16164 Consistently wake all pageout daemon threads
[illumos-gate.git] / usr / src / uts / i86pc / vm / vm_machdep.c
blob5d8f86ffb5b889b583cdbd49deecd8cb0d03ccca
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 * Copyright 2019, Joyent, Inc.
30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
34 * Portions of this source code were derived from Berkeley 4.3 BSD
35 * under license from the Regents of the University of California.
39 * UNIX machine dependent virtual memory support.
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/user.h>
46 #include <sys/proc.h>
47 #include <sys/kmem.h>
48 #include <sys/vmem.h>
49 #include <sys/buf.h>
50 #include <sys/cpuvar.h>
51 #include <sys/lgrp.h>
52 #include <sys/disp.h>
53 #include <sys/vm.h>
54 #include <sys/mman.h>
55 #include <sys/vnode.h>
56 #include <sys/cred.h>
57 #include <sys/exec.h>
58 #include <sys/exechdr.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/swap.h>
62 #include <sys/dumphdr.h>
63 #include <sys/random.h>
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_kp.h>
69 #include <vm/seg_vn.h>
70 #include <vm/page.h>
71 #include <vm/seg_kmem.h>
72 #include <vm/seg_kpm.h>
73 #include <vm/vm_dep.h>
75 #include <sys/cpu.h>
76 #include <sys/vm_machparam.h>
77 #include <sys/memlist.h>
78 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
79 #include <vm/hat_i86.h>
80 #include <sys/x86_archext.h>
81 #include <sys/elf_386.h>
82 #include <sys/cmn_err.h>
83 #include <sys/archsystm.h>
84 #include <sys/machsystm.h>
85 #include <sys/secflags.h>
87 #include <sys/vtrace.h>
88 #include <sys/ddidmareq.h>
89 #include <sys/promif.h>
90 #include <sys/memnode.h>
91 #include <sys/stack.h>
92 #include <util/qsort.h>
93 #include <sys/taskq.h>
95 #ifdef __xpv
97 #include <sys/hypervisor.h>
98 #include <sys/xen_mmu.h>
99 #include <sys/balloon_impl.h>
102 * domain 0 pages usable for DMA are kept pre-allocated and kept in
103 * distinct lists, ordered by increasing mfn.
105 static kmutex_t io_pool_lock;
106 static kmutex_t contig_list_lock;
107 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */
108 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */
109 static long io_pool_cnt;
110 static long io_pool_cnt_max = 0;
111 #define DEFAULT_IO_POOL_MIN 128
112 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
113 static long io_pool_cnt_lowater = 0;
114 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
115 static long io_pool_shrinks; /* how many times did we really shrink */
116 static long io_pool_grows; /* how many times did we grow */
117 static mfn_t start_mfn = 1;
118 static caddr_t io_pool_kva; /* use to alloc pages when needed */
120 static int create_contig_pfnlist(uint_t);
123 * percentage of phys mem to hold in the i/o pool
125 #define DEFAULT_IO_POOL_PCT 2
126 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
127 static void page_io_pool_sub(page_t **, page_t *, page_t *);
128 int ioalloc_dbg = 0;
130 #endif /* __xpv */
132 uint_t vac_colors = 1;
134 int largepagesupport = 0;
135 extern uint_t page_create_new;
136 extern uint_t page_create_exists;
137 extern uint_t page_create_putbacks;
139 * Allow users to disable the kernel's use of SSE.
141 extern int use_sse_pagecopy, use_sse_pagezero;
144 * combined memory ranges from mnode and memranges[] to manage single
145 * mnode/mtype dimension in the page lists.
147 typedef struct {
148 pfn_t mnr_pfnlo;
149 pfn_t mnr_pfnhi;
150 int mnr_mnode;
151 int mnr_memrange; /* index into memranges[] */
152 int mnr_next; /* next lower PA mnoderange */
153 int mnr_exists;
154 /* maintain page list stats */
155 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */
156 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */
157 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */
158 #ifdef DEBUG
159 struct mnr_mts { /* mnode/mtype szc stats */
160 pgcnt_t mnr_mts_pgcnt;
161 int mnr_mts_colors;
162 pgcnt_t *mnr_mtsc_pgcnt;
163 } *mnr_mts;
164 #endif
165 } mnoderange_t;
167 #define MEMRANGEHI(mtype) \
168 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
169 #define MEMRANGELO(mtype) (memranges[mtype])
171 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt)
174 * As the PC architecture evolved memory up was clumped into several
175 * ranges for various historical I/O devices to do DMA.
176 * < 16Meg - ISA bus
177 * < 2Gig - ???
178 * < 4Gig - PCI bus or drivers that don't understand PAE mode
180 * These are listed in reverse order, so that we can skip over unused
181 * ranges on machines with small memories.
183 * For now under the Hypervisor, we'll only ever have one memrange.
185 #define PFN_4GIG 0x100000
186 #define PFN_16MEG 0x1000
187 /* Indices into the memory range (arch_memranges) array. */
188 #define MRI_4G 0
189 #define MRI_2G 1
190 #define MRI_16M 2
191 #define MRI_0 3
192 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
193 PFN_4GIG, /* pfn range for 4G and above */
194 0x80000, /* pfn range for 2G-4G */
195 PFN_16MEG, /* pfn range for 16M-2G */
196 0x00000, /* pfn range for 0-16M */
198 pfn_t *memranges = &arch_memranges[0];
199 int nranges = NUM_MEM_RANGES;
202 * This combines mem_node_config and memranges into one data
203 * structure to be used for page list management.
205 static mnoderange_t *mnoderanges;
206 static int mnoderangecnt;
207 static int mtype4g;
208 static int mtype16m;
209 static int mtypetop;
212 * 4g memory management variables for systems with more than 4g of memory:
214 * physical memory below 4g is required for 32bit dma devices and, currently,
215 * for kmem memory. On systems with more than 4g of memory, the pool of memory
216 * below 4g can be depleted without any paging activity given that there is
217 * likely to be sufficient memory above 4g.
219 * physmax4g is set true if the largest pfn is over 4g. The rest of the
220 * 4g memory management code is enabled only when physmax4g is true.
222 * maxmem4g is the count of the maximum number of pages on the page lists
223 * with physical addresses below 4g. It can be a lot less then 4g given that
224 * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
225 * agp aperture etc.
227 * freemem4g maintains the count of the number of available pages on the
228 * page lists with physical addresses below 4g.
230 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
231 * 6% (desfree4gshift = 4) of maxmem4g.
233 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
234 * and the amount of physical memory above 4g is greater than freemem4g.
235 * In this case, page_get_* routines will restrict below 4g allocations
236 * for requests that don't specifically require it.
239 #define DESFREE4G (maxmem4g >> desfree4gshift)
241 #define RESTRICT4G_ALLOC \
242 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
244 static pgcnt_t maxmem4g;
245 static pgcnt_t freemem4g;
246 static int physmax4g;
247 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */
250 * 16m memory management:
252 * reserve some amount of physical memory below 16m for legacy devices.
254 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
255 * 16m or if the 16m pool drops below DESFREE16M.
257 * In this case, general page allocations via page_get_{free,cache}list
258 * routines will be restricted from allocating from the 16m pool. Allocations
259 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
260 * are not restricted.
263 #define FREEMEM16M MTYPE_FREEMEM(mtype16m)
264 #define DESFREE16M desfree16m
265 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \
266 (mtype16m != -1 && (freemem != 0) && ((flags & PG_PANIC) == 0) && \
267 ((freemem >= (FREEMEM16M)) || \
268 (FREEMEM16M < (DESFREE16M + pgcnt))))
270 static pgcnt_t desfree16m = 0x380;
273 * This can be patched via /etc/system to allow old non-PAE aware device
274 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
276 int restricted_kmemalloc = 0;
278 #ifdef VM_STATS
279 struct {
280 ulong_t pga_alloc;
281 ulong_t pga_notfullrange;
282 ulong_t pga_nulldmaattr;
283 ulong_t pga_allocok;
284 ulong_t pga_allocfailed;
285 ulong_t pgma_alloc;
286 ulong_t pgma_allocok;
287 ulong_t pgma_allocfailed;
288 ulong_t pgma_allocempty;
289 } pga_vmstats;
290 #endif
292 uint_t mmu_page_sizes;
294 /* How many page sizes the users can see */
295 uint_t mmu_exported_page_sizes;
297 /* page sizes that legacy applications can see */
298 uint_t mmu_legacy_page_sizes;
301 * Number of pages in 1 GB. Don't enable automatic large pages if we have
302 * fewer than this many pages.
304 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
305 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
308 * Maximum and default segment size tunables for user private
309 * and shared anon memory, and user text and initialized data.
310 * These can be patched via /etc/system to allow large pages
311 * to be used for mapping application private and shared anon memory.
313 size_t mcntl0_lpsize = MMU_PAGESIZE;
314 size_t max_uheap_lpsize = MMU_PAGESIZE;
315 size_t default_uheap_lpsize = MMU_PAGESIZE;
316 size_t max_ustack_lpsize = MMU_PAGESIZE;
317 size_t default_ustack_lpsize = MMU_PAGESIZE;
318 size_t max_privmap_lpsize = MMU_PAGESIZE;
319 size_t max_uidata_lpsize = MMU_PAGESIZE;
320 size_t max_utext_lpsize = MMU_PAGESIZE;
321 size_t max_shm_lpsize = MMU_PAGESIZE;
325 * initialized by page_coloring_init().
327 uint_t page_colors;
328 uint_t page_colors_mask;
329 uint_t page_coloring_shift;
330 int cpu_page_colors;
331 static uint_t l2_colors;
334 * Page freelists and cachelists are dynamically allocated once mnoderangecnt
335 * and page_colors are calculated from the l2 cache n-way set size. Within a
336 * mnode range, the page freelist and cachelist are hashed into bins based on
337 * color. This makes it easier to search for a page within a specific memory
338 * range.
340 #define PAGE_COLORS_MIN 16
342 page_t ****page_freelists;
343 page_t ***page_cachelists;
347 * Used by page layer to know about page sizes
349 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
351 kmutex_t *fpc_mutex[NPC_MUTEX];
352 kmutex_t *cpc_mutex[NPC_MUTEX];
354 /* Lock to protect mnoderanges array for memory DR operations. */
355 static kmutex_t mnoderange_lock;
358 * Only let one thread at a time try to coalesce large pages, to
359 * prevent them from working against each other.
361 static kmutex_t contig_lock;
362 #define CONTIG_LOCK() mutex_enter(&contig_lock);
363 #define CONTIG_UNLOCK() mutex_exit(&contig_lock);
365 #define PFN_16M (mmu_btop((uint64_t)0x1000000))
367 caddr_t
368 i86devmap(pfn_t pf, pgcnt_t pgcnt, uint_t prot)
370 caddr_t addr;
371 caddr_t addr1;
372 page_t *pp;
374 addr1 = addr = vmem_alloc(heap_arena, mmu_ptob(pgcnt), VM_SLEEP);
376 for (; pgcnt != 0; addr += MMU_PAGESIZE, ++pf, --pgcnt) {
377 pp = page_numtopp_nolock(pf);
378 if (pp == NULL) {
379 hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pf,
380 prot | HAT_NOSYNC, HAT_LOAD_LOCK);
381 } else {
382 hat_memload(kas.a_hat, addr, pp,
383 prot | HAT_NOSYNC, HAT_LOAD_LOCK);
387 return (addr1);
391 * This routine is like page_numtopp, but accepts only free pages, which
392 * it allocates (unfrees) and returns with the exclusive lock held.
393 * It is used by machdep.c/dma_init() to find contiguous free pages.
395 page_t *
396 page_numtopp_alloc(pfn_t pfnum)
398 page_t *pp;
400 retry:
401 pp = page_numtopp_nolock(pfnum);
402 if (pp == NULL) {
403 return (NULL);
406 if (!page_trylock(pp, SE_EXCL)) {
407 return (NULL);
410 if (page_pptonum(pp) != pfnum) {
411 page_unlock(pp);
412 goto retry;
415 if (!PP_ISFREE(pp)) {
416 page_unlock(pp);
417 return (NULL);
419 if (pp->p_szc) {
420 page_demote_free_pages(pp);
421 page_unlock(pp);
422 goto retry;
425 /* If associated with a vnode, destroy mappings */
427 if (pp->p_vnode) {
429 page_destroy_free(pp);
431 if (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_NO_RECLAIM)) {
432 return (NULL);
435 if (page_pptonum(pp) != pfnum) {
436 page_unlock(pp);
437 goto retry;
441 if (!PP_ISFREE(pp)) {
442 page_unlock(pp);
443 return (NULL);
446 if (!page_reclaim(pp, (kmutex_t *)NULL))
447 return (NULL);
449 return (pp);
453 * Return the optimum page size for a given mapping
455 /*ARGSUSED*/
456 size_t
457 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
459 level_t l = 0;
460 size_t pgsz = MMU_PAGESIZE;
461 size_t max_lpsize;
462 uint_t mszc;
464 ASSERT(maptype != MAPPGSZ_VA);
466 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
467 return (MMU_PAGESIZE);
470 switch (maptype) {
471 case MAPPGSZ_HEAP:
472 case MAPPGSZ_STK:
473 max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
474 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
475 if (max_lpsize == MMU_PAGESIZE) {
476 return (MMU_PAGESIZE);
478 if (len == 0) {
479 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
480 p->p_brksize - p->p_bssbase : p->p_stksize;
482 len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
483 default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
486 * use the pages size that best fits len
488 for (l = mmu.umax_page_level; l > 0; --l) {
489 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
490 continue;
491 } else {
492 pgsz = LEVEL_SIZE(l);
494 break;
497 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
498 p->p_stkpageszc);
499 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
500 pgsz = hw_page_array[mszc].hp_size;
502 return (pgsz);
504 case MAPPGSZ_ISM:
505 for (l = mmu.umax_page_level; l > 0; --l) {
506 if (len >= LEVEL_SIZE(l))
507 return (LEVEL_SIZE(l));
509 return (LEVEL_SIZE(0));
511 return (pgsz);
514 static uint_t
515 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
516 size_t min_physmem)
518 caddr_t eaddr = addr + size;
519 uint_t szcvec = 0;
520 caddr_t raddr;
521 caddr_t readdr;
522 size_t pgsz;
523 int i;
525 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
526 return (0);
529 for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
530 pgsz = page_get_pagesize(i);
531 if (pgsz > max_lpsize) {
532 continue;
534 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
535 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
536 if (raddr < addr || raddr >= readdr) {
537 continue;
539 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
540 continue;
543 * Set szcvec to the remaining page sizes.
545 szcvec = ((1 << (i + 1)) - 1) & ~1;
546 break;
548 return (szcvec);
552 * Return a bit vector of large page size codes that
553 * can be used to map [addr, addr + len) region.
555 /*ARGSUSED*/
556 uint_t
557 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
558 int memcntl)
560 size_t max_lpsize = mcntl0_lpsize;
562 if (mmu.max_page_level == 0)
563 return (0);
565 if (flags & MAP_TEXT) {
566 if (!memcntl)
567 max_lpsize = max_utext_lpsize;
568 return (map_szcvec(addr, size, off, max_lpsize,
569 shm_lpg_min_physmem));
571 } else if (flags & MAP_INITDATA) {
572 if (!memcntl)
573 max_lpsize = max_uidata_lpsize;
574 return (map_szcvec(addr, size, off, max_lpsize,
575 privm_lpg_min_physmem));
577 } else if (type == MAPPGSZC_SHM) {
578 if (!memcntl)
579 max_lpsize = max_shm_lpsize;
580 return (map_szcvec(addr, size, off, max_lpsize,
581 shm_lpg_min_physmem));
583 } else if (type == MAPPGSZC_HEAP) {
584 if (!memcntl)
585 max_lpsize = max_uheap_lpsize;
586 return (map_szcvec(addr, size, off, max_lpsize,
587 privm_lpg_min_physmem));
589 } else if (type == MAPPGSZC_STACK) {
590 if (!memcntl)
591 max_lpsize = max_ustack_lpsize;
592 return (map_szcvec(addr, size, off, max_lpsize,
593 privm_lpg_min_physmem));
595 } else {
596 if (!memcntl)
597 max_lpsize = max_privmap_lpsize;
598 return (map_szcvec(addr, size, off, max_lpsize,
599 privm_lpg_min_physmem));
604 * Handle a pagefault.
606 faultcode_t
607 pagefault(
608 caddr_t addr,
609 enum fault_type type,
610 enum seg_rw rw,
611 int iskernel)
613 struct as *as;
614 struct hat *hat;
615 struct proc *p;
616 kthread_t *t;
617 faultcode_t res;
618 caddr_t base;
619 size_t len;
620 int err;
621 int mapped_red;
622 uintptr_t ea;
624 ASSERT_STACK_ALIGNED();
626 if (INVALID_VADDR(addr))
627 return (FC_NOMAP);
629 mapped_red = segkp_map_red();
631 if (iskernel) {
632 as = &kas;
633 hat = as->a_hat;
634 } else {
635 t = curthread;
636 p = ttoproc(t);
637 as = p->p_as;
638 hat = as->a_hat;
642 * Dispatch pagefault.
644 res = as_fault(hat, as, addr, 1, type, rw);
647 * If this isn't a potential unmapped hole in the user's
648 * UNIX data or stack segments, just return status info.
650 if (res != FC_NOMAP || iskernel)
651 goto out;
654 * Check to see if we happened to faulted on a currently unmapped
655 * part of the UNIX data or stack segments. If so, create a zfod
656 * mapping there and then try calling the fault routine again.
658 base = p->p_brkbase;
659 len = p->p_brksize;
661 if (addr < base || addr >= base + len) { /* data seg? */
662 base = (caddr_t)p->p_usrstack - p->p_stksize;
663 len = p->p_stksize;
664 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */
665 /* not in either UNIX data or stack segments */
666 res = FC_NOMAP;
667 goto out;
672 * the rest of this function implements a 3.X 4.X 5.X compatibility
673 * This code is probably not needed anymore
675 if (p->p_model == DATAMODEL_ILP32) {
677 /* expand the gap to the page boundaries on each side */
678 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
679 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
680 len = ea - (uintptr_t)base;
682 as_rangelock(as);
683 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
684 0) {
685 err = as_map(as, base, len, segvn_create, zfod_argsp);
686 as_rangeunlock(as);
687 if (err) {
688 res = FC_MAKE_ERR(err);
689 goto out;
691 } else {
693 * This page is already mapped by another thread after
694 * we returned from as_fault() above. We just fall
695 * through as_fault() below.
697 as_rangeunlock(as);
700 res = as_fault(hat, as, addr, 1, F_INVAL, rw);
703 out:
704 if (mapped_red)
705 segkp_unmap_red();
707 return (res);
710 void
711 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
713 struct proc *p = curproc;
714 caddr_t userlimit = (flags & _MAP_LOW32) ?
715 (caddr_t)_userlimit32 : p->p_as->a_userlimit;
717 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
720 /*ARGSUSED*/
722 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
724 return (0);
728 * The maximum amount a randomized mapping will be slewed. We should perhaps
729 * arrange things so these tunables can be separate for mmap, mmapobj, and
730 * ld.so
732 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
735 * map_addr_proc() is the routine called when the system is to
736 * choose an address for the user. We will pick an address
737 * range which is the highest available below userlimit.
739 * Every mapping will have a redzone of a single page on either side of
740 * the request. This is done to leave one page unmapped between segments.
741 * This is not required, but it's useful for the user because if their
742 * program strays across a segment boundary, it will catch a fault
743 * immediately making debugging a little easier. Currently the redzone
744 * is mandatory.
746 * addrp is a value/result parameter.
747 * On input it is a hint from the user to be used in a completely
748 * machine dependent fashion. We decide to completely ignore this hint.
749 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which
750 * must be some "power of two" multiple of pagesize.
752 * On output it is NULL if no address can be found in the current
753 * processes address space or else an address that is currently
754 * not mapped for len bytes with a page of red zone on either side.
756 * vacalign is not needed on x86 (it's for viturally addressed caches)
758 /*ARGSUSED*/
759 void
760 map_addr_proc(
761 caddr_t *addrp,
762 size_t len,
763 offset_t off,
764 int vacalign,
765 caddr_t userlimit,
766 struct proc *p,
767 uint_t flags)
769 struct as *as = p->p_as;
770 caddr_t addr;
771 caddr_t base;
772 size_t slen;
773 size_t align_amount;
775 ASSERT32(userlimit == as->a_userlimit);
777 base = p->p_brkbase;
778 if (p->p_model == DATAMODEL_NATIVE) {
779 if (userlimit < as->a_userlimit) {
781 * This happens when a program wants to map
782 * something in a range that's accessible to a
783 * program in a smaller address space. For example,
784 * a 64-bit program calling mmap32(2) to guarantee
785 * that the returned address is below 4Gbytes.
787 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
789 if (userlimit > base)
790 slen = userlimit - base;
791 else {
792 *addrp = NULL;
793 return;
795 } else {
797 * With the stack positioned at a higher address than
798 * the heap for 64-bit processes, it is necessary to be
799 * mindful of its location and potential size.
801 * Unallocated space above the top of the stack (that
802 * is, at a lower address) but still within the bounds
803 * of the stack limit should be considered unavailable.
805 * As the 64-bit stack guard is mapped in immediately
806 * adjacent to the stack limit boundary, this prevents
807 * new mappings from having accidentally dangerous
808 * proximity to the stack.
810 slen = p->p_usrstack - base -
811 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
813 } else {
814 slen = userlimit - base;
817 /* Make len be a multiple of PAGESIZE */
818 len = (len + PAGEOFFSET) & PAGEMASK;
821 * figure out what the alignment should be
823 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
825 if (len <= ELF_386_MAXPGSZ) {
827 * Align virtual addresses to ensure that ELF shared libraries
828 * are mapped with the appropriate alignment constraints by
829 * the run-time linker.
831 align_amount = ELF_386_MAXPGSZ;
832 } else {
834 * For 32-bit processes, only those which have specified
835 * MAP_ALIGN and an addr will be aligned on a larger page size.
836 * Not doing so can potentially waste up to 1G of process
837 * address space.
839 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 :
840 mmu.umax_page_level;
842 while (lvl && len < LEVEL_SIZE(lvl))
843 --lvl;
845 align_amount = LEVEL_SIZE(lvl);
847 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
848 align_amount = (uintptr_t)*addrp;
850 ASSERT(ISP2(align_amount));
851 ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
853 off = off & (align_amount - 1);
856 * Look for a large enough hole starting below userlimit.
857 * After finding it, use the upper part.
859 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
860 PAGESIZE, off) == 0) {
861 caddr_t as_addr;
864 * addr is the highest possible address to use since we have
865 * a PAGESIZE redzone at the beginning and end.
867 addr = base + slen - (PAGESIZE + len);
868 as_addr = addr;
870 * Round address DOWN to the alignment amount and
871 * add the offset in.
872 * If addr is greater than as_addr, len would not be large
873 * enough to include the redzone, so we must adjust down
874 * by the alignment amount.
876 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
877 addr += (uintptr_t)off;
878 if (addr > as_addr) {
879 addr -= align_amount;
883 * If randomization is requested, slew the allocation
884 * backwards, within the same gap, by a random amount.
886 if (flags & _MAP_RANDOMIZE) {
887 uint32_t slew;
889 (void) random_get_pseudo_bytes((uint8_t *)&slew,
890 sizeof (slew));
892 slew = slew % MIN(aslr_max_map_skew, (addr - base));
893 addr -= P2ALIGN(slew, align_amount);
896 ASSERT(addr > base);
897 ASSERT(addr + len < base + slen);
898 ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
899 ((uintptr_t)(off)));
900 *addrp = addr;
901 } else {
902 *addrp = NULL; /* no more virtual space */
906 int valid_va_range_aligned_wraparound;
909 * Determine whether [*basep, *basep + *lenp) contains a mappable range of
910 * addresses at least "minlen" long, where the base of the range is at "off"
911 * phase from an "align" boundary and there is space for a "redzone"-sized
912 * redzone on either side of the range. On success, 1 is returned and *basep
913 * and *lenp are adjusted to describe the acceptable range (including
914 * the redzone). On failure, 0 is returned.
916 /*ARGSUSED3*/
918 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
919 size_t align, size_t redzone, size_t off)
921 uintptr_t hi, lo;
922 size_t tot_len;
924 ASSERT(align == 0 ? off == 0 : off < align);
925 ASSERT(ISP2(align));
926 ASSERT(align == 0 || align >= PAGESIZE);
928 lo = (uintptr_t)*basep;
929 hi = lo + *lenp;
930 tot_len = minlen + 2 * redzone; /* need at least this much space */
933 * If hi rolled over the top, try cutting back.
935 if (hi < lo) {
936 *lenp = 0UL - lo - 1UL;
937 /* See if this really happens. If so, then we figure out why */
938 valid_va_range_aligned_wraparound++;
939 hi = lo + *lenp;
941 if (*lenp < tot_len) {
942 return (0);
946 * Deal with a possible hole in the address range between
947 * hole_start and hole_end that should never be mapped.
949 if (lo < hole_start) {
950 if (hi > hole_start) {
951 if (hi < hole_end) {
952 hi = hole_start;
953 } else {
954 /* lo < hole_start && hi >= hole_end */
955 if (dir == AH_LO) {
957 * prefer lowest range
959 if (hole_start - lo >= tot_len)
960 hi = hole_start;
961 else if (hi - hole_end >= tot_len)
962 lo = hole_end;
963 else
964 return (0);
965 } else {
967 * prefer highest range
969 if (hi - hole_end >= tot_len)
970 lo = hole_end;
971 else if (hole_start - lo >= tot_len)
972 hi = hole_start;
973 else
974 return (0);
978 } else {
979 /* lo >= hole_start */
980 if (hi < hole_end)
981 return (0);
982 if (lo < hole_end)
983 lo = hole_end;
986 if (hi - lo < tot_len)
987 return (0);
989 if (align > 1) {
990 uintptr_t tlo = lo + redzone;
991 uintptr_t thi = hi - redzone;
992 tlo = (uintptr_t)P2PHASEUP(tlo, align, off);
993 if (tlo < lo + redzone) {
994 return (0);
996 if (thi < tlo || thi - tlo < minlen) {
997 return (0);
1001 *basep = (caddr_t)lo;
1002 *lenp = hi - lo;
1003 return (1);
1007 * Determine whether [*basep, *basep + *lenp) contains a mappable range of
1008 * addresses at least "minlen" long. On success, 1 is returned and *basep
1009 * and *lenp are adjusted to describe the acceptable range. On failure, 0
1010 * is returned.
1013 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
1015 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
1019 * Default to forbidding the first 64k of address space. This protects most
1020 * reasonably sized structures from dereferences through NULL:
1021 * ((foo_t *)0)->bar
1023 uintptr_t forbidden_null_mapping_sz = 0x10000;
1026 * Determine whether [addr, addr+len] are valid user addresses.
1028 /*ARGSUSED*/
1030 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
1031 caddr_t userlimit)
1033 caddr_t eaddr = addr + len;
1035 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
1036 return (RANGE_BADADDR);
1038 if ((addr <= (caddr_t)forbidden_null_mapping_sz) &&
1039 as->a_proc != NULL &&
1040 secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP))
1041 return (RANGE_BADADDR);
1044 * Check for the VA hole
1046 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
1047 return (RANGE_BADADDR);
1049 return (RANGE_OKAY);
1053 * Return 1 if the page frame is onboard memory, else 0.
1056 pf_is_memory(pfn_t pf)
1058 if (pfn_is_foreign(pf))
1059 return (0);
1060 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
1064 * return the memrange containing pfn
1067 memrange_num(pfn_t pfn)
1069 int n;
1071 for (n = 0; n < nranges - 1; ++n) {
1072 if (pfn >= memranges[n])
1073 break;
1075 return (n);
1079 * return the mnoderange containing pfn
1081 /*ARGSUSED*/
1083 pfn_2_mtype(pfn_t pfn)
1085 #if defined(__xpv)
1086 return (0);
1087 #else
1088 int n;
1090 /* Always start from highest pfn and work our way down */
1091 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1092 if (pfn >= mnoderanges[n].mnr_pfnlo) {
1093 break;
1096 return (n);
1097 #endif
1100 #if !defined(__xpv)
1102 * is_contigpage_free:
1103 * returns a page list of contiguous pages. It minimally has to return
1104 * minctg pages. Caller determines minctg based on the scatter-gather
1105 * list length.
1107 * pfnp is set to the next page frame to search on return.
1109 static page_t *
1110 is_contigpage_free(
1111 pfn_t *pfnp,
1112 pgcnt_t *pgcnt,
1113 pgcnt_t minctg,
1114 uint64_t pfnseg,
1115 int iolock)
1117 int i = 0;
1118 pfn_t pfn = *pfnp;
1119 page_t *pp;
1120 page_t *plist = NULL;
1123 * fail if pfn + minctg crosses a segment boundary.
1124 * Adjust for next starting pfn to begin at segment boundary.
1127 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
1128 *pfnp = roundup(*pfnp, pfnseg + 1);
1129 return (NULL);
1132 do {
1133 retry:
1134 pp = page_numtopp_nolock(pfn + i);
1135 if ((pp == NULL) || IS_DUMP_PAGE(pp) ||
1136 (page_trylock(pp, SE_EXCL) == 0)) {
1137 (*pfnp)++;
1138 break;
1140 if (page_pptonum(pp) != pfn + i) {
1141 page_unlock(pp);
1142 goto retry;
1145 if (!(PP_ISFREE(pp))) {
1146 page_unlock(pp);
1147 (*pfnp)++;
1148 break;
1151 if (!PP_ISAGED(pp)) {
1152 page_list_sub(pp, PG_CACHE_LIST);
1153 page_hashout(pp, (kmutex_t *)NULL);
1154 } else {
1155 page_list_sub(pp, PG_FREE_LIST);
1158 if (iolock)
1159 page_io_lock(pp);
1160 page_list_concat(&plist, &pp);
1163 * exit loop when pgcnt satisfied or segment boundary reached.
1166 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
1168 *pfnp += i; /* set to next pfn to search */
1170 if (i >= minctg) {
1171 *pgcnt -= i;
1172 return (plist);
1176 * failure: minctg not satisfied.
1178 * if next request crosses segment boundary, set next pfn
1179 * to search from the segment boundary.
1181 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
1182 *pfnp = roundup(*pfnp, pfnseg + 1);
1184 /* clean up any pages already allocated */
1186 while (plist) {
1187 pp = plist;
1188 page_sub(&plist, pp);
1189 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1190 if (iolock)
1191 page_io_unlock(pp);
1192 page_unlock(pp);
1195 return (NULL);
1197 #endif /* !__xpv */
1200 * verify that pages being returned from allocator have correct DMA attribute
1202 #ifndef DEBUG
1203 #define check_dma(a, b, c) (void)(0)
1204 #else
1205 static void
1206 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1208 if (dma_attr == NULL)
1209 return;
1211 while (cnt-- > 0) {
1212 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1213 dma_attr->dma_attr_addr_lo)
1214 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp);
1215 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1216 dma_attr->dma_attr_addr_hi)
1217 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp);
1218 pp = pp->p_next;
1221 #endif
1223 #if !defined(__xpv)
1224 static page_t *
1225 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1227 pfn_t pfn;
1228 int sgllen;
1229 uint64_t pfnseg;
1230 pgcnt_t minctg;
1231 page_t *pplist = NULL, *plist;
1232 uint64_t lo, hi;
1233 pgcnt_t pfnalign = 0;
1234 static pfn_t startpfn;
1235 static pgcnt_t lastctgcnt;
1236 uintptr_t align;
1238 CONTIG_LOCK();
1240 if (mattr) {
1241 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1242 hi = mmu_btop(mattr->dma_attr_addr_hi);
1243 if (hi >= physmax)
1244 hi = physmax - 1;
1245 sgllen = mattr->dma_attr_sgllen;
1246 pfnseg = mmu_btop(mattr->dma_attr_seg);
1248 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1249 if (align > MMU_PAGESIZE)
1250 pfnalign = mmu_btop(align);
1253 * in order to satisfy the request, must minimally
1254 * acquire minctg contiguous pages
1256 minctg = howmany(*pgcnt, sgllen);
1258 ASSERT(hi >= lo);
1261 * start from where last searched if the minctg >= lastctgcnt
1263 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1264 startpfn = lo;
1265 } else {
1266 hi = physmax - 1;
1267 lo = 0;
1268 sgllen = 1;
1269 pfnseg = mmu.highest_pfn;
1270 minctg = *pgcnt;
1272 if (minctg < lastctgcnt)
1273 startpfn = lo;
1275 lastctgcnt = minctg;
1277 ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1279 /* conserve 16m memory - start search above 16m when possible */
1280 if (hi > PFN_16M && startpfn < PFN_16M)
1281 startpfn = PFN_16M;
1283 pfn = startpfn;
1284 if (pfnalign)
1285 pfn = P2ROUNDUP(pfn, pfnalign);
1287 while (pfn + minctg - 1 <= hi) {
1289 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1290 if (plist) {
1291 page_list_concat(&pplist, &plist);
1292 sgllen--;
1294 * return when contig pages no longer needed
1296 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1297 startpfn = pfn;
1298 CONTIG_UNLOCK();
1299 check_dma(mattr, pplist, *pgcnt);
1300 return (pplist);
1302 minctg = howmany(*pgcnt, sgllen);
1304 if (pfnalign)
1305 pfn = P2ROUNDUP(pfn, pfnalign);
1308 /* cannot find contig pages in specified range */
1309 if (startpfn == lo) {
1310 CONTIG_UNLOCK();
1311 return (NULL);
1314 /* did not start with lo previously */
1315 pfn = lo;
1316 if (pfnalign)
1317 pfn = P2ROUNDUP(pfn, pfnalign);
1319 /* allow search to go above startpfn */
1320 while (pfn < startpfn) {
1322 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1323 if (plist != NULL) {
1325 page_list_concat(&pplist, &plist);
1326 sgllen--;
1329 * return when contig pages no longer needed
1331 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1332 startpfn = pfn;
1333 CONTIG_UNLOCK();
1334 check_dma(mattr, pplist, *pgcnt);
1335 return (pplist);
1337 minctg = howmany(*pgcnt, sgllen);
1339 if (pfnalign)
1340 pfn = P2ROUNDUP(pfn, pfnalign);
1342 CONTIG_UNLOCK();
1343 return (NULL);
1345 #endif /* !__xpv */
1348 * mnode_range_cnt() calculates the number of memory ranges for mnode and
1349 * memranges[]. Used to determine the size of page lists and mnoderanges.
1352 mnode_range_cnt(int mnode)
1354 #if defined(__xpv)
1355 ASSERT(mnode == 0);
1356 return (1);
1357 #else /* __xpv */
1358 int mri;
1359 int mnrcnt = 0;
1361 if (mem_node_config[mnode].exists != 0) {
1362 mri = nranges - 1;
1364 /* find the memranges index below contained in mnode range */
1366 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1367 mri--;
1370 * increment mnode range counter when memranges or mnode
1371 * boundary is reached.
1373 while (mri >= 0 &&
1374 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1375 mnrcnt++;
1376 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1377 mri--;
1378 else
1379 break;
1382 ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1383 return (mnrcnt);
1384 #endif /* __xpv */
1387 static int
1388 mnoderange_cmp(const void *v1, const void *v2)
1390 const mnoderange_t *m1 = v1;
1391 const mnoderange_t *m2 = v2;
1393 if (m1->mnr_pfnlo < m2->mnr_pfnlo)
1394 return (-1);
1395 return (m1->mnr_pfnlo > m2->mnr_pfnlo);
1398 void
1399 mnode_range_setup(mnoderange_t *mnoderanges)
1401 mnoderange_t *mp;
1402 ssize_t nr_ranges;
1403 size_t mnode;
1405 for (mnode = 0, nr_ranges = 0, mp = mnoderanges;
1406 mnode < max_mem_nodes; mnode++) {
1407 ssize_t mri = nranges - 1;
1409 if (mem_node_config[mnode].exists == 0)
1410 continue;
1412 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1413 mri--;
1415 while (mri >= 0 && mem_node_config[mnode].physmax >=
1416 MEMRANGELO(mri)) {
1417 mp->mnr_pfnlo = MAX(MEMRANGELO(mri),
1418 mem_node_config[mnode].physbase);
1419 mp->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1420 mem_node_config[mnode].physmax);
1421 mp->mnr_mnode = mnode;
1422 mp->mnr_memrange = mri;
1423 mp->mnr_next = -1;
1424 mp->mnr_exists = 1;
1425 mp++;
1426 nr_ranges++;
1427 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1428 mri--;
1429 else
1430 break;
1435 * mnoderangecnt can be larger than nr_ranges when memory DR is
1436 * supposedly supported.
1438 VERIFY3U(nr_ranges, <=, mnoderangecnt);
1440 qsort(mnoderanges, nr_ranges, sizeof (mnoderange_t), mnoderange_cmp);
1443 * If some intrepid soul takes the axe to the memory DR code, we can
1444 * remove ->mnr_next altogether, as we just sorted by ->mnr_pfnlo order.
1446 * The VERIFY3U() above can be "==" then too.
1448 for (size_t i = 1; i < nr_ranges; i++)
1449 mnoderanges[i].mnr_next = i - 1;
1451 mtypetop = nr_ranges - 1;
1452 mtype16m = pfn_2_mtype(PFN_16MEG - 1); /* Can be -1 ... */
1453 if (physmax4g)
1454 mtype4g = pfn_2_mtype(0xfffff);
1457 #ifndef __xpv
1459 * Update mnoderanges for memory hot-add DR operations.
1461 static void
1462 mnode_range_add(int mnode)
1464 int *prev;
1465 int n, mri;
1466 pfn_t start, end;
1467 extern void membar_sync(void);
1469 ASSERT(0 <= mnode && mnode < max_mem_nodes);
1470 ASSERT(mem_node_config[mnode].exists);
1471 start = mem_node_config[mnode].physbase;
1472 end = mem_node_config[mnode].physmax;
1473 ASSERT(start <= end);
1474 mutex_enter(&mnoderange_lock);
1476 #ifdef DEBUG
1477 /* Check whether it interleaves with other memory nodes. */
1478 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1479 ASSERT(mnoderanges[n].mnr_exists);
1480 if (mnoderanges[n].mnr_mnode == mnode)
1481 continue;
1482 ASSERT(start > mnoderanges[n].mnr_pfnhi ||
1483 end < mnoderanges[n].mnr_pfnlo);
1485 #endif /* DEBUG */
1487 mri = nranges - 1;
1488 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1489 mri--;
1490 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1491 /* Check whether mtype already exists. */
1492 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1493 if (mnoderanges[n].mnr_mnode == mnode &&
1494 mnoderanges[n].mnr_memrange == mri) {
1495 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri),
1496 start);
1497 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri),
1498 end);
1499 break;
1503 /* Add a new entry if it doesn't exist yet. */
1504 if (n == -1) {
1505 /* Try to find an unused entry in mnoderanges array. */
1506 for (n = 0; n < mnoderangecnt; n++) {
1507 if (mnoderanges[n].mnr_exists == 0)
1508 break;
1510 ASSERT(n < mnoderangecnt);
1511 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start);
1512 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end);
1513 mnoderanges[n].mnr_mnode = mnode;
1514 mnoderanges[n].mnr_memrange = mri;
1515 mnoderanges[n].mnr_exists = 1;
1516 /* Page 0 should always be present. */
1517 for (prev = &mtypetop;
1518 mnoderanges[*prev].mnr_pfnlo > start;
1519 prev = &mnoderanges[*prev].mnr_next) {
1520 ASSERT(mnoderanges[*prev].mnr_next >= 0);
1521 ASSERT(mnoderanges[*prev].mnr_pfnlo > end);
1523 mnoderanges[n].mnr_next = *prev;
1524 membar_sync();
1525 *prev = n;
1528 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1529 mri--;
1530 else
1531 break;
1534 mutex_exit(&mnoderange_lock);
1538 * Update mnoderanges for memory hot-removal DR operations.
1540 static void
1541 mnode_range_del(int mnode)
1543 _NOTE(ARGUNUSED(mnode));
1544 ASSERT(0 <= mnode && mnode < max_mem_nodes);
1545 /* TODO: support deletion operation. */
1546 ASSERT(0);
1549 void
1550 plat_slice_add(pfn_t start, pfn_t end)
1552 mem_node_add_slice(start, end);
1553 if (plat_dr_enabled()) {
1554 mnode_range_add(PFN_2_MEM_NODE(start));
1558 void
1559 plat_slice_del(pfn_t start, pfn_t end)
1561 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end));
1562 ASSERT(plat_dr_enabled());
1563 mnode_range_del(PFN_2_MEM_NODE(start));
1564 mem_node_del_slice(start, end);
1566 #endif /* __xpv */
1568 /*ARGSUSED*/
1570 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1572 int mtype = mtypetop;
1574 #if !defined(__xpv)
1575 if (RESTRICT4G_ALLOC) {
1576 VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1577 /* here only for > 4g systems */
1578 *flags |= PGI_MT_RANGE4G;
1579 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1580 *flags |= PGI_MT_RANGE16M;
1581 } else {
1582 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1583 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1584 *flags |= PGI_MT_RANGE0;
1586 #endif /* !__xpv */
1587 return (mtype);
1591 /* mtype init for page_get_replacement_page */
1592 /*ARGSUSED*/
1594 mtype_pgr_init(int *flags, page_t *pp, pgcnt_t pgcnt)
1596 int mtype = mtypetop;
1597 #if !defined(__xpv)
1598 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1599 *flags |= PGI_MT_RANGE16M;
1600 } else {
1601 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1602 *flags |= PGI_MT_RANGE0;
1604 #endif
1605 return (mtype);
1609 * Determine if the mnode range specified in mtype contains memory belonging
1610 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains
1611 * the range from high pfn to 0, 16m or 4g.
1613 * Return first mnode range type index found otherwise return -1 if none found.
1616 mtype_func(int mnode, int mtype, uint_t flags)
1618 if (flags & PGI_MT_RANGE) {
1619 int mnr_lim = MRI_0;
1621 if (flags & PGI_MT_NEXT) {
1622 mtype = mnoderanges[mtype].mnr_next;
1624 if (flags & PGI_MT_RANGE4G)
1625 mnr_lim = MRI_4G; /* exclude 0-4g range */
1626 else if (flags & PGI_MT_RANGE16M)
1627 mnr_lim = MRI_16M; /* exclude 0-16m range */
1628 while (mtype != -1 &&
1629 mnoderanges[mtype].mnr_memrange <= mnr_lim) {
1630 if (mnoderanges[mtype].mnr_mnode == mnode)
1631 return (mtype);
1632 mtype = mnoderanges[mtype].mnr_next;
1634 } else if (mnoderanges[mtype].mnr_mnode == mnode) {
1635 return (mtype);
1637 return (-1);
1641 * Update the page list max counts with the pfn range specified by the
1642 * input parameters.
1644 void
1645 mtype_modify_max(pfn_t startpfn, long cnt)
1647 int mtype;
1648 pgcnt_t inc;
1649 spgcnt_t scnt = (spgcnt_t)(cnt);
1650 pgcnt_t acnt = ABS(scnt);
1651 pfn_t endpfn = startpfn + acnt;
1652 pfn_t pfn, lo;
1654 if (!physmax4g)
1655 return;
1657 mtype = mtypetop;
1658 for (pfn = endpfn; pfn > startpfn; ) {
1659 ASSERT(mtype != -1);
1660 lo = mnoderanges[mtype].mnr_pfnlo;
1661 if (pfn > lo) {
1662 if (startpfn >= lo) {
1663 inc = pfn - startpfn;
1664 } else {
1665 inc = pfn - lo;
1667 if (mnoderanges[mtype].mnr_memrange != MRI_4G) {
1668 if (scnt > 0)
1669 maxmem4g += inc;
1670 else
1671 maxmem4g -= inc;
1673 pfn -= inc;
1675 mtype = mnoderanges[mtype].mnr_next;
1680 mtype_2_mrange(int mtype)
1682 return (mnoderanges[mtype].mnr_memrange);
1685 void
1686 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1688 _NOTE(ARGUNUSED(mnode));
1689 ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1690 *pfnlo = mnoderanges[mtype].mnr_pfnlo;
1691 *pfnhi = mnoderanges[mtype].mnr_pfnhi;
1694 size_t
1695 plcnt_sz(size_t ctrs_sz)
1697 #ifdef DEBUG
1698 int szc, colors;
1700 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1701 for (szc = 0; szc < mmu_page_sizes; szc++) {
1702 colors = page_get_pagecolors(szc);
1703 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1705 #endif
1706 return (ctrs_sz);
1709 caddr_t
1710 plcnt_init(caddr_t addr)
1712 #ifdef DEBUG
1713 int mt, szc, colors;
1715 for (mt = 0; mt < mnoderangecnt; mt++) {
1716 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1717 addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1718 for (szc = 0; szc < mmu_page_sizes; szc++) {
1719 colors = page_get_pagecolors(szc);
1720 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1721 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1722 (pgcnt_t *)addr;
1723 addr += (sizeof (pgcnt_t) * colors);
1726 #endif
1727 return (addr);
1730 void
1731 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1733 _NOTE(ARGUNUSED(pp));
1734 #ifdef DEBUG
1735 int bin = PP_2_BIN(pp);
1737 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1738 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1739 cnt);
1740 #endif
1741 ASSERT(mtype == PP_2_MTYPE(pp));
1742 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G)
1743 atomic_add_long(&freemem4g, cnt);
1744 if (flags & PG_CACHE_LIST)
1745 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1746 else
1747 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1748 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1752 * Returns the free page count for mnode
1755 mnode_pgcnt(int mnode)
1757 int mtype = mtypetop;
1758 int flags = PGI_MT_RANGE0;
1759 pgcnt_t pgcnt = 0;
1761 mtype = mtype_func(mnode, mtype, flags);
1763 while (mtype != -1) {
1764 pgcnt += MTYPE_FREEMEM(mtype);
1765 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1767 return (pgcnt);
1771 * Initialize page coloring variables based on the l2 cache parameters.
1772 * Calculate and return memory needed for page coloring data structures.
1774 size_t
1775 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1777 _NOTE(ARGUNUSED(l2_linesz));
1778 size_t colorsz = 0;
1779 int i;
1780 int colors;
1782 #if defined(__xpv)
1784 * Hypervisor domains currently don't have any concept of NUMA.
1785 * Hence we'll act like there is only 1 memrange.
1787 i = memrange_num(1);
1788 #else /* !__xpv */
1790 * Reduce the memory ranges lists if we don't have large amounts
1791 * of memory. This avoids searching known empty free lists.
1792 * To support memory DR operations, we need to keep memory ranges
1793 * for possible memory hot-add operations.
1795 if (plat_dr_physmax > physmax)
1796 i = memrange_num(plat_dr_physmax);
1797 else
1798 i = memrange_num(physmax);
1799 /* physmax greater than 4g */
1800 if (i == MRI_4G)
1801 physmax4g = 1;
1802 #endif /* !__xpv */
1803 memranges += i;
1804 nranges -= i;
1806 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1808 ASSERT(ISP2(l2_linesz));
1809 ASSERT(l2_sz > MMU_PAGESIZE);
1811 /* l2_assoc is 0 for fully associative l2 cache */
1812 if (l2_assoc)
1813 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1814 else
1815 l2_colors = 1;
1817 ASSERT(ISP2(l2_colors));
1819 /* for scalability, configure at least PAGE_COLORS_MIN color bins */
1820 page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1823 * cpu_page_colors is non-zero when a page color may be spread across
1824 * multiple bins.
1826 if (l2_colors < page_colors)
1827 cpu_page_colors = l2_colors;
1829 ASSERT(ISP2(page_colors));
1831 page_colors_mask = page_colors - 1;
1833 ASSERT(ISP2(CPUSETSIZE()));
1834 page_coloring_shift = lowbit(CPUSETSIZE());
1836 /* initialize number of colors per page size */
1837 for (i = 0; i <= mmu.max_page_level; i++) {
1838 hw_page_array[i].hp_size = LEVEL_SIZE(i);
1839 hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1840 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1841 hw_page_array[i].hp_colors = (page_colors_mask >>
1842 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1843 + 1;
1844 colorequivszc[i] = 0;
1848 * The value of cpu_page_colors determines if additional color bins
1849 * need to be checked for a particular color in the page_get routines.
1851 if (cpu_page_colors != 0) {
1853 int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1854 ASSERT(a > 0);
1855 ASSERT(a < 16);
1857 for (i = 0; i <= mmu.max_page_level; i++) {
1858 if ((colors = hw_page_array[i].hp_colors) <= 1) {
1859 colorequivszc[i] = 0;
1860 continue;
1862 while ((colors >> a) == 0)
1863 a--;
1864 ASSERT(a >= 0);
1866 /* higher 4 bits encodes color equiv mask */
1867 colorequivszc[i] = (a << 4);
1871 /* factor in colorequiv to check additional 'equivalent' bins. */
1872 if (colorequiv > 1) {
1874 int a = lowbit(colorequiv) - 1;
1875 if (a > 15)
1876 a = 15;
1878 for (i = 0; i <= mmu.max_page_level; i++) {
1879 if ((colors = hw_page_array[i].hp_colors) <= 1) {
1880 continue;
1882 while ((colors >> a) == 0)
1883 a--;
1884 if ((a << 4) > colorequivszc[i]) {
1885 colorequivszc[i] = (a << 4);
1890 /* size for mnoderanges */
1891 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1892 mnoderangecnt += mnode_range_cnt(i);
1893 if (plat_dr_support_memory()) {
1895 * Reserve enough space for memory DR operations.
1896 * Two extra mnoderanges for possbile fragmentations,
1897 * one for the 2G boundary and the other for the 4G boundary.
1898 * We don't expect a memory board crossing the 16M boundary
1899 * for memory hot-add operations on x86 platforms.
1901 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt;
1903 colorsz = mnoderangecnt * sizeof (mnoderange_t);
1905 /* size for fpc_mutex and cpc_mutex */
1906 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1908 /* size of page_freelists */
1909 colorsz += mnoderangecnt * sizeof (page_t ***);
1910 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1912 for (i = 0; i < mmu_page_sizes; i++) {
1913 colors = page_get_pagecolors(i);
1914 colorsz += mnoderangecnt * colors * sizeof (page_t *);
1917 /* size of page_cachelists */
1918 colorsz += mnoderangecnt * sizeof (page_t **);
1919 colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1921 return (colorsz);
1925 * Called once at startup to configure page_coloring data structures and
1926 * does the 1st page_free()/page_freelist_add().
1928 void
1929 page_coloring_setup(caddr_t pcmemaddr)
1931 int i;
1932 int j;
1933 int k;
1934 caddr_t addr;
1935 int colors;
1938 * do page coloring setup
1940 addr = pcmemaddr;
1942 mnoderanges = (mnoderange_t *)addr;
1943 addr += (mnoderangecnt * sizeof (mnoderange_t));
1945 mnode_range_setup(mnoderanges);
1947 for (k = 0; k < NPC_MUTEX; k++) {
1948 fpc_mutex[k] = (kmutex_t *)addr;
1949 addr += (max_mem_nodes * sizeof (kmutex_t));
1951 for (k = 0; k < NPC_MUTEX; k++) {
1952 cpc_mutex[k] = (kmutex_t *)addr;
1953 addr += (max_mem_nodes * sizeof (kmutex_t));
1955 page_freelists = (page_t ****)addr;
1956 addr += (mnoderangecnt * sizeof (page_t ***));
1958 page_cachelists = (page_t ***)addr;
1959 addr += (mnoderangecnt * sizeof (page_t **));
1961 for (i = 0; i < mnoderangecnt; i++) {
1962 page_freelists[i] = (page_t ***)addr;
1963 addr += (mmu_page_sizes * sizeof (page_t **));
1965 for (j = 0; j < mmu_page_sizes; j++) {
1966 colors = page_get_pagecolors(j);
1967 page_freelists[i][j] = (page_t **)addr;
1968 addr += (colors * sizeof (page_t *));
1970 page_cachelists[i] = (page_t **)addr;
1971 addr += (page_colors * sizeof (page_t *));
1975 #if defined(__xpv)
1977 * Give back 10% of the io_pool pages to the free list.
1978 * Don't shrink the pool below some absolute minimum.
1980 static void
1981 page_io_pool_shrink()
1983 int retcnt;
1984 page_t *pp, *pp_first, *pp_last, **curpool;
1985 mfn_t mfn;
1986 int bothpools = 0;
1988 mutex_enter(&io_pool_lock);
1989 io_pool_shrink_attempts++; /* should be a kstat? */
1990 retcnt = io_pool_cnt / 10;
1991 if (io_pool_cnt - retcnt < io_pool_cnt_min)
1992 retcnt = io_pool_cnt - io_pool_cnt_min;
1993 if (retcnt <= 0)
1994 goto done;
1995 io_pool_shrinks++; /* should be a kstat? */
1996 curpool = &io_pool_4g;
1997 domore:
1999 * Loop through taking pages from the end of the list
2000 * (highest mfns) till amount to return reached.
2002 for (pp = *curpool; pp && retcnt > 0; ) {
2003 pp_first = pp_last = pp->p_prev;
2004 if (pp_first == *curpool)
2005 break;
2006 retcnt--;
2007 io_pool_cnt--;
2008 page_io_pool_sub(curpool, pp_first, pp_last);
2009 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
2010 start_mfn = mfn;
2011 page_free(pp_first, 1);
2012 pp = *curpool;
2014 if (retcnt != 0 && !bothpools) {
2016 * If not enough found in less constrained pool try the
2017 * more constrained one.
2019 curpool = &io_pool_16m;
2020 bothpools = 1;
2021 goto domore;
2023 done:
2024 mutex_exit(&io_pool_lock);
2027 #endif /* __xpv */
2029 uint_t
2030 page_create_update_flags_x86(uint_t flags)
2032 #if defined(__xpv)
2034 * Check this is an urgent allocation and free pages are depleted.
2036 if (!(flags & PG_WAIT) && freemem < desfree)
2037 page_io_pool_shrink();
2038 #else /* !__xpv */
2040 * page_create_get_something may call this because 4g memory may be
2041 * depleted. Set flags to allow for relocation of base page below
2042 * 4g if necessary.
2044 if (physmax4g)
2045 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
2046 #endif /* __xpv */
2047 return (flags);
2050 /*ARGSUSED*/
2052 bp_color(struct buf *bp)
2054 return (0);
2057 #if defined(__xpv)
2060 * Take pages out of an io_pool
2062 static void
2063 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
2065 if (*poolp == pp_first) {
2066 *poolp = pp_last->p_next;
2067 if (*poolp == pp_first)
2068 *poolp = NULL;
2070 pp_first->p_prev->p_next = pp_last->p_next;
2071 pp_last->p_next->p_prev = pp_first->p_prev;
2072 pp_first->p_prev = pp_last;
2073 pp_last->p_next = pp_first;
2077 * Put a page on the io_pool list. The list is ordered by increasing MFN.
2079 static void
2080 page_io_pool_add(page_t **poolp, page_t *pp)
2082 page_t *look;
2083 mfn_t mfn = mfn_list[pp->p_pagenum];
2085 if (*poolp == NULL) {
2086 *poolp = pp;
2087 pp->p_next = pp;
2088 pp->p_prev = pp;
2089 return;
2093 * Since we try to take pages from the high end of the pool
2094 * chances are good that the pages to be put on the list will
2095 * go at or near the end of the list. so start at the end and
2096 * work backwards.
2098 look = (*poolp)->p_prev;
2099 while (mfn < mfn_list[look->p_pagenum]) {
2100 look = look->p_prev;
2101 if (look == (*poolp)->p_prev)
2102 break; /* backed all the way to front of list */
2105 /* insert after look */
2106 pp->p_prev = look;
2107 pp->p_next = look->p_next;
2108 pp->p_next->p_prev = pp;
2109 look->p_next = pp;
2110 if (mfn < mfn_list[(*poolp)->p_pagenum]) {
2112 * we inserted a new first list element
2113 * adjust pool pointer to newly inserted element
2115 *poolp = pp;
2120 * Add a page to the io_pool. Setting the force flag will force the page
2121 * into the io_pool no matter what.
2123 static void
2124 add_page_to_pool(page_t *pp, int force)
2126 page_t *highest;
2127 page_t *freep = NULL;
2129 mutex_enter(&io_pool_lock);
2131 * Always keep the scarce low memory pages
2133 if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
2134 ++io_pool_cnt;
2135 page_io_pool_add(&io_pool_16m, pp);
2136 goto done;
2138 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) {
2139 ++io_pool_cnt;
2140 page_io_pool_add(&io_pool_4g, pp);
2141 } else {
2142 highest = io_pool_4g->p_prev;
2143 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
2144 page_io_pool_sub(&io_pool_4g, highest, highest);
2145 page_io_pool_add(&io_pool_4g, pp);
2146 freep = highest;
2147 } else {
2148 freep = pp;
2151 done:
2152 mutex_exit(&io_pool_lock);
2153 if (freep)
2154 page_free(freep, 1);
2158 int contig_pfn_cnt; /* no of pfns in the contig pfn list */
2159 int contig_pfn_max; /* capacity of the contig pfn list */
2160 int next_alloc_pfn; /* next position in list to start a contig search */
2161 int contig_pfnlist_updates; /* pfn list update count */
2162 int contig_pfnlist_builds; /* how many times have we (re)built list */
2163 int contig_pfnlist_buildfailed; /* how many times has list build failed */
2164 int create_contig_pending; /* nonzero means taskq creating contig list */
2165 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */
2168 * Function to use in sorting a list of pfns by their underlying mfns.
2170 static int
2171 mfn_compare(const void *pfnp1, const void *pfnp2)
2173 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
2174 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
2176 if (mfn1 > mfn2)
2177 return (1);
2178 if (mfn1 < mfn2)
2179 return (-1);
2180 return (0);
2184 * Compact the contig_pfn_list by tossing all the non-contiguous
2185 * elements from the list.
2187 static void
2188 compact_contig_pfn_list(void)
2190 pfn_t pfn, lapfn, prev_lapfn;
2191 mfn_t mfn;
2192 int i, newcnt = 0;
2194 prev_lapfn = 0;
2195 for (i = 0; i < contig_pfn_cnt - 1; i++) {
2196 pfn = contig_pfn_list[i];
2197 lapfn = contig_pfn_list[i + 1];
2198 mfn = mfn_list[pfn];
2200 * See if next pfn is for a contig mfn
2202 if (mfn_list[lapfn] != mfn + 1)
2203 continue;
2205 * pfn and lookahead are both put in list
2206 * unless pfn is the previous lookahead.
2208 if (pfn != prev_lapfn)
2209 contig_pfn_list[newcnt++] = pfn;
2210 contig_pfn_list[newcnt++] = lapfn;
2211 prev_lapfn = lapfn;
2213 for (i = newcnt; i < contig_pfn_cnt; i++)
2214 contig_pfn_list[i] = 0;
2215 contig_pfn_cnt = newcnt;
2218 /*ARGSUSED*/
2219 static void
2220 call_create_contiglist(void *arg)
2222 (void) create_contig_pfnlist(PG_WAIT);
2226 * Create list of freelist pfns that have underlying
2227 * contiguous mfns. The list is kept in ascending mfn order.
2228 * returns 1 if list created else 0.
2230 static int
2231 create_contig_pfnlist(uint_t flags)
2233 pfn_t pfn;
2234 page_t *pp;
2235 int ret = 1;
2237 mutex_enter(&contig_list_lock);
2238 if (contig_pfn_list != NULL)
2239 goto out;
2240 contig_pfn_max = freemem + (freemem / 10);
2241 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
2242 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
2243 if (contig_pfn_list == NULL) {
2245 * If we could not create the contig list (because
2246 * we could not sleep for memory). Dispatch a taskq that can
2247 * sleep to get the memory.
2249 if (!create_contig_pending) {
2250 if (taskq_dispatch(system_taskq, call_create_contiglist,
2251 NULL, TQ_NOSLEEP) != TASKQID_INVALID)
2252 create_contig_pending = 1;
2254 contig_pfnlist_buildfailed++; /* count list build failures */
2255 ret = 0;
2256 goto out;
2258 create_contig_pending = 0;
2259 ASSERT(contig_pfn_cnt == 0);
2260 for (pfn = 0; pfn < mfn_count; pfn++) {
2261 pp = page_numtopp_nolock(pfn);
2262 if (pp == NULL || !PP_ISFREE(pp))
2263 continue;
2264 contig_pfn_list[contig_pfn_cnt] = pfn;
2265 if (++contig_pfn_cnt == contig_pfn_max)
2266 break;
2269 * Sanity check the new list.
2271 if (contig_pfn_cnt < 2) { /* no contig pfns */
2272 contig_pfn_cnt = 0;
2273 contig_pfnlist_buildfailed++;
2274 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t));
2275 contig_pfn_list = NULL;
2276 contig_pfn_max = 0;
2277 ret = 0;
2278 goto out;
2280 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
2281 compact_contig_pfn_list();
2283 * Make sure next search of the newly created contiguous pfn
2284 * list starts at the beginning of the list.
2286 next_alloc_pfn = 0;
2287 contig_pfnlist_builds++; /* count list builds */
2288 out:
2289 mutex_exit(&contig_list_lock);
2290 return (ret);
2295 * Toss the current contig pfnlist. Someone is about to do a massive
2296 * update to pfn<->mfn mappings. So we have them destroy the list and lock
2297 * it till they are done with their update.
2299 void
2300 clear_and_lock_contig_pfnlist()
2302 pfn_t *listp = NULL;
2303 size_t listsize;
2305 mutex_enter(&contig_list_lock);
2306 if (contig_pfn_list != NULL) {
2307 listp = contig_pfn_list;
2308 listsize = contig_pfn_max * sizeof (pfn_t);
2309 contig_pfn_list = NULL;
2310 contig_pfn_max = contig_pfn_cnt = 0;
2312 if (listp != NULL)
2313 kmem_free(listp, listsize);
2317 * Unlock the contig_pfn_list. The next attempted use of it will cause
2318 * it to be re-created.
2320 void
2321 unlock_contig_pfnlist()
2323 mutex_exit(&contig_list_lock);
2327 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
2329 void
2330 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
2332 int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
2333 pfn_t probe_pfn;
2334 mfn_t probe_mfn;
2335 int drop_lock = 0;
2337 if (mutex_owner(&contig_list_lock) != curthread) {
2338 drop_lock = 1;
2339 mutex_enter(&contig_list_lock);
2341 if (contig_pfn_list == NULL)
2342 goto done;
2343 contig_pfnlist_updates++;
2345 * Find the pfn in the current list. Use a binary chop to locate it.
2347 probe_hi = contig_pfn_cnt - 1;
2348 probe_lo = 0;
2349 probe_pos = (probe_hi + probe_lo) / 2;
2350 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2351 if (probe_pos == probe_lo) { /* pfn not in list */
2352 probe_pos = -1;
2353 break;
2355 if (pfn_to_mfn(probe_pfn) <= oldmfn)
2356 probe_lo = probe_pos;
2357 else
2358 probe_hi = probe_pos;
2359 probe_pos = (probe_hi + probe_lo) / 2;
2361 if (probe_pos >= 0) {
2363 * Remove pfn from list and ensure next alloc
2364 * position stays in bounds.
2366 if (--contig_pfn_cnt <= next_alloc_pfn)
2367 next_alloc_pfn = 0;
2368 if (contig_pfn_cnt < 2) { /* no contig pfns */
2369 contig_pfn_cnt = 0;
2370 kmem_free(contig_pfn_list,
2371 contig_pfn_max * sizeof (pfn_t));
2372 contig_pfn_list = NULL;
2373 contig_pfn_max = 0;
2374 goto done;
2376 ovbcopy(&contig_pfn_list[probe_pos + 1],
2377 &contig_pfn_list[probe_pos],
2378 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2380 if (newmfn == MFN_INVALID)
2381 goto done;
2383 * Check if new mfn has adjacent mfns in the list
2385 probe_hi = contig_pfn_cnt - 1;
2386 probe_lo = 0;
2387 insert_after = -2;
2388 do {
2389 probe_pos = (probe_hi + probe_lo) / 2;
2390 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2391 if (newmfn == probe_mfn + 1)
2392 insert_after = probe_pos;
2393 else if (newmfn == probe_mfn - 1)
2394 insert_after = probe_pos - 1;
2395 if (probe_pos == probe_lo)
2396 break;
2397 if (probe_mfn <= newmfn)
2398 probe_lo = probe_pos;
2399 else
2400 probe_hi = probe_pos;
2401 } while (insert_after == -2);
2403 * If there is space in the list and there are adjacent mfns
2404 * insert the pfn in to its proper place in the list.
2406 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2407 insert_point = insert_after + 1;
2408 ovbcopy(&contig_pfn_list[insert_point],
2409 &contig_pfn_list[insert_point + 1],
2410 (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2411 contig_pfn_list[insert_point] = pfn;
2412 contig_pfn_cnt++;
2414 done:
2415 if (drop_lock)
2416 mutex_exit(&contig_list_lock);
2420 * Called to (re-)populate the io_pool from the free page lists.
2422 long
2423 populate_io_pool(void)
2425 pfn_t pfn;
2426 mfn_t mfn, max_mfn;
2427 page_t *pp;
2430 * Figure out the bounds of the pool on first invocation.
2431 * We use a percentage of memory for the io pool size.
2432 * we allow that to shrink, but not to less than a fixed minimum
2434 if (io_pool_cnt_max == 0) {
2435 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2436 io_pool_cnt_lowater = io_pool_cnt_max;
2438 * This is the first time in populate_io_pool, grab a va to use
2439 * when we need to allocate pages.
2441 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2444 * If we are out of pages in the pool, then grow the size of the pool
2446 if (io_pool_cnt == 0) {
2448 * Grow the max size of the io pool by 5%, but never more than
2449 * 25% of physical memory.
2451 if (io_pool_cnt_max < physmem / 4)
2452 io_pool_cnt_max += io_pool_cnt_max / 20;
2454 io_pool_grows++; /* should be a kstat? */
2457 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2459 (void) mfn_to_pfn(start_mfn);
2460 max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2461 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2462 pfn = mfn_to_pfn(mfn);
2463 if (pfn & PFN_IS_FOREIGN_MFN)
2464 continue;
2466 * try to allocate it from free pages
2468 pp = page_numtopp_alloc(pfn);
2469 if (pp == NULL)
2470 continue;
2471 PP_CLRFREE(pp);
2472 add_page_to_pool(pp, 1);
2473 if (io_pool_cnt >= io_pool_cnt_max)
2474 break;
2477 return (io_pool_cnt);
2481 * Destroy a page that was being used for DMA I/O. It may or
2482 * may not actually go back to the io_pool.
2484 void
2485 page_destroy_io(page_t *pp)
2487 mfn_t mfn = mfn_list[pp->p_pagenum];
2490 * When the page was alloc'd a reservation was made, release it now
2492 page_unresv(1);
2494 * Unload translations, if any, then hash out the
2495 * page to erase its identity.
2497 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2498 page_hashout(pp, NULL);
2501 * If the page came from the free lists, just put it back to them.
2502 * DomU pages always go on the free lists as well.
2504 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2505 page_free(pp, 1);
2506 return;
2509 add_page_to_pool(pp, 0);
2513 long contig_searches; /* count of times contig pages requested */
2514 long contig_search_restarts; /* count of contig ranges tried */
2515 long contig_search_failed; /* count of contig alloc failures */
2518 * Free partial page list
2520 static void
2521 free_partial_list(page_t **pplist)
2523 page_t *pp;
2525 while (*pplist != NULL) {
2526 pp = *pplist;
2527 page_io_pool_sub(pplist, pp, pp);
2528 page_free(pp, 1);
2533 * Look thru the contiguous pfns that are not part of the io_pool for
2534 * contiguous free pages. Return a list of the found pages or NULL.
2536 page_t *
2537 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg,
2538 pgcnt_t pfnalign)
2540 page_t *pp, *plist = NULL;
2541 mfn_t mfn, prev_mfn, start_mfn;
2542 pfn_t pfn;
2543 int pages_needed, pages_requested;
2544 int search_start;
2547 * create the contig pfn list if not already done
2549 retry:
2550 mutex_enter(&contig_list_lock);
2551 if (contig_pfn_list == NULL) {
2552 mutex_exit(&contig_list_lock);
2553 if (!create_contig_pfnlist(flags)) {
2554 return (NULL);
2556 goto retry;
2558 contig_searches++;
2560 * Search contiguous pfn list for physically contiguous pages not in
2561 * the io_pool. Start the search where the last search left off.
2563 pages_requested = pages_needed = npages;
2564 search_start = next_alloc_pfn;
2565 start_mfn = prev_mfn = 0;
2566 while (pages_needed) {
2567 pfn = contig_pfn_list[next_alloc_pfn];
2568 mfn = pfn_to_mfn(pfn);
2570 * Check if mfn is first one or contig to previous one and
2571 * if page corresponding to mfn is free and that mfn
2572 * range is not crossing a segment boundary.
2574 if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2575 (pp = page_numtopp_alloc(pfn)) != NULL &&
2576 !((mfn & pfnseg) < (start_mfn & pfnseg))) {
2577 PP_CLRFREE(pp);
2578 page_io_pool_add(&plist, pp);
2579 pages_needed--;
2580 if (prev_mfn == 0) {
2581 if (pfnalign &&
2582 mfn != P2ROUNDUP(mfn, pfnalign)) {
2584 * not properly aligned
2586 contig_search_restarts++;
2587 free_partial_list(&plist);
2588 pages_needed = pages_requested;
2589 start_mfn = prev_mfn = 0;
2590 goto skip;
2592 start_mfn = mfn;
2594 prev_mfn = mfn;
2595 } else {
2596 contig_search_restarts++;
2597 free_partial_list(&plist);
2598 pages_needed = pages_requested;
2599 start_mfn = prev_mfn = 0;
2601 skip:
2602 if (++next_alloc_pfn == contig_pfn_cnt)
2603 next_alloc_pfn = 0;
2604 if (next_alloc_pfn == search_start)
2605 break; /* all pfns searched */
2607 mutex_exit(&contig_list_lock);
2608 if (pages_needed) {
2609 contig_search_failed++;
2611 * Failed to find enough contig pages.
2612 * free partial page list
2614 free_partial_list(&plist);
2616 return (plist);
2620 * Search the reserved io pool pages for a page range with the
2621 * desired characteristics.
2623 page_t *
2624 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg)
2626 page_t *pp_first, *pp_last;
2627 page_t *pp, **poolp;
2628 pgcnt_t nwanted, pfnalign;
2629 uint64_t pfnseg;
2630 mfn_t mfn, tmfn, hi_mfn, lo_mfn;
2631 int align, attempt = 0;
2633 if (minctg == 1)
2634 contig = 0;
2635 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2636 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2637 pfnseg = mmu_btop(mattr->dma_attr_seg);
2638 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2639 if (align > MMU_PAGESIZE)
2640 pfnalign = mmu_btop(align);
2641 else
2642 pfnalign = 0;
2644 try_again:
2646 * See if we want pages for a legacy device
2648 if (hi_mfn < PFN_16MEG)
2649 poolp = &io_pool_16m;
2650 else
2651 poolp = &io_pool_4g;
2652 try_smaller:
2654 * Take pages from I/O pool. We'll use pages from the highest
2655 * MFN range possible.
2657 pp_first = pp_last = NULL;
2658 mutex_enter(&io_pool_lock);
2659 nwanted = minctg;
2660 for (pp = *poolp; pp && nwanted > 0; ) {
2661 pp = pp->p_prev;
2664 * skip pages above allowable range
2666 mfn = mfn_list[pp->p_pagenum];
2667 if (hi_mfn < mfn)
2668 goto skip;
2671 * stop at pages below allowable range
2673 if (lo_mfn > mfn)
2674 break;
2675 restart:
2676 if (pp_last == NULL) {
2678 * Check alignment
2680 tmfn = mfn - (minctg - 1);
2681 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign))
2682 goto skip; /* not properly aligned */
2684 * Check segment
2686 if ((mfn & pfnseg) < (tmfn & pfnseg))
2687 goto skip; /* crosses seg boundary */
2689 * Start building page list
2691 pp_first = pp_last = pp;
2692 nwanted--;
2693 } else {
2695 * check physical contiguity if required
2697 if (contig &&
2698 mfn_list[pp_first->p_pagenum] != mfn + 1) {
2700 * not a contiguous page, restart list.
2702 pp_last = NULL;
2703 nwanted = minctg;
2704 goto restart;
2705 } else { /* add page to list */
2706 pp_first = pp;
2707 nwanted--;
2710 skip:
2711 if (pp == *poolp)
2712 break;
2716 * If we didn't find memory. Try the more constrained pool, then
2717 * sweep free pages into the DMA pool and try again.
2719 if (nwanted != 0) {
2720 mutex_exit(&io_pool_lock);
2722 * If we were looking in the less constrained pool and
2723 * didn't find pages, try the more constrained pool.
2725 if (poolp == &io_pool_4g) {
2726 poolp = &io_pool_16m;
2727 goto try_smaller;
2729 kmem_reap();
2730 if (++attempt < 4) {
2732 * Grab some more io_pool pages
2734 (void) populate_io_pool();
2735 goto try_again; /* go around and retry */
2737 return (NULL);
2740 * Found the pages, now snip them from the list
2742 page_io_pool_sub(poolp, pp_first, pp_last);
2743 io_pool_cnt -= minctg;
2745 * reset low water mark
2747 if (io_pool_cnt < io_pool_cnt_lowater)
2748 io_pool_cnt_lowater = io_pool_cnt;
2749 mutex_exit(&io_pool_lock);
2750 return (pp_first);
2753 page_t *
2754 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr,
2755 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg)
2757 uint_t kflags;
2758 int order, extra, extpages, i, contig, nbits, extents;
2759 page_t *pp, *expp, *pp_first, **pplist = NULL;
2760 mfn_t *mfnlist = NULL;
2762 extra = 0;
2763 contig = flags & PG_PHYSCONTIG;
2764 if (minctg == 1)
2765 contig = 0;
2766 flags &= ~PG_PHYSCONTIG;
2767 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2769 * Hypervisor will allocate extents, if we want contig
2770 * pages extent must be >= minctg
2772 if (contig) {
2773 order = highbit(minctg) - 1;
2774 if (minctg & ((1 << order) - 1))
2775 order++;
2776 extpages = 1 << order;
2777 } else {
2778 order = 0;
2779 extpages = minctg;
2781 if (extpages > minctg) {
2782 extra = extpages - minctg;
2783 if (!page_resv(extra, kflags))
2784 return (NULL);
2786 pp_first = NULL;
2787 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2788 if (pplist == NULL)
2789 goto balloon_fail;
2790 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2791 if (mfnlist == NULL)
2792 goto balloon_fail;
2793 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr);
2794 if (pp == NULL)
2795 goto balloon_fail;
2796 pp_first = pp;
2797 if (extpages > minctg) {
2799 * fill out the rest of extent pages to swap
2800 * with the hypervisor
2802 for (i = 0; i < extra; i++) {
2803 expp = page_create_va(vp,
2804 (u_offset_t)(uintptr_t)io_pool_kva,
2805 PAGESIZE, flags, &kvseg, io_pool_kva);
2806 if (expp == NULL)
2807 goto balloon_fail;
2808 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2809 page_io_unlock(expp);
2810 page_hashout(expp, NULL);
2811 page_io_lock(expp);
2813 * add page to end of list
2815 expp->p_prev = pp_first->p_prev;
2816 expp->p_next = pp_first;
2817 expp->p_prev->p_next = expp;
2818 pp_first->p_prev = expp;
2822 for (i = 0; i < extpages; i++) {
2823 pplist[i] = pp;
2824 pp = pp->p_next;
2826 nbits = highbit(mattr->dma_attr_addr_hi);
2827 extents = contig ? 1 : minctg;
2828 if (balloon_replace_pages(extents, pplist, nbits, order,
2829 mfnlist) != extents) {
2830 if (ioalloc_dbg)
2831 cmn_err(CE_NOTE, "request to hypervisor"
2832 " for %d pages, maxaddr %" PRIx64 " failed",
2833 extpages, mattr->dma_attr_addr_hi);
2834 goto balloon_fail;
2837 kmem_free(pplist, extpages * sizeof (page_t *));
2838 kmem_free(mfnlist, extpages * sizeof (mfn_t));
2840 * Return any excess pages to free list
2842 if (extpages > minctg) {
2843 for (i = 0; i < extra; i++) {
2844 pp = pp_first->p_prev;
2845 page_sub(&pp_first, pp);
2846 page_io_unlock(pp);
2847 page_unresv(1);
2848 page_free(pp, 1);
2851 return (pp_first);
2852 balloon_fail:
2854 * Return pages to free list and return failure
2856 while (pp_first != NULL) {
2857 pp = pp_first;
2858 page_sub(&pp_first, pp);
2859 page_io_unlock(pp);
2860 if (pp->p_vnode != NULL)
2861 page_hashout(pp, NULL);
2862 page_free(pp, 1);
2864 if (pplist)
2865 kmem_free(pplist, extpages * sizeof (page_t *));
2866 if (mfnlist)
2867 kmem_free(mfnlist, extpages * sizeof (mfn_t));
2868 page_unresv(extpages - minctg);
2869 return (NULL);
2872 static void
2873 return_partial_alloc(page_t *plist)
2875 page_t *pp;
2877 while (plist != NULL) {
2878 pp = plist;
2879 page_sub(&plist, pp);
2880 page_io_unlock(pp);
2881 page_destroy_io(pp);
2885 static page_t *
2886 page_get_contigpages(
2887 struct vnode *vp,
2888 u_offset_t off,
2889 int *npagesp,
2890 uint_t flags,
2891 caddr_t vaddr,
2892 ddi_dma_attr_t *mattr)
2894 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2895 page_t *plist; /* list to return */
2896 page_t *pp, *mcpl;
2897 int contig, anyaddr, npages, getone = 0;
2898 mfn_t lo_mfn;
2899 mfn_t hi_mfn;
2900 pgcnt_t pfnalign = 0;
2901 int align, sgllen;
2902 uint64_t pfnseg;
2903 pgcnt_t minctg;
2905 npages = *npagesp;
2906 ASSERT(mattr != NULL);
2907 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2908 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2909 sgllen = mattr->dma_attr_sgllen;
2910 pfnseg = mmu_btop(mattr->dma_attr_seg);
2911 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2912 if (align > MMU_PAGESIZE)
2913 pfnalign = mmu_btop(align);
2915 contig = flags & PG_PHYSCONTIG;
2916 if (npages == -1) {
2917 npages = 1;
2918 pfnalign = 0;
2921 * Clear the contig flag if only one page is needed.
2923 if (npages == 1) {
2924 getone = 1;
2925 contig = 0;
2929 * Check if any page in the system is fine.
2931 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn;
2932 if (!contig && anyaddr && !pfnalign) {
2933 flags &= ~PG_PHYSCONTIG;
2934 plist = page_create_va(vp, off, npages * MMU_PAGESIZE,
2935 flags, &kvseg, vaddr);
2936 if (plist != NULL) {
2937 *npagesp = 0;
2938 return (plist);
2941 plist = NULL;
2942 minctg = howmany(npages, sgllen);
2943 while (npages > sgllen || getone) {
2944 if (minctg > npages)
2945 minctg = npages;
2946 mcpl = NULL;
2948 * We could want contig pages with no address range limits.
2950 if (anyaddr && contig) {
2952 * Look for free contig pages to satisfy the request.
2954 mcpl = find_contig_free(minctg, flags, pfnseg,
2955 pfnalign);
2958 * Try the reserved io pools next
2960 if (mcpl == NULL)
2961 mcpl = page_io_pool_alloc(mattr, contig, minctg);
2962 if (mcpl != NULL) {
2963 pp = mcpl;
2964 do {
2965 if (!page_hashin(pp, vp, off, NULL)) {
2966 panic("page_get_contigpages:"
2967 " hashin failed"
2968 " pp %p, vp %p, off %llx",
2969 (void *)pp, (void *)vp, off);
2971 off += MMU_PAGESIZE;
2972 PP_CLRFREE(pp);
2973 PP_CLRAGED(pp);
2974 page_set_props(pp, P_REF);
2975 page_io_lock(pp);
2976 pp = pp->p_next;
2977 } while (pp != mcpl);
2978 } else {
2980 * Hypervisor exchange doesn't handle segment or
2981 * alignment constraints
2983 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi ||
2984 pfnalign)
2985 goto fail;
2987 * Try exchanging pages with the hypervisor
2989 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr,
2990 flags, minctg);
2991 if (mcpl == NULL)
2992 goto fail;
2993 off += minctg * MMU_PAGESIZE;
2995 check_dma(mattr, mcpl, minctg);
2997 * Here with a minctg run of contiguous pages, add them to the
2998 * list we will return for this request.
3000 page_list_concat(&plist, &mcpl);
3001 npages -= minctg;
3002 *npagesp = npages;
3003 sgllen--;
3004 if (getone)
3005 break;
3007 return (plist);
3008 fail:
3009 return_partial_alloc(plist);
3010 return (NULL);
3014 * Allocator for domain 0 I/O pages. We match the required
3015 * DMA attributes and contiguity constraints.
3017 /*ARGSUSED*/
3018 page_t *
3019 page_create_io(
3020 struct vnode *vp,
3021 u_offset_t off,
3022 uint_t bytes,
3023 uint_t flags,
3024 struct as *as,
3025 caddr_t vaddr,
3026 ddi_dma_attr_t *mattr)
3028 page_t *plist = NULL, *pp;
3029 int npages = 0, contig, anyaddr, pages_req;
3030 mfn_t lo_mfn;
3031 mfn_t hi_mfn;
3032 pgcnt_t pfnalign = 0;
3033 int align;
3034 int is_domu = 0;
3035 int dummy, bytes_got;
3036 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
3038 ASSERT(mattr != NULL);
3039 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
3040 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
3041 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
3042 if (align > MMU_PAGESIZE)
3043 pfnalign = mmu_btop(align);
3046 * Clear the contig flag if only one page is needed or the scatter
3047 * gather list length is >= npages.
3049 pages_req = npages = mmu_btopr(bytes);
3050 contig = (flags & PG_PHYSCONTIG);
3051 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
3052 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages)
3053 contig = 0;
3056 * Check if any old page in the system is fine.
3057 * DomU should always go down this path.
3059 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
3060 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
3061 if ((!contig && anyaddr) || is_domu) {
3062 flags &= ~PG_PHYSCONTIG;
3063 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
3064 if (plist != NULL)
3065 return (plist);
3066 else if (is_domu)
3067 return (NULL); /* no memory available */
3070 * DomU should never reach here
3072 if (contig) {
3073 plist = page_get_contigpages(vp, off, &npages, flags, vaddr,
3074 mattr);
3075 if (plist == NULL)
3076 goto fail;
3077 bytes_got = (pages_req - npages) << MMU_PAGESHIFT;
3078 vaddr += bytes_got;
3079 off += bytes_got;
3081 * We now have all the contiguous pages we need, but
3082 * we may still need additional non-contiguous pages.
3086 * now loop collecting the requested number of pages, these do
3087 * not have to be contiguous pages but we will use the contig
3088 * page alloc code to get the pages since it will honor any
3089 * other constraints the pages may have.
3091 while (npages--) {
3092 dummy = -1;
3093 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr);
3094 if (pp == NULL)
3095 goto fail;
3096 page_add(&plist, pp);
3097 vaddr += MMU_PAGESIZE;
3098 off += MMU_PAGESIZE;
3100 return (plist);
3101 fail:
3103 * Failed to get enough pages, return ones we did get
3105 return_partial_alloc(plist);
3106 return (NULL);
3110 * Lock and return the page with the highest mfn that we can find. last_mfn
3111 * holds the last one found, so the next search can start from there. We
3112 * also keep a counter so that we don't loop forever if the machine has no
3113 * free pages.
3115 * This is called from the balloon thread to find pages to give away. new_high
3116 * is used when new mfn's have been added to the system - we will reset our
3117 * search if the new mfn's are higher than our current search position.
3119 page_t *
3120 page_get_high_mfn(mfn_t new_high)
3122 static mfn_t last_mfn = 0;
3123 pfn_t pfn;
3124 page_t *pp;
3125 ulong_t loop_count = 0;
3127 if (new_high > last_mfn)
3128 last_mfn = new_high;
3130 for (; loop_count < mfn_count; loop_count++, last_mfn--) {
3131 if (last_mfn == 0) {
3132 last_mfn = cached_max_mfn;
3135 pfn = mfn_to_pfn(last_mfn);
3136 if (pfn & PFN_IS_FOREIGN_MFN)
3137 continue;
3139 /* See if the page is free. If so, lock it. */
3140 pp = page_numtopp_alloc(pfn);
3141 if (pp == NULL)
3142 continue;
3143 PP_CLRFREE(pp);
3145 ASSERT(PAGE_EXCL(pp));
3146 ASSERT(pp->p_vnode == NULL);
3147 ASSERT(!hat_page_is_mapped(pp));
3148 last_mfn--;
3149 return (pp);
3151 return (NULL);
3154 #else /* !__xpv */
3157 * get a page from any list with the given mnode
3159 static page_t *
3160 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
3161 int mnode, int mtype, ddi_dma_attr_t *dma_attr)
3163 kmutex_t *pcm;
3164 int i;
3165 page_t *pp;
3166 page_t *first_pp;
3167 uint64_t pgaddr;
3168 ulong_t bin;
3169 int mtypestart;
3170 int plw_initialized;
3171 page_list_walker_t plw;
3173 VM_STAT_ADD(pga_vmstats.pgma_alloc);
3175 ASSERT((flags & PG_MATCH_COLOR) == 0);
3176 ASSERT(szc == 0);
3177 ASSERT(dma_attr != NULL);
3179 MTYPE_START(mnode, mtype, flags);
3180 if (mtype < 0) {
3181 VM_STAT_ADD(pga_vmstats.pgma_allocempty);
3182 return (NULL);
3185 mtypestart = mtype;
3187 bin = origbin;
3190 * check up to page_colors + 1 bins - origbin may be checked twice
3191 * because of BIN_STEP skip
3193 do {
3194 plw_initialized = 0;
3196 for (plw.plw_count = 0;
3197 plw.plw_count < page_colors; plw.plw_count++) {
3199 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
3200 goto nextfreebin;
3202 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
3203 mutex_enter(pcm);
3204 pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
3205 first_pp = pp;
3206 while (pp != NULL) {
3207 if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3208 SE_EXCL) == 0) {
3209 pp = pp->p_next;
3210 if (pp == first_pp) {
3211 pp = NULL;
3213 continue;
3216 ASSERT(PP_ISFREE(pp));
3217 ASSERT(PP_ISAGED(pp));
3218 ASSERT(pp->p_vnode == NULL);
3219 ASSERT(pp->p_hash == NULL);
3220 ASSERT(pp->p_offset == (u_offset_t)-1);
3221 ASSERT(pp->p_szc == szc);
3222 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3223 /* check if page within DMA attributes */
3224 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3225 if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3226 (pgaddr + MMU_PAGESIZE - 1 <=
3227 dma_attr->dma_attr_addr_hi)) {
3228 break;
3231 /* continue looking */
3232 page_unlock(pp);
3233 pp = pp->p_next;
3234 if (pp == first_pp)
3235 pp = NULL;
3238 if (pp != NULL) {
3239 ASSERT(mtype == PP_2_MTYPE(pp));
3240 ASSERT(pp->p_szc == 0);
3242 /* found a page with specified DMA attributes */
3243 page_sub(&PAGE_FREELISTS(mnode, szc, bin,
3244 mtype), pp);
3245 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
3247 if ((PP_ISFREE(pp) == 0) ||
3248 (PP_ISAGED(pp) == 0)) {
3249 cmn_err(CE_PANIC, "page %p is not free",
3250 (void *)pp);
3253 mutex_exit(pcm);
3254 check_dma(dma_attr, pp, 1);
3255 VM_STAT_ADD(pga_vmstats.pgma_allocok);
3256 return (pp);
3258 mutex_exit(pcm);
3259 nextfreebin:
3260 if (plw_initialized == 0) {
3261 page_list_walk_init(szc, 0, bin, 1, 0, &plw);
3262 ASSERT(plw.plw_ceq_dif == page_colors);
3263 plw_initialized = 1;
3266 if (plw.plw_do_split) {
3267 pp = page_freelist_split(szc, bin, mnode,
3268 mtype,
3269 mmu_btop(dma_attr->dma_attr_addr_lo),
3270 mmu_btop(dma_attr->dma_attr_addr_hi + 1),
3271 &plw);
3272 if (pp != NULL) {
3273 check_dma(dma_attr, pp, 1);
3274 return (pp);
3278 bin = page_list_walk_next_bin(szc, bin, &plw);
3281 MTYPE_NEXT(mnode, mtype, flags);
3282 } while (mtype >= 0);
3284 /* failed to find a page in the freelist; try it in the cachelist */
3286 /* reset mtype start for cachelist search */
3287 mtype = mtypestart;
3288 ASSERT(mtype >= 0);
3290 /* start with the bin of matching color */
3291 bin = origbin;
3293 do {
3294 for (i = 0; i <= page_colors; i++) {
3295 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
3296 goto nextcachebin;
3297 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3298 mutex_enter(pcm);
3299 pp = PAGE_CACHELISTS(mnode, bin, mtype);
3300 first_pp = pp;
3301 while (pp != NULL) {
3302 if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3303 SE_EXCL) == 0) {
3304 pp = pp->p_next;
3305 if (pp == first_pp)
3306 pp = NULL;
3307 continue;
3309 ASSERT(pp->p_vnode);
3310 ASSERT(PP_ISAGED(pp) == 0);
3311 ASSERT(pp->p_szc == 0);
3312 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3314 /* check if page within DMA attributes */
3316 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3317 if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3318 (pgaddr + MMU_PAGESIZE - 1 <=
3319 dma_attr->dma_attr_addr_hi)) {
3320 break;
3323 /* continue looking */
3324 page_unlock(pp);
3325 pp = pp->p_next;
3326 if (pp == first_pp)
3327 pp = NULL;
3330 if (pp != NULL) {
3331 ASSERT(mtype == PP_2_MTYPE(pp));
3332 ASSERT(pp->p_szc == 0);
3334 /* found a page with specified DMA attributes */
3335 page_sub(&PAGE_CACHELISTS(mnode, bin,
3336 mtype), pp);
3337 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
3339 mutex_exit(pcm);
3340 ASSERT(pp->p_vnode);
3341 ASSERT(PP_ISAGED(pp) == 0);
3342 check_dma(dma_attr, pp, 1);
3343 VM_STAT_ADD(pga_vmstats.pgma_allocok);
3344 return (pp);
3346 mutex_exit(pcm);
3347 nextcachebin:
3348 bin += (i == 0) ? BIN_STEP : 1;
3349 bin &= page_colors_mask;
3351 MTYPE_NEXT(mnode, mtype, flags);
3352 } while (mtype >= 0);
3354 VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
3355 return (NULL);
3359 * This function is similar to page_get_freelist()/page_get_cachelist()
3360 * but it searches both the lists to find a page with the specified
3361 * color (or no color) and DMA attributes. The search is done in the
3362 * freelist first and then in the cache list within the highest memory
3363 * range (based on DMA attributes) before searching in the lower
3364 * memory ranges.
3366 * Note: This function is called only by page_create_io().
3368 /*ARGSUSED*/
3369 static page_t *
3370 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
3371 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp)
3373 uint_t bin;
3374 int mtype;
3375 page_t *pp;
3376 int n;
3377 int m;
3378 int szc;
3379 int fullrange;
3380 int mnode;
3381 int local_failed_stat = 0;
3382 lgrp_mnode_cookie_t lgrp_cookie;
3384 VM_STAT_ADD(pga_vmstats.pga_alloc);
3386 /* only base pagesize currently supported */
3387 if (size != MMU_PAGESIZE)
3388 return (NULL);
3391 * If we're passed a specific lgroup, we use it. Otherwise,
3392 * assume first-touch placement is desired.
3394 if (!LGRP_EXISTS(lgrp))
3395 lgrp = lgrp_home_lgrp();
3397 /* LINTED */
3398 AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3401 * Only hold one freelist or cachelist lock at a time, that way we
3402 * can start anywhere and not have to worry about lock
3403 * ordering.
3405 if (dma_attr == NULL) {
3406 n = mtype16m;
3407 m = mtypetop;
3408 fullrange = 1;
3409 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
3410 } else {
3411 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
3412 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
3415 * We can guarantee alignment only for page boundary.
3417 if (dma_attr->dma_attr_align > MMU_PAGESIZE)
3418 return (NULL);
3420 /* Sanity check the dma_attr */
3421 if (pfnlo > pfnhi)
3422 return (NULL);
3424 n = pfn_2_mtype(pfnlo);
3425 m = pfn_2_mtype(pfnhi);
3427 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
3428 (pfnhi >= mnoderanges[m].mnr_pfnhi));
3430 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
3432 szc = 0;
3434 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */
3435 if (n == mtype16m) {
3436 flags |= PGI_MT_RANGE0;
3437 n = m;
3441 * Try local memory node first, but try remote if we can't
3442 * get a page of the right color.
3444 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
3445 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3447 * allocate pages from high pfn to low.
3449 mtype = m;
3450 do {
3451 if (fullrange != 0) {
3452 pp = page_get_mnode_freelist(mnode,
3453 bin, mtype, szc, flags);
3454 if (pp == NULL) {
3455 pp = page_get_mnode_cachelist(
3456 bin, flags, mnode, mtype);
3458 } else {
3459 pp = page_get_mnode_anylist(bin, szc,
3460 flags, mnode, mtype, dma_attr);
3462 if (pp != NULL) {
3463 VM_STAT_ADD(pga_vmstats.pga_allocok);
3464 check_dma(dma_attr, pp, 1);
3465 return (pp);
3467 } while (mtype != n &&
3468 (mtype = mnoderanges[mtype].mnr_next) != -1);
3469 if (!local_failed_stat) {
3470 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3471 local_failed_stat = 1;
3474 VM_STAT_ADD(pga_vmstats.pga_allocfailed);
3476 return (NULL);
3480 * page_create_io()
3482 * This function is a copy of page_create_va() with an additional
3483 * argument 'mattr' that specifies DMA memory requirements to
3484 * the page list functions. This function is used by the segkmem
3485 * allocator so it is only to create new pages (i.e PG_EXCL is
3486 * set).
3488 * Note: This interface is currently used by x86 PSM only and is
3489 * not fully specified so the commitment level is only for
3490 * private interface specific to x86. This interface uses PSM
3491 * specific page_get_anylist() interface.
3494 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \
3495 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
3496 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
3497 break; \
3502 page_t *
3503 page_create_io(
3504 struct vnode *vp,
3505 u_offset_t off,
3506 uint_t bytes,
3507 uint_t flags,
3508 struct as *as,
3509 caddr_t vaddr,
3510 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */
3512 page_t *plist = NULL;
3513 uint_t plist_len = 0;
3514 pgcnt_t npages;
3515 page_t *npp = NULL;
3516 uint_t pages_req;
3517 page_t *pp;
3518 kmutex_t *phm = NULL;
3519 uint_t index;
3521 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
3522 "page_create_start:vp %p off %llx bytes %u flags %x",
3523 vp, off, bytes, flags);
3525 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
3527 pages_req = npages = mmu_btopr(bytes);
3530 * Do the freemem and pcf accounting.
3532 if (!page_create_wait(npages, flags)) {
3533 return (NULL);
3536 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
3537 "page_create_success:vp %p off %llx", vp, off);
3540 * If satisfying this request has left us with too little
3541 * memory, start the wheels turning to get some back. The
3542 * first clause of the test prevents waking up the pageout
3543 * daemon in situations where it would decide that there's
3544 * nothing to do.
3546 if (nscan < desscan && freemem < minfree) {
3547 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
3548 "pageout_cv_signal:freemem %ld", freemem);
3549 WAKE_PAGEOUT_SCANNER(page__create__io);
3552 if (flags & PG_PHYSCONTIG) {
3554 plist = page_get_contigpage(&npages, mattr, 1);
3555 if (plist == NULL) {
3556 page_create_putback(npages);
3557 return (NULL);
3560 pp = plist;
3562 do {
3563 if (!page_hashin(pp, vp, off, NULL)) {
3564 panic("pg_creat_io: hashin failed %p %p %llx",
3565 (void *)pp, (void *)vp, off);
3567 VM_STAT_ADD(page_create_new);
3568 off += MMU_PAGESIZE;
3569 PP_CLRFREE(pp);
3570 PP_CLRAGED(pp);
3571 page_set_props(pp, P_REF);
3572 pp = pp->p_next;
3573 } while (pp != plist);
3575 if (!npages) {
3576 check_dma(mattr, plist, pages_req);
3577 return (plist);
3578 } else {
3579 vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3583 * fall-thru:
3585 * page_get_contigpage returns when npages <= sgllen.
3586 * Grab the rest of the non-contig pages below from anylist.
3591 * Loop around collecting the requested number of pages.
3592 * Most of the time, we have to `create' a new page. With
3593 * this in mind, pull the page off the free list before
3594 * getting the hash lock. This will minimize the hash
3595 * lock hold time, nesting, and the like. If it turns
3596 * out we don't need the page, we put it back at the end.
3598 while (npages--) {
3599 phm = NULL;
3601 index = PAGE_HASH_FUNC(vp, off);
3602 top:
3603 ASSERT(phm == NULL);
3604 ASSERT(index == PAGE_HASH_FUNC(vp, off));
3605 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3607 if (npp == NULL) {
3609 * Try to get the page of any color either from
3610 * the freelist or from the cache list.
3612 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3613 flags & ~PG_MATCH_COLOR, mattr, NULL);
3614 if (npp == NULL) {
3615 if (mattr == NULL) {
3617 * Not looking for a special page;
3618 * panic!
3620 panic("no page found %d", (int)npages);
3623 * No page found! This can happen
3624 * if we are looking for a page
3625 * within a specific memory range
3626 * for DMA purposes. If PG_WAIT is
3627 * specified then we wait for a
3628 * while and then try again. The
3629 * wait could be forever if we
3630 * don't get the page(s) we need.
3632 * Note: XXX We really need a mechanism
3633 * to wait for pages in the desired
3634 * range. For now, we wait for any
3635 * pages and see if we can use it.
3638 if ((mattr != NULL) && (flags & PG_WAIT)) {
3639 delay(10);
3640 goto top;
3642 goto fail; /* undo accounting stuff */
3645 if (PP_ISAGED(npp) == 0) {
3647 * Since this page came from the
3648 * cachelist, we must destroy the
3649 * old vnode association.
3651 page_hashout(npp, (kmutex_t *)NULL);
3656 * We own this page!
3658 ASSERT(PAGE_EXCL(npp));
3659 ASSERT(npp->p_vnode == NULL);
3660 ASSERT(!hat_page_is_mapped(npp));
3661 PP_CLRFREE(npp);
3662 PP_CLRAGED(npp);
3665 * Here we have a page in our hot little mits and are
3666 * just waiting to stuff it on the appropriate lists.
3667 * Get the mutex and check to see if it really does
3668 * not exist.
3670 phm = PAGE_HASH_MUTEX(index);
3671 mutex_enter(phm);
3672 PAGE_HASH_SEARCH(index, pp, vp, off);
3673 if (pp == NULL) {
3674 VM_STAT_ADD(page_create_new);
3675 pp = npp;
3676 npp = NULL;
3677 if (!page_hashin(pp, vp, off, phm)) {
3679 * Since we hold the page hash mutex and
3680 * just searched for this page, page_hashin
3681 * had better not fail. If it does, that
3682 * means somethread did not follow the
3683 * page hash mutex rules. Panic now and
3684 * get it over with. As usual, go down
3685 * holding all the locks.
3687 ASSERT(MUTEX_HELD(phm));
3688 panic("page_create: hashin fail %p %p %llx %p",
3689 (void *)pp, (void *)vp, off, (void *)phm);
3692 ASSERT(MUTEX_HELD(phm));
3693 mutex_exit(phm);
3694 phm = NULL;
3697 * Hat layer locking need not be done to set
3698 * the following bits since the page is not hashed
3699 * and was on the free list (i.e., had no mappings).
3701 * Set the reference bit to protect
3702 * against immediate pageout
3704 * XXXmh modify freelist code to set reference
3705 * bit so we don't have to do it here.
3707 page_set_props(pp, P_REF);
3708 } else {
3709 ASSERT(MUTEX_HELD(phm));
3710 mutex_exit(phm);
3711 phm = NULL;
3713 * NOTE: This should not happen for pages associated
3714 * with kernel vnode 'kvp'.
3716 /* XX64 - to debug why this happens! */
3717 ASSERT(!VN_ISKAS(vp));
3718 if (VN_ISKAS(vp))
3719 cmn_err(CE_NOTE,
3720 "page_create: page not expected "
3721 "in hash list for kernel vnode - pp 0x%p",
3722 (void *)pp);
3723 VM_STAT_ADD(page_create_exists);
3724 goto fail;
3728 * Got a page! It is locked. Acquire the i/o
3729 * lock since we are going to use the p_next and
3730 * p_prev fields to link the requested pages together.
3732 page_io_lock(pp);
3733 page_add(&plist, pp);
3734 plist = plist->p_next;
3735 off += MMU_PAGESIZE;
3736 vaddr += MMU_PAGESIZE;
3739 check_dma(mattr, plist, pages_req);
3740 return (plist);
3742 fail:
3743 if (npp != NULL) {
3745 * Did not need this page after all.
3746 * Put it back on the free list.
3748 VM_STAT_ADD(page_create_putbacks);
3749 PP_SETFREE(npp);
3750 PP_SETAGED(npp);
3751 npp->p_offset = (u_offset_t)-1;
3752 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3753 page_unlock(npp);
3757 * Give up the pages we already got.
3759 while (plist != NULL) {
3760 pp = plist;
3761 page_sub(&plist, pp);
3762 page_io_unlock(pp);
3763 plist_len++;
3764 /*LINTED: constant in conditional ctx*/
3765 VN_DISPOSE(pp, B_INVAL, 0, kcred);
3769 * VN_DISPOSE does freemem accounting for the pages in plist
3770 * by calling page_free. So, we need to undo the pcf accounting
3771 * for only the remaining pages.
3773 VM_STAT_ADD(page_create_putbacks);
3774 page_create_putback(pages_req - plist_len);
3776 return (NULL);
3778 #endif /* !__xpv */
3782 * Copy the data from the physical page represented by "frompp" to
3783 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3784 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt
3785 * level and no one sleeps with an active mapping there.
3787 * Note that the ref/mod bits in the page_t's are not affected by
3788 * this operation, hence it is up to the caller to update them appropriately.
3791 ppcopy(page_t *frompp, page_t *topp)
3793 caddr_t pp_addr1;
3794 caddr_t pp_addr2;
3795 hat_mempte_t pte1;
3796 hat_mempte_t pte2;
3797 label_t ljb;
3798 int ret;
3800 ASSERT_STACK_ALIGNED();
3801 ASSERT(PAGE_LOCKED(frompp));
3802 ASSERT(PAGE_LOCKED(topp));
3804 if (kpm_enable) {
3805 pp_addr1 = hat_kpm_page2va(frompp, 0);
3806 pp_addr2 = hat_kpm_page2va(topp, 0);
3807 kpreempt_disable();
3808 } else {
3810 * disable pre-emption so that CPU can't change
3812 kpreempt_disable();
3814 pp_addr1 = CPU->cpu_caddr1;
3815 pp_addr2 = CPU->cpu_caddr2;
3816 pte1 = CPU->cpu_caddr1pte;
3817 pte2 = CPU->cpu_caddr2pte;
3819 mutex_enter(&CPU->cpu_ppaddr_mutex);
3821 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3822 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3823 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3824 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3825 HAT_LOAD_NOCONSIST);
3828 if (on_fault(&ljb)) {
3829 ret = 0;
3830 goto faulted;
3831 } else {
3832 ret = 1;
3834 if (use_sse_pagecopy)
3835 #ifdef __xpv
3836 page_copy_no_xmm(pp_addr2, pp_addr1);
3837 #else
3838 hwblkpagecopy(pp_addr1, pp_addr2);
3839 #endif
3840 else
3841 bcopy(pp_addr1, pp_addr2, PAGESIZE);
3843 no_fault();
3844 faulted:
3845 if (!kpm_enable) {
3846 #ifdef __xpv
3848 * We can't leave unused mappings laying about under the
3849 * hypervisor, so blow them away.
3851 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3852 UVMF_INVLPG | UVMF_LOCAL) < 0)
3853 panic("HYPERVISOR_update_va_mapping() failed");
3854 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3855 UVMF_INVLPG | UVMF_LOCAL) < 0)
3856 panic("HYPERVISOR_update_va_mapping() failed");
3857 #endif
3858 mutex_exit(&CPU->cpu_ppaddr_mutex);
3860 kpreempt_enable();
3861 return (ret);
3864 void
3865 pagezero(page_t *pp, uint_t off, uint_t len)
3867 ASSERT(PAGE_LOCKED(pp));
3868 pfnzero(page_pptonum(pp), off, len);
3872 * Zero the physical page from off to off + len given by pfn
3873 * without changing the reference and modified bits of page.
3875 * We use this using CPU private page address #2, see ppcopy() for more info.
3876 * pfnzero() must not be called at interrupt level.
3878 void
3879 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3881 caddr_t pp_addr2;
3882 hat_mempte_t pte2;
3883 kmutex_t *ppaddr_mutex = NULL;
3885 ASSERT_STACK_ALIGNED();
3886 ASSERT(len <= MMU_PAGESIZE);
3887 ASSERT(off <= MMU_PAGESIZE);
3888 ASSERT(off + len <= MMU_PAGESIZE);
3890 if (kpm_enable && !pfn_is_foreign(pfn)) {
3891 pp_addr2 = hat_kpm_pfn2va(pfn);
3892 kpreempt_disable();
3893 } else {
3894 kpreempt_disable();
3896 pp_addr2 = CPU->cpu_caddr2;
3897 pte2 = CPU->cpu_caddr2pte;
3899 ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3900 mutex_enter(ppaddr_mutex);
3902 hat_mempte_remap(pfn, pp_addr2, pte2,
3903 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3904 HAT_LOAD_NOCONSIST);
3907 if (use_sse_pagezero) {
3908 #ifdef __xpv
3909 uint_t rem;
3912 * zero a byte at a time until properly aligned for
3913 * block_zero_no_xmm().
3915 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3916 pp_addr2[off++] = 0;
3919 * Now use faster block_zero_no_xmm() for any range
3920 * that is properly aligned and sized.
3922 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3923 len -= rem;
3924 if (len != 0) {
3925 block_zero_no_xmm(pp_addr2 + off, len);
3926 off += len;
3930 * zero remainder with byte stores.
3932 while (rem-- > 0)
3933 pp_addr2[off++] = 0;
3934 #else
3935 hwblkclr(pp_addr2 + off, len);
3936 #endif
3937 } else {
3938 bzero(pp_addr2 + off, len);
3941 if (!kpm_enable || pfn_is_foreign(pfn)) {
3942 #ifdef __xpv
3944 * On the hypervisor this page might get used for a page
3945 * table before any intervening change to this mapping,
3946 * so blow it away.
3948 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3949 UVMF_INVLPG) < 0)
3950 panic("HYPERVISOR_update_va_mapping() failed");
3951 #endif
3952 mutex_exit(ppaddr_mutex);
3955 kpreempt_enable();
3959 * Platform-dependent page scrub call.
3961 void
3962 pagescrub(page_t *pp, uint_t off, uint_t len)
3965 * For now, we rely on the fact that pagezero() will
3966 * always clear UEs.
3968 pagezero(pp, off, len);
3972 * set up two private addresses for use on a given CPU for use in ppcopy()
3974 void
3975 setup_vaddr_for_ppcopy(struct cpu *cpup)
3977 void *addr;
3978 hat_mempte_t pte_pa;
3980 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3981 pte_pa = hat_mempte_setup(addr);
3982 cpup->cpu_caddr1 = addr;
3983 cpup->cpu_caddr1pte = pte_pa;
3985 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3986 pte_pa = hat_mempte_setup(addr);
3987 cpup->cpu_caddr2 = addr;
3988 cpup->cpu_caddr2pte = pte_pa;
3990 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3994 * Undo setup_vaddr_for_ppcopy
3996 void
3997 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3999 mutex_destroy(&cpup->cpu_ppaddr_mutex);
4001 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
4002 cpup->cpu_caddr2pte = 0;
4003 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
4004 cpup->cpu_caddr2 = 0;
4006 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
4007 cpup->cpu_caddr1pte = 0;
4008 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
4009 cpup->cpu_caddr1 = 0;
4013 * Function for flushing D-cache when performing module relocations
4014 * to an alternate mapping. Unnecessary on Intel / AMD platforms.
4016 void
4017 dcache_flushall()
4021 * Allocate a memory page. The argument 'seed' can be any pseudo-random
4022 * number to vary where the pages come from. This is quite a hacked up
4023 * method -- it works for now, but really needs to be fixed up a bit.
4025 * We currently use page_create_va() on the kvp with fake offsets,
4026 * segments and virt address. This is pretty bogus, but was copied from the
4027 * old hat_i86.c code. A better approach would be to specify either mnode
4028 * random or mnode local and takes a page from whatever color has the MOST
4029 * available - this would have a minimal impact on page coloring.
4031 page_t *
4032 page_get_physical(uintptr_t seed)
4034 page_t *pp;
4035 u_offset_t offset;
4036 static struct seg tmpseg;
4037 static uintptr_t ctr = 0;
4040 * This code is gross, we really need a simpler page allocator.
4042 * We need to assign an offset for the page to call page_create_va()
4043 * To avoid conflicts with other pages, we get creative with the offset.
4044 * For 32 bits, we need an offset > 4Gig
4045 * For 64 bits, need an offset somewhere in the VA hole.
4047 offset = seed;
4048 if (offset > kernelbase)
4049 offset -= kernelbase;
4050 offset <<= MMU_PAGESHIFT;
4051 offset += mmu.hole_start; /* something in VA hole */
4053 if (page_resv(1, KM_NOSLEEP) == 0)
4054 return (NULL);
4056 #ifdef DEBUG
4057 pp = page_exists(&kvp, offset);
4058 if (pp != NULL)
4059 panic("page already exists %p", (void *)pp);
4060 #endif
4062 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
4063 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */
4064 if (pp != NULL) {
4065 page_io_unlock(pp);
4066 page_downgrade(pp);
4068 return (pp);