5974 kmem: remove a check that's always false
[illumos-gate.git] / usr / src / uts / common / os / kmem.c
blobcc53c2fb7642452f245d19824f3269a30c11b155
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 * Kernel memory allocator, as described in the following two papers and a
28 * statement about the consolidator:
30 * Jeff Bonwick,
31 * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
32 * Proceedings of the Summer 1994 Usenix Conference.
33 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
35 * Jeff Bonwick and Jonathan Adams,
36 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
37 * Arbitrary Resources.
38 * Proceedings of the 2001 Usenix Conference.
39 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
41 * kmem Slab Consolidator Big Theory Statement:
43 * 1. Motivation
45 * As stated in Bonwick94, slabs provide the following advantages over other
46 * allocation structures in terms of memory fragmentation:
48 * - Internal fragmentation (per-buffer wasted space) is minimal.
49 * - Severe external fragmentation (unused buffers on the free list) is
50 * unlikely.
52 * Segregating objects by size eliminates one source of external fragmentation,
53 * and according to Bonwick:
55 * The other reason that slabs reduce external fragmentation is that all
56 * objects in a slab are of the same type, so they have the same lifetime
57 * distribution. The resulting segregation of short-lived and long-lived
58 * objects at slab granularity reduces the likelihood of an entire page being
59 * held hostage due to a single long-lived allocation [Barrett93, Hanson90].
61 * While unlikely, severe external fragmentation remains possible. Clients that
62 * allocate both short- and long-lived objects from the same cache cannot
63 * anticipate the distribution of long-lived objects within the allocator's slab
64 * implementation. Even a small percentage of long-lived objects distributed
65 * randomly across many slabs can lead to a worst case scenario where the client
66 * frees the majority of its objects and the system gets back almost none of the
67 * slabs. Despite the client doing what it reasonably can to help the system
68 * reclaim memory, the allocator cannot shake free enough slabs because of
69 * lonely allocations stubbornly hanging on. Although the allocator is in a
70 * position to diagnose the fragmentation, there is nothing that the allocator
71 * by itself can do about it. It only takes a single allocated object to prevent
72 * an entire slab from being reclaimed, and any object handed out by
73 * kmem_cache_alloc() is by definition in the client's control. Conversely,
74 * although the client is in a position to move a long-lived object, it has no
75 * way of knowing if the object is causing fragmentation, and if so, where to
76 * move it. A solution necessarily requires further cooperation between the
77 * allocator and the client.
79 * 2. Move Callback
81 * The kmem slab consolidator therefore adds a move callback to the
82 * allocator/client interface, improving worst-case external fragmentation in
83 * kmem caches that supply a function to move objects from one memory location
84 * to another. In a situation of low memory kmem attempts to consolidate all of
85 * a cache's slabs at once; otherwise it works slowly to bring external
86 * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
87 * thereby helping to avoid a low memory situation in the future.
89 * The callback has the following signature:
91 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
93 * It supplies the kmem client with two addresses: the allocated object that
94 * kmem wants to move and a buffer selected by kmem for the client to use as the
95 * copy destination. The callback is kmem's way of saying "Please get off of
96 * this buffer and use this one instead." kmem knows where it wants to move the
97 * object in order to best reduce fragmentation. All the client needs to know
98 * about the second argument (void *new) is that it is an allocated, constructed
99 * object ready to take the contents of the old object. When the move function
100 * is called, the system is likely to be low on memory, and the new object
101 * spares the client from having to worry about allocating memory for the
102 * requested move. The third argument supplies the size of the object, in case a
103 * single move function handles multiple caches whose objects differ only in
104 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
105 * user argument passed to the constructor, destructor, and reclaim functions is
106 * also passed to the move callback.
108 * 2.1 Setting the Move Callback
110 * The client sets the move callback after creating the cache and before
111 * allocating from it:
113 * object_cache = kmem_cache_create(...);
114 * kmem_cache_set_move(object_cache, object_move);
116 * 2.2 Move Callback Return Values
118 * Only the client knows about its own data and when is a good time to move it.
119 * The client is cooperating with kmem to return unused memory to the system,
120 * and kmem respectfully accepts this help at the client's convenience. When
121 * asked to move an object, the client can respond with any of the following:
123 * typedef enum kmem_cbrc {
124 * KMEM_CBRC_YES,
125 * KMEM_CBRC_NO,
126 * KMEM_CBRC_LATER,
127 * KMEM_CBRC_DONT_NEED,
128 * KMEM_CBRC_DONT_KNOW
129 * } kmem_cbrc_t;
131 * The client must not explicitly kmem_cache_free() either of the objects passed
132 * to the callback, since kmem wants to free them directly to the slab layer
133 * (bypassing the per-CPU magazine layer). The response tells kmem which of the
134 * objects to free:
136 * YES: (Did it) The client moved the object, so kmem frees the old one.
137 * NO: (Never) The client refused, so kmem frees the new object (the
138 * unused copy destination). kmem also marks the slab of the old
139 * object so as not to bother the client with further callbacks for
140 * that object as long as the slab remains on the partial slab list.
141 * (The system won't be getting the slab back as long as the
142 * immovable object holds it hostage, so there's no point in moving
143 * any of its objects.)
144 * LATER: The client is using the object and cannot move it now, so kmem
145 * frees the new object (the unused copy destination). kmem still
146 * attempts to move other objects off the slab, since it expects to
147 * succeed in clearing the slab in a later callback. The client
148 * should use LATER instead of NO if the object is likely to become
149 * movable very soon.
150 * DONT_NEED: The client no longer needs the object, so kmem frees the old along
151 * with the new object (the unused copy destination). This response
152 * is the client's opportunity to be a model citizen and give back as
153 * much as it can.
154 * DONT_KNOW: The client does not know about the object because
155 * a) the client has just allocated the object and not yet put it
156 * wherever it expects to find known objects
157 * b) the client has removed the object from wherever it expects to
158 * find known objects and is about to free it, or
159 * c) the client has freed the object.
160 * In all these cases (a, b, and c) kmem frees the new object (the
161 * unused copy destination) and searches for the old object in the
162 * magazine layer. If found, the object is removed from the magazine
163 * layer and freed to the slab layer so it will no longer hold the
164 * slab hostage.
166 * 2.3 Object States
168 * Neither kmem nor the client can be assumed to know the object's whereabouts
169 * at the time of the callback. An object belonging to a kmem cache may be in
170 * any of the following states:
172 * 1. Uninitialized on the slab
173 * 2. Allocated from the slab but not constructed (still uninitialized)
174 * 3. Allocated from the slab, constructed, but not yet ready for business
175 * (not in a valid state for the move callback)
176 * 4. In use (valid and known to the client)
177 * 5. About to be freed (no longer in a valid state for the move callback)
178 * 6. Freed to a magazine (still constructed)
179 * 7. Allocated from a magazine, not yet ready for business (not in a valid
180 * state for the move callback), and about to return to state #4
181 * 8. Deconstructed on a magazine that is about to be freed
182 * 9. Freed to the slab
184 * Since the move callback may be called at any time while the object is in any
185 * of the above states (except state #1), the client needs a safe way to
186 * determine whether or not it knows about the object. Specifically, the client
187 * needs to know whether or not the object is in state #4, the only state in
188 * which a move is valid. If the object is in any other state, the client should
189 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
190 * the object's fields.
192 * Note that although an object may be in state #4 when kmem initiates the move
193 * request, the object may no longer be in that state by the time kmem actually
194 * calls the move function. Not only does the client free objects
195 * asynchronously, kmem itself puts move requests on a queue where thay are
196 * pending until kmem processes them from another context. Also, objects freed
197 * to a magazine appear allocated from the point of view of the slab layer, so
198 * kmem may even initiate requests for objects in a state other than state #4.
200 * 2.3.1 Magazine Layer
202 * An important insight revealed by the states listed above is that the magazine
203 * layer is populated only by kmem_cache_free(). Magazines of constructed
204 * objects are never populated directly from the slab layer (which contains raw,
205 * unconstructed objects). Whenever an allocation request cannot be satisfied
206 * from the magazine layer, the magazines are bypassed and the request is
207 * satisfied from the slab layer (creating a new slab if necessary). kmem calls
208 * the object constructor only when allocating from the slab layer, and only in
209 * response to kmem_cache_alloc() or to prepare the destination buffer passed in
210 * the move callback. kmem does not preconstruct objects in anticipation of
211 * kmem_cache_alloc().
213 * 2.3.2 Object Constructor and Destructor
215 * If the client supplies a destructor, it must be valid to call the destructor
216 * on a newly created object (immediately after the constructor).
218 * 2.4 Recognizing Known Objects
220 * There is a simple test to determine safely whether or not the client knows
221 * about a given object in the move callback. It relies on the fact that kmem
222 * guarantees that the object of the move callback has only been touched by the
223 * client itself or else by kmem. kmem does this by ensuring that none of the
224 * cache's slabs are freed to the virtual memory (VM) subsystem while a move
225 * callback is pending. When the last object on a slab is freed, if there is a
226 * pending move, kmem puts the slab on a per-cache dead list and defers freeing
227 * slabs on that list until all pending callbacks are completed. That way,
228 * clients can be certain that the object of a move callback is in one of the
229 * states listed above, making it possible to distinguish known objects (in
230 * state #4) using the two low order bits of any pointer member (with the
231 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
232 * platforms).
234 * The test works as long as the client always transitions objects from state #4
235 * (known, in use) to state #5 (about to be freed, invalid) by setting the low
236 * order bit of the client-designated pointer member. Since kmem only writes
237 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
238 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
239 * guaranteed to set at least one of the two low order bits. Therefore, given an
240 * object with a back pointer to a 'container_t *o_container', the client can
241 * test
243 * container_t *container = object->o_container;
244 * if ((uintptr_t)container & 0x3) {
245 * return (KMEM_CBRC_DONT_KNOW);
248 * Typically, an object will have a pointer to some structure with a list or
249 * hash where objects from the cache are kept while in use. Assuming that the
250 * client has some way of knowing that the container structure is valid and will
251 * not go away during the move, and assuming that the structure includes a lock
252 * to protect whatever collection is used, then the client would continue as
253 * follows:
255 * // Ensure that the container structure does not go away.
256 * if (container_hold(container) == 0) {
257 * return (KMEM_CBRC_DONT_KNOW);
259 * mutex_enter(&container->c_objects_lock);
260 * if (container != object->o_container) {
261 * mutex_exit(&container->c_objects_lock);
262 * container_rele(container);
263 * return (KMEM_CBRC_DONT_KNOW);
266 * At this point the client knows that the object cannot be freed as long as
267 * c_objects_lock is held. Note that after acquiring the lock, the client must
268 * recheck the o_container pointer in case the object was removed just before
269 * acquiring the lock.
271 * When the client is about to free an object, it must first remove that object
272 * from the list, hash, or other structure where it is kept. At that time, to
273 * mark the object so it can be distinguished from the remaining, known objects,
274 * the client sets the designated low order bit:
276 * mutex_enter(&container->c_objects_lock);
277 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
278 * list_remove(&container->c_objects, object);
279 * mutex_exit(&container->c_objects_lock);
281 * In the common case, the object is freed to the magazine layer, where it may
282 * be reused on a subsequent allocation without the overhead of calling the
283 * constructor. While in the magazine it appears allocated from the point of
284 * view of the slab layer, making it a candidate for the move callback. Most
285 * objects unrecognized by the client in the move callback fall into this
286 * category and are cheaply distinguished from known objects by the test
287 * described earlier. Since recognition is cheap for the client, and searching
288 * magazines is expensive for kmem, kmem defers searching until the client first
289 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
290 * elsewhere does what it can to avoid bothering the client unnecessarily.
292 * Invalidating the designated pointer member before freeing the object marks
293 * the object to be avoided in the callback, and conversely, assigning a valid
294 * value to the designated pointer member after allocating the object makes the
295 * object fair game for the callback:
297 * ... allocate object ...
298 * ... set any initial state not set by the constructor ...
300 * mutex_enter(&container->c_objects_lock);
301 * list_insert_tail(&container->c_objects, object);
302 * membar_producer();
303 * object->o_container = container;
304 * mutex_exit(&container->c_objects_lock);
306 * Note that everything else must be valid before setting o_container makes the
307 * object fair game for the move callback. The membar_producer() call ensures
308 * that all the object's state is written to memory before setting the pointer
309 * that transitions the object from state #3 or #7 (allocated, constructed, not
310 * yet in use) to state #4 (in use, valid). That's important because the move
311 * function has to check the validity of the pointer before it can safely
312 * acquire the lock protecting the collection where it expects to find known
313 * objects.
315 * This method of distinguishing known objects observes the usual symmetry:
316 * invalidating the designated pointer is the first thing the client does before
317 * freeing the object, and setting the designated pointer is the last thing the
318 * client does after allocating the object. Of course, the client is not
319 * required to use this method. Fundamentally, how the client recognizes known
320 * objects is completely up to the client, but this method is recommended as an
321 * efficient and safe way to take advantage of the guarantees made by kmem. If
322 * the entire object is arbitrary data without any markable bits from a suitable
323 * pointer member, then the client must find some other method, such as
324 * searching a hash table of known objects.
326 * 2.5 Preventing Objects From Moving
328 * Besides a way to distinguish known objects, the other thing that the client
329 * needs is a strategy to ensure that an object will not move while the client
330 * is actively using it. The details of satisfying this requirement tend to be
331 * highly cache-specific. It might seem that the same rules that let a client
332 * remove an object safely should also decide when an object can be moved
333 * safely. However, any object state that makes a removal attempt invalid is
334 * likely to be long-lasting for objects that the client does not expect to
335 * remove. kmem knows nothing about the object state and is equally likely (from
336 * the client's point of view) to request a move for any object in the cache,
337 * whether prepared for removal or not. Even a low percentage of objects stuck
338 * in place by unremovability will defeat the consolidator if the stuck objects
339 * are the same long-lived allocations likely to hold slabs hostage.
340 * Fundamentally, the consolidator is not aimed at common cases. Severe external
341 * fragmentation is a worst case scenario manifested as sparsely allocated
342 * slabs, by definition a low percentage of the cache's objects. When deciding
343 * what makes an object movable, keep in mind the goal of the consolidator: to
344 * bring worst-case external fragmentation within the limits guaranteed for
345 * internal fragmentation. Removability is a poor criterion if it is likely to
346 * exclude more than an insignificant percentage of objects for long periods of
347 * time.
349 * A tricky general solution exists, and it has the advantage of letting you
350 * move any object at almost any moment, practically eliminating the likelihood
351 * that an object can hold a slab hostage. However, if there is a cache-specific
352 * way to ensure that an object is not actively in use in the vast majority of
353 * cases, a simpler solution that leverages this cache-specific knowledge is
354 * preferred.
356 * 2.5.1 Cache-Specific Solution
358 * As an example of a cache-specific solution, the ZFS znode cache takes
359 * advantage of the fact that the vast majority of znodes are only being
360 * referenced from the DNLC. (A typical case might be a few hundred in active
361 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
362 * client has established that it recognizes the znode and can access its fields
363 * safely (using the method described earlier), it then tests whether the znode
364 * is referenced by anything other than the DNLC. If so, it assumes that the
365 * znode may be in active use and is unsafe to move, so it drops its locks and
366 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
367 * else znodes are used, no change is needed to protect against the possibility
368 * of the znode moving. The disadvantage is that it remains possible for an
369 * application to hold a znode slab hostage with an open file descriptor.
370 * However, this case ought to be rare and the consolidator has a way to deal
371 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
372 * object, kmem eventually stops believing it and treats the slab as if the
373 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
374 * then focus on getting it off of the partial slab list by allocating rather
375 * than freeing all of its objects. (Either way of getting a slab off the
376 * free list reduces fragmentation.)
378 * 2.5.2 General Solution
380 * The general solution, on the other hand, requires an explicit hold everywhere
381 * the object is used to prevent it from moving. To keep the client locking
382 * strategy as uncomplicated as possible, kmem guarantees the simplifying
383 * assumption that move callbacks are sequential, even across multiple caches.
384 * Internally, a global queue processed by a single thread supports all caches
385 * implementing the callback function. No matter how many caches supply a move
386 * function, the consolidator never moves more than one object at a time, so the
387 * client does not have to worry about tricky lock ordering involving several
388 * related objects from different kmem caches.
390 * The general solution implements the explicit hold as a read-write lock, which
391 * allows multiple readers to access an object from the cache simultaneously
392 * while a single writer is excluded from moving it. A single rwlock for the
393 * entire cache would lock out all threads from using any of the cache's objects
394 * even though only a single object is being moved, so to reduce contention,
395 * the client can fan out the single rwlock into an array of rwlocks hashed by
396 * the object address, making it probable that moving one object will not
397 * prevent other threads from using a different object. The rwlock cannot be a
398 * member of the object itself, because the possibility of the object moving
399 * makes it unsafe to access any of the object's fields until the lock is
400 * acquired.
402 * Assuming a small, fixed number of locks, it's possible that multiple objects
403 * will hash to the same lock. A thread that needs to use multiple objects in
404 * the same function may acquire the same lock multiple times. Since rwlocks are
405 * reentrant for readers, and since there is never more than a single writer at
406 * a time (assuming that the client acquires the lock as a writer only when
407 * moving an object inside the callback), there would seem to be no problem.
408 * However, a client locking multiple objects in the same function must handle
409 * one case of potential deadlock: Assume that thread A needs to prevent both
410 * object 1 and object 2 from moving, and thread B, the callback, meanwhile
411 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
412 * same lock, that thread A will acquire the lock for object 1 as a reader
413 * before thread B sets the lock's write-wanted bit, preventing thread A from
414 * reacquiring the lock for object 2 as a reader. Unable to make forward
415 * progress, thread A will never release the lock for object 1, resulting in
416 * deadlock.
418 * There are two ways of avoiding the deadlock just described. The first is to
419 * use rw_tryenter() rather than rw_enter() in the callback function when
420 * attempting to acquire the lock as a writer. If tryenter discovers that the
421 * same object (or another object hashed to the same lock) is already in use, it
422 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
423 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
424 * since it allows a thread to acquire the lock as a reader in spite of a
425 * waiting writer. This second approach insists on moving the object now, no
426 * matter how many readers the move function must wait for in order to do so,
427 * and could delay the completion of the callback indefinitely (blocking
428 * callbacks to other clients). In practice, a less insistent callback using
429 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
430 * little reason to use anything else.
432 * Avoiding deadlock is not the only problem that an implementation using an
433 * explicit hold needs to solve. Locking the object in the first place (to
434 * prevent it from moving) remains a problem, since the object could move
435 * between the time you obtain a pointer to the object and the time you acquire
436 * the rwlock hashed to that pointer value. Therefore the client needs to
437 * recheck the value of the pointer after acquiring the lock, drop the lock if
438 * the value has changed, and try again. This requires a level of indirection:
439 * something that points to the object rather than the object itself, that the
440 * client can access safely while attempting to acquire the lock. (The object
441 * itself cannot be referenced safely because it can move at any time.)
442 * The following lock-acquisition function takes whatever is safe to reference
443 * (arg), follows its pointer to the object (using function f), and tries as
444 * often as necessary to acquire the hashed lock and verify that the object
445 * still has not moved:
447 * object_t *
448 * object_hold(object_f f, void *arg)
450 * object_t *op;
452 * op = f(arg);
453 * if (op == NULL) {
454 * return (NULL);
457 * rw_enter(OBJECT_RWLOCK(op), RW_READER);
458 * while (op != f(arg)) {
459 * rw_exit(OBJECT_RWLOCK(op));
460 * op = f(arg);
461 * if (op == NULL) {
462 * break;
464 * rw_enter(OBJECT_RWLOCK(op), RW_READER);
467 * return (op);
470 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
471 * lock reacquisition loop, while necessary, almost never executes. The function
472 * pointer f (used to obtain the object pointer from arg) has the following type
473 * definition:
475 * typedef object_t *(*object_f)(void *arg);
477 * An object_f implementation is likely to be as simple as accessing a structure
478 * member:
480 * object_t *
481 * s_object(void *arg)
483 * something_t *sp = arg;
484 * return (sp->s_object);
487 * The flexibility of a function pointer allows the path to the object to be
488 * arbitrarily complex and also supports the notion that depending on where you
489 * are using the object, you may need to get it from someplace different.
491 * The function that releases the explicit hold is simpler because it does not
492 * have to worry about the object moving:
494 * void
495 * object_rele(object_t *op)
497 * rw_exit(OBJECT_RWLOCK(op));
500 * The caller is spared these details so that obtaining and releasing an
501 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
502 * of object_hold() only needs to know that the returned object pointer is valid
503 * if not NULL and that the object will not move until released.
505 * Although object_hold() prevents an object from moving, it does not prevent it
506 * from being freed. The caller must take measures before calling object_hold()
507 * (afterwards is too late) to ensure that the held object cannot be freed. The
508 * caller must do so without accessing the unsafe object reference, so any lock
509 * or reference count used to ensure the continued existence of the object must
510 * live outside the object itself.
512 * Obtaining a new object is a special case where an explicit hold is impossible
513 * for the caller. Any function that returns a newly allocated object (either as
514 * a return value, or as an in-out paramter) must return it already held; after
515 * the caller gets it is too late, since the object cannot be safely accessed
516 * without the level of indirection described earlier. The following
517 * object_alloc() example uses the same code shown earlier to transition a new
518 * object into the state of being recognized (by the client) as a known object.
519 * The function must acquire the hold (rw_enter) before that state transition
520 * makes the object movable:
522 * static object_t *
523 * object_alloc(container_t *container)
525 * object_t *object = kmem_cache_alloc(object_cache, 0);
526 * ... set any initial state not set by the constructor ...
527 * rw_enter(OBJECT_RWLOCK(object), RW_READER);
528 * mutex_enter(&container->c_objects_lock);
529 * list_insert_tail(&container->c_objects, object);
530 * membar_producer();
531 * object->o_container = container;
532 * mutex_exit(&container->c_objects_lock);
533 * return (object);
536 * Functions that implicitly acquire an object hold (any function that calls
537 * object_alloc() to supply an object for the caller) need to be carefully noted
538 * so that the matching object_rele() is not neglected. Otherwise, leaked holds
539 * prevent all objects hashed to the affected rwlocks from ever being moved.
541 * The pointer to a held object can be hashed to the holding rwlock even after
542 * the object has been freed. Although it is possible to release the hold
543 * after freeing the object, you may decide to release the hold implicitly in
544 * whatever function frees the object, so as to release the hold as soon as
545 * possible, and for the sake of symmetry with the function that implicitly
546 * acquires the hold when it allocates the object. Here, object_free() releases
547 * the hold acquired by object_alloc(). Its implicit object_rele() forms a
548 * matching pair with object_hold():
550 * void
551 * object_free(object_t *object)
553 * container_t *container;
555 * ASSERT(object_held(object));
556 * container = object->o_container;
557 * mutex_enter(&container->c_objects_lock);
558 * object->o_container =
559 * (void *)((uintptr_t)object->o_container | 0x1);
560 * list_remove(&container->c_objects, object);
561 * mutex_exit(&container->c_objects_lock);
562 * object_rele(object);
563 * kmem_cache_free(object_cache, object);
566 * Note that object_free() cannot safely accept an object pointer as an argument
567 * unless the object is already held. Any function that calls object_free()
568 * needs to be carefully noted since it similarly forms a matching pair with
569 * object_hold().
571 * To complete the picture, the following callback function implements the
572 * general solution by moving objects only if they are currently unheld:
574 * static kmem_cbrc_t
575 * object_move(void *buf, void *newbuf, size_t size, void *arg)
577 * object_t *op = buf, *np = newbuf;
578 * container_t *container;
580 * container = op->o_container;
581 * if ((uintptr_t)container & 0x3) {
582 * return (KMEM_CBRC_DONT_KNOW);
585 * // Ensure that the container structure does not go away.
586 * if (container_hold(container) == 0) {
587 * return (KMEM_CBRC_DONT_KNOW);
590 * mutex_enter(&container->c_objects_lock);
591 * if (container != op->o_container) {
592 * mutex_exit(&container->c_objects_lock);
593 * container_rele(container);
594 * return (KMEM_CBRC_DONT_KNOW);
597 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
598 * mutex_exit(&container->c_objects_lock);
599 * container_rele(container);
600 * return (KMEM_CBRC_LATER);
603 * object_move_impl(op, np); // critical section
604 * rw_exit(OBJECT_RWLOCK(op));
606 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
607 * list_link_replace(&op->o_link_node, &np->o_link_node);
608 * mutex_exit(&container->c_objects_lock);
609 * container_rele(container);
610 * return (KMEM_CBRC_YES);
613 * Note that object_move() must invalidate the designated o_container pointer of
614 * the old object in the same way that object_free() does, since kmem will free
615 * the object in response to the KMEM_CBRC_YES return value.
617 * The lock order in object_move() differs from object_alloc(), which locks
618 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
619 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
620 * not a problem. Holding the lock on the object list in the example above
621 * through the entire callback not only prevents the object from going away, it
622 * also allows you to lock the list elsewhere and know that none of its elements
623 * will move during iteration.
625 * Adding an explicit hold everywhere an object from the cache is used is tricky
626 * and involves much more change to client code than a cache-specific solution
627 * that leverages existing state to decide whether or not an object is
628 * movable. However, this approach has the advantage that no object remains
629 * immovable for any significant length of time, making it extremely unlikely
630 * that long-lived allocations can continue holding slabs hostage; and it works
631 * for any cache.
633 * 3. Consolidator Implementation
635 * Once the client supplies a move function that a) recognizes known objects and
636 * b) avoids moving objects that are actively in use, the remaining work is up
637 * to the consolidator to decide which objects to move and when to issue
638 * callbacks.
640 * The consolidator relies on the fact that a cache's slabs are ordered by
641 * usage. Each slab has a fixed number of objects. Depending on the slab's
642 * "color" (the offset of the first object from the beginning of the slab;
643 * offsets are staggered to mitigate false sharing of cache lines) it is either
644 * the maximum number of objects per slab determined at cache creation time or
645 * else the number closest to the maximum that fits within the space remaining
646 * after the initial offset. A completely allocated slab may contribute some
647 * internal fragmentation (per-slab overhead) but no external fragmentation, so
648 * it is of no interest to the consolidator. At the other extreme, slabs whose
649 * objects have all been freed to the slab are released to the virtual memory
650 * (VM) subsystem (objects freed to magazines are still allocated as far as the
651 * slab is concerned). External fragmentation exists when there are slabs
652 * somewhere between these extremes. A partial slab has at least one but not all
653 * of its objects allocated. The more partial slabs, and the fewer allocated
654 * objects on each of them, the higher the fragmentation. Hence the
655 * consolidator's overall strategy is to reduce the number of partial slabs by
656 * moving allocated objects from the least allocated slabs to the most allocated
657 * slabs.
659 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
660 * slabs are kept separately in an unordered list. Since the majority of slabs
661 * tend to be completely allocated (a typical unfragmented cache may have
662 * thousands of complete slabs and only a single partial slab), separating
663 * complete slabs improves the efficiency of partial slab ordering, since the
664 * complete slabs do not affect the depth or balance of the AVL tree. This
665 * ordered sequence of partial slabs acts as a "free list" supplying objects for
666 * allocation requests.
668 * Objects are always allocated from the first partial slab in the free list,
669 * where the allocation is most likely to eliminate a partial slab (by
670 * completely allocating it). Conversely, when a single object from a completely
671 * allocated slab is freed to the slab, that slab is added to the front of the
672 * free list. Since most free list activity involves highly allocated slabs
673 * coming and going at the front of the list, slabs tend naturally toward the
674 * ideal order: highly allocated at the front, sparsely allocated at the back.
675 * Slabs with few allocated objects are likely to become completely free if they
676 * keep a safe distance away from the front of the free list. Slab misorders
677 * interfere with the natural tendency of slabs to become completely free or
678 * completely allocated. For example, a slab with a single allocated object
679 * needs only a single free to escape the cache; its natural desire is
680 * frustrated when it finds itself at the front of the list where a second
681 * allocation happens just before the free could have released it. Another slab
682 * with all but one object allocated might have supplied the buffer instead, so
683 * that both (as opposed to neither) of the slabs would have been taken off the
684 * free list.
686 * Although slabs tend naturally toward the ideal order, misorders allowed by a
687 * simple list implementation defeat the consolidator's strategy of merging
688 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
689 * needs another way to fix misorders to optimize its callback strategy. One
690 * approach is to periodically scan a limited number of slabs, advancing a
691 * marker to hold the current scan position, and to move extreme misorders to
692 * the front or back of the free list and to the front or back of the current
693 * scan range. By making consecutive scan ranges overlap by one slab, the least
694 * allocated slab in the current range can be carried along from the end of one
695 * scan to the start of the next.
697 * Maintaining partial slabs in an AVL tree relieves kmem of this additional
698 * task, however. Since most of the cache's activity is in the magazine layer,
699 * and allocations from the slab layer represent only a startup cost, the
700 * overhead of maintaining a balanced tree is not a significant concern compared
701 * to the opportunity of reducing complexity by eliminating the partial slab
702 * scanner just described. The overhead of an AVL tree is minimized by
703 * maintaining only partial slabs in the tree and keeping completely allocated
704 * slabs separately in a list. To avoid increasing the size of the slab
705 * structure the AVL linkage pointers are reused for the slab's list linkage,
706 * since the slab will always be either partial or complete, never stored both
707 * ways at the same time. To further minimize the overhead of the AVL tree the
708 * compare function that orders partial slabs by usage divides the range of
709 * allocated object counts into bins such that counts within the same bin are
710 * considered equal. Binning partial slabs makes it less likely that allocating
711 * or freeing a single object will change the slab's order, requiring a tree
712 * reinsertion (an avl_remove() followed by an avl_add(), both potentially
713 * requiring some rebalancing of the tree). Allocation counts closest to
714 * completely free and completely allocated are left unbinned (finely sorted) to
715 * better support the consolidator's strategy of merging slabs at either
716 * extreme.
718 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
720 * The consolidator piggybacks on the kmem maintenance thread and is called on
721 * the same interval as kmem_cache_update(), once per cache every fifteen
722 * seconds. kmem maintains a running count of unallocated objects in the slab
723 * layer (cache_bufslab). The consolidator checks whether that number exceeds
724 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
725 * there is a significant number of slabs in the cache (arbitrarily a minimum
726 * 101 total slabs). Unused objects that have fallen out of the magazine layer's
727 * working set are included in the assessment, and magazines in the depot are
728 * reaped if those objects would lift cache_bufslab above the fragmentation
729 * threshold. Once the consolidator decides that a cache is fragmented, it looks
730 * for a candidate slab to reclaim, starting at the end of the partial slab free
731 * list and scanning backwards. At first the consolidator is choosy: only a slab
732 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
733 * single allocated object, regardless of percentage). If there is difficulty
734 * finding a candidate slab, kmem raises the allocation threshold incrementally,
735 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
736 * external fragmentation (unused objects on the free list) below 12.5% (1/8),
737 * even in the worst case of every slab in the cache being almost 7/8 allocated.
738 * The threshold can also be lowered incrementally when candidate slabs are easy
739 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
740 * is no longer fragmented.
742 * 3.2 Generating Callbacks
744 * Once an eligible slab is chosen, a callback is generated for every allocated
745 * object on the slab, in the hope that the client will move everything off the
746 * slab and make it reclaimable. Objects selected as move destinations are
747 * chosen from slabs at the front of the free list. Assuming slabs in the ideal
748 * order (most allocated at the front, least allocated at the back) and a
749 * cooperative client, the consolidator will succeed in removing slabs from both
750 * ends of the free list, completely allocating on the one hand and completely
751 * freeing on the other. Objects selected as move destinations are allocated in
752 * the kmem maintenance thread where move requests are enqueued. A separate
753 * callback thread removes pending callbacks from the queue and calls the
754 * client. The separate thread ensures that client code (the move function) does
755 * not interfere with internal kmem maintenance tasks. A map of pending
756 * callbacks keyed by object address (the object to be moved) is checked to
757 * ensure that duplicate callbacks are not generated for the same object.
758 * Allocating the move destination (the object to move to) prevents subsequent
759 * callbacks from selecting the same destination as an earlier pending callback.
761 * Move requests can also be generated by kmem_cache_reap() when the system is
762 * desperate for memory and by kmem_cache_move_notify(), called by the client to
763 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
764 * The map of pending callbacks is protected by the same lock that protects the
765 * slab layer.
767 * When the system is desperate for memory, kmem does not bother to determine
768 * whether or not the cache exceeds the fragmentation threshold, but tries to
769 * consolidate as many slabs as possible. Normally, the consolidator chews
770 * slowly, one sparsely allocated slab at a time during each maintenance
771 * interval that the cache is fragmented. When desperate, the consolidator
772 * starts at the last partial slab and enqueues callbacks for every allocated
773 * object on every partial slab, working backwards until it reaches the first
774 * partial slab. The first partial slab, meanwhile, advances in pace with the
775 * consolidator as allocations to supply move destinations for the enqueued
776 * callbacks use up the highly allocated slabs at the front of the free list.
777 * Ideally, the overgrown free list collapses like an accordion, starting at
778 * both ends and ending at the center with a single partial slab.
780 * 3.3 Client Responses
782 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
783 * marks the slab that supplied the stuck object non-reclaimable and moves it to
784 * front of the free list. The slab remains marked as long as it remains on the
785 * free list, and it appears more allocated to the partial slab compare function
786 * than any unmarked slab, no matter how many of its objects are allocated.
787 * Since even one immovable object ties up the entire slab, the goal is to
788 * completely allocate any slab that cannot be completely freed. kmem does not
789 * bother generating callbacks to move objects from a marked slab unless the
790 * system is desperate.
792 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
793 * slab. If the client responds LATER too many times, kmem disbelieves and
794 * treats the response as a NO. The count is cleared when the slab is taken off
795 * the partial slab list or when the client moves one of the slab's objects.
797 * 4. Observability
799 * A kmem cache's external fragmentation is best observed with 'mdb -k' using
800 * the ::kmem_slabs dcmd. For a complete description of the command, enter
801 * '::help kmem_slabs' at the mdb prompt.
804 #include <sys/kmem_impl.h>
805 #include <sys/vmem_impl.h>
806 #include <sys/param.h>
807 #include <sys/sysmacros.h>
808 #include <sys/vm.h>
809 #include <sys/proc.h>
810 #include <sys/tuneable.h>
811 #include <sys/systm.h>
812 #include <sys/cmn_err.h>
813 #include <sys/debug.h>
814 #include <sys/sdt.h>
815 #include <sys/mutex.h>
816 #include <sys/bitmap.h>
817 #include <sys/atomic.h>
818 #include <sys/kobj.h>
819 #include <sys/disp.h>
820 #include <vm/seg_kmem.h>
821 #include <sys/log.h>
822 #include <sys/callb.h>
823 #include <sys/taskq.h>
824 #include <sys/modctl.h>
825 #include <sys/reboot.h>
826 #include <sys/id32.h>
827 #include <sys/zone.h>
828 #include <sys/netstack.h>
829 #ifdef DEBUG
830 #include <sys/random.h>
831 #endif
833 extern void streams_msg_init(void);
834 extern int segkp_fromheap;
835 extern void segkp_cache_free(void);
836 extern int callout_init_done;
838 struct kmem_cache_kstat {
839 kstat_named_t kmc_buf_size;
840 kstat_named_t kmc_align;
841 kstat_named_t kmc_chunk_size;
842 kstat_named_t kmc_slab_size;
843 kstat_named_t kmc_alloc;
844 kstat_named_t kmc_alloc_fail;
845 kstat_named_t kmc_free;
846 kstat_named_t kmc_depot_alloc;
847 kstat_named_t kmc_depot_free;
848 kstat_named_t kmc_depot_contention;
849 kstat_named_t kmc_slab_alloc;
850 kstat_named_t kmc_slab_free;
851 kstat_named_t kmc_buf_constructed;
852 kstat_named_t kmc_buf_avail;
853 kstat_named_t kmc_buf_inuse;
854 kstat_named_t kmc_buf_total;
855 kstat_named_t kmc_buf_max;
856 kstat_named_t kmc_slab_create;
857 kstat_named_t kmc_slab_destroy;
858 kstat_named_t kmc_vmem_source;
859 kstat_named_t kmc_hash_size;
860 kstat_named_t kmc_hash_lookup_depth;
861 kstat_named_t kmc_hash_rescale;
862 kstat_named_t kmc_full_magazines;
863 kstat_named_t kmc_empty_magazines;
864 kstat_named_t kmc_magazine_size;
865 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */
866 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */
867 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */
868 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
869 kstat_named_t kmc_move_yes;
870 kstat_named_t kmc_move_no;
871 kstat_named_t kmc_move_later;
872 kstat_named_t kmc_move_dont_need;
873 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */
874 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */
875 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */
876 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */
877 } kmem_cache_kstat = {
878 { "buf_size", KSTAT_DATA_UINT64 },
879 { "align", KSTAT_DATA_UINT64 },
880 { "chunk_size", KSTAT_DATA_UINT64 },
881 { "slab_size", KSTAT_DATA_UINT64 },
882 { "alloc", KSTAT_DATA_UINT64 },
883 { "alloc_fail", KSTAT_DATA_UINT64 },
884 { "free", KSTAT_DATA_UINT64 },
885 { "depot_alloc", KSTAT_DATA_UINT64 },
886 { "depot_free", KSTAT_DATA_UINT64 },
887 { "depot_contention", KSTAT_DATA_UINT64 },
888 { "slab_alloc", KSTAT_DATA_UINT64 },
889 { "slab_free", KSTAT_DATA_UINT64 },
890 { "buf_constructed", KSTAT_DATA_UINT64 },
891 { "buf_avail", KSTAT_DATA_UINT64 },
892 { "buf_inuse", KSTAT_DATA_UINT64 },
893 { "buf_total", KSTAT_DATA_UINT64 },
894 { "buf_max", KSTAT_DATA_UINT64 },
895 { "slab_create", KSTAT_DATA_UINT64 },
896 { "slab_destroy", KSTAT_DATA_UINT64 },
897 { "vmem_source", KSTAT_DATA_UINT64 },
898 { "hash_size", KSTAT_DATA_UINT64 },
899 { "hash_lookup_depth", KSTAT_DATA_UINT64 },
900 { "hash_rescale", KSTAT_DATA_UINT64 },
901 { "full_magazines", KSTAT_DATA_UINT64 },
902 { "empty_magazines", KSTAT_DATA_UINT64 },
903 { "magazine_size", KSTAT_DATA_UINT64 },
904 { "reap", KSTAT_DATA_UINT64 },
905 { "defrag", KSTAT_DATA_UINT64 },
906 { "scan", KSTAT_DATA_UINT64 },
907 { "move_callbacks", KSTAT_DATA_UINT64 },
908 { "move_yes", KSTAT_DATA_UINT64 },
909 { "move_no", KSTAT_DATA_UINT64 },
910 { "move_later", KSTAT_DATA_UINT64 },
911 { "move_dont_need", KSTAT_DATA_UINT64 },
912 { "move_dont_know", KSTAT_DATA_UINT64 },
913 { "move_hunt_found", KSTAT_DATA_UINT64 },
914 { "move_slabs_freed", KSTAT_DATA_UINT64 },
915 { "move_reclaimable", KSTAT_DATA_UINT64 },
918 static kmutex_t kmem_cache_kstat_lock;
921 * The default set of caches to back kmem_alloc().
922 * These sizes should be reevaluated periodically.
924 * We want allocations that are multiples of the coherency granularity
925 * (64 bytes) to be satisfied from a cache which is a multiple of 64
926 * bytes, so that it will be 64-byte aligned. For all multiples of 64,
927 * the next kmem_cache_size greater than or equal to it must be a
928 * multiple of 64.
930 * We split the table into two sections: size <= 4k and size > 4k. This
931 * saves a lot of space and cache footprint in our cache tables.
933 static const int kmem_alloc_sizes[] = {
934 1 * 8,
935 2 * 8,
936 3 * 8,
937 4 * 8, 5 * 8, 6 * 8, 7 * 8,
938 4 * 16, 5 * 16, 6 * 16, 7 * 16,
939 4 * 32, 5 * 32, 6 * 32, 7 * 32,
940 4 * 64, 5 * 64, 6 * 64, 7 * 64,
941 4 * 128, 5 * 128, 6 * 128, 7 * 128,
942 P2ALIGN(8192 / 7, 64),
943 P2ALIGN(8192 / 6, 64),
944 P2ALIGN(8192 / 5, 64),
945 P2ALIGN(8192 / 4, 64),
946 P2ALIGN(8192 / 3, 64),
947 P2ALIGN(8192 / 2, 64),
950 static const int kmem_big_alloc_sizes[] = {
951 2 * 4096, 3 * 4096,
952 2 * 8192, 3 * 8192,
953 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192,
954 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192,
955 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192,
956 16 * 8192
959 #define KMEM_MAXBUF 4096
960 #define KMEM_BIG_MAXBUF_32BIT 32768
961 #define KMEM_BIG_MAXBUF 131072
963 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */
964 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */
966 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
967 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
969 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
970 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */
972 static kmem_magtype_t kmem_magtype[] = {
973 { 1, 8, 3200, 65536 },
974 { 3, 16, 256, 32768 },
975 { 7, 32, 64, 16384 },
976 { 15, 64, 0, 8192 },
977 { 31, 64, 0, 4096 },
978 { 47, 64, 0, 2048 },
979 { 63, 64, 0, 1024 },
980 { 95, 64, 0, 512 },
981 { 143, 64, 0, 0 },
984 static uint32_t kmem_reaping;
985 static uint32_t kmem_reaping_idspace;
988 * kmem tunables
990 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */
991 int kmem_depot_contention = 3; /* max failed tryenters per real interval */
992 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */
993 int kmem_panic = 1; /* whether to panic on error */
994 int kmem_logging = 1; /* kmem_log_enter() override */
995 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */
996 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
997 size_t kmem_content_log_size; /* content log size [2% of memory] */
998 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */
999 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */
1000 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1001 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */
1002 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1003 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */
1004 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */
1005 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */
1007 #ifdef _LP64
1008 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */
1009 #else
1010 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1011 #endif
1013 #ifdef DEBUG
1014 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1015 #else
1016 int kmem_flags = 0;
1017 #endif
1018 int kmem_ready;
1020 static kmem_cache_t *kmem_slab_cache;
1021 static kmem_cache_t *kmem_bufctl_cache;
1022 static kmem_cache_t *kmem_bufctl_audit_cache;
1024 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */
1025 static list_t kmem_caches;
1027 static taskq_t *kmem_taskq;
1028 static kmutex_t kmem_flags_lock;
1029 static vmem_t *kmem_metadata_arena;
1030 static vmem_t *kmem_msb_arena; /* arena for metadata caches */
1031 static vmem_t *kmem_cache_arena;
1032 static vmem_t *kmem_hash_arena;
1033 static vmem_t *kmem_log_arena;
1034 static vmem_t *kmem_oversize_arena;
1035 static vmem_t *kmem_va_arena;
1036 static vmem_t *kmem_default_arena;
1037 static vmem_t *kmem_firewall_va_arena;
1038 static vmem_t *kmem_firewall_arena;
1041 * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1042 * turned on when DEBUG is also defined.
1044 #ifdef DEBUG
1045 #define KMEM_STATS
1046 #endif /* DEBUG */
1048 #ifdef KMEM_STATS
1049 #define KMEM_STAT_ADD(stat) ((stat)++)
1050 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++))
1051 #else
1052 #define KMEM_STAT_ADD(stat) /* nothing */
1053 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */
1054 #endif /* KMEM_STATS */
1057 * kmem slab consolidator thresholds (tunables)
1059 size_t kmem_frag_minslabs = 101; /* minimum total slabs */
1060 size_t kmem_frag_numer = 1; /* free buffers (numerator) */
1061 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1063 * Maximum number of slabs from which to move buffers during a single
1064 * maintenance interval while the system is not low on memory.
1066 size_t kmem_reclaim_max_slabs = 1;
1068 * Number of slabs to scan backwards from the end of the partial slab list
1069 * when searching for buffers to relocate.
1071 size_t kmem_reclaim_scan_range = 12;
1073 #ifdef KMEM_STATS
1074 static struct {
1075 uint64_t kms_callbacks;
1076 uint64_t kms_yes;
1077 uint64_t kms_no;
1078 uint64_t kms_later;
1079 uint64_t kms_dont_need;
1080 uint64_t kms_dont_know;
1081 uint64_t kms_hunt_found_mag;
1082 uint64_t kms_hunt_found_slab;
1083 uint64_t kms_hunt_alloc_fail;
1084 uint64_t kms_hunt_lucky;
1085 uint64_t kms_notify;
1086 uint64_t kms_notify_callbacks;
1087 uint64_t kms_disbelief;
1088 uint64_t kms_already_pending;
1089 uint64_t kms_callback_alloc_fail;
1090 uint64_t kms_callback_taskq_fail;
1091 uint64_t kms_endscan_slab_dead;
1092 uint64_t kms_endscan_slab_destroyed;
1093 uint64_t kms_endscan_nomem;
1094 uint64_t kms_endscan_refcnt_changed;
1095 uint64_t kms_endscan_nomove_changed;
1096 uint64_t kms_endscan_freelist;
1097 uint64_t kms_avl_update;
1098 uint64_t kms_avl_noupdate;
1099 uint64_t kms_no_longer_reclaimable;
1100 uint64_t kms_notify_no_longer_reclaimable;
1101 uint64_t kms_notify_slab_dead;
1102 uint64_t kms_notify_slab_destroyed;
1103 uint64_t kms_alloc_fail;
1104 uint64_t kms_constructor_fail;
1105 uint64_t kms_dead_slabs_freed;
1106 uint64_t kms_defrags;
1107 uint64_t kms_scans;
1108 uint64_t kms_scan_depot_ws_reaps;
1109 uint64_t kms_debug_reaps;
1110 uint64_t kms_debug_scans;
1111 } kmem_move_stats;
1112 #endif /* KMEM_STATS */
1114 /* consolidator knobs */
1115 static boolean_t kmem_move_noreap;
1116 static boolean_t kmem_move_blocked;
1117 static boolean_t kmem_move_fulltilt;
1118 static boolean_t kmem_move_any_partial;
1120 #ifdef DEBUG
1122 * kmem consolidator debug tunables:
1123 * Ensure code coverage by occasionally running the consolidator even when the
1124 * caches are not fragmented (they may never be). These intervals are mean time
1125 * in cache maintenance intervals (kmem_cache_update).
1127 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */
1128 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */
1129 #endif /* DEBUG */
1131 static kmem_cache_t *kmem_defrag_cache;
1132 static kmem_cache_t *kmem_move_cache;
1133 static taskq_t *kmem_move_taskq;
1135 static void kmem_cache_scan(kmem_cache_t *);
1136 static void kmem_cache_defrag(kmem_cache_t *);
1137 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1140 kmem_log_header_t *kmem_transaction_log;
1141 kmem_log_header_t *kmem_content_log;
1142 kmem_log_header_t *kmem_failure_log;
1143 kmem_log_header_t *kmem_slab_log;
1145 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1147 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \
1148 if ((count) > 0) { \
1149 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1150 pc_t *_e; \
1151 /* memmove() the old entries down one notch */ \
1152 for (_e = &_s[(count) - 1]; _e > _s; _e--) \
1153 *_e = *(_e - 1); \
1154 *_s = (uintptr_t)(caller); \
1157 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */
1158 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */
1159 #define KMERR_DUPFREE 2 /* freed a buffer twice */
1160 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */
1161 #define KMERR_BADBUFTAG 4 /* buftag corrupted */
1162 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */
1163 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
1164 #define KMERR_BADSIZE 7 /* alloc size != free size */
1165 #define KMERR_BADBASE 8 /* buffer base address wrong */
1167 struct {
1168 hrtime_t kmp_timestamp; /* timestamp of panic */
1169 int kmp_error; /* type of kmem error */
1170 void *kmp_buffer; /* buffer that induced panic */
1171 void *kmp_realbuf; /* real start address for buffer */
1172 kmem_cache_t *kmp_cache; /* buffer's cache according to client */
1173 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */
1174 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */
1175 kmem_bufctl_t *kmp_bufctl; /* bufctl */
1176 } kmem_panic_info;
1179 static void
1180 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1182 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1183 uint64_t *buf = buf_arg;
1185 while (buf < bufend)
1186 *buf++ = pattern;
1189 static void *
1190 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1192 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1193 uint64_t *buf;
1195 for (buf = buf_arg; buf < bufend; buf++)
1196 if (*buf != pattern)
1197 return (buf);
1198 return (NULL);
1201 static void *
1202 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1204 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1205 uint64_t *buf;
1207 for (buf = buf_arg; buf < bufend; buf++) {
1208 if (*buf != old) {
1209 copy_pattern(old, buf_arg,
1210 (char *)buf - (char *)buf_arg);
1211 return (buf);
1213 *buf = new;
1216 return (NULL);
1219 static void
1220 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1222 kmem_cache_t *cp;
1224 mutex_enter(&kmem_cache_lock);
1225 for (cp = list_head(&kmem_caches); cp != NULL;
1226 cp = list_next(&kmem_caches, cp))
1227 if (tq != NULL)
1228 (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1229 tqflag);
1230 else
1231 func(cp);
1232 mutex_exit(&kmem_cache_lock);
1235 static void
1236 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1238 kmem_cache_t *cp;
1240 mutex_enter(&kmem_cache_lock);
1241 for (cp = list_head(&kmem_caches); cp != NULL;
1242 cp = list_next(&kmem_caches, cp)) {
1243 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1244 continue;
1245 if (tq != NULL)
1246 (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1247 tqflag);
1248 else
1249 func(cp);
1251 mutex_exit(&kmem_cache_lock);
1255 * Debugging support. Given a buffer address, find its slab.
1257 static kmem_slab_t *
1258 kmem_findslab(kmem_cache_t *cp, void *buf)
1260 kmem_slab_t *sp;
1262 mutex_enter(&cp->cache_lock);
1263 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1264 sp = list_next(&cp->cache_complete_slabs, sp)) {
1265 if (KMEM_SLAB_MEMBER(sp, buf)) {
1266 mutex_exit(&cp->cache_lock);
1267 return (sp);
1270 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1271 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1272 if (KMEM_SLAB_MEMBER(sp, buf)) {
1273 mutex_exit(&cp->cache_lock);
1274 return (sp);
1277 mutex_exit(&cp->cache_lock);
1279 return (NULL);
1282 static void
1283 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1285 kmem_buftag_t *btp = NULL;
1286 kmem_bufctl_t *bcp = NULL;
1287 kmem_cache_t *cp = cparg;
1288 kmem_slab_t *sp;
1289 uint64_t *off;
1290 void *buf = bufarg;
1292 kmem_logging = 0; /* stop logging when a bad thing happens */
1294 kmem_panic_info.kmp_timestamp = gethrtime();
1296 sp = kmem_findslab(cp, buf);
1297 if (sp == NULL) {
1298 for (cp = list_tail(&kmem_caches); cp != NULL;
1299 cp = list_prev(&kmem_caches, cp)) {
1300 if ((sp = kmem_findslab(cp, buf)) != NULL)
1301 break;
1305 if (sp == NULL) {
1306 cp = NULL;
1307 error = KMERR_BADADDR;
1308 } else {
1309 if (cp != cparg)
1310 error = KMERR_BADCACHE;
1311 else
1312 buf = (char *)bufarg - ((uintptr_t)bufarg -
1313 (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1314 if (buf != bufarg)
1315 error = KMERR_BADBASE;
1316 if (cp->cache_flags & KMF_BUFTAG)
1317 btp = KMEM_BUFTAG(cp, buf);
1318 if (cp->cache_flags & KMF_HASH) {
1319 mutex_enter(&cp->cache_lock);
1320 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1321 if (bcp->bc_addr == buf)
1322 break;
1323 mutex_exit(&cp->cache_lock);
1324 if (bcp == NULL && btp != NULL)
1325 bcp = btp->bt_bufctl;
1326 if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1327 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1328 bcp->bc_addr != buf) {
1329 error = KMERR_BADBUFCTL;
1330 bcp = NULL;
1335 kmem_panic_info.kmp_error = error;
1336 kmem_panic_info.kmp_buffer = bufarg;
1337 kmem_panic_info.kmp_realbuf = buf;
1338 kmem_panic_info.kmp_cache = cparg;
1339 kmem_panic_info.kmp_realcache = cp;
1340 kmem_panic_info.kmp_slab = sp;
1341 kmem_panic_info.kmp_bufctl = bcp;
1343 printf("kernel memory allocator: ");
1345 switch (error) {
1347 case KMERR_MODIFIED:
1348 printf("buffer modified after being freed\n");
1349 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1350 if (off == NULL) /* shouldn't happen */
1351 off = buf;
1352 printf("modification occurred at offset 0x%lx "
1353 "(0x%llx replaced by 0x%llx)\n",
1354 (uintptr_t)off - (uintptr_t)buf,
1355 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1356 break;
1358 case KMERR_REDZONE:
1359 printf("redzone violation: write past end of buffer\n");
1360 break;
1362 case KMERR_BADADDR:
1363 printf("invalid free: buffer not in cache\n");
1364 break;
1366 case KMERR_DUPFREE:
1367 printf("duplicate free: buffer freed twice\n");
1368 break;
1370 case KMERR_BADBUFTAG:
1371 printf("boundary tag corrupted\n");
1372 printf("bcp ^ bxstat = %lx, should be %lx\n",
1373 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1374 KMEM_BUFTAG_FREE);
1375 break;
1377 case KMERR_BADBUFCTL:
1378 printf("bufctl corrupted\n");
1379 break;
1381 case KMERR_BADCACHE:
1382 printf("buffer freed to wrong cache\n");
1383 printf("buffer was allocated from %s,\n", cp->cache_name);
1384 printf("caller attempting free to %s.\n", cparg->cache_name);
1385 break;
1387 case KMERR_BADSIZE:
1388 printf("bad free: free size (%u) != alloc size (%u)\n",
1389 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1390 KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1391 break;
1393 case KMERR_BADBASE:
1394 printf("bad free: free address (%p) != alloc address (%p)\n",
1395 bufarg, buf);
1396 break;
1399 printf("buffer=%p bufctl=%p cache: %s\n",
1400 bufarg, (void *)bcp, cparg->cache_name);
1402 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1403 error != KMERR_BADBUFCTL) {
1404 int d;
1405 timestruc_t ts;
1406 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1408 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1409 printf("previous transaction on buffer %p:\n", buf);
1410 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
1411 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1412 (void *)sp, cp->cache_name);
1413 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1414 ulong_t off;
1415 char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1416 printf("%s+%lx\n", sym ? sym : "?", off);
1419 if (kmem_panic > 0)
1420 panic("kernel heap corruption detected");
1421 if (kmem_panic == 0)
1422 debug_enter(NULL);
1423 kmem_logging = 1; /* resume logging */
1426 static kmem_log_header_t *
1427 kmem_log_init(size_t logsize)
1429 kmem_log_header_t *lhp;
1430 int nchunks = 4 * max_ncpus;
1431 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1432 int i;
1435 * Make sure that lhp->lh_cpu[] is nicely aligned
1436 * to prevent false sharing of cache lines.
1438 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1439 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1440 NULL, NULL, VM_SLEEP);
1441 bzero(lhp, lhsize);
1443 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1444 lhp->lh_nchunks = nchunks;
1445 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1446 lhp->lh_base = vmem_alloc(kmem_log_arena,
1447 lhp->lh_chunksize * nchunks, VM_SLEEP);
1448 lhp->lh_free = vmem_alloc(kmem_log_arena,
1449 nchunks * sizeof (int), VM_SLEEP);
1450 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1452 for (i = 0; i < max_ncpus; i++) {
1453 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1454 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1455 clhp->clh_chunk = i;
1458 for (i = max_ncpus; i < nchunks; i++)
1459 lhp->lh_free[i] = i;
1461 lhp->lh_head = max_ncpus;
1462 lhp->lh_tail = 0;
1464 return (lhp);
1467 static void *
1468 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1470 void *logspace;
1471 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1473 if (lhp == NULL || kmem_logging == 0 || panicstr)
1474 return (NULL);
1476 mutex_enter(&clhp->clh_lock);
1477 clhp->clh_hits++;
1478 if (size > clhp->clh_avail) {
1479 mutex_enter(&lhp->lh_lock);
1480 lhp->lh_hits++;
1481 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1482 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1483 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1484 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1485 clhp->clh_current = lhp->lh_base +
1486 clhp->clh_chunk * lhp->lh_chunksize;
1487 clhp->clh_avail = lhp->lh_chunksize;
1488 if (size > lhp->lh_chunksize)
1489 size = lhp->lh_chunksize;
1490 mutex_exit(&lhp->lh_lock);
1492 logspace = clhp->clh_current;
1493 clhp->clh_current += size;
1494 clhp->clh_avail -= size;
1495 bcopy(data, logspace, size);
1496 mutex_exit(&clhp->clh_lock);
1497 return (logspace);
1500 #define KMEM_AUDIT(lp, cp, bcp) \
1502 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \
1503 _bcp->bc_timestamp = gethrtime(); \
1504 _bcp->bc_thread = curthread; \
1505 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \
1506 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \
1509 static void
1510 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1511 kmem_slab_t *sp, void *addr)
1513 kmem_bufctl_audit_t bca;
1515 bzero(&bca, sizeof (kmem_bufctl_audit_t));
1516 bca.bc_addr = addr;
1517 bca.bc_slab = sp;
1518 bca.bc_cache = cp;
1519 KMEM_AUDIT(lp, cp, &bca);
1523 * Create a new slab for cache cp.
1525 static kmem_slab_t *
1526 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1528 size_t slabsize = cp->cache_slabsize;
1529 size_t chunksize = cp->cache_chunksize;
1530 int cache_flags = cp->cache_flags;
1531 size_t color, chunks;
1532 char *buf, *slab;
1533 kmem_slab_t *sp;
1534 kmem_bufctl_t *bcp;
1535 vmem_t *vmp = cp->cache_arena;
1537 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1539 color = cp->cache_color + cp->cache_align;
1540 if (color > cp->cache_maxcolor)
1541 color = cp->cache_mincolor;
1542 cp->cache_color = color;
1544 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1546 if (slab == NULL)
1547 goto vmem_alloc_failure;
1549 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1552 * Reverify what was already checked in kmem_cache_set_move(), since the
1553 * consolidator depends (for correctness) on slabs being initialized
1554 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1555 * clients to distinguish uninitialized memory from known objects).
1557 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1558 if (!(cp->cache_cflags & KMC_NOTOUCH))
1559 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1561 if (cache_flags & KMF_HASH) {
1562 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1563 goto slab_alloc_failure;
1564 chunks = (slabsize - color) / chunksize;
1565 } else {
1566 sp = KMEM_SLAB(cp, slab);
1567 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1570 sp->slab_cache = cp;
1571 sp->slab_head = NULL;
1572 sp->slab_refcnt = 0;
1573 sp->slab_base = buf = slab + color;
1574 sp->slab_chunks = chunks;
1575 sp->slab_stuck_offset = (uint32_t)-1;
1576 sp->slab_later_count = 0;
1577 sp->slab_flags = 0;
1579 ASSERT(chunks > 0);
1580 while (chunks-- != 0) {
1581 if (cache_flags & KMF_HASH) {
1582 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1583 if (bcp == NULL)
1584 goto bufctl_alloc_failure;
1585 if (cache_flags & KMF_AUDIT) {
1586 kmem_bufctl_audit_t *bcap =
1587 (kmem_bufctl_audit_t *)bcp;
1588 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1589 bcap->bc_cache = cp;
1591 bcp->bc_addr = buf;
1592 bcp->bc_slab = sp;
1593 } else {
1594 bcp = KMEM_BUFCTL(cp, buf);
1596 if (cache_flags & KMF_BUFTAG) {
1597 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1598 btp->bt_redzone = KMEM_REDZONE_PATTERN;
1599 btp->bt_bufctl = bcp;
1600 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1601 if (cache_flags & KMF_DEADBEEF) {
1602 copy_pattern(KMEM_FREE_PATTERN, buf,
1603 cp->cache_verify);
1606 bcp->bc_next = sp->slab_head;
1607 sp->slab_head = bcp;
1608 buf += chunksize;
1611 kmem_log_event(kmem_slab_log, cp, sp, slab);
1613 return (sp);
1615 bufctl_alloc_failure:
1617 while ((bcp = sp->slab_head) != NULL) {
1618 sp->slab_head = bcp->bc_next;
1619 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1621 kmem_cache_free(kmem_slab_cache, sp);
1623 slab_alloc_failure:
1625 vmem_free(vmp, slab, slabsize);
1627 vmem_alloc_failure:
1629 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1630 atomic_inc_64(&cp->cache_alloc_fail);
1632 return (NULL);
1636 * Destroy a slab.
1638 static void
1639 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1641 vmem_t *vmp = cp->cache_arena;
1642 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1644 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1645 ASSERT(sp->slab_refcnt == 0);
1647 if (cp->cache_flags & KMF_HASH) {
1648 kmem_bufctl_t *bcp;
1649 while ((bcp = sp->slab_head) != NULL) {
1650 sp->slab_head = bcp->bc_next;
1651 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1653 kmem_cache_free(kmem_slab_cache, sp);
1655 vmem_free(vmp, slab, cp->cache_slabsize);
1658 static void *
1659 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1661 kmem_bufctl_t *bcp, **hash_bucket;
1662 void *buf;
1663 boolean_t new_slab = (sp->slab_refcnt == 0);
1665 ASSERT(MUTEX_HELD(&cp->cache_lock));
1667 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1668 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1669 * slab is newly created.
1671 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1672 (sp == avl_first(&cp->cache_partial_slabs))));
1673 ASSERT(sp->slab_cache == cp);
1675 cp->cache_slab_alloc++;
1676 cp->cache_bufslab--;
1677 sp->slab_refcnt++;
1679 bcp = sp->slab_head;
1680 sp->slab_head = bcp->bc_next;
1682 if (cp->cache_flags & KMF_HASH) {
1684 * Add buffer to allocated-address hash table.
1686 buf = bcp->bc_addr;
1687 hash_bucket = KMEM_HASH(cp, buf);
1688 bcp->bc_next = *hash_bucket;
1689 *hash_bucket = bcp;
1690 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1691 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1693 } else {
1694 buf = KMEM_BUF(cp, bcp);
1697 ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1699 if (sp->slab_head == NULL) {
1700 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1701 if (new_slab) {
1702 ASSERT(sp->slab_chunks == 1);
1703 } else {
1704 ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1705 avl_remove(&cp->cache_partial_slabs, sp);
1706 sp->slab_later_count = 0; /* clear history */
1707 sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1708 sp->slab_stuck_offset = (uint32_t)-1;
1710 list_insert_head(&cp->cache_complete_slabs, sp);
1711 cp->cache_complete_slab_count++;
1712 return (buf);
1715 ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1717 * Peek to see if the magazine layer is enabled before
1718 * we prefill. We're not holding the cpu cache lock,
1719 * so the peek could be wrong, but there's no harm in it.
1721 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1722 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) {
1723 kmem_slab_prefill(cp, sp);
1724 return (buf);
1727 if (new_slab) {
1728 avl_add(&cp->cache_partial_slabs, sp);
1729 return (buf);
1733 * The slab is now more allocated than it was, so the
1734 * order remains unchanged.
1736 ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1737 return (buf);
1741 * Allocate a raw (unconstructed) buffer from cp's slab layer.
1743 static void *
1744 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1746 kmem_slab_t *sp;
1747 void *buf;
1748 boolean_t test_destructor;
1750 mutex_enter(&cp->cache_lock);
1751 test_destructor = (cp->cache_slab_alloc == 0);
1752 sp = avl_first(&cp->cache_partial_slabs);
1753 if (sp == NULL) {
1754 ASSERT(cp->cache_bufslab == 0);
1757 * The freelist is empty. Create a new slab.
1759 mutex_exit(&cp->cache_lock);
1760 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1761 return (NULL);
1763 mutex_enter(&cp->cache_lock);
1764 cp->cache_slab_create++;
1765 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1766 cp->cache_bufmax = cp->cache_buftotal;
1767 cp->cache_bufslab += sp->slab_chunks;
1770 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1771 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1772 (cp->cache_complete_slab_count +
1773 avl_numnodes(&cp->cache_partial_slabs) +
1774 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1775 mutex_exit(&cp->cache_lock);
1777 if (test_destructor && cp->cache_destructor != NULL) {
1779 * On the first kmem_slab_alloc(), assert that it is valid to
1780 * call the destructor on a newly constructed object without any
1781 * client involvement.
1783 if ((cp->cache_constructor == NULL) ||
1784 cp->cache_constructor(buf, cp->cache_private,
1785 kmflag) == 0) {
1786 cp->cache_destructor(buf, cp->cache_private);
1788 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1789 cp->cache_bufsize);
1790 if (cp->cache_flags & KMF_DEADBEEF) {
1791 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1795 return (buf);
1798 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1801 * Free a raw (unconstructed) buffer to cp's slab layer.
1803 static void
1804 kmem_slab_free(kmem_cache_t *cp, void *buf)
1806 kmem_slab_t *sp;
1807 kmem_bufctl_t *bcp, **prev_bcpp;
1809 ASSERT(buf != NULL);
1811 mutex_enter(&cp->cache_lock);
1812 cp->cache_slab_free++;
1814 if (cp->cache_flags & KMF_HASH) {
1816 * Look up buffer in allocated-address hash table.
1818 prev_bcpp = KMEM_HASH(cp, buf);
1819 while ((bcp = *prev_bcpp) != NULL) {
1820 if (bcp->bc_addr == buf) {
1821 *prev_bcpp = bcp->bc_next;
1822 sp = bcp->bc_slab;
1823 break;
1825 cp->cache_lookup_depth++;
1826 prev_bcpp = &bcp->bc_next;
1828 } else {
1829 bcp = KMEM_BUFCTL(cp, buf);
1830 sp = KMEM_SLAB(cp, buf);
1833 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1834 mutex_exit(&cp->cache_lock);
1835 kmem_error(KMERR_BADADDR, cp, buf);
1836 return;
1839 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1841 * If this is the buffer that prevented the consolidator from
1842 * clearing the slab, we can reset the slab flags now that the
1843 * buffer is freed. (It makes sense to do this in
1844 * kmem_cache_free(), where the client gives up ownership of the
1845 * buffer, but on the hot path the test is too expensive.)
1847 kmem_slab_move_yes(cp, sp, buf);
1850 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1851 if (cp->cache_flags & KMF_CONTENTS)
1852 ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1853 kmem_log_enter(kmem_content_log, buf,
1854 cp->cache_contents);
1855 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1858 bcp->bc_next = sp->slab_head;
1859 sp->slab_head = bcp;
1861 cp->cache_bufslab++;
1862 ASSERT(sp->slab_refcnt >= 1);
1864 if (--sp->slab_refcnt == 0) {
1866 * There are no outstanding allocations from this slab,
1867 * so we can reclaim the memory.
1869 if (sp->slab_chunks == 1) {
1870 list_remove(&cp->cache_complete_slabs, sp);
1871 cp->cache_complete_slab_count--;
1872 } else {
1873 avl_remove(&cp->cache_partial_slabs, sp);
1876 cp->cache_buftotal -= sp->slab_chunks;
1877 cp->cache_bufslab -= sp->slab_chunks;
1879 * Defer releasing the slab to the virtual memory subsystem
1880 * while there is a pending move callback, since we guarantee
1881 * that buffers passed to the move callback have only been
1882 * touched by kmem or by the client itself. Since the memory
1883 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1884 * set at least one of the two lowest order bits, the client can
1885 * test those bits in the move callback to determine whether or
1886 * not it knows about the buffer (assuming that the client also
1887 * sets one of those low order bits whenever it frees a buffer).
1889 if (cp->cache_defrag == NULL ||
1890 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1891 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1892 cp->cache_slab_destroy++;
1893 mutex_exit(&cp->cache_lock);
1894 kmem_slab_destroy(cp, sp);
1895 } else {
1896 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1898 * Slabs are inserted at both ends of the deadlist to
1899 * distinguish between slabs freed while move callbacks
1900 * are pending (list head) and a slab freed while the
1901 * lock is dropped in kmem_move_buffers() (list tail) so
1902 * that in both cases slab_destroy() is called from the
1903 * right context.
1905 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1906 list_insert_tail(deadlist, sp);
1907 } else {
1908 list_insert_head(deadlist, sp);
1910 cp->cache_defrag->kmd_deadcount++;
1911 mutex_exit(&cp->cache_lock);
1913 return;
1916 if (bcp->bc_next == NULL) {
1917 /* Transition the slab from completely allocated to partial. */
1918 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1919 ASSERT(sp->slab_chunks > 1);
1920 list_remove(&cp->cache_complete_slabs, sp);
1921 cp->cache_complete_slab_count--;
1922 avl_add(&cp->cache_partial_slabs, sp);
1923 } else {
1924 #ifdef DEBUG
1925 if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1926 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1927 } else {
1928 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1930 #else
1931 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1932 #endif
1935 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1936 (cp->cache_complete_slab_count +
1937 avl_numnodes(&cp->cache_partial_slabs) +
1938 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1939 mutex_exit(&cp->cache_lock);
1943 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1945 static int
1946 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1947 caddr_t caller)
1949 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1950 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1951 uint32_t mtbf;
1953 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1954 kmem_error(KMERR_BADBUFTAG, cp, buf);
1955 return (-1);
1958 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1960 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1961 kmem_error(KMERR_BADBUFCTL, cp, buf);
1962 return (-1);
1965 if (cp->cache_flags & KMF_DEADBEEF) {
1966 if (!construct && (cp->cache_flags & KMF_LITE)) {
1967 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1968 kmem_error(KMERR_MODIFIED, cp, buf);
1969 return (-1);
1971 if (cp->cache_constructor != NULL)
1972 *(uint64_t *)buf = btp->bt_redzone;
1973 else
1974 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1975 } else {
1976 construct = 1;
1977 if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1978 KMEM_UNINITIALIZED_PATTERN, buf,
1979 cp->cache_verify)) {
1980 kmem_error(KMERR_MODIFIED, cp, buf);
1981 return (-1);
1985 btp->bt_redzone = KMEM_REDZONE_PATTERN;
1987 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1988 gethrtime() % mtbf == 0 &&
1989 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1990 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1991 if (!construct && cp->cache_destructor != NULL)
1992 cp->cache_destructor(buf, cp->cache_private);
1993 } else {
1994 mtbf = 0;
1997 if (mtbf || (construct && cp->cache_constructor != NULL &&
1998 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1999 atomic_inc_64(&cp->cache_alloc_fail);
2000 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2001 if (cp->cache_flags & KMF_DEADBEEF)
2002 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2003 kmem_slab_free(cp, buf);
2004 return (1);
2007 if (cp->cache_flags & KMF_AUDIT) {
2008 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2011 if ((cp->cache_flags & KMF_LITE) &&
2012 !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2013 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2016 return (0);
2019 static int
2020 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
2022 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2023 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
2024 kmem_slab_t *sp;
2026 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
2027 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
2028 kmem_error(KMERR_DUPFREE, cp, buf);
2029 return (-1);
2031 sp = kmem_findslab(cp, buf);
2032 if (sp == NULL || sp->slab_cache != cp)
2033 kmem_error(KMERR_BADADDR, cp, buf);
2034 else
2035 kmem_error(KMERR_REDZONE, cp, buf);
2036 return (-1);
2039 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2041 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2042 kmem_error(KMERR_BADBUFCTL, cp, buf);
2043 return (-1);
2046 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2047 kmem_error(KMERR_REDZONE, cp, buf);
2048 return (-1);
2051 if (cp->cache_flags & KMF_AUDIT) {
2052 if (cp->cache_flags & KMF_CONTENTS)
2053 bcp->bc_contents = kmem_log_enter(kmem_content_log,
2054 buf, cp->cache_contents);
2055 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2058 if ((cp->cache_flags & KMF_LITE) &&
2059 !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2060 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2063 if (cp->cache_flags & KMF_DEADBEEF) {
2064 if (cp->cache_flags & KMF_LITE)
2065 btp->bt_redzone = *(uint64_t *)buf;
2066 else if (cp->cache_destructor != NULL)
2067 cp->cache_destructor(buf, cp->cache_private);
2069 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2072 return (0);
2076 * Free each object in magazine mp to cp's slab layer, and free mp itself.
2078 static void
2079 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2081 int round;
2083 ASSERT(!list_link_active(&cp->cache_link) ||
2084 taskq_member(kmem_taskq, curthread));
2086 for (round = 0; round < nrounds; round++) {
2087 void *buf = mp->mag_round[round];
2089 if (cp->cache_flags & KMF_DEADBEEF) {
2090 if (verify_pattern(KMEM_FREE_PATTERN, buf,
2091 cp->cache_verify) != NULL) {
2092 kmem_error(KMERR_MODIFIED, cp, buf);
2093 continue;
2095 if ((cp->cache_flags & KMF_LITE) &&
2096 cp->cache_destructor != NULL) {
2097 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2098 *(uint64_t *)buf = btp->bt_redzone;
2099 cp->cache_destructor(buf, cp->cache_private);
2100 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2102 } else if (cp->cache_destructor != NULL) {
2103 cp->cache_destructor(buf, cp->cache_private);
2106 kmem_slab_free(cp, buf);
2108 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2109 kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2113 * Allocate a magazine from the depot.
2115 static kmem_magazine_t *
2116 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2118 kmem_magazine_t *mp;
2121 * If we can't get the depot lock without contention,
2122 * update our contention count. We use the depot
2123 * contention rate to determine whether we need to
2124 * increase the magazine size for better scalability.
2126 if (!mutex_tryenter(&cp->cache_depot_lock)) {
2127 mutex_enter(&cp->cache_depot_lock);
2128 cp->cache_depot_contention++;
2131 if ((mp = mlp->ml_list) != NULL) {
2132 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2133 mlp->ml_list = mp->mag_next;
2134 if (--mlp->ml_total < mlp->ml_min)
2135 mlp->ml_min = mlp->ml_total;
2136 mlp->ml_alloc++;
2139 mutex_exit(&cp->cache_depot_lock);
2141 return (mp);
2145 * Free a magazine to the depot.
2147 static void
2148 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2150 mutex_enter(&cp->cache_depot_lock);
2151 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2152 mp->mag_next = mlp->ml_list;
2153 mlp->ml_list = mp;
2154 mlp->ml_total++;
2155 mutex_exit(&cp->cache_depot_lock);
2159 * Update the working set statistics for cp's depot.
2161 static void
2162 kmem_depot_ws_update(kmem_cache_t *cp)
2164 mutex_enter(&cp->cache_depot_lock);
2165 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2166 cp->cache_full.ml_min = cp->cache_full.ml_total;
2167 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2168 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2169 mutex_exit(&cp->cache_depot_lock);
2173 * Set the working set statistics for cp's depot to zero. (Everything is
2174 * eligible for reaping.)
2176 static void
2177 kmem_depot_ws_zero(kmem_cache_t *cp)
2179 mutex_enter(&cp->cache_depot_lock);
2180 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2181 cp->cache_full.ml_min = cp->cache_full.ml_total;
2182 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2183 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2184 mutex_exit(&cp->cache_depot_lock);
2188 * Reap all magazines that have fallen out of the depot's working set.
2190 static void
2191 kmem_depot_ws_reap(kmem_cache_t *cp)
2193 long reap;
2194 kmem_magazine_t *mp;
2196 ASSERT(!list_link_active(&cp->cache_link) ||
2197 taskq_member(kmem_taskq, curthread));
2199 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2200 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
2201 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2203 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2204 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
2205 kmem_magazine_destroy(cp, mp, 0);
2208 static void
2209 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2211 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2212 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2213 ASSERT(ccp->cc_magsize > 0);
2215 ccp->cc_ploaded = ccp->cc_loaded;
2216 ccp->cc_prounds = ccp->cc_rounds;
2217 ccp->cc_loaded = mp;
2218 ccp->cc_rounds = rounds;
2222 * Intercept kmem alloc/free calls during crash dump in order to avoid
2223 * changing kmem state while memory is being saved to the dump device.
2224 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that
2225 * there are no locks because only one CPU calls kmem during a crash
2226 * dump. To enable this feature, first create the associated vmem
2227 * arena with VMC_DUMPSAFE.
2229 static void *kmem_dump_start; /* start of pre-reserved heap */
2230 static void *kmem_dump_end; /* end of heap area */
2231 static void *kmem_dump_curr; /* current free heap pointer */
2232 static size_t kmem_dump_size; /* size of heap area */
2234 /* append to each buf created in the pre-reserved heap */
2235 typedef struct kmem_dumpctl {
2236 void *kdc_next; /* cache dump free list linkage */
2237 } kmem_dumpctl_t;
2239 #define KMEM_DUMPCTL(cp, buf) \
2240 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2241 sizeof (void *)))
2243 /* Keep some simple stats. */
2244 #define KMEM_DUMP_LOGS (100)
2246 typedef struct kmem_dump_log {
2247 kmem_cache_t *kdl_cache;
2248 uint_t kdl_allocs; /* # of dump allocations */
2249 uint_t kdl_frees; /* # of dump frees */
2250 uint_t kdl_alloc_fails; /* # of allocation failures */
2251 uint_t kdl_free_nondump; /* # of non-dump frees */
2252 uint_t kdl_unsafe; /* cache was used, but unsafe */
2253 } kmem_dump_log_t;
2255 static kmem_dump_log_t *kmem_dump_log;
2256 static int kmem_dump_log_idx;
2258 #define KDI_LOG(cp, stat) { \
2259 kmem_dump_log_t *kdl; \
2260 if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \
2261 kdl->stat++; \
2262 } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) { \
2263 kdl = &kmem_dump_log[kmem_dump_log_idx++]; \
2264 kdl->stat++; \
2265 kdl->kdl_cache = (cp); \
2266 (cp)->cache_dumplog = kdl; \
2270 /* set non zero for full report */
2271 uint_t kmem_dump_verbose = 0;
2273 /* stats for overize heap */
2274 uint_t kmem_dump_oversize_allocs = 0;
2275 uint_t kmem_dump_oversize_max = 0;
2277 static void
2278 kmem_dumppr(char **pp, char *e, const char *format, ...)
2280 char *p = *pp;
2282 if (p < e) {
2283 int n;
2284 va_list ap;
2286 va_start(ap, format);
2287 n = vsnprintf(p, e - p, format, ap);
2288 va_end(ap);
2289 *pp = p + n;
2294 * Called when dumpadm(1M) configures dump parameters.
2296 void
2297 kmem_dump_init(size_t size)
2299 if (kmem_dump_start != NULL)
2300 kmem_free(kmem_dump_start, kmem_dump_size);
2302 if (kmem_dump_log == NULL)
2303 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2304 sizeof (kmem_dump_log_t), KM_SLEEP);
2306 kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2308 if (kmem_dump_start != NULL) {
2309 kmem_dump_size = size;
2310 kmem_dump_curr = kmem_dump_start;
2311 kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2312 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2313 } else {
2314 kmem_dump_size = 0;
2315 kmem_dump_curr = NULL;
2316 kmem_dump_end = NULL;
2321 * Set flag for each kmem_cache_t if is safe to use alternate dump
2322 * memory. Called just before panic crash dump starts. Set the flag
2323 * for the calling CPU.
2325 void
2326 kmem_dump_begin(void)
2328 ASSERT(panicstr != NULL);
2329 if (kmem_dump_start != NULL) {
2330 kmem_cache_t *cp;
2332 for (cp = list_head(&kmem_caches); cp != NULL;
2333 cp = list_next(&kmem_caches, cp)) {
2334 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2336 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2337 cp->cache_flags |= KMF_DUMPDIVERT;
2338 ccp->cc_flags |= KMF_DUMPDIVERT;
2339 ccp->cc_dump_rounds = ccp->cc_rounds;
2340 ccp->cc_dump_prounds = ccp->cc_prounds;
2341 ccp->cc_rounds = ccp->cc_prounds = -1;
2342 } else {
2343 cp->cache_flags |= KMF_DUMPUNSAFE;
2344 ccp->cc_flags |= KMF_DUMPUNSAFE;
2351 * finished dump intercept
2352 * print any warnings on the console
2353 * return verbose information to dumpsys() in the given buffer
2355 size_t
2356 kmem_dump_finish(char *buf, size_t size)
2358 int kdi_idx;
2359 int kdi_end = kmem_dump_log_idx;
2360 int percent = 0;
2361 int header = 0;
2362 int warn = 0;
2363 size_t used;
2364 kmem_cache_t *cp;
2365 kmem_dump_log_t *kdl;
2366 char *e = buf + size;
2367 char *p = buf;
2369 if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2370 return (0);
2372 used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2373 percent = (used * 100) / kmem_dump_size;
2375 kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2376 kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2377 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2378 kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2379 kmem_dump_oversize_allocs);
2380 kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2381 kmem_dump_oversize_max);
2383 for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2384 kdl = &kmem_dump_log[kdi_idx];
2385 cp = kdl->kdl_cache;
2386 if (cp == NULL)
2387 break;
2388 if (kdl->kdl_alloc_fails)
2389 ++warn;
2390 if (header == 0) {
2391 kmem_dumppr(&p, e,
2392 "Cache Name,Allocs,Frees,Alloc Fails,"
2393 "Nondump Frees,Unsafe Allocs/Frees\n");
2394 header = 1;
2396 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2397 cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2398 kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2399 kdl->kdl_unsafe);
2402 /* return buffer size used */
2403 if (p < e)
2404 bzero(p, e - p);
2405 return (p - buf);
2409 * Allocate a constructed object from alternate dump memory.
2411 void *
2412 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2414 void *buf;
2415 void *curr;
2416 char *bufend;
2418 /* return a constructed object */
2419 if ((buf = cp->cache_dumpfreelist) != NULL) {
2420 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2421 KDI_LOG(cp, kdl_allocs);
2422 return (buf);
2425 /* create a new constructed object */
2426 curr = kmem_dump_curr;
2427 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2428 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2430 /* hat layer objects cannot cross a page boundary */
2431 if (cp->cache_align < PAGESIZE) {
2432 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2433 if (bufend > page) {
2434 bufend += page - (char *)buf;
2435 buf = (void *)page;
2439 /* fall back to normal alloc if reserved area is used up */
2440 if (bufend > (char *)kmem_dump_end) {
2441 kmem_dump_curr = kmem_dump_end;
2442 KDI_LOG(cp, kdl_alloc_fails);
2443 return (NULL);
2447 * Must advance curr pointer before calling a constructor that
2448 * may also allocate memory.
2450 kmem_dump_curr = bufend;
2452 /* run constructor */
2453 if (cp->cache_constructor != NULL &&
2454 cp->cache_constructor(buf, cp->cache_private, kmflag)
2455 != 0) {
2456 #ifdef DEBUG
2457 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2458 cp->cache_name, (void *)cp);
2459 #endif
2460 /* reset curr pointer iff no allocs were done */
2461 if (kmem_dump_curr == bufend)
2462 kmem_dump_curr = curr;
2464 /* fall back to normal alloc if the constructor fails */
2465 KDI_LOG(cp, kdl_alloc_fails);
2466 return (NULL);
2469 KDI_LOG(cp, kdl_allocs);
2470 return (buf);
2474 * Free a constructed object in alternate dump memory.
2477 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2479 /* save constructed buffers for next time */
2480 if ((char *)buf >= (char *)kmem_dump_start &&
2481 (char *)buf < (char *)kmem_dump_end) {
2482 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2483 cp->cache_dumpfreelist = buf;
2484 KDI_LOG(cp, kdl_frees);
2485 return (0);
2488 /* count all non-dump buf frees */
2489 KDI_LOG(cp, kdl_free_nondump);
2491 /* just drop buffers that were allocated before dump started */
2492 if (kmem_dump_curr < kmem_dump_end)
2493 return (0);
2495 /* fall back to normal free if reserved area is used up */
2496 return (1);
2500 * Allocate a constructed object from cache cp.
2502 void *
2503 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2505 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2506 kmem_magazine_t *fmp;
2507 void *buf;
2509 mutex_enter(&ccp->cc_lock);
2510 for (;;) {
2512 * If there's an object available in the current CPU's
2513 * loaded magazine, just take it and return.
2515 if (ccp->cc_rounds > 0) {
2516 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2517 ccp->cc_alloc++;
2518 mutex_exit(&ccp->cc_lock);
2519 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2520 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2521 ASSERT(!(ccp->cc_flags &
2522 KMF_DUMPDIVERT));
2523 KDI_LOG(cp, kdl_unsafe);
2525 if ((ccp->cc_flags & KMF_BUFTAG) &&
2526 kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2527 caller()) != 0) {
2528 if (kmflag & KM_NOSLEEP)
2529 return (NULL);
2530 mutex_enter(&ccp->cc_lock);
2531 continue;
2534 return (buf);
2538 * The loaded magazine is empty. If the previously loaded
2539 * magazine was full, exchange them and try again.
2541 if (ccp->cc_prounds > 0) {
2542 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2543 continue;
2547 * Return an alternate buffer at dump time to preserve
2548 * the heap.
2550 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2551 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2552 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2553 /* log it so that we can warn about it */
2554 KDI_LOG(cp, kdl_unsafe);
2555 } else {
2556 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2557 NULL) {
2558 mutex_exit(&ccp->cc_lock);
2559 return (buf);
2561 break; /* fall back to slab layer */
2566 * If the magazine layer is disabled, break out now.
2568 if (ccp->cc_magsize == 0)
2569 break;
2572 * Try to get a full magazine from the depot.
2574 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2575 if (fmp != NULL) {
2576 if (ccp->cc_ploaded != NULL)
2577 kmem_depot_free(cp, &cp->cache_empty,
2578 ccp->cc_ploaded);
2579 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2580 continue;
2584 * There are no full magazines in the depot,
2585 * so fall through to the slab layer.
2587 break;
2589 mutex_exit(&ccp->cc_lock);
2592 * We couldn't allocate a constructed object from the magazine layer,
2593 * so get a raw buffer from the slab layer and apply its constructor.
2595 buf = kmem_slab_alloc(cp, kmflag);
2597 if (buf == NULL)
2598 return (NULL);
2600 if (cp->cache_flags & KMF_BUFTAG) {
2602 * Make kmem_cache_alloc_debug() apply the constructor for us.
2604 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2605 if (rc != 0) {
2606 if (kmflag & KM_NOSLEEP)
2607 return (NULL);
2609 * kmem_cache_alloc_debug() detected corruption
2610 * but didn't panic (kmem_panic <= 0). We should not be
2611 * here because the constructor failed (indicated by a
2612 * return code of 1). Try again.
2614 ASSERT(rc == -1);
2615 return (kmem_cache_alloc(cp, kmflag));
2617 return (buf);
2620 if (cp->cache_constructor != NULL &&
2621 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2622 atomic_inc_64(&cp->cache_alloc_fail);
2623 kmem_slab_free(cp, buf);
2624 return (NULL);
2627 return (buf);
2631 * The freed argument tells whether or not kmem_cache_free_debug() has already
2632 * been called so that we can avoid the duplicate free error. For example, a
2633 * buffer on a magazine has already been freed by the client but is still
2634 * constructed.
2636 static void
2637 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2639 if (!freed && (cp->cache_flags & KMF_BUFTAG))
2640 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2641 return;
2644 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2645 * kmem_cache_free_debug() will have already applied the destructor.
2647 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2648 cp->cache_destructor != NULL) {
2649 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */
2650 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2651 *(uint64_t *)buf = btp->bt_redzone;
2652 cp->cache_destructor(buf, cp->cache_private);
2653 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2654 } else {
2655 cp->cache_destructor(buf, cp->cache_private);
2659 kmem_slab_free(cp, buf);
2663 * Used when there's no room to free a buffer to the per-CPU cache.
2664 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2665 * caller should try freeing to the per-CPU cache again.
2666 * Note that we don't directly install the magazine in the cpu cache,
2667 * since its state may have changed wildly while the lock was dropped.
2669 static int
2670 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2672 kmem_magazine_t *emp;
2673 kmem_magtype_t *mtp;
2675 ASSERT(MUTEX_HELD(&ccp->cc_lock));
2676 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2677 ((uint_t)ccp->cc_rounds == -1)) &&
2678 ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2679 ((uint_t)ccp->cc_prounds == -1)));
2681 emp = kmem_depot_alloc(cp, &cp->cache_empty);
2682 if (emp != NULL) {
2683 if (ccp->cc_ploaded != NULL)
2684 kmem_depot_free(cp, &cp->cache_full,
2685 ccp->cc_ploaded);
2686 kmem_cpu_reload(ccp, emp, 0);
2687 return (1);
2690 * There are no empty magazines in the depot,
2691 * so try to allocate a new one. We must drop all locks
2692 * across kmem_cache_alloc() because lower layers may
2693 * attempt to allocate from this cache.
2695 mtp = cp->cache_magtype;
2696 mutex_exit(&ccp->cc_lock);
2697 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2698 mutex_enter(&ccp->cc_lock);
2700 if (emp != NULL) {
2702 * We successfully allocated an empty magazine.
2703 * However, we had to drop ccp->cc_lock to do it,
2704 * so the cache's magazine size may have changed.
2705 * If so, free the magazine and try again.
2707 if (ccp->cc_magsize != mtp->mt_magsize) {
2708 mutex_exit(&ccp->cc_lock);
2709 kmem_cache_free(mtp->mt_cache, emp);
2710 mutex_enter(&ccp->cc_lock);
2711 return (1);
2715 * We got a magazine of the right size. Add it to
2716 * the depot and try the whole dance again.
2718 kmem_depot_free(cp, &cp->cache_empty, emp);
2719 return (1);
2723 * We couldn't allocate an empty magazine,
2724 * so fall through to the slab layer.
2726 return (0);
2730 * Free a constructed object to cache cp.
2732 void
2733 kmem_cache_free(kmem_cache_t *cp, void *buf)
2735 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2738 * The client must not free either of the buffers passed to the move
2739 * callback function.
2741 ASSERT(cp->cache_defrag == NULL ||
2742 cp->cache_defrag->kmd_thread != curthread ||
2743 (buf != cp->cache_defrag->kmd_from_buf &&
2744 buf != cp->cache_defrag->kmd_to_buf));
2746 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2747 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2748 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2749 /* log it so that we can warn about it */
2750 KDI_LOG(cp, kdl_unsafe);
2751 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2752 return;
2754 if (ccp->cc_flags & KMF_BUFTAG) {
2755 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2756 return;
2760 mutex_enter(&ccp->cc_lock);
2762 * Any changes to this logic should be reflected in kmem_slab_prefill()
2764 for (;;) {
2766 * If there's a slot available in the current CPU's
2767 * loaded magazine, just put the object there and return.
2769 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2770 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2771 ccp->cc_free++;
2772 mutex_exit(&ccp->cc_lock);
2773 return;
2777 * The loaded magazine is full. If the previously loaded
2778 * magazine was empty, exchange them and try again.
2780 if (ccp->cc_prounds == 0) {
2781 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2782 continue;
2786 * If the magazine layer is disabled, break out now.
2788 if (ccp->cc_magsize == 0)
2789 break;
2791 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2793 * We couldn't free our constructed object to the
2794 * magazine layer, so apply its destructor and free it
2795 * to the slab layer.
2797 break;
2800 mutex_exit(&ccp->cc_lock);
2801 kmem_slab_free_constructed(cp, buf, B_TRUE);
2804 static void
2805 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2807 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2808 int cache_flags = cp->cache_flags;
2810 kmem_bufctl_t *next, *head;
2811 size_t nbufs;
2814 * Completely allocate the newly created slab and put the pre-allocated
2815 * buffers in magazines. Any of the buffers that cannot be put in
2816 * magazines must be returned to the slab.
2818 ASSERT(MUTEX_HELD(&cp->cache_lock));
2819 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2820 ASSERT(cp->cache_constructor == NULL);
2821 ASSERT(sp->slab_cache == cp);
2822 ASSERT(sp->slab_refcnt == 1);
2823 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2824 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2826 head = sp->slab_head;
2827 nbufs = (sp->slab_chunks - sp->slab_refcnt);
2828 sp->slab_head = NULL;
2829 sp->slab_refcnt += nbufs;
2830 cp->cache_bufslab -= nbufs;
2831 cp->cache_slab_alloc += nbufs;
2832 list_insert_head(&cp->cache_complete_slabs, sp);
2833 cp->cache_complete_slab_count++;
2834 mutex_exit(&cp->cache_lock);
2835 mutex_enter(&ccp->cc_lock);
2837 while (head != NULL) {
2838 void *buf = KMEM_BUF(cp, head);
2840 * If there's a slot available in the current CPU's
2841 * loaded magazine, just put the object there and
2842 * continue.
2844 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2845 ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2846 buf;
2847 ccp->cc_free++;
2848 nbufs--;
2849 head = head->bc_next;
2850 continue;
2854 * The loaded magazine is full. If the previously
2855 * loaded magazine was empty, exchange them and try
2856 * again.
2858 if (ccp->cc_prounds == 0) {
2859 kmem_cpu_reload(ccp, ccp->cc_ploaded,
2860 ccp->cc_prounds);
2861 continue;
2865 * If the magazine layer is disabled, break out now.
2868 if (ccp->cc_magsize == 0) {
2869 break;
2872 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2873 break;
2875 mutex_exit(&ccp->cc_lock);
2876 if (nbufs != 0) {
2877 ASSERT(head != NULL);
2880 * If there was a failure, return remaining objects to
2881 * the slab
2883 while (head != NULL) {
2884 ASSERT(nbufs != 0);
2885 next = head->bc_next;
2886 head->bc_next = NULL;
2887 kmem_slab_free(cp, KMEM_BUF(cp, head));
2888 head = next;
2889 nbufs--;
2892 ASSERT(head == NULL);
2893 ASSERT(nbufs == 0);
2894 mutex_enter(&cp->cache_lock);
2897 void *
2898 kmem_zalloc(size_t size, int kmflag)
2900 size_t index;
2901 void *buf;
2903 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2904 kmem_cache_t *cp = kmem_alloc_table[index];
2905 buf = kmem_cache_alloc(cp, kmflag);
2906 if (buf != NULL) {
2907 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2908 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2909 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2910 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2912 if (cp->cache_flags & KMF_LITE) {
2913 KMEM_BUFTAG_LITE_ENTER(btp,
2914 kmem_lite_count, caller());
2917 bzero(buf, size);
2919 } else {
2920 buf = kmem_alloc(size, kmflag);
2921 if (buf != NULL)
2922 bzero(buf, size);
2924 return (buf);
2927 void *
2928 kmem_alloc(size_t size, int kmflag)
2930 size_t index;
2931 kmem_cache_t *cp;
2932 void *buf;
2934 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2935 cp = kmem_alloc_table[index];
2936 /* fall through to kmem_cache_alloc() */
2938 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2939 kmem_big_alloc_table_max) {
2940 cp = kmem_big_alloc_table[index];
2941 /* fall through to kmem_cache_alloc() */
2943 } else {
2944 if (size == 0)
2945 return (NULL);
2947 buf = vmem_alloc(kmem_oversize_arena, size,
2948 kmflag & KM_VMFLAGS);
2949 if (buf == NULL)
2950 kmem_log_event(kmem_failure_log, NULL, NULL,
2951 (void *)size);
2952 else if (KMEM_DUMP(kmem_slab_cache)) {
2953 /* stats for dump intercept */
2954 kmem_dump_oversize_allocs++;
2955 if (size > kmem_dump_oversize_max)
2956 kmem_dump_oversize_max = size;
2958 return (buf);
2961 buf = kmem_cache_alloc(cp, kmflag);
2962 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2963 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2964 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2965 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2967 if (cp->cache_flags & KMF_LITE) {
2968 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2971 return (buf);
2974 void
2975 kmem_free(void *buf, size_t size)
2977 size_t index;
2978 kmem_cache_t *cp;
2980 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2981 cp = kmem_alloc_table[index];
2982 /* fall through to kmem_cache_free() */
2984 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2985 kmem_big_alloc_table_max) {
2986 cp = kmem_big_alloc_table[index];
2987 /* fall through to kmem_cache_free() */
2989 } else {
2990 EQUIV(buf == NULL, size == 0);
2991 if (buf == NULL && size == 0)
2992 return;
2993 vmem_free(kmem_oversize_arena, buf, size);
2994 return;
2997 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2998 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2999 uint32_t *ip = (uint32_t *)btp;
3000 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
3001 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
3002 kmem_error(KMERR_DUPFREE, cp, buf);
3003 return;
3005 if (KMEM_SIZE_VALID(ip[1])) {
3006 ip[0] = KMEM_SIZE_ENCODE(size);
3007 kmem_error(KMERR_BADSIZE, cp, buf);
3008 } else {
3009 kmem_error(KMERR_REDZONE, cp, buf);
3011 return;
3013 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
3014 kmem_error(KMERR_REDZONE, cp, buf);
3015 return;
3017 btp->bt_redzone = KMEM_REDZONE_PATTERN;
3018 if (cp->cache_flags & KMF_LITE) {
3019 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
3020 caller());
3023 kmem_cache_free(cp, buf);
3026 void *
3027 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3029 size_t realsize = size + vmp->vm_quantum;
3030 void *addr;
3033 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3034 * vm_quantum will cause integer wraparound. Check for this, and
3035 * blow off the firewall page in this case. Note that such a
3036 * giant allocation (the entire kernel address space) can never
3037 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3038 * or sleep forever (VM_SLEEP). Thus, there is no need for a
3039 * corresponding check in kmem_firewall_va_free().
3041 if (realsize < size)
3042 realsize = size;
3045 * While boot still owns resource management, make sure that this
3046 * redzone virtual address allocation is properly accounted for in
3047 * OBPs "virtual-memory" "available" lists because we're
3048 * effectively claiming them for a red zone. If we don't do this,
3049 * the available lists become too fragmented and too large for the
3050 * current boot/kernel memory list interface.
3052 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3054 if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3055 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3057 return (addr);
3060 void
3061 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3063 ASSERT((kvseg.s_base == NULL ?
3064 va_to_pfn((char *)addr + size) :
3065 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3067 vmem_free(vmp, addr, size + vmp->vm_quantum);
3071 * Try to allocate at least `size' bytes of memory without sleeping or
3072 * panicking. Return actual allocated size in `asize'. If allocation failed,
3073 * try final allocation with sleep or panic allowed.
3075 void *
3076 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3078 void *p;
3080 *asize = P2ROUNDUP(size, KMEM_ALIGN);
3081 do {
3082 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3083 if (p != NULL)
3084 return (p);
3085 *asize += KMEM_ALIGN;
3086 } while (*asize <= PAGESIZE);
3088 *asize = P2ROUNDUP(size, KMEM_ALIGN);
3089 return (kmem_alloc(*asize, kmflag));
3093 * Reclaim all unused memory from a cache.
3095 static void
3096 kmem_cache_reap(kmem_cache_t *cp)
3098 ASSERT(taskq_member(kmem_taskq, curthread));
3099 cp->cache_reap++;
3102 * Ask the cache's owner to free some memory if possible.
3103 * The idea is to handle things like the inode cache, which
3104 * typically sits on a bunch of memory that it doesn't truly
3105 * *need*. Reclaim policy is entirely up to the owner; this
3106 * callback is just an advisory plea for help.
3108 if (cp->cache_reclaim != NULL) {
3109 long delta;
3112 * Reclaimed memory should be reapable (not included in the
3113 * depot's working set).
3115 delta = cp->cache_full.ml_total;
3116 cp->cache_reclaim(cp->cache_private);
3117 delta = cp->cache_full.ml_total - delta;
3118 if (delta > 0) {
3119 mutex_enter(&cp->cache_depot_lock);
3120 cp->cache_full.ml_reaplimit += delta;
3121 cp->cache_full.ml_min += delta;
3122 mutex_exit(&cp->cache_depot_lock);
3126 kmem_depot_ws_reap(cp);
3128 if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3129 kmem_cache_defrag(cp);
3133 static void
3134 kmem_reap_timeout(void *flag_arg)
3136 uint32_t *flag = (uint32_t *)flag_arg;
3138 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3139 *flag = 0;
3142 static void
3143 kmem_reap_done(void *flag)
3145 if (!callout_init_done) {
3146 /* can't schedule a timeout at this point */
3147 kmem_reap_timeout(flag);
3148 } else {
3149 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3153 static void
3154 kmem_reap_start(void *flag)
3156 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3158 if (flag == &kmem_reaping) {
3159 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3161 * if we have segkp under heap, reap segkp cache.
3163 if (segkp_fromheap)
3164 segkp_cache_free();
3166 else
3167 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3170 * We use taskq_dispatch() to schedule a timeout to clear
3171 * the flag so that kmem_reap() becomes self-throttling:
3172 * we won't reap again until the current reap completes *and*
3173 * at least kmem_reap_interval ticks have elapsed.
3175 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3176 kmem_reap_done(flag);
3179 static void
3180 kmem_reap_common(void *flag_arg)
3182 uint32_t *flag = (uint32_t *)flag_arg;
3184 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3185 atomic_cas_32(flag, 0, 1) != 0)
3186 return;
3189 * It may not be kosher to do memory allocation when a reap is called
3190 * (for example, if vmem_populate() is in the call chain). So we
3191 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch
3192 * fails, we reset the flag, and the next reap will try again.
3194 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3195 *flag = 0;
3199 * Reclaim all unused memory from all caches. Called from the VM system
3200 * when memory gets tight.
3202 void
3203 kmem_reap(void)
3205 kmem_reap_common(&kmem_reaping);
3209 * Reclaim all unused memory from identifier arenas, called when a vmem
3210 * arena not back by memory is exhausted. Since reaping memory-backed caches
3211 * cannot help with identifier exhaustion, we avoid both a large amount of
3212 * work and unwanted side-effects from reclaim callbacks.
3214 void
3215 kmem_reap_idspace(void)
3217 kmem_reap_common(&kmem_reaping_idspace);
3221 * Purge all magazines from a cache and set its magazine limit to zero.
3222 * All calls are serialized by the kmem_taskq lock, except for the final
3223 * call from kmem_cache_destroy().
3225 static void
3226 kmem_cache_magazine_purge(kmem_cache_t *cp)
3228 kmem_cpu_cache_t *ccp;
3229 kmem_magazine_t *mp, *pmp;
3230 int rounds, prounds, cpu_seqid;
3232 ASSERT(!list_link_active(&cp->cache_link) ||
3233 taskq_member(kmem_taskq, curthread));
3234 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3236 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3237 ccp = &cp->cache_cpu[cpu_seqid];
3239 mutex_enter(&ccp->cc_lock);
3240 mp = ccp->cc_loaded;
3241 pmp = ccp->cc_ploaded;
3242 rounds = ccp->cc_rounds;
3243 prounds = ccp->cc_prounds;
3244 ccp->cc_loaded = NULL;
3245 ccp->cc_ploaded = NULL;
3246 ccp->cc_rounds = -1;
3247 ccp->cc_prounds = -1;
3248 ccp->cc_magsize = 0;
3249 mutex_exit(&ccp->cc_lock);
3251 if (mp)
3252 kmem_magazine_destroy(cp, mp, rounds);
3253 if (pmp)
3254 kmem_magazine_destroy(cp, pmp, prounds);
3257 kmem_depot_ws_zero(cp);
3258 kmem_depot_ws_reap(cp);
3262 * Enable per-cpu magazines on a cache.
3264 static void
3265 kmem_cache_magazine_enable(kmem_cache_t *cp)
3267 int cpu_seqid;
3269 if (cp->cache_flags & KMF_NOMAGAZINE)
3270 return;
3272 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3273 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3274 mutex_enter(&ccp->cc_lock);
3275 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3276 mutex_exit(&ccp->cc_lock);
3282 * Reap (almost) everything right now.
3284 void
3285 kmem_cache_reap_now(kmem_cache_t *cp)
3287 ASSERT(list_link_active(&cp->cache_link));
3289 kmem_depot_ws_zero(cp);
3291 (void) taskq_dispatch(kmem_taskq,
3292 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3293 taskq_wait(kmem_taskq);
3297 * Recompute a cache's magazine size. The trade-off is that larger magazines
3298 * provide a higher transfer rate with the depot, while smaller magazines
3299 * reduce memory consumption. Magazine resizing is an expensive operation;
3300 * it should not be done frequently.
3302 * Changes to the magazine size are serialized by the kmem_taskq lock.
3304 * Note: at present this only grows the magazine size. It might be useful
3305 * to allow shrinkage too.
3307 static void
3308 kmem_cache_magazine_resize(kmem_cache_t *cp)
3310 kmem_magtype_t *mtp = cp->cache_magtype;
3312 ASSERT(taskq_member(kmem_taskq, curthread));
3314 if (cp->cache_chunksize < mtp->mt_maxbuf) {
3315 kmem_cache_magazine_purge(cp);
3316 mutex_enter(&cp->cache_depot_lock);
3317 cp->cache_magtype = ++mtp;
3318 cp->cache_depot_contention_prev =
3319 cp->cache_depot_contention + INT_MAX;
3320 mutex_exit(&cp->cache_depot_lock);
3321 kmem_cache_magazine_enable(cp);
3326 * Rescale a cache's hash table, so that the table size is roughly the
3327 * cache size. We want the average lookup time to be extremely small.
3329 static void
3330 kmem_hash_rescale(kmem_cache_t *cp)
3332 kmem_bufctl_t **old_table, **new_table, *bcp;
3333 size_t old_size, new_size, h;
3335 ASSERT(taskq_member(kmem_taskq, curthread));
3337 new_size = MAX(KMEM_HASH_INITIAL,
3338 1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3339 old_size = cp->cache_hash_mask + 1;
3341 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3342 return;
3344 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3345 VM_NOSLEEP);
3346 if (new_table == NULL)
3347 return;
3348 bzero(new_table, new_size * sizeof (void *));
3350 mutex_enter(&cp->cache_lock);
3352 old_size = cp->cache_hash_mask + 1;
3353 old_table = cp->cache_hash_table;
3355 cp->cache_hash_mask = new_size - 1;
3356 cp->cache_hash_table = new_table;
3357 cp->cache_rescale++;
3359 for (h = 0; h < old_size; h++) {
3360 bcp = old_table[h];
3361 while (bcp != NULL) {
3362 void *addr = bcp->bc_addr;
3363 kmem_bufctl_t *next_bcp = bcp->bc_next;
3364 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3365 bcp->bc_next = *hash_bucket;
3366 *hash_bucket = bcp;
3367 bcp = next_bcp;
3371 mutex_exit(&cp->cache_lock);
3373 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3377 * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3378 * update, magazine resizing, and slab consolidation.
3380 static void
3381 kmem_cache_update(kmem_cache_t *cp)
3383 int need_hash_rescale = 0;
3384 int need_magazine_resize = 0;
3386 ASSERT(MUTEX_HELD(&kmem_cache_lock));
3389 * If the cache has become much larger or smaller than its hash table,
3390 * fire off a request to rescale the hash table.
3392 mutex_enter(&cp->cache_lock);
3394 if ((cp->cache_flags & KMF_HASH) &&
3395 (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3396 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3397 cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3398 need_hash_rescale = 1;
3400 mutex_exit(&cp->cache_lock);
3403 * Update the depot working set statistics.
3405 kmem_depot_ws_update(cp);
3408 * If there's a lot of contention in the depot,
3409 * increase the magazine size.
3411 mutex_enter(&cp->cache_depot_lock);
3413 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3414 (int)(cp->cache_depot_contention -
3415 cp->cache_depot_contention_prev) > kmem_depot_contention)
3416 need_magazine_resize = 1;
3418 cp->cache_depot_contention_prev = cp->cache_depot_contention;
3420 mutex_exit(&cp->cache_depot_lock);
3422 if (need_hash_rescale)
3423 (void) taskq_dispatch(kmem_taskq,
3424 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3426 if (need_magazine_resize)
3427 (void) taskq_dispatch(kmem_taskq,
3428 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3430 if (cp->cache_defrag != NULL)
3431 (void) taskq_dispatch(kmem_taskq,
3432 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3435 static void kmem_update(void *);
3437 static void
3438 kmem_update_timeout(void *dummy)
3440 (void) timeout(kmem_update, dummy, kmem_reap_interval);
3443 static void
3444 kmem_update(void *dummy)
3446 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3449 * We use taskq_dispatch() to reschedule the timeout so that
3450 * kmem_update() becomes self-throttling: it won't schedule
3451 * new tasks until all previous tasks have completed.
3453 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3454 kmem_update_timeout(NULL);
3457 static int
3458 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3460 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3461 kmem_cache_t *cp = ksp->ks_private;
3462 uint64_t cpu_buf_avail;
3463 uint64_t buf_avail = 0;
3464 int cpu_seqid;
3465 long reap;
3467 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3469 if (rw == KSTAT_WRITE)
3470 return (EACCES);
3472 mutex_enter(&cp->cache_lock);
3474 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail;
3475 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc;
3476 kmcp->kmc_free.value.ui64 = cp->cache_slab_free;
3477 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc;
3478 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free;
3480 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3481 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3483 mutex_enter(&ccp->cc_lock);
3485 cpu_buf_avail = 0;
3486 if (ccp->cc_rounds > 0)
3487 cpu_buf_avail += ccp->cc_rounds;
3488 if (ccp->cc_prounds > 0)
3489 cpu_buf_avail += ccp->cc_prounds;
3491 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc;
3492 kmcp->kmc_free.value.ui64 += ccp->cc_free;
3493 buf_avail += cpu_buf_avail;
3495 mutex_exit(&ccp->cc_lock);
3498 mutex_enter(&cp->cache_depot_lock);
3500 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc;
3501 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc;
3502 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention;
3503 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total;
3504 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3505 kmcp->kmc_magazine_size.value.ui64 =
3506 (cp->cache_flags & KMF_NOMAGAZINE) ?
3507 0 : cp->cache_magtype->mt_magsize;
3509 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc;
3510 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc;
3511 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3513 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3514 reap = MIN(reap, cp->cache_full.ml_total);
3516 mutex_exit(&cp->cache_depot_lock);
3518 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize;
3519 kmcp->kmc_align.value.ui64 = cp->cache_align;
3520 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3521 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize;
3522 kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3523 buf_avail += cp->cache_bufslab;
3524 kmcp->kmc_buf_avail.value.ui64 = buf_avail;
3525 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail;
3526 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal;
3527 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3528 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create;
3529 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy;
3530 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ?
3531 cp->cache_hash_mask + 1 : 0;
3532 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth;
3533 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale;
3534 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id;
3535 kmcp->kmc_reap.value.ui64 = cp->cache_reap;
3537 if (cp->cache_defrag == NULL) {
3538 kmcp->kmc_move_callbacks.value.ui64 = 0;
3539 kmcp->kmc_move_yes.value.ui64 = 0;
3540 kmcp->kmc_move_no.value.ui64 = 0;
3541 kmcp->kmc_move_later.value.ui64 = 0;
3542 kmcp->kmc_move_dont_need.value.ui64 = 0;
3543 kmcp->kmc_move_dont_know.value.ui64 = 0;
3544 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3545 kmcp->kmc_move_slabs_freed.value.ui64 = 0;
3546 kmcp->kmc_defrag.value.ui64 = 0;
3547 kmcp->kmc_scan.value.ui64 = 0;
3548 kmcp->kmc_move_reclaimable.value.ui64 = 0;
3549 } else {
3550 int64_t reclaimable;
3552 kmem_defrag_t *kd = cp->cache_defrag;
3553 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks;
3554 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes;
3555 kmcp->kmc_move_no.value.ui64 = kd->kmd_no;
3556 kmcp->kmc_move_later.value.ui64 = kd->kmd_later;
3557 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need;
3558 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know;
3559 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found;
3560 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed;
3561 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags;
3562 kmcp->kmc_scan.value.ui64 = kd->kmd_scans;
3564 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3565 reclaimable = MAX(reclaimable, 0);
3566 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3567 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable;
3570 mutex_exit(&cp->cache_lock);
3571 return (0);
3575 * Return a named statistic about a particular cache.
3576 * This shouldn't be called very often, so it's currently designed for
3577 * simplicity (leverages existing kstat support) rather than efficiency.
3579 uint64_t
3580 kmem_cache_stat(kmem_cache_t *cp, char *name)
3582 int i;
3583 kstat_t *ksp = cp->cache_kstat;
3584 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3585 uint64_t value = 0;
3587 if (ksp != NULL) {
3588 mutex_enter(&kmem_cache_kstat_lock);
3589 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3590 for (i = 0; i < ksp->ks_ndata; i++) {
3591 if (strcmp(knp[i].name, name) == 0) {
3592 value = knp[i].value.ui64;
3593 break;
3596 mutex_exit(&kmem_cache_kstat_lock);
3598 return (value);
3602 * Return an estimate of currently available kernel heap memory.
3603 * On 32-bit systems, physical memory may exceed virtual memory,
3604 * we just truncate the result at 1GB.
3606 size_t
3607 kmem_avail(void)
3609 spgcnt_t rmem = availrmem - tune.t_minarmem;
3610 spgcnt_t fmem = freemem - minfree;
3612 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3613 1 << (30 - PAGESHIFT))));
3617 * Return the maximum amount of memory that is (in theory) allocatable
3618 * from the heap. This may be used as an estimate only since there
3619 * is no guarentee this space will still be available when an allocation
3620 * request is made, nor that the space may be allocated in one big request
3621 * due to kernel heap fragmentation.
3623 size_t
3624 kmem_maxavail(void)
3626 spgcnt_t pmem = availrmem - tune.t_minarmem;
3627 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3629 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3633 * Indicate whether memory-intensive kmem debugging is enabled.
3636 kmem_debugging(void)
3638 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3641 /* binning function, sorts finely at the two extremes */
3642 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \
3643 ((((sp)->slab_refcnt <= (binshift)) || \
3644 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \
3645 ? -(sp)->slab_refcnt \
3646 : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3649 * Minimizing the number of partial slabs on the freelist minimizes
3650 * fragmentation (the ratio of unused buffers held by the slab layer). There are
3651 * two ways to get a slab off of the freelist: 1) free all the buffers on the
3652 * slab, and 2) allocate all the buffers on the slab. It follows that we want
3653 * the most-used slabs at the front of the list where they have the best chance
3654 * of being completely allocated, and the least-used slabs at a safe distance
3655 * from the front to improve the odds that the few remaining buffers will all be
3656 * freed before another allocation can tie up the slab. For that reason a slab
3657 * with a higher slab_refcnt sorts less than than a slab with a lower
3658 * slab_refcnt.
3660 * However, if a slab has at least one buffer that is deemed unfreeable, we
3661 * would rather have that slab at the front of the list regardless of
3662 * slab_refcnt, since even one unfreeable buffer makes the entire slab
3663 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3664 * callback, the slab is marked unfreeable for as long as it remains on the
3665 * freelist.
3667 static int
3668 kmem_partial_slab_cmp(const void *p0, const void *p1)
3670 const kmem_cache_t *cp;
3671 const kmem_slab_t *s0 = p0;
3672 const kmem_slab_t *s1 = p1;
3673 int w0, w1;
3674 size_t binshift;
3676 ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3677 ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3678 ASSERT(s0->slab_cache == s1->slab_cache);
3679 cp = s1->slab_cache;
3680 ASSERT(MUTEX_HELD(&cp->cache_lock));
3681 binshift = cp->cache_partial_binshift;
3683 /* weight of first slab */
3684 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3685 if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3686 w0 -= cp->cache_maxchunks;
3689 /* weight of second slab */
3690 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3691 if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3692 w1 -= cp->cache_maxchunks;
3695 if (w0 < w1)
3696 return (-1);
3697 if (w0 > w1)
3698 return (1);
3700 /* compare pointer values */
3701 if ((uintptr_t)s0 < (uintptr_t)s1)
3702 return (-1);
3703 if ((uintptr_t)s0 > (uintptr_t)s1)
3704 return (1);
3706 return (0);
3710 * It must be valid to call the destructor (if any) on a newly created object.
3711 * That is, the constructor (if any) must leave the object in a valid state for
3712 * the destructor.
3714 kmem_cache_t *
3715 kmem_cache_create(
3716 char *name, /* descriptive name for this cache */
3717 size_t bufsize, /* size of the objects it manages */
3718 size_t align, /* required object alignment */
3719 int (*constructor)(void *, void *, int), /* object constructor */
3720 void (*destructor)(void *, void *), /* object destructor */
3721 void (*reclaim)(void *), /* memory reclaim callback */
3722 void *private, /* pass-thru arg for constr/destr/reclaim */
3723 vmem_t *vmp, /* vmem source for slab allocation */
3724 int cflags) /* cache creation flags */
3726 int cpu_seqid;
3727 size_t chunksize;
3728 kmem_cache_t *cp;
3729 kmem_magtype_t *mtp;
3730 size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3732 #ifdef DEBUG
3734 * Cache names should conform to the rules for valid C identifiers
3736 if (!strident_valid(name)) {
3737 cmn_err(CE_CONT,
3738 "kmem_cache_create: '%s' is an invalid cache name\n"
3739 "cache names must conform to the rules for "
3740 "C identifiers\n", name);
3742 #endif /* DEBUG */
3744 if (vmp == NULL)
3745 vmp = kmem_default_arena;
3748 * If this kmem cache has an identifier vmem arena as its source, mark
3749 * it such to allow kmem_reap_idspace().
3751 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */
3752 if (vmp->vm_cflags & VMC_IDENTIFIER)
3753 cflags |= KMC_IDENTIFIER;
3756 * Get a kmem_cache structure. We arrange that cp->cache_cpu[]
3757 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3758 * false sharing of per-CPU data.
3760 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3761 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3762 bzero(cp, csize);
3763 list_link_init(&cp->cache_link);
3765 if (align == 0)
3766 align = KMEM_ALIGN;
3769 * If we're not at least KMEM_ALIGN aligned, we can't use free
3770 * memory to hold bufctl information (because we can't safely
3771 * perform word loads and stores on it).
3773 if (align < KMEM_ALIGN)
3774 cflags |= KMC_NOTOUCH;
3776 if (!ISP2(align) || align > vmp->vm_quantum)
3777 panic("kmem_cache_create: bad alignment %lu", align);
3779 mutex_enter(&kmem_flags_lock);
3780 if (kmem_flags & KMF_RANDOMIZE)
3781 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3782 KMF_RANDOMIZE;
3783 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3784 mutex_exit(&kmem_flags_lock);
3787 * Make sure all the various flags are reasonable.
3789 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3791 if (cp->cache_flags & KMF_LITE) {
3792 if (bufsize >= kmem_lite_minsize &&
3793 align <= kmem_lite_maxalign &&
3794 P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3795 cp->cache_flags |= KMF_BUFTAG;
3796 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3797 } else {
3798 cp->cache_flags &= ~KMF_DEBUG;
3802 if (cp->cache_flags & KMF_DEADBEEF)
3803 cp->cache_flags |= KMF_REDZONE;
3805 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3806 cp->cache_flags |= KMF_NOMAGAZINE;
3808 if (cflags & KMC_NODEBUG)
3809 cp->cache_flags &= ~KMF_DEBUG;
3811 if (cflags & KMC_NOTOUCH)
3812 cp->cache_flags &= ~KMF_TOUCH;
3814 if (cflags & KMC_PREFILL)
3815 cp->cache_flags |= KMF_PREFILL;
3817 if (cflags & KMC_NOHASH)
3818 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3820 if (cflags & KMC_NOMAGAZINE)
3821 cp->cache_flags |= KMF_NOMAGAZINE;
3823 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3824 cp->cache_flags |= KMF_REDZONE;
3826 if (!(cp->cache_flags & KMF_AUDIT))
3827 cp->cache_flags &= ~KMF_CONTENTS;
3829 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3830 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3831 cp->cache_flags |= KMF_FIREWALL;
3833 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3834 cp->cache_flags &= ~KMF_FIREWALL;
3836 if (cp->cache_flags & KMF_FIREWALL) {
3837 cp->cache_flags &= ~KMF_BUFTAG;
3838 cp->cache_flags |= KMF_NOMAGAZINE;
3839 ASSERT(vmp == kmem_default_arena);
3840 vmp = kmem_firewall_arena;
3844 * Set cache properties.
3846 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3847 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3848 cp->cache_bufsize = bufsize;
3849 cp->cache_align = align;
3850 cp->cache_constructor = constructor;
3851 cp->cache_destructor = destructor;
3852 cp->cache_reclaim = reclaim;
3853 cp->cache_private = private;
3854 cp->cache_arena = vmp;
3855 cp->cache_cflags = cflags;
3858 * Determine the chunk size.
3860 chunksize = bufsize;
3862 if (align >= KMEM_ALIGN) {
3863 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3864 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3867 if (cp->cache_flags & KMF_BUFTAG) {
3868 cp->cache_bufctl = chunksize;
3869 cp->cache_buftag = chunksize;
3870 if (cp->cache_flags & KMF_LITE)
3871 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3872 else
3873 chunksize += sizeof (kmem_buftag_t);
3876 if (cp->cache_flags & KMF_DEADBEEF) {
3877 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3878 if (cp->cache_flags & KMF_LITE)
3879 cp->cache_verify = sizeof (uint64_t);
3882 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3884 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3887 * Now that we know the chunk size, determine the optimal slab size.
3889 if (vmp == kmem_firewall_arena) {
3890 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3891 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3892 cp->cache_maxcolor = cp->cache_mincolor;
3893 cp->cache_flags |= KMF_HASH;
3894 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3895 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3896 !(cp->cache_flags & KMF_AUDIT) &&
3897 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3898 cp->cache_slabsize = vmp->vm_quantum;
3899 cp->cache_mincolor = 0;
3900 cp->cache_maxcolor =
3901 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3902 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3903 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3904 } else {
3905 size_t chunks, bestfit, waste, slabsize;
3906 size_t minwaste = LONG_MAX;
3908 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3909 slabsize = P2ROUNDUP(chunksize * chunks,
3910 vmp->vm_quantum);
3911 chunks = slabsize / chunksize;
3912 waste = (slabsize % chunksize) / chunks;
3913 if (waste < minwaste) {
3914 minwaste = waste;
3915 bestfit = slabsize;
3918 if (cflags & KMC_QCACHE)
3919 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3920 cp->cache_slabsize = bestfit;
3921 cp->cache_mincolor = 0;
3922 cp->cache_maxcolor = bestfit % chunksize;
3923 cp->cache_flags |= KMF_HASH;
3926 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3927 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3930 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3931 * there is a constructor avoids some tricky issues with debug setup
3932 * that may be revisited later. We cannot allow prefill in a
3933 * metadata cache because of potential recursion.
3935 if (vmp == kmem_msb_arena ||
3936 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3937 cp->cache_constructor != NULL)
3938 cp->cache_flags &= ~KMF_PREFILL;
3940 if (cp->cache_flags & KMF_HASH) {
3941 ASSERT(!(cflags & KMC_NOHASH));
3942 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3943 kmem_bufctl_audit_cache : kmem_bufctl_cache;
3946 if (cp->cache_maxcolor >= vmp->vm_quantum)
3947 cp->cache_maxcolor = vmp->vm_quantum - 1;
3949 cp->cache_color = cp->cache_mincolor;
3952 * Initialize the rest of the slab layer.
3954 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3956 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3957 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3958 /* LINTED: E_TRUE_LOGICAL_EXPR */
3959 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3960 /* reuse partial slab AVL linkage for complete slab list linkage */
3961 list_create(&cp->cache_complete_slabs,
3962 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3964 if (cp->cache_flags & KMF_HASH) {
3965 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3966 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3967 bzero(cp->cache_hash_table,
3968 KMEM_HASH_INITIAL * sizeof (void *));
3969 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3970 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3974 * Initialize the depot.
3976 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3978 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3979 continue;
3981 cp->cache_magtype = mtp;
3984 * Initialize the CPU layer.
3986 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3987 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3988 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3989 ccp->cc_flags = cp->cache_flags;
3990 ccp->cc_rounds = -1;
3991 ccp->cc_prounds = -1;
3995 * Create the cache's kstats.
3997 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3998 "kmem_cache", KSTAT_TYPE_NAMED,
3999 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
4000 KSTAT_FLAG_VIRTUAL)) != NULL) {
4001 cp->cache_kstat->ks_data = &kmem_cache_kstat;
4002 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
4003 cp->cache_kstat->ks_private = cp;
4004 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
4005 kstat_install(cp->cache_kstat);
4009 * Add the cache to the global list. This makes it visible
4010 * to kmem_update(), so the cache must be ready for business.
4012 mutex_enter(&kmem_cache_lock);
4013 list_insert_tail(&kmem_caches, cp);
4014 mutex_exit(&kmem_cache_lock);
4016 if (kmem_ready)
4017 kmem_cache_magazine_enable(cp);
4019 return (cp);
4022 static int
4023 kmem_move_cmp(const void *buf, const void *p)
4025 const kmem_move_t *kmm = p;
4026 uintptr_t v1 = (uintptr_t)buf;
4027 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4028 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4031 static void
4032 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4034 kmd->kmd_reclaim_numer = 1;
4038 * Initially, when choosing candidate slabs for buffers to move, we want to be
4039 * very selective and take only slabs that are less than
4040 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4041 * slabs, then we raise the allocation ceiling incrementally. The reclaim
4042 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4043 * longer fragmented.
4045 static void
4046 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4048 if (direction > 0) {
4049 /* make it easier to find a candidate slab */
4050 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4051 kmd->kmd_reclaim_numer++;
4053 } else {
4054 /* be more selective */
4055 if (kmd->kmd_reclaim_numer > 1) {
4056 kmd->kmd_reclaim_numer--;
4061 void
4062 kmem_cache_set_move(kmem_cache_t *cp,
4063 kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4065 kmem_defrag_t *defrag;
4067 ASSERT(move != NULL);
4069 * The consolidator does not support NOTOUCH caches because kmem cannot
4070 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4071 * a low order bit usable by clients to distinguish uninitialized memory
4072 * from known objects (see kmem_slab_create).
4074 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4075 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4078 * We should not be holding anyone's cache lock when calling
4079 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4080 * lock.
4082 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4084 mutex_enter(&cp->cache_lock);
4086 if (KMEM_IS_MOVABLE(cp)) {
4087 if (cp->cache_move == NULL) {
4088 ASSERT(cp->cache_slab_alloc == 0);
4090 cp->cache_defrag = defrag;
4091 defrag = NULL; /* nothing to free */
4092 bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4093 avl_create(&cp->cache_defrag->kmd_moves_pending,
4094 kmem_move_cmp, sizeof (kmem_move_t),
4095 offsetof(kmem_move_t, kmm_entry));
4096 /* LINTED: E_TRUE_LOGICAL_EXPR */
4097 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4098 /* reuse the slab's AVL linkage for deadlist linkage */
4099 list_create(&cp->cache_defrag->kmd_deadlist,
4100 sizeof (kmem_slab_t),
4101 offsetof(kmem_slab_t, slab_link));
4102 kmem_reset_reclaim_threshold(cp->cache_defrag);
4104 cp->cache_move = move;
4107 mutex_exit(&cp->cache_lock);
4109 if (defrag != NULL) {
4110 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4114 void
4115 kmem_cache_destroy(kmem_cache_t *cp)
4117 int cpu_seqid;
4120 * Remove the cache from the global cache list so that no one else
4121 * can schedule tasks on its behalf, wait for any pending tasks to
4122 * complete, purge the cache, and then destroy it.
4124 mutex_enter(&kmem_cache_lock);
4125 list_remove(&kmem_caches, cp);
4126 mutex_exit(&kmem_cache_lock);
4128 if (kmem_taskq != NULL)
4129 taskq_wait(kmem_taskq);
4130 if (kmem_move_taskq != NULL)
4131 taskq_wait(kmem_move_taskq);
4133 kmem_cache_magazine_purge(cp);
4135 mutex_enter(&cp->cache_lock);
4136 if (cp->cache_buftotal != 0)
4137 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4138 cp->cache_name, (void *)cp);
4139 if (cp->cache_defrag != NULL) {
4140 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4141 list_destroy(&cp->cache_defrag->kmd_deadlist);
4142 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4143 cp->cache_defrag = NULL;
4146 * The cache is now dead. There should be no further activity. We
4147 * enforce this by setting land mines in the constructor, destructor,
4148 * reclaim, and move routines that induce a kernel text fault if
4149 * invoked.
4151 cp->cache_constructor = (int (*)(void *, void *, int))1;
4152 cp->cache_destructor = (void (*)(void *, void *))2;
4153 cp->cache_reclaim = (void (*)(void *))3;
4154 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4155 mutex_exit(&cp->cache_lock);
4157 kstat_delete(cp->cache_kstat);
4159 if (cp->cache_hash_table != NULL)
4160 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4161 (cp->cache_hash_mask + 1) * sizeof (void *));
4163 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4164 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4166 mutex_destroy(&cp->cache_depot_lock);
4167 mutex_destroy(&cp->cache_lock);
4169 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4172 /*ARGSUSED*/
4173 static int
4174 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4176 ASSERT(MUTEX_HELD(&cpu_lock));
4177 if (what == CPU_UNCONFIG) {
4178 kmem_cache_applyall(kmem_cache_magazine_purge,
4179 kmem_taskq, TQ_SLEEP);
4180 kmem_cache_applyall(kmem_cache_magazine_enable,
4181 kmem_taskq, TQ_SLEEP);
4183 return (0);
4186 static void
4187 kmem_alloc_caches_create(const int *array, size_t count,
4188 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4190 char name[KMEM_CACHE_NAMELEN + 1];
4191 size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4192 size_t size = table_unit;
4193 int i;
4195 for (i = 0; i < count; i++) {
4196 size_t cache_size = array[i];
4197 size_t align = KMEM_ALIGN;
4198 kmem_cache_t *cp;
4200 /* if the table has an entry for maxbuf, we're done */
4201 if (size > maxbuf)
4202 break;
4204 /* cache size must be a multiple of the table unit */
4205 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4208 * If they allocate a multiple of the coherency granularity,
4209 * they get a coherency-granularity-aligned address.
4211 if (IS_P2ALIGNED(cache_size, 64))
4212 align = 64;
4213 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4214 align = PAGESIZE;
4215 (void) snprintf(name, sizeof (name),
4216 "kmem_alloc_%lu", cache_size);
4217 cp = kmem_cache_create(name, cache_size, align,
4218 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4220 while (size <= cache_size) {
4221 alloc_table[(size - 1) >> shift] = cp;
4222 size += table_unit;
4226 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */
4229 static void
4230 kmem_cache_init(int pass, int use_large_pages)
4232 int i;
4233 size_t maxbuf;
4234 kmem_magtype_t *mtp;
4236 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4237 char name[KMEM_CACHE_NAMELEN + 1];
4239 mtp = &kmem_magtype[i];
4240 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4241 mtp->mt_cache = kmem_cache_create(name,
4242 (mtp->mt_magsize + 1) * sizeof (void *),
4243 mtp->mt_align, NULL, NULL, NULL, NULL,
4244 kmem_msb_arena, KMC_NOHASH);
4247 kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4248 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4249 kmem_msb_arena, KMC_NOHASH);
4251 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4252 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4253 kmem_msb_arena, KMC_NOHASH);
4255 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4256 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4257 kmem_msb_arena, KMC_NOHASH);
4259 if (pass == 2) {
4260 kmem_va_arena = vmem_create("kmem_va",
4261 NULL, 0, PAGESIZE,
4262 vmem_alloc, vmem_free, heap_arena,
4263 8 * PAGESIZE, VM_SLEEP);
4265 if (use_large_pages) {
4266 kmem_default_arena = vmem_xcreate("kmem_default",
4267 NULL, 0, PAGESIZE,
4268 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4269 0, VMC_DUMPSAFE | VM_SLEEP);
4270 } else {
4271 kmem_default_arena = vmem_create("kmem_default",
4272 NULL, 0, PAGESIZE,
4273 segkmem_alloc, segkmem_free, kmem_va_arena,
4274 0, VMC_DUMPSAFE | VM_SLEEP);
4277 /* Figure out what our maximum cache size is */
4278 maxbuf = kmem_max_cached;
4279 if (maxbuf <= KMEM_MAXBUF) {
4280 maxbuf = 0;
4281 kmem_max_cached = KMEM_MAXBUF;
4282 } else {
4283 size_t size = 0;
4284 size_t max =
4285 sizeof (kmem_big_alloc_sizes) / sizeof (int);
4287 * Round maxbuf up to an existing cache size. If maxbuf
4288 * is larger than the largest cache, we truncate it to
4289 * the largest cache's size.
4291 for (i = 0; i < max; i++) {
4292 size = kmem_big_alloc_sizes[i];
4293 if (maxbuf <= size)
4294 break;
4296 kmem_max_cached = maxbuf = size;
4300 * The big alloc table may not be completely overwritten, so
4301 * we clear out any stale cache pointers from the first pass.
4303 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4304 } else {
4306 * During the first pass, the kmem_alloc_* caches
4307 * are treated as metadata.
4309 kmem_default_arena = kmem_msb_arena;
4310 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4314 * Set up the default caches to back kmem_alloc()
4316 kmem_alloc_caches_create(
4317 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4318 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4320 kmem_alloc_caches_create(
4321 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4322 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4324 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4327 void
4328 kmem_init(void)
4330 kmem_cache_t *cp;
4331 int old_kmem_flags = kmem_flags;
4332 int use_large_pages = 0;
4333 size_t maxverify, minfirewall;
4335 kstat_init();
4338 * Don't do firewalled allocations if the heap is less than 1TB
4339 * (i.e. on a 32-bit kernel)
4340 * The resulting VM_NEXTFIT allocations would create too much
4341 * fragmentation in a small heap.
4343 #if defined(_LP64)
4344 maxverify = minfirewall = PAGESIZE / 2;
4345 #else
4346 maxverify = minfirewall = ULONG_MAX;
4347 #endif
4349 /* LINTED */
4350 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4352 list_create(&kmem_caches, sizeof (kmem_cache_t),
4353 offsetof(kmem_cache_t, cache_link));
4355 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4356 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4357 VM_SLEEP | VMC_NO_QCACHE);
4359 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4360 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4361 VMC_DUMPSAFE | VM_SLEEP);
4363 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4364 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4366 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4367 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4369 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4370 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4372 kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4373 NULL, 0, PAGESIZE,
4374 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4375 0, VM_SLEEP);
4377 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4378 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4379 VMC_DUMPSAFE | VM_SLEEP);
4381 /* temporary oversize arena for mod_read_system_file */
4382 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4383 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4385 kmem_reap_interval = 15 * hz;
4388 * Read /etc/system. This is a chicken-and-egg problem because
4389 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4390 * needs to use the allocator. The simplest solution is to create
4391 * all the standard kmem caches, read /etc/system, destroy all the
4392 * caches we just created, and then create them all again in light
4393 * of the (possibly) new kmem_flags and other kmem tunables.
4395 kmem_cache_init(1, 0);
4397 mod_read_system_file(boothowto & RB_ASKNAME);
4399 while ((cp = list_tail(&kmem_caches)) != NULL)
4400 kmem_cache_destroy(cp);
4402 vmem_destroy(kmem_oversize_arena);
4404 if (old_kmem_flags & KMF_STICKY)
4405 kmem_flags = old_kmem_flags;
4407 if (!(kmem_flags & KMF_AUDIT))
4408 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4410 if (kmem_maxverify == 0)
4411 kmem_maxverify = maxverify;
4413 if (kmem_minfirewall == 0)
4414 kmem_minfirewall = minfirewall;
4417 * give segkmem a chance to figure out if we are using large pages
4418 * for the kernel heap
4420 use_large_pages = segkmem_lpsetup();
4423 * To protect against corruption, we keep the actual number of callers
4424 * KMF_LITE records seperate from the tunable. We arbitrarily clamp
4425 * to 16, since the overhead for small buffers quickly gets out of
4426 * hand.
4428 * The real limit would depend on the needs of the largest KMC_NOHASH
4429 * cache.
4431 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4432 kmem_lite_pcs = kmem_lite_count;
4435 * Normally, we firewall oversized allocations when possible, but
4436 * if we are using large pages for kernel memory, and we don't have
4437 * any non-LITE debugging flags set, we want to allocate oversized
4438 * buffers from large pages, and so skip the firewalling.
4440 if (use_large_pages &&
4441 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4442 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4443 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4444 0, VMC_DUMPSAFE | VM_SLEEP);
4445 } else {
4446 kmem_oversize_arena = vmem_create("kmem_oversize",
4447 NULL, 0, PAGESIZE,
4448 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4449 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4450 VM_SLEEP);
4453 kmem_cache_init(2, use_large_pages);
4455 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4456 if (kmem_transaction_log_size == 0)
4457 kmem_transaction_log_size = kmem_maxavail() / 50;
4458 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4461 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4462 if (kmem_content_log_size == 0)
4463 kmem_content_log_size = kmem_maxavail() / 50;
4464 kmem_content_log = kmem_log_init(kmem_content_log_size);
4467 kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4469 kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4472 * Initialize STREAMS message caches so allocb() is available.
4473 * This allows us to initialize the logging framework (cmn_err(9F),
4474 * strlog(9F), etc) so we can start recording messages.
4476 streams_msg_init();
4479 * Initialize the ZSD framework in Zones so modules loaded henceforth
4480 * can register their callbacks.
4482 zone_zsd_init();
4484 log_init();
4485 taskq_init();
4488 * Warn about invalid or dangerous values of kmem_flags.
4489 * Always warn about unsupported values.
4491 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4492 KMF_CONTENTS | KMF_LITE)) != 0) ||
4493 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4494 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4495 "See the Solaris Tunable Parameters Reference Manual.",
4496 kmem_flags);
4498 #ifdef DEBUG
4499 if ((kmem_flags & KMF_DEBUG) == 0)
4500 cmn_err(CE_NOTE, "kmem debugging disabled.");
4501 #else
4503 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4504 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4505 * if KMF_AUDIT is set). We should warn the user about the performance
4506 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4507 * isn't set (since that disables AUDIT).
4509 if (!(kmem_flags & KMF_LITE) &&
4510 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4511 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4512 "enabled (kmem_flags = 0x%x). Performance degradation "
4513 "and large memory overhead possible. See the Solaris "
4514 "Tunable Parameters Reference Manual.", kmem_flags);
4515 #endif /* not DEBUG */
4517 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4519 kmem_ready = 1;
4522 * Initialize the platform-specific aligned/DMA memory allocator.
4524 ka_init();
4527 * Initialize 32-bit ID cache.
4529 id32_init();
4532 * Initialize the networking stack so modules loaded can
4533 * register their callbacks.
4535 netstack_init();
4538 static void
4539 kmem_move_init(void)
4541 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4542 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4543 kmem_msb_arena, KMC_NOHASH);
4544 kmem_move_cache = kmem_cache_create("kmem_move_cache",
4545 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4546 kmem_msb_arena, KMC_NOHASH);
4549 * kmem guarantees that move callbacks are sequential and that even
4550 * across multiple caches no two moves ever execute simultaneously.
4551 * Move callbacks are processed on a separate taskq so that client code
4552 * does not interfere with internal maintenance tasks.
4554 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4555 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4558 void
4559 kmem_thread_init(void)
4561 kmem_move_init();
4562 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4563 300, INT_MAX, TASKQ_PREPOPULATE);
4566 void
4567 kmem_mp_init(void)
4569 mutex_enter(&cpu_lock);
4570 register_cpu_setup_func(kmem_cpu_setup, NULL);
4571 mutex_exit(&cpu_lock);
4573 kmem_update_timeout(NULL);
4575 taskq_mp_init();
4579 * Return the slab of the allocated buffer, or NULL if the buffer is not
4580 * allocated. This function may be called with a known slab address to determine
4581 * whether or not the buffer is allocated, or with a NULL slab address to obtain
4582 * an allocated buffer's slab.
4584 static kmem_slab_t *
4585 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4587 kmem_bufctl_t *bcp, *bufbcp;
4589 ASSERT(MUTEX_HELD(&cp->cache_lock));
4590 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4592 if (cp->cache_flags & KMF_HASH) {
4593 for (bcp = *KMEM_HASH(cp, buf);
4594 (bcp != NULL) && (bcp->bc_addr != buf);
4595 bcp = bcp->bc_next) {
4596 continue;
4598 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4599 return (bcp == NULL ? NULL : bcp->bc_slab);
4602 if (sp == NULL) {
4603 sp = KMEM_SLAB(cp, buf);
4605 bufbcp = KMEM_BUFCTL(cp, buf);
4606 for (bcp = sp->slab_head;
4607 (bcp != NULL) && (bcp != bufbcp);
4608 bcp = bcp->bc_next) {
4609 continue;
4611 return (bcp == NULL ? sp : NULL);
4614 static boolean_t
4615 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4617 long refcnt = sp->slab_refcnt;
4619 ASSERT(cp->cache_defrag != NULL);
4622 * For code coverage we want to be able to move an object within the
4623 * same slab (the only partial slab) even if allocating the destination
4624 * buffer resulted in a completely allocated slab.
4626 if (flags & KMM_DEBUG) {
4627 return ((flags & KMM_DESPERATE) ||
4628 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4631 /* If we're desperate, we don't care if the client said NO. */
4632 if (flags & KMM_DESPERATE) {
4633 return (refcnt < sp->slab_chunks); /* any partial */
4636 if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4637 return (B_FALSE);
4640 if ((refcnt == 1) || kmem_move_any_partial) {
4641 return (refcnt < sp->slab_chunks);
4645 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4646 * slabs with a progressively higher percentage of used buffers can be
4647 * reclaimed until the cache as a whole is no longer fragmented.
4649 * sp->slab_refcnt kmd_reclaim_numer
4650 * --------------- < ------------------
4651 * sp->slab_chunks KMEM_VOID_FRACTION
4653 return ((refcnt * KMEM_VOID_FRACTION) <
4654 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4657 static void *
4658 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4659 void *tbuf)
4661 int i; /* magazine round index */
4663 for (i = 0; i < n; i++) {
4664 if (buf == m->mag_round[i]) {
4665 if (cp->cache_flags & KMF_BUFTAG) {
4666 (void) kmem_cache_free_debug(cp, tbuf,
4667 caller());
4669 m->mag_round[i] = tbuf;
4670 return (buf);
4674 return (NULL);
4678 * Hunt the magazine layer for the given buffer. If found, the buffer is
4679 * removed from the magazine layer and returned, otherwise NULL is returned.
4680 * The state of the returned buffer is freed and constructed.
4682 static void *
4683 kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4685 kmem_cpu_cache_t *ccp;
4686 kmem_magazine_t *m;
4687 int cpu_seqid;
4688 int n; /* magazine rounds */
4689 void *tbuf; /* temporary swap buffer */
4691 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4694 * Allocated a buffer to swap with the one we hope to pull out of a
4695 * magazine when found.
4697 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4698 if (tbuf == NULL) {
4699 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4700 return (NULL);
4702 if (tbuf == buf) {
4703 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4704 if (cp->cache_flags & KMF_BUFTAG) {
4705 (void) kmem_cache_free_debug(cp, buf, caller());
4707 return (buf);
4710 /* Hunt the depot. */
4711 mutex_enter(&cp->cache_depot_lock);
4712 n = cp->cache_magtype->mt_magsize;
4713 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4714 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4715 mutex_exit(&cp->cache_depot_lock);
4716 return (buf);
4719 mutex_exit(&cp->cache_depot_lock);
4721 /* Hunt the per-CPU magazines. */
4722 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4723 ccp = &cp->cache_cpu[cpu_seqid];
4725 mutex_enter(&ccp->cc_lock);
4726 m = ccp->cc_loaded;
4727 n = ccp->cc_rounds;
4728 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4729 mutex_exit(&ccp->cc_lock);
4730 return (buf);
4732 m = ccp->cc_ploaded;
4733 n = ccp->cc_prounds;
4734 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4735 mutex_exit(&ccp->cc_lock);
4736 return (buf);
4738 mutex_exit(&ccp->cc_lock);
4741 kmem_cache_free(cp, tbuf);
4742 return (NULL);
4746 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4747 * or when the buffer is freed.
4749 static void
4750 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4752 ASSERT(MUTEX_HELD(&cp->cache_lock));
4753 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4755 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4756 return;
4759 if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4760 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4761 avl_remove(&cp->cache_partial_slabs, sp);
4762 sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4763 sp->slab_stuck_offset = (uint32_t)-1;
4764 avl_add(&cp->cache_partial_slabs, sp);
4766 } else {
4767 sp->slab_later_count = 0;
4768 sp->slab_stuck_offset = (uint32_t)-1;
4772 static void
4773 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4775 ASSERT(taskq_member(kmem_move_taskq, curthread));
4776 ASSERT(MUTEX_HELD(&cp->cache_lock));
4777 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4779 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4780 return;
4783 avl_remove(&cp->cache_partial_slabs, sp);
4784 sp->slab_later_count = 0;
4785 sp->slab_flags |= KMEM_SLAB_NOMOVE;
4786 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4787 avl_add(&cp->cache_partial_slabs, sp);
4790 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4793 * The move callback takes two buffer addresses, the buffer to be moved, and a
4794 * newly allocated and constructed buffer selected by kmem as the destination.
4795 * It also takes the size of the buffer and an optional user argument specified
4796 * at cache creation time. kmem guarantees that the buffer to be moved has not
4797 * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4798 * guarantee the present whereabouts of the buffer to be moved, so it is up to
4799 * the client to safely determine whether or not it is still using the buffer.
4800 * The client must not free either of the buffers passed to the move callback,
4801 * since kmem wants to free them directly to the slab layer. The client response
4802 * tells kmem which of the two buffers to free:
4804 * YES kmem frees the old buffer (the move was successful)
4805 * NO kmem frees the new buffer, marks the slab of the old buffer
4806 * non-reclaimable to avoid bothering the client again
4807 * LATER kmem frees the new buffer, increments slab_later_count
4808 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer
4809 * DONT_NEED kmem frees both the old buffer and the new buffer
4811 * The pending callback argument now being processed contains both of the
4812 * buffers (old and new) passed to the move callback function, the slab of the
4813 * old buffer, and flags related to the move request, such as whether or not the
4814 * system was desperate for memory.
4816 * Slabs are not freed while there is a pending callback, but instead are kept
4817 * on a deadlist, which is drained after the last callback completes. This means
4818 * that slabs are safe to access until kmem_move_end(), no matter how many of
4819 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4820 * zero for as long as the slab remains on the deadlist and until the slab is
4821 * freed.
4823 static void
4824 kmem_move_buffer(kmem_move_t *callback)
4826 kmem_cbrc_t response;
4827 kmem_slab_t *sp = callback->kmm_from_slab;
4828 kmem_cache_t *cp = sp->slab_cache;
4829 boolean_t free_on_slab;
4831 ASSERT(taskq_member(kmem_move_taskq, curthread));
4832 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4833 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4836 * The number of allocated buffers on the slab may have changed since we
4837 * last checked the slab's reclaimability (when the pending move was
4838 * enqueued), or the client may have responded NO when asked to move
4839 * another buffer on the same slab.
4841 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4842 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4843 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4844 kmem_move_stats.kms_notify_no_longer_reclaimable);
4845 kmem_slab_free(cp, callback->kmm_to_buf);
4846 kmem_move_end(cp, callback);
4847 return;
4851 * Hunting magazines is expensive, so we'll wait to do that until the
4852 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4853 * is cheap, so we might as well do that here in case we can avoid
4854 * bothering the client.
4856 mutex_enter(&cp->cache_lock);
4857 free_on_slab = (kmem_slab_allocated(cp, sp,
4858 callback->kmm_from_buf) == NULL);
4859 mutex_exit(&cp->cache_lock);
4861 if (free_on_slab) {
4862 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4863 kmem_slab_free(cp, callback->kmm_to_buf);
4864 kmem_move_end(cp, callback);
4865 return;
4868 if (cp->cache_flags & KMF_BUFTAG) {
4870 * Make kmem_cache_alloc_debug() apply the constructor for us.
4872 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4873 KM_NOSLEEP, 1, caller()) != 0) {
4874 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4875 kmem_move_end(cp, callback);
4876 return;
4878 } else if (cp->cache_constructor != NULL &&
4879 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4880 KM_NOSLEEP) != 0) {
4881 atomic_inc_64(&cp->cache_alloc_fail);
4882 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4883 kmem_slab_free(cp, callback->kmm_to_buf);
4884 kmem_move_end(cp, callback);
4885 return;
4888 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4889 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4890 kmem_move_stats.kms_notify_callbacks);
4891 cp->cache_defrag->kmd_callbacks++;
4892 cp->cache_defrag->kmd_thread = curthread;
4893 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4894 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4895 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4896 callback);
4898 response = cp->cache_move(callback->kmm_from_buf,
4899 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4901 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4902 callback, kmem_cbrc_t, response);
4903 cp->cache_defrag->kmd_thread = NULL;
4904 cp->cache_defrag->kmd_from_buf = NULL;
4905 cp->cache_defrag->kmd_to_buf = NULL;
4907 if (response == KMEM_CBRC_YES) {
4908 KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4909 cp->cache_defrag->kmd_yes++;
4910 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4911 /* slab safe to access until kmem_move_end() */
4912 if (sp->slab_refcnt == 0)
4913 cp->cache_defrag->kmd_slabs_freed++;
4914 mutex_enter(&cp->cache_lock);
4915 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4916 mutex_exit(&cp->cache_lock);
4917 kmem_move_end(cp, callback);
4918 return;
4921 switch (response) {
4922 case KMEM_CBRC_NO:
4923 KMEM_STAT_ADD(kmem_move_stats.kms_no);
4924 cp->cache_defrag->kmd_no++;
4925 mutex_enter(&cp->cache_lock);
4926 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4927 mutex_exit(&cp->cache_lock);
4928 break;
4929 case KMEM_CBRC_LATER:
4930 KMEM_STAT_ADD(kmem_move_stats.kms_later);
4931 cp->cache_defrag->kmd_later++;
4932 mutex_enter(&cp->cache_lock);
4933 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4934 mutex_exit(&cp->cache_lock);
4935 break;
4938 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4939 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4940 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4941 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4942 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4943 callback->kmm_from_buf);
4945 mutex_exit(&cp->cache_lock);
4946 break;
4947 case KMEM_CBRC_DONT_NEED:
4948 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4949 cp->cache_defrag->kmd_dont_need++;
4950 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4951 if (sp->slab_refcnt == 0)
4952 cp->cache_defrag->kmd_slabs_freed++;
4953 mutex_enter(&cp->cache_lock);
4954 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4955 mutex_exit(&cp->cache_lock);
4956 break;
4957 case KMEM_CBRC_DONT_KNOW:
4958 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4959 cp->cache_defrag->kmd_dont_know++;
4960 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4961 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4962 cp->cache_defrag->kmd_hunt_found++;
4963 kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4964 B_TRUE);
4965 if (sp->slab_refcnt == 0)
4966 cp->cache_defrag->kmd_slabs_freed++;
4967 mutex_enter(&cp->cache_lock);
4968 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4969 mutex_exit(&cp->cache_lock);
4971 break;
4972 default:
4973 panic("'%s' (%p) unexpected move callback response %d\n",
4974 cp->cache_name, (void *)cp, response);
4977 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4978 kmem_move_end(cp, callback);
4981 /* Return B_FALSE if there is insufficient memory for the move request. */
4982 static boolean_t
4983 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4985 void *to_buf;
4986 avl_index_t index;
4987 kmem_move_t *callback, *pending;
4988 ulong_t n;
4990 ASSERT(taskq_member(kmem_taskq, curthread));
4991 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4992 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4994 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4995 if (callback == NULL) {
4996 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
4997 return (B_FALSE);
5000 callback->kmm_from_slab = sp;
5001 callback->kmm_from_buf = buf;
5002 callback->kmm_flags = flags;
5004 mutex_enter(&cp->cache_lock);
5006 n = avl_numnodes(&cp->cache_partial_slabs);
5007 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
5008 mutex_exit(&cp->cache_lock);
5009 kmem_cache_free(kmem_move_cache, callback);
5010 return (B_TRUE); /* there is no need for the move request */
5013 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
5014 if (pending != NULL) {
5016 * If the move is already pending and we're desperate now,
5017 * update the move flags.
5019 if (flags & KMM_DESPERATE) {
5020 pending->kmm_flags |= KMM_DESPERATE;
5022 mutex_exit(&cp->cache_lock);
5023 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
5024 kmem_cache_free(kmem_move_cache, callback);
5025 return (B_TRUE);
5028 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
5029 B_FALSE);
5030 callback->kmm_to_buf = to_buf;
5031 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
5033 mutex_exit(&cp->cache_lock);
5035 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
5036 callback, TQ_NOSLEEP)) {
5037 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail);
5038 mutex_enter(&cp->cache_lock);
5039 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5040 mutex_exit(&cp->cache_lock);
5041 kmem_slab_free(cp, to_buf);
5042 kmem_cache_free(kmem_move_cache, callback);
5043 return (B_FALSE);
5046 return (B_TRUE);
5049 static void
5050 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
5052 avl_index_t index;
5054 ASSERT(cp->cache_defrag != NULL);
5055 ASSERT(taskq_member(kmem_move_taskq, curthread));
5056 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
5058 mutex_enter(&cp->cache_lock);
5059 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
5060 callback->kmm_from_buf, &index) != NULL);
5061 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5062 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
5063 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5064 kmem_slab_t *sp;
5067 * The last pending move completed. Release all slabs from the
5068 * front of the dead list except for any slab at the tail that
5069 * needs to be released from the context of kmem_move_buffers().
5070 * kmem deferred unmapping the buffers on these slabs in order
5071 * to guarantee that buffers passed to the move callback have
5072 * been touched only by kmem or by the client itself.
5074 while ((sp = list_remove_head(deadlist)) != NULL) {
5075 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
5076 list_insert_tail(deadlist, sp);
5077 break;
5079 cp->cache_defrag->kmd_deadcount--;
5080 cp->cache_slab_destroy++;
5081 mutex_exit(&cp->cache_lock);
5082 kmem_slab_destroy(cp, sp);
5083 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5084 mutex_enter(&cp->cache_lock);
5087 mutex_exit(&cp->cache_lock);
5088 kmem_cache_free(kmem_move_cache, callback);
5092 * Move buffers from least used slabs first by scanning backwards from the end
5093 * of the partial slab list. Scan at most max_scan candidate slabs and move
5094 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
5095 * If desperate to reclaim memory, move buffers from any partial slab, otherwise
5096 * skip slabs with a ratio of allocated buffers at or above the current
5097 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5098 * scan is aborted) so that the caller can adjust the reclaimability threshold
5099 * depending on how many reclaimable slabs it finds.
5101 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5102 * move request, since it is not valid for kmem_move_begin() to call
5103 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5105 static int
5106 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5107 int flags)
5109 kmem_slab_t *sp;
5110 void *buf;
5111 int i, j; /* slab index, buffer index */
5112 int s; /* reclaimable slabs */
5113 int b; /* allocated (movable) buffers on reclaimable slab */
5114 boolean_t success;
5115 int refcnt;
5116 int nomove;
5118 ASSERT(taskq_member(kmem_taskq, curthread));
5119 ASSERT(MUTEX_HELD(&cp->cache_lock));
5120 ASSERT(kmem_move_cache != NULL);
5121 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5122 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5123 avl_numnodes(&cp->cache_partial_slabs) > 1);
5125 if (kmem_move_blocked) {
5126 return (0);
5129 if (kmem_move_fulltilt) {
5130 flags |= KMM_DESPERATE;
5133 if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5135 * Scan as many slabs as needed to find the desired number of
5136 * candidate slabs.
5138 max_scan = (size_t)-1;
5141 if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5142 /* Find as many candidate slabs as possible. */
5143 max_slabs = (size_t)-1;
5146 sp = avl_last(&cp->cache_partial_slabs);
5147 ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5148 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5149 ((sp != avl_first(&cp->cache_partial_slabs)) ||
5150 (flags & KMM_DEBUG));
5151 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5153 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5154 continue;
5156 s++;
5158 /* Look for allocated buffers to move. */
5159 for (j = 0, b = 0, buf = sp->slab_base;
5160 (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5161 buf = (((char *)buf) + cp->cache_chunksize), j++) {
5163 if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5164 continue;
5167 b++;
5170 * Prevent the slab from being destroyed while we drop
5171 * cache_lock and while the pending move is not yet
5172 * registered. Flag the pending move while
5173 * kmd_moves_pending may still be empty, since we can't
5174 * yet rely on a non-zero pending move count to prevent
5175 * the slab from being destroyed.
5177 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5178 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5180 * Recheck refcnt and nomove after reacquiring the lock,
5181 * since these control the order of partial slabs, and
5182 * we want to know if we can pick up the scan where we
5183 * left off.
5185 refcnt = sp->slab_refcnt;
5186 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5187 mutex_exit(&cp->cache_lock);
5189 success = kmem_move_begin(cp, sp, buf, flags);
5192 * Now, before the lock is reacquired, kmem could
5193 * process all pending move requests and purge the
5194 * deadlist, so that upon reacquiring the lock, sp has
5195 * been remapped. Or, the client may free all the
5196 * objects on the slab while the pending moves are still
5197 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5198 * flag causes the slab to be put at the end of the
5199 * deadlist and prevents it from being destroyed, since
5200 * we plan to destroy it here after reacquiring the
5201 * lock.
5203 mutex_enter(&cp->cache_lock);
5204 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5205 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5207 if (sp->slab_refcnt == 0) {
5208 list_t *deadlist =
5209 &cp->cache_defrag->kmd_deadlist;
5210 list_remove(deadlist, sp);
5212 if (!avl_is_empty(
5213 &cp->cache_defrag->kmd_moves_pending)) {
5215 * A pending move makes it unsafe to
5216 * destroy the slab, because even though
5217 * the move is no longer needed, the
5218 * context where that is determined
5219 * requires the slab to exist.
5220 * Fortunately, a pending move also
5221 * means we don't need to destroy the
5222 * slab here, since it will get
5223 * destroyed along with any other slabs
5224 * on the deadlist after the last
5225 * pending move completes.
5227 list_insert_head(deadlist, sp);
5228 KMEM_STAT_ADD(kmem_move_stats.
5229 kms_endscan_slab_dead);
5230 return (-1);
5234 * Destroy the slab now if it was completely
5235 * freed while we dropped cache_lock and there
5236 * are no pending moves. Since slab_refcnt
5237 * cannot change once it reaches zero, no new
5238 * pending moves from that slab are possible.
5240 cp->cache_defrag->kmd_deadcount--;
5241 cp->cache_slab_destroy++;
5242 mutex_exit(&cp->cache_lock);
5243 kmem_slab_destroy(cp, sp);
5244 KMEM_STAT_ADD(kmem_move_stats.
5245 kms_dead_slabs_freed);
5246 KMEM_STAT_ADD(kmem_move_stats.
5247 kms_endscan_slab_destroyed);
5248 mutex_enter(&cp->cache_lock);
5250 * Since we can't pick up the scan where we left
5251 * off, abort the scan and say nothing about the
5252 * number of reclaimable slabs.
5254 return (-1);
5257 if (!success) {
5259 * Abort the scan if there is not enough memory
5260 * for the request and say nothing about the
5261 * number of reclaimable slabs.
5263 KMEM_STAT_COND_ADD(s < max_slabs,
5264 kmem_move_stats.kms_endscan_nomem);
5265 return (-1);
5269 * The slab's position changed while the lock was
5270 * dropped, so we don't know where we are in the
5271 * sequence any more.
5273 if (sp->slab_refcnt != refcnt) {
5275 * If this is a KMM_DEBUG move, the slab_refcnt
5276 * may have changed because we allocated a
5277 * destination buffer on the same slab. In that
5278 * case, we're not interested in counting it.
5280 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5281 (s < max_slabs),
5282 kmem_move_stats.kms_endscan_refcnt_changed);
5283 return (-1);
5285 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
5286 KMEM_STAT_COND_ADD(s < max_slabs,
5287 kmem_move_stats.kms_endscan_nomove_changed);
5288 return (-1);
5292 * Generating a move request allocates a destination
5293 * buffer from the slab layer, bumping the first partial
5294 * slab if it is completely allocated. If the current
5295 * slab becomes the first partial slab as a result, we
5296 * can't continue to scan backwards.
5298 * If this is a KMM_DEBUG move and we allocated the
5299 * destination buffer from the last partial slab, then
5300 * the buffer we're moving is on the same slab and our
5301 * slab_refcnt has changed, causing us to return before
5302 * reaching here if there are no partial slabs left.
5304 ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5305 if (sp == avl_first(&cp->cache_partial_slabs)) {
5307 * We're not interested in a second KMM_DEBUG
5308 * move.
5310 goto end_scan;
5314 end_scan:
5316 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5317 (s < max_slabs) &&
5318 (sp == avl_first(&cp->cache_partial_slabs)),
5319 kmem_move_stats.kms_endscan_freelist);
5321 return (s);
5324 typedef struct kmem_move_notify_args {
5325 kmem_cache_t *kmna_cache;
5326 void *kmna_buf;
5327 } kmem_move_notify_args_t;
5329 static void
5330 kmem_cache_move_notify_task(void *arg)
5332 kmem_move_notify_args_t *args = arg;
5333 kmem_cache_t *cp = args->kmna_cache;
5334 void *buf = args->kmna_buf;
5335 kmem_slab_t *sp;
5337 ASSERT(taskq_member(kmem_taskq, curthread));
5338 ASSERT(list_link_active(&cp->cache_link));
5340 kmem_free(args, sizeof (kmem_move_notify_args_t));
5341 mutex_enter(&cp->cache_lock);
5342 sp = kmem_slab_allocated(cp, NULL, buf);
5344 /* Ignore the notification if the buffer is no longer allocated. */
5345 if (sp == NULL) {
5346 mutex_exit(&cp->cache_lock);
5347 return;
5350 /* Ignore the notification if there's no reason to move the buffer. */
5351 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5353 * So far the notification is not ignored. Ignore the
5354 * notification if the slab is not marked by an earlier refusal
5355 * to move a buffer.
5357 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5358 (sp->slab_later_count == 0)) {
5359 mutex_exit(&cp->cache_lock);
5360 return;
5363 kmem_slab_move_yes(cp, sp, buf);
5364 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5365 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5366 mutex_exit(&cp->cache_lock);
5367 /* see kmem_move_buffers() about dropping the lock */
5368 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5369 mutex_enter(&cp->cache_lock);
5370 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5371 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5372 if (sp->slab_refcnt == 0) {
5373 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5374 list_remove(deadlist, sp);
5376 if (!avl_is_empty(
5377 &cp->cache_defrag->kmd_moves_pending)) {
5378 list_insert_head(deadlist, sp);
5379 mutex_exit(&cp->cache_lock);
5380 KMEM_STAT_ADD(kmem_move_stats.
5381 kms_notify_slab_dead);
5382 return;
5385 cp->cache_defrag->kmd_deadcount--;
5386 cp->cache_slab_destroy++;
5387 mutex_exit(&cp->cache_lock);
5388 kmem_slab_destroy(cp, sp);
5389 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5390 KMEM_STAT_ADD(kmem_move_stats.
5391 kms_notify_slab_destroyed);
5392 return;
5394 } else {
5395 kmem_slab_move_yes(cp, sp, buf);
5397 mutex_exit(&cp->cache_lock);
5400 void
5401 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5403 kmem_move_notify_args_t *args;
5405 KMEM_STAT_ADD(kmem_move_stats.kms_notify);
5406 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5407 if (args != NULL) {
5408 args->kmna_cache = cp;
5409 args->kmna_buf = buf;
5410 if (!taskq_dispatch(kmem_taskq,
5411 (task_func_t *)kmem_cache_move_notify_task, args,
5412 TQ_NOSLEEP))
5413 kmem_free(args, sizeof (kmem_move_notify_args_t));
5417 static void
5418 kmem_cache_defrag(kmem_cache_t *cp)
5420 size_t n;
5422 ASSERT(cp->cache_defrag != NULL);
5424 mutex_enter(&cp->cache_lock);
5425 n = avl_numnodes(&cp->cache_partial_slabs);
5426 if (n > 1) {
5427 /* kmem_move_buffers() drops and reacquires cache_lock */
5428 KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
5429 cp->cache_defrag->kmd_defrags++;
5430 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5432 mutex_exit(&cp->cache_lock);
5435 /* Is this cache above the fragmentation threshold? */
5436 static boolean_t
5437 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5440 * nfree kmem_frag_numer
5441 * ------------------ > ---------------
5442 * cp->cache_buftotal kmem_frag_denom
5444 return ((nfree * kmem_frag_denom) >
5445 (cp->cache_buftotal * kmem_frag_numer));
5448 static boolean_t
5449 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5451 boolean_t fragmented;
5452 uint64_t nfree;
5454 ASSERT(MUTEX_HELD(&cp->cache_lock));
5455 *doreap = B_FALSE;
5457 if (kmem_move_fulltilt) {
5458 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5459 return (B_TRUE);
5461 } else {
5462 if ((cp->cache_complete_slab_count + avl_numnodes(
5463 &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5464 return (B_FALSE);
5468 nfree = cp->cache_bufslab;
5469 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5470 kmem_cache_frag_threshold(cp, nfree));
5473 * Free buffers in the magazine layer appear allocated from the point of
5474 * view of the slab layer. We want to know if the slab layer would
5475 * appear fragmented if we included free buffers from magazines that
5476 * have fallen out of the working set.
5478 if (!fragmented) {
5479 long reap;
5481 mutex_enter(&cp->cache_depot_lock);
5482 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5483 reap = MIN(reap, cp->cache_full.ml_total);
5484 mutex_exit(&cp->cache_depot_lock);
5486 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5487 if (kmem_cache_frag_threshold(cp, nfree)) {
5488 *doreap = B_TRUE;
5492 return (fragmented);
5495 /* Called periodically from kmem_taskq */
5496 static void
5497 kmem_cache_scan(kmem_cache_t *cp)
5499 boolean_t reap = B_FALSE;
5500 kmem_defrag_t *kmd;
5502 ASSERT(taskq_member(kmem_taskq, curthread));
5504 mutex_enter(&cp->cache_lock);
5506 kmd = cp->cache_defrag;
5507 if (kmd->kmd_consolidate > 0) {
5508 kmd->kmd_consolidate--;
5509 mutex_exit(&cp->cache_lock);
5510 kmem_cache_reap(cp);
5511 return;
5514 if (kmem_cache_is_fragmented(cp, &reap)) {
5515 size_t slabs_found;
5518 * Consolidate reclaimable slabs from the end of the partial
5519 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5520 * reclaimable slabs). Keep track of how many candidate slabs we
5521 * looked for and how many we actually found so we can adjust
5522 * the definition of a candidate slab if we're having trouble
5523 * finding them.
5525 * kmem_move_buffers() drops and reacquires cache_lock.
5527 KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5528 kmd->kmd_scans++;
5529 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5530 kmem_reclaim_max_slabs, 0);
5531 if (slabs_found >= 0) {
5532 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5533 kmd->kmd_slabs_found += slabs_found;
5536 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5537 kmd->kmd_tries = 0;
5540 * If we had difficulty finding candidate slabs in
5541 * previous scans, adjust the threshold so that
5542 * candidates are easier to find.
5544 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5545 kmem_adjust_reclaim_threshold(kmd, -1);
5546 } else if ((kmd->kmd_slabs_found * 2) <
5547 kmd->kmd_slabs_sought) {
5548 kmem_adjust_reclaim_threshold(kmd, 1);
5550 kmd->kmd_slabs_sought = 0;
5551 kmd->kmd_slabs_found = 0;
5553 } else {
5554 kmem_reset_reclaim_threshold(cp->cache_defrag);
5555 #ifdef DEBUG
5556 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5558 * In a debug kernel we want the consolidator to
5559 * run occasionally even when there is plenty of
5560 * memory.
5562 uint16_t debug_rand;
5564 (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5565 if (!kmem_move_noreap &&
5566 ((debug_rand % kmem_mtb_reap) == 0)) {
5567 mutex_exit(&cp->cache_lock);
5568 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
5569 kmem_cache_reap(cp);
5570 return;
5571 } else if ((debug_rand % kmem_mtb_move) == 0) {
5572 KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5573 KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans);
5574 kmd->kmd_scans++;
5575 (void) kmem_move_buffers(cp,
5576 kmem_reclaim_scan_range, 1, KMM_DEBUG);
5579 #endif /* DEBUG */
5582 mutex_exit(&cp->cache_lock);
5584 if (reap) {
5585 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
5586 kmem_depot_ws_reap(cp);