vd->vdev_top);
4108 return (spa_vdev_exit(spa, NULL, txg, 0));
4112 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4114 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4118 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4120 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4124 * ==========================================================================
4125 * SPA Scrubbing
4126 * ==========================================================================
4130 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4132 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4134 if ((uint_t)type >= POOL_SCRUB_TYPES)
4135 return (ENOTSUP);
4138 * If a resilver was requested, but there is no DTL on a
4139 * writeable leaf device, we have nothing to do.
4141 if (type == POOL_SCRUB_RESILVER &&
4142 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4143 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4144 return (0);
4147 if (type == POOL_SCRUB_EVERYTHING &&
4148 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4149 spa->spa_dsl_pool->dp_scrub_isresilver)
4150 return (EBUSY);
4152 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4153 return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4154 } else if (type == POOL_SCRUB_NONE) {
4155 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4156 } else {
4157 return (EINVAL);
4162 * ==========================================================================
4163 * SPA async task processing
4164 * ==========================================================================
4167 static void
4168 spa_async_remove(spa_t *spa, vdev_t *vd)
4170 if (vd->vdev_remove_wanted) {
4171 vd->vdev_remove_wanted = 0;
4172 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4175 * We want to clear the stats, but we don't want to do a full
4176 * vdev_clear() as that will cause us to throw away
4177 * degraded/faulted state as well as attempt to reopen the
4178 * device, all of which is a waste.
4180 vd->vdev_stat.vs_read_errors = 0;
4181 vd->vdev_stat.vs_write_errors = 0;
4182 vd->vdev_stat.vs_checksum_errors = 0;
4184 vdev_state_dirty(vd->vdev_top);
4187 for (int c = 0; c < vd->vdev_children; c++)
4188 spa_async_remove(spa, vd->vdev_child[c]);
4191 static void
4192 spa_async_probe(spa_t *spa, vdev_t *vd)
4194 if (vd->vdev_probe_wanted) {
4195 vd->vdev_probe_wanted = 0;
4196 vdev_reopen(vd); /* vdev_open() does the actual probe */
4199 for (int c = 0; c < vd->vdev_children; c++)
4200 spa_async_probe(spa, vd->vdev_child[c]);
4203 static void
4204 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4206 sysevent_id_t eid;
4207 nvlist_t *attr;
4208 char *physpath;
4210 if (!spa->spa_autoexpand)
4211 return;
4213 for (int c = 0; c < vd->vdev_children; c++) {
4214 vdev_t *cvd = vd->vdev_child[c];
4215 spa_async_autoexpand(spa, cvd);
4218 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4219 return;
4221 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4222 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4224 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4225 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4227 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4228 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4230 nvlist_free(attr);
4231 kmem_free(physpath, MAXPATHLEN);
4234 static void
4235 spa_async_thread(spa_t *spa)
4237 int tasks;
4239 ASSERT(spa->spa_sync_on);
4241 mutex_enter(&spa->spa_async_lock);
4242 tasks = spa->spa_async_tasks;
4243 spa->spa_async_tasks = 0;
4244 mutex_exit(&spa->spa_async_lock);
4247 * See if the config needs to be updated.
4249 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4250 uint64_t old_space, new_space;
4252 mutex_enter(&spa_namespace_lock);
4253 old_space = metaslab_class_get_space(spa_normal_class(spa));
4254 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4255 new_space = metaslab_class_get_space(spa_normal_class(spa));
4256 mutex_exit(&spa_namespace_lock);
4259 * If the pool grew as a result of the config update,
4260 * then log an internal history event.
4262 if (new_space != old_space) {
4263 spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4264 spa, NULL, CRED(),
4265 "pool '%s' size: %llu(+%llu)",
4266 spa_name(spa), new_space, new_space - old_space);
4271 * See if any devices need to be marked REMOVED.
4273 if (tasks & SPA_ASYNC_REMOVE) {
4274 spa_vdev_state_enter(spa, SCL_NONE);
4275 spa_async_remove(spa, spa->spa_root_vdev);
4276 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4277 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4278 for (int i = 0; i < spa->spa_spares.sav_count; i++)
4279 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4280 (void) spa_vdev_state_exit(spa, NULL, 0);
4283 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4284 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4285 spa_async_autoexpand(spa, spa->spa_root_vdev);
4286 spa_config_exit(spa, SCL_CONFIG, FTAG);
4290 * See if any devices need to be probed.
4292 if (tasks & SPA_ASYNC_PROBE) {
4293 spa_vdev_state_enter(spa, SCL_NONE);
4294 spa_async_probe(spa, spa->spa_root_vdev);
4295 (void) spa_vdev_state_exit(spa, NULL, 0);
4299 * If any devices are done replacing, detach them.
4301 if (tasks & SPA_ASYNC_RESILVER_DONE)
4302 spa_vdev_resilver_done(spa);
4305 * Kick off a resilver.
4307 if (tasks & SPA_ASYNC_RESILVER)
4308 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4311 * Let the world know that we're done.
4313 mutex_enter(&spa->spa_async_lock);
4314 spa->spa_async_thread = NULL;
4315 cv_broadcast(&spa->spa_async_cv);
4316 mutex_exit(&spa->spa_async_lock);
4317 thread_exit();
4320 void
4321 spa_async_suspend(spa_t *spa)
4323 mutex_enter(&spa->spa_async_lock);
4324 spa->spa_async_suspended++;
4325 while (spa->spa_async_thread != NULL)
4326 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4327 mutex_exit(&spa->spa_async_lock);
4330 void
4331 spa_async_resume(spa_t *spa)
4333 mutex_enter(&spa->spa_async_lock);
4334 ASSERT(spa->spa_async_suspended != 0);
4335 spa->spa_async_suspended--;
4336 mutex_exit(&spa->spa_async_lock);
4339 static void
4340 spa_async_dispatch(spa_t *spa)
4342 mutex_enter(&spa->spa_async_lock);
4343 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4344 spa->spa_async_thread == NULL &&
4345 rootdir != NULL && !vn_is_readonly(rootdir))
4346 spa->spa_async_thread = thread_create(NULL, 0,
4347 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4348 mutex_exit(&spa->spa_async_lock);
4351 void
4352 spa_async_request(spa_t *spa, int task)
4354 mutex_enter(&spa->spa_async_lock);
4355 spa->spa_async_tasks |= task;
4356 mutex_exit(&spa->spa_async_lock);
4360 * ==========================================================================
4361 * SPA syncing routines
4362 * ==========================================================================
4364 static void
4365 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4367 blkptr_t blk;
4368 uint64_t itor = 0;
4369 uint8_t c = 1;
4371 while (bplist_iterate(bpl, &itor, &blk) == 0) {
4372 ASSERT(blk.blk_birth < txg);
4373 zio_free(spa, txg, &blk);
4376 bplist_vacate(bpl, tx);
4379 * Pre-dirty the first block so we sync to convergence faster.
4380 * (Usually only the first block is needed.)
4382 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4385 static void
4386 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4388 zio_t *zio = arg;
4390 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4391 zio->io_flags));
4394 static void
4395 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4397 char *packed = NULL;
4398 size_t bufsize;
4399 size_t nvsize = 0;
4400 dmu_buf_t *db;
4402 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4405 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4406 * information. This avoids the dbuf_will_dirty() path and
4407 * saves us a pre-read to get data we don't actually care about.
4409 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4410 packed = kmem_alloc(bufsize, KM_SLEEP);
4412 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4413 KM_SLEEP) == 0);
4414 bzero(packed + nvsize, bufsize - nvsize);
4416 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4418 kmem_free(packed, bufsize);
4420 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4421 dmu_buf_will_dirty(db, tx);
4422 *(uint64_t *)db->db_data = nvsize;
4423 dmu_buf_rele(db, FTAG);
4426 static void
4427 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4428 const char *config, const char *entry)
4430 nvlist_t *nvroot;
4431 nvlist_t **list;
4432 int i;
4434 if (!sav->sav_sync)
4435 return;
4438 * Update the MOS nvlist describing the list of available devices.
4439 * spa_validate_aux() will have already made sure this nvlist is
4440 * valid and the vdevs are labeled appropriately.
4442 if (sav->sav_object == 0) {
4443 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4444 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4445 sizeof (uint64_t), tx);
4446 VERIFY(zap_update(spa->spa_meta_objset,
4447 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4448 &sav->sav_object, tx) == 0);
4451 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4452 if (sav->sav_count == 0) {
4453 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4454 } else {
4455 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
4456 for (i = 0; i < sav->sav_count; i++)
4457 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
4458 B_FALSE, B_FALSE, B_TRUE);
4459 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
4460 sav->sav_count) == 0);
4461 for (i = 0; i < sav->sav_count; i++)
4462 nvlist_free(list[i]);
4463 kmem_free(list, sav->sav_count * sizeof (void *));
4466 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
4467 nvlist_free(nvroot);
4469 sav->sav_sync = B_FALSE;
4472 static void
4473 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
4475 nvlist_t *config;
4477 if (list_is_empty(&spa->spa_config_dirty_list))
4478 return;
4480 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4482 config = spa_config_generate(spa, spa->spa_root_vdev,
4483 dmu_tx_get_txg(tx), B_FALSE);
4485 spa_config_exit(spa, SCL_STATE, FTAG);
4487 if (spa->spa_config_syncing)
4488 nvlist_free(spa->spa_config_syncing);
4489 spa->spa_config_syncing = config;
4491 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4495 * Set zpool properties.
4497 static void
4498 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4500 spa_t *spa = arg1;
4501 objset_t *mos = spa->spa_meta_objset;
4502 nvlist_t *nvp = arg2;
4503 nvpair_t *elem;
4504 uint64_t intval;
4505 char *strval;
4506 zpool_prop_t prop;
4507 const char *propname;
4508 zprop_type_t proptype;
4510 mutex_enter(&spa->spa_props_lock);
4512 elem = NULL;
4513 while ((elem = nvlist_next_nvpair(nvp, elem))) {
4514 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4515 case ZPOOL_PROP_VERSION:
4517 * Only set version for non-zpool-creation cases
4518 * (set/import). spa_create() needs special care
4519 * for version setting.
4521 if (tx->tx_txg != TXG_INITIAL) {
4522 VERIFY(nvpair_value_uint64(elem,
4523 &intval) == 0);
4524 ASSERT(intval <= SPA_VERSION);
4525 ASSERT(intval >= spa_version(spa));
4526 spa->spa_uberblock.ub_version = intval;
4527 vdev_config_dirty(spa->spa_root_vdev);
4529 break;
4531 case ZPOOL_PROP_ALTROOT:
4533 * 'altroot' is a non-persistent property. It should
4534 * have been set temporarily at creation or import time.
4536 ASSERT(spa->spa_root != NULL);
4537 break;
4539 case ZPOOL_PROP_CACHEFILE:
4541 * 'cachefile' is also a non-persisitent property.
4543 break;
4544 default:
4546 * Set pool property values in the poolprops mos object.
4548 if (spa->spa_pool_props_object == 0) {
4549 VERIFY((spa->spa_pool_props_object =
4550 zap_create(mos, DMU_OT_POOL_PROPS,
4551 DMU_OT_NONE, 0, tx)) > 0);
4553 VERIFY(zap_update(mos,
4554 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4555 8, 1, &spa->spa_pool_props_object, tx)
4556 == 0);
4559 /* normalize the property name */
4560 propname = zpool_prop_to_name(prop);
4561 proptype = zpool_prop_get_type(prop);
4563 if (nvpair_type(elem) == DATA_TYPE_STRING) {
4564 ASSERT(proptype == PROP_TYPE_STRING);
4565 VERIFY(nvpair_value_string(elem, &strval) == 0);
4566 VERIFY(zap_update(mos,
4567 spa->spa_pool_props_object, propname,
4568 1, strlen(strval) + 1, strval, tx) == 0);
4570 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4571 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4573 if (proptype == PROP_TYPE_INDEX) {
4574 const char *unused;
4575 VERIFY(zpool_prop_index_to_string(
4576 prop, intval, &unused) == 0);
4578 VERIFY(zap_update(mos,
4579 spa->spa_pool_props_object, propname,
4580 8, 1, &intval, tx) == 0);
4581 } else {
4582 ASSERT(0); /* not allowed */
4585 switch (prop) {
4586 case ZPOOL_PROP_DELEGATION:
4587 spa->spa_delegation = intval;
4588 break;
4589 case ZPOOL_PROP_BOOTFS:
4590 spa->spa_bootfs = intval;
4591 break;
4592 case ZPOOL_PROP_FAILUREMODE:
4593 spa->spa_failmode = intval;
4594 break;
4595 case ZPOOL_PROP_AUTOEXPAND:
4596 spa->spa_autoexpand = intval;
4597 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4598 break;
4599 case ZPOOL_PROP_DEDUPDITTO:
4600 spa->spa_dedup_ditto = intval;
4601 break;
4602 default:
4603 break;
4607 /* log internal history if this is not a zpool create */
4608 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4609 tx->tx_txg != TXG_INITIAL) {
4610 spa_history_internal_log(LOG_POOL_PROPSET,
4611 spa, tx, cr, "%s %lld %s",
4612 nvpair_name(elem), intval, spa_name(spa));
4616 mutex_exit(&spa->spa_props_lock);
4620 * Sync the specified transaction group. New blocks may be dirtied as
4621 * part of the process, so we iterate until it converges.
4623 void
4624 spa_sync(spa_t *spa, uint64_t txg)
4626 dsl_pool_t *dp = spa->spa_dsl_pool;
4627 objset_t *mos = spa->spa_meta_objset;
4628 bplist_t *defer_bpl = &spa->spa_deferred_bplist;
4629 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
4630 vdev_t *rvd = spa->spa_root_vdev;
4631 vdev_t *vd;
4632 dmu_tx_t *tx;
4633 int error;
4636 * Lock out configuration changes.
4638 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4640 spa->spa_syncing_txg = txg;
4641 spa->spa_sync_pass = 0;
4644 * If there are any pending vdev state changes, convert them
4645 * into config changes that go out with this transaction group.
4647 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4648 while (list_head(&spa->spa_state_dirty_list) != NULL) {
4650 * We need the write lock here because, for aux vdevs,
4651 * calling vdev_config_dirty() modifies sav_config.
4652 * This is ugly and will become unnecessary when we
4653 * eliminate the aux vdev wart by integrating all vdevs
4654 * into the root vdev tree.
4656 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4657 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4658 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4659 vdev_state_clean(vd);
4660 vdev_config_dirty(vd);
4662 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4663 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4665 spa_config_exit(spa, SCL_STATE, FTAG);
4667 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
4669 tx = dmu_tx_create_assigned(dp, txg);
4672 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4673 * set spa_deflate if we have no raid-z vdevs.
4675 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4676 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4677 int i;
4679 for (i = 0; i < rvd->vdev_children; i++) {
4680 vd = rvd->vdev_child[i];
4681 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4682 break;
4684 if (i == rvd->vdev_children) {
4685 spa->spa_deflate = TRUE;
4686 VERIFY(0 == zap_add(spa->spa_meta_objset,
4687 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4688 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4692 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4693 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4694 dsl_pool_create_origin(dp, tx);
4696 /* Keeping the origin open increases spa_minref */
4697 spa->spa_minref += 3;
4700 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4701 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4702 dsl_pool_upgrade_clones(dp, tx);
4706 * If anything has changed in this txg, push the deferred frees
4707 * from the previous txg. If not, leave them alone so that we
4708 * don't generate work on an otherwise idle system.
4710 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4711 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4712 !txg_list_empty(&dp->dp_sync_tasks, txg))
4713 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
4716 * Iterate to convergence.
4718 do {
4719 int pass = ++spa->spa_sync_pass;
4721 spa_sync_config_object(spa, tx);
4722 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4723 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4724 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4725 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4726 spa_errlog_sync(spa, txg);
4727 dsl_pool_sync(dp, txg);
4729 if (pass <= SYNC_PASS_DEFERRED_FREE) {
4730 zio_t *zio = zio_root(spa, NULL, NULL, 0);
4731 bplist_sync(free_bpl, spa_sync_free, zio, tx);
4732 VERIFY(zio_wait(zio) == 0);
4733 } else {
4734 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
4737 ddt_sync(spa, txg);
4739 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
4740 vdev_sync(vd, txg);
4742 } while (dmu_objset_is_dirty(mos, txg));
4744 ASSERT(free_bpl->bpl_queue == NULL);
4746 bplist_close(defer_bpl);
4749 * Rewrite the vdev configuration (which includes the uberblock)
4750 * to commit the transaction group.
4752 * If there are no dirty vdevs, we sync the uberblock to a few
4753 * random top-level vdevs that are known to be visible in the
4754 * config cache (see spa_vdev_add() for a complete description).
4755 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4757 for (;;) {
4759 * We hold SCL_STATE to prevent vdev open/close/etc.
4760 * while we're attempting to write the vdev labels.
4762 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4764 if (list_is_empty(&spa->spa_config_dirty_list)) {
4765 vdev_t *svd[SPA_DVAS_PER_BP];
4766 int svdcount = 0;
4767 int children = rvd->vdev_children;
4768 int c0 = spa_get_random(children);
4770 for (int c = 0; c < children; c++) {
4771 vd = rvd->vdev_child[(c0 + c) % children];
4772 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4773 continue;
4774 svd[svdcount++] = vd;
4775 if (svdcount == SPA_DVAS_PER_BP)
4776 break;
4778 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4779 if (error != 0)
4780 error = vdev_config_sync(svd, svdcount, txg,
4781 B_TRUE);
4782 } else {
4783 error = vdev_config_sync(rvd->vdev_child,
4784 rvd->vdev_children, txg, B_FALSE);
4785 if (error != 0)
4786 error = vdev_config_sync(rvd->vdev_child,
4787 rvd->vdev_children, txg, B_TRUE);
4790 spa_config_exit(spa, SCL_STATE, FTAG);
4792 if (error == 0)
4793 break;
4794 zio_suspend(spa, NULL);
4795 zio_resume_wait(spa);
4797 dmu_tx_commit(tx);
4800 * Clear the dirty config list.
4802 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4803 vdev_config_clean(vd);
4806 * Now that the new config has synced transactionally,
4807 * let it become visible to the config cache.
4809 if (spa->spa_config_syncing != NULL) {
4810 spa_config_set(spa, spa->spa_config_syncing);
4811 spa->spa_config_txg = txg;
4812 spa->spa_config_syncing = NULL;
4815 spa->spa_ubsync = spa->spa_uberblock;
4817 dsl_pool_sync_done(dp, txg);
4820 * Update usable space statistics.
4822 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4823 vdev_sync_done(vd, txg);
4825 spa_update_dspace(spa);
4828 * It had better be the case that we didn't dirty anything
4829 * since vdev_config_sync().
4831 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4832 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4833 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4834 ASSERT(defer_bpl->bpl_queue == NULL);
4835 ASSERT(free_bpl->bpl_queue == NULL);
4837 spa->spa_sync_pass = 0;
4839 spa_config_exit(spa, SCL_CONFIG, FTAG);
4841 spa_handle_ignored_writes(spa);
4844 * If any async tasks have been requested, kick them off.
4846 spa_async_dispatch(spa);
4850 * Sync all pools. We don't want to hold the namespace lock across these
4851 * operations, so we take a reference on the spa_t and drop the lock during the
4852 * sync.
4854 void
4855 spa_sync_allpools(void)
4857 spa_t *spa = NULL;
4858 mutex_enter(&spa_namespace_lock);
4859 while ((spa = spa_next(spa)) != NULL) {
4860 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4861 continue;
4862 spa_open_ref(spa, FTAG);
4863 mutex_exit(&spa_namespace_lock);
4864 txg_wait_synced(spa_get_dsl(spa), 0);
4865 mutex_enter(&spa_namespace_lock);
4866 spa_close(spa, FTAG);
4868 mutex_exit(&spa_namespace_lock);
4872 * ==========================================================================
4873 * Miscellaneous routines
4874 * ==========================================================================
4878 * Remove all pools in the system.
4880 void
4881 spa_evict_all(void)
4883 spa_t *spa;
4886 * Remove all cached state. All pools should be closed now,
4887 * so every spa in the AVL tree should be unreferenced.
4889 mutex_enter(&spa_namespace_lock);
4890 while ((spa = spa_next(NULL)) != NULL) {
4892 * Stop async tasks. The async thread may need to detach
4893 * a device that's been replaced, which requires grabbing
4894 * spa_namespace_lock, so we must drop it here.
4896 spa_open_ref(spa, FTAG);
4897 mutex_exit(&spa_namespace_lock);
4898 spa_async_suspend(spa);
4899 mutex_enter(&spa_namespace_lock);
4900 spa_close(spa, FTAG);
4902 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4903 spa_unload(spa);
4904 spa_deactivate(spa);
4906 spa_remove(spa);
4908 mutex_exit(&spa_namespace_lock);
4911 vdev_t *
4912 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4914 vdev_t *vd;
4915 int i;
4917 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4918 return (vd);
4920 if (aux) {
4921 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4922 vd = spa->spa_l2cache.sav_vdevs[i];
4923 if (vd->vdev_guid == guid)
4924 return (vd);
4927 for (i = 0; i < spa->spa_spares.sav_count; i++) {
4928 vd = spa->spa_spares.sav_vdevs[i];
4929 if (vd->vdev_guid == guid)
4930 return (vd);
4934 return (NULL);
4937 void
4938 spa_upgrade(spa_t *spa, uint64_t version)
4940 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4943 * This should only be called for a non-faulted pool, and since a
4944 * future version would result in an unopenable pool, this shouldn't be
4945 * possible.
4947 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4948 ASSERT(version >= spa->spa_uberblock.ub_version);
4950 spa->spa_uberblock.ub_version = version;
4951 vdev_config_dirty(spa->spa_root_vdev);
4953 spa_config_exit(spa, SCL_ALL, FTAG);
4955 txg_wait_synced(spa_get_dsl(spa), 0);
4958 boolean_t
4959 spa_has_spare(spa_t *spa, uint64_t guid)
4961 int i;
4962 uint64_t spareguid;
4963 spa_aux_vdev_t *sav = &spa->spa_spares;
4965 for (i = 0; i < sav->sav_count; i++)
4966 if (sav->sav_vdevs[i]->vdev_guid == guid)
4967 return (B_TRUE);
4969 for (i = 0; i < sav->sav_npending; i++) {
4970 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4971 &spareguid) == 0 && spareguid == guid)
4972 return (B_TRUE);
4975 return (B_FALSE);
4979 * Check if a pool has an active shared spare device.
4980 * Note: reference count of an active spare is 2, as a spare and as a replace
4982 static boolean_t
4983 spa_has_active_shared_spare(spa_t *spa)
4985 int i, refcnt;
4986 uint64_t pool;
4987 spa_aux_vdev_t *sav = &spa->spa_spares;
4989 for (i = 0; i < sav->sav_count; i++) {
4990 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4991 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4992 refcnt > 2)
4993 return (B_TRUE);
4996 return (B_FALSE);
5000 * Post a sysevent corresponding to the given event. The 'name' must be one of
5001 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
5002 * filled in from the spa and (optionally) the vdev. This doesn't do anything
5003 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5004 * or zdb as real changes.
5006 void
5007 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5009 #ifdef _KERNEL
5010 sysevent_t *ev;
5011 sysevent_attr_list_t *attr = NULL;
5012 sysevent_value_t value;
5013 sysevent_id_t eid;
5015 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5016 SE_SLEEP);
5018 value.value_type = SE_DATA_TYPE_STRING;
5019 value.value.sv_string = spa_name(spa);
5020 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5021 goto done;
5023 value.value_type = SE_DATA_TYPE_UINT64;
5024 value.value.sv_uint64 = spa_guid(spa);
5025 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5026 goto done;
5028 if (vd) {
5029 value.value_type = SE_DATA_TYPE_UINT64;
5030 value.value.sv_uint64 = vd->vdev_guid;
5031 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5032 SE_SLEEP) != 0)
5033 goto done;
5035 if (vd->vdev_path) {
5036 value.value_type = SE_DATA_TYPE_STRING;
5037 value.value.sv_string = vd->vdev_path;
5038 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5039 &value, SE_SLEEP) != 0)
5040 goto done;
5044 if (sysevent_attach_attributes(ev, attr) != 0)
5045 goto done;
5046 attr = NULL;
5048 (void) log_sysevent(ev, SE_SLEEP, &eid);
5050 done:
5051 if (attr)
5052 sysevent_free_attr(attr);
5053 sysevent_free(ev);
5054 #endif