16164 Consistently wake all pageout daemon threads
[illumos-gate.git] / usr / src / uts / common / vm / vm_page.c
blob4e52919a7c043ce9acd60b683dbdb2efd5dc9149
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24 * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
25 * Copyright 2018 Joyent, Inc.
26 * Copyright 2021 Oxide Computer Company
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
33 * University Copyright- Copyright (c) 1982, 1986, 1988
34 * The Regents of the University of California
35 * All Rights Reserved
37 * University Acknowledgment- Portions of this document are derived from
38 * software developed by the University of California, Berkeley, and its
39 * contributors.
43 * VM - physical page management.
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
85 static pgcnt_t max_page_get; /* max page_get request size in pages */
86 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */
87 volatile uint64_t n_throttle = 0;
90 * freemem_lock protects all freemem variables:
91 * availrmem. Also this lock protects the globals which track the
92 * availrmem changes for accurate kernel footprint calculation.
93 * See below for an explanation of these
94 * globals.
96 kmutex_t freemem_lock;
97 pgcnt_t availrmem;
98 pgcnt_t availrmem_initial;
101 * These globals track availrmem changes to get a more accurate
102 * estimate of tke kernel size. Historically pp_kernel is used for
103 * kernel size and is based on availrmem. But availrmem is adjusted for
104 * locked pages in the system not just for kernel locked pages.
105 * These new counters will track the pages locked through segvn and
106 * by explicit user locking.
108 * pages_locked : How many pages are locked because of user specified
109 * locking through mlock or plock.
111 * pages_useclaim,pages_claimed : These two variables track the
112 * claim adjustments because of the protection changes on a segvn segment.
114 * All these globals are protected by the same lock which protects availrmem.
116 pgcnt_t pages_locked = 0;
117 pgcnt_t pages_useclaim = 0;
118 pgcnt_t pages_claimed = 0;
122 * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
124 static kmutex_t new_freemem_lock;
125 static uint_t freemem_wait; /* someone waiting for freemem */
126 static kcondvar_t freemem_cv;
129 * The logical page free list is maintained as two lists, the 'free'
130 * and the 'cache' lists.
131 * The free list contains those pages that should be reused first.
133 * The implementation of the lists is machine dependent.
134 * page_get_freelist(), page_get_cachelist(),
135 * page_list_sub(), and page_list_add()
136 * form the interface to the machine dependent implementation.
138 * Pages with p_free set are on the cache list.
139 * Pages with p_free and p_age set are on the free list,
141 * A page may be locked while on either list.
145 * free list accounting stuff.
148 * Spread out the value for the number of pages on the
149 * page free and page cache lists. If there is just one
150 * value, then it must be under just one lock.
151 * The lock contention and cache traffic are a real bother.
153 * When we acquire and then drop a single pcf lock
154 * we can start in the middle of the array of pcf structures.
155 * If we acquire more than one pcf lock at a time, we need to
156 * start at the front to avoid deadlocking.
158 * pcf_count holds the number of pages in each pool.
160 * pcf_block is set when page_create_get_something() has asked the
161 * PSM page freelist and page cachelist routines without specifying
162 * a color and nothing came back. This is used to block anything
163 * else from moving pages from one list to the other while the
164 * lists are searched again. If a page is freeed while pcf_block is
165 * set, then pcf_reserve is incremented. pcgs_unblock() takes care
166 * of clearning pcf_block, doing the wakeups, etc.
169 #define MAX_PCF_FANOUT NCPU
170 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
171 static uint_t pcf_fanout_mask = 0;
173 struct pcf {
174 kmutex_t pcf_lock; /* protects the structure */
175 uint_t pcf_count; /* page count */
176 uint_t pcf_wait; /* number of waiters */
177 uint_t pcf_block; /* pcgs flag to page_free() */
178 uint_t pcf_reserve; /* pages freed after pcf_block set */
179 uint_t pcf_fill[10]; /* to line up on the caches */
183 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
184 * it will hash the cpu to). This is done to prevent a drain condition
185 * from happening. This drain condition will occur when pcf_count decrement
186 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An
187 * example of this shows up with device interrupts. The dma buffer is allocated
188 * by the cpu requesting the IO thus the pcf_count is decremented based on that.
189 * When the memory is returned by the interrupt thread, the pcf_count will be
190 * incremented based on the cpu servicing the interrupt.
192 static struct pcf pcf[MAX_PCF_FANOUT];
193 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
194 (randtick() >> 24)) & (pcf_fanout_mask))
196 static int pcf_decrement_bucket(pgcnt_t);
197 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
199 kmutex_t pcgs_lock; /* serializes page_create_get_ */
200 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */
201 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */
202 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */
204 #ifdef VM_STATS
207 * No locks, but so what, they are only statistics.
210 static struct page_tcnt {
211 int pc_free_cache; /* free's into cache list */
212 int pc_free_dontneed; /* free's with dontneed */
213 int pc_free_pageout; /* free's from pageout */
214 int pc_free_free; /* free's into free list */
215 int pc_free_pages; /* free's into large page free list */
216 int pc_destroy_pages; /* large page destroy's */
217 int pc_get_cache; /* get's from cache list */
218 int pc_get_free; /* get's from free list */
219 int pc_reclaim; /* reclaim's */
220 int pc_abortfree; /* abort's of free pages */
221 int pc_find_hit; /* find's that find page */
222 int pc_find_miss; /* find's that don't find page */
223 int pc_destroy_free; /* # of free pages destroyed */
224 #define PC_HASH_CNT (4*PAGE_HASHAVELEN)
225 int pc_find_hashlen[PC_HASH_CNT+1];
226 int pc_addclaim_pages;
227 int pc_subclaim_pages;
228 int pc_free_replacement_page[2];
229 int pc_try_demote_pages[6];
230 int pc_demote_pages[2];
231 } pagecnt;
233 uint_t hashin_count;
234 uint_t hashin_not_held;
235 uint_t hashin_already;
237 uint_t hashout_count;
238 uint_t hashout_not_held;
240 uint_t page_create_count;
241 uint_t page_create_not_enough;
242 uint_t page_create_not_enough_again;
243 uint_t page_create_zero;
244 uint_t page_create_hashout;
245 uint_t page_create_page_lock_failed;
246 uint_t page_create_trylock_failed;
247 uint_t page_create_found_one;
248 uint_t page_create_hashin_failed;
249 uint_t page_create_dropped_phm;
251 uint_t page_create_new;
252 uint_t page_create_exists;
253 uint_t page_create_putbacks;
254 uint_t page_create_overshoot;
256 uint_t page_reclaim_zero;
257 uint_t page_reclaim_zero_locked;
259 uint_t page_rename_exists;
260 uint_t page_rename_count;
262 uint_t page_lookup_cnt[20];
263 uint_t page_lookup_nowait_cnt[10];
264 uint_t page_find_cnt;
265 uint_t page_exists_cnt;
266 uint_t page_exists_forreal_cnt;
267 uint_t page_lookup_dev_cnt;
268 uint_t get_cachelist_cnt;
269 uint_t page_create_cnt[10];
270 uint_t alloc_pages[9];
271 uint_t page_exphcontg[19];
272 uint_t page_create_large_cnt[10];
274 #endif
276 static inline page_t *
277 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
279 uint_t mylen = 0;
280 page_t *page;
282 for (page = page_hash[index]; page; page = page->p_hash, mylen++)
283 if (page->p_vnode == vnode && page->p_offset == off)
284 break;
286 #ifdef VM_STATS
287 if (page != NULL)
288 pagecnt.pc_find_hit++;
289 else
290 pagecnt.pc_find_miss++;
292 pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
293 #endif
295 return (page);
299 #ifdef DEBUG
300 #define MEMSEG_SEARCH_STATS
301 #endif
303 #ifdef MEMSEG_SEARCH_STATS
304 struct memseg_stats {
305 uint_t nsearch;
306 uint_t nlastwon;
307 uint_t nhashwon;
308 uint_t nnotfound;
309 } memseg_stats;
311 #define MEMSEG_STAT_INCR(v) \
312 atomic_inc_32(&memseg_stats.v)
313 #else
314 #define MEMSEG_STAT_INCR(x)
315 #endif
317 struct memseg *memsegs; /* list of memory segments */
320 * /etc/system tunable to control large page allocation hueristic.
322 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
323 * for large page allocation requests. If a large page is not readily
324 * avaliable on the local freelists we will go through additional effort
325 * to create a large page, potentially moving smaller pages around to coalesce
326 * larger pages in the local lgroup.
327 * Default value of LPAP_DEFAULT will go to remote freelists if large pages
328 * are not readily available in the local lgroup.
330 enum lpap {
331 LPAP_DEFAULT, /* default large page allocation policy */
332 LPAP_LOCAL /* local large page allocation policy */
335 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
337 static void page_init_mem_config(void);
338 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
339 static void page_do_hashout(page_t *);
340 static void page_capture_init();
341 int page_capture_take_action(page_t *, uint_t, void *);
343 static void page_demote_vp_pages(page_t *);
346 void
347 pcf_init(void)
349 if (boot_ncpus != -1) {
350 pcf_fanout = boot_ncpus;
351 } else {
352 pcf_fanout = max_ncpus;
354 #ifdef sun4v
356 * Force at least 4 buckets if possible for sun4v.
358 pcf_fanout = MAX(pcf_fanout, 4);
359 #endif /* sun4v */
362 * Round up to the nearest power of 2.
364 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
365 if (!ISP2(pcf_fanout)) {
366 pcf_fanout = 1 << highbit(pcf_fanout);
368 if (pcf_fanout > MAX_PCF_FANOUT) {
369 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
372 pcf_fanout_mask = pcf_fanout - 1;
376 * vm subsystem related initialization
378 void
379 vm_init(void)
381 boolean_t callb_vm_cpr(void *, int);
383 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
384 page_init_mem_config();
385 page_retire_init();
386 vm_usage_init();
387 page_capture_init();
391 * This function is called at startup and when memory is added or deleted.
393 void
394 init_pages_pp_maximum()
396 static pgcnt_t p_min;
397 static pgcnt_t pages_pp_maximum_startup;
398 static pgcnt_t avrmem_delta;
399 static int init_done;
400 static int user_set; /* true if set in /etc/system */
402 if (init_done == 0) {
404 /* If the user specified a value, save it */
405 if (pages_pp_maximum != 0) {
406 user_set = 1;
407 pages_pp_maximum_startup = pages_pp_maximum;
411 * Setting of pages_pp_maximum is based first time
412 * on the value of availrmem just after the start-up
413 * allocations. To preserve this relationship at run
414 * time, use a delta from availrmem_initial.
416 ASSERT(availrmem_initial >= availrmem);
417 avrmem_delta = availrmem_initial - availrmem;
419 /* The allowable floor of pages_pp_maximum */
420 p_min = tune.t_minarmem + 100;
422 /* Make sure we don't come through here again. */
423 init_done = 1;
426 * Determine pages_pp_maximum, the number of currently available
427 * pages (availrmem) that can't be `locked'. If not set by
428 * the user, we set it to 4% of the currently available memory
429 * plus 4MB.
430 * But we also insist that it be greater than tune.t_minarmem;
431 * otherwise a process could lock down a lot of memory, get swapped
432 * out, and never have enough to get swapped back in.
434 if (user_set)
435 pages_pp_maximum = pages_pp_maximum_startup;
436 else
437 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
438 + btop(4 * 1024 * 1024);
440 if (pages_pp_maximum <= p_min) {
441 pages_pp_maximum = p_min;
446 * In the past, we limited the maximum pages that could be gotten to essentially
447 * 1/2 of the total pages on the system. However, this is too conservative for
448 * some cases. For example, if we want to host a large virtual machine which
449 * needs to use a significant portion of the system's memory. In practice,
450 * allowing more than 1/2 of the total pages is fine, but becomes problematic
451 * as we approach or exceed 75% of the pages on the system. Thus, we limit the
452 * maximum to 23/32 of the total pages, which is ~72%.
454 void
455 set_max_page_get(pgcnt_t target_total_pages)
457 max_page_get = (target_total_pages >> 5) * 23;
458 ASSERT3U(max_page_get, >, 0);
461 pgcnt_t
462 get_max_page_get()
464 return (max_page_get);
467 static pgcnt_t pending_delete;
469 /*ARGSUSED*/
470 static void
471 page_mem_config_post_add(
472 void *arg,
473 pgcnt_t delta_pages)
475 set_max_page_get(total_pages - pending_delete);
476 init_pages_pp_maximum();
479 /*ARGSUSED*/
480 static int
481 page_mem_config_pre_del(
482 void *arg,
483 pgcnt_t delta_pages)
485 pgcnt_t nv;
487 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
488 set_max_page_get(total_pages - nv);
489 return (0);
492 /*ARGSUSED*/
493 static void
494 page_mem_config_post_del(
495 void *arg,
496 pgcnt_t delta_pages,
497 int cancelled)
499 pgcnt_t nv;
501 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
502 set_max_page_get(total_pages - nv);
503 if (!cancelled)
504 init_pages_pp_maximum();
507 static kphysm_setup_vector_t page_mem_config_vec = {
508 KPHYSM_SETUP_VECTOR_VERSION,
509 page_mem_config_post_add,
510 page_mem_config_pre_del,
511 page_mem_config_post_del,
514 static void
515 page_init_mem_config(void)
517 int ret;
519 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
520 ASSERT(ret == 0);
524 * Evenly spread out the PCF counters for large free pages
526 static void
527 page_free_large_ctr(pgcnt_t npages)
529 static struct pcf *p = pcf;
530 pgcnt_t lump;
532 freemem += npages;
534 lump = roundup(npages, pcf_fanout) / pcf_fanout;
536 while (npages > 0) {
538 ASSERT(!p->pcf_block);
540 if (lump < npages) {
541 p->pcf_count += (uint_t)lump;
542 npages -= lump;
543 } else {
544 p->pcf_count += (uint_t)npages;
545 npages = 0;
548 ASSERT(!p->pcf_wait);
550 if (++p > &pcf[pcf_fanout - 1])
551 p = pcf;
554 ASSERT(npages == 0);
558 * Add a physical chunk of memory to the system free lists during startup.
559 * Platform specific startup() allocates the memory for the page structs.
561 * num - number of page structures
562 * base - page number (pfn) to be associated with the first page.
564 * Since we are doing this during startup (ie. single threaded), we will
565 * use shortcut routines to avoid any locking overhead while putting all
566 * these pages on the freelists.
568 * NOTE: Any changes performed to page_free(), must also be performed to
569 * add_physmem() since this is how we initialize all page_t's at
570 * boot time.
572 void
573 add_physmem(
574 page_t *pp,
575 pgcnt_t num,
576 pfn_t pnum)
578 page_t *root = NULL;
579 uint_t szc = page_num_pagesizes() - 1;
580 pgcnt_t large = page_get_pagecnt(szc);
581 pgcnt_t cnt = 0;
583 TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
584 "add_physmem:pp %p num %lu", pp, num);
587 * Arbitrarily limit the max page_get request
588 * to 1/2 of the page structs we have.
590 total_pages += num;
591 set_max_page_get(total_pages);
593 PLCNT_MODIFY_MAX(pnum, (long)num);
596 * The physical space for the pages array
597 * representing ram pages has already been
598 * allocated. Here we initialize each lock
599 * in the page structure, and put each on
600 * the free list
602 for (; num; pp++, pnum++, num--) {
605 * this needs to fill in the page number
606 * and do any other arch specific initialization
608 add_physmem_cb(pp, pnum);
610 pp->p_lckcnt = 0;
611 pp->p_cowcnt = 0;
612 pp->p_slckcnt = 0;
615 * Initialize the page lock as unlocked, since nobody
616 * can see or access this page yet.
618 pp->p_selock = 0;
621 * Initialize IO lock
623 page_iolock_init(pp);
626 * initialize other fields in the page_t
628 PP_SETFREE(pp);
629 page_clr_all_props(pp);
630 PP_SETAGED(pp);
631 pp->p_offset = (u_offset_t)-1;
632 pp->p_next = pp;
633 pp->p_prev = pp;
636 * Simple case: System doesn't support large pages.
638 if (szc == 0) {
639 pp->p_szc = 0;
640 page_free_at_startup(pp);
641 continue;
645 * Handle unaligned pages, we collect them up onto
646 * the root page until we have a full large page.
648 if (!IS_P2ALIGNED(pnum, large)) {
651 * If not in a large page,
652 * just free as small page.
654 if (root == NULL) {
655 pp->p_szc = 0;
656 page_free_at_startup(pp);
657 continue;
661 * Link a constituent page into the large page.
663 pp->p_szc = szc;
664 page_list_concat(&root, &pp);
667 * When large page is fully formed, free it.
669 if (++cnt == large) {
670 page_free_large_ctr(cnt);
671 page_list_add_pages(root, PG_LIST_ISINIT);
672 root = NULL;
673 cnt = 0;
675 continue;
679 * At this point we have a page number which
680 * is aligned. We assert that we aren't already
681 * in a different large page.
683 ASSERT(IS_P2ALIGNED(pnum, large));
684 ASSERT(root == NULL && cnt == 0);
687 * If insufficient number of pages left to form
688 * a large page, just free the small page.
690 if (num < large) {
691 pp->p_szc = 0;
692 page_free_at_startup(pp);
693 continue;
697 * Otherwise start a new large page.
699 pp->p_szc = szc;
700 cnt++;
701 root = pp;
703 ASSERT(root == NULL && cnt == 0);
707 * Find a page representing the specified [vp, offset].
708 * If we find the page but it is intransit coming in,
709 * it will have an "exclusive" lock and we wait for
710 * the i/o to complete. A page found on the free list
711 * is always reclaimed and then locked. On success, the page
712 * is locked, its data is valid and it isn't on the free
713 * list, while a NULL is returned if the page doesn't exist.
715 page_t *
716 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
718 return (page_lookup_create(vp, off, se, NULL, NULL, 0));
722 * Find a page representing the specified [vp, offset].
723 * We either return the one we found or, if passed in,
724 * create one with identity of [vp, offset] of the
725 * pre-allocated page. If we find existing page but it is
726 * intransit coming in, it will have an "exclusive" lock
727 * and we wait for the i/o to complete. A page found on
728 * the free list is always reclaimed and then locked.
729 * On success, the page is locked, its data is valid and
730 * it isn't on the free list, while a NULL is returned
731 * if the page doesn't exist and newpp is NULL;
733 page_t *
734 page_lookup_create(
735 vnode_t *vp,
736 u_offset_t off,
737 se_t se,
738 page_t *newpp,
739 spgcnt_t *nrelocp,
740 int flags)
742 page_t *pp;
743 kmutex_t *phm;
744 ulong_t index;
745 uint_t hash_locked;
746 uint_t es;
748 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
749 VM_STAT_ADD(page_lookup_cnt[0]);
750 ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
753 * Acquire the appropriate page hash lock since
754 * we have to search the hash list. Pages that
755 * hash to this list can't change identity while
756 * this lock is held.
758 hash_locked = 0;
759 index = PAGE_HASH_FUNC(vp, off);
760 phm = NULL;
761 top:
762 pp = page_hash_search(index, vp, off);
763 if (pp != NULL) {
764 VM_STAT_ADD(page_lookup_cnt[1]);
765 es = (newpp != NULL) ? 1 : 0;
766 es |= flags;
767 if (!hash_locked) {
768 VM_STAT_ADD(page_lookup_cnt[2]);
769 if (!page_try_reclaim_lock(pp, se, es)) {
771 * On a miss, acquire the phm. Then
772 * next time, page_lock() will be called,
773 * causing a wait if the page is busy.
774 * just looping with page_trylock() would
775 * get pretty boring.
777 VM_STAT_ADD(page_lookup_cnt[3]);
778 phm = PAGE_HASH_MUTEX(index);
779 mutex_enter(phm);
780 hash_locked = 1;
781 goto top;
783 } else {
784 VM_STAT_ADD(page_lookup_cnt[4]);
785 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
786 VM_STAT_ADD(page_lookup_cnt[5]);
787 goto top;
792 * Since `pp' is locked it can not change identity now.
793 * Reconfirm we locked the correct page.
795 * Both the p_vnode and p_offset *must* be cast volatile
796 * to force a reload of their values: The page_hash_search
797 * function will have stuffed p_vnode and p_offset into
798 * registers before calling page_trylock(); another thread,
799 * actually holding the hash lock, could have changed the
800 * page's identity in memory, but our registers would not
801 * be changed, fooling the reconfirmation. If the hash
802 * lock was held during the search, the casting would
803 * not be needed.
805 VM_STAT_ADD(page_lookup_cnt[6]);
806 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
807 ((volatile u_offset_t)(pp->p_offset) != off)) {
808 VM_STAT_ADD(page_lookup_cnt[7]);
809 if (hash_locked) {
810 panic("page_lookup_create: lost page %p",
811 (void *)pp);
812 /*NOTREACHED*/
814 page_unlock(pp);
815 phm = PAGE_HASH_MUTEX(index);
816 mutex_enter(phm);
817 hash_locked = 1;
818 goto top;
822 * If page_trylock() was called, then pp may still be on
823 * the cachelist (can't be on the free list, it would not
824 * have been found in the search). If it is on the
825 * cachelist it must be pulled now. To pull the page from
826 * the cachelist, it must be exclusively locked.
828 * The other big difference between page_trylock() and
829 * page_lock(), is that page_lock() will pull the
830 * page from whatever free list (the cache list in this
831 * case) the page is on. If page_trylock() was used
832 * above, then we have to do the reclaim ourselves.
834 if ((!hash_locked) && (PP_ISFREE(pp))) {
835 ASSERT(PP_ISAGED(pp) == 0);
836 VM_STAT_ADD(page_lookup_cnt[8]);
839 * page_relcaim will insure that we
840 * have this page exclusively
843 if (!page_reclaim(pp, NULL)) {
845 * Page_reclaim dropped whatever lock
846 * we held.
848 VM_STAT_ADD(page_lookup_cnt[9]);
849 phm = PAGE_HASH_MUTEX(index);
850 mutex_enter(phm);
851 hash_locked = 1;
852 goto top;
853 } else if (se == SE_SHARED && newpp == NULL) {
854 VM_STAT_ADD(page_lookup_cnt[10]);
855 page_downgrade(pp);
859 if (hash_locked) {
860 mutex_exit(phm);
863 if (newpp != NULL && pp->p_szc < newpp->p_szc &&
864 PAGE_EXCL(pp) && nrelocp != NULL) {
865 ASSERT(nrelocp != NULL);
866 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
867 NULL);
868 if (*nrelocp > 0) {
869 VM_STAT_COND_ADD(*nrelocp == 1,
870 page_lookup_cnt[11]);
871 VM_STAT_COND_ADD(*nrelocp > 1,
872 page_lookup_cnt[12]);
873 pp = newpp;
874 se = SE_EXCL;
875 } else {
876 if (se == SE_SHARED) {
877 page_downgrade(pp);
879 VM_STAT_ADD(page_lookup_cnt[13]);
881 } else if (newpp != NULL && nrelocp != NULL) {
882 if (PAGE_EXCL(pp) && se == SE_SHARED) {
883 page_downgrade(pp);
885 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
886 page_lookup_cnt[14]);
887 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
888 page_lookup_cnt[15]);
889 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
890 page_lookup_cnt[16]);
891 } else if (newpp != NULL && PAGE_EXCL(pp)) {
892 se = SE_EXCL;
894 } else if (!hash_locked) {
895 VM_STAT_ADD(page_lookup_cnt[17]);
896 phm = PAGE_HASH_MUTEX(index);
897 mutex_enter(phm);
898 hash_locked = 1;
899 goto top;
900 } else if (newpp != NULL) {
902 * If we have a preallocated page then
903 * insert it now and basically behave like
904 * page_create.
906 VM_STAT_ADD(page_lookup_cnt[18]);
908 * Since we hold the page hash mutex and
909 * just searched for this page, page_hashin
910 * had better not fail. If it does, that
911 * means some thread did not follow the
912 * page hash mutex rules. Panic now and
913 * get it over with. As usual, go down
914 * holding all the locks.
916 ASSERT(MUTEX_HELD(phm));
917 if (!page_hashin(newpp, vp, off, phm)) {
918 ASSERT(MUTEX_HELD(phm));
919 panic("page_lookup_create: hashin failed %p %p %llx %p",
920 (void *)newpp, (void *)vp, off, (void *)phm);
921 /*NOTREACHED*/
923 ASSERT(MUTEX_HELD(phm));
924 mutex_exit(phm);
925 phm = NULL;
926 page_set_props(newpp, P_REF);
927 page_io_lock(newpp);
928 pp = newpp;
929 se = SE_EXCL;
930 } else {
931 VM_STAT_ADD(page_lookup_cnt[19]);
932 mutex_exit(phm);
935 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
937 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
939 return (pp);
943 * Search the hash list for the page representing the
944 * specified [vp, offset] and return it locked. Skip
945 * free pages and pages that cannot be locked as requested.
946 * Used while attempting to kluster pages.
948 page_t *
949 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
951 page_t *pp;
952 kmutex_t *phm;
953 ulong_t index;
954 uint_t locked;
956 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
957 VM_STAT_ADD(page_lookup_nowait_cnt[0]);
959 index = PAGE_HASH_FUNC(vp, off);
960 pp = page_hash_search(index, vp, off);
961 locked = 0;
962 if (pp == NULL) {
963 top:
964 VM_STAT_ADD(page_lookup_nowait_cnt[1]);
965 locked = 1;
966 phm = PAGE_HASH_MUTEX(index);
967 mutex_enter(phm);
968 pp = page_hash_search(index, vp, off);
971 if (pp == NULL || PP_ISFREE(pp)) {
972 VM_STAT_ADD(page_lookup_nowait_cnt[2]);
973 pp = NULL;
974 } else {
975 if (!page_trylock(pp, se)) {
976 VM_STAT_ADD(page_lookup_nowait_cnt[3]);
977 pp = NULL;
978 } else {
979 VM_STAT_ADD(page_lookup_nowait_cnt[4]);
981 * See the comment in page_lookup()
983 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
984 ((u_offset_t)(pp->p_offset) != off)) {
985 VM_STAT_ADD(page_lookup_nowait_cnt[5]);
986 if (locked) {
987 panic("page_lookup_nowait %p",
988 (void *)pp);
989 /*NOTREACHED*/
991 page_unlock(pp);
992 goto top;
994 if (PP_ISFREE(pp)) {
995 VM_STAT_ADD(page_lookup_nowait_cnt[6]);
996 page_unlock(pp);
997 pp = NULL;
1001 if (locked) {
1002 VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1003 mutex_exit(phm);
1006 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1008 return (pp);
1012 * Search the hash list for a page with the specified [vp, off]
1013 * that is known to exist and is already locked. This routine
1014 * is typically used by segment SOFTUNLOCK routines.
1016 page_t *
1017 page_find(vnode_t *vp, u_offset_t off)
1019 page_t *pp;
1020 kmutex_t *phm;
1021 ulong_t index;
1023 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1024 VM_STAT_ADD(page_find_cnt);
1026 index = PAGE_HASH_FUNC(vp, off);
1027 phm = PAGE_HASH_MUTEX(index);
1029 mutex_enter(phm);
1030 pp = page_hash_search(index, vp, off);
1031 mutex_exit(phm);
1033 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1034 return (pp);
1038 * Determine whether a page with the specified [vp, off]
1039 * currently exists in the system. Obviously this should
1040 * only be considered as a hint since nothing prevents the
1041 * page from disappearing or appearing immediately after
1042 * the return from this routine. Subsequently, we don't
1043 * even bother to lock the list.
1045 page_t *
1046 page_exists(vnode_t *vp, u_offset_t off)
1048 ulong_t index;
1050 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1051 VM_STAT_ADD(page_exists_cnt);
1053 index = PAGE_HASH_FUNC(vp, off);
1055 return (page_hash_search(index, vp, off));
1059 * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1060 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array
1061 * with these pages locked SHARED. If necessary reclaim pages from
1062 * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1064 * If we fail to lock pages still return 1 if pages exist and contiguous.
1065 * But in this case return value is just a hint. ppa array won't be filled.
1066 * Caller should initialize ppa[0] as NULL to distinguish return value.
1068 * Returns 0 if pages don't exist or not physically contiguous.
1070 * This routine doesn't work for anonymous(swapfs) pages.
1073 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1075 pgcnt_t pages;
1076 pfn_t pfn;
1077 page_t *rootpp;
1078 pgcnt_t i;
1079 pgcnt_t j;
1080 u_offset_t save_off = off;
1081 ulong_t index;
1082 kmutex_t *phm;
1083 page_t *pp;
1084 uint_t pszc;
1085 int loopcnt = 0;
1087 ASSERT(szc != 0);
1088 ASSERT(vp != NULL);
1089 ASSERT(!IS_SWAPFSVP(vp));
1090 ASSERT(!VN_ISKAS(vp));
1092 again:
1093 if (++loopcnt > 3) {
1094 VM_STAT_ADD(page_exphcontg[0]);
1095 return (0);
1098 index = PAGE_HASH_FUNC(vp, off);
1099 phm = PAGE_HASH_MUTEX(index);
1101 mutex_enter(phm);
1102 pp = page_hash_search(index, vp, off);
1103 mutex_exit(phm);
1105 VM_STAT_ADD(page_exphcontg[1]);
1107 if (pp == NULL) {
1108 VM_STAT_ADD(page_exphcontg[2]);
1109 return (0);
1112 pages = page_get_pagecnt(szc);
1113 rootpp = pp;
1114 pfn = rootpp->p_pagenum;
1116 if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1117 VM_STAT_ADD(page_exphcontg[3]);
1118 if (!page_trylock(pp, SE_SHARED)) {
1119 VM_STAT_ADD(page_exphcontg[4]);
1120 return (1);
1123 * Also check whether p_pagenum was modified by DR.
1125 if (pp->p_szc != pszc || pp->p_vnode != vp ||
1126 pp->p_offset != off || pp->p_pagenum != pfn) {
1127 VM_STAT_ADD(page_exphcontg[5]);
1128 page_unlock(pp);
1129 off = save_off;
1130 goto again;
1133 * szc was non zero and vnode and offset matched after we
1134 * locked the page it means it can't become free on us.
1136 ASSERT(!PP_ISFREE(pp));
1137 if (!IS_P2ALIGNED(pfn, pages)) {
1138 page_unlock(pp);
1139 return (0);
1141 ppa[0] = pp;
1142 pp++;
1143 off += PAGESIZE;
1144 pfn++;
1145 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1146 if (!page_trylock(pp, SE_SHARED)) {
1147 VM_STAT_ADD(page_exphcontg[6]);
1148 pp--;
1149 while (i-- > 0) {
1150 page_unlock(pp);
1151 pp--;
1153 ppa[0] = NULL;
1154 return (1);
1156 if (pp->p_szc != pszc) {
1157 VM_STAT_ADD(page_exphcontg[7]);
1158 page_unlock(pp);
1159 pp--;
1160 while (i-- > 0) {
1161 page_unlock(pp);
1162 pp--;
1164 ppa[0] = NULL;
1165 off = save_off;
1166 goto again;
1169 * szc the same as for previous already locked pages
1170 * with right identity. Since this page had correct
1171 * szc after we locked it can't get freed or destroyed
1172 * and therefore must have the expected identity.
1174 ASSERT(!PP_ISFREE(pp));
1175 if (pp->p_vnode != vp ||
1176 pp->p_offset != off) {
1177 panic("page_exists_physcontig: "
1178 "large page identity doesn't match");
1180 ppa[i] = pp;
1181 ASSERT(pp->p_pagenum == pfn);
1183 VM_STAT_ADD(page_exphcontg[8]);
1184 ppa[pages] = NULL;
1185 return (1);
1186 } else if (pszc >= szc) {
1187 VM_STAT_ADD(page_exphcontg[9]);
1188 if (!IS_P2ALIGNED(pfn, pages)) {
1189 return (0);
1191 return (1);
1194 if (!IS_P2ALIGNED(pfn, pages)) {
1195 VM_STAT_ADD(page_exphcontg[10]);
1196 return (0);
1199 if (page_numtomemseg_nolock(pfn) !=
1200 page_numtomemseg_nolock(pfn + pages - 1)) {
1201 VM_STAT_ADD(page_exphcontg[11]);
1202 return (0);
1206 * We loop up 4 times across pages to promote page size.
1207 * We're extra cautious to promote page size atomically with respect
1208 * to everybody else. But we can probably optimize into 1 loop if
1209 * this becomes an issue.
1212 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1213 if (!page_trylock(pp, SE_EXCL)) {
1214 VM_STAT_ADD(page_exphcontg[12]);
1215 break;
1218 * Check whether p_pagenum was modified by DR.
1220 if (pp->p_pagenum != pfn) {
1221 page_unlock(pp);
1222 break;
1224 if (pp->p_vnode != vp ||
1225 pp->p_offset != off) {
1226 VM_STAT_ADD(page_exphcontg[13]);
1227 page_unlock(pp);
1228 break;
1230 if (pp->p_szc >= szc) {
1231 ASSERT(i == 0);
1232 page_unlock(pp);
1233 off = save_off;
1234 goto again;
1238 if (i != pages) {
1239 VM_STAT_ADD(page_exphcontg[14]);
1240 --pp;
1241 while (i-- > 0) {
1242 page_unlock(pp);
1243 --pp;
1245 return (0);
1248 pp = rootpp;
1249 for (i = 0; i < pages; i++, pp++) {
1250 if (PP_ISFREE(pp)) {
1251 VM_STAT_ADD(page_exphcontg[15]);
1252 ASSERT(!PP_ISAGED(pp));
1253 ASSERT(pp->p_szc == 0);
1254 if (!page_reclaim(pp, NULL)) {
1255 break;
1257 } else {
1258 ASSERT(pp->p_szc < szc);
1259 VM_STAT_ADD(page_exphcontg[16]);
1260 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1263 if (i < pages) {
1264 VM_STAT_ADD(page_exphcontg[17]);
1266 * page_reclaim failed because we were out of memory.
1267 * drop the rest of the locks and return because this page
1268 * must be already reallocated anyway.
1270 pp = rootpp;
1271 for (j = 0; j < pages; j++, pp++) {
1272 if (j != i) {
1273 page_unlock(pp);
1276 return (0);
1279 off = save_off;
1280 pp = rootpp;
1281 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1282 ASSERT(PAGE_EXCL(pp));
1283 ASSERT(!PP_ISFREE(pp));
1284 ASSERT(!hat_page_is_mapped(pp));
1285 ASSERT(pp->p_vnode == vp);
1286 ASSERT(pp->p_offset == off);
1287 pp->p_szc = szc;
1289 pp = rootpp;
1290 for (i = 0; i < pages; i++, pp++) {
1291 if (ppa == NULL) {
1292 page_unlock(pp);
1293 } else {
1294 ppa[i] = pp;
1295 page_downgrade(ppa[i]);
1298 if (ppa != NULL) {
1299 ppa[pages] = NULL;
1301 VM_STAT_ADD(page_exphcontg[18]);
1302 ASSERT(vp->v_pages != NULL);
1303 return (1);
1307 * Determine whether a page with the specified [vp, off]
1308 * currently exists in the system and if so return its
1309 * size code. Obviously this should only be considered as
1310 * a hint since nothing prevents the page from disappearing
1311 * or appearing immediately after the return from this routine.
1314 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1316 page_t *pp;
1317 kmutex_t *phm;
1318 ulong_t index;
1319 int rc = 0;
1321 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1322 ASSERT(szc != NULL);
1323 VM_STAT_ADD(page_exists_forreal_cnt);
1325 index = PAGE_HASH_FUNC(vp, off);
1326 phm = PAGE_HASH_MUTEX(index);
1328 mutex_enter(phm);
1329 pp = page_hash_search(index, vp, off);
1330 if (pp != NULL) {
1331 *szc = pp->p_szc;
1332 rc = 1;
1334 mutex_exit(phm);
1335 return (rc);
1338 /* wakeup threads waiting for pages in page_create_get_something() */
1339 void
1340 wakeup_pcgs(void)
1342 if (!CV_HAS_WAITERS(&pcgs_cv))
1343 return;
1344 cv_broadcast(&pcgs_cv);
1348 * 'freemem' is used all over the kernel as an indication of how many
1349 * pages are free (either on the cache list or on the free page list)
1350 * in the system. In very few places is a really accurate 'freemem'
1351 * needed. To avoid contention of the lock protecting a the
1352 * single freemem, it was spread out into NCPU buckets. Set_freemem
1353 * sets freemem to the total of all NCPU buckets. It is called from
1354 * clock() on each TICK.
1356 void
1357 set_freemem(void)
1359 struct pcf *p;
1360 ulong_t t;
1361 uint_t i;
1363 t = 0;
1364 p = pcf;
1365 for (i = 0; i < pcf_fanout; i++) {
1366 t += p->pcf_count;
1367 p++;
1369 freemem = t;
1372 * Don't worry about grabbing mutex. It's not that
1373 * critical if we miss a tick or two. This is
1374 * where we wakeup possible delayers in
1375 * page_create_get_something().
1377 wakeup_pcgs();
1380 ulong_t
1381 get_freemem()
1383 struct pcf *p;
1384 ulong_t t;
1385 uint_t i;
1387 t = 0;
1388 p = pcf;
1389 for (i = 0; i < pcf_fanout; i++) {
1390 t += p->pcf_count;
1391 p++;
1394 * We just calculated it, might as well set it.
1396 freemem = t;
1397 return (t);
1401 * Acquire all of the page cache & free (pcf) locks.
1403 void
1404 pcf_acquire_all()
1406 struct pcf *p;
1407 uint_t i;
1409 p = pcf;
1410 for (i = 0; i < pcf_fanout; i++) {
1411 mutex_enter(&p->pcf_lock);
1412 p++;
1417 * Release all the pcf_locks.
1419 void
1420 pcf_release_all()
1422 struct pcf *p;
1423 uint_t i;
1425 p = pcf;
1426 for (i = 0; i < pcf_fanout; i++) {
1427 mutex_exit(&p->pcf_lock);
1428 p++;
1433 * Inform the VM system that we need some pages freed up.
1434 * Calls must be symmetric, e.g.:
1436 * page_needfree(100);
1437 * wait a bit;
1438 * page_needfree(-100);
1440 void
1441 page_needfree(spgcnt_t npages)
1443 mutex_enter(&new_freemem_lock);
1444 needfree += npages;
1445 mutex_exit(&new_freemem_lock);
1449 * Throttle for page_create(): try to prevent freemem from dropping
1450 * below throttlefree. We can't provide a 100% guarantee because
1451 * KM_NOSLEEP allocations, page_reclaim(), and various other things
1452 * nibble away at the freelist. However, we can block all PG_WAIT
1453 * allocations until memory becomes available. The motivation is
1454 * that several things can fall apart when there's no free memory:
1456 * (1) If pageout() needs memory to push a page, the system deadlocks.
1458 * (2) By (broken) specification, timeout(9F) can neither fail nor
1459 * block, so it has no choice but to panic the system if it
1460 * cannot allocate a callout structure.
1462 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1463 * it panics if it cannot allocate a callback structure.
1465 * (4) Untold numbers of third-party drivers have not yet been hardened
1466 * against KM_NOSLEEP and/or allocb() failures; they simply assume
1467 * success and panic the system with a data fault on failure.
1468 * (The long-term solution to this particular problem is to ship
1469 * hostile fault-injecting DEBUG kernels with the DDK.)
1471 * It is theoretically impossible to guarantee success of non-blocking
1472 * allocations, but in practice, this throttle is very hard to break.
1474 static int
1475 page_create_throttle(pgcnt_t npages, int flags)
1477 ulong_t fm;
1478 uint_t i;
1479 pgcnt_t tf; /* effective value of throttlefree */
1481 atomic_inc_64(&n_throttle);
1484 * Normal priority allocations.
1486 if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1487 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1488 return (freemem >= npages + throttlefree);
1492 * Never deny pages when:
1493 * - it's a thread that cannot block [NOMEMWAIT()]
1494 * - the allocation cannot block and must not fail
1495 * - the allocation cannot block and is pageout dispensated
1497 if (NOMEMWAIT() ||
1498 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1499 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1500 return (1);
1503 * If the allocation can't block, we look favorably upon it
1504 * unless we're below pageout_reserve. In that case we fail
1505 * the allocation because we want to make sure there are a few
1506 * pages available for pageout.
1508 if ((flags & PG_WAIT) == 0)
1509 return (freemem >= npages + pageout_reserve);
1511 /* Calculate the effective throttlefree value */
1512 tf = throttlefree -
1513 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1515 WAKE_PAGEOUT_SCANNER(page__create__throttle);
1517 for (;;) {
1518 fm = 0;
1519 pcf_acquire_all();
1520 mutex_enter(&new_freemem_lock);
1521 for (i = 0; i < pcf_fanout; i++) {
1522 fm += pcf[i].pcf_count;
1523 pcf[i].pcf_wait++;
1524 mutex_exit(&pcf[i].pcf_lock);
1526 freemem = fm;
1527 if (freemem >= npages + tf) {
1528 mutex_exit(&new_freemem_lock);
1529 break;
1531 needfree += npages;
1532 freemem_wait++;
1533 cv_wait(&freemem_cv, &new_freemem_lock);
1534 freemem_wait--;
1535 needfree -= npages;
1536 mutex_exit(&new_freemem_lock);
1538 return (1);
1542 * page_create_wait() is called to either coalesce pages from the
1543 * different pcf buckets or to wait because there simply are not
1544 * enough pages to satisfy the caller's request.
1546 * Sadly, this is called from platform/vm/vm_machdep.c
1549 page_create_wait(pgcnt_t npages, uint_t flags)
1551 pgcnt_t total;
1552 uint_t i;
1553 struct pcf *p;
1556 * Wait until there are enough free pages to satisfy our
1557 * entire request.
1558 * We set needfree += npages before prodding pageout, to make sure
1559 * it does real work when npages > lotsfree > freemem.
1561 VM_STAT_ADD(page_create_not_enough);
1563 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1564 checkagain:
1565 if ((flags & PG_NORELOC) &&
1566 kcage_freemem < kcage_throttlefree + npages)
1567 (void) kcage_create_throttle(npages, flags);
1569 if (freemem < npages + throttlefree)
1570 if (!page_create_throttle(npages, flags))
1571 return (0);
1573 if (pcf_decrement_bucket(npages) ||
1574 pcf_decrement_multiple(&total, npages, 0))
1575 return (1);
1578 * All of the pcf locks are held, there are not enough pages
1579 * to satisfy the request (npages < total).
1580 * Be sure to acquire the new_freemem_lock before dropping
1581 * the pcf locks. This prevents dropping wakeups in page_free().
1582 * The order is always pcf_lock then new_freemem_lock.
1584 * Since we hold all the pcf locks, it is a good time to set freemem.
1586 * If the caller does not want to wait, return now.
1587 * Else turn the pageout daemon loose to find something
1588 * and wait till it does.
1591 freemem = total;
1593 if ((flags & PG_WAIT) == 0) {
1594 pcf_release_all();
1596 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1597 "page_create_nomem:npages %ld freemem %ld", npages, freemem);
1598 return (0);
1601 ASSERT(proc_pageout != NULL);
1602 WAKE_PAGEOUT_SCANNER(page__create__wait);
1604 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1605 "page_create_sleep_start: freemem %ld needfree %ld",
1606 freemem, needfree);
1609 * We are going to wait.
1610 * We currently hold all of the pcf_locks,
1611 * get the new_freemem_lock (it protects freemem_wait),
1612 * before dropping the pcf_locks.
1614 mutex_enter(&new_freemem_lock);
1616 p = pcf;
1617 for (i = 0; i < pcf_fanout; i++) {
1618 p->pcf_wait++;
1619 mutex_exit(&p->pcf_lock);
1620 p++;
1623 needfree += npages;
1624 freemem_wait++;
1626 cv_wait(&freemem_cv, &new_freemem_lock);
1628 freemem_wait--;
1629 needfree -= npages;
1631 mutex_exit(&new_freemem_lock);
1633 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1634 "page_create_sleep_end: freemem %ld needfree %ld",
1635 freemem, needfree);
1637 VM_STAT_ADD(page_create_not_enough_again);
1638 goto checkagain;
1641 * A routine to do the opposite of page_create_wait().
1643 void
1644 page_create_putback(spgcnt_t npages)
1646 struct pcf *p;
1647 pgcnt_t lump;
1648 uint_t *which;
1651 * When a contiguous lump is broken up, we have to
1652 * deal with lots of pages (min 64) so lets spread
1653 * the wealth around.
1655 lump = roundup(npages, pcf_fanout) / pcf_fanout;
1656 freemem += npages;
1658 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1659 which = &p->pcf_count;
1661 mutex_enter(&p->pcf_lock);
1663 if (p->pcf_block) {
1664 which = &p->pcf_reserve;
1667 if (lump < npages) {
1668 *which += (uint_t)lump;
1669 npages -= lump;
1670 } else {
1671 *which += (uint_t)npages;
1672 npages = 0;
1675 if (p->pcf_wait) {
1676 mutex_enter(&new_freemem_lock);
1678 * Check to see if some other thread
1679 * is actually waiting. Another bucket
1680 * may have woken it up by now. If there
1681 * are no waiters, then set our pcf_wait
1682 * count to zero to avoid coming in here
1683 * next time.
1685 if (freemem_wait) {
1686 if (npages > 1) {
1687 cv_broadcast(&freemem_cv);
1688 } else {
1689 cv_signal(&freemem_cv);
1691 p->pcf_wait--;
1692 } else {
1693 p->pcf_wait = 0;
1695 mutex_exit(&new_freemem_lock);
1697 mutex_exit(&p->pcf_lock);
1699 ASSERT(npages == 0);
1703 * A helper routine for page_create_get_something.
1704 * The indenting got to deep down there.
1705 * Unblock the pcf counters. Any pages freed after
1706 * pcf_block got set are moved to pcf_count and
1707 * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1709 static void
1710 pcgs_unblock(void)
1712 int i;
1713 struct pcf *p;
1715 /* Update freemem while we're here. */
1716 freemem = 0;
1717 p = pcf;
1718 for (i = 0; i < pcf_fanout; i++) {
1719 mutex_enter(&p->pcf_lock);
1720 ASSERT(p->pcf_count == 0);
1721 p->pcf_count = p->pcf_reserve;
1722 p->pcf_block = 0;
1723 freemem += p->pcf_count;
1724 if (p->pcf_wait) {
1725 mutex_enter(&new_freemem_lock);
1726 if (freemem_wait) {
1727 if (p->pcf_reserve > 1) {
1728 cv_broadcast(&freemem_cv);
1729 p->pcf_wait = 0;
1730 } else {
1731 cv_signal(&freemem_cv);
1732 p->pcf_wait--;
1734 } else {
1735 p->pcf_wait = 0;
1737 mutex_exit(&new_freemem_lock);
1739 p->pcf_reserve = 0;
1740 mutex_exit(&p->pcf_lock);
1741 p++;
1746 * Called from page_create_va() when both the cache and free lists
1747 * have been checked once.
1749 * Either returns a page or panics since the accounting was done
1750 * way before we got here.
1752 * We don't come here often, so leave the accounting on permanently.
1755 #define MAX_PCGS 100
1757 #ifdef DEBUG
1758 #define PCGS_TRIES 100
1759 #else /* DEBUG */
1760 #define PCGS_TRIES 10
1761 #endif /* DEBUG */
1763 #ifdef VM_STATS
1764 uint_t pcgs_counts[PCGS_TRIES];
1765 uint_t pcgs_too_many;
1766 uint_t pcgs_entered;
1767 uint_t pcgs_entered_noreloc;
1768 uint_t pcgs_locked;
1769 uint_t pcgs_cagelocked;
1770 #endif /* VM_STATS */
1772 static page_t *
1773 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1774 caddr_t vaddr, uint_t flags)
1776 uint_t count;
1777 page_t *pp;
1778 uint_t locked, i;
1779 struct pcf *p;
1780 lgrp_t *lgrp;
1781 int cagelocked = 0;
1783 VM_STAT_ADD(pcgs_entered);
1786 * Tap any reserve freelists: if we fail now, we'll die
1787 * since the page(s) we're looking for have already been
1788 * accounted for.
1790 flags |= PG_PANIC;
1792 if ((flags & PG_NORELOC) != 0) {
1793 VM_STAT_ADD(pcgs_entered_noreloc);
1795 * Requests for free pages from critical threads
1796 * such as pageout still won't throttle here, but
1797 * we must try again, to give the cageout thread
1798 * another chance to catch up. Since we already
1799 * accounted for the pages, we had better get them
1800 * this time.
1802 * N.B. All non-critical threads acquire the pcgs_cagelock
1803 * to serialize access to the freelists. This implements a
1804 * turnstile-type synchornization to avoid starvation of
1805 * critical requests for PG_NORELOC memory by non-critical
1806 * threads: all non-critical threads must acquire a 'ticket'
1807 * before passing through, which entails making sure
1808 * kcage_freemem won't fall below minfree prior to grabbing
1809 * pages from the freelists.
1811 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1812 mutex_enter(&pcgs_cagelock);
1813 cagelocked = 1;
1814 VM_STAT_ADD(pcgs_cagelocked);
1819 * Time to get serious.
1820 * We failed to get a `correctly colored' page from both the
1821 * free and cache lists.
1822 * We escalate in stage.
1824 * First try both lists without worring about color.
1826 * Then, grab all page accounting locks (ie. pcf[]) and
1827 * steal any pages that they have and set the pcf_block flag to
1828 * stop deletions from the lists. This will help because
1829 * a page can get added to the free list while we are looking
1830 * at the cache list, then another page could be added to the cache
1831 * list allowing the page on the free list to be removed as we
1832 * move from looking at the cache list to the free list. This
1833 * could happen over and over. We would never find the page
1834 * we have accounted for.
1836 * Noreloc pages are a subset of the global (relocatable) page pool.
1837 * They are not tracked separately in the pcf bins, so it is
1838 * impossible to know when doing pcf accounting if the available
1839 * page(s) are noreloc pages or not. When looking for a noreloc page
1840 * it is quite easy to end up here even if the global (relocatable)
1841 * page pool has plenty of free pages but the noreloc pool is empty.
1843 * When the noreloc pool is empty (or low), additional noreloc pages
1844 * are created by converting pages from the global page pool. This
1845 * process will stall during pcf accounting if the pcf bins are
1846 * already locked. Such is the case when a noreloc allocation is
1847 * looping here in page_create_get_something waiting for more noreloc
1848 * pages to appear.
1850 * Short of adding a new field to the pcf bins to accurately track
1851 * the number of free noreloc pages, we instead do not grab the
1852 * pcgs_lock, do not set the pcf blocks and do not timeout when
1853 * allocating a noreloc page. This allows noreloc allocations to
1854 * loop without blocking global page pool allocations.
1856 * NOTE: the behaviour of page_create_get_something has not changed
1857 * for the case of global page pool allocations.
1860 flags &= ~PG_MATCH_COLOR;
1861 locked = 0;
1862 #if defined(__x86)
1863 flags = page_create_update_flags_x86(flags);
1864 #endif
1866 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1868 for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1869 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1870 flags, lgrp);
1871 if (pp == NULL) {
1872 pp = page_get_cachelist(vp, off, seg, vaddr,
1873 flags, lgrp);
1875 if (pp == NULL) {
1877 * Serialize. Don't fight with other pcgs().
1879 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1880 mutex_enter(&pcgs_lock);
1881 VM_STAT_ADD(pcgs_locked);
1882 locked = 1;
1883 p = pcf;
1884 for (i = 0; i < pcf_fanout; i++) {
1885 mutex_enter(&p->pcf_lock);
1886 ASSERT(p->pcf_block == 0);
1887 p->pcf_block = 1;
1888 p->pcf_reserve = p->pcf_count;
1889 p->pcf_count = 0;
1890 mutex_exit(&p->pcf_lock);
1891 p++;
1893 freemem = 0;
1896 if (count) {
1898 * Since page_free() puts pages on
1899 * a list then accounts for it, we
1900 * just have to wait for page_free()
1901 * to unlock any page it was working
1902 * with. The page_lock()-page_reclaim()
1903 * path falls in the same boat.
1905 * We don't need to check on the
1906 * PG_WAIT flag, we have already
1907 * accounted for the page we are
1908 * looking for in page_create_va().
1910 * We just wait a moment to let any
1911 * locked pages on the lists free up,
1912 * then continue around and try again.
1914 * Will be awakened by set_freemem().
1916 mutex_enter(&pcgs_wait_lock);
1917 cv_wait(&pcgs_cv, &pcgs_wait_lock);
1918 mutex_exit(&pcgs_wait_lock);
1920 } else {
1921 #ifdef VM_STATS
1922 if (count >= PCGS_TRIES) {
1923 VM_STAT_ADD(pcgs_too_many);
1924 } else {
1925 VM_STAT_ADD(pcgs_counts[count]);
1927 #endif
1928 if (locked) {
1929 pcgs_unblock();
1930 mutex_exit(&pcgs_lock);
1932 if (cagelocked)
1933 mutex_exit(&pcgs_cagelock);
1934 return (pp);
1938 * we go down holding the pcf locks.
1940 panic("no %spage found %d",
1941 ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1942 /*NOTREACHED*/
1946 * Create enough pages for "bytes" worth of data starting at
1947 * "off" in "vp".
1949 * Where flag must be one of:
1951 * PG_EXCL: Exclusive create (fail if any page already
1952 * exists in the page cache) which does not
1953 * wait for memory to become available.
1955 * PG_WAIT: Non-exclusive create which can wait for
1956 * memory to become available.
1958 * PG_PHYSCONTIG: Allocate physically contiguous pages.
1959 * (Not Supported)
1961 * A doubly linked list of pages is returned to the caller. Each page
1962 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1963 * lock.
1965 * Unable to change the parameters to page_create() in a minor release,
1966 * we renamed page_create() to page_create_va(), changed all known calls
1967 * from page_create() to page_create_va(), and created this wrapper.
1969 * Upon a major release, we should break compatibility by deleting this
1970 * wrapper, and replacing all the strings "page_create_va", with "page_create".
1972 * NOTE: There is a copy of this interface as page_create_io() in
1973 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1974 * there.
1976 page_t *
1977 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1979 caddr_t random_vaddr;
1980 struct seg kseg;
1982 #ifdef DEBUG
1983 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1984 (void *)caller());
1985 #endif
1987 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1988 (uintptr_t)(off >> PAGESHIFT));
1989 kseg.s_as = &kas;
1991 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1994 #ifdef DEBUG
1995 uint32_t pg_alloc_pgs_mtbf = 0;
1996 #endif
1999 * Used for large page support. It will attempt to allocate
2000 * a large page(s) off the freelist.
2002 * Returns non zero on failure.
2005 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2006 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2008 pgcnt_t npgs, curnpgs, totpgs;
2009 size_t pgsz;
2010 page_t *pplist = NULL, *pp;
2011 int err = 0;
2012 lgrp_t *lgrp;
2014 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2015 ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2018 * Check if system heavily prefers local large pages over remote
2019 * on systems with multiple lgroups.
2021 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2022 pgflags = PG_LOCAL;
2025 VM_STAT_ADD(alloc_pages[0]);
2027 #ifdef DEBUG
2028 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2029 return (ENOMEM);
2031 #endif
2034 * One must be NULL but not both.
2035 * And one must be non NULL but not both.
2037 ASSERT(basepp != NULL || ppa != NULL);
2038 ASSERT(basepp == NULL || ppa == NULL);
2040 #if defined(__x86)
2041 while (page_chk_freelist(szc) == 0) {
2042 VM_STAT_ADD(alloc_pages[8]);
2043 if (anypgsz == 0 || --szc == 0)
2044 return (ENOMEM);
2046 #endif
2048 pgsz = page_get_pagesize(szc);
2049 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2051 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2053 (void) page_create_wait(npgs, PG_WAIT);
2055 while (npgs && szc) {
2056 lgrp = lgrp_mem_choose(seg, addr, pgsz);
2057 if (pgflags == PG_LOCAL) {
2058 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2059 pgflags, lgrp);
2060 if (pp == NULL) {
2061 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2062 0, lgrp);
2064 } else {
2065 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2066 0, lgrp);
2068 if (pp != NULL) {
2069 VM_STAT_ADD(alloc_pages[1]);
2070 page_list_concat(&pplist, &pp);
2071 ASSERT(npgs >= curnpgs);
2072 npgs -= curnpgs;
2073 } else if (anypgsz) {
2074 VM_STAT_ADD(alloc_pages[2]);
2075 szc--;
2076 pgsz = page_get_pagesize(szc);
2077 curnpgs = pgsz >> PAGESHIFT;
2078 } else {
2079 VM_STAT_ADD(alloc_pages[3]);
2080 ASSERT(npgs == totpgs);
2081 page_create_putback(npgs);
2082 return (ENOMEM);
2085 if (szc == 0) {
2086 VM_STAT_ADD(alloc_pages[4]);
2087 ASSERT(npgs != 0);
2088 page_create_putback(npgs);
2089 err = ENOMEM;
2090 } else if (basepp != NULL) {
2091 ASSERT(npgs == 0);
2092 ASSERT(ppa == NULL);
2093 *basepp = pplist;
2096 npgs = totpgs - npgs;
2097 pp = pplist;
2100 * Clear the free and age bits. Also if we were passed in a ppa then
2101 * fill it in with all the constituent pages from the large page. But
2102 * if we failed to allocate all the pages just free what we got.
2104 while (npgs != 0) {
2105 ASSERT(PP_ISFREE(pp));
2106 ASSERT(PP_ISAGED(pp));
2107 if (ppa != NULL || err != 0) {
2108 if (err == 0) {
2109 VM_STAT_ADD(alloc_pages[5]);
2110 PP_CLRFREE(pp);
2111 PP_CLRAGED(pp);
2112 page_sub(&pplist, pp);
2113 *ppa++ = pp;
2114 npgs--;
2115 } else {
2116 VM_STAT_ADD(alloc_pages[6]);
2117 ASSERT(pp->p_szc != 0);
2118 curnpgs = page_get_pagecnt(pp->p_szc);
2119 page_list_break(&pp, &pplist, curnpgs);
2120 page_list_add_pages(pp, 0);
2121 page_create_putback(curnpgs);
2122 ASSERT(npgs >= curnpgs);
2123 npgs -= curnpgs;
2125 pp = pplist;
2126 } else {
2127 VM_STAT_ADD(alloc_pages[7]);
2128 PP_CLRFREE(pp);
2129 PP_CLRAGED(pp);
2130 pp = pp->p_next;
2131 npgs--;
2134 return (err);
2138 * Get a single large page off of the freelists, and set it up for use.
2139 * Number of bytes requested must be a supported page size.
2141 * Note that this call may fail even if there is sufficient
2142 * memory available or PG_WAIT is set, so the caller must
2143 * be willing to fallback on page_create_va(), block and retry,
2144 * or fail the requester.
2146 page_t *
2147 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2148 struct seg *seg, caddr_t vaddr, void *arg)
2150 pgcnt_t npages;
2151 page_t *pp;
2152 page_t *rootpp;
2153 lgrp_t *lgrp;
2154 lgrp_id_t *lgrpid = (lgrp_id_t *)arg;
2156 ASSERT(vp != NULL);
2158 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2159 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2160 /* but no others */
2162 ASSERT((flags & PG_EXCL) == PG_EXCL);
2164 npages = btop(bytes);
2166 if (!kcage_on || panicstr) {
2168 * Cage is OFF, or we are single threaded in
2169 * panic, so make everything a RELOC request.
2171 flags &= ~PG_NORELOC;
2175 * Make sure there's adequate physical memory available.
2176 * Note: PG_WAIT is ignored here.
2178 if (freemem <= throttlefree + npages) {
2179 VM_STAT_ADD(page_create_large_cnt[1]);
2180 return (NULL);
2184 * If cage is on, dampen draw from cage when available
2185 * cage space is low.
2187 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) &&
2188 kcage_freemem < kcage_throttlefree + npages) {
2191 * The cage is on, the caller wants PG_NORELOC
2192 * pages and available cage memory is very low.
2193 * Call kcage_create_throttle() to attempt to
2194 * control demand on the cage.
2196 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2197 VM_STAT_ADD(page_create_large_cnt[2]);
2198 return (NULL);
2202 if (!pcf_decrement_bucket(npages) &&
2203 !pcf_decrement_multiple(NULL, npages, 1)) {
2204 VM_STAT_ADD(page_create_large_cnt[4]);
2205 return (NULL);
2209 * This is where this function behaves fundamentally differently
2210 * than page_create_va(); since we're intending to map the page
2211 * with a single TTE, we have to get it as a physically contiguous
2212 * hardware pagesize chunk. If we can't, we fail.
2214 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2215 LGRP_EXISTS(lgrp_table[*lgrpid]))
2216 lgrp = lgrp_table[*lgrpid];
2217 else
2218 lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2220 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2221 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2222 page_create_putback(npages);
2223 VM_STAT_ADD(page_create_large_cnt[5]);
2224 return (NULL);
2228 * if we got the page with the wrong mtype give it back this is a
2229 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2230 * inside "if" and the workaround becomes just a nop
2232 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2233 page_list_add_pages(rootpp, 0);
2234 page_create_putback(npages);
2235 VM_STAT_ADD(page_create_large_cnt[6]);
2236 return (NULL);
2240 * If satisfying this request has left us with too little
2241 * memory, start the wheels turning to get some back. The
2242 * first clause of the test prevents waking up the pageout
2243 * daemon in situations where it would decide that there's
2244 * nothing to do.
2246 if (nscan < desscan && freemem < minfree) {
2247 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2248 "pageout_cv_signal:freemem %ld", freemem);
2249 WAKE_PAGEOUT_SCANNER(va__large);
2252 pp = rootpp;
2253 while (npages--) {
2254 ASSERT(PAGE_EXCL(pp));
2255 ASSERT(pp->p_vnode == NULL);
2256 ASSERT(!hat_page_is_mapped(pp));
2257 PP_CLRFREE(pp);
2258 PP_CLRAGED(pp);
2259 if (!page_hashin(pp, vp, off, NULL))
2260 panic("page_create_large: hashin failed: page %p",
2261 (void *)pp);
2262 page_io_lock(pp);
2263 off += PAGESIZE;
2264 pp = pp->p_next;
2267 VM_STAT_ADD(page_create_large_cnt[0]);
2268 return (rootpp);
2271 page_t *
2272 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2273 struct seg *seg, caddr_t vaddr)
2275 page_t *plist = NULL;
2276 pgcnt_t npages;
2277 pgcnt_t found_on_free = 0;
2278 pgcnt_t pages_req;
2279 page_t *npp = NULL;
2280 struct pcf *p;
2281 lgrp_t *lgrp;
2283 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2284 "page_create_start:vp %p off %llx bytes %lu flags %x",
2285 vp, off, bytes, flags);
2287 ASSERT(bytes != 0 && vp != NULL);
2289 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2290 panic("page_create: invalid flags");
2291 /*NOTREACHED*/
2293 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2294 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2295 /* but no others */
2297 pages_req = npages = btopr(bytes);
2299 * Try to see whether request is too large to *ever* be
2300 * satisfied, in order to prevent deadlock. We arbitrarily
2301 * decide to limit maximum size requests to max_page_get.
2303 if (npages >= max_page_get) {
2304 if ((flags & PG_WAIT) == 0) {
2305 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2306 "page_create_toobig:vp %p off %llx npages "
2307 "%lu max_page_get %lu",
2308 vp, off, npages, max_page_get);
2309 return (NULL);
2310 } else {
2311 cmn_err(CE_WARN,
2312 "Request for too much kernel memory "
2313 "(%lu bytes), will hang forever", bytes);
2314 for (;;)
2315 delay(1000000000);
2319 if (!kcage_on || panicstr) {
2321 * Cage is OFF, or we are single threaded in
2322 * panic, so make everything a RELOC request.
2324 flags &= ~PG_NORELOC;
2327 if (freemem <= throttlefree + npages)
2328 if (!page_create_throttle(npages, flags))
2329 return (NULL);
2332 * If cage is on, dampen draw from cage when available
2333 * cage space is low.
2335 if ((flags & PG_NORELOC) &&
2336 kcage_freemem < kcage_throttlefree + npages) {
2339 * The cage is on, the caller wants PG_NORELOC
2340 * pages and available cage memory is very low.
2341 * Call kcage_create_throttle() to attempt to
2342 * control demand on the cage.
2344 if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2345 return (NULL);
2348 VM_STAT_ADD(page_create_cnt[0]);
2350 if (!pcf_decrement_bucket(npages)) {
2352 * Have to look harder. If npages is greater than
2353 * one, then we might have to coalesce the counters.
2355 * Go wait. We come back having accounted
2356 * for the memory.
2358 VM_STAT_ADD(page_create_cnt[1]);
2359 if (!page_create_wait(npages, flags)) {
2360 VM_STAT_ADD(page_create_cnt[2]);
2361 return (NULL);
2365 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2366 "page_create_success:vp %p off %llx", vp, off);
2369 * If satisfying this request has left us with too little
2370 * memory, start the wheels turning to get some back. The
2371 * first clause of the test prevents waking up the pageout
2372 * daemon in situations where it would decide that there's
2373 * nothing to do.
2375 if (nscan < desscan && freemem < minfree) {
2376 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2377 "pageout_cv_signal:freemem %ld", freemem);
2378 WAKE_PAGEOUT_SCANNER(va);
2382 * Loop around collecting the requested number of pages.
2383 * Most of the time, we have to `create' a new page. With
2384 * this in mind, pull the page off the free list before
2385 * getting the hash lock. This will minimize the hash
2386 * lock hold time, nesting, and the like. If it turns
2387 * out we don't need the page, we put it back at the end.
2389 while (npages--) {
2390 page_t *pp;
2391 kmutex_t *phm = NULL;
2392 ulong_t index;
2394 index = PAGE_HASH_FUNC(vp, off);
2395 top:
2396 ASSERT(phm == NULL);
2397 ASSERT(index == PAGE_HASH_FUNC(vp, off));
2398 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2400 if (npp == NULL) {
2402 * Try to get a page from the freelist (ie,
2403 * a page with no [vp, off] tag). If that
2404 * fails, use the cachelist.
2406 * During the first attempt at both the free
2407 * and cache lists we try for the correct color.
2410 * XXXX-how do we deal with virtual indexed
2411 * caches and and colors?
2413 VM_STAT_ADD(page_create_cnt[4]);
2415 * Get lgroup to allocate next page of shared memory
2416 * from and use it to specify where to allocate
2417 * the physical memory
2419 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2420 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2421 flags | PG_MATCH_COLOR, lgrp);
2422 if (npp == NULL) {
2423 npp = page_get_cachelist(vp, off, seg,
2424 vaddr, flags | PG_MATCH_COLOR, lgrp);
2425 if (npp == NULL) {
2426 npp = page_create_get_something(vp,
2427 off, seg, vaddr,
2428 flags & ~PG_MATCH_COLOR);
2431 if (PP_ISAGED(npp) == 0) {
2433 * Since this page came from the
2434 * cachelist, we must destroy the
2435 * old vnode association.
2437 page_hashout(npp, NULL);
2443 * We own this page!
2445 ASSERT(PAGE_EXCL(npp));
2446 ASSERT(npp->p_vnode == NULL);
2447 ASSERT(!hat_page_is_mapped(npp));
2448 PP_CLRFREE(npp);
2449 PP_CLRAGED(npp);
2452 * Here we have a page in our hot little mits and are
2453 * just waiting to stuff it on the appropriate lists.
2454 * Get the mutex and check to see if it really does
2455 * not exist.
2457 phm = PAGE_HASH_MUTEX(index);
2458 mutex_enter(phm);
2459 pp = page_hash_search(index, vp, off);
2460 if (pp == NULL) {
2461 VM_STAT_ADD(page_create_new);
2462 pp = npp;
2463 npp = NULL;
2464 if (!page_hashin(pp, vp, off, phm)) {
2466 * Since we hold the page hash mutex and
2467 * just searched for this page, page_hashin
2468 * had better not fail. If it does, that
2469 * means somethread did not follow the
2470 * page hash mutex rules. Panic now and
2471 * get it over with. As usual, go down
2472 * holding all the locks.
2474 ASSERT(MUTEX_HELD(phm));
2475 panic("page_create: "
2476 "hashin failed %p %p %llx %p",
2477 (void *)pp, (void *)vp, off, (void *)phm);
2478 /*NOTREACHED*/
2480 ASSERT(MUTEX_HELD(phm));
2481 mutex_exit(phm);
2482 phm = NULL;
2485 * Hat layer locking need not be done to set
2486 * the following bits since the page is not hashed
2487 * and was on the free list (i.e., had no mappings).
2489 * Set the reference bit to protect
2490 * against immediate pageout
2492 * XXXmh modify freelist code to set reference
2493 * bit so we don't have to do it here.
2495 page_set_props(pp, P_REF);
2496 found_on_free++;
2497 } else {
2498 VM_STAT_ADD(page_create_exists);
2499 if (flags & PG_EXCL) {
2501 * Found an existing page, and the caller
2502 * wanted all new pages. Undo all of the work
2503 * we have done.
2505 mutex_exit(phm);
2506 phm = NULL;
2507 while (plist != NULL) {
2508 pp = plist;
2509 page_sub(&plist, pp);
2510 page_io_unlock(pp);
2511 /* large pages should not end up here */
2512 ASSERT(pp->p_szc == 0);
2513 /*LINTED: constant in conditional ctx*/
2514 VN_DISPOSE(pp, B_INVAL, 0, kcred);
2516 VM_STAT_ADD(page_create_found_one);
2517 goto fail;
2519 ASSERT(flags & PG_WAIT);
2520 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2522 * Start all over again if we blocked trying
2523 * to lock the page.
2525 mutex_exit(phm);
2526 VM_STAT_ADD(page_create_page_lock_failed);
2527 phm = NULL;
2528 goto top;
2530 mutex_exit(phm);
2531 phm = NULL;
2533 if (PP_ISFREE(pp)) {
2534 ASSERT(PP_ISAGED(pp) == 0);
2535 VM_STAT_ADD(pagecnt.pc_get_cache);
2536 page_list_sub(pp, PG_CACHE_LIST);
2537 PP_CLRFREE(pp);
2538 found_on_free++;
2543 * Got a page! It is locked. Acquire the i/o
2544 * lock since we are going to use the p_next and
2545 * p_prev fields to link the requested pages together.
2547 page_io_lock(pp);
2548 page_add(&plist, pp);
2549 plist = plist->p_next;
2550 off += PAGESIZE;
2551 vaddr += PAGESIZE;
2554 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2555 fail:
2556 if (npp != NULL) {
2558 * Did not need this page after all.
2559 * Put it back on the free list.
2561 VM_STAT_ADD(page_create_putbacks);
2562 PP_SETFREE(npp);
2563 PP_SETAGED(npp);
2564 npp->p_offset = (u_offset_t)-1;
2565 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2566 page_unlock(npp);
2570 ASSERT(pages_req >= found_on_free);
2573 uint_t overshoot = (uint_t)(pages_req - found_on_free);
2575 if (overshoot) {
2576 VM_STAT_ADD(page_create_overshoot);
2577 p = &pcf[PCF_INDEX()];
2578 mutex_enter(&p->pcf_lock);
2579 if (p->pcf_block) {
2580 p->pcf_reserve += overshoot;
2581 } else {
2582 p->pcf_count += overshoot;
2583 if (p->pcf_wait) {
2584 mutex_enter(&new_freemem_lock);
2585 if (freemem_wait) {
2586 cv_signal(&freemem_cv);
2587 p->pcf_wait--;
2588 } else {
2589 p->pcf_wait = 0;
2591 mutex_exit(&new_freemem_lock);
2594 mutex_exit(&p->pcf_lock);
2595 /* freemem is approximate, so this test OK */
2596 if (!p->pcf_block)
2597 freemem += overshoot;
2601 return (plist);
2605 * One or more constituent pages of this large page has been marked
2606 * toxic. Simply demote the large page to PAGESIZE pages and let
2607 * page_free() handle it. This routine should only be called by
2608 * large page free routines (page_free_pages() and page_destroy_pages().
2609 * All pages are locked SE_EXCL and have already been marked free.
2611 static void
2612 page_free_toxic_pages(page_t *rootpp)
2614 page_t *tpp;
2615 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2616 uint_t szc = rootpp->p_szc;
2618 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2619 ASSERT(tpp->p_szc == szc);
2620 ASSERT((PAGE_EXCL(tpp) &&
2621 !page_iolock_assert(tpp)) || panicstr);
2622 tpp->p_szc = 0;
2625 while (rootpp != NULL) {
2626 tpp = rootpp;
2627 page_sub(&rootpp, tpp);
2628 ASSERT(PP_ISFREE(tpp));
2629 PP_CLRFREE(tpp);
2630 page_free(tpp, 1);
2635 * Put page on the "free" list.
2636 * The free list is really two lists maintained by
2637 * the PSM of whatever machine we happen to be on.
2639 void
2640 page_free(page_t *pp, int dontneed)
2642 struct pcf *p;
2643 uint_t pcf_index;
2645 ASSERT((PAGE_EXCL(pp) &&
2646 !page_iolock_assert(pp)) || panicstr);
2648 if (PP_ISFREE(pp)) {
2649 panic("page_free: page %p is free", (void *)pp);
2652 if (pp->p_szc != 0) {
2653 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2654 PP_ISKAS(pp)) {
2655 panic("page_free: anon or kernel "
2656 "or no vnode large page %p", (void *)pp);
2658 page_demote_vp_pages(pp);
2659 ASSERT(pp->p_szc == 0);
2663 * The page_struct_lock need not be acquired to examine these
2664 * fields since the page has an "exclusive" lock.
2666 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2667 pp->p_slckcnt != 0) {
2668 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2669 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2670 pp->p_cowcnt, pp->p_slckcnt);
2671 /*NOTREACHED*/
2674 ASSERT(!hat_page_getshare(pp));
2676 PP_SETFREE(pp);
2677 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2678 !hat_ismod(pp));
2679 page_clr_all_props(pp);
2680 ASSERT(!hat_page_getshare(pp));
2683 * Now we add the page to the head of the free list.
2684 * But if this page is associated with a paged vnode
2685 * then we adjust the head forward so that the page is
2686 * effectively at the end of the list.
2688 if (pp->p_vnode == NULL) {
2690 * Page has no identity, put it on the free list.
2692 PP_SETAGED(pp);
2693 pp->p_offset = (u_offset_t)-1;
2694 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2695 VM_STAT_ADD(pagecnt.pc_free_free);
2696 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2697 "page_free_free:pp %p", pp);
2698 } else {
2699 PP_CLRAGED(pp);
2701 if (!dontneed) {
2702 /* move it to the tail of the list */
2703 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2705 VM_STAT_ADD(pagecnt.pc_free_cache);
2706 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2707 "page_free_cache_tail:pp %p", pp);
2708 } else {
2709 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2711 VM_STAT_ADD(pagecnt.pc_free_dontneed);
2712 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2713 "page_free_cache_head:pp %p", pp);
2716 page_unlock(pp);
2719 * Now do the `freemem' accounting.
2721 pcf_index = PCF_INDEX();
2722 p = &pcf[pcf_index];
2724 mutex_enter(&p->pcf_lock);
2725 if (p->pcf_block) {
2726 p->pcf_reserve += 1;
2727 } else {
2728 p->pcf_count += 1;
2729 if (p->pcf_wait) {
2730 mutex_enter(&new_freemem_lock);
2732 * Check to see if some other thread
2733 * is actually waiting. Another bucket
2734 * may have woken it up by now. If there
2735 * are no waiters, then set our pcf_wait
2736 * count to zero to avoid coming in here
2737 * next time. Also, since only one page
2738 * was put on the free list, just wake
2739 * up one waiter.
2741 if (freemem_wait) {
2742 cv_signal(&freemem_cv);
2743 p->pcf_wait--;
2744 } else {
2745 p->pcf_wait = 0;
2747 mutex_exit(&new_freemem_lock);
2750 mutex_exit(&p->pcf_lock);
2752 /* freemem is approximate, so this test OK */
2753 if (!p->pcf_block)
2754 freemem += 1;
2758 * Put page on the "free" list during intial startup.
2759 * This happens during initial single threaded execution.
2761 void
2762 page_free_at_startup(page_t *pp)
2764 struct pcf *p;
2765 uint_t pcf_index;
2767 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2768 VM_STAT_ADD(pagecnt.pc_free_free);
2771 * Now do the `freemem' accounting.
2773 pcf_index = PCF_INDEX();
2774 p = &pcf[pcf_index];
2776 ASSERT(p->pcf_block == 0);
2777 ASSERT(p->pcf_wait == 0);
2778 p->pcf_count += 1;
2780 /* freemem is approximate, so this is OK */
2781 freemem += 1;
2784 void
2785 page_free_pages(page_t *pp)
2787 page_t *tpp, *rootpp = NULL;
2788 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
2789 pgcnt_t i;
2790 uint_t szc = pp->p_szc;
2792 VM_STAT_ADD(pagecnt.pc_free_pages);
2793 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2794 "page_free_free:pp %p", pp);
2796 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2797 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2798 panic("page_free_pages: not root page %p", (void *)pp);
2799 /*NOTREACHED*/
2802 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2803 ASSERT((PAGE_EXCL(tpp) &&
2804 !page_iolock_assert(tpp)) || panicstr);
2805 if (PP_ISFREE(tpp)) {
2806 panic("page_free_pages: page %p is free", (void *)tpp);
2807 /*NOTREACHED*/
2809 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2810 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2811 panic("page_free_pages %p", (void *)tpp);
2812 /*NOTREACHED*/
2815 ASSERT(!hat_page_getshare(tpp));
2816 ASSERT(tpp->p_vnode == NULL);
2817 ASSERT(tpp->p_szc == szc);
2819 PP_SETFREE(tpp);
2820 page_clr_all_props(tpp);
2821 PP_SETAGED(tpp);
2822 tpp->p_offset = (u_offset_t)-1;
2823 ASSERT(tpp->p_next == tpp);
2824 ASSERT(tpp->p_prev == tpp);
2825 page_list_concat(&rootpp, &tpp);
2827 ASSERT(rootpp == pp);
2829 page_list_add_pages(rootpp, 0);
2830 page_create_putback(pgcnt);
2833 int free_pages = 1;
2836 * This routine attempts to return pages to the cachelist via page_release().
2837 * It does not *have* to be successful in all cases, since the pageout scanner
2838 * will catch any pages it misses. It does need to be fast and not introduce
2839 * too much overhead.
2841 * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2842 * don't lock and retry. This is ok, since the page scanner will eventually
2843 * find any page we miss in free_vp_pages().
2845 void
2846 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2848 page_t *pp;
2849 u_offset_t eoff;
2850 extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2852 eoff = off + len;
2854 if (free_pages == 0)
2855 return;
2856 if (swap_in_range(vp, off, len))
2857 return;
2859 for (; off < eoff; off += PAGESIZE) {
2862 * find the page using a fast, but inexact search. It'll be OK
2863 * if a few pages slip through the cracks here.
2865 pp = page_exists(vp, off);
2868 * If we didn't find the page (it may not exist), the page
2869 * is free, looks still in use (shared), or we can't lock it,
2870 * just give up.
2872 if (pp == NULL ||
2873 PP_ISFREE(pp) ||
2874 page_share_cnt(pp) > 0 ||
2875 !page_trylock(pp, SE_EXCL))
2876 continue;
2879 * Once we have locked pp, verify that it's still the
2880 * correct page and not already free
2882 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2883 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2884 page_unlock(pp);
2885 continue;
2889 * try to release the page...
2891 (void) page_release(pp, 1);
2896 * Reclaim the given page from the free list.
2897 * If pp is part of a large pages, only the given constituent page is reclaimed
2898 * and the large page it belonged to will be demoted. This can only happen
2899 * if the page is not on the cachelist.
2901 * Returns 1 on success or 0 on failure.
2903 * The page is unlocked if it can't be reclaimed (when freemem == 0).
2904 * If `lock' is non-null, it will be dropped and re-acquired if
2905 * the routine must wait while freemem is 0.
2907 * As it turns out, boot_getpages() does this. It picks a page,
2908 * based on where OBP mapped in some address, gets its pfn, searches
2909 * the memsegs, locks the page, then pulls it off the free list!
2912 page_reclaim(page_t *pp, kmutex_t *lock)
2914 struct pcf *p;
2915 struct cpu *cpup;
2916 int enough;
2917 uint_t i;
2919 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2920 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2923 * If `freemem' is 0, we cannot reclaim this page from the
2924 * freelist, so release every lock we might hold: the page,
2925 * and the `lock' before blocking.
2927 * The only way `freemem' can become 0 while there are pages
2928 * marked free (have their p->p_free bit set) is when the
2929 * system is low on memory and doing a page_create(). In
2930 * order to guarantee that once page_create() starts acquiring
2931 * pages it will be able to get all that it needs since `freemem'
2932 * was decreased by the requested amount. So, we need to release
2933 * this page, and let page_create() have it.
2935 * Since `freemem' being zero is not supposed to happen, just
2936 * use the usual hash stuff as a starting point. If that bucket
2937 * is empty, then assume the worst, and start at the beginning
2938 * of the pcf array. If we always start at the beginning
2939 * when acquiring more than one pcf lock, there won't be any
2940 * deadlock problems.
2943 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2945 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2946 pcf_acquire_all();
2947 goto page_reclaim_nomem;
2950 enough = pcf_decrement_bucket(1);
2952 if (!enough) {
2953 VM_STAT_ADD(page_reclaim_zero);
2955 * Check again. Its possible that some other thread
2956 * could have been right behind us, and added one
2957 * to a list somewhere. Acquire each of the pcf locks
2958 * until we find a page.
2960 p = pcf;
2961 for (i = 0; i < pcf_fanout; i++) {
2962 mutex_enter(&p->pcf_lock);
2963 if (p->pcf_count >= 1) {
2964 p->pcf_count -= 1;
2966 * freemem is not protected by any lock. Thus,
2967 * we cannot have any assertion containing
2968 * freemem here.
2970 freemem -= 1;
2971 enough = 1;
2972 break;
2974 p++;
2977 if (!enough) {
2978 page_reclaim_nomem:
2980 * We really can't have page `pp'.
2981 * Time for the no-memory dance with
2982 * page_free(). This is just like
2983 * page_create_wait(). Plus the added
2984 * attraction of releasing whatever mutex
2985 * we held when we were called with in `lock'.
2986 * Page_unlock() will wakeup any thread
2987 * waiting around for this page.
2989 if (lock) {
2990 VM_STAT_ADD(page_reclaim_zero_locked);
2991 mutex_exit(lock);
2993 page_unlock(pp);
2996 * get this before we drop all the pcf locks.
2998 mutex_enter(&new_freemem_lock);
3000 p = pcf;
3001 for (i = 0; i < pcf_fanout; i++) {
3002 p->pcf_wait++;
3003 mutex_exit(&p->pcf_lock);
3004 p++;
3007 freemem_wait++;
3008 cv_wait(&freemem_cv, &new_freemem_lock);
3009 freemem_wait--;
3011 mutex_exit(&new_freemem_lock);
3013 if (lock) {
3014 mutex_enter(lock);
3016 return (0);
3020 * The pcf accounting has been done,
3021 * though none of the pcf_wait flags have been set,
3022 * drop the locks and continue on.
3024 while (p >= pcf) {
3025 mutex_exit(&p->pcf_lock);
3026 p--;
3031 VM_STAT_ADD(pagecnt.pc_reclaim);
3034 * page_list_sub will handle the case where pp is a large page.
3035 * It's possible that the page was promoted while on the freelist
3037 if (PP_ISAGED(pp)) {
3038 page_list_sub(pp, PG_FREE_LIST);
3039 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3040 "page_reclaim_free:pp %p", pp);
3041 } else {
3042 page_list_sub(pp, PG_CACHE_LIST);
3043 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3044 "page_reclaim_cache:pp %p", pp);
3048 * clear the p_free & p_age bits since this page is no longer
3049 * on the free list. Notice that there was a brief time where
3050 * a page is marked as free, but is not on the list.
3052 * Set the reference bit to protect against immediate pageout.
3054 PP_CLRFREE(pp);
3055 PP_CLRAGED(pp);
3056 page_set_props(pp, P_REF);
3058 CPU_STATS_ENTER_K();
3059 cpup = CPU; /* get cpup now that CPU cannot change */
3060 CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3061 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3062 CPU_STATS_EXIT_K();
3063 ASSERT(pp->p_szc == 0);
3065 return (1);
3069 * Destroy identity of the page and put it back on
3070 * the page free list. Assumes that the caller has
3071 * acquired the "exclusive" lock on the page.
3073 void
3074 page_destroy(page_t *pp, int dontfree)
3076 ASSERT((PAGE_EXCL(pp) &&
3077 !page_iolock_assert(pp)) || panicstr);
3078 ASSERT(pp->p_slckcnt == 0 || panicstr);
3080 if (pp->p_szc != 0) {
3081 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3082 PP_ISKAS(pp)) {
3083 panic("page_destroy: anon or kernel or no vnode "
3084 "large page %p", (void *)pp);
3086 page_demote_vp_pages(pp);
3087 ASSERT(pp->p_szc == 0);
3090 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3093 * Unload translations, if any, then hash out the
3094 * page to erase its identity.
3096 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3097 page_hashout(pp, NULL);
3099 if (!dontfree) {
3101 * Acquire the "freemem_lock" for availrmem.
3102 * The page_struct_lock need not be acquired for lckcnt
3103 * and cowcnt since the page has an "exclusive" lock.
3104 * We are doing a modified version of page_pp_unlock here.
3106 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3107 mutex_enter(&freemem_lock);
3108 if (pp->p_lckcnt != 0) {
3109 availrmem++;
3110 pages_locked--;
3111 pp->p_lckcnt = 0;
3113 if (pp->p_cowcnt != 0) {
3114 availrmem += pp->p_cowcnt;
3115 pages_locked -= pp->p_cowcnt;
3116 pp->p_cowcnt = 0;
3118 mutex_exit(&freemem_lock);
3121 * Put the page on the "free" list.
3123 page_free(pp, 0);
3127 void
3128 page_destroy_pages(page_t *pp)
3131 page_t *tpp, *rootpp = NULL;
3132 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
3133 pgcnt_t i, pglcks = 0;
3134 uint_t szc = pp->p_szc;
3136 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3138 VM_STAT_ADD(pagecnt.pc_destroy_pages);
3140 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3142 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3143 panic("page_destroy_pages: not root page %p", (void *)pp);
3144 /*NOTREACHED*/
3147 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3148 ASSERT((PAGE_EXCL(tpp) &&
3149 !page_iolock_assert(tpp)) || panicstr);
3150 ASSERT(tpp->p_slckcnt == 0 || panicstr);
3151 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3152 page_hashout(tpp, NULL);
3153 ASSERT(tpp->p_offset == (u_offset_t)-1);
3154 if (tpp->p_lckcnt != 0) {
3155 pglcks++;
3156 tpp->p_lckcnt = 0;
3157 } else if (tpp->p_cowcnt != 0) {
3158 pglcks += tpp->p_cowcnt;
3159 tpp->p_cowcnt = 0;
3161 ASSERT(!hat_page_getshare(tpp));
3162 ASSERT(tpp->p_vnode == NULL);
3163 ASSERT(tpp->p_szc == szc);
3165 PP_SETFREE(tpp);
3166 page_clr_all_props(tpp);
3167 PP_SETAGED(tpp);
3168 ASSERT(tpp->p_next == tpp);
3169 ASSERT(tpp->p_prev == tpp);
3170 page_list_concat(&rootpp, &tpp);
3173 ASSERT(rootpp == pp);
3174 if (pglcks != 0) {
3175 mutex_enter(&freemem_lock);
3176 availrmem += pglcks;
3177 mutex_exit(&freemem_lock);
3180 page_list_add_pages(rootpp, 0);
3181 page_create_putback(pgcnt);
3185 * Similar to page_destroy(), but destroys pages which are
3186 * locked and known to be on the page free list. Since
3187 * the page is known to be free and locked, no one can access
3188 * it.
3190 * Also, the number of free pages does not change.
3192 void
3193 page_destroy_free(page_t *pp)
3195 ASSERT(PAGE_EXCL(pp));
3196 ASSERT(PP_ISFREE(pp));
3197 ASSERT(pp->p_vnode);
3198 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3199 ASSERT(!hat_page_is_mapped(pp));
3200 ASSERT(PP_ISAGED(pp) == 0);
3201 ASSERT(pp->p_szc == 0);
3203 VM_STAT_ADD(pagecnt.pc_destroy_free);
3204 page_list_sub(pp, PG_CACHE_LIST);
3206 page_hashout(pp, NULL);
3207 ASSERT(pp->p_vnode == NULL);
3208 ASSERT(pp->p_offset == (u_offset_t)-1);
3209 ASSERT(pp->p_hash == NULL);
3211 PP_SETAGED(pp);
3212 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3213 page_unlock(pp);
3215 mutex_enter(&new_freemem_lock);
3216 if (freemem_wait) {
3217 cv_signal(&freemem_cv);
3219 mutex_exit(&new_freemem_lock);
3223 * Rename the page "opp" to have an identity specified
3224 * by [vp, off]. If a page already exists with this name
3225 * it is locked and destroyed. Note that the page's
3226 * translations are not unloaded during the rename.
3228 * This routine is used by the anon layer to "steal" the
3229 * original page and is not unlike destroying a page and
3230 * creating a new page using the same page frame.
3232 * XXX -- Could deadlock if caller 1 tries to rename A to B while
3233 * caller 2 tries to rename B to A.
3235 void
3236 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3238 page_t *pp;
3239 int olckcnt = 0;
3240 int ocowcnt = 0;
3241 kmutex_t *phm;
3242 ulong_t index;
3244 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3245 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3246 ASSERT(PP_ISFREE(opp) == 0);
3248 VM_STAT_ADD(page_rename_count);
3250 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3251 "page rename:pp %p vp %p off %llx", opp, vp, off);
3254 * CacheFS may call page_rename for a large NFS page
3255 * when both CacheFS and NFS mount points are used
3256 * by applications. Demote this large page before
3257 * renaming it, to ensure that there are no "partial"
3258 * large pages left lying around.
3260 if (opp->p_szc != 0) {
3261 vnode_t *ovp = opp->p_vnode;
3262 ASSERT(ovp != NULL);
3263 ASSERT(!IS_SWAPFSVP(ovp));
3264 ASSERT(!VN_ISKAS(ovp));
3265 page_demote_vp_pages(opp);
3266 ASSERT(opp->p_szc == 0);
3269 page_hashout(opp, NULL);
3270 PP_CLRAGED(opp);
3273 * Acquire the appropriate page hash lock, since
3274 * we're going to rename the page.
3276 index = PAGE_HASH_FUNC(vp, off);
3277 phm = PAGE_HASH_MUTEX(index);
3278 mutex_enter(phm);
3279 top:
3281 * Look for an existing page with this name and destroy it if found.
3282 * By holding the page hash lock all the way to the page_hashin()
3283 * call, we are assured that no page can be created with this
3284 * identity. In the case when the phm lock is dropped to undo any
3285 * hat layer mappings, the existing page is held with an "exclusive"
3286 * lock, again preventing another page from being created with
3287 * this identity.
3289 pp = page_hash_search(index, vp, off);
3290 if (pp != NULL) {
3291 VM_STAT_ADD(page_rename_exists);
3294 * As it turns out, this is one of only two places where
3295 * page_lock() needs to hold the passed in lock in the
3296 * successful case. In all of the others, the lock could
3297 * be dropped as soon as the attempt is made to lock
3298 * the page. It is tempting to add yet another arguement,
3299 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3301 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3303 * Went to sleep because the page could not
3304 * be locked. We were woken up when the page
3305 * was unlocked, or when the page was destroyed.
3306 * In either case, `phm' was dropped while we
3307 * slept. Hence we should not just roar through
3308 * this loop.
3310 goto top;
3314 * If an existing page is a large page, then demote
3315 * it to ensure that no "partial" large pages are
3316 * "created" after page_rename. An existing page
3317 * can be a CacheFS page, and can't belong to swapfs.
3319 if (hat_page_is_mapped(pp)) {
3321 * Unload translations. Since we hold the
3322 * exclusive lock on this page, the page
3323 * can not be changed while we drop phm.
3324 * This is also not a lock protocol violation,
3325 * but rather the proper way to do things.
3327 mutex_exit(phm);
3328 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3329 if (pp->p_szc != 0) {
3330 ASSERT(!IS_SWAPFSVP(vp));
3331 ASSERT(!VN_ISKAS(vp));
3332 page_demote_vp_pages(pp);
3333 ASSERT(pp->p_szc == 0);
3335 mutex_enter(phm);
3336 } else if (pp->p_szc != 0) {
3337 ASSERT(!IS_SWAPFSVP(vp));
3338 ASSERT(!VN_ISKAS(vp));
3339 mutex_exit(phm);
3340 page_demote_vp_pages(pp);
3341 ASSERT(pp->p_szc == 0);
3342 mutex_enter(phm);
3344 page_hashout(pp, phm);
3347 * Hash in the page with the new identity.
3349 if (!page_hashin(opp, vp, off, phm)) {
3351 * We were holding phm while we searched for [vp, off]
3352 * and only dropped phm if we found and locked a page.
3353 * If we can't create this page now, then some thing
3354 * is really broken.
3356 panic("page_rename: Can't hash in page: %p", (void *)pp);
3357 /*NOTREACHED*/
3360 ASSERT(MUTEX_HELD(phm));
3361 mutex_exit(phm);
3364 * Now that we have dropped phm, lets get around to finishing up
3365 * with pp.
3367 if (pp != NULL) {
3368 ASSERT(!hat_page_is_mapped(pp));
3369 /* for now large pages should not end up here */
3370 ASSERT(pp->p_szc == 0);
3372 * Save the locks for transfer to the new page and then
3373 * clear them so page_free doesn't think they're important.
3374 * The page_struct_lock need not be acquired for lckcnt and
3375 * cowcnt since the page has an "exclusive" lock.
3377 olckcnt = pp->p_lckcnt;
3378 ocowcnt = pp->p_cowcnt;
3379 pp->p_lckcnt = pp->p_cowcnt = 0;
3382 * Put the page on the "free" list after we drop
3383 * the lock. The less work under the lock the better.
3385 /*LINTED: constant in conditional context*/
3386 VN_DISPOSE(pp, B_FREE, 0, kcred);
3390 * Transfer the lock count from the old page (if any).
3391 * The page_struct_lock need not be acquired for lckcnt and
3392 * cowcnt since the page has an "exclusive" lock.
3394 opp->p_lckcnt += olckcnt;
3395 opp->p_cowcnt += ocowcnt;
3399 * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3401 * Pages are normally inserted at the start of a vnode's v_pages list.
3402 * If the vnode is VMODSORT and the page is modified, it goes at the end.
3403 * This can happen when a modified page is relocated for DR.
3405 * Returns 1 on success and 0 on failure.
3407 static int
3408 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3410 page_t **listp;
3411 page_t *tp;
3412 ulong_t index;
3414 ASSERT(PAGE_EXCL(pp));
3415 ASSERT(vp != NULL);
3416 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3419 * Be sure to set these up before the page is inserted on the hash
3420 * list. As soon as the page is placed on the list some other
3421 * thread might get confused and wonder how this page could
3422 * possibly hash to this list.
3424 pp->p_vnode = vp;
3425 pp->p_offset = offset;
3428 * record if this page is on a swap vnode
3430 if ((vp->v_flag & VISSWAP) != 0)
3431 PP_SETSWAP(pp);
3433 index = PAGE_HASH_FUNC(vp, offset);
3434 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3435 listp = &page_hash[index];
3438 * If this page is already hashed in, fail this attempt to add it.
3440 for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3441 if (tp->p_vnode == vp && tp->p_offset == offset) {
3442 pp->p_vnode = NULL;
3443 pp->p_offset = (u_offset_t)(-1);
3444 return (0);
3447 pp->p_hash = *listp;
3448 *listp = pp;
3451 * Add the page to the vnode's list of pages
3453 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3454 listp = &vp->v_pages->p_vpprev->p_vpnext;
3455 else
3456 listp = &vp->v_pages;
3458 page_vpadd(listp, pp);
3460 return (1);
3464 * Add page `pp' to both the hash and vp chains for [vp, offset].
3466 * Returns 1 on success and 0 on failure.
3467 * If hold is passed in, it is not dropped.
3470 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3472 kmutex_t *phm = NULL;
3473 kmutex_t *vphm;
3474 int rc;
3476 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3477 ASSERT(pp->p_fsdata == 0 || panicstr);
3479 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3480 "page_hashin:pp %p vp %p offset %llx",
3481 pp, vp, offset);
3483 VM_STAT_ADD(hashin_count);
3485 if (hold != NULL)
3486 phm = hold;
3487 else {
3488 VM_STAT_ADD(hashin_not_held);
3489 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3490 mutex_enter(phm);
3493 vphm = page_vnode_mutex(vp);
3494 mutex_enter(vphm);
3495 rc = page_do_hashin(pp, vp, offset);
3496 mutex_exit(vphm);
3497 if (hold == NULL)
3498 mutex_exit(phm);
3499 if (rc == 0)
3500 VM_STAT_ADD(hashin_already);
3501 return (rc);
3505 * Remove page ``pp'' from the hash and vp chains and remove vp association.
3506 * All mutexes must be held
3508 static void
3509 page_do_hashout(page_t *pp)
3511 page_t **hpp;
3512 page_t *hp;
3513 vnode_t *vp = pp->p_vnode;
3515 ASSERT(vp != NULL);
3516 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3519 * First, take pp off of its hash chain.
3521 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3523 for (;;) {
3524 hp = *hpp;
3525 if (hp == pp)
3526 break;
3527 if (hp == NULL) {
3528 panic("page_do_hashout");
3529 /*NOTREACHED*/
3531 hpp = &hp->p_hash;
3533 *hpp = pp->p_hash;
3536 * Now remove it from its associated vnode.
3538 if (vp->v_pages)
3539 page_vpsub(&vp->v_pages, pp);
3541 pp->p_hash = NULL;
3542 page_clr_all_props(pp);
3543 PP_CLRSWAP(pp);
3544 pp->p_vnode = NULL;
3545 pp->p_offset = (u_offset_t)-1;
3546 pp->p_fsdata = 0;
3550 * Remove page ``pp'' from the hash and vp chains and remove vp association.
3552 * When `phm' is non-NULL it contains the address of the mutex protecting the
3553 * hash list pp is on. It is not dropped.
3555 void
3556 page_hashout(page_t *pp, kmutex_t *phm)
3558 vnode_t *vp;
3559 ulong_t index;
3560 kmutex_t *nphm;
3561 kmutex_t *vphm;
3562 kmutex_t *sep;
3564 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3565 ASSERT(pp->p_vnode != NULL);
3566 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3567 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3569 vp = pp->p_vnode;
3571 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3572 "page_hashout:pp %p vp %p", pp, vp);
3577 VM_STAT_ADD(hashout_count);
3578 index = PAGE_HASH_FUNC(vp, pp->p_offset);
3579 if (phm == NULL) {
3580 VM_STAT_ADD(hashout_not_held);
3581 nphm = PAGE_HASH_MUTEX(index);
3582 mutex_enter(nphm);
3584 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3588 * grab page vnode mutex and remove it...
3590 vphm = page_vnode_mutex(vp);
3591 mutex_enter(vphm);
3593 page_do_hashout(pp);
3595 mutex_exit(vphm);
3596 if (phm == NULL)
3597 mutex_exit(nphm);
3600 * Wake up processes waiting for this page. The page's
3601 * identity has been changed, and is probably not the
3602 * desired page any longer.
3604 sep = page_se_mutex(pp);
3605 mutex_enter(sep);
3606 pp->p_selock &= ~SE_EWANTED;
3607 if (CV_HAS_WAITERS(&pp->p_cv))
3608 cv_broadcast(&pp->p_cv);
3609 mutex_exit(sep);
3613 * Add the page to the front of a linked list of pages
3614 * using the p_next & p_prev pointers for the list.
3615 * The caller is responsible for protecting the list pointers.
3617 void
3618 page_add(page_t **ppp, page_t *pp)
3620 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3622 page_add_common(ppp, pp);
3628 * Common code for page_add() and mach_page_add()
3630 void
3631 page_add_common(page_t **ppp, page_t *pp)
3633 if (*ppp == NULL) {
3634 pp->p_next = pp->p_prev = pp;
3635 } else {
3636 pp->p_next = *ppp;
3637 pp->p_prev = (*ppp)->p_prev;
3638 (*ppp)->p_prev = pp;
3639 pp->p_prev->p_next = pp;
3641 *ppp = pp;
3646 * Remove this page from a linked list of pages
3647 * using the p_next & p_prev pointers for the list.
3649 * The caller is responsible for protecting the list pointers.
3651 void
3652 page_sub(page_t **ppp, page_t *pp)
3654 ASSERT(pp != NULL && (PP_ISFREE(pp)) ? 1 :
3655 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3657 if (*ppp == NULL || pp == NULL) {
3658 panic("page_sub: bad arg(s): pp %p, *ppp %p",
3659 (void *)pp, (void *)(*ppp));
3660 /*NOTREACHED*/
3663 page_sub_common(ppp, pp);
3668 * Common code for page_sub() and mach_page_sub()
3670 void
3671 page_sub_common(page_t **ppp, page_t *pp)
3673 if (*ppp == pp)
3674 *ppp = pp->p_next; /* go to next page */
3676 if (*ppp == pp)
3677 *ppp = NULL; /* page list is gone */
3678 else {
3679 pp->p_prev->p_next = pp->p_next;
3680 pp->p_next->p_prev = pp->p_prev;
3682 pp->p_prev = pp->p_next = pp; /* make pp a list of one */
3687 * Break page list cppp into two lists with npages in the first list.
3688 * The tail is returned in nppp.
3690 void
3691 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3693 page_t *s1pp = *oppp;
3694 page_t *s2pp;
3695 page_t *e1pp, *e2pp;
3696 long n = 0;
3698 if (s1pp == NULL) {
3699 *nppp = NULL;
3700 return;
3702 if (npages == 0) {
3703 *nppp = s1pp;
3704 *oppp = NULL;
3705 return;
3707 for (n = 0, s2pp = *oppp; n < npages; n++) {
3708 s2pp = s2pp->p_next;
3710 /* Fix head and tail of new lists */
3711 e1pp = s2pp->p_prev;
3712 e2pp = s1pp->p_prev;
3713 s1pp->p_prev = e1pp;
3714 e1pp->p_next = s1pp;
3715 s2pp->p_prev = e2pp;
3716 e2pp->p_next = s2pp;
3718 /* second list empty */
3719 if (s2pp == s1pp) {
3720 *oppp = s1pp;
3721 *nppp = NULL;
3722 } else {
3723 *oppp = s1pp;
3724 *nppp = s2pp;
3729 * Concatenate page list nppp onto the end of list ppp.
3731 void
3732 page_list_concat(page_t **ppp, page_t **nppp)
3734 page_t *s1pp, *s2pp, *e1pp, *e2pp;
3736 if (*nppp == NULL) {
3737 return;
3739 if (*ppp == NULL) {
3740 *ppp = *nppp;
3741 return;
3743 s1pp = *ppp;
3744 e1pp = s1pp->p_prev;
3745 s2pp = *nppp;
3746 e2pp = s2pp->p_prev;
3747 s1pp->p_prev = e2pp;
3748 e2pp->p_next = s1pp;
3749 e1pp->p_next = s2pp;
3750 s2pp->p_prev = e1pp;
3754 * return the next page in the page list
3756 page_t *
3757 page_list_next(page_t *pp)
3759 return (pp->p_next);
3764 * Add the page to the front of the linked list of pages
3765 * using p_vpnext/p_vpprev pointers for the list.
3767 * The caller is responsible for protecting the lists.
3769 void
3770 page_vpadd(page_t **ppp, page_t *pp)
3772 if (*ppp == NULL) {
3773 pp->p_vpnext = pp->p_vpprev = pp;
3774 } else {
3775 pp->p_vpnext = *ppp;
3776 pp->p_vpprev = (*ppp)->p_vpprev;
3777 (*ppp)->p_vpprev = pp;
3778 pp->p_vpprev->p_vpnext = pp;
3780 *ppp = pp;
3784 * Remove this page from the linked list of pages
3785 * using p_vpnext/p_vpprev pointers for the list.
3787 * The caller is responsible for protecting the lists.
3789 void
3790 page_vpsub(page_t **ppp, page_t *pp)
3792 if (*ppp == NULL || pp == NULL) {
3793 panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3794 (void *)pp, (void *)(*ppp));
3795 /*NOTREACHED*/
3798 if (*ppp == pp)
3799 *ppp = pp->p_vpnext; /* go to next page */
3801 if (*ppp == pp)
3802 *ppp = NULL; /* page list is gone */
3803 else {
3804 pp->p_vpprev->p_vpnext = pp->p_vpnext;
3805 pp->p_vpnext->p_vpprev = pp->p_vpprev;
3807 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */
3811 * Lock a physical page into memory "long term". Used to support "lock
3812 * in memory" functions. Accepts the page to be locked, and a cow variable
3813 * to indicate whether a the lock will travel to the new page during
3814 * a potential copy-on-write.
3817 page_pp_lock(
3818 page_t *pp, /* page to be locked */
3819 int cow, /* cow lock */
3820 int kernel) /* must succeed -- ignore checking */
3822 int r = 0; /* result -- assume failure */
3824 ASSERT(PAGE_LOCKED(pp));
3826 page_struct_lock(pp);
3828 * Acquire the "freemem_lock" for availrmem.
3830 if (cow) {
3831 mutex_enter(&freemem_lock);
3832 if ((availrmem > pages_pp_maximum) &&
3833 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3834 availrmem--;
3835 pages_locked++;
3836 mutex_exit(&freemem_lock);
3837 r = 1;
3838 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3839 cmn_err(CE_WARN,
3840 "COW lock limit reached on pfn 0x%lx",
3841 page_pptonum(pp));
3843 } else
3844 mutex_exit(&freemem_lock);
3845 } else {
3846 if (pp->p_lckcnt) {
3847 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3848 r = 1;
3849 if (++pp->p_lckcnt ==
3850 (ushort_t)PAGE_LOCK_MAXIMUM) {
3851 cmn_err(CE_WARN, "Page lock limit "
3852 "reached on pfn 0x%lx",
3853 page_pptonum(pp));
3856 } else {
3857 if (kernel) {
3858 /* availrmem accounting done by caller */
3859 ++pp->p_lckcnt;
3860 r = 1;
3861 } else {
3862 mutex_enter(&freemem_lock);
3863 if (availrmem > pages_pp_maximum) {
3864 availrmem--;
3865 pages_locked++;
3866 ++pp->p_lckcnt;
3867 r = 1;
3869 mutex_exit(&freemem_lock);
3873 page_struct_unlock(pp);
3874 return (r);
3878 * Decommit a lock on a physical page frame. Account for cow locks if
3879 * appropriate.
3881 void
3882 page_pp_unlock(
3883 page_t *pp, /* page to be unlocked */
3884 int cow, /* expect cow lock */
3885 int kernel) /* this was a kernel lock */
3887 ASSERT(PAGE_LOCKED(pp));
3889 page_struct_lock(pp);
3891 * Acquire the "freemem_lock" for availrmem.
3892 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3893 * could be called to unlock even if nothing is locked. This could
3894 * happen if locked file pages were truncated (removing the lock)
3895 * and the file was grown again and new pages faulted in; the new
3896 * pages are unlocked but the segment still thinks they're locked.
3898 if (cow) {
3899 if (pp->p_cowcnt) {
3900 mutex_enter(&freemem_lock);
3901 pp->p_cowcnt--;
3902 availrmem++;
3903 pages_locked--;
3904 mutex_exit(&freemem_lock);
3906 } else {
3907 if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3908 if (!kernel) {
3909 mutex_enter(&freemem_lock);
3910 availrmem++;
3911 pages_locked--;
3912 mutex_exit(&freemem_lock);
3916 page_struct_unlock(pp);
3920 * This routine reserves availrmem for npages.
3921 * It returns 1 on success or 0 on failure.
3923 * flags: KM_NOSLEEP or KM_SLEEP
3924 * cb_wait: called to induce delay when KM_SLEEP reservation requires kmem
3925 * reaping to potentially succeed. If the callback returns 0, the
3926 * reservation attempts will cease to repeat and page_xresv() may
3927 * report a failure. If cb_wait is NULL, the traditional delay(hz/2)
3928 * behavior will be used while waiting for a reap.
3931 page_xresv(pgcnt_t npages, uint_t flags, int (*cb_wait)(void))
3933 mutex_enter(&freemem_lock);
3934 if (availrmem >= tune.t_minarmem + npages) {
3935 availrmem -= npages;
3936 mutex_exit(&freemem_lock);
3937 return (1);
3938 } else if ((flags & KM_NOSLEEP) != 0) {
3939 mutex_exit(&freemem_lock);
3940 return (0);
3942 mutex_exit(&freemem_lock);
3945 * We signal memory pressure to the system by elevating 'needfree'.
3946 * Processes such as kmem reaping, pageout, and ZFS ARC shrinking can
3947 * then respond to said pressure by freeing pages.
3949 page_needfree(npages);
3950 int nobail = 1;
3951 do {
3952 kmem_reap();
3953 if (cb_wait == NULL) {
3954 delay(hz >> 2);
3955 } else {
3956 nobail = cb_wait();
3959 mutex_enter(&freemem_lock);
3960 if (availrmem >= tune.t_minarmem + npages) {
3961 availrmem -= npages;
3962 mutex_exit(&freemem_lock);
3963 page_needfree(-(spgcnt_t)npages);
3964 return (1);
3966 mutex_exit(&freemem_lock);
3967 } while (nobail != 0);
3968 page_needfree(-(spgcnt_t)npages);
3970 return (0);
3974 * This routine reserves availrmem for npages;
3975 * flags: KM_NOSLEEP or KM_SLEEP
3976 * returns 1 on success or 0 on failure
3979 page_resv(pgcnt_t npages, uint_t flags)
3981 return (page_xresv(npages, flags, NULL));
3985 * This routine unreserves availrmem for npages;
3987 void
3988 page_unresv(pgcnt_t npages)
3990 mutex_enter(&freemem_lock);
3991 availrmem += npages;
3992 mutex_exit(&freemem_lock);
3996 * See Statement at the beginning of segvn_lockop() regarding
3997 * the way we handle cowcnts and lckcnts.
3999 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4000 * that breaks COW has PROT_WRITE.
4002 * Note that, we may also break COW in case we are softlocking
4003 * on read access during physio;
4004 * in this softlock case, the vpage may not have PROT_WRITE.
4005 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4006 * if the vpage doesn't have PROT_WRITE.
4008 * This routine is never called if we are stealing a page
4009 * in anon_private.
4011 * The caller subtracted from availrmem for read only mapping.
4012 * if lckcnt is 1 increment availrmem.
4014 void
4015 page_pp_useclaim(
4016 page_t *opp, /* original page frame losing lock */
4017 page_t *npp, /* new page frame gaining lock */
4018 uint_t write_perm) /* set if vpage has PROT_WRITE */
4020 int payback = 0;
4021 int nidx, oidx;
4023 ASSERT(PAGE_LOCKED(opp));
4024 ASSERT(PAGE_LOCKED(npp));
4027 * Since we have two pages we probably have two locks. We need to take
4028 * them in a defined order to avoid deadlocks. It's also possible they
4029 * both hash to the same lock in which case this is a non-issue.
4031 nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
4032 oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
4033 if (nidx < oidx) {
4034 page_struct_lock(npp);
4035 page_struct_lock(opp);
4036 } else if (oidx < nidx) {
4037 page_struct_lock(opp);
4038 page_struct_lock(npp);
4039 } else { /* The pages hash to the same lock */
4040 page_struct_lock(npp);
4043 ASSERT(npp->p_cowcnt == 0);
4044 ASSERT(npp->p_lckcnt == 0);
4046 /* Don't use claim if nothing is locked (see page_pp_unlock above) */
4047 if ((write_perm && opp->p_cowcnt != 0) ||
4048 (!write_perm && opp->p_lckcnt != 0)) {
4050 if (write_perm) {
4051 npp->p_cowcnt++;
4052 ASSERT(opp->p_cowcnt != 0);
4053 opp->p_cowcnt--;
4054 } else {
4056 ASSERT(opp->p_lckcnt != 0);
4059 * We didn't need availrmem decremented if p_lckcnt on
4060 * original page is 1. Here, we are unlocking
4061 * read-only copy belonging to original page and
4062 * are locking a copy belonging to new page.
4064 if (opp->p_lckcnt == 1)
4065 payback = 1;
4067 npp->p_lckcnt++;
4068 opp->p_lckcnt--;
4071 if (payback) {
4072 mutex_enter(&freemem_lock);
4073 availrmem++;
4074 pages_useclaim--;
4075 mutex_exit(&freemem_lock);
4078 if (nidx < oidx) {
4079 page_struct_unlock(opp);
4080 page_struct_unlock(npp);
4081 } else if (oidx < nidx) {
4082 page_struct_unlock(npp);
4083 page_struct_unlock(opp);
4084 } else { /* The pages hash to the same lock */
4085 page_struct_unlock(npp);
4090 * Simple claim adjust functions -- used to support changes in
4091 * claims due to changes in access permissions. Used by segvn_setprot().
4094 page_addclaim(page_t *pp)
4096 int r = 0; /* result */
4098 ASSERT(PAGE_LOCKED(pp));
4100 page_struct_lock(pp);
4101 ASSERT(pp->p_lckcnt != 0);
4103 if (pp->p_lckcnt == 1) {
4104 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4105 --pp->p_lckcnt;
4106 r = 1;
4107 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4108 cmn_err(CE_WARN,
4109 "COW lock limit reached on pfn 0x%lx",
4110 page_pptonum(pp));
4113 } else {
4114 mutex_enter(&freemem_lock);
4115 if ((availrmem > pages_pp_maximum) &&
4116 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4117 --availrmem;
4118 ++pages_claimed;
4119 mutex_exit(&freemem_lock);
4120 --pp->p_lckcnt;
4121 r = 1;
4122 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4123 cmn_err(CE_WARN,
4124 "COW lock limit reached on pfn 0x%lx",
4125 page_pptonum(pp));
4127 } else
4128 mutex_exit(&freemem_lock);
4130 page_struct_unlock(pp);
4131 return (r);
4135 page_subclaim(page_t *pp)
4137 int r = 0;
4139 ASSERT(PAGE_LOCKED(pp));
4141 page_struct_lock(pp);
4142 ASSERT(pp->p_cowcnt != 0);
4144 if (pp->p_lckcnt) {
4145 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4146 r = 1;
4148 * for availrmem
4150 mutex_enter(&freemem_lock);
4151 availrmem++;
4152 pages_claimed--;
4153 mutex_exit(&freemem_lock);
4155 pp->p_cowcnt--;
4157 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4158 cmn_err(CE_WARN,
4159 "Page lock limit reached on pfn 0x%lx",
4160 page_pptonum(pp));
4163 } else {
4164 r = 1;
4165 pp->p_cowcnt--;
4166 pp->p_lckcnt++;
4168 page_struct_unlock(pp);
4169 return (r);
4173 * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4174 * page.
4177 page_addclaim_pages(page_t **ppa)
4179 pgcnt_t lckpgs = 0, pg_idx;
4181 VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4184 * Only need to take the page struct lock on the large page root.
4186 page_struct_lock(ppa[0]);
4187 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4189 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4190 ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4191 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4192 page_struct_unlock(ppa[0]);
4193 return (0);
4195 if (ppa[pg_idx]->p_lckcnt > 1)
4196 lckpgs++;
4199 if (lckpgs != 0) {
4200 mutex_enter(&freemem_lock);
4201 if (availrmem >= pages_pp_maximum + lckpgs) {
4202 availrmem -= lckpgs;
4203 pages_claimed += lckpgs;
4204 } else {
4205 mutex_exit(&freemem_lock);
4206 page_struct_unlock(ppa[0]);
4207 return (0);
4209 mutex_exit(&freemem_lock);
4212 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4213 ppa[pg_idx]->p_lckcnt--;
4214 ppa[pg_idx]->p_cowcnt++;
4216 page_struct_unlock(ppa[0]);
4217 return (1);
4221 * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4222 * page.
4225 page_subclaim_pages(page_t **ppa)
4227 pgcnt_t ulckpgs = 0, pg_idx;
4229 VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4232 * Only need to take the page struct lock on the large page root.
4234 page_struct_lock(ppa[0]);
4235 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4237 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4238 ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4239 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4240 page_struct_unlock(ppa[0]);
4241 return (0);
4243 if (ppa[pg_idx]->p_lckcnt != 0)
4244 ulckpgs++;
4247 if (ulckpgs != 0) {
4248 mutex_enter(&freemem_lock);
4249 availrmem += ulckpgs;
4250 pages_claimed -= ulckpgs;
4251 mutex_exit(&freemem_lock);
4254 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4255 ppa[pg_idx]->p_cowcnt--;
4256 ppa[pg_idx]->p_lckcnt++;
4259 page_struct_unlock(ppa[0]);
4260 return (1);
4263 page_t *
4264 page_numtopp(pfn_t pfnum, se_t se)
4266 page_t *pp;
4268 retry:
4269 pp = page_numtopp_nolock(pfnum);
4270 if (pp == NULL) {
4271 return ((page_t *)NULL);
4275 * Acquire the appropriate lock on the page.
4277 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4278 if (page_pptonum(pp) != pfnum)
4279 goto retry;
4280 continue;
4283 if (page_pptonum(pp) != pfnum) {
4284 page_unlock(pp);
4285 goto retry;
4288 return (pp);
4291 page_t *
4292 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4294 page_t *pp;
4296 retry:
4297 pp = page_numtopp_nolock(pfnum);
4298 if (pp == NULL) {
4299 return ((page_t *)NULL);
4303 * Acquire the appropriate lock on the page.
4305 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4306 if (page_pptonum(pp) != pfnum)
4307 goto retry;
4308 continue;
4311 if (page_pptonum(pp) != pfnum) {
4312 page_unlock(pp);
4313 goto retry;
4316 return (pp);
4320 * This routine is like page_numtopp, but will only return page structs
4321 * for pages which are ok for loading into hardware using the page struct.
4323 page_t *
4324 page_numtopp_nowait(pfn_t pfnum, se_t se)
4326 page_t *pp;
4328 retry:
4329 pp = page_numtopp_nolock(pfnum);
4330 if (pp == NULL) {
4331 return ((page_t *)NULL);
4335 * Try to acquire the appropriate lock on the page.
4337 if (PP_ISFREE(pp))
4338 pp = NULL;
4339 else {
4340 if (!page_trylock(pp, se))
4341 pp = NULL;
4342 else {
4343 if (page_pptonum(pp) != pfnum) {
4344 page_unlock(pp);
4345 goto retry;
4347 if (PP_ISFREE(pp)) {
4348 page_unlock(pp);
4349 pp = NULL;
4353 return (pp);
4357 * Returns a count of dirty pages that are in the process
4358 * of being written out. If 'cleanit' is set, try to push the page.
4360 pgcnt_t
4361 page_busy(int cleanit)
4363 page_t *page0 = page_first();
4364 page_t *pp = page0;
4365 pgcnt_t nppbusy = 0;
4366 u_offset_t off;
4368 do {
4369 vnode_t *vp = pp->p_vnode;
4371 * A page is a candidate for syncing if it is:
4373 * (a) On neither the freelist nor the cachelist
4374 * (b) Hashed onto a vnode
4375 * (c) Not a kernel page
4376 * (d) Dirty
4377 * (e) Not part of a swapfile
4378 * (f) a page which belongs to a real vnode; eg has a non-null
4379 * v_vfsp pointer.
4380 * (g) Backed by a filesystem which doesn't have a
4381 * stubbed-out sync operation
4383 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4384 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4385 vfs_can_sync(vp->v_vfsp)) {
4386 nppbusy++;
4388 if (!cleanit)
4389 continue;
4390 if (!page_trylock(pp, SE_EXCL))
4391 continue;
4393 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4394 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4395 !(hat_pagesync(pp,
4396 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4397 page_unlock(pp);
4398 continue;
4400 off = pp->p_offset;
4401 VN_HOLD(vp);
4402 page_unlock(pp);
4403 (void) VOP_PUTPAGE(vp, off, PAGESIZE,
4404 B_ASYNC | B_FREE, kcred, NULL);
4405 VN_RELE(vp);
4407 } while ((pp = page_next(pp)) != page0);
4409 return (nppbusy);
4412 void page_invalidate_pages(void);
4415 * callback handler to vm sub-system
4417 * callers make sure no recursive entries to this func.
4419 /*ARGSUSED*/
4420 boolean_t
4421 callb_vm_cpr(void *arg, int code)
4423 if (code == CB_CODE_CPR_CHKPT)
4424 page_invalidate_pages();
4425 return (B_TRUE);
4429 * Invalidate all pages of the system.
4430 * It shouldn't be called until all user page activities are all stopped.
4432 void
4433 page_invalidate_pages()
4435 page_t *pp;
4436 page_t *page0;
4437 pgcnt_t nbusypages;
4438 int retry = 0;
4439 const int MAXRETRIES = 4;
4440 top:
4442 * Flush dirty pages and destroy the clean ones.
4444 nbusypages = 0;
4446 pp = page0 = page_first();
4447 do {
4448 struct vnode *vp;
4449 u_offset_t offset;
4450 int mod;
4453 * skip the page if it has no vnode or the page associated
4454 * with the kernel vnode or prom allocated kernel mem.
4456 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4457 continue;
4460 * skip the page which is already free invalidated.
4462 if (PP_ISFREE(pp) && PP_ISAGED(pp))
4463 continue;
4466 * skip pages that are already locked or can't be "exclusively"
4467 * locked or are already free. After we lock the page, check
4468 * the free and age bits again to be sure it's not destroyed
4469 * yet.
4470 * To achieve max. parallelization, we use page_trylock instead
4471 * of page_lock so that we don't get block on individual pages
4472 * while we have thousands of other pages to process.
4474 if (!page_trylock(pp, SE_EXCL)) {
4475 nbusypages++;
4476 continue;
4477 } else if (PP_ISFREE(pp)) {
4478 if (!PP_ISAGED(pp)) {
4479 page_destroy_free(pp);
4480 } else {
4481 page_unlock(pp);
4483 continue;
4486 * Is this page involved in some I/O? shared?
4488 * The page_struct_lock need not be acquired to
4489 * examine these fields since the page has an
4490 * "exclusive" lock.
4492 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4493 page_unlock(pp);
4494 continue;
4497 if (vp->v_type == VCHR) {
4498 panic("vp->v_type == VCHR");
4499 /*NOTREACHED*/
4502 if (!page_try_demote_pages(pp)) {
4503 page_unlock(pp);
4504 continue;
4508 * Check the modified bit. Leave the bits alone in hardware
4509 * (they will be modified if we do the putpage).
4511 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4512 & P_MOD);
4513 if (mod) {
4514 offset = pp->p_offset;
4516 * Hold the vnode before releasing the page lock
4517 * to prevent it from being freed and re-used by
4518 * some other thread.
4520 VN_HOLD(vp);
4521 page_unlock(pp);
4523 * No error return is checked here. Callers such as
4524 * cpr deals with the dirty pages at the dump time
4525 * if this putpage fails.
4527 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4528 kcred, NULL);
4529 VN_RELE(vp);
4530 } else {
4531 /*LINTED: constant in conditional context*/
4532 VN_DISPOSE(pp, B_INVAL, 0, kcred);
4534 } while ((pp = page_next(pp)) != page0);
4535 if (nbusypages && retry++ < MAXRETRIES) {
4536 delay(1);
4537 goto top;
4542 * Replace the page "old" with the page "new" on the page hash and vnode lists
4544 * the replacement must be done in place, ie the equivalent sequence:
4546 * vp = old->p_vnode;
4547 * off = old->p_offset;
4548 * page_do_hashout(old)
4549 * page_do_hashin(new, vp, off)
4551 * doesn't work, since
4552 * 1) if old is the only page on the vnode, the v_pages list has a window
4553 * where it looks empty. This will break file system assumptions.
4554 * and
4555 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4557 static void
4558 page_do_relocate_hash(page_t *new, page_t *old)
4560 page_t **hash_list;
4561 vnode_t *vp = old->p_vnode;
4562 kmutex_t *sep;
4564 ASSERT(PAGE_EXCL(old));
4565 ASSERT(PAGE_EXCL(new));
4566 ASSERT(vp != NULL);
4567 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4568 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4571 * First find old page on the page hash list
4573 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4575 for (;;) {
4576 if (*hash_list == old)
4577 break;
4578 if (*hash_list == NULL) {
4579 panic("page_do_hashout");
4580 /*NOTREACHED*/
4582 hash_list = &(*hash_list)->p_hash;
4586 * update new and replace old with new on the page hash list
4588 new->p_vnode = old->p_vnode;
4589 new->p_offset = old->p_offset;
4590 new->p_hash = old->p_hash;
4591 *hash_list = new;
4593 if ((new->p_vnode->v_flag & VISSWAP) != 0)
4594 PP_SETSWAP(new);
4597 * replace old with new on the vnode's page list
4599 if (old->p_vpnext == old) {
4600 new->p_vpnext = new;
4601 new->p_vpprev = new;
4602 } else {
4603 new->p_vpnext = old->p_vpnext;
4604 new->p_vpprev = old->p_vpprev;
4605 new->p_vpnext->p_vpprev = new;
4606 new->p_vpprev->p_vpnext = new;
4608 if (vp->v_pages == old)
4609 vp->v_pages = new;
4612 * clear out the old page
4614 old->p_hash = NULL;
4615 old->p_vpnext = NULL;
4616 old->p_vpprev = NULL;
4617 old->p_vnode = NULL;
4618 PP_CLRSWAP(old);
4619 old->p_offset = (u_offset_t)-1;
4620 page_clr_all_props(old);
4623 * Wake up processes waiting for this page. The page's
4624 * identity has been changed, and is probably not the
4625 * desired page any longer.
4627 sep = page_se_mutex(old);
4628 mutex_enter(sep);
4629 old->p_selock &= ~SE_EWANTED;
4630 if (CV_HAS_WAITERS(&old->p_cv))
4631 cv_broadcast(&old->p_cv);
4632 mutex_exit(sep);
4636 * This function moves the identity of page "pp_old" to page "pp_new".
4637 * Both pages must be locked on entry. "pp_new" is free, has no identity,
4638 * and need not be hashed out from anywhere.
4640 void
4641 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4643 vnode_t *vp = pp_old->p_vnode;
4644 u_offset_t off = pp_old->p_offset;
4645 kmutex_t *phm, *vphm;
4648 * Rehash two pages
4650 ASSERT(PAGE_EXCL(pp_old));
4651 ASSERT(PAGE_EXCL(pp_new));
4652 ASSERT(vp != NULL);
4653 ASSERT(pp_new->p_vnode == NULL);
4656 * hashout then hashin while holding the mutexes
4658 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4659 mutex_enter(phm);
4660 vphm = page_vnode_mutex(vp);
4661 mutex_enter(vphm);
4663 page_do_relocate_hash(pp_new, pp_old);
4665 /* The following comment preserved from page_flip(). */
4666 pp_new->p_fsdata = pp_old->p_fsdata;
4667 pp_old->p_fsdata = 0;
4668 mutex_exit(vphm);
4669 mutex_exit(phm);
4672 * The page_struct_lock need not be acquired for lckcnt and
4673 * cowcnt since the page has an "exclusive" lock.
4675 ASSERT(pp_new->p_lckcnt == 0);
4676 ASSERT(pp_new->p_cowcnt == 0);
4677 pp_new->p_lckcnt = pp_old->p_lckcnt;
4678 pp_new->p_cowcnt = pp_old->p_cowcnt;
4679 pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4684 * Helper routine used to lock all remaining members of a
4685 * large page. The caller is responsible for passing in a locked
4686 * pp. If pp is a large page, then it succeeds in locking all the
4687 * remaining constituent pages or it returns with only the
4688 * original page locked.
4690 * Returns 1 on success, 0 on failure.
4692 * If success is returned this routine guarantees p_szc for all constituent
4693 * pages of a large page pp belongs to can't change. To achieve this we
4694 * recheck szc of pp after locking all constituent pages and retry if szc
4695 * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4696 * lock on one of constituent pages it can't be running after all constituent
4697 * pages are locked. hat_page_demote() with a lock on a constituent page
4698 * outside of this large page (i.e. pp belonged to a larger large page) is
4699 * already done with all constituent pages of pp since the root's p_szc is
4700 * changed last. Therefore no need to synchronize with hat_page_demote() that
4701 * locked a constituent page outside of pp's current large page.
4703 #ifdef DEBUG
4704 uint32_t gpg_trylock_mtbf = 0;
4705 #endif
4708 group_page_trylock(page_t *pp, se_t se)
4710 page_t *tpp;
4711 pgcnt_t npgs, i, j;
4712 uint_t pszc = pp->p_szc;
4714 #ifdef DEBUG
4715 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4716 return (0);
4718 #endif
4720 if (pp != PP_GROUPLEADER(pp, pszc)) {
4721 return (0);
4724 retry:
4725 ASSERT(PAGE_LOCKED_SE(pp, se));
4726 ASSERT(!PP_ISFREE(pp));
4727 if (pszc == 0) {
4728 return (1);
4730 npgs = page_get_pagecnt(pszc);
4731 tpp = pp + 1;
4732 for (i = 1; i < npgs; i++, tpp++) {
4733 if (!page_trylock(tpp, se)) {
4734 tpp = pp + 1;
4735 for (j = 1; j < i; j++, tpp++) {
4736 page_unlock(tpp);
4738 return (0);
4741 if (pp->p_szc != pszc) {
4742 ASSERT(pp->p_szc < pszc);
4743 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4744 !IS_SWAPFSVP(pp->p_vnode));
4745 tpp = pp + 1;
4746 for (i = 1; i < npgs; i++, tpp++) {
4747 page_unlock(tpp);
4749 pszc = pp->p_szc;
4750 goto retry;
4752 return (1);
4755 void
4756 group_page_unlock(page_t *pp)
4758 page_t *tpp;
4759 pgcnt_t npgs, i;
4761 ASSERT(PAGE_LOCKED(pp));
4762 ASSERT(!PP_ISFREE(pp));
4763 ASSERT(pp == PP_PAGEROOT(pp));
4764 npgs = page_get_pagecnt(pp->p_szc);
4765 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4766 page_unlock(tpp);
4771 * returns
4772 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages
4773 * ERANGE : this is not a base page
4774 * EBUSY : failure to get locks on the page/pages
4775 * ENOMEM : failure to obtain replacement pages
4776 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel
4777 * EIO : An error occurred while trying to copy the page data
4779 * Return with all constituent members of target and replacement
4780 * SE_EXCL locked. It is the callers responsibility to drop the
4781 * locks.
4784 do_page_relocate(
4785 page_t **target,
4786 page_t **replacement,
4787 int grouplock,
4788 spgcnt_t *nrelocp,
4789 lgrp_t *lgrp)
4791 page_t *first_repl;
4792 page_t *repl;
4793 page_t *targ;
4794 page_t *pl = NULL;
4795 uint_t ppattr;
4796 pfn_t pfn, repl_pfn;
4797 uint_t szc;
4798 spgcnt_t npgs, i;
4799 int repl_contig = 0;
4800 uint_t flags = 0;
4801 spgcnt_t dofree = 0;
4803 *nrelocp = 0;
4805 #if defined(__sparc)
4807 * We need to wait till OBP has completed
4808 * its boot-time handoff of its resources to the kernel
4809 * before we allow page relocation
4811 if (page_relocate_ready == 0) {
4812 return (EAGAIN);
4814 #endif
4817 * If this is not a base page,
4818 * just return with 0x0 pages relocated.
4820 targ = *target;
4821 ASSERT(PAGE_EXCL(targ));
4822 ASSERT(!PP_ISFREE(targ));
4823 szc = targ->p_szc;
4824 ASSERT(szc < mmu_page_sizes);
4825 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4826 pfn = targ->p_pagenum;
4827 if (pfn != PFN_BASE(pfn, szc)) {
4828 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4829 return (ERANGE);
4832 if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4833 repl_pfn = repl->p_pagenum;
4834 if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4835 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4836 return (ERANGE);
4838 repl_contig = 1;
4842 * We must lock all members of this large page or we cannot
4843 * relocate any part of it.
4845 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4846 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4847 return (EBUSY);
4851 * reread szc it could have been decreased before
4852 * group_page_trylock() was done.
4854 szc = targ->p_szc;
4855 ASSERT(szc < mmu_page_sizes);
4856 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4857 ASSERT(pfn == PFN_BASE(pfn, szc));
4859 npgs = page_get_pagecnt(targ->p_szc);
4861 if (repl == NULL) {
4862 dofree = npgs; /* Size of target page in MMU pages */
4863 if (!page_create_wait(dofree, 0)) {
4864 if (grouplock != 0) {
4865 group_page_unlock(targ);
4867 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4868 return (ENOMEM);
4872 * seg kmem pages require that the target and replacement
4873 * page be the same pagesize.
4875 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4876 repl = page_get_replacement_page(targ, lgrp, flags);
4877 if (repl == NULL) {
4878 if (grouplock != 0) {
4879 group_page_unlock(targ);
4881 page_create_putback(dofree);
4882 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4883 return (ENOMEM);
4886 #ifdef DEBUG
4887 else {
4888 ASSERT(PAGE_LOCKED(repl));
4890 #endif /* DEBUG */
4892 #if defined(__sparc)
4894 * Let hat_page_relocate() complete the relocation if it's kernel page
4896 if (VN_ISKAS(targ->p_vnode)) {
4897 *replacement = repl;
4898 if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4899 if (grouplock != 0) {
4900 group_page_unlock(targ);
4902 if (dofree) {
4903 *replacement = NULL;
4904 page_free_replacement_page(repl);
4905 page_create_putback(dofree);
4907 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4908 return (EAGAIN);
4910 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4911 return (0);
4913 #else
4914 #if defined(lint)
4915 dofree = dofree;
4916 #endif
4917 #endif
4919 first_repl = repl;
4921 for (i = 0; i < npgs; i++) {
4922 ASSERT(PAGE_EXCL(targ));
4923 ASSERT(targ->p_slckcnt == 0);
4924 ASSERT(repl->p_slckcnt == 0);
4926 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4928 ASSERT(hat_page_getshare(targ) == 0);
4929 ASSERT(!PP_ISFREE(targ));
4930 ASSERT(targ->p_pagenum == (pfn + i));
4931 ASSERT(repl_contig == 0 ||
4932 repl->p_pagenum == (repl_pfn + i));
4935 * Copy the page contents and attributes then
4936 * relocate the page in the page hash.
4938 if (ppcopy(targ, repl) == 0) {
4939 targ = *target;
4940 repl = first_repl;
4941 VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4942 if (grouplock != 0) {
4943 group_page_unlock(targ);
4945 if (dofree) {
4946 *replacement = NULL;
4947 page_free_replacement_page(repl);
4948 page_create_putback(dofree);
4950 return (EIO);
4953 targ++;
4954 if (repl_contig != 0) {
4955 repl++;
4956 } else {
4957 repl = repl->p_next;
4961 repl = first_repl;
4962 targ = *target;
4964 for (i = 0; i < npgs; i++) {
4965 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4966 page_clr_all_props(repl);
4967 page_set_props(repl, ppattr);
4968 page_relocate_hash(repl, targ);
4970 ASSERT(hat_page_getshare(targ) == 0);
4971 ASSERT(hat_page_getshare(repl) == 0);
4973 * Now clear the props on targ, after the
4974 * page_relocate_hash(), they no longer
4975 * have any meaning.
4977 page_clr_all_props(targ);
4978 ASSERT(targ->p_next == targ);
4979 ASSERT(targ->p_prev == targ);
4980 page_list_concat(&pl, &targ);
4982 targ++;
4983 if (repl_contig != 0) {
4984 repl++;
4985 } else {
4986 repl = repl->p_next;
4989 /* assert that we have come full circle with repl */
4990 ASSERT(repl_contig == 1 || first_repl == repl);
4992 *target = pl;
4993 if (*replacement == NULL) {
4994 ASSERT(first_repl == repl);
4995 *replacement = repl;
4997 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4998 *nrelocp = npgs;
4999 return (0);
5002 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5005 page_relocate(
5006 page_t **target,
5007 page_t **replacement,
5008 int grouplock,
5009 int freetarget,
5010 spgcnt_t *nrelocp,
5011 lgrp_t *lgrp)
5013 spgcnt_t ret;
5015 /* do_page_relocate returns 0 on success or errno value */
5016 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5018 if (ret != 0 || freetarget == 0) {
5019 return (ret);
5021 if (*nrelocp == 1) {
5022 ASSERT(*target != NULL);
5023 page_free(*target, 1);
5024 } else {
5025 page_t *tpp = *target;
5026 uint_t szc = tpp->p_szc;
5027 pgcnt_t npgs = page_get_pagecnt(szc);
5028 ASSERT(npgs > 1);
5029 ASSERT(szc != 0);
5030 do {
5031 ASSERT(PAGE_EXCL(tpp));
5032 ASSERT(!hat_page_is_mapped(tpp));
5033 ASSERT(tpp->p_szc == szc);
5034 PP_SETFREE(tpp);
5035 PP_SETAGED(tpp);
5036 npgs--;
5037 } while ((tpp = tpp->p_next) != *target);
5038 ASSERT(npgs == 0);
5039 page_list_add_pages(*target, 0);
5040 npgs = page_get_pagecnt(szc);
5041 page_create_putback(npgs);
5043 return (ret);
5047 * it is up to the caller to deal with pcf accounting.
5049 void
5050 page_free_replacement_page(page_t *pplist)
5052 page_t *pp;
5054 while (pplist != NULL) {
5056 * pp_targ is a linked list.
5058 pp = pplist;
5059 if (pp->p_szc == 0) {
5060 page_sub(&pplist, pp);
5061 page_clr_all_props(pp);
5062 PP_SETFREE(pp);
5063 PP_SETAGED(pp);
5064 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5065 page_unlock(pp);
5066 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5067 } else {
5068 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5069 page_t *tpp;
5070 page_list_break(&pp, &pplist, curnpgs);
5071 tpp = pp;
5072 do {
5073 ASSERT(PAGE_EXCL(tpp));
5074 ASSERT(!hat_page_is_mapped(tpp));
5075 page_clr_all_props(tpp);
5076 PP_SETFREE(tpp);
5077 PP_SETAGED(tpp);
5078 } while ((tpp = tpp->p_next) != pp);
5079 page_list_add_pages(pp, 0);
5080 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5086 * Relocate target to non-relocatable replacement page.
5089 page_relocate_cage(page_t **target, page_t **replacement)
5091 page_t *tpp, *rpp;
5092 spgcnt_t pgcnt, npgs;
5093 int result;
5095 tpp = *target;
5097 ASSERT(PAGE_EXCL(tpp));
5098 ASSERT(tpp->p_szc == 0);
5100 pgcnt = btop(page_get_pagesize(tpp->p_szc));
5102 do {
5103 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5104 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5105 if (rpp == NULL) {
5106 page_create_putback(pgcnt);
5107 kcage_cageout_wakeup();
5109 } while (rpp == NULL);
5111 ASSERT(PP_ISNORELOC(rpp));
5113 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5115 if (result == 0) {
5116 *replacement = rpp;
5117 if (pgcnt != npgs)
5118 panic("page_relocate_cage: partial relocation");
5121 return (result);
5125 * Release the page lock on a page, place on cachelist
5126 * tail if no longer mapped. Caller can let us know if
5127 * the page is known to be clean.
5130 page_release(page_t *pp, int checkmod)
5132 int status;
5134 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5135 (pp->p_vnode != NULL));
5137 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5138 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5139 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5140 !hat_page_is_mapped(pp)) {
5143 * If page is modified, unlock it
5145 * (p_nrm & P_MOD) bit has the latest stuff because:
5146 * (1) We found that this page doesn't have any mappings
5147 * _after_ holding SE_EXCL and
5148 * (2) We didn't drop SE_EXCL lock after the check in (1)
5150 if (checkmod && hat_ismod(pp)) {
5151 page_unlock(pp);
5152 status = PGREL_MOD;
5153 } else {
5154 /*LINTED: constant in conditional context*/
5155 VN_DISPOSE(pp, B_FREE, 0, kcred);
5156 status = PGREL_CLEAN;
5158 } else {
5159 page_unlock(pp);
5160 status = PGREL_NOTREL;
5162 return (status);
5166 * Given a constituent page, try to demote the large page on the freelist.
5168 * Returns nonzero if the page could be demoted successfully. Returns with
5169 * the constituent page still locked.
5172 page_try_demote_free_pages(page_t *pp)
5174 page_t *rootpp = pp;
5175 pfn_t pfn = page_pptonum(pp);
5176 spgcnt_t npgs;
5177 uint_t szc = pp->p_szc;
5179 ASSERT(PP_ISFREE(pp));
5180 ASSERT(PAGE_EXCL(pp));
5183 * Adjust rootpp and lock it, if `pp' is not the base
5184 * constituent page.
5186 npgs = page_get_pagecnt(pp->p_szc);
5187 if (npgs == 1) {
5188 return (0);
5191 if (!IS_P2ALIGNED(pfn, npgs)) {
5192 pfn = P2ALIGN(pfn, npgs);
5193 rootpp = page_numtopp_nolock(pfn);
5196 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5197 return (0);
5200 if (rootpp->p_szc != szc) {
5201 if (pp != rootpp)
5202 page_unlock(rootpp);
5203 return (0);
5206 page_demote_free_pages(rootpp);
5208 if (pp != rootpp)
5209 page_unlock(rootpp);
5211 ASSERT(PP_ISFREE(pp));
5212 ASSERT(PAGE_EXCL(pp));
5213 return (1);
5217 * Given a constituent page, try to demote the large page.
5219 * Returns nonzero if the page could be demoted successfully. Returns with
5220 * the constituent page still locked.
5223 page_try_demote_pages(page_t *pp)
5225 page_t *tpp, *rootpp = pp;
5226 pfn_t pfn = page_pptonum(pp);
5227 spgcnt_t i, npgs;
5228 uint_t szc = pp->p_szc;
5229 vnode_t *vp = pp->p_vnode;
5231 ASSERT(PAGE_EXCL(pp));
5233 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5235 if (pp->p_szc == 0) {
5236 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5237 return (1);
5240 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5241 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5242 page_demote_vp_pages(pp);
5243 ASSERT(pp->p_szc == 0);
5244 return (1);
5248 * Adjust rootpp if passed in is not the base
5249 * constituent page.
5251 npgs = page_get_pagecnt(pp->p_szc);
5252 ASSERT(npgs > 1);
5253 if (!IS_P2ALIGNED(pfn, npgs)) {
5254 pfn = P2ALIGN(pfn, npgs);
5255 rootpp = page_numtopp_nolock(pfn);
5256 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5257 ASSERT(rootpp->p_vnode != NULL);
5258 ASSERT(rootpp->p_szc == szc);
5262 * We can't demote kernel pages since we can't hat_unload()
5263 * the mappings.
5265 if (VN_ISKAS(rootpp->p_vnode))
5266 return (0);
5269 * Attempt to lock all constituent pages except the page passed
5270 * in since it's already locked.
5272 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5273 ASSERT(!PP_ISFREE(tpp));
5274 ASSERT(tpp->p_vnode != NULL);
5276 if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5277 break;
5278 ASSERT(tpp->p_szc == rootpp->p_szc);
5279 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5283 * If we failed to lock them all then unlock what we have
5284 * locked so far and bail.
5286 if (i < npgs) {
5287 tpp = rootpp;
5288 while (i-- > 0) {
5289 if (tpp != pp)
5290 page_unlock(tpp);
5291 tpp++;
5293 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5294 return (0);
5297 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5298 ASSERT(PAGE_EXCL(tpp));
5299 ASSERT(tpp->p_slckcnt == 0);
5300 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5301 tpp->p_szc = 0;
5305 * Unlock all pages except the page passed in.
5307 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5308 ASSERT(!hat_page_is_mapped(tpp));
5309 if (tpp != pp)
5310 page_unlock(tpp);
5313 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5314 return (1);
5318 * Called by page_free() and page_destroy() to demote the page size code
5319 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5320 * p_szc on free list, neither can we just clear p_szc of a single page_t
5321 * within a large page since it will break other code that relies on p_szc
5322 * being the same for all page_t's of a large page). Anonymous pages should
5323 * never end up here because anon_map_getpages() cannot deal with p_szc
5324 * changes after a single constituent page is locked. While anonymous or
5325 * kernel large pages are demoted or freed the entire large page at a time
5326 * with all constituent pages locked EXCL for the file system pages we
5327 * have to be able to demote a large page (i.e. decrease all constituent pages
5328 * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5329 * we can easily deal with anonymous page demotion the entire large page at a
5330 * time is that those operation originate at address space level and concern
5331 * the entire large page region with actual demotion only done when pages are
5332 * not shared with any other processes (therefore we can always get EXCL lock
5333 * on all anonymous constituent pages after clearing segment page
5334 * cache). However file system pages can be truncated or invalidated at a
5335 * PAGESIZE level from the file system side and end up in page_free() or
5336 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5337 * and therefore pageout should be able to demote a large page by EXCL locking
5338 * any constituent page that is not under SOFTLOCK). In those cases we cannot
5339 * rely on being able to lock EXCL all constituent pages.
5341 * To prevent szc changes on file system pages one has to lock all constituent
5342 * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5343 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5344 * prevent szc changes is hat layer that uses its own page level mlist
5345 * locks. hat assumes that szc doesn't change after mlist lock for a page is
5346 * taken. Therefore we need to change szc under hat level locks if we only
5347 * have an EXCL lock on a single constituent page and hat still references any
5348 * of constituent pages. (Note we can't "ignore" hat layer by simply
5349 * hat_pageunload() all constituent pages without having EXCL locks on all of
5350 * constituent pages). We use hat_page_demote() call to safely demote szc of
5351 * all constituent pages under hat locks when we only have an EXCL lock on one
5352 * of constituent pages.
5354 * This routine calls page_szc_lock() before calling hat_page_demote() to
5355 * allow segvn in one special case not to lock all constituent pages SHARED
5356 * before calling hat_memload_array() that relies on p_szc not changing even
5357 * before hat level mlist lock is taken. In that case segvn uses
5358 * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5360 * Anonymous or kernel page demotion still has to lock all pages exclusively
5361 * and do hat_pageunload() on all constituent pages before demoting the page
5362 * therefore there's no need for anonymous or kernel page demotion to use
5363 * hat_page_demote() mechanism.
5365 * hat_page_demote() removes all large mappings that map pp and then decreases
5366 * p_szc starting from the last constituent page of the large page. By working
5367 * from the tail of a large page in pfn decreasing order allows one looking at
5368 * the root page to know that hat_page_demote() is done for root's szc area.
5369 * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5370 * pages within szc 1 area to prevent szc changes because hat_page_demote()
5371 * that started on this page when it had szc > 1 is done for this szc 1 area.
5373 * We are guaranteed that all constituent pages of pp's large page belong to
5374 * the same vnode with the consecutive offsets increasing in the direction of
5375 * the pfn i.e. the identity of constituent pages can't change until their
5376 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5377 * large mappings to pp even though we don't lock any constituent page except
5378 * pp (i.e. we won't unload e.g. kernel locked page).
5380 static void
5381 page_demote_vp_pages(page_t *pp)
5383 kmutex_t *mtx;
5385 ASSERT(PAGE_EXCL(pp));
5386 ASSERT(!PP_ISFREE(pp));
5387 ASSERT(pp->p_vnode != NULL);
5388 ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5389 ASSERT(!PP_ISKAS(pp));
5391 VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5393 mtx = page_szc_lock(pp);
5394 if (mtx != NULL) {
5395 hat_page_demote(pp);
5396 mutex_exit(mtx);
5398 ASSERT(pp->p_szc == 0);
5402 * Mark any existing pages for migration in the given range
5404 void
5405 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5406 struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5407 u_offset_t vnoff, int rflag)
5409 struct anon *ap;
5410 vnode_t *curvp;
5411 lgrp_t *from;
5412 pgcnt_t nlocked;
5413 u_offset_t off;
5414 pfn_t pfn;
5415 size_t pgsz;
5416 size_t segpgsz;
5417 pgcnt_t pages;
5418 uint_t pszc;
5419 page_t *pp0, *pp;
5420 caddr_t va;
5421 ulong_t an_idx;
5422 anon_sync_obj_t cookie;
5424 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5427 * Don't do anything if don't need to do lgroup optimizations
5428 * on this system
5430 if (!lgrp_optimizations())
5431 return;
5434 * Align address and length to (potentially large) page boundary
5436 segpgsz = page_get_pagesize(seg->s_szc);
5437 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5438 if (rflag)
5439 len = P2ROUNDUP(len, segpgsz);
5442 * Do one (large) page at a time
5444 va = addr;
5445 while (va < addr + len) {
5447 * Lookup (root) page for vnode and offset corresponding to
5448 * this virtual address
5449 * Try anonmap first since there may be copy-on-write
5450 * pages, but initialize vnode pointer and offset using
5451 * vnode arguments just in case there isn't an amp.
5453 curvp = vp;
5454 off = vnoff + va - seg->s_base;
5455 if (amp) {
5456 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5457 an_idx = anon_index + seg_page(seg, va);
5458 anon_array_enter(amp, an_idx, &cookie);
5459 ap = anon_get_ptr(amp->ahp, an_idx);
5460 if (ap)
5461 swap_xlate(ap, &curvp, &off);
5462 anon_array_exit(&cookie);
5463 ANON_LOCK_EXIT(&amp->a_rwlock);
5466 pp = NULL;
5467 if (curvp)
5468 pp = page_lookup(curvp, off, SE_SHARED);
5471 * If there isn't a page at this virtual address,
5472 * skip to next page
5474 if (pp == NULL) {
5475 va += PAGESIZE;
5476 continue;
5480 * Figure out which lgroup this page is in for kstats
5482 pfn = page_pptonum(pp);
5483 from = lgrp_pfn_to_lgrp(pfn);
5486 * Get page size, and round up and skip to next page boundary
5487 * if unaligned address
5489 pszc = pp->p_szc;
5490 pgsz = page_get_pagesize(pszc);
5491 pages = btop(pgsz);
5492 if (!IS_P2ALIGNED(va, pgsz) ||
5493 !IS_P2ALIGNED(pfn, pages) ||
5494 pgsz > segpgsz) {
5495 pgsz = MIN(pgsz, segpgsz);
5496 page_unlock(pp);
5497 pages = btop(P2END((uintptr_t)va, pgsz) -
5498 (uintptr_t)va);
5499 va = (caddr_t)P2END((uintptr_t)va, pgsz);
5500 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5501 continue;
5505 * Upgrade to exclusive lock on page
5507 if (!page_tryupgrade(pp)) {
5508 page_unlock(pp);
5509 va += pgsz;
5510 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5511 btop(pgsz));
5512 continue;
5515 pp0 = pp++;
5516 nlocked = 1;
5519 * Lock constituent pages if this is large page
5521 if (pages > 1) {
5523 * Lock all constituents except root page, since it
5524 * should be locked already.
5526 for (; nlocked < pages; nlocked++) {
5527 if (!page_trylock(pp, SE_EXCL)) {
5528 break;
5530 if (PP_ISFREE(pp) ||
5531 pp->p_szc != pszc) {
5533 * hat_page_demote() raced in with us.
5535 ASSERT(!IS_SWAPFSVP(curvp));
5536 page_unlock(pp);
5537 break;
5539 pp++;
5544 * If all constituent pages couldn't be locked,
5545 * unlock pages locked so far and skip to next page.
5547 if (nlocked < pages) {
5548 while (pp0 < pp) {
5549 page_unlock(pp0++);
5551 va += pgsz;
5552 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5553 btop(pgsz));
5554 continue;
5558 * hat_page_demote() can no longer happen
5559 * since last cons page had the right p_szc after
5560 * all cons pages were locked. all cons pages
5561 * should now have the same p_szc.
5565 * All constituent pages locked successfully, so mark
5566 * large page for migration and unload the mappings of
5567 * constituent pages, so a fault will occur on any part of the
5568 * large page
5570 PP_SETMIGRATE(pp0);
5571 while (pp0 < pp) {
5572 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5573 ASSERT(hat_page_getshare(pp0) == 0);
5574 page_unlock(pp0++);
5576 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5578 va += pgsz;
5583 * Migrate any pages that have been marked for migration in the given range
5585 void
5586 page_migrate(
5587 struct seg *seg,
5588 caddr_t addr,
5589 page_t **ppa,
5590 pgcnt_t npages)
5592 lgrp_t *from;
5593 lgrp_t *to;
5594 page_t *newpp;
5595 page_t *pp;
5596 pfn_t pfn;
5597 size_t pgsz;
5598 spgcnt_t page_cnt;
5599 spgcnt_t i;
5600 uint_t pszc;
5602 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5604 while (npages > 0) {
5605 pp = *ppa;
5606 pszc = pp->p_szc;
5607 pgsz = page_get_pagesize(pszc);
5608 page_cnt = btop(pgsz);
5611 * Check to see whether this page is marked for migration
5613 * Assume that root page of large page is marked for
5614 * migration and none of the other constituent pages
5615 * are marked. This really simplifies clearing the
5616 * migrate bit by not having to clear it from each
5617 * constituent page.
5619 * note we don't want to relocate an entire large page if
5620 * someone is only using one subpage.
5622 if (npages < page_cnt)
5623 break;
5626 * Is it marked for migration?
5628 if (!PP_ISMIGRATE(pp))
5629 goto next;
5632 * Determine lgroups that page is being migrated between
5634 pfn = page_pptonum(pp);
5635 if (!IS_P2ALIGNED(pfn, page_cnt)) {
5636 break;
5638 from = lgrp_pfn_to_lgrp(pfn);
5639 to = lgrp_mem_choose(seg, addr, pgsz);
5642 * Need to get exclusive lock's to migrate
5644 for (i = 0; i < page_cnt; i++) {
5645 ASSERT(PAGE_LOCKED(ppa[i]));
5646 if (page_pptonum(ppa[i]) != pfn + i ||
5647 ppa[i]->p_szc != pszc) {
5648 break;
5650 if (!page_tryupgrade(ppa[i])) {
5651 lgrp_stat_add(from->lgrp_id,
5652 LGRP_PM_FAIL_LOCK_PGS,
5653 page_cnt);
5654 break;
5658 * Check to see whether we are trying to migrate
5659 * page to lgroup where it is allocated already.
5660 * If so, clear the migrate bit and skip to next
5661 * page.
5663 if (i == 0 && to == from) {
5664 PP_CLRMIGRATE(ppa[0]);
5665 page_downgrade(ppa[0]);
5666 goto next;
5671 * If all constituent pages couldn't be locked,
5672 * unlock pages locked so far and skip to next page.
5674 if (i != page_cnt) {
5675 while (--i != -1) {
5676 page_downgrade(ppa[i]);
5678 goto next;
5681 (void) page_create_wait(page_cnt, PG_WAIT);
5682 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5683 if (newpp == NULL) {
5684 page_create_putback(page_cnt);
5685 for (i = 0; i < page_cnt; i++) {
5686 page_downgrade(ppa[i]);
5688 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5689 page_cnt);
5690 goto next;
5692 ASSERT(newpp->p_szc == pszc);
5694 * Clear migrate bit and relocate page
5696 PP_CLRMIGRATE(pp);
5697 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5698 panic("page_migrate: page_relocate failed");
5700 ASSERT(page_cnt * PAGESIZE == pgsz);
5703 * Keep stats for number of pages migrated from and to
5704 * each lgroup
5706 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5707 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5709 * update the page_t array we were passed in and
5710 * unlink constituent pages of a large page.
5712 for (i = 0; i < page_cnt; ++i, ++pp) {
5713 ASSERT(PAGE_EXCL(newpp));
5714 ASSERT(newpp->p_szc == pszc);
5715 ppa[i] = newpp;
5716 pp = newpp;
5717 page_sub(&newpp, pp);
5718 page_downgrade(pp);
5720 ASSERT(newpp == NULL);
5721 next:
5722 addr += pgsz;
5723 ppa += page_cnt;
5724 npages -= page_cnt;
5728 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5729 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5731 * Reclaim/reserve availrmem for npages.
5732 * If there is not enough memory start reaping seg, kmem caches.
5733 * Start pageout scanner (via page_needfree()).
5734 * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5735 * Note: There is no guarantee that any availrmem will be freed as
5736 * this memory typically is locked (kernel heap) or reserved for swap.
5737 * Also due to memory fragmentation kmem allocator may not be able
5738 * to free any memory (single user allocated buffer will prevent
5739 * freeing slab or a page).
5742 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5744 int i = 0;
5745 int i_nofree = 0;
5746 int ret = 0;
5747 pgcnt_t deficit;
5748 pgcnt_t old_availrmem = 0;
5750 mutex_enter(&freemem_lock);
5751 while (availrmem < tune.t_minarmem + npages + epages &&
5752 i++ < page_reclaim_maxcnt) {
5753 /* ensure we made some progress in the last few iterations */
5754 if (old_availrmem < availrmem) {
5755 old_availrmem = availrmem;
5756 i_nofree = 0;
5757 } else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5758 break;
5761 deficit = tune.t_minarmem + npages + epages - availrmem;
5762 mutex_exit(&freemem_lock);
5763 page_needfree(deficit);
5764 kmem_reap();
5765 delay(hz);
5766 page_needfree(-(spgcnt_t)deficit);
5767 mutex_enter(&freemem_lock);
5770 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5771 availrmem -= npages;
5772 ret = 1;
5775 mutex_exit(&freemem_lock);
5777 return (ret);
5781 * Search the memory segments to locate the desired page. Within a
5782 * segment, pages increase linearly with one page structure per
5783 * physical page frame (size PAGESIZE). The search begins
5784 * with the segment that was accessed last, to take advantage of locality.
5785 * If the hint misses, we start from the beginning of the sorted memseg list
5790 * Some data structures for pfn to pp lookup.
5792 ulong_t mhash_per_slot;
5793 struct memseg *memseg_hash[N_MEM_SLOTS];
5795 page_t *
5796 page_numtopp_nolock(pfn_t pfnum)
5798 struct memseg *seg;
5799 page_t *pp;
5800 vm_cpu_data_t *vc;
5803 * We need to disable kernel preemption while referencing the
5804 * cpu_vm_data field in order to prevent us from being switched to
5805 * another cpu and trying to reference it after it has been freed.
5806 * This will keep us on cpu and prevent it from being removed while
5807 * we are still on it.
5809 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5810 * which is being resued by DR who will flush those references
5811 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5813 kpreempt_disable();
5814 vc = CPU->cpu_vm_data;
5815 ASSERT(vc != NULL);
5817 MEMSEG_STAT_INCR(nsearch);
5819 /* Try last winner first */
5820 if (((seg = vc->vc_pnum_memseg) != NULL) &&
5821 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5822 MEMSEG_STAT_INCR(nlastwon);
5823 pp = seg->pages + (pfnum - seg->pages_base);
5824 if (pp->p_pagenum == pfnum) {
5825 kpreempt_enable();
5826 return ((page_t *)pp);
5830 /* Else Try hash */
5831 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5832 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5833 MEMSEG_STAT_INCR(nhashwon);
5834 vc->vc_pnum_memseg = seg;
5835 pp = seg->pages + (pfnum - seg->pages_base);
5836 if (pp->p_pagenum == pfnum) {
5837 kpreempt_enable();
5838 return ((page_t *)pp);
5842 /* Else Brute force */
5843 for (seg = memsegs; seg != NULL; seg = seg->next) {
5844 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5845 vc->vc_pnum_memseg = seg;
5846 pp = seg->pages + (pfnum - seg->pages_base);
5847 if (pp->p_pagenum == pfnum) {
5848 kpreempt_enable();
5849 return ((page_t *)pp);
5853 vc->vc_pnum_memseg = NULL;
5854 kpreempt_enable();
5855 MEMSEG_STAT_INCR(nnotfound);
5856 return ((page_t *)NULL);
5860 struct memseg *
5861 page_numtomemseg_nolock(pfn_t pfnum)
5863 struct memseg *seg;
5864 page_t *pp;
5867 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5868 * which is being resued by DR who will flush those references
5869 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5871 kpreempt_disable();
5872 /* Try hash */
5873 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5874 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5875 pp = seg->pages + (pfnum - seg->pages_base);
5876 if (pp->p_pagenum == pfnum) {
5877 kpreempt_enable();
5878 return (seg);
5882 /* Else Brute force */
5883 for (seg = memsegs; seg != NULL; seg = seg->next) {
5884 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5885 pp = seg->pages + (pfnum - seg->pages_base);
5886 if (pp->p_pagenum == pfnum) {
5887 kpreempt_enable();
5888 return (seg);
5892 kpreempt_enable();
5893 return ((struct memseg *)NULL);
5897 * Given a page and a count return the page struct that is
5898 * n structs away from the current one in the global page
5899 * list.
5901 * This function wraps to the first page upon
5902 * reaching the end of the memseg list.
5904 page_t *
5905 page_nextn(page_t *pp, ulong_t n)
5907 struct memseg *seg;
5908 page_t *ppn;
5909 vm_cpu_data_t *vc;
5912 * We need to disable kernel preemption while referencing the
5913 * cpu_vm_data field in order to prevent us from being switched to
5914 * another cpu and trying to reference it after it has been freed.
5915 * This will keep us on cpu and prevent it from being removed while
5916 * we are still on it.
5918 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5919 * which is being resued by DR who will flush those references
5920 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5922 kpreempt_disable();
5923 vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5925 ASSERT(vc != NULL);
5927 if (((seg = vc->vc_pnext_memseg) == NULL) ||
5928 (seg->pages_base == seg->pages_end) ||
5929 !(pp >= seg->pages && pp < seg->epages)) {
5931 for (seg = memsegs; seg; seg = seg->next) {
5932 if (pp >= seg->pages && pp < seg->epages)
5933 break;
5936 if (seg == NULL) {
5937 /* Memory delete got in, return something valid. */
5938 /* TODO: fix me. */
5939 seg = memsegs;
5940 pp = seg->pages;
5944 /* check for wraparound - possible if n is large */
5945 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5946 n -= seg->epages - pp;
5947 seg = seg->next;
5948 if (seg == NULL)
5949 seg = memsegs;
5950 pp = seg->pages;
5952 vc->vc_pnext_memseg = seg;
5953 kpreempt_enable();
5954 return (ppn);
5958 * Initialize for a loop using page_next_scan_large().
5960 page_t *
5961 page_next_scan_init(void **cookie)
5963 ASSERT(cookie != NULL);
5964 *cookie = (void *)memsegs;
5965 return ((page_t *)memsegs->pages);
5969 * Return the next page in a scan of page_t's, assuming we want
5970 * to skip over sub-pages within larger page sizes.
5972 * The cookie is used to keep track of the current memseg.
5974 page_t *
5975 page_next_scan_large(
5976 page_t *pp,
5977 ulong_t *n,
5978 void **cookie)
5980 struct memseg *seg = (struct memseg *)*cookie;
5981 page_t *new_pp;
5982 ulong_t cnt;
5983 pfn_t pfn;
5987 * get the count of page_t's to skip based on the page size
5989 ASSERT(pp != NULL);
5990 if (pp->p_szc == 0) {
5991 cnt = 1;
5992 } else {
5993 pfn = page_pptonum(pp);
5994 cnt = page_get_pagecnt(pp->p_szc);
5995 cnt -= pfn & (cnt - 1);
5997 *n += cnt;
5998 new_pp = pp + cnt;
6001 * Catch if we went past the end of the current memory segment. If so,
6002 * just move to the next segment with pages.
6004 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
6005 do {
6006 seg = seg->next;
6007 if (seg == NULL)
6008 seg = memsegs;
6009 } while (seg->pages_base == seg->pages_end);
6010 new_pp = seg->pages;
6011 *cookie = (void *)seg;
6014 return (new_pp);
6019 * Returns next page in list. Note: this function wraps
6020 * to the first page in the list upon reaching the end
6021 * of the list. Callers should be aware of this fact.
6024 /* We should change this be a #define */
6026 page_t *
6027 page_next(page_t *pp)
6029 return (page_nextn(pp, 1));
6032 page_t *
6033 page_first()
6035 return ((page_t *)memsegs->pages);
6040 * This routine is called at boot with the initial memory configuration
6041 * and when memory is added or removed.
6043 void
6044 build_pfn_hash()
6046 pfn_t cur;
6047 pgcnt_t index;
6048 struct memseg *pseg;
6049 int i;
6052 * Clear memseg_hash array.
6053 * Since memory add/delete is designed to operate concurrently
6054 * with normal operation, the hash rebuild must be able to run
6055 * concurrently with page_numtopp_nolock(). To support this
6056 * functionality, assignments to memseg_hash array members must
6057 * be done atomically.
6059 * NOTE: bzero() does not currently guarantee this for kernel
6060 * threads, and cannot be used here.
6062 for (i = 0; i < N_MEM_SLOTS; i++)
6063 memseg_hash[i] = NULL;
6065 hat_kpm_mseghash_clear(N_MEM_SLOTS);
6068 * Physmax is the last valid pfn.
6070 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6071 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6072 index = MEMSEG_PFN_HASH(pseg->pages_base);
6073 cur = pseg->pages_base;
6074 do {
6075 if (index >= N_MEM_SLOTS)
6076 index = MEMSEG_PFN_HASH(cur);
6078 if (memseg_hash[index] == NULL ||
6079 memseg_hash[index]->pages_base > pseg->pages_base) {
6080 memseg_hash[index] = pseg;
6081 hat_kpm_mseghash_update(index, pseg);
6083 cur += mhash_per_slot;
6084 index++;
6085 } while (cur < pseg->pages_end);
6090 * Return the pagenum for the pp
6092 pfn_t
6093 page_pptonum(page_t *pp)
6095 return (pp->p_pagenum);
6099 * interface to the referenced and modified etc bits
6100 * in the PSM part of the page struct
6101 * when no locking is desired.
6103 void
6104 page_set_props(page_t *pp, uint_t flags)
6106 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6107 pp->p_nrm |= (uchar_t)flags;
6110 void
6111 page_clr_all_props(page_t *pp)
6113 pp->p_nrm = 0;
6117 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6120 page_clear_lck_cow(page_t *pp, int adjust)
6122 int f_amount;
6124 ASSERT(PAGE_EXCL(pp));
6127 * The page_struct_lock need not be acquired here since
6128 * we require the caller hold the page exclusively locked.
6130 f_amount = 0;
6131 if (pp->p_lckcnt) {
6132 f_amount = 1;
6133 pp->p_lckcnt = 0;
6135 if (pp->p_cowcnt) {
6136 f_amount += pp->p_cowcnt;
6137 pp->p_cowcnt = 0;
6140 if (adjust && f_amount) {
6141 mutex_enter(&freemem_lock);
6142 availrmem += f_amount;
6143 mutex_exit(&freemem_lock);
6146 return (f_amount);
6150 * The following functions is called from free_vp_pages()
6151 * for an inexact estimate of a newly free'd page...
6153 ulong_t
6154 page_share_cnt(page_t *pp)
6156 return (hat_page_getshare(pp));
6160 page_isshared(page_t *pp)
6162 return (hat_page_checkshare(pp, 1));
6166 page_isfree(page_t *pp)
6168 return (PP_ISFREE(pp));
6172 page_isref(page_t *pp)
6174 return (hat_page_getattr(pp, P_REF));
6178 page_ismod(page_t *pp)
6180 return (hat_page_getattr(pp, P_MOD));
6184 * The following code all currently relates to the page capture logic:
6186 * This logic is used for cases where there is a desire to claim a certain
6187 * physical page in the system for the caller. As it may not be possible
6188 * to capture the page immediately, the p_toxic bits are used in the page
6189 * structure to indicate that someone wants to capture this page. When the
6190 * page gets unlocked, the toxic flag will be noted and an attempt to capture
6191 * the page will be made. If it is successful, the original callers callback
6192 * will be called with the page to do with it what they please.
6194 * There is also an async thread which wakes up to attempt to capture
6195 * pages occasionally which have the capture bit set. All of the pages which
6196 * need to be captured asynchronously have been inserted into the
6197 * page_capture_hash and thus this thread walks that hash list. Items in the
6198 * hash have an expiration time so this thread handles that as well by removing
6199 * the item from the hash if it has expired.
6201 * Some important things to note are:
6202 * - if the PR_CAPTURE bit is set on a page, then the page is in the
6203 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed
6204 * to set and clear this bit, and while the lock is held is the only time
6205 * you can add or remove an entry from the hash.
6206 * - the PR_CAPTURE bit can only be set and cleared while holding the
6207 * page_capture_hash_head.pchh_mutex
6208 * - the t_flag field of the thread struct is used with the T_CAPTURING
6209 * flag to prevent recursion while dealing with large pages.
6210 * - pages which need to be retired never expire on the page_capture_hash.
6213 static void page_capture_thread(void);
6214 static kthread_t *pc_thread_id;
6215 kcondvar_t pc_cv;
6216 static kmutex_t pc_thread_mutex;
6217 static clock_t pc_thread_shortwait;
6218 static clock_t pc_thread_longwait;
6219 static int pc_thread_retry;
6221 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6223 /* Note that this is a circular linked list */
6224 typedef struct page_capture_hash_bucket {
6225 page_t *pp;
6226 uchar_t szc;
6227 uchar_t pri;
6228 uint_t flags;
6229 clock_t expires; /* lbolt at which this request expires. */
6230 void *datap; /* Cached data passed in for callback */
6231 struct page_capture_hash_bucket *next;
6232 struct page_capture_hash_bucket *prev;
6233 } page_capture_hash_bucket_t;
6235 #define PC_PRI_HI 0 /* capture now */
6236 #define PC_PRI_LO 1 /* capture later */
6237 #define PC_NUM_PRI 2
6239 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6243 * Each hash bucket will have it's own mutex and two lists which are:
6244 * active (0): represents requests which have not been processed by
6245 * the page_capture async thread yet.
6246 * walked (1): represents requests which have been processed by the
6247 * page_capture async thread within it's given walk of this bucket.
6249 * These are all needed so that we can synchronize all async page_capture
6250 * events. When the async thread moves to a new bucket, it will append the
6251 * walked list to the active list and walk each item one at a time, moving it
6252 * from the active list to the walked list. Thus if there is an async request
6253 * outstanding for a given page, it will always be in one of the two lists.
6254 * New requests will always be added to the active list.
6255 * If we were not able to capture a page before the request expired, we'd free
6256 * up the request structure which would indicate to page_capture that there is
6257 * no longer a need for the given page, and clear the PR_CAPTURE flag if
6258 * possible.
6260 typedef struct page_capture_hash_head {
6261 kmutex_t pchh_mutex;
6262 uint_t num_pages[PC_NUM_PRI];
6263 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6264 } page_capture_hash_head_t;
6266 #ifdef DEBUG
6267 #define NUM_PAGE_CAPTURE_BUCKETS 4
6268 #else
6269 #define NUM_PAGE_CAPTURE_BUCKETS 64
6270 #endif
6272 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6274 /* for now use a very simple hash based upon the size of a page struct */
6275 #define PAGE_CAPTURE_HASH(pp) \
6276 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6278 extern pgcnt_t swapfs_minfree;
6280 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6283 * a callback function is required for page capture requests.
6285 void
6286 page_capture_register_callback(uint_t index, clock_t duration,
6287 int (*cb_func)(page_t *, void *, uint_t))
6289 ASSERT(pc_cb[index].cb_active == 0);
6290 ASSERT(cb_func != NULL);
6291 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6292 pc_cb[index].duration = duration;
6293 pc_cb[index].cb_func = cb_func;
6294 pc_cb[index].cb_active = 1;
6295 rw_exit(&pc_cb[index].cb_rwlock);
6298 void
6299 page_capture_unregister_callback(uint_t index)
6301 int i, j;
6302 struct page_capture_hash_bucket *bp1;
6303 struct page_capture_hash_bucket *bp2;
6304 struct page_capture_hash_bucket *head = NULL;
6305 uint_t flags = (1 << index);
6307 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6308 ASSERT(pc_cb[index].cb_active == 1);
6309 pc_cb[index].duration = 0; /* Paranoia */
6310 pc_cb[index].cb_func = NULL; /* Paranoia */
6311 pc_cb[index].cb_active = 0;
6312 rw_exit(&pc_cb[index].cb_rwlock);
6315 * Just move all the entries to a private list which we can walk
6316 * through without the need to hold any locks.
6317 * No more requests can get added to the hash lists for this consumer
6318 * as the cb_active field for the callback has been cleared.
6320 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6321 mutex_enter(&page_capture_hash[i].pchh_mutex);
6322 for (j = 0; j < 2; j++) {
6323 bp1 = page_capture_hash[i].lists[j].next;
6324 /* walk through all but first (sentinel) element */
6325 while (bp1 != &page_capture_hash[i].lists[j]) {
6326 bp2 = bp1;
6327 if (bp2->flags & flags) {
6328 bp1 = bp2->next;
6329 bp1->prev = bp2->prev;
6330 bp2->prev->next = bp1;
6331 bp2->next = head;
6332 head = bp2;
6334 * Clear the PR_CAPTURE bit as we
6335 * hold appropriate locks here.
6337 page_clrtoxic(head->pp, PR_CAPTURE);
6338 page_capture_hash[i].
6339 num_pages[bp2->pri]--;
6340 continue;
6342 bp1 = bp1->next;
6345 mutex_exit(&page_capture_hash[i].pchh_mutex);
6348 while (head != NULL) {
6349 bp1 = head;
6350 head = head->next;
6351 kmem_free(bp1, sizeof (*bp1));
6357 * Find pp in the active list and move it to the walked list if it
6358 * exists.
6359 * Note that most often pp should be at the front of the active list
6360 * as it is currently used and thus there is no other sort of optimization
6361 * being done here as this is a linked list data structure.
6362 * Returns 1 on successful move or 0 if page could not be found.
6364 static int
6365 page_capture_move_to_walked(page_t *pp)
6367 page_capture_hash_bucket_t *bp;
6368 int index;
6370 index = PAGE_CAPTURE_HASH(pp);
6372 mutex_enter(&page_capture_hash[index].pchh_mutex);
6373 bp = page_capture_hash[index].lists[0].next;
6374 while (bp != &page_capture_hash[index].lists[0]) {
6375 if (bp->pp == pp) {
6376 /* Remove from old list */
6377 bp->next->prev = bp->prev;
6378 bp->prev->next = bp->next;
6380 /* Add to new list */
6381 bp->next = page_capture_hash[index].lists[1].next;
6382 bp->prev = &page_capture_hash[index].lists[1];
6383 page_capture_hash[index].lists[1].next = bp;
6384 bp->next->prev = bp;
6387 * There is a small probability of page on a free
6388 * list being retired while being allocated
6389 * and before P_RAF is set on it. The page may
6390 * end up marked as high priority request instead
6391 * of low priority request.
6392 * If P_RAF page is not marked as low priority request
6393 * change it to low priority request.
6395 page_capture_hash[index].num_pages[bp->pri]--;
6396 bp->pri = PAGE_CAPTURE_PRIO(pp);
6397 page_capture_hash[index].num_pages[bp->pri]++;
6398 mutex_exit(&page_capture_hash[index].pchh_mutex);
6399 return (1);
6401 bp = bp->next;
6403 mutex_exit(&page_capture_hash[index].pchh_mutex);
6404 return (0);
6408 * Add a new entry to the page capture hash. The only case where a new
6409 * entry is not added is when the page capture consumer is no longer registered.
6410 * In this case, we'll silently not add the page to the hash. We know that
6411 * page retire will always be registered for the case where we are currently
6412 * unretiring a page and thus there are no conflicts.
6414 static void
6415 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6417 page_capture_hash_bucket_t *bp1;
6418 page_capture_hash_bucket_t *bp2;
6419 int index;
6420 int cb_index;
6421 int i;
6422 uchar_t pri;
6423 #ifdef DEBUG
6424 page_capture_hash_bucket_t *tp1;
6425 int l;
6426 #endif
6428 ASSERT(!(flags & CAPTURE_ASYNC));
6430 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6432 bp1->pp = pp;
6433 bp1->szc = szc;
6434 bp1->flags = flags;
6435 bp1->datap = datap;
6437 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6438 if ((flags >> cb_index) & 1) {
6439 break;
6443 ASSERT(cb_index != PC_NUM_CALLBACKS);
6445 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6446 if (pc_cb[cb_index].cb_active) {
6447 if (pc_cb[cb_index].duration == -1) {
6448 bp1->expires = (clock_t)-1;
6449 } else {
6450 bp1->expires = ddi_get_lbolt() +
6451 pc_cb[cb_index].duration;
6453 } else {
6454 /* There's no callback registered so don't add to the hash */
6455 rw_exit(&pc_cb[cb_index].cb_rwlock);
6456 kmem_free(bp1, sizeof (*bp1));
6457 return;
6460 index = PAGE_CAPTURE_HASH(pp);
6463 * Only allow capture flag to be modified under this mutex.
6464 * Prevents multiple entries for same page getting added.
6466 mutex_enter(&page_capture_hash[index].pchh_mutex);
6469 * if not already on the hash, set capture bit and add to the hash
6471 if (!(pp->p_toxic & PR_CAPTURE)) {
6472 #ifdef DEBUG
6473 /* Check for duplicate entries */
6474 for (l = 0; l < 2; l++) {
6475 tp1 = page_capture_hash[index].lists[l].next;
6476 while (tp1 != &page_capture_hash[index].lists[l]) {
6477 if (tp1->pp == pp) {
6478 panic("page pp 0x%p already on hash "
6479 "at 0x%p\n",
6480 (void *)pp, (void *)tp1);
6482 tp1 = tp1->next;
6486 #endif
6487 page_settoxic(pp, PR_CAPTURE);
6488 pri = PAGE_CAPTURE_PRIO(pp);
6489 bp1->pri = pri;
6490 bp1->next = page_capture_hash[index].lists[0].next;
6491 bp1->prev = &page_capture_hash[index].lists[0];
6492 bp1->next->prev = bp1;
6493 page_capture_hash[index].lists[0].next = bp1;
6494 page_capture_hash[index].num_pages[pri]++;
6495 if (flags & CAPTURE_RETIRE) {
6496 page_retire_incr_pend_count(datap);
6498 mutex_exit(&page_capture_hash[index].pchh_mutex);
6499 rw_exit(&pc_cb[cb_index].cb_rwlock);
6500 cv_signal(&pc_cv);
6501 return;
6505 * A page retire request will replace any other request.
6506 * A second physmem request which is for a different process than
6507 * the currently registered one will be dropped as there is
6508 * no way to hold the private data for both calls.
6509 * In the future, once there are more callers, this will have to
6510 * be worked out better as there needs to be private storage for
6511 * at least each type of caller (maybe have datap be an array of
6512 * *void's so that we can index based upon callers index).
6515 /* walk hash list to update expire time */
6516 for (i = 0; i < 2; i++) {
6517 bp2 = page_capture_hash[index].lists[i].next;
6518 while (bp2 != &page_capture_hash[index].lists[i]) {
6519 if (bp2->pp == pp) {
6520 if (flags & CAPTURE_RETIRE) {
6521 if (!(bp2->flags & CAPTURE_RETIRE)) {
6522 page_retire_incr_pend_count(
6523 datap);
6524 bp2->flags = flags;
6525 bp2->expires = bp1->expires;
6526 bp2->datap = datap;
6528 } else {
6529 ASSERT(flags & CAPTURE_PHYSMEM);
6530 if (!(bp2->flags & CAPTURE_RETIRE) &&
6531 (datap == bp2->datap)) {
6532 bp2->expires = bp1->expires;
6535 mutex_exit(&page_capture_hash[index].
6536 pchh_mutex);
6537 rw_exit(&pc_cb[cb_index].cb_rwlock);
6538 kmem_free(bp1, sizeof (*bp1));
6539 return;
6541 bp2 = bp2->next;
6546 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6547 * and thus it either has to be set or not set and can't change
6548 * while holding the mutex above.
6550 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6551 (void *)pp);
6555 * We have a page in our hands, lets try and make it ours by turning
6556 * it into a clean page like it had just come off the freelists.
6558 * Returns 0 on success, with the page still EXCL locked.
6559 * On failure, the page will be unlocked, and returns EAGAIN
6561 static int
6562 page_capture_clean_page(page_t *pp)
6564 page_t *newpp;
6565 int skip_unlock = 0;
6566 spgcnt_t count;
6567 page_t *tpp;
6568 int ret = 0;
6569 int extra;
6571 ASSERT(PAGE_EXCL(pp));
6572 ASSERT(!PP_RETIRED(pp));
6573 ASSERT(curthread->t_flag & T_CAPTURING);
6575 if (PP_ISFREE(pp)) {
6576 if (!page_reclaim(pp, NULL)) {
6577 skip_unlock = 1;
6578 ret = EAGAIN;
6579 goto cleanup;
6581 ASSERT(pp->p_szc == 0);
6582 if (pp->p_vnode != NULL) {
6584 * Since this page came from the
6585 * cachelist, we must destroy the
6586 * old vnode association.
6588 page_hashout(pp, NULL);
6590 goto cleanup;
6594 * If we know page_relocate will fail, skip it
6595 * It could still fail due to a UE on another page but we
6596 * can't do anything about that.
6598 if (pp->p_toxic & PR_UE) {
6599 goto skip_relocate;
6603 * It's possible that pages can not have a vnode as fsflush comes
6604 * through and cleans up these pages. It's ugly but that's how it is.
6606 if (pp->p_vnode == NULL) {
6607 goto skip_relocate;
6611 * Page was not free, so lets try to relocate it.
6612 * page_relocate only works with root pages, so if this is not a root
6613 * page, we need to demote it to try and relocate it.
6614 * Unfortunately this is the best we can do right now.
6616 newpp = NULL;
6617 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6618 if (page_try_demote_pages(pp) == 0) {
6619 ret = EAGAIN;
6620 goto cleanup;
6623 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6624 if (ret == 0) {
6625 page_t *npp;
6626 /* unlock the new page(s) */
6627 while (count-- > 0) {
6628 ASSERT(newpp != NULL);
6629 npp = newpp;
6630 page_sub(&newpp, npp);
6631 page_unlock(npp);
6633 ASSERT(newpp == NULL);
6635 * Check to see if the page we have is too large.
6636 * If so, demote it freeing up the extra pages.
6638 if (pp->p_szc > 0) {
6639 /* For now demote extra pages to szc == 0 */
6640 extra = page_get_pagecnt(pp->p_szc) - 1;
6641 while (extra > 0) {
6642 tpp = pp->p_next;
6643 page_sub(&pp, tpp);
6644 tpp->p_szc = 0;
6645 page_free(tpp, 1);
6646 extra--;
6648 /* Make sure to set our page to szc 0 as well */
6649 ASSERT(pp->p_next == pp && pp->p_prev == pp);
6650 pp->p_szc = 0;
6652 goto cleanup;
6653 } else if (ret == EIO) {
6654 ret = EAGAIN;
6655 goto cleanup;
6656 } else {
6658 * Need to reset return type as we failed to relocate the page
6659 * but that does not mean that some of the next steps will not
6660 * work.
6662 ret = 0;
6665 skip_relocate:
6667 if (pp->p_szc > 0) {
6668 if (page_try_demote_pages(pp) == 0) {
6669 ret = EAGAIN;
6670 goto cleanup;
6674 ASSERT(pp->p_szc == 0);
6676 if (hat_ismod(pp)) {
6677 ret = EAGAIN;
6678 goto cleanup;
6680 if (PP_ISKAS(pp)) {
6681 ret = EAGAIN;
6682 goto cleanup;
6684 if (pp->p_lckcnt || pp->p_cowcnt) {
6685 ret = EAGAIN;
6686 goto cleanup;
6689 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6690 ASSERT(!hat_page_is_mapped(pp));
6692 if (hat_ismod(pp)) {
6694 * This is a semi-odd case as the page is now modified but not
6695 * mapped as we just unloaded the mappings above.
6697 ret = EAGAIN;
6698 goto cleanup;
6700 if (pp->p_vnode != NULL) {
6701 page_hashout(pp, NULL);
6705 * At this point, the page should be in a clean state and
6706 * we can do whatever we want with it.
6709 cleanup:
6710 if (ret != 0) {
6711 if (!skip_unlock) {
6712 page_unlock(pp);
6714 } else {
6715 ASSERT(pp->p_szc == 0);
6716 ASSERT(PAGE_EXCL(pp));
6718 pp->p_next = pp;
6719 pp->p_prev = pp;
6721 return (ret);
6725 * Various callers of page_trycapture() can have different restrictions upon
6726 * what memory they have access to.
6727 * Returns 0 on success, with the following error codes on failure:
6728 * EPERM - The requested page is long term locked, and thus repeated
6729 * requests to capture this page will likely fail.
6730 * ENOMEM - There was not enough free memory in the system to safely
6731 * map the requested page.
6732 * ENOENT - The requested page was inside the kernel cage, and the
6733 * PHYSMEM_CAGE flag was not set.
6736 page_capture_pre_checks(page_t *pp, uint_t flags)
6738 ASSERT(pp != NULL);
6740 #if defined(__sparc)
6741 if (pp->p_vnode == &promvp) {
6742 return (EPERM);
6745 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6746 (flags & CAPTURE_PHYSMEM)) {
6747 return (ENOENT);
6750 if (PP_ISNORELOCKERNEL(pp)) {
6751 return (EPERM);
6753 #else
6754 if (PP_ISKAS(pp)) {
6755 return (EPERM);
6757 #endif /* __sparc */
6759 /* only physmem currently has the restrictions checked below */
6760 if (!(flags & CAPTURE_PHYSMEM)) {
6761 return (0);
6764 if (availrmem < swapfs_minfree) {
6766 * We won't try to capture this page as we are
6767 * running low on memory.
6769 return (ENOMEM);
6771 return (0);
6775 * Once we have a page in our mits, go ahead and complete the capture
6776 * operation.
6777 * Returns 1 on failure where page is no longer needed
6778 * Returns 0 on success
6779 * Returns -1 if there was a transient failure.
6780 * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6783 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6785 int cb_index;
6786 int ret = 0;
6787 page_capture_hash_bucket_t *bp1;
6788 page_capture_hash_bucket_t *bp2;
6789 int index;
6790 int found = 0;
6791 int i;
6793 ASSERT(PAGE_EXCL(pp));
6794 ASSERT(curthread->t_flag & T_CAPTURING);
6796 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6797 if ((flags >> cb_index) & 1) {
6798 break;
6801 ASSERT(cb_index < PC_NUM_CALLBACKS);
6804 * Remove the entry from the page_capture hash, but don't free it yet
6805 * as we may need to put it back.
6806 * Since we own the page at this point in time, we should find it
6807 * in the hash if this is an ASYNC call. If we don't it's likely
6808 * that the page_capture_async() thread decided that this request
6809 * had expired, in which case we just continue on.
6811 if (flags & CAPTURE_ASYNC) {
6813 index = PAGE_CAPTURE_HASH(pp);
6815 mutex_enter(&page_capture_hash[index].pchh_mutex);
6816 for (i = 0; i < 2 && !found; i++) {
6817 bp1 = page_capture_hash[index].lists[i].next;
6818 while (bp1 != &page_capture_hash[index].lists[i]) {
6819 if (bp1->pp == pp) {
6820 bp1->next->prev = bp1->prev;
6821 bp1->prev->next = bp1->next;
6822 page_capture_hash[index].
6823 num_pages[bp1->pri]--;
6824 page_clrtoxic(pp, PR_CAPTURE);
6825 found = 1;
6826 break;
6828 bp1 = bp1->next;
6831 mutex_exit(&page_capture_hash[index].pchh_mutex);
6834 /* Synchronize with the unregister func. */
6835 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6836 if (!pc_cb[cb_index].cb_active) {
6837 page_free(pp, 1);
6838 rw_exit(&pc_cb[cb_index].cb_rwlock);
6839 if (found) {
6840 kmem_free(bp1, sizeof (*bp1));
6842 return (1);
6846 * We need to remove the entry from the page capture hash and turn off
6847 * the PR_CAPTURE bit before calling the callback. We'll need to cache
6848 * the entry here, and then based upon the return value, cleanup
6849 * appropriately or re-add it to the hash, making sure that someone else
6850 * hasn't already done so.
6851 * It should be rare for the callback to fail and thus it's ok for
6852 * the failure path to be a bit complicated as the success path is
6853 * cleaner and the locking rules are easier to follow.
6856 ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6858 rw_exit(&pc_cb[cb_index].cb_rwlock);
6861 * If this was an ASYNC request, we need to cleanup the hash if the
6862 * callback was successful or if the request was no longer valid.
6863 * For non-ASYNC requests, we return failure to map and the caller
6864 * will take care of adding the request to the hash.
6865 * Note also that the callback itself is responsible for the page
6866 * at this point in time in terms of locking ... The most common
6867 * case for the failure path should just be a page_free.
6869 if (ret >= 0) {
6870 if (found) {
6871 if (bp1->flags & CAPTURE_RETIRE) {
6872 page_retire_decr_pend_count(datap);
6874 kmem_free(bp1, sizeof (*bp1));
6876 return (ret);
6878 if (!found) {
6879 return (ret);
6882 ASSERT(flags & CAPTURE_ASYNC);
6885 * Check for expiration time first as we can just free it up if it's
6886 * expired.
6888 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6889 kmem_free(bp1, sizeof (*bp1));
6890 return (ret);
6894 * The callback failed and there used to be an entry in the hash for
6895 * this page, so we need to add it back to the hash.
6897 mutex_enter(&page_capture_hash[index].pchh_mutex);
6898 if (!(pp->p_toxic & PR_CAPTURE)) {
6899 /* just add bp1 back to head of walked list */
6900 page_settoxic(pp, PR_CAPTURE);
6901 bp1->next = page_capture_hash[index].lists[1].next;
6902 bp1->prev = &page_capture_hash[index].lists[1];
6903 bp1->next->prev = bp1;
6904 bp1->pri = PAGE_CAPTURE_PRIO(pp);
6905 page_capture_hash[index].lists[1].next = bp1;
6906 page_capture_hash[index].num_pages[bp1->pri]++;
6907 mutex_exit(&page_capture_hash[index].pchh_mutex);
6908 return (ret);
6912 * Otherwise there was a new capture request added to list
6913 * Need to make sure that our original data is represented if
6914 * appropriate.
6916 for (i = 0; i < 2; i++) {
6917 bp2 = page_capture_hash[index].lists[i].next;
6918 while (bp2 != &page_capture_hash[index].lists[i]) {
6919 if (bp2->pp == pp) {
6920 if (bp1->flags & CAPTURE_RETIRE) {
6921 if (!(bp2->flags & CAPTURE_RETIRE)) {
6922 bp2->szc = bp1->szc;
6923 bp2->flags = bp1->flags;
6924 bp2->expires = bp1->expires;
6925 bp2->datap = bp1->datap;
6927 } else {
6928 ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6929 if (!(bp2->flags & CAPTURE_RETIRE)) {
6930 bp2->szc = bp1->szc;
6931 bp2->flags = bp1->flags;
6932 bp2->expires = bp1->expires;
6933 bp2->datap = bp1->datap;
6936 page_capture_hash[index].num_pages[bp2->pri]--;
6937 bp2->pri = PAGE_CAPTURE_PRIO(pp);
6938 page_capture_hash[index].num_pages[bp2->pri]++;
6939 mutex_exit(&page_capture_hash[index].
6940 pchh_mutex);
6941 kmem_free(bp1, sizeof (*bp1));
6942 return (ret);
6944 bp2 = bp2->next;
6947 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6948 /*NOTREACHED*/
6952 * Try to capture the given page for the caller specified in the flags
6953 * parameter. The page will either be captured and handed over to the
6954 * appropriate callback, or will be queued up in the page capture hash
6955 * to be captured asynchronously.
6956 * If the current request is due to an async capture, the page must be
6957 * exclusively locked before calling this function.
6958 * Currently szc must be 0 but in the future this should be expandable to
6959 * other page sizes.
6960 * Returns 0 on success, with the following error codes on failure:
6961 * EPERM - The requested page is long term locked, and thus repeated
6962 * requests to capture this page will likely fail.
6963 * ENOMEM - There was not enough free memory in the system to safely
6964 * map the requested page.
6965 * ENOENT - The requested page was inside the kernel cage, and the
6966 * CAPTURE_GET_CAGE flag was not set.
6967 * EAGAIN - The requested page could not be capturead at this point in
6968 * time but future requests will likely work.
6969 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6970 * was not set.
6973 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6975 int ret;
6976 int cb_index;
6978 if (flags & CAPTURE_ASYNC) {
6979 ASSERT(PAGE_EXCL(pp));
6980 goto async;
6983 /* Make sure there's enough availrmem ... */
6984 ret = page_capture_pre_checks(pp, flags);
6985 if (ret != 0) {
6986 return (ret);
6989 if (!page_trylock(pp, SE_EXCL)) {
6990 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6991 if ((flags >> cb_index) & 1) {
6992 break;
6995 ASSERT(cb_index < PC_NUM_CALLBACKS);
6996 ret = EAGAIN;
6997 /* Special case for retired pages */
6998 if (PP_RETIRED(pp)) {
6999 if (flags & CAPTURE_GET_RETIRED) {
7000 if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
7002 * Need to set capture bit and add to
7003 * hash so that the page will be
7004 * retired when freed.
7006 page_capture_add_hash(pp, szc,
7007 CAPTURE_RETIRE, NULL);
7008 ret = 0;
7009 goto own_page;
7011 } else {
7012 return (EBUSY);
7015 page_capture_add_hash(pp, szc, flags, datap);
7016 return (ret);
7019 async:
7020 ASSERT(PAGE_EXCL(pp));
7022 /* Need to check for physmem async requests that availrmem is sane */
7023 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7024 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7025 (availrmem < swapfs_minfree)) {
7026 page_unlock(pp);
7027 return (ENOMEM);
7030 ret = page_capture_clean_page(pp);
7032 if (ret != 0) {
7033 /* We failed to get the page, so lets add it to the hash */
7034 if (!(flags & CAPTURE_ASYNC)) {
7035 page_capture_add_hash(pp, szc, flags, datap);
7037 return (ret);
7040 own_page:
7041 ASSERT(PAGE_EXCL(pp));
7042 ASSERT(pp->p_szc == 0);
7044 /* Call the callback */
7045 ret = page_capture_take_action(pp, flags, datap);
7047 if (ret == 0) {
7048 return (0);
7052 * Note that in the failure cases from page_capture_take_action, the
7053 * EXCL lock will have already been dropped.
7055 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7056 page_capture_add_hash(pp, szc, flags, datap);
7058 return (EAGAIN);
7062 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7064 int ret;
7066 curthread->t_flag |= T_CAPTURING;
7067 ret = page_itrycapture(pp, szc, flags, datap);
7068 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7069 return (ret);
7073 * When unlocking a page which has the PR_CAPTURE bit set, this routine
7074 * gets called to try and capture the page.
7076 void
7077 page_unlock_capture(page_t *pp)
7079 page_capture_hash_bucket_t *bp;
7080 int index;
7081 int i;
7082 uint_t szc;
7083 uint_t flags = 0;
7084 void *datap;
7085 kmutex_t *mp;
7086 extern vnode_t retired_pages;
7089 * We need to protect against a possible deadlock here where we own
7090 * the vnode page hash mutex and want to acquire it again as there
7091 * are locations in the code, where we unlock a page while holding
7092 * the mutex which can lead to the page being captured and eventually
7093 * end up here. As we may be hashing out the old page and hashing into
7094 * the retire vnode, we need to make sure we don't own them.
7095 * Other callbacks who do hash operations also need to make sure that
7096 * before they hashin to a vnode that they do not currently own the
7097 * vphm mutex otherwise there will be a panic.
7099 if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7100 page_unlock_nocapture(pp);
7101 return;
7103 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7104 page_unlock_nocapture(pp);
7105 return;
7108 index = PAGE_CAPTURE_HASH(pp);
7110 mp = &page_capture_hash[index].pchh_mutex;
7111 mutex_enter(mp);
7112 for (i = 0; i < 2; i++) {
7113 bp = page_capture_hash[index].lists[i].next;
7114 while (bp != &page_capture_hash[index].lists[i]) {
7115 if (bp->pp == pp) {
7116 szc = bp->szc;
7117 flags = bp->flags | CAPTURE_ASYNC;
7118 datap = bp->datap;
7119 mutex_exit(mp);
7120 (void) page_trycapture(pp, szc, flags, datap);
7121 return;
7123 bp = bp->next;
7127 /* Failed to find page in hash so clear flags and unlock it. */
7128 page_clrtoxic(pp, PR_CAPTURE);
7129 page_unlock(pp);
7131 mutex_exit(mp);
7134 void
7135 page_capture_init()
7137 int i;
7138 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7139 page_capture_hash[i].lists[0].next =
7140 &page_capture_hash[i].lists[0];
7141 page_capture_hash[i].lists[0].prev =
7142 &page_capture_hash[i].lists[0];
7143 page_capture_hash[i].lists[1].next =
7144 &page_capture_hash[i].lists[1];
7145 page_capture_hash[i].lists[1].prev =
7146 &page_capture_hash[i].lists[1];
7149 pc_thread_shortwait = 23 * hz;
7150 pc_thread_longwait = 1201 * hz;
7151 pc_thread_retry = 3;
7152 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7153 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7154 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7155 TS_RUN, minclsyspri);
7159 * It is necessary to scrub any failing pages prior to reboot in order to
7160 * prevent a latent error trap from occurring on the next boot.
7162 void
7163 page_retire_mdboot()
7165 page_t *pp;
7166 int i, j;
7167 page_capture_hash_bucket_t *bp;
7168 uchar_t pri;
7170 /* walk lists looking for pages to scrub */
7171 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7172 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7173 if (page_capture_hash[i].num_pages[pri] != 0) {
7174 break;
7177 if (pri == PC_NUM_PRI)
7178 continue;
7180 mutex_enter(&page_capture_hash[i].pchh_mutex);
7182 for (j = 0; j < 2; j++) {
7183 bp = page_capture_hash[i].lists[j].next;
7184 while (bp != &page_capture_hash[i].lists[j]) {
7185 pp = bp->pp;
7186 if (PP_TOXIC(pp)) {
7187 if (page_trylock(pp, SE_EXCL)) {
7188 PP_CLRFREE(pp);
7189 pagescrub(pp, 0, PAGESIZE);
7190 page_unlock(pp);
7193 bp = bp->next;
7196 mutex_exit(&page_capture_hash[i].pchh_mutex);
7201 * Walk the page_capture_hash trying to capture pages and also cleanup old
7202 * entries which have expired.
7204 void
7205 page_capture_async()
7207 page_t *pp;
7208 int i;
7209 int ret;
7210 page_capture_hash_bucket_t *bp1, *bp2;
7211 uint_t szc;
7212 uint_t flags;
7213 void *datap;
7214 uchar_t pri;
7216 /* If there are outstanding pages to be captured, get to work */
7217 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7218 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7219 if (page_capture_hash[i].num_pages[pri] != 0)
7220 break;
7222 if (pri == PC_NUM_PRI)
7223 continue;
7225 /* Append list 1 to list 0 and then walk through list 0 */
7226 mutex_enter(&page_capture_hash[i].pchh_mutex);
7227 bp1 = &page_capture_hash[i].lists[1];
7228 bp2 = bp1->next;
7229 if (bp1 != bp2) {
7230 bp1->prev->next = page_capture_hash[i].lists[0].next;
7231 bp2->prev = &page_capture_hash[i].lists[0];
7232 page_capture_hash[i].lists[0].next->prev = bp1->prev;
7233 page_capture_hash[i].lists[0].next = bp2;
7234 bp1->next = bp1;
7235 bp1->prev = bp1;
7238 /* list[1] will be empty now */
7240 bp1 = page_capture_hash[i].lists[0].next;
7241 while (bp1 != &page_capture_hash[i].lists[0]) {
7242 /* Check expiration time */
7243 if ((ddi_get_lbolt() > bp1->expires &&
7244 bp1->expires != -1) ||
7245 page_deleted(bp1->pp)) {
7246 page_capture_hash[i].lists[0].next = bp1->next;
7247 bp1->next->prev =
7248 &page_capture_hash[i].lists[0];
7249 page_capture_hash[i].num_pages[bp1->pri]--;
7252 * We can safely remove the PR_CAPTURE bit
7253 * without holding the EXCL lock on the page
7254 * as the PR_CAPTURE bit requres that the
7255 * page_capture_hash[].pchh_mutex be held
7256 * to modify it.
7258 page_clrtoxic(bp1->pp, PR_CAPTURE);
7259 mutex_exit(&page_capture_hash[i].pchh_mutex);
7260 kmem_free(bp1, sizeof (*bp1));
7261 mutex_enter(&page_capture_hash[i].pchh_mutex);
7262 bp1 = page_capture_hash[i].lists[0].next;
7263 continue;
7265 pp = bp1->pp;
7266 szc = bp1->szc;
7267 flags = bp1->flags;
7268 datap = bp1->datap;
7269 mutex_exit(&page_capture_hash[i].pchh_mutex);
7270 if (page_trylock(pp, SE_EXCL)) {
7271 ret = page_trycapture(pp, szc,
7272 flags | CAPTURE_ASYNC, datap);
7273 } else {
7274 ret = 1; /* move to walked hash */
7277 if (ret != 0) {
7278 /* Move to walked hash */
7279 (void) page_capture_move_to_walked(pp);
7281 mutex_enter(&page_capture_hash[i].pchh_mutex);
7282 bp1 = page_capture_hash[i].lists[0].next;
7285 mutex_exit(&page_capture_hash[i].pchh_mutex);
7290 * This function is called by the page_capture_thread, and is needed in
7291 * in order to initiate aio cleanup, so that pages used in aio
7292 * will be unlocked and subsequently retired by page_capture_thread.
7294 static int
7295 do_aio_cleanup(void)
7297 proc_t *procp;
7298 int (*aio_cleanup_dr_delete_memory)(proc_t *);
7299 int cleaned = 0;
7301 if (modload("sys", "kaio") == -1) {
7302 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7303 return (0);
7306 * We use the aio_cleanup_dr_delete_memory function to
7307 * initiate the actual clean up; this function will wake
7308 * up the per-process aio_cleanup_thread.
7310 aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7311 modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7312 if (aio_cleanup_dr_delete_memory == NULL) {
7313 cmn_err(CE_WARN,
7314 "aio_cleanup_dr_delete_memory not found in kaio");
7315 return (0);
7317 mutex_enter(&pidlock);
7318 for (procp = practive; (procp != NULL); procp = procp->p_next) {
7319 mutex_enter(&procp->p_lock);
7320 if (procp->p_aio != NULL) {
7321 /* cleanup proc's outstanding kaio */
7322 cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7324 mutex_exit(&procp->p_lock);
7326 mutex_exit(&pidlock);
7327 return (cleaned);
7331 * helper function for page_capture_thread
7333 static void
7334 page_capture_handle_outstanding(void)
7336 int ntry;
7338 /* Reap pages before attempting capture pages */
7339 kmem_reap();
7341 if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7342 hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7344 * Note: Purging only for platforms that support
7345 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7346 * platforms ISM pages SE_SHARED locked until destroyed.
7349 /* disable and purge seg_pcache */
7350 (void) seg_p_disable();
7351 for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7352 if (!page_retire_pend_count())
7353 break;
7354 if (do_aio_cleanup()) {
7356 * allow the apps cleanup threads
7357 * to run
7359 delay(pc_thread_shortwait);
7361 page_capture_async();
7363 /* reenable seg_pcache */
7364 seg_p_enable();
7366 /* completed what can be done. break out */
7367 return;
7371 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7372 * and then attempt to capture.
7374 seg_preap();
7375 page_capture_async();
7379 * The page_capture_thread loops forever, looking to see if there are
7380 * pages still waiting to be captured.
7382 static void
7383 page_capture_thread(void)
7385 callb_cpr_t c;
7386 int i;
7387 int high_pri_pages;
7388 int low_pri_pages;
7389 clock_t timeout;
7391 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7393 mutex_enter(&pc_thread_mutex);
7394 for (;;) {
7395 high_pri_pages = 0;
7396 low_pri_pages = 0;
7397 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7398 high_pri_pages +=
7399 page_capture_hash[i].num_pages[PC_PRI_HI];
7400 low_pri_pages +=
7401 page_capture_hash[i].num_pages[PC_PRI_LO];
7404 timeout = pc_thread_longwait;
7405 if (high_pri_pages != 0) {
7406 timeout = pc_thread_shortwait;
7407 page_capture_handle_outstanding();
7408 } else if (low_pri_pages != 0) {
7409 page_capture_async();
7411 CALLB_CPR_SAFE_BEGIN(&c);
7412 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7413 timeout, TR_CLOCK_TICK);
7414 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7416 /*NOTREACHED*/
7419 * Attempt to locate a bucket that has enough pages to satisfy the request.
7420 * The initial check is done without the lock to avoid unneeded contention.
7421 * The function returns 1 if enough pages were found, else 0 if it could not
7422 * find enough pages in a bucket.
7424 static int
7425 pcf_decrement_bucket(pgcnt_t npages)
7427 struct pcf *p;
7428 struct pcf *q;
7429 int i;
7431 p = &pcf[PCF_INDEX()];
7432 q = &pcf[pcf_fanout];
7433 for (i = 0; i < pcf_fanout; i++) {
7434 if (p->pcf_count > npages) {
7436 * a good one to try.
7438 mutex_enter(&p->pcf_lock);
7439 if (p->pcf_count > npages) {
7440 p->pcf_count -= (uint_t)npages;
7442 * freemem is not protected by any lock.
7443 * Thus, we cannot have any assertion
7444 * containing freemem here.
7446 freemem -= npages;
7447 mutex_exit(&p->pcf_lock);
7448 return (1);
7450 mutex_exit(&p->pcf_lock);
7452 p++;
7453 if (p >= q) {
7454 p = pcf;
7457 return (0);
7461 * Arguments:
7462 * pcftotal_ret: If the value is not NULL and we have walked all the
7463 * buckets but did not find enough pages then it will
7464 * be set to the total number of pages in all the pcf
7465 * buckets.
7466 * npages: Is the number of pages we have been requested to
7467 * find.
7468 * unlock: If set to 0 we will leave the buckets locked if the
7469 * requested number of pages are not found.
7471 * Go and try to satisfy the page request from any number of buckets.
7472 * This can be a very expensive operation as we have to lock the buckets
7473 * we are checking (and keep them locked), starting at bucket 0.
7475 * The function returns 1 if enough pages were found, else 0 if it could not
7476 * find enough pages in the buckets.
7479 static int
7480 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7482 struct pcf *p;
7483 pgcnt_t pcftotal;
7484 int i;
7486 p = pcf;
7487 /* try to collect pages from several pcf bins */
7488 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7489 mutex_enter(&p->pcf_lock);
7490 pcftotal += p->pcf_count;
7491 if (pcftotal >= npages) {
7493 * Wow! There are enough pages laying around
7494 * to satisfy the request. Do the accounting,
7495 * drop the locks we acquired, and go back.
7497 * freemem is not protected by any lock. So,
7498 * we cannot have any assertion containing
7499 * freemem.
7501 freemem -= npages;
7502 while (p >= pcf) {
7503 if (p->pcf_count <= npages) {
7504 npages -= p->pcf_count;
7505 p->pcf_count = 0;
7506 } else {
7507 p->pcf_count -= (uint_t)npages;
7508 npages = 0;
7510 mutex_exit(&p->pcf_lock);
7511 p--;
7513 ASSERT(npages == 0);
7514 return (1);
7516 p++;
7518 if (unlock) {
7519 /* failed to collect pages - release the locks */
7520 while (--p >= pcf) {
7521 mutex_exit(&p->pcf_lock);
7524 if (pcftotal_ret != NULL)
7525 *pcftotal_ret = pcftotal;
7526 return (0);