2882 implement libzfs_core
[illumos-gate.git] / usr / src / uts / common / fs / zfs / zfs_vfsops.c
blob21ac731c1eb9eedfacf702672841b298d257e84b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
26 /* Portions Copyright 2010 Robert Milkowski */
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/varargs.h>
53 #include <sys/policy.h>
54 #include <sys/atomic.h>
55 #include <sys/mkdev.h>
56 #include <sys/modctl.h>
57 #include <sys/refstr.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/zfs_ctldir.h>
60 #include <sys/zfs_fuid.h>
61 #include <sys/bootconf.h>
62 #include <sys/sunddi.h>
63 #include <sys/dnlc.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa_boot.h>
66 #include <sys/sa.h>
67 #include "zfs_comutil.h"
69 int zfsfstype;
70 vfsops_t *zfs_vfsops = NULL;
71 static major_t zfs_major;
72 static minor_t zfs_minor;
73 static kmutex_t zfs_dev_mtx;
75 extern int sys_shutdown;
77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 static void zfs_freevfs(vfs_t *vfsp);
85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
89 VFSNAME_ROOT, { .vfs_root = zfs_root },
90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
91 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
92 VFSNAME_VGET, { .vfs_vget = zfs_vget },
93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
94 NULL, NULL
97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
99 NULL, NULL
103 * We need to keep a count of active fs's.
104 * This is necessary to prevent our module
105 * from being unloaded after a umount -f
107 static uint32_t zfs_active_fs_count = 0;
109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
115 * MO_DEFAULT is not used since the default value is determined
116 * by the equivalent property.
118 static mntopt_t mntopts[] = {
119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
125 static mntopts_t zfs_mntopts = {
126 sizeof (mntopts) / sizeof (mntopt_t),
127 mntopts
130 /*ARGSUSED*/
132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
135 * Data integrity is job one. We don't want a compromised kernel
136 * writing to the storage pool, so we never sync during panic.
138 if (panicstr)
139 return (0);
142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 * to sync metadata, which they would otherwise cache indefinitely.
144 * Semantically, the only requirement is that the sync be initiated.
145 * The DMU syncs out txgs frequently, so there's nothing to do.
147 if (flag & SYNC_ATTR)
148 return (0);
150 if (vfsp != NULL) {
152 * Sync a specific filesystem.
154 zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 dsl_pool_t *dp;
157 ZFS_ENTER(zfsvfs);
158 dp = dmu_objset_pool(zfsvfs->z_os);
161 * If the system is shutting down, then skip any
162 * filesystems which may exist on a suspended pool.
164 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 ZFS_EXIT(zfsvfs);
166 return (0);
169 if (zfsvfs->z_log != NULL)
170 zil_commit(zfsvfs->z_log, 0);
172 ZFS_EXIT(zfsvfs);
173 } else {
175 * Sync all ZFS filesystems. This is what happens when you
176 * run sync(1M). Unlike other filesystems, ZFS honors the
177 * request by waiting for all pools to commit all dirty data.
179 spa_sync_allpools();
182 return (0);
185 static int
186 zfs_create_unique_device(dev_t *dev)
188 major_t new_major;
190 do {
191 ASSERT3U(zfs_minor, <=, MAXMIN32);
192 minor_t start = zfs_minor;
193 do {
194 mutex_enter(&zfs_dev_mtx);
195 if (zfs_minor >= MAXMIN32) {
197 * If we're still using the real major
198 * keep out of /dev/zfs and /dev/zvol minor
199 * number space. If we're using a getudev()'ed
200 * major number, we can use all of its minors.
202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 zfs_minor = ZFS_MIN_MINOR;
204 else
205 zfs_minor = 0;
206 } else {
207 zfs_minor++;
209 *dev = makedevice(zfs_major, zfs_minor);
210 mutex_exit(&zfs_dev_mtx);
211 } while (vfs_devismounted(*dev) && zfs_minor != start);
212 if (zfs_minor == start) {
214 * We are using all ~262,000 minor numbers for the
215 * current major number. Create a new major number.
217 if ((new_major = getudev()) == (major_t)-1) {
218 cmn_err(CE_WARN,
219 "zfs_mount: Can't get unique major "
220 "device number.");
221 return (-1);
223 mutex_enter(&zfs_dev_mtx);
224 zfs_major = new_major;
225 zfs_minor = 0;
227 mutex_exit(&zfs_dev_mtx);
228 } else {
229 break;
231 /* CONSTANTCONDITION */
232 } while (1);
234 return (0);
237 static void
238 atime_changed_cb(void *arg, uint64_t newval)
240 zfsvfs_t *zfsvfs = arg;
242 if (newval == TRUE) {
243 zfsvfs->z_atime = TRUE;
244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 } else {
247 zfsvfs->z_atime = FALSE;
248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
253 static void
254 xattr_changed_cb(void *arg, uint64_t newval)
256 zfsvfs_t *zfsvfs = arg;
258 if (newval == TRUE) {
259 /* XXX locking on vfs_flag? */
260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 } else {
264 /* XXX locking on vfs_flag? */
265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
271 static void
272 blksz_changed_cb(void *arg, uint64_t newval)
274 zfsvfs_t *zfsvfs = arg;
276 if (newval < SPA_MINBLOCKSIZE ||
277 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 newval = SPA_MAXBLOCKSIZE;
280 zfsvfs->z_max_blksz = newval;
281 zfsvfs->z_vfs->vfs_bsize = newval;
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
287 zfsvfs_t *zfsvfs = arg;
289 if (newval) {
290 /* XXX locking on vfs_flag? */
291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 } else {
295 /* XXX locking on vfs_flag? */
296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
305 zfsvfs_t *zfsvfs = arg;
307 if (newval == FALSE) {
308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 } else {
312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
321 zfsvfs_t *zfsvfs = arg;
323 if (newval == FALSE) {
324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 } else {
328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
337 zfsvfs_t *zfsvfs = arg;
339 if (newval == FALSE) {
340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 } else {
344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
351 * The nbmand mount option can be changed at mount time.
352 * We can't allow it to be toggled on live file systems or incorrect
353 * behavior may be seen from cifs clients
355 * This property isn't registered via dsl_prop_register(), but this callback
356 * will be called when a file system is first mounted
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
361 zfsvfs_t *zfsvfs = arg;
362 if (newval == FALSE) {
363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 } else {
366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
374 zfsvfs_t *zfsvfs = arg;
376 zfsvfs->z_show_ctldir = newval;
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
382 zfsvfs_t *zfsvfs = arg;
384 zfsvfs->z_vscan = newval;
387 static void
388 acl_mode_changed_cb(void *arg, uint64_t newval)
390 zfsvfs_t *zfsvfs = arg;
392 zfsvfs->z_acl_mode = newval;
395 static void
396 acl_inherit_changed_cb(void *arg, uint64_t newval)
398 zfsvfs_t *zfsvfs = arg;
400 zfsvfs->z_acl_inherit = newval;
403 static int
404 zfs_register_callbacks(vfs_t *vfsp)
406 struct dsl_dataset *ds = NULL;
407 objset_t *os = NULL;
408 zfsvfs_t *zfsvfs = NULL;
409 uint64_t nbmand;
410 int readonly, do_readonly = B_FALSE;
411 int setuid, do_setuid = B_FALSE;
412 int exec, do_exec = B_FALSE;
413 int devices, do_devices = B_FALSE;
414 int xattr, do_xattr = B_FALSE;
415 int atime, do_atime = B_FALSE;
416 int error = 0;
418 ASSERT(vfsp);
419 zfsvfs = vfsp->vfs_data;
420 ASSERT(zfsvfs);
421 os = zfsvfs->z_os;
424 * The act of registering our callbacks will destroy any mount
425 * options we may have. In order to enable temporary overrides
426 * of mount options, we stash away the current values and
427 * restore them after we register the callbacks.
429 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
430 !spa_writeable(dmu_objset_spa(os))) {
431 readonly = B_TRUE;
432 do_readonly = B_TRUE;
433 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
434 readonly = B_FALSE;
435 do_readonly = B_TRUE;
437 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
438 devices = B_FALSE;
439 setuid = B_FALSE;
440 do_devices = B_TRUE;
441 do_setuid = B_TRUE;
442 } else {
443 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
444 devices = B_FALSE;
445 do_devices = B_TRUE;
446 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
447 devices = B_TRUE;
448 do_devices = B_TRUE;
451 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
452 setuid = B_FALSE;
453 do_setuid = B_TRUE;
454 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
455 setuid = B_TRUE;
456 do_setuid = B_TRUE;
459 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
460 exec = B_FALSE;
461 do_exec = B_TRUE;
462 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
463 exec = B_TRUE;
464 do_exec = B_TRUE;
466 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
467 xattr = B_FALSE;
468 do_xattr = B_TRUE;
469 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
470 xattr = B_TRUE;
471 do_xattr = B_TRUE;
473 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
474 atime = B_FALSE;
475 do_atime = B_TRUE;
476 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
477 atime = B_TRUE;
478 do_atime = B_TRUE;
482 * nbmand is a special property. It can only be changed at
483 * mount time.
485 * This is weird, but it is documented to only be changeable
486 * at mount time.
488 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
489 nbmand = B_FALSE;
490 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
491 nbmand = B_TRUE;
492 } else {
493 char osname[MAXNAMELEN];
495 dmu_objset_name(os, osname);
496 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
497 NULL)) {
498 return (error);
503 * Register property callbacks.
505 * It would probably be fine to just check for i/o error from
506 * the first prop_register(), but I guess I like to go
507 * overboard...
509 ds = dmu_objset_ds(os);
510 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
511 error = error ? error : dsl_prop_register(ds,
512 "xattr", xattr_changed_cb, zfsvfs);
513 error = error ? error : dsl_prop_register(ds,
514 "recordsize", blksz_changed_cb, zfsvfs);
515 error = error ? error : dsl_prop_register(ds,
516 "readonly", readonly_changed_cb, zfsvfs);
517 error = error ? error : dsl_prop_register(ds,
518 "devices", devices_changed_cb, zfsvfs);
519 error = error ? error : dsl_prop_register(ds,
520 "setuid", setuid_changed_cb, zfsvfs);
521 error = error ? error : dsl_prop_register(ds,
522 "exec", exec_changed_cb, zfsvfs);
523 error = error ? error : dsl_prop_register(ds,
524 "snapdir", snapdir_changed_cb, zfsvfs);
525 error = error ? error : dsl_prop_register(ds,
526 "aclmode", acl_mode_changed_cb, zfsvfs);
527 error = error ? error : dsl_prop_register(ds,
528 "aclinherit", acl_inherit_changed_cb, zfsvfs);
529 error = error ? error : dsl_prop_register(ds,
530 "vscan", vscan_changed_cb, zfsvfs);
531 if (error)
532 goto unregister;
535 * Invoke our callbacks to restore temporary mount options.
537 if (do_readonly)
538 readonly_changed_cb(zfsvfs, readonly);
539 if (do_setuid)
540 setuid_changed_cb(zfsvfs, setuid);
541 if (do_exec)
542 exec_changed_cb(zfsvfs, exec);
543 if (do_devices)
544 devices_changed_cb(zfsvfs, devices);
545 if (do_xattr)
546 xattr_changed_cb(zfsvfs, xattr);
547 if (do_atime)
548 atime_changed_cb(zfsvfs, atime);
550 nbmand_changed_cb(zfsvfs, nbmand);
552 return (0);
554 unregister:
556 * We may attempt to unregister some callbacks that are not
557 * registered, but this is OK; it will simply return ENOMSG,
558 * which we will ignore.
560 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
561 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
562 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
563 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
564 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
565 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
566 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
567 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
568 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
569 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
570 zfsvfs);
571 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
572 return (error);
576 static int
577 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
578 uint64_t *userp, uint64_t *groupp)
580 znode_phys_t *znp = data;
581 int error = 0;
584 * Is it a valid type of object to track?
586 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
587 return (ENOENT);
590 * If we have a NULL data pointer
591 * then assume the id's aren't changing and
592 * return EEXIST to the dmu to let it know to
593 * use the same ids
595 if (data == NULL)
596 return (EEXIST);
598 if (bonustype == DMU_OT_ZNODE) {
599 *userp = znp->zp_uid;
600 *groupp = znp->zp_gid;
601 } else {
602 int hdrsize;
604 ASSERT(bonustype == DMU_OT_SA);
605 hdrsize = sa_hdrsize(data);
607 if (hdrsize != 0) {
608 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
609 SA_UID_OFFSET));
610 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
611 SA_GID_OFFSET));
612 } else {
614 * This should only happen for newly created
615 * files that haven't had the znode data filled
616 * in yet.
618 *userp = 0;
619 *groupp = 0;
622 return (error);
625 static void
626 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
627 char *domainbuf, int buflen, uid_t *ridp)
629 uint64_t fuid;
630 const char *domain;
632 fuid = strtonum(fuidstr, NULL);
634 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
635 if (domain)
636 (void) strlcpy(domainbuf, domain, buflen);
637 else
638 domainbuf[0] = '\0';
639 *ridp = FUID_RID(fuid);
642 static uint64_t
643 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
645 switch (type) {
646 case ZFS_PROP_USERUSED:
647 return (DMU_USERUSED_OBJECT);
648 case ZFS_PROP_GROUPUSED:
649 return (DMU_GROUPUSED_OBJECT);
650 case ZFS_PROP_USERQUOTA:
651 return (zfsvfs->z_userquota_obj);
652 case ZFS_PROP_GROUPQUOTA:
653 return (zfsvfs->z_groupquota_obj);
655 return (0);
659 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
660 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
662 int error;
663 zap_cursor_t zc;
664 zap_attribute_t za;
665 zfs_useracct_t *buf = vbuf;
666 uint64_t obj;
668 if (!dmu_objset_userspace_present(zfsvfs->z_os))
669 return (ENOTSUP);
671 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
672 if (obj == 0) {
673 *bufsizep = 0;
674 return (0);
677 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
678 (error = zap_cursor_retrieve(&zc, &za)) == 0;
679 zap_cursor_advance(&zc)) {
680 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
681 *bufsizep)
682 break;
684 fuidstr_to_sid(zfsvfs, za.za_name,
685 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
687 buf->zu_space = za.za_first_integer;
688 buf++;
690 if (error == ENOENT)
691 error = 0;
693 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
694 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
695 *cookiep = zap_cursor_serialize(&zc);
696 zap_cursor_fini(&zc);
697 return (error);
701 * buf must be big enough (eg, 32 bytes)
703 static int
704 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
705 char *buf, boolean_t addok)
707 uint64_t fuid;
708 int domainid = 0;
710 if (domain && domain[0]) {
711 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
712 if (domainid == -1)
713 return (ENOENT);
715 fuid = FUID_ENCODE(domainid, rid);
716 (void) sprintf(buf, "%llx", (longlong_t)fuid);
717 return (0);
721 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
722 const char *domain, uint64_t rid, uint64_t *valp)
724 char buf[32];
725 int err;
726 uint64_t obj;
728 *valp = 0;
730 if (!dmu_objset_userspace_present(zfsvfs->z_os))
731 return (ENOTSUP);
733 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
734 if (obj == 0)
735 return (0);
737 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
738 if (err)
739 return (err);
741 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
742 if (err == ENOENT)
743 err = 0;
744 return (err);
748 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
749 const char *domain, uint64_t rid, uint64_t quota)
751 char buf[32];
752 int err;
753 dmu_tx_t *tx;
754 uint64_t *objp;
755 boolean_t fuid_dirtied;
757 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
758 return (EINVAL);
760 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
761 return (ENOTSUP);
763 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
764 &zfsvfs->z_groupquota_obj;
766 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
767 if (err)
768 return (err);
769 fuid_dirtied = zfsvfs->z_fuid_dirty;
771 tx = dmu_tx_create(zfsvfs->z_os);
772 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
773 if (*objp == 0) {
774 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
775 zfs_userquota_prop_prefixes[type]);
777 if (fuid_dirtied)
778 zfs_fuid_txhold(zfsvfs, tx);
779 err = dmu_tx_assign(tx, TXG_WAIT);
780 if (err) {
781 dmu_tx_abort(tx);
782 return (err);
785 mutex_enter(&zfsvfs->z_lock);
786 if (*objp == 0) {
787 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
788 DMU_OT_NONE, 0, tx);
789 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
790 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
792 mutex_exit(&zfsvfs->z_lock);
794 if (quota == 0) {
795 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
796 if (err == ENOENT)
797 err = 0;
798 } else {
799 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
801 ASSERT(err == 0);
802 if (fuid_dirtied)
803 zfs_fuid_sync(zfsvfs, tx);
804 dmu_tx_commit(tx);
805 return (err);
808 boolean_t
809 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
811 char buf[32];
812 uint64_t used, quota, usedobj, quotaobj;
813 int err;
815 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
816 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
818 if (quotaobj == 0 || zfsvfs->z_replay)
819 return (B_FALSE);
821 (void) sprintf(buf, "%llx", (longlong_t)fuid);
822 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
823 if (err != 0)
824 return (B_FALSE);
826 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
827 if (err != 0)
828 return (B_FALSE);
829 return (used >= quota);
832 boolean_t
833 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
835 uint64_t fuid;
836 uint64_t quotaobj;
838 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
840 fuid = isgroup ? zp->z_gid : zp->z_uid;
842 if (quotaobj == 0 || zfsvfs->z_replay)
843 return (B_FALSE);
845 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
849 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
851 objset_t *os;
852 zfsvfs_t *zfsvfs;
853 uint64_t zval;
854 int i, error;
855 uint64_t sa_obj;
857 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
860 * We claim to always be readonly so we can open snapshots;
861 * other ZPL code will prevent us from writing to snapshots.
863 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
864 if (error) {
865 kmem_free(zfsvfs, sizeof (zfsvfs_t));
866 return (error);
870 * Initialize the zfs-specific filesystem structure.
871 * Should probably make this a kmem cache, shuffle fields,
872 * and just bzero up to z_hold_mtx[].
874 zfsvfs->z_vfs = NULL;
875 zfsvfs->z_parent = zfsvfs;
876 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
877 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
878 zfsvfs->z_os = os;
880 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
881 if (error) {
882 goto out;
883 } else if (zfsvfs->z_version >
884 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
885 (void) printf("Can't mount a version %lld file system "
886 "on a version %lld pool\n. Pool must be upgraded to mount "
887 "this file system.", (u_longlong_t)zfsvfs->z_version,
888 (u_longlong_t)spa_version(dmu_objset_spa(os)));
889 error = ENOTSUP;
890 goto out;
892 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
893 goto out;
894 zfsvfs->z_norm = (int)zval;
896 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
897 goto out;
898 zfsvfs->z_utf8 = (zval != 0);
900 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
901 goto out;
902 zfsvfs->z_case = (uint_t)zval;
905 * Fold case on file systems that are always or sometimes case
906 * insensitive.
908 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
909 zfsvfs->z_case == ZFS_CASE_MIXED)
910 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
912 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
913 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
915 if (zfsvfs->z_use_sa) {
916 /* should either have both of these objects or none */
917 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
918 &sa_obj);
919 if (error)
920 return (error);
921 } else {
923 * Pre SA versions file systems should never touch
924 * either the attribute registration or layout objects.
926 sa_obj = 0;
929 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
930 &zfsvfs->z_attr_table);
931 if (error)
932 goto out;
934 if (zfsvfs->z_version >= ZPL_VERSION_SA)
935 sa_register_update_callback(os, zfs_sa_upgrade);
937 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
938 &zfsvfs->z_root);
939 if (error)
940 goto out;
941 ASSERT(zfsvfs->z_root != 0);
943 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
944 &zfsvfs->z_unlinkedobj);
945 if (error)
946 goto out;
948 error = zap_lookup(os, MASTER_NODE_OBJ,
949 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
950 8, 1, &zfsvfs->z_userquota_obj);
951 if (error && error != ENOENT)
952 goto out;
954 error = zap_lookup(os, MASTER_NODE_OBJ,
955 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
956 8, 1, &zfsvfs->z_groupquota_obj);
957 if (error && error != ENOENT)
958 goto out;
960 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
961 &zfsvfs->z_fuid_obj);
962 if (error && error != ENOENT)
963 goto out;
965 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
966 &zfsvfs->z_shares_dir);
967 if (error && error != ENOENT)
968 goto out;
970 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
971 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
972 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
973 offsetof(znode_t, z_link_node));
974 rrw_init(&zfsvfs->z_teardown_lock);
975 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
976 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
977 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
978 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
980 *zfvp = zfsvfs;
981 return (0);
983 out:
984 dmu_objset_disown(os, zfsvfs);
985 *zfvp = NULL;
986 kmem_free(zfsvfs, sizeof (zfsvfs_t));
987 return (error);
990 static int
991 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
993 int error;
995 error = zfs_register_callbacks(zfsvfs->z_vfs);
996 if (error)
997 return (error);
1000 * Set the objset user_ptr to track its zfsvfs.
1002 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1003 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1004 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1006 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1009 * If we are not mounting (ie: online recv), then we don't
1010 * have to worry about replaying the log as we blocked all
1011 * operations out since we closed the ZIL.
1013 if (mounting) {
1014 boolean_t readonly;
1017 * During replay we remove the read only flag to
1018 * allow replays to succeed.
1020 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1021 if (readonly != 0)
1022 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1023 else
1024 zfs_unlinked_drain(zfsvfs);
1027 * Parse and replay the intent log.
1029 * Because of ziltest, this must be done after
1030 * zfs_unlinked_drain(). (Further note: ziltest
1031 * doesn't use readonly mounts, where
1032 * zfs_unlinked_drain() isn't called.) This is because
1033 * ziltest causes spa_sync() to think it's committed,
1034 * but actually it is not, so the intent log contains
1035 * many txg's worth of changes.
1037 * In particular, if object N is in the unlinked set in
1038 * the last txg to actually sync, then it could be
1039 * actually freed in a later txg and then reallocated
1040 * in a yet later txg. This would write a "create
1041 * object N" record to the intent log. Normally, this
1042 * would be fine because the spa_sync() would have
1043 * written out the fact that object N is free, before
1044 * we could write the "create object N" intent log
1045 * record.
1047 * But when we are in ziltest mode, we advance the "open
1048 * txg" without actually spa_sync()-ing the changes to
1049 * disk. So we would see that object N is still
1050 * allocated and in the unlinked set, and there is an
1051 * intent log record saying to allocate it.
1053 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1054 if (zil_replay_disable) {
1055 zil_destroy(zfsvfs->z_log, B_FALSE);
1056 } else {
1057 zfsvfs->z_replay = B_TRUE;
1058 zil_replay(zfsvfs->z_os, zfsvfs,
1059 zfs_replay_vector);
1060 zfsvfs->z_replay = B_FALSE;
1063 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1066 return (0);
1069 void
1070 zfsvfs_free(zfsvfs_t *zfsvfs)
1072 int i;
1073 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1076 * This is a barrier to prevent the filesystem from going away in
1077 * zfs_znode_move() until we can safely ensure that the filesystem is
1078 * not unmounted. We consider the filesystem valid before the barrier
1079 * and invalid after the barrier.
1081 rw_enter(&zfsvfs_lock, RW_READER);
1082 rw_exit(&zfsvfs_lock);
1084 zfs_fuid_destroy(zfsvfs);
1086 mutex_destroy(&zfsvfs->z_znodes_lock);
1087 mutex_destroy(&zfsvfs->z_lock);
1088 list_destroy(&zfsvfs->z_all_znodes);
1089 rrw_destroy(&zfsvfs->z_teardown_lock);
1090 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1091 rw_destroy(&zfsvfs->z_fuid_lock);
1092 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1093 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1094 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1097 static void
1098 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1100 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1101 if (zfsvfs->z_vfs) {
1102 if (zfsvfs->z_use_fuids) {
1103 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1104 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1105 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1106 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1107 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1108 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1109 } else {
1110 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1111 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1112 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1113 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1114 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1115 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1118 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1121 static int
1122 zfs_domount(vfs_t *vfsp, char *osname)
1124 dev_t mount_dev;
1125 uint64_t recordsize, fsid_guid;
1126 int error = 0;
1127 zfsvfs_t *zfsvfs;
1129 ASSERT(vfsp);
1130 ASSERT(osname);
1132 error = zfsvfs_create(osname, &zfsvfs);
1133 if (error)
1134 return (error);
1135 zfsvfs->z_vfs = vfsp;
1137 /* Initialize the generic filesystem structure. */
1138 vfsp->vfs_bcount = 0;
1139 vfsp->vfs_data = NULL;
1141 if (zfs_create_unique_device(&mount_dev) == -1) {
1142 error = ENODEV;
1143 goto out;
1145 ASSERT(vfs_devismounted(mount_dev) == 0);
1147 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1148 NULL))
1149 goto out;
1151 vfsp->vfs_dev = mount_dev;
1152 vfsp->vfs_fstype = zfsfstype;
1153 vfsp->vfs_bsize = recordsize;
1154 vfsp->vfs_flag |= VFS_NOTRUNC;
1155 vfsp->vfs_data = zfsvfs;
1158 * The fsid is 64 bits, composed of an 8-bit fs type, which
1159 * separates our fsid from any other filesystem types, and a
1160 * 56-bit objset unique ID. The objset unique ID is unique to
1161 * all objsets open on this system, provided by unique_create().
1162 * The 8-bit fs type must be put in the low bits of fsid[1]
1163 * because that's where other Solaris filesystems put it.
1165 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1166 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1167 vfsp->vfs_fsid.val[0] = fsid_guid;
1168 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1169 zfsfstype & 0xFF;
1172 * Set features for file system.
1174 zfs_set_fuid_feature(zfsvfs);
1175 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1176 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1177 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1178 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1179 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1180 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1181 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1183 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1185 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1186 uint64_t pval;
1188 atime_changed_cb(zfsvfs, B_FALSE);
1189 readonly_changed_cb(zfsvfs, B_TRUE);
1190 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1191 goto out;
1192 xattr_changed_cb(zfsvfs, pval);
1193 zfsvfs->z_issnap = B_TRUE;
1194 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1196 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1197 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1198 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1199 } else {
1200 error = zfsvfs_setup(zfsvfs, B_TRUE);
1203 if (!zfsvfs->z_issnap)
1204 zfsctl_create(zfsvfs);
1205 out:
1206 if (error) {
1207 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1208 zfsvfs_free(zfsvfs);
1209 } else {
1210 atomic_add_32(&zfs_active_fs_count, 1);
1213 return (error);
1216 void
1217 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1219 objset_t *os = zfsvfs->z_os;
1220 struct dsl_dataset *ds;
1223 * Unregister properties.
1225 if (!dmu_objset_is_snapshot(os)) {
1226 ds = dmu_objset_ds(os);
1227 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1228 zfsvfs) == 0);
1230 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1231 zfsvfs) == 0);
1233 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1234 zfsvfs) == 0);
1236 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1237 zfsvfs) == 0);
1239 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1240 zfsvfs) == 0);
1242 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1243 zfsvfs) == 0);
1245 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1246 zfsvfs) == 0);
1248 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1249 zfsvfs) == 0);
1251 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1252 zfsvfs) == 0);
1254 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1255 acl_inherit_changed_cb, zfsvfs) == 0);
1257 VERIFY(dsl_prop_unregister(ds, "vscan",
1258 vscan_changed_cb, zfsvfs) == 0);
1263 * Convert a decimal digit string to a uint64_t integer.
1265 static int
1266 str_to_uint64(char *str, uint64_t *objnum)
1268 uint64_t num = 0;
1270 while (*str) {
1271 if (*str < '0' || *str > '9')
1272 return (EINVAL);
1274 num = num*10 + *str++ - '0';
1277 *objnum = num;
1278 return (0);
1282 * The boot path passed from the boot loader is in the form of
1283 * "rootpool-name/root-filesystem-object-number'. Convert this
1284 * string to a dataset name: "rootpool-name/root-filesystem-name".
1286 static int
1287 zfs_parse_bootfs(char *bpath, char *outpath)
1289 char *slashp;
1290 uint64_t objnum;
1291 int error;
1293 if (*bpath == 0 || *bpath == '/')
1294 return (EINVAL);
1296 (void) strcpy(outpath, bpath);
1298 slashp = strchr(bpath, '/');
1300 /* if no '/', just return the pool name */
1301 if (slashp == NULL) {
1302 return (0);
1305 /* if not a number, just return the root dataset name */
1306 if (str_to_uint64(slashp+1, &objnum)) {
1307 return (0);
1310 *slashp = '\0';
1311 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1312 *slashp = '/';
1314 return (error);
1318 * zfs_check_global_label:
1319 * Check that the hex label string is appropriate for the dataset
1320 * being mounted into the global_zone proper.
1322 * Return an error if the hex label string is not default or
1323 * admin_low/admin_high. For admin_low labels, the corresponding
1324 * dataset must be readonly.
1327 zfs_check_global_label(const char *dsname, const char *hexsl)
1329 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1330 return (0);
1331 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1332 return (0);
1333 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1334 /* must be readonly */
1335 uint64_t rdonly;
1337 if (dsl_prop_get_integer(dsname,
1338 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1339 return (EACCES);
1340 return (rdonly ? 0 : EACCES);
1342 return (EACCES);
1346 * zfs_mount_label_policy:
1347 * Determine whether the mount is allowed according to MAC check.
1348 * by comparing (where appropriate) label of the dataset against
1349 * the label of the zone being mounted into. If the dataset has
1350 * no label, create one.
1352 * Returns:
1353 * 0 : access allowed
1354 * >0 : error code, such as EACCES
1356 static int
1357 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1359 int error, retv;
1360 zone_t *mntzone = NULL;
1361 ts_label_t *mnt_tsl;
1362 bslabel_t *mnt_sl;
1363 bslabel_t ds_sl;
1364 char ds_hexsl[MAXNAMELEN];
1366 retv = EACCES; /* assume the worst */
1369 * Start by getting the dataset label if it exists.
1371 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1372 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1373 if (error)
1374 return (EACCES);
1377 * If labeling is NOT enabled, then disallow the mount of datasets
1378 * which have a non-default label already. No other label checks
1379 * are needed.
1381 if (!is_system_labeled()) {
1382 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1383 return (0);
1384 return (EACCES);
1388 * Get the label of the mountpoint. If mounting into the global
1389 * zone (i.e. mountpoint is not within an active zone and the
1390 * zoned property is off), the label must be default or
1391 * admin_low/admin_high only; no other checks are needed.
1393 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1394 if (mntzone->zone_id == GLOBAL_ZONEID) {
1395 uint64_t zoned;
1397 zone_rele(mntzone);
1399 if (dsl_prop_get_integer(osname,
1400 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1401 return (EACCES);
1402 if (!zoned)
1403 return (zfs_check_global_label(osname, ds_hexsl));
1404 else
1406 * This is the case of a zone dataset being mounted
1407 * initially, before the zone has been fully created;
1408 * allow this mount into global zone.
1410 return (0);
1413 mnt_tsl = mntzone->zone_slabel;
1414 ASSERT(mnt_tsl != NULL);
1415 label_hold(mnt_tsl);
1416 mnt_sl = label2bslabel(mnt_tsl);
1418 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1420 * The dataset doesn't have a real label, so fabricate one.
1422 char *str = NULL;
1424 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1425 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1426 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1427 retv = 0;
1428 if (str != NULL)
1429 kmem_free(str, strlen(str) + 1);
1430 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1432 * Now compare labels to complete the MAC check. If the
1433 * labels are equal then allow access. If the mountpoint
1434 * label dominates the dataset label, allow readonly access.
1435 * Otherwise, access is denied.
1437 if (blequal(mnt_sl, &ds_sl))
1438 retv = 0;
1439 else if (bldominates(mnt_sl, &ds_sl)) {
1440 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1441 retv = 0;
1445 label_rele(mnt_tsl);
1446 zone_rele(mntzone);
1447 return (retv);
1450 static int
1451 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1453 int error = 0;
1454 static int zfsrootdone = 0;
1455 zfsvfs_t *zfsvfs = NULL;
1456 znode_t *zp = NULL;
1457 vnode_t *vp = NULL;
1458 char *zfs_bootfs;
1459 char *zfs_devid;
1461 ASSERT(vfsp);
1464 * The filesystem that we mount as root is defined in the
1465 * boot property "zfs-bootfs" with a format of
1466 * "poolname/root-dataset-objnum".
1468 if (why == ROOT_INIT) {
1469 if (zfsrootdone++)
1470 return (EBUSY);
1472 * the process of doing a spa_load will require the
1473 * clock to be set before we could (for example) do
1474 * something better by looking at the timestamp on
1475 * an uberblock, so just set it to -1.
1477 clkset(-1);
1479 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1480 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1481 "bootfs name");
1482 return (EINVAL);
1484 zfs_devid = spa_get_bootprop("diskdevid");
1485 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1486 if (zfs_devid)
1487 spa_free_bootprop(zfs_devid);
1488 if (error) {
1489 spa_free_bootprop(zfs_bootfs);
1490 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1491 error);
1492 return (error);
1494 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1495 spa_free_bootprop(zfs_bootfs);
1496 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1497 error);
1498 return (error);
1501 spa_free_bootprop(zfs_bootfs);
1503 if (error = vfs_lock(vfsp))
1504 return (error);
1506 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1507 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1508 goto out;
1511 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1512 ASSERT(zfsvfs);
1513 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1514 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1515 goto out;
1518 vp = ZTOV(zp);
1519 mutex_enter(&vp->v_lock);
1520 vp->v_flag |= VROOT;
1521 mutex_exit(&vp->v_lock);
1522 rootvp = vp;
1525 * Leave rootvp held. The root file system is never unmounted.
1528 vfs_add((struct vnode *)0, vfsp,
1529 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1530 out:
1531 vfs_unlock(vfsp);
1532 return (error);
1533 } else if (why == ROOT_REMOUNT) {
1534 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1535 vfsp->vfs_flag |= VFS_REMOUNT;
1537 /* refresh mount options */
1538 zfs_unregister_callbacks(vfsp->vfs_data);
1539 return (zfs_register_callbacks(vfsp));
1541 } else if (why == ROOT_UNMOUNT) {
1542 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1543 (void) zfs_sync(vfsp, 0, 0);
1544 return (0);
1548 * if "why" is equal to anything else other than ROOT_INIT,
1549 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1551 return (ENOTSUP);
1554 /*ARGSUSED*/
1555 static int
1556 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1558 char *osname;
1559 pathname_t spn;
1560 int error = 0;
1561 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1562 UIO_SYSSPACE : UIO_USERSPACE;
1563 int canwrite;
1565 if (mvp->v_type != VDIR)
1566 return (ENOTDIR);
1568 mutex_enter(&mvp->v_lock);
1569 if ((uap->flags & MS_REMOUNT) == 0 &&
1570 (uap->flags & MS_OVERLAY) == 0 &&
1571 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1572 mutex_exit(&mvp->v_lock);
1573 return (EBUSY);
1575 mutex_exit(&mvp->v_lock);
1578 * ZFS does not support passing unparsed data in via MS_DATA.
1579 * Users should use the MS_OPTIONSTR interface; this means
1580 * that all option parsing is already done and the options struct
1581 * can be interrogated.
1583 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1584 return (EINVAL);
1587 * Get the objset name (the "special" mount argument).
1589 if (error = pn_get(uap->spec, fromspace, &spn))
1590 return (error);
1592 osname = spn.pn_path;
1595 * Check for mount privilege?
1597 * If we don't have privilege then see if
1598 * we have local permission to allow it
1600 error = secpolicy_fs_mount(cr, mvp, vfsp);
1601 if (error) {
1602 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1603 vattr_t vattr;
1606 * Make sure user is the owner of the mount point
1607 * or has sufficient privileges.
1610 vattr.va_mask = AT_UID;
1612 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1613 goto out;
1616 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1617 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1618 goto out;
1620 secpolicy_fs_mount_clearopts(cr, vfsp);
1621 } else {
1622 goto out;
1627 * Refuse to mount a filesystem if we are in a local zone and the
1628 * dataset is not visible.
1630 if (!INGLOBALZONE(curproc) &&
1631 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1632 error = EPERM;
1633 goto out;
1636 error = zfs_mount_label_policy(vfsp, osname);
1637 if (error)
1638 goto out;
1641 * When doing a remount, we simply refresh our temporary properties
1642 * according to those options set in the current VFS options.
1644 if (uap->flags & MS_REMOUNT) {
1645 /* refresh mount options */
1646 zfs_unregister_callbacks(vfsp->vfs_data);
1647 error = zfs_register_callbacks(vfsp);
1648 goto out;
1651 error = zfs_domount(vfsp, osname);
1654 * Add an extra VFS_HOLD on our parent vfs so that it can't
1655 * disappear due to a forced unmount.
1657 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1658 VFS_HOLD(mvp->v_vfsp);
1660 out:
1661 pn_free(&spn);
1662 return (error);
1665 static int
1666 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1668 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1669 dev32_t d32;
1670 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1672 ZFS_ENTER(zfsvfs);
1674 dmu_objset_space(zfsvfs->z_os,
1675 &refdbytes, &availbytes, &usedobjs, &availobjs);
1678 * The underlying storage pool actually uses multiple block sizes.
1679 * We report the fragsize as the smallest block size we support,
1680 * and we report our blocksize as the filesystem's maximum blocksize.
1682 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1683 statp->f_bsize = zfsvfs->z_max_blksz;
1686 * The following report "total" blocks of various kinds in the
1687 * file system, but reported in terms of f_frsize - the
1688 * "fragment" size.
1691 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1692 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1693 statp->f_bavail = statp->f_bfree; /* no root reservation */
1696 * statvfs() should really be called statufs(), because it assumes
1697 * static metadata. ZFS doesn't preallocate files, so the best
1698 * we can do is report the max that could possibly fit in f_files,
1699 * and that minus the number actually used in f_ffree.
1700 * For f_ffree, report the smaller of the number of object available
1701 * and the number of blocks (each object will take at least a block).
1703 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1704 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1705 statp->f_files = statp->f_ffree + usedobjs;
1707 (void) cmpldev(&d32, vfsp->vfs_dev);
1708 statp->f_fsid = d32;
1711 * We're a zfs filesystem.
1713 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1715 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1717 statp->f_namemax = ZFS_MAXNAMELEN;
1720 * We have all of 32 characters to stuff a string here.
1721 * Is there anything useful we could/should provide?
1723 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1725 ZFS_EXIT(zfsvfs);
1726 return (0);
1729 static int
1730 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1732 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1733 znode_t *rootzp;
1734 int error;
1736 ZFS_ENTER(zfsvfs);
1738 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1739 if (error == 0)
1740 *vpp = ZTOV(rootzp);
1742 ZFS_EXIT(zfsvfs);
1743 return (error);
1747 * Teardown the zfsvfs::z_os.
1749 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1750 * and 'z_teardown_inactive_lock' held.
1752 static int
1753 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1755 znode_t *zp;
1757 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1759 if (!unmounting) {
1761 * We purge the parent filesystem's vfsp as the parent
1762 * filesystem and all of its snapshots have their vnode's
1763 * v_vfsp set to the parent's filesystem's vfsp. Note,
1764 * 'z_parent' is self referential for non-snapshots.
1766 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1770 * Close the zil. NB: Can't close the zil while zfs_inactive
1771 * threads are blocked as zil_close can call zfs_inactive.
1773 if (zfsvfs->z_log) {
1774 zil_close(zfsvfs->z_log);
1775 zfsvfs->z_log = NULL;
1778 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1781 * If we are not unmounting (ie: online recv) and someone already
1782 * unmounted this file system while we were doing the switcheroo,
1783 * or a reopen of z_os failed then just bail out now.
1785 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1786 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1787 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1788 return (EIO);
1792 * At this point there are no vops active, and any new vops will
1793 * fail with EIO since we have z_teardown_lock for writer (only
1794 * relavent for forced unmount).
1796 * Release all holds on dbufs.
1798 mutex_enter(&zfsvfs->z_znodes_lock);
1799 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1800 zp = list_next(&zfsvfs->z_all_znodes, zp))
1801 if (zp->z_sa_hdl) {
1802 ASSERT(ZTOV(zp)->v_count > 0);
1803 zfs_znode_dmu_fini(zp);
1805 mutex_exit(&zfsvfs->z_znodes_lock);
1808 * If we are unmounting, set the unmounted flag and let new vops
1809 * unblock. zfs_inactive will have the unmounted behavior, and all
1810 * other vops will fail with EIO.
1812 if (unmounting) {
1813 zfsvfs->z_unmounted = B_TRUE;
1814 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1815 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1819 * z_os will be NULL if there was an error in attempting to reopen
1820 * zfsvfs, so just return as the properties had already been
1821 * unregistered and cached data had been evicted before.
1823 if (zfsvfs->z_os == NULL)
1824 return (0);
1827 * Unregister properties.
1829 zfs_unregister_callbacks(zfsvfs);
1832 * Evict cached data
1834 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1835 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1836 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1837 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1839 return (0);
1842 /*ARGSUSED*/
1843 static int
1844 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1846 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1847 objset_t *os;
1848 int ret;
1850 ret = secpolicy_fs_unmount(cr, vfsp);
1851 if (ret) {
1852 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1853 ZFS_DELEG_PERM_MOUNT, cr))
1854 return (ret);
1858 * We purge the parent filesystem's vfsp as the parent filesystem
1859 * and all of its snapshots have their vnode's v_vfsp set to the
1860 * parent's filesystem's vfsp. Note, 'z_parent' is self
1861 * referential for non-snapshots.
1863 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1866 * Unmount any snapshots mounted under .zfs before unmounting the
1867 * dataset itself.
1869 if (zfsvfs->z_ctldir != NULL &&
1870 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1871 return (ret);
1874 if (!(fflag & MS_FORCE)) {
1876 * Check the number of active vnodes in the file system.
1877 * Our count is maintained in the vfs structure, but the
1878 * number is off by 1 to indicate a hold on the vfs
1879 * structure itself.
1881 * The '.zfs' directory maintains a reference of its
1882 * own, and any active references underneath are
1883 * reflected in the vnode count.
1885 if (zfsvfs->z_ctldir == NULL) {
1886 if (vfsp->vfs_count > 1)
1887 return (EBUSY);
1888 } else {
1889 if (vfsp->vfs_count > 2 ||
1890 zfsvfs->z_ctldir->v_count > 1)
1891 return (EBUSY);
1895 vfsp->vfs_flag |= VFS_UNMOUNTED;
1897 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1898 os = zfsvfs->z_os;
1901 * z_os will be NULL if there was an error in
1902 * attempting to reopen zfsvfs.
1904 if (os != NULL) {
1906 * Unset the objset user_ptr.
1908 mutex_enter(&os->os_user_ptr_lock);
1909 dmu_objset_set_user(os, NULL);
1910 mutex_exit(&os->os_user_ptr_lock);
1913 * Finally release the objset
1915 dmu_objset_disown(os, zfsvfs);
1919 * We can now safely destroy the '.zfs' directory node.
1921 if (zfsvfs->z_ctldir != NULL)
1922 zfsctl_destroy(zfsvfs);
1924 return (0);
1927 static int
1928 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1930 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1931 znode_t *zp;
1932 uint64_t object = 0;
1933 uint64_t fid_gen = 0;
1934 uint64_t gen_mask;
1935 uint64_t zp_gen;
1936 int i, err;
1938 *vpp = NULL;
1940 ZFS_ENTER(zfsvfs);
1942 if (fidp->fid_len == LONG_FID_LEN) {
1943 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1944 uint64_t objsetid = 0;
1945 uint64_t setgen = 0;
1947 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1948 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1950 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1951 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1953 ZFS_EXIT(zfsvfs);
1955 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1956 if (err)
1957 return (EINVAL);
1958 ZFS_ENTER(zfsvfs);
1961 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1962 zfid_short_t *zfid = (zfid_short_t *)fidp;
1964 for (i = 0; i < sizeof (zfid->zf_object); i++)
1965 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1967 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1968 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1969 } else {
1970 ZFS_EXIT(zfsvfs);
1971 return (EINVAL);
1974 /* A zero fid_gen means we are in the .zfs control directories */
1975 if (fid_gen == 0 &&
1976 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1977 *vpp = zfsvfs->z_ctldir;
1978 ASSERT(*vpp != NULL);
1979 if (object == ZFSCTL_INO_SNAPDIR) {
1980 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1981 0, NULL, NULL, NULL, NULL, NULL) == 0);
1982 } else {
1983 VN_HOLD(*vpp);
1985 ZFS_EXIT(zfsvfs);
1986 return (0);
1989 gen_mask = -1ULL >> (64 - 8 * i);
1991 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1992 if (err = zfs_zget(zfsvfs, object, &zp)) {
1993 ZFS_EXIT(zfsvfs);
1994 return (err);
1996 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1997 sizeof (uint64_t));
1998 zp_gen = zp_gen & gen_mask;
1999 if (zp_gen == 0)
2000 zp_gen = 1;
2001 if (zp->z_unlinked || zp_gen != fid_gen) {
2002 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2003 VN_RELE(ZTOV(zp));
2004 ZFS_EXIT(zfsvfs);
2005 return (EINVAL);
2008 *vpp = ZTOV(zp);
2009 ZFS_EXIT(zfsvfs);
2010 return (0);
2014 * Block out VOPs and close zfsvfs_t::z_os
2016 * Note, if successful, then we return with the 'z_teardown_lock' and
2017 * 'z_teardown_inactive_lock' write held.
2020 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2022 int error;
2024 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2025 return (error);
2026 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2028 return (0);
2032 * Reopen zfsvfs_t::z_os and release VOPs.
2035 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2037 int err;
2039 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2040 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2042 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2043 &zfsvfs->z_os);
2044 if (err) {
2045 zfsvfs->z_os = NULL;
2046 } else {
2047 znode_t *zp;
2048 uint64_t sa_obj = 0;
2051 * Make sure version hasn't changed
2054 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2055 &zfsvfs->z_version);
2057 if (err)
2058 goto bail;
2060 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2061 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2063 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2064 goto bail;
2066 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2067 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2068 goto bail;
2070 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2071 sa_register_update_callback(zfsvfs->z_os,
2072 zfs_sa_upgrade);
2074 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2076 zfs_set_fuid_feature(zfsvfs);
2079 * Attempt to re-establish all the active znodes with
2080 * their dbufs. If a zfs_rezget() fails, then we'll let
2081 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2082 * when they try to use their znode.
2084 mutex_enter(&zfsvfs->z_znodes_lock);
2085 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2086 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2087 (void) zfs_rezget(zp);
2089 mutex_exit(&zfsvfs->z_znodes_lock);
2092 bail:
2093 /* release the VOPs */
2094 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2095 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2097 if (err) {
2099 * Since we couldn't reopen zfsvfs::z_os, or
2100 * setup the sa framework force unmount this file system.
2102 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2103 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2105 return (err);
2108 static void
2109 zfs_freevfs(vfs_t *vfsp)
2111 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2114 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2115 * from zfs_mount(). Release it here. If we came through
2116 * zfs_mountroot() instead, we didn't grab an extra hold, so
2117 * skip the VFS_RELE for rootvfs.
2119 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2120 VFS_RELE(zfsvfs->z_parent->z_vfs);
2122 zfsvfs_free(zfsvfs);
2124 atomic_add_32(&zfs_active_fs_count, -1);
2128 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2129 * so we can't safely do any non-idempotent initialization here.
2130 * Leave that to zfs_init() and zfs_fini(), which are called
2131 * from the module's _init() and _fini() entry points.
2133 /*ARGSUSED*/
2134 static int
2135 zfs_vfsinit(int fstype, char *name)
2137 int error;
2139 zfsfstype = fstype;
2142 * Setup vfsops and vnodeops tables.
2144 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2145 if (error != 0) {
2146 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2149 error = zfs_create_op_tables();
2150 if (error) {
2151 zfs_remove_op_tables();
2152 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2153 (void) vfs_freevfsops_by_type(zfsfstype);
2154 return (error);
2157 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2160 * Unique major number for all zfs mounts.
2161 * If we run out of 32-bit minors, we'll getudev() another major.
2163 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2164 zfs_minor = ZFS_MIN_MINOR;
2166 return (0);
2169 void
2170 zfs_init(void)
2173 * Initialize .zfs directory structures
2175 zfsctl_init();
2178 * Initialize znode cache, vnode ops, etc...
2180 zfs_znode_init();
2182 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2185 void
2186 zfs_fini(void)
2188 zfsctl_fini();
2189 zfs_znode_fini();
2193 zfs_busy(void)
2195 return (zfs_active_fs_count != 0);
2199 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2201 int error;
2202 objset_t *os = zfsvfs->z_os;
2203 dmu_tx_t *tx;
2205 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2206 return (EINVAL);
2208 if (newvers < zfsvfs->z_version)
2209 return (EINVAL);
2211 if (zfs_spa_version_map(newvers) >
2212 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2213 return (ENOTSUP);
2215 tx = dmu_tx_create(os);
2216 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2217 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2218 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2219 ZFS_SA_ATTRS);
2220 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2222 error = dmu_tx_assign(tx, TXG_WAIT);
2223 if (error) {
2224 dmu_tx_abort(tx);
2225 return (error);
2228 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2229 8, 1, &newvers, tx);
2231 if (error) {
2232 dmu_tx_commit(tx);
2233 return (error);
2236 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2237 uint64_t sa_obj;
2239 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2240 SPA_VERSION_SA);
2241 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2242 DMU_OT_NONE, 0, tx);
2244 error = zap_add(os, MASTER_NODE_OBJ,
2245 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2246 ASSERT3U(error, ==, 0);
2248 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2249 sa_register_update_callback(os, zfs_sa_upgrade);
2252 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2253 "from %llu to %llu", zfsvfs->z_version, newvers);
2255 dmu_tx_commit(tx);
2257 zfsvfs->z_version = newvers;
2259 zfs_set_fuid_feature(zfsvfs);
2261 return (0);
2265 * Read a property stored within the master node.
2268 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2270 const char *pname;
2271 int error = ENOENT;
2274 * Look up the file system's value for the property. For the
2275 * version property, we look up a slightly different string.
2277 if (prop == ZFS_PROP_VERSION)
2278 pname = ZPL_VERSION_STR;
2279 else
2280 pname = zfs_prop_to_name(prop);
2282 if (os != NULL)
2283 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2285 if (error == ENOENT) {
2286 /* No value set, use the default value */
2287 switch (prop) {
2288 case ZFS_PROP_VERSION:
2289 *value = ZPL_VERSION;
2290 break;
2291 case ZFS_PROP_NORMALIZE:
2292 case ZFS_PROP_UTF8ONLY:
2293 *value = 0;
2294 break;
2295 case ZFS_PROP_CASE:
2296 *value = ZFS_CASE_SENSITIVE;
2297 break;
2298 default:
2299 return (error);
2301 error = 0;
2303 return (error);
2306 static vfsdef_t vfw = {
2307 VFSDEF_VERSION,
2308 MNTTYPE_ZFS,
2309 zfs_vfsinit,
2310 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2311 VSW_XID|VSW_ZMOUNT,
2312 &zfs_mntopts
2315 struct modlfs zfs_modlfs = {
2316 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw