5045 use atomic_{inc,dec}_* instead of atomic_add_*
[illumos-gate.git] / usr / src / uts / i86pc / vm / hat_i86.c
blob64e1c2fb46b278bf45070d8fabb06486b7347751
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
33 * VM - Hardware Address Translation management for i386 and amd64
35 * Implementation of the interfaces described in <common/vm/hat.h>
37 * Nearly all the details of how the hardware is managed should not be
38 * visible outside this layer except for misc. machine specific functions
39 * that work in conjunction with this code.
41 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
44 #include <sys/machparam.h>
45 #include <sys/machsystm.h>
46 #include <sys/mman.h>
47 #include <sys/types.h>
48 #include <sys/systm.h>
49 #include <sys/cpuvar.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/cpu.h>
53 #include <sys/kmem.h>
54 #include <sys/disp.h>
55 #include <sys/shm.h>
56 #include <sys/sysmacros.h>
57 #include <sys/machparam.h>
58 #include <sys/vmem.h>
59 #include <sys/vmsystm.h>
60 #include <sys/promif.h>
61 #include <sys/var.h>
62 #include <sys/x86_archext.h>
63 #include <sys/atomic.h>
64 #include <sys/bitmap.h>
65 #include <sys/controlregs.h>
66 #include <sys/bootconf.h>
67 #include <sys/bootsvcs.h>
68 #include <sys/bootinfo.h>
69 #include <sys/archsystm.h>
71 #include <vm/seg_kmem.h>
72 #include <vm/hat_i86.h>
73 #include <vm/as.h>
74 #include <vm/seg.h>
75 #include <vm/page.h>
76 #include <vm/seg_kp.h>
77 #include <vm/seg_kpm.h>
78 #include <vm/vm_dep.h>
79 #ifdef __xpv
80 #include <sys/hypervisor.h>
81 #endif
82 #include <vm/kboot_mmu.h>
83 #include <vm/seg_spt.h>
85 #include <sys/cmn_err.h>
88 * Basic parameters for hat operation.
90 struct hat_mmu_info mmu;
93 * The page that is the kernel's top level pagetable.
95 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
96 * on this 4K page for its top level page table. The remaining groups of
97 * 4 entries are used for per processor copies of user VLP pagetables for
98 * running threads. See hat_switch() and reload_pae32() for details.
100 * vlp_page[0..3] - level==2 PTEs for kernel HAT
101 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
102 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1
103 * etc...
105 static x86pte_t *vlp_page;
108 * forward declaration of internal utility routines
110 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
111 x86pte_t new);
114 * The kernel address space exists in all HATs. To implement this the
115 * kernel reserves a fixed number of entries in the topmost level(s) of page
116 * tables. The values are setup during startup and then copied to every user
117 * hat created by hat_alloc(). This means that kernelbase must be:
119 * 4Meg aligned for 32 bit kernels
120 * 512Gig aligned for x86_64 64 bit kernel
122 * The hat_kernel_range_ts describe what needs to be copied from kernel hat
123 * to each user hat.
125 typedef struct hat_kernel_range {
126 level_t hkr_level;
127 uintptr_t hkr_start_va;
128 uintptr_t hkr_end_va; /* zero means to end of memory */
129 } hat_kernel_range_t;
130 #define NUM_KERNEL_RANGE 2
131 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
132 static int num_kernel_ranges;
134 uint_t use_boot_reserve = 1; /* cleared after early boot process */
135 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */
138 * enable_1gpg: controls 1g page support for user applications.
139 * By default, 1g pages are exported to user applications. enable_1gpg can
140 * be set to 0 to not export.
142 int enable_1gpg = 1;
145 * AMD shanghai processors provide better management of 1gb ptes in its tlb.
146 * By default, 1g page support will be disabled for pre-shanghai AMD
147 * processors that don't have optimal tlb support for the 1g page size.
148 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
149 * processors.
151 int chk_optimal_1gtlb = 1;
154 #ifdef DEBUG
155 uint_t map1gcnt;
156 #endif
160 * A cpuset for all cpus. This is used for kernel address cross calls, since
161 * the kernel addresses apply to all cpus.
163 cpuset_t khat_cpuset;
166 * management stuff for hat structures
168 kmutex_t hat_list_lock;
169 kcondvar_t hat_list_cv;
170 kmem_cache_t *hat_cache;
171 kmem_cache_t *hat_hash_cache;
172 kmem_cache_t *vlp_hash_cache;
175 * Simple statistics
177 struct hatstats hatstat;
180 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
181 * correctly. For such hypervisors we must set PT_USER for kernel
182 * entries ourselves (normally the emulation would set PT_USER for
183 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is
184 * thus set appropriately. Note that dboot/kbm is OK, as only the full
185 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
186 * incorrect.
188 int pt_kern;
191 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
193 extern void atomic_orb(uchar_t *addr, uchar_t val);
194 extern void atomic_andb(uchar_t *addr, uchar_t val);
196 #ifndef __xpv
197 extern pfn_t memseg_get_start(struct memseg *);
198 #endif
200 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask)
201 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD)
202 #define PP_ISREF(pp) PP_GETRM(pp, P_REF)
203 #define PP_ISRO(pp) PP_GETRM(pp, P_RO)
205 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm)
206 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD)
207 #define PP_SETREF(pp) PP_SETRM(pp, P_REF)
208 #define PP_SETRO(pp) PP_SETRM(pp, P_RO)
210 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm))
211 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD)
212 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF)
213 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO)
214 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO)
217 * kmem cache constructor for struct hat
219 /*ARGSUSED*/
220 static int
221 hati_constructor(void *buf, void *handle, int kmflags)
223 hat_t *hat = buf;
225 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
226 bzero(hat->hat_pages_mapped,
227 sizeof (pgcnt_t) * (mmu.max_page_level + 1));
228 hat->hat_ism_pgcnt = 0;
229 hat->hat_stats = 0;
230 hat->hat_flags = 0;
231 CPUSET_ZERO(hat->hat_cpus);
232 hat->hat_htable = NULL;
233 hat->hat_ht_hash = NULL;
234 return (0);
238 * Allocate a hat structure for as. We also create the top level
239 * htable and initialize it to contain the kernel hat entries.
241 hat_t *
242 hat_alloc(struct as *as)
244 hat_t *hat;
245 htable_t *ht; /* top level htable */
246 uint_t use_vlp;
247 uint_t r;
248 hat_kernel_range_t *rp;
249 uintptr_t va;
250 uintptr_t eva;
251 uint_t start;
252 uint_t cnt;
253 htable_t *src;
256 * Once we start creating user process HATs we can enable
257 * the htable_steal() code.
259 if (can_steal_post_boot == 0)
260 can_steal_post_boot = 1;
262 ASSERT(AS_WRITE_HELD(as, &as->a_lock));
263 hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
264 hat->hat_as = as;
265 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
266 ASSERT(hat->hat_flags == 0);
268 #if defined(__xpv)
270 * No VLP stuff on the hypervisor due to the 64-bit split top level
271 * page tables. On 32-bit it's not needed as the hypervisor takes
272 * care of copying the top level PTEs to a below 4Gig page.
274 use_vlp = 0;
275 #else /* __xpv */
276 /* 32 bit processes uses a VLP style hat when running with PAE */
277 #if defined(__amd64)
278 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
279 #elif defined(__i386)
280 use_vlp = mmu.pae_hat;
281 #endif
282 #endif /* __xpv */
283 if (use_vlp) {
284 hat->hat_flags = HAT_VLP;
285 bzero(hat->hat_vlp_ptes, VLP_SIZE);
289 * Allocate the htable hash
291 if ((hat->hat_flags & HAT_VLP)) {
292 hat->hat_num_hash = mmu.vlp_hash_cnt;
293 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
294 } else {
295 hat->hat_num_hash = mmu.hash_cnt;
296 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
298 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
301 * Initialize Kernel HAT entries at the top of the top level page
302 * tables for the new hat.
304 hat->hat_htable = NULL;
305 hat->hat_ht_cached = NULL;
306 XPV_DISALLOW_MIGRATE();
307 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
308 hat->hat_htable = ht;
310 #if defined(__amd64)
311 if (hat->hat_flags & HAT_VLP)
312 goto init_done;
313 #endif
315 for (r = 0; r < num_kernel_ranges; ++r) {
316 rp = &kernel_ranges[r];
317 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
318 va += cnt * LEVEL_SIZE(rp->hkr_level)) {
320 if (rp->hkr_level == TOP_LEVEL(hat))
321 ht = hat->hat_htable;
322 else
323 ht = htable_create(hat, va, rp->hkr_level,
324 NULL);
326 start = htable_va2entry(va, ht);
327 cnt = HTABLE_NUM_PTES(ht) - start;
328 eva = va +
329 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
330 if (rp->hkr_end_va != 0 &&
331 (eva > rp->hkr_end_va || eva == 0))
332 cnt = htable_va2entry(rp->hkr_end_va, ht) -
333 start;
335 #if defined(__i386) && !defined(__xpv)
336 if (ht->ht_flags & HTABLE_VLP) {
337 bcopy(&vlp_page[start],
338 &hat->hat_vlp_ptes[start],
339 cnt * sizeof (x86pte_t));
340 continue;
342 #endif
343 src = htable_lookup(kas.a_hat, va, rp->hkr_level);
344 ASSERT(src != NULL);
345 x86pte_copy(src, ht, start, cnt);
346 htable_release(src);
350 init_done:
352 #if defined(__xpv)
354 * Pin top level page tables after initializing them
356 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
357 #if defined(__amd64)
358 xen_pin(hat->hat_user_ptable, mmu.max_level);
359 #endif
360 #endif
361 XPV_ALLOW_MIGRATE();
364 * Put it at the start of the global list of all hats (used by stealing)
366 * kas.a_hat is not in the list but is instead used to find the
367 * first and last items in the list.
369 * - kas.a_hat->hat_next points to the start of the user hats.
370 * The list ends where hat->hat_next == NULL
372 * - kas.a_hat->hat_prev points to the last of the user hats.
373 * The list begins where hat->hat_prev == NULL
375 mutex_enter(&hat_list_lock);
376 hat->hat_prev = NULL;
377 hat->hat_next = kas.a_hat->hat_next;
378 if (hat->hat_next)
379 hat->hat_next->hat_prev = hat;
380 else
381 kas.a_hat->hat_prev = hat;
382 kas.a_hat->hat_next = hat;
383 mutex_exit(&hat_list_lock);
385 return (hat);
389 * process has finished executing but as has not been cleaned up yet.
391 /*ARGSUSED*/
392 void
393 hat_free_start(hat_t *hat)
395 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
398 * If the hat is currently a stealing victim, wait for the stealing
399 * to finish. Once we mark it as HAT_FREEING, htable_steal()
400 * won't look at its pagetables anymore.
402 mutex_enter(&hat_list_lock);
403 while (hat->hat_flags & HAT_VICTIM)
404 cv_wait(&hat_list_cv, &hat_list_lock);
405 hat->hat_flags |= HAT_FREEING;
406 mutex_exit(&hat_list_lock);
410 * An address space is being destroyed, so we destroy the associated hat.
412 void
413 hat_free_end(hat_t *hat)
415 kmem_cache_t *cache;
417 ASSERT(hat->hat_flags & HAT_FREEING);
420 * must not be running on the given hat
422 ASSERT(CPU->cpu_current_hat != hat);
425 * Remove it from the list of HATs
427 mutex_enter(&hat_list_lock);
428 if (hat->hat_prev)
429 hat->hat_prev->hat_next = hat->hat_next;
430 else
431 kas.a_hat->hat_next = hat->hat_next;
432 if (hat->hat_next)
433 hat->hat_next->hat_prev = hat->hat_prev;
434 else
435 kas.a_hat->hat_prev = hat->hat_prev;
436 mutex_exit(&hat_list_lock);
437 hat->hat_next = hat->hat_prev = NULL;
439 #if defined(__xpv)
441 * On the hypervisor, unpin top level page table(s)
443 xen_unpin(hat->hat_htable->ht_pfn);
444 #if defined(__amd64)
445 xen_unpin(hat->hat_user_ptable);
446 #endif
447 #endif
450 * Make a pass through the htables freeing them all up.
452 htable_purge_hat(hat);
455 * Decide which kmem cache the hash table came from, then free it.
457 if (hat->hat_flags & HAT_VLP)
458 cache = vlp_hash_cache;
459 else
460 cache = hat_hash_cache;
461 kmem_cache_free(cache, hat->hat_ht_hash);
462 hat->hat_ht_hash = NULL;
464 hat->hat_flags = 0;
465 kmem_cache_free(hat_cache, hat);
469 * round kernelbase down to a supported value to use for _userlimit
471 * userlimit must be aligned down to an entry in the top level htable.
472 * The one exception is for 32 bit HAT's running PAE.
474 uintptr_t
475 hat_kernelbase(uintptr_t va)
477 #if defined(__i386)
478 va &= LEVEL_MASK(1);
479 #endif
480 if (IN_VA_HOLE(va))
481 panic("_userlimit %p will fall in VA hole\n", (void *)va);
482 return (va);
488 static void
489 set_max_page_level()
491 level_t lvl;
493 if (!kbm_largepage_support) {
494 lvl = 0;
495 } else {
496 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) {
497 lvl = 2;
498 if (chk_optimal_1gtlb &&
499 cpuid_opteron_erratum(CPU, 6671130)) {
500 lvl = 1;
502 if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
503 LEVEL_SHIFT(0))) {
504 lvl = 1;
506 } else {
507 lvl = 1;
510 mmu.max_page_level = lvl;
512 if ((lvl == 2) && (enable_1gpg == 0))
513 mmu.umax_page_level = 1;
514 else
515 mmu.umax_page_level = lvl;
519 * Initialize hat data structures based on processor MMU information.
521 void
522 mmu_init(void)
524 uint_t max_htables;
525 uint_t pa_bits;
526 uint_t va_bits;
527 int i;
530 * If CPU enabled the page table global bit, use it for the kernel
531 * This is bit 7 in CR4 (PGE - Page Global Enable).
533 if (is_x86_feature(x86_featureset, X86FSET_PGE) &&
534 (getcr4() & CR4_PGE) != 0)
535 mmu.pt_global = PT_GLOBAL;
538 * Detect NX and PAE usage.
540 mmu.pae_hat = kbm_pae_support;
541 if (kbm_nx_support)
542 mmu.pt_nx = PT_NX;
543 else
544 mmu.pt_nx = 0;
547 * Use CPU info to set various MMU parameters
549 cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
551 if (va_bits < sizeof (void *) * NBBY) {
552 mmu.hole_start = (1ul << (va_bits - 1));
553 mmu.hole_end = 0ul - mmu.hole_start - 1;
554 } else {
555 mmu.hole_end = 0;
556 mmu.hole_start = mmu.hole_end - 1;
558 #if defined(OPTERON_ERRATUM_121)
560 * If erratum 121 has already been detected at this time, hole_start
561 * contains the value to be subtracted from mmu.hole_start.
563 ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
564 hole_start = mmu.hole_start - hole_start;
565 #else
566 hole_start = mmu.hole_start;
567 #endif
568 hole_end = mmu.hole_end;
570 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
571 if (mmu.pae_hat == 0 && pa_bits > 32)
572 mmu.highest_pfn = PFN_4G - 1;
574 if (mmu.pae_hat) {
575 mmu.pte_size = 8; /* 8 byte PTEs */
576 mmu.pte_size_shift = 3;
577 } else {
578 mmu.pte_size = 4; /* 4 byte PTEs */
579 mmu.pte_size_shift = 2;
582 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE))
583 panic("Processor does not support PAE");
585 if (!is_x86_feature(x86_featureset, X86FSET_CX8))
586 panic("Processor does not support cmpxchg8b instruction");
588 #if defined(__amd64)
590 mmu.num_level = 4;
591 mmu.max_level = 3;
592 mmu.ptes_per_table = 512;
593 mmu.top_level_count = 512;
595 mmu.level_shift[0] = 12;
596 mmu.level_shift[1] = 21;
597 mmu.level_shift[2] = 30;
598 mmu.level_shift[3] = 39;
600 #elif defined(__i386)
602 if (mmu.pae_hat) {
603 mmu.num_level = 3;
604 mmu.max_level = 2;
605 mmu.ptes_per_table = 512;
606 mmu.top_level_count = 4;
608 mmu.level_shift[0] = 12;
609 mmu.level_shift[1] = 21;
610 mmu.level_shift[2] = 30;
612 } else {
613 mmu.num_level = 2;
614 mmu.max_level = 1;
615 mmu.ptes_per_table = 1024;
616 mmu.top_level_count = 1024;
618 mmu.level_shift[0] = 12;
619 mmu.level_shift[1] = 22;
622 #endif /* __i386 */
624 for (i = 0; i < mmu.num_level; ++i) {
625 mmu.level_size[i] = 1UL << mmu.level_shift[i];
626 mmu.level_offset[i] = mmu.level_size[i] - 1;
627 mmu.level_mask[i] = ~mmu.level_offset[i];
630 set_max_page_level();
632 mmu_page_sizes = mmu.max_page_level + 1;
633 mmu_exported_page_sizes = mmu.umax_page_level + 1;
635 /* restrict legacy applications from using pagesizes 1g and above */
636 mmu_legacy_page_sizes =
637 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
640 for (i = 0; i <= mmu.max_page_level; ++i) {
641 mmu.pte_bits[i] = PT_VALID | pt_kern;
642 if (i > 0)
643 mmu.pte_bits[i] |= PT_PAGESIZE;
647 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
649 for (i = 1; i < mmu.num_level; ++i)
650 mmu.ptp_bits[i] = PT_PTPBITS;
652 #if defined(__i386)
653 mmu.ptp_bits[2] = PT_VALID;
654 #endif
657 * Compute how many hash table entries to have per process for htables.
658 * We start with 1 page's worth of entries.
660 * If physical memory is small, reduce the amount need to cover it.
662 max_htables = physmax / mmu.ptes_per_table;
663 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
664 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
665 mmu.hash_cnt >>= 1;
666 mmu.vlp_hash_cnt = mmu.hash_cnt;
668 #if defined(__amd64)
670 * If running in 64 bits and physical memory is large,
671 * increase the size of the cache to cover all of memory for
672 * a 64 bit process.
674 #define HASH_MAX_LENGTH 4
675 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
676 mmu.hash_cnt <<= 1;
677 #endif
682 * initialize hat data structures
684 void
685 hat_init()
687 #if defined(__i386)
689 * _userlimit must be aligned correctly
691 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
692 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
693 (void *)_userlimit, (void *)LEVEL_SIZE(1));
694 halt("hat_init(): Unable to continue");
696 #endif
698 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
701 * initialize kmem caches
703 htable_init();
704 hment_init();
706 hat_cache = kmem_cache_create("hat_t",
707 sizeof (hat_t), 0, hati_constructor, NULL, NULL,
708 NULL, 0, 0);
710 hat_hash_cache = kmem_cache_create("HatHash",
711 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
712 NULL, 0, 0);
715 * VLP hats can use a smaller hash table size on large memroy machines
717 if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
718 vlp_hash_cache = hat_hash_cache;
719 } else {
720 vlp_hash_cache = kmem_cache_create("HatVlpHash",
721 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
722 NULL, 0, 0);
726 * Set up the kernel's hat
728 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
729 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
730 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
731 kas.a_hat->hat_as = &kas;
732 kas.a_hat->hat_flags = 0;
733 AS_LOCK_EXIT(&kas, &kas.a_lock);
735 CPUSET_ZERO(khat_cpuset);
736 CPUSET_ADD(khat_cpuset, CPU->cpu_id);
739 * The kernel hat's next pointer serves as the head of the hat list .
740 * The kernel hat's prev pointer tracks the last hat on the list for
741 * htable_steal() to use.
743 kas.a_hat->hat_next = NULL;
744 kas.a_hat->hat_prev = NULL;
747 * Allocate an htable hash bucket for the kernel
748 * XX64 - tune for 64 bit procs
750 kas.a_hat->hat_num_hash = mmu.hash_cnt;
751 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
752 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
755 * zero out the top level and cached htable pointers
757 kas.a_hat->hat_ht_cached = NULL;
758 kas.a_hat->hat_htable = NULL;
761 * Pre-allocate hrm_hashtab before enabling the collection of
762 * refmod statistics. Allocating on the fly would mean us
763 * running the risk of suffering recursive mutex enters or
764 * deadlocks.
766 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
767 KM_SLEEP);
771 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
773 * Each CPU has a set of 2 pagetables that are reused for any 32 bit
774 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
775 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
777 /*ARGSUSED*/
778 static void
779 hat_vlp_setup(struct cpu *cpu)
781 #if defined(__amd64) && !defined(__xpv)
782 struct hat_cpu_info *hci = cpu->cpu_hat_info;
783 pfn_t pfn;
786 * allocate the level==2 page table for the bottom most
787 * 512Gig of address space (this is where 32 bit apps live)
789 ASSERT(hci != NULL);
790 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
793 * Allocate a top level pagetable and copy the kernel's
794 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
796 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
797 hci->hci_vlp_pfn =
798 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
799 ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
800 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
802 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
803 ASSERT(pfn != PFN_INVALID);
804 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
805 #endif /* __amd64 && !__xpv */
808 /*ARGSUSED*/
809 static void
810 hat_vlp_teardown(cpu_t *cpu)
812 #if defined(__amd64) && !defined(__xpv)
813 struct hat_cpu_info *hci;
815 if ((hci = cpu->cpu_hat_info) == NULL)
816 return;
817 if (hci->hci_vlp_l2ptes)
818 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
819 if (hci->hci_vlp_l3ptes)
820 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
821 #endif
824 #define NEXT_HKR(r, l, s, e) { \
825 kernel_ranges[r].hkr_level = l; \
826 kernel_ranges[r].hkr_start_va = s; \
827 kernel_ranges[r].hkr_end_va = e; \
828 ++r; \
832 * Finish filling in the kernel hat.
833 * Pre fill in all top level kernel page table entries for the kernel's
834 * part of the address range. From this point on we can't use any new
835 * kernel large pages if they need PTE's at max_level
837 * create the kmap mappings.
839 void
840 hat_init_finish(void)
842 size_t size;
843 uint_t r = 0;
844 uintptr_t va;
845 hat_kernel_range_t *rp;
849 * We are now effectively running on the kernel hat.
850 * Clearing use_boot_reserve shuts off using the pre-allocated boot
851 * reserve for all HAT allocations. From here on, the reserves are
852 * only used when avoiding recursion in kmem_alloc().
854 use_boot_reserve = 0;
855 htable_adjust_reserve();
858 * User HATs are initialized with copies of all kernel mappings in
859 * higher level page tables. Ensure that those entries exist.
861 #if defined(__amd64)
863 NEXT_HKR(r, 3, kernelbase, 0);
864 #if defined(__xpv)
865 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
866 #endif
868 #elif defined(__i386)
870 #if !defined(__xpv)
871 if (mmu.pae_hat) {
872 va = kernelbase;
873 if ((va & LEVEL_MASK(2)) != va) {
874 va = P2ROUNDUP(va, LEVEL_SIZE(2));
875 NEXT_HKR(r, 1, kernelbase, va);
877 if (va != 0)
878 NEXT_HKR(r, 2, va, 0);
879 } else
880 #endif /* __xpv */
881 NEXT_HKR(r, 1, kernelbase, 0);
883 #endif /* __i386 */
885 num_kernel_ranges = r;
888 * Create all the kernel pagetables that will have entries
889 * shared to user HATs.
891 for (r = 0; r < num_kernel_ranges; ++r) {
892 rp = &kernel_ranges[r];
893 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
894 va += LEVEL_SIZE(rp->hkr_level)) {
895 htable_t *ht;
897 if (IN_HYPERVISOR_VA(va))
898 continue;
900 /* can/must skip if a page mapping already exists */
901 if (rp->hkr_level <= mmu.max_page_level &&
902 (ht = htable_getpage(kas.a_hat, va, NULL)) !=
903 NULL) {
904 htable_release(ht);
905 continue;
908 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
909 NULL);
914 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
915 * page holding the top level pagetable. We use the remainder for
916 * the "per CPU" page tables for VLP processes.
917 * Map the top level kernel pagetable into the kernel to make
918 * it easy to use bcopy access these tables.
920 if (mmu.pae_hat) {
921 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
922 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
923 kas.a_hat->hat_htable->ht_pfn,
924 #if !defined(__xpv)
925 PROT_WRITE |
926 #endif
927 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
928 HAT_LOAD | HAT_LOAD_NOCONSIST);
930 hat_vlp_setup(CPU);
933 * Create kmap (cached mappings of kernel PTEs)
934 * for 32 bit we map from segmap_start .. ekernelheap
935 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
937 #if defined(__i386)
938 size = (uintptr_t)ekernelheap - segmap_start;
939 #elif defined(__amd64)
940 size = segmapsize;
941 #endif
942 hat_kmap_init((uintptr_t)segmap_start, size);
946 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
947 * are 32 bit, so for safety we must use atomic_cas_64() to install these.
949 #ifdef __i386
950 static void
951 reload_pae32(hat_t *hat, cpu_t *cpu)
953 x86pte_t *src;
954 x86pte_t *dest;
955 x86pte_t pte;
956 int i;
959 * Load the 4 entries of the level 2 page table into this
960 * cpu's range of the vlp_page and point cr3 at them.
962 ASSERT(mmu.pae_hat);
963 src = hat->hat_vlp_ptes;
964 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
965 for (i = 0; i < VLP_NUM_PTES; ++i) {
966 for (;;) {
967 pte = dest[i];
968 if (pte == src[i])
969 break;
970 if (atomic_cas_64(dest + i, pte, src[i]) != src[i])
971 break;
975 #endif
978 * Switch to a new active hat, maintaining bit masks to track active CPUs.
980 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
981 * remains a 32-bit value.
983 void
984 hat_switch(hat_t *hat)
986 uint64_t newcr3;
987 cpu_t *cpu = CPU;
988 hat_t *old = cpu->cpu_current_hat;
991 * set up this information first, so we don't miss any cross calls
993 if (old != NULL) {
994 if (old == hat)
995 return;
996 if (old != kas.a_hat)
997 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
1001 * Add this CPU to the active set for this HAT.
1003 if (hat != kas.a_hat) {
1004 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1006 cpu->cpu_current_hat = hat;
1009 * now go ahead and load cr3
1011 if (hat->hat_flags & HAT_VLP) {
1012 #if defined(__amd64)
1013 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1015 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1016 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1017 #elif defined(__i386)
1018 reload_pae32(hat, cpu);
1019 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1020 (cpu->cpu_id + 1) * VLP_SIZE;
1021 #endif
1022 } else {
1023 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1025 #ifdef __xpv
1027 struct mmuext_op t[2];
1028 uint_t retcnt;
1029 uint_t opcnt = 1;
1031 t[0].cmd = MMUEXT_NEW_BASEPTR;
1032 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1033 #if defined(__amd64)
1035 * There's an interesting problem here, as to what to
1036 * actually specify when switching to the kernel hat.
1037 * For now we'll reuse the kernel hat again.
1039 t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1040 if (hat == kas.a_hat)
1041 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1042 else
1043 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1044 ++opcnt;
1045 #endif /* __amd64 */
1046 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1047 panic("HYPERVISOR_mmu_update() failed");
1048 ASSERT(retcnt == opcnt);
1051 #else
1052 setcr3(newcr3);
1053 #endif
1054 ASSERT(cpu == CPU);
1058 * Utility to return a valid x86pte_t from protections, pfn, and level number
1060 static x86pte_t
1061 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1063 x86pte_t pte;
1064 uint_t cache_attr = attr & HAT_ORDER_MASK;
1066 pte = MAKEPTE(pfn, level);
1068 if (attr & PROT_WRITE)
1069 PTE_SET(pte, PT_WRITABLE);
1071 if (attr & PROT_USER)
1072 PTE_SET(pte, PT_USER);
1074 if (!(attr & PROT_EXEC))
1075 PTE_SET(pte, mmu.pt_nx);
1078 * Set the software bits used track ref/mod sync's and hments.
1079 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1081 if (flags & HAT_LOAD_NOCONSIST)
1082 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1083 else if (attr & HAT_NOSYNC)
1084 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1087 * Set the caching attributes in the PTE. The combination
1088 * of attributes are poorly defined, so we pay attention
1089 * to them in the given order.
1091 * The test for HAT_STRICTORDER is different because it's defined
1092 * as "0" - which was a stupid thing to do, but is too late to change!
1094 if (cache_attr == HAT_STRICTORDER) {
1095 PTE_SET(pte, PT_NOCACHE);
1096 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1097 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1098 /* nothing to set */;
1099 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1100 PTE_SET(pte, PT_NOCACHE);
1101 if (is_x86_feature(x86_featureset, X86FSET_PAT))
1102 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1103 else
1104 PTE_SET(pte, PT_WRITETHRU);
1105 } else {
1106 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1109 return (pte);
1113 * Duplicate address translations of the parent to the child.
1114 * This function really isn't used anymore.
1116 /*ARGSUSED*/
1118 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1120 ASSERT((uintptr_t)addr < kernelbase);
1121 ASSERT(new != kas.a_hat);
1122 ASSERT(old != kas.a_hat);
1123 return (0);
1127 * Allocate any hat resources required for a process being swapped in.
1129 /*ARGSUSED*/
1130 void
1131 hat_swapin(hat_t *hat)
1133 /* do nothing - we let everything fault back in */
1137 * Unload all translations associated with an address space of a process
1138 * that is being swapped out.
1140 void
1141 hat_swapout(hat_t *hat)
1143 uintptr_t vaddr = (uintptr_t)0;
1144 uintptr_t eaddr = _userlimit;
1145 htable_t *ht = NULL;
1146 level_t l;
1148 XPV_DISALLOW_MIGRATE();
1150 * We can't just call hat_unload(hat, 0, _userlimit...) here, because
1151 * seg_spt and shared pagetables can't be swapped out.
1152 * Take a look at segspt_shmswapout() - it's a big no-op.
1154 * Instead we'll walk through all the address space and unload
1155 * any mappings which we are sure are not shared, not locked.
1157 ASSERT(IS_PAGEALIGNED(vaddr));
1158 ASSERT(IS_PAGEALIGNED(eaddr));
1159 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1160 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1161 eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1163 while (vaddr < eaddr) {
1164 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1165 if (ht == NULL)
1166 break;
1168 ASSERT(!IN_VA_HOLE(vaddr));
1171 * If the page table is shared skip its entire range.
1173 l = ht->ht_level;
1174 if (ht->ht_flags & HTABLE_SHARED_PFN) {
1175 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1176 htable_release(ht);
1177 ht = NULL;
1178 continue;
1182 * If the page table has no locked entries, unload this one.
1184 if (ht->ht_lock_cnt == 0)
1185 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1186 HAT_UNLOAD_UNMAP);
1189 * If we have a level 0 page table with locked entries,
1190 * skip the entire page table, otherwise skip just one entry.
1192 if (ht->ht_lock_cnt > 0 && l == 0)
1193 vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1194 else
1195 vaddr += LEVEL_SIZE(l);
1197 if (ht)
1198 htable_release(ht);
1201 * We're in swapout because the system is low on memory, so
1202 * go back and flush all the htables off the cached list.
1204 htable_purge_hat(hat);
1205 XPV_ALLOW_MIGRATE();
1209 * returns number of bytes that have valid mappings in hat.
1211 size_t
1212 hat_get_mapped_size(hat_t *hat)
1214 size_t total = 0;
1215 int l;
1217 for (l = 0; l <= mmu.max_page_level; l++)
1218 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1219 total += hat->hat_ism_pgcnt;
1221 return (total);
1225 * enable/disable collection of stats for hat.
1228 hat_stats_enable(hat_t *hat)
1230 atomic_inc_32(&hat->hat_stats);
1231 return (1);
1234 void
1235 hat_stats_disable(hat_t *hat)
1237 atomic_dec_32(&hat->hat_stats);
1241 * Utility to sync the ref/mod bits from a page table entry to the page_t
1242 * We must be holding the mapping list lock when this is called.
1244 static void
1245 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1247 uint_t rm = 0;
1248 pgcnt_t pgcnt;
1250 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1251 return;
1253 if (PTE_GET(pte, PT_REF))
1254 rm |= P_REF;
1256 if (PTE_GET(pte, PT_MOD))
1257 rm |= P_MOD;
1259 if (rm == 0)
1260 return;
1263 * sync to all constituent pages of a large page
1265 ASSERT(x86_hm_held(pp));
1266 pgcnt = page_get_pagecnt(level);
1267 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1268 for (; pgcnt > 0; --pgcnt) {
1270 * hat_page_demote() can't decrease
1271 * pszc below this mapping size
1272 * since this large mapping existed after we
1273 * took mlist lock.
1275 ASSERT(pp->p_szc >= level);
1276 hat_page_setattr(pp, rm);
1277 ++pp;
1282 * This the set of PTE bits for PFN, permissions and caching
1283 * that are allowed to change on a HAT_LOAD_REMAP
1285 #define PT_REMAP_BITS \
1286 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \
1287 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1289 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX)
1291 * Do the low-level work to get a mapping entered into a HAT's pagetables
1292 * and in the mapping list of the associated page_t.
1294 static int
1295 hati_pte_map(
1296 htable_t *ht,
1297 uint_t entry,
1298 page_t *pp,
1299 x86pte_t pte,
1300 int flags,
1301 void *pte_ptr)
1303 hat_t *hat = ht->ht_hat;
1304 x86pte_t old_pte;
1305 level_t l = ht->ht_level;
1306 hment_t *hm;
1307 uint_t is_consist;
1308 uint_t is_locked;
1309 int rv = 0;
1312 * Is this a consistent (ie. need mapping list lock) mapping?
1314 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1317 * Track locked mapping count in the htable. Do this first,
1318 * as we track locking even if there already is a mapping present.
1320 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1321 if (is_locked)
1322 HTABLE_LOCK_INC(ht);
1325 * Acquire the page's mapping list lock and get an hment to use.
1326 * Note that hment_prepare() might return NULL.
1328 if (is_consist) {
1329 x86_hm_enter(pp);
1330 hm = hment_prepare(ht, entry, pp);
1334 * Set the new pte, retrieving the old one at the same time.
1336 old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1339 * Did we get a large page / page table collision?
1341 if (old_pte == LPAGE_ERROR) {
1342 if (is_locked)
1343 HTABLE_LOCK_DEC(ht);
1344 rv = -1;
1345 goto done;
1349 * If the mapping didn't change there is nothing more to do.
1351 if (PTE_EQUIV(pte, old_pte))
1352 goto done;
1355 * Install a new mapping in the page's mapping list
1357 if (!PTE_ISVALID(old_pte)) {
1358 if (is_consist) {
1359 hment_assign(ht, entry, pp, hm);
1360 x86_hm_exit(pp);
1361 } else {
1362 ASSERT(flags & HAT_LOAD_NOCONSIST);
1364 #if defined(__amd64)
1365 if (ht->ht_flags & HTABLE_VLP) {
1366 cpu_t *cpu = CPU;
1367 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1368 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1370 #endif
1371 HTABLE_INC(ht->ht_valid_cnt);
1372 PGCNT_INC(hat, l);
1373 return (rv);
1377 * Remap's are more complicated:
1378 * - HAT_LOAD_REMAP must be specified if changing the pfn.
1379 * We also require that NOCONSIST be specified.
1380 * - Otherwise only permission or caching bits may change.
1382 if (!PTE_ISPAGE(old_pte, l))
1383 panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1385 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1386 REMAPASSERT(flags & HAT_LOAD_REMAP);
1387 REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1388 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1389 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1390 pf_is_memory(PTE2PFN(pte, l)));
1391 REMAPASSERT(!is_consist);
1395 * We only let remaps change the certain bits in the PTE.
1397 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1398 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1399 old_pte, pte);
1402 * We don't create any mapping list entries on a remap, so release
1403 * any allocated hment after we drop the mapping list lock.
1405 done:
1406 if (is_consist) {
1407 x86_hm_exit(pp);
1408 if (hm != NULL)
1409 hment_free(hm);
1411 return (rv);
1415 * Internal routine to load a single page table entry. This only fails if
1416 * we attempt to overwrite a page table link with a large page.
1418 static int
1419 hati_load_common(
1420 hat_t *hat,
1421 uintptr_t va,
1422 page_t *pp,
1423 uint_t attr,
1424 uint_t flags,
1425 level_t level,
1426 pfn_t pfn)
1428 htable_t *ht;
1429 uint_t entry;
1430 x86pte_t pte;
1431 int rv = 0;
1434 * The number 16 is arbitrary and here to catch a recursion problem
1435 * early before we blow out the kernel stack.
1437 ++curthread->t_hatdepth;
1438 ASSERT(curthread->t_hatdepth < 16);
1440 ASSERT(hat == kas.a_hat ||
1441 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1443 if (flags & HAT_LOAD_SHARE)
1444 hat->hat_flags |= HAT_SHARED;
1447 * Find the page table that maps this page if it already exists.
1449 ht = htable_lookup(hat, va, level);
1452 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1454 if (pp == NULL)
1455 flags |= HAT_LOAD_NOCONSIST;
1457 if (ht == NULL) {
1458 ht = htable_create(hat, va, level, NULL);
1459 ASSERT(ht != NULL);
1461 entry = htable_va2entry(va, ht);
1464 * a bunch of paranoid error checking
1466 ASSERT(ht->ht_busy > 0);
1467 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1468 panic("hati_load_common: bad htable %p, va %p",
1469 (void *)ht, (void *)va);
1470 ASSERT(ht->ht_level == level);
1473 * construct the new PTE
1475 if (hat == kas.a_hat)
1476 attr &= ~PROT_USER;
1477 pte = hati_mkpte(pfn, attr, level, flags);
1478 if (hat == kas.a_hat && va >= kernelbase)
1479 PTE_SET(pte, mmu.pt_global);
1482 * establish the mapping
1484 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1487 * release the htable and any reserves
1489 htable_release(ht);
1490 --curthread->t_hatdepth;
1491 return (rv);
1495 * special case of hat_memload to deal with some kernel addrs for performance
1497 static void
1498 hat_kmap_load(
1499 caddr_t addr,
1500 page_t *pp,
1501 uint_t attr,
1502 uint_t flags)
1504 uintptr_t va = (uintptr_t)addr;
1505 x86pte_t pte;
1506 pfn_t pfn = page_pptonum(pp);
1507 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr);
1508 htable_t *ht;
1509 uint_t entry;
1510 void *pte_ptr;
1513 * construct the requested PTE
1515 attr &= ~PROT_USER;
1516 attr |= HAT_STORECACHING_OK;
1517 pte = hati_mkpte(pfn, attr, 0, flags);
1518 PTE_SET(pte, mmu.pt_global);
1521 * Figure out the pte_ptr and htable and use common code to finish up
1523 if (mmu.pae_hat)
1524 pte_ptr = mmu.kmap_ptes + pg_off;
1525 else
1526 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1527 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1528 LEVEL_SHIFT(1)];
1529 entry = htable_va2entry(va, ht);
1530 ++curthread->t_hatdepth;
1531 ASSERT(curthread->t_hatdepth < 16);
1532 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1533 --curthread->t_hatdepth;
1537 * hat_memload() - load a translation to the given page struct
1539 * Flags for hat_memload/hat_devload/hat_*attr.
1541 * HAT_LOAD Default flags to load a translation to the page.
1543 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(),
1544 * and hat_devload().
1546 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1547 * sets PT_NOCONSIST
1549 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables
1550 * that map some user pages (not kas) is shared by more
1551 * than one process (eg. ISM).
1553 * HAT_LOAD_REMAP Reload a valid pte with a different page frame.
1555 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this
1556 * point, it's setting up mapping to allocate internal
1557 * hat layer data structures. This flag forces hat layer
1558 * to tap its reserves in order to prevent infinite
1559 * recursion.
1561 * The following is a protection attribute (like PROT_READ, etc.)
1563 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits
1564 * are never cleared.
1566 * Installing new valid PTE's and creation of the mapping list
1567 * entry are controlled under the same lock. It's derived from the
1568 * page_t being mapped.
1570 static uint_t supported_memload_flags =
1571 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1572 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1574 void
1575 hat_memload(
1576 hat_t *hat,
1577 caddr_t addr,
1578 page_t *pp,
1579 uint_t attr,
1580 uint_t flags)
1582 uintptr_t va = (uintptr_t)addr;
1583 level_t level = 0;
1584 pfn_t pfn = page_pptonum(pp);
1586 XPV_DISALLOW_MIGRATE();
1587 ASSERT(IS_PAGEALIGNED(va));
1588 ASSERT(hat == kas.a_hat || va < _userlimit);
1589 ASSERT(hat == kas.a_hat ||
1590 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1591 ASSERT((flags & supported_memload_flags) == flags);
1593 ASSERT(!IN_VA_HOLE(va));
1594 ASSERT(!PP_ISFREE(pp));
1597 * kernel address special case for performance.
1599 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1600 ASSERT(hat == kas.a_hat);
1601 hat_kmap_load(addr, pp, attr, flags);
1602 XPV_ALLOW_MIGRATE();
1603 return;
1607 * This is used for memory with normal caching enabled, so
1608 * always set HAT_STORECACHING_OK.
1610 attr |= HAT_STORECACHING_OK;
1611 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1612 panic("unexpected hati_load_common() failure");
1613 XPV_ALLOW_MIGRATE();
1616 /* ARGSUSED */
1617 void
1618 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1619 uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1621 hat_memload(hat, addr, pp, attr, flags);
1625 * Load the given array of page structs using large pages when possible
1627 void
1628 hat_memload_array(
1629 hat_t *hat,
1630 caddr_t addr,
1631 size_t len,
1632 page_t **pages,
1633 uint_t attr,
1634 uint_t flags)
1636 uintptr_t va = (uintptr_t)addr;
1637 uintptr_t eaddr = va + len;
1638 level_t level;
1639 size_t pgsize;
1640 pgcnt_t pgindx = 0;
1641 pfn_t pfn;
1642 pgcnt_t i;
1644 XPV_DISALLOW_MIGRATE();
1645 ASSERT(IS_PAGEALIGNED(va));
1646 ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1647 ASSERT(hat == kas.a_hat ||
1648 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1649 ASSERT((flags & supported_memload_flags) == flags);
1652 * memload is used for memory with full caching enabled, so
1653 * set HAT_STORECACHING_OK.
1655 attr |= HAT_STORECACHING_OK;
1658 * handle all pages using largest possible pagesize
1660 while (va < eaddr) {
1662 * decide what level mapping to use (ie. pagesize)
1664 pfn = page_pptonum(pages[pgindx]);
1665 for (level = mmu.max_page_level; ; --level) {
1666 pgsize = LEVEL_SIZE(level);
1667 if (level == 0)
1668 break;
1670 if (!IS_P2ALIGNED(va, pgsize) ||
1671 (eaddr - va) < pgsize ||
1672 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1673 continue;
1676 * To use a large mapping of this size, all the
1677 * pages we are passed must be sequential subpages
1678 * of the large page.
1679 * hat_page_demote() can't change p_szc because
1680 * all pages are locked.
1682 if (pages[pgindx]->p_szc >= level) {
1683 for (i = 0; i < mmu_btop(pgsize); ++i) {
1684 if (pfn + i !=
1685 page_pptonum(pages[pgindx + i]))
1686 break;
1687 ASSERT(pages[pgindx + i]->p_szc >=
1688 level);
1689 ASSERT(pages[pgindx] + i ==
1690 pages[pgindx + i]);
1692 if (i == mmu_btop(pgsize)) {
1693 #ifdef DEBUG
1694 if (level == 2)
1695 map1gcnt++;
1696 #endif
1697 break;
1703 * Load this page mapping. If the load fails, try a smaller
1704 * pagesize.
1706 ASSERT(!IN_VA_HOLE(va));
1707 while (hati_load_common(hat, va, pages[pgindx], attr,
1708 flags, level, pfn) != 0) {
1709 if (level == 0)
1710 panic("unexpected hati_load_common() failure");
1711 --level;
1712 pgsize = LEVEL_SIZE(level);
1716 * move to next page
1718 va += pgsize;
1719 pgindx += mmu_btop(pgsize);
1721 XPV_ALLOW_MIGRATE();
1724 /* ARGSUSED */
1725 void
1726 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1727 struct page **pps, uint_t attr, uint_t flags,
1728 hat_region_cookie_t rcookie)
1730 hat_memload_array(hat, addr, len, pps, attr, flags);
1734 * void hat_devload(hat, addr, len, pf, attr, flags)
1735 * load/lock the given page frame number
1737 * Advisory ordering attributes. Apply only to device mappings.
1739 * HAT_STRICTORDER: the CPU must issue the references in order, as the
1740 * programmer specified. This is the default.
1741 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1742 * of reordering; store or load with store or load).
1743 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1744 * to consecutive locations (for example, turn two consecutive byte
1745 * stores into one halfword store), and it may batch individual loads
1746 * (for example, turn two consecutive byte loads into one halfword load).
1747 * This also implies re-ordering.
1748 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1749 * until another store occurs. The default is to fetch new data
1750 * on every load. This also implies merging.
1751 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1752 * the device (perhaps with other data) at a later time. The default is
1753 * to push the data right away. This also implies load caching.
1755 * Equivalent of hat_memload(), but can be used for device memory where
1756 * there are no page_t's and we support additional flags (write merging, etc).
1757 * Note that we can have large page mappings with this interface.
1759 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1760 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1761 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1763 void
1764 hat_devload(
1765 hat_t *hat,
1766 caddr_t addr,
1767 size_t len,
1768 pfn_t pfn,
1769 uint_t attr,
1770 int flags)
1772 uintptr_t va = ALIGN2PAGE(addr);
1773 uintptr_t eva = va + len;
1774 level_t level;
1775 size_t pgsize;
1776 page_t *pp;
1777 int f; /* per PTE copy of flags - maybe modified */
1778 uint_t a; /* per PTE copy of attr */
1780 XPV_DISALLOW_MIGRATE();
1781 ASSERT(IS_PAGEALIGNED(va));
1782 ASSERT(hat == kas.a_hat || eva <= _userlimit);
1783 ASSERT(hat == kas.a_hat ||
1784 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1785 ASSERT((flags & supported_devload_flags) == flags);
1788 * handle all pages
1790 while (va < eva) {
1793 * decide what level mapping to use (ie. pagesize)
1795 for (level = mmu.max_page_level; ; --level) {
1796 pgsize = LEVEL_SIZE(level);
1797 if (level == 0)
1798 break;
1799 if (IS_P2ALIGNED(va, pgsize) &&
1800 (eva - va) >= pgsize &&
1801 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1802 #ifdef DEBUG
1803 if (level == 2)
1804 map1gcnt++;
1805 #endif
1806 break;
1811 * If this is just memory then allow caching (this happens
1812 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1813 * to override that. If we don't have a page_t then make sure
1814 * NOCONSIST is set.
1816 a = attr;
1817 f = flags;
1818 if (!pf_is_memory(pfn))
1819 f |= HAT_LOAD_NOCONSIST;
1820 else if (!(a & HAT_PLAT_NOCACHE))
1821 a |= HAT_STORECACHING_OK;
1823 if (f & HAT_LOAD_NOCONSIST)
1824 pp = NULL;
1825 else
1826 pp = page_numtopp_nolock(pfn);
1829 * Check to make sure we are really trying to map a valid
1830 * memory page. The caller wishing to intentionally map
1831 * free memory pages will have passed the HAT_LOAD_NOCONSIST
1832 * flag, then pp will be NULL.
1834 if (pp != NULL) {
1835 if (PP_ISFREE(pp)) {
1836 panic("hat_devload: loading "
1837 "a mapping to free page %p", (void *)pp);
1840 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1841 panic("hat_devload: loading a mapping "
1842 "to an unlocked page %p",
1843 (void *)pp);
1848 * load this page mapping
1850 ASSERT(!IN_VA_HOLE(va));
1851 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1852 if (level == 0)
1853 panic("unexpected hati_load_common() failure");
1854 --level;
1855 pgsize = LEVEL_SIZE(level);
1859 * move to next page
1861 va += pgsize;
1862 pfn += mmu_btop(pgsize);
1864 XPV_ALLOW_MIGRATE();
1868 * void hat_unlock(hat, addr, len)
1869 * unlock the mappings to a given range of addresses
1871 * Locks are tracked by ht_lock_cnt in the htable.
1873 void
1874 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1876 uintptr_t vaddr = (uintptr_t)addr;
1877 uintptr_t eaddr = vaddr + len;
1878 htable_t *ht = NULL;
1881 * kernel entries are always locked, we don't track lock counts
1883 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1884 ASSERT(IS_PAGEALIGNED(vaddr));
1885 ASSERT(IS_PAGEALIGNED(eaddr));
1886 if (hat == kas.a_hat)
1887 return;
1888 if (eaddr > _userlimit)
1889 panic("hat_unlock() address out of range - above _userlimit");
1891 XPV_DISALLOW_MIGRATE();
1892 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1893 while (vaddr < eaddr) {
1894 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1895 if (ht == NULL)
1896 break;
1898 ASSERT(!IN_VA_HOLE(vaddr));
1900 if (ht->ht_lock_cnt < 1)
1901 panic("hat_unlock(): lock_cnt < 1, "
1902 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1903 HTABLE_LOCK_DEC(ht);
1905 vaddr += LEVEL_SIZE(ht->ht_level);
1907 if (ht)
1908 htable_release(ht);
1909 XPV_ALLOW_MIGRATE();
1912 /* ARGSUSED */
1913 void
1914 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1915 hat_region_cookie_t rcookie)
1917 panic("No shared region support on x86");
1920 #if !defined(__xpv)
1922 * Cross call service routine to demap a virtual page on
1923 * the current CPU or flush all mappings in TLB.
1925 /*ARGSUSED*/
1926 static int
1927 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1929 hat_t *hat = (hat_t *)a1;
1930 caddr_t addr = (caddr_t)a2;
1933 * If the target hat isn't the kernel and this CPU isn't operating
1934 * in the target hat, we can ignore the cross call.
1936 if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1937 return (0);
1940 * For a normal address, we just flush one page mapping
1942 if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1943 mmu_tlbflush_entry(addr);
1944 return (0);
1948 * Otherwise we reload cr3 to effect a complete TLB flush.
1950 * A reload of cr3 on a VLP process also means we must also recopy in
1951 * the pte values from the struct hat
1953 if (hat->hat_flags & HAT_VLP) {
1954 #if defined(__amd64)
1955 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1957 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1958 #elif defined(__i386)
1959 reload_pae32(hat, CPU);
1960 #endif
1962 reload_cr3();
1963 return (0);
1967 * Flush all TLB entries, including global (ie. kernel) ones.
1969 static void
1970 flush_all_tlb_entries(void)
1972 ulong_t cr4 = getcr4();
1974 if (cr4 & CR4_PGE) {
1975 setcr4(cr4 & ~(ulong_t)CR4_PGE);
1976 setcr4(cr4);
1979 * 32 bit PAE also needs to always reload_cr3()
1981 if (mmu.max_level == 2)
1982 reload_cr3();
1983 } else {
1984 reload_cr3();
1988 #define TLB_CPU_HALTED (01ul)
1989 #define TLB_INVAL_ALL (02ul)
1990 #define CAS_TLB_INFO(cpu, old, new) \
1991 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1994 * Record that a CPU is going idle
1996 void
1997 tlb_going_idle(void)
1999 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
2003 * Service a delayed TLB flush if coming out of being idle.
2004 * It will be called from cpu idle notification with interrupt disabled.
2006 void
2007 tlb_service(void)
2009 ulong_t tlb_info;
2010 ulong_t found;
2013 * We only have to do something if coming out of being idle.
2015 tlb_info = CPU->cpu_m.mcpu_tlb_info;
2016 if (tlb_info & TLB_CPU_HALTED) {
2017 ASSERT(CPU->cpu_current_hat == kas.a_hat);
2020 * Atomic clear and fetch of old state.
2022 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2023 ASSERT(found & TLB_CPU_HALTED);
2024 tlb_info = found;
2025 SMT_PAUSE();
2027 if (tlb_info & TLB_INVAL_ALL)
2028 flush_all_tlb_entries();
2031 #endif /* !__xpv */
2034 * Internal routine to do cross calls to invalidate a range of pages on
2035 * all CPUs using a given hat.
2037 void
2038 hat_tlb_inval(hat_t *hat, uintptr_t va)
2040 extern int flushes_require_xcalls; /* from mp_startup.c */
2041 cpuset_t justme;
2042 cpuset_t cpus_to_shootdown;
2043 #ifndef __xpv
2044 cpuset_t check_cpus;
2045 cpu_t *cpup;
2046 int c;
2047 #endif
2050 * If the hat is being destroyed, there are no more users, so
2051 * demap need not do anything.
2053 if (hat->hat_flags & HAT_FREEING)
2054 return;
2057 * If demapping from a shared pagetable, we best demap the
2058 * entire set of user TLBs, since we don't know what addresses
2059 * these were shared at.
2061 if (hat->hat_flags & HAT_SHARED) {
2062 hat = kas.a_hat;
2063 va = DEMAP_ALL_ADDR;
2067 * if not running with multiple CPUs, don't use cross calls
2069 if (panicstr || !flushes_require_xcalls) {
2070 #ifdef __xpv
2071 if (va == DEMAP_ALL_ADDR)
2072 xen_flush_tlb();
2073 else
2074 xen_flush_va((caddr_t)va);
2075 #else
2076 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2077 #endif
2078 return;
2083 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2084 * Otherwise it's just CPUs currently executing in this hat.
2086 kpreempt_disable();
2087 CPUSET_ONLY(justme, CPU->cpu_id);
2088 if (hat == kas.a_hat)
2089 cpus_to_shootdown = khat_cpuset;
2090 else
2091 cpus_to_shootdown = hat->hat_cpus;
2093 #ifndef __xpv
2095 * If any CPUs in the set are idle, just request a delayed flush
2096 * and avoid waking them up.
2098 check_cpus = cpus_to_shootdown;
2099 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2100 ulong_t tlb_info;
2102 if (!CPU_IN_SET(check_cpus, c))
2103 continue;
2104 CPUSET_DEL(check_cpus, c);
2105 cpup = cpu[c];
2106 if (cpup == NULL)
2107 continue;
2109 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2110 while (tlb_info == TLB_CPU_HALTED) {
2111 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2112 TLB_CPU_HALTED | TLB_INVAL_ALL);
2113 SMT_PAUSE();
2114 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2116 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2117 HATSTAT_INC(hs_tlb_inval_delayed);
2118 CPUSET_DEL(cpus_to_shootdown, c);
2121 #endif
2123 if (CPUSET_ISNULL(cpus_to_shootdown) ||
2124 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2126 #ifdef __xpv
2127 if (va == DEMAP_ALL_ADDR)
2128 xen_flush_tlb();
2129 else
2130 xen_flush_va((caddr_t)va);
2131 #else
2132 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2133 #endif
2135 } else {
2137 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2138 #ifdef __xpv
2139 if (va == DEMAP_ALL_ADDR)
2140 xen_gflush_tlb(cpus_to_shootdown);
2141 else
2142 xen_gflush_va((caddr_t)va, cpus_to_shootdown);
2143 #else
2144 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL,
2145 CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2146 #endif
2149 kpreempt_enable();
2153 * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2154 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't
2155 * handle releasing of the htables.
2157 void
2158 hat_pte_unmap(
2159 htable_t *ht,
2160 uint_t entry,
2161 uint_t flags,
2162 x86pte_t old_pte,
2163 void *pte_ptr)
2165 hat_t *hat = ht->ht_hat;
2166 hment_t *hm = NULL;
2167 page_t *pp = NULL;
2168 level_t l = ht->ht_level;
2169 pfn_t pfn;
2172 * We always track the locking counts, even if nothing is unmapped
2174 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2175 ASSERT(ht->ht_lock_cnt > 0);
2176 HTABLE_LOCK_DEC(ht);
2180 * Figure out which page's mapping list lock to acquire using the PFN
2181 * passed in "old" PTE. We then attempt to invalidate the PTE.
2182 * If another thread, probably a hat_pageunload, has asynchronously
2183 * unmapped/remapped this address we'll loop here.
2185 ASSERT(ht->ht_busy > 0);
2186 while (PTE_ISVALID(old_pte)) {
2187 pfn = PTE2PFN(old_pte, l);
2188 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2189 pp = NULL;
2190 } else {
2191 #ifdef __xpv
2192 if (pfn == PFN_INVALID)
2193 panic("Invalid PFN, but not PT_NOCONSIST");
2194 #endif
2195 pp = page_numtopp_nolock(pfn);
2196 if (pp == NULL) {
2197 panic("no page_t, not NOCONSIST: old_pte="
2198 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2199 old_pte, (uintptr_t)ht, entry,
2200 (uintptr_t)pte_ptr);
2202 x86_hm_enter(pp);
2205 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
2208 * If the page hadn't changed we've unmapped it and can proceed
2210 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2211 break;
2214 * Otherwise, we'll have to retry with the current old_pte.
2215 * Drop the hment lock, since the pfn may have changed.
2217 if (pp != NULL) {
2218 x86_hm_exit(pp);
2219 pp = NULL;
2220 } else {
2221 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2226 * If the old mapping wasn't valid, there's nothing more to do
2228 if (!PTE_ISVALID(old_pte)) {
2229 if (pp != NULL)
2230 x86_hm_exit(pp);
2231 return;
2235 * Take care of syncing any MOD/REF bits and removing the hment.
2237 if (pp != NULL) {
2238 if (!(flags & HAT_UNLOAD_NOSYNC))
2239 hati_sync_pte_to_page(pp, old_pte, l);
2240 hm = hment_remove(pp, ht, entry);
2241 x86_hm_exit(pp);
2242 if (hm != NULL)
2243 hment_free(hm);
2247 * Handle book keeping in the htable and hat
2249 ASSERT(ht->ht_valid_cnt > 0);
2250 HTABLE_DEC(ht->ht_valid_cnt);
2251 PGCNT_DEC(hat, l);
2255 * very cheap unload implementation to special case some kernel addresses
2257 static void
2258 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2260 uintptr_t va = (uintptr_t)addr;
2261 uintptr_t eva = va + len;
2262 pgcnt_t pg_index;
2263 htable_t *ht;
2264 uint_t entry;
2265 x86pte_t *pte_ptr;
2266 x86pte_t old_pte;
2268 for (; va < eva; va += MMU_PAGESIZE) {
2270 * Get the PTE
2272 pg_index = mmu_btop(va - mmu.kmap_addr);
2273 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2274 old_pte = GET_PTE(pte_ptr);
2277 * get the htable / entry
2279 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2280 >> LEVEL_SHIFT(1)];
2281 entry = htable_va2entry(va, ht);
2284 * use mostly common code to unmap it.
2286 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2292 * unload a range of virtual address space (no callback)
2294 void
2295 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2297 uintptr_t va = (uintptr_t)addr;
2299 XPV_DISALLOW_MIGRATE();
2300 ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2303 * special case for performance.
2305 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2306 ASSERT(hat == kas.a_hat);
2307 hat_kmap_unload(addr, len, flags);
2308 } else {
2309 hat_unload_callback(hat, addr, len, flags, NULL);
2311 XPV_ALLOW_MIGRATE();
2315 * Do the callbacks for ranges being unloaded.
2317 typedef struct range_info {
2318 uintptr_t rng_va;
2319 ulong_t rng_cnt;
2320 level_t rng_level;
2321 } range_info_t;
2323 static void
2324 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2327 * do callbacks to upper level VM system
2329 while (cb != NULL && cnt > 0) {
2330 --cnt;
2331 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2332 cb->hcb_end_addr = cb->hcb_start_addr;
2333 cb->hcb_end_addr +=
2334 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2335 cb->hcb_function(cb);
2340 * Unload a given range of addresses (has optional callback)
2342 * Flags:
2343 * define HAT_UNLOAD 0x00
2344 * define HAT_UNLOAD_NOSYNC 0x02
2345 * define HAT_UNLOAD_UNLOCK 0x04
2346 * define HAT_UNLOAD_OTHER 0x08 - not used
2347 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD
2349 #define MAX_UNLOAD_CNT (8)
2350 void
2351 hat_unload_callback(
2352 hat_t *hat,
2353 caddr_t addr,
2354 size_t len,
2355 uint_t flags,
2356 hat_callback_t *cb)
2358 uintptr_t vaddr = (uintptr_t)addr;
2359 uintptr_t eaddr = vaddr + len;
2360 htable_t *ht = NULL;
2361 uint_t entry;
2362 uintptr_t contig_va = (uintptr_t)-1L;
2363 range_info_t r[MAX_UNLOAD_CNT];
2364 uint_t r_cnt = 0;
2365 x86pte_t old_pte;
2367 XPV_DISALLOW_MIGRATE();
2368 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2369 ASSERT(IS_PAGEALIGNED(vaddr));
2370 ASSERT(IS_PAGEALIGNED(eaddr));
2373 * Special case a single page being unloaded for speed. This happens
2374 * quite frequently, COW faults after a fork() for example.
2376 if (cb == NULL && len == MMU_PAGESIZE) {
2377 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2378 if (ht != NULL) {
2379 if (PTE_ISVALID(old_pte))
2380 hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2381 htable_release(ht);
2383 XPV_ALLOW_MIGRATE();
2384 return;
2387 while (vaddr < eaddr) {
2388 old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2389 if (ht == NULL)
2390 break;
2392 ASSERT(!IN_VA_HOLE(vaddr));
2394 if (vaddr < (uintptr_t)addr)
2395 panic("hat_unload_callback(): unmap inside large page");
2398 * We'll do the call backs for contiguous ranges
2400 if (vaddr != contig_va ||
2401 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2402 if (r_cnt == MAX_UNLOAD_CNT) {
2403 handle_ranges(cb, r_cnt, r);
2404 r_cnt = 0;
2406 r[r_cnt].rng_va = vaddr;
2407 r[r_cnt].rng_cnt = 0;
2408 r[r_cnt].rng_level = ht->ht_level;
2409 ++r_cnt;
2413 * Unload one mapping from the page tables.
2415 entry = htable_va2entry(vaddr, ht);
2416 hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2417 ASSERT(ht->ht_level <= mmu.max_page_level);
2418 vaddr += LEVEL_SIZE(ht->ht_level);
2419 contig_va = vaddr;
2420 ++r[r_cnt - 1].rng_cnt;
2422 if (ht)
2423 htable_release(ht);
2426 * handle last range for callbacks
2428 if (r_cnt > 0)
2429 handle_ranges(cb, r_cnt, r);
2430 XPV_ALLOW_MIGRATE();
2434 * Invalidate a virtual address translation on a slave CPU during
2435 * panic() dumps.
2437 void
2438 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
2440 ssize_t sz;
2441 caddr_t endva = va + size;
2443 while (va < endva) {
2444 sz = hat_getpagesize(hat, va);
2445 if (sz < 0) {
2446 #ifdef __xpv
2447 xen_flush_tlb();
2448 #else
2449 flush_all_tlb_entries();
2450 #endif
2451 break;
2453 #ifdef __xpv
2454 xen_flush_va(va);
2455 #else
2456 mmu_tlbflush_entry(va);
2457 #endif
2458 va += sz;
2463 * synchronize mapping with software data structures
2465 * This interface is currently only used by the working set monitor
2466 * driver.
2468 /*ARGSUSED*/
2469 void
2470 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2472 uintptr_t vaddr = (uintptr_t)addr;
2473 uintptr_t eaddr = vaddr + len;
2474 htable_t *ht = NULL;
2475 uint_t entry;
2476 x86pte_t pte;
2477 x86pte_t save_pte;
2478 x86pte_t new;
2479 page_t *pp;
2481 ASSERT(!IN_VA_HOLE(vaddr));
2482 ASSERT(IS_PAGEALIGNED(vaddr));
2483 ASSERT(IS_PAGEALIGNED(eaddr));
2484 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2486 XPV_DISALLOW_MIGRATE();
2487 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2488 try_again:
2489 pte = htable_walk(hat, &ht, &vaddr, eaddr);
2490 if (ht == NULL)
2491 break;
2492 entry = htable_va2entry(vaddr, ht);
2494 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2495 PTE_GET(pte, PT_REF | PT_MOD) == 0)
2496 continue;
2499 * We need to acquire the mapping list lock to protect
2500 * against hat_pageunload(), hat_unload(), etc.
2502 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2503 if (pp == NULL)
2504 break;
2505 x86_hm_enter(pp);
2506 save_pte = pte;
2507 pte = x86pte_get(ht, entry);
2508 if (pte != save_pte) {
2509 x86_hm_exit(pp);
2510 goto try_again;
2512 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2513 PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2514 x86_hm_exit(pp);
2515 continue;
2519 * Need to clear ref or mod bits. We may compete with
2520 * hardware updating the R/M bits and have to try again.
2522 if (flags == HAT_SYNC_ZERORM) {
2523 new = pte;
2524 PTE_CLR(new, PT_REF | PT_MOD);
2525 pte = hati_update_pte(ht, entry, pte, new);
2526 if (pte != 0) {
2527 x86_hm_exit(pp);
2528 goto try_again;
2530 } else {
2532 * sync the PTE to the page_t
2534 hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2536 x86_hm_exit(pp);
2538 if (ht)
2539 htable_release(ht);
2540 XPV_ALLOW_MIGRATE();
2544 * void hat_map(hat, addr, len, flags)
2546 /*ARGSUSED*/
2547 void
2548 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2550 /* does nothing */
2554 * uint_t hat_getattr(hat, addr, *attr)
2555 * returns attr for <hat,addr> in *attr. returns 0 if there was a
2556 * mapping and *attr is valid, nonzero if there was no mapping and
2557 * *attr is not valid.
2559 uint_t
2560 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2562 uintptr_t vaddr = ALIGN2PAGE(addr);
2563 htable_t *ht = NULL;
2564 x86pte_t pte;
2566 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2568 if (IN_VA_HOLE(vaddr))
2569 return ((uint_t)-1);
2571 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2572 if (ht == NULL)
2573 return ((uint_t)-1);
2575 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2576 htable_release(ht);
2577 return ((uint_t)-1);
2580 *attr = PROT_READ;
2581 if (PTE_GET(pte, PT_WRITABLE))
2582 *attr |= PROT_WRITE;
2583 if (PTE_GET(pte, PT_USER))
2584 *attr |= PROT_USER;
2585 if (!PTE_GET(pte, mmu.pt_nx))
2586 *attr |= PROT_EXEC;
2587 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2588 *attr |= HAT_NOSYNC;
2589 htable_release(ht);
2590 return (0);
2594 * hat_updateattr() applies the given attribute change to an existing mapping
2596 #define HAT_LOAD_ATTR 1
2597 #define HAT_SET_ATTR 2
2598 #define HAT_CLR_ATTR 3
2600 static void
2601 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2603 uintptr_t vaddr = (uintptr_t)addr;
2604 uintptr_t eaddr = (uintptr_t)addr + len;
2605 htable_t *ht = NULL;
2606 uint_t entry;
2607 x86pte_t oldpte, newpte;
2608 page_t *pp;
2610 XPV_DISALLOW_MIGRATE();
2611 ASSERT(IS_PAGEALIGNED(vaddr));
2612 ASSERT(IS_PAGEALIGNED(eaddr));
2613 ASSERT(hat == kas.a_hat ||
2614 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2615 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2616 try_again:
2617 oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2618 if (ht == NULL)
2619 break;
2620 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2621 continue;
2623 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2624 if (pp == NULL)
2625 continue;
2626 x86_hm_enter(pp);
2628 newpte = oldpte;
2630 * We found a page table entry in the desired range,
2631 * figure out the new attributes.
2633 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2634 if ((attr & PROT_WRITE) &&
2635 !PTE_GET(oldpte, PT_WRITABLE))
2636 newpte |= PT_WRITABLE;
2638 if ((attr & HAT_NOSYNC) &&
2639 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2640 newpte |= PT_NOSYNC;
2642 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2643 newpte &= ~mmu.pt_nx;
2646 if (what == HAT_LOAD_ATTR) {
2647 if (!(attr & PROT_WRITE) &&
2648 PTE_GET(oldpte, PT_WRITABLE))
2649 newpte &= ~PT_WRITABLE;
2651 if (!(attr & HAT_NOSYNC) &&
2652 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2653 newpte &= ~PT_SOFTWARE;
2655 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2656 newpte |= mmu.pt_nx;
2659 if (what == HAT_CLR_ATTR) {
2660 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2661 newpte &= ~PT_WRITABLE;
2663 if ((attr & HAT_NOSYNC) &&
2664 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2665 newpte &= ~PT_SOFTWARE;
2667 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2668 newpte |= mmu.pt_nx;
2672 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2673 * x86pte_set() depends on this.
2675 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2676 newpte |= PT_REF | PT_MOD;
2679 * what about PROT_READ or others? this code only handles:
2680 * EXEC, WRITE, NOSYNC
2684 * If new PTE really changed, update the table.
2686 if (newpte != oldpte) {
2687 entry = htable_va2entry(vaddr, ht);
2688 oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2689 if (oldpte != 0) {
2690 x86_hm_exit(pp);
2691 goto try_again;
2694 x86_hm_exit(pp);
2696 if (ht)
2697 htable_release(ht);
2698 XPV_ALLOW_MIGRATE();
2702 * Various wrappers for hat_updateattr()
2704 void
2705 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2707 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2708 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2711 void
2712 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2714 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2715 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2718 void
2719 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2721 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2722 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2725 void
2726 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2728 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2729 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2733 * size_t hat_getpagesize(hat, addr)
2734 * returns pagesize in bytes for <hat, addr>. returns -1 of there is
2735 * no mapping. This is an advisory call.
2737 ssize_t
2738 hat_getpagesize(hat_t *hat, caddr_t addr)
2740 uintptr_t vaddr = ALIGN2PAGE(addr);
2741 htable_t *ht;
2742 size_t pagesize;
2744 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2745 if (IN_VA_HOLE(vaddr))
2746 return (-1);
2747 ht = htable_getpage(hat, vaddr, NULL);
2748 if (ht == NULL)
2749 return (-1);
2750 pagesize = LEVEL_SIZE(ht->ht_level);
2751 htable_release(ht);
2752 return (pagesize);
2758 * pfn_t hat_getpfnum(hat, addr)
2759 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2761 pfn_t
2762 hat_getpfnum(hat_t *hat, caddr_t addr)
2764 uintptr_t vaddr = ALIGN2PAGE(addr);
2765 htable_t *ht;
2766 uint_t entry;
2767 pfn_t pfn = PFN_INVALID;
2769 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2770 if (khat_running == 0)
2771 return (PFN_INVALID);
2773 if (IN_VA_HOLE(vaddr))
2774 return (PFN_INVALID);
2776 XPV_DISALLOW_MIGRATE();
2778 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2779 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2780 * this up.
2782 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2783 x86pte_t pte;
2784 pgcnt_t pg_index;
2786 pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2787 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2788 if (PTE_ISVALID(pte))
2789 /*LINTED [use of constant 0 causes a lint warning] */
2790 pfn = PTE2PFN(pte, 0);
2791 XPV_ALLOW_MIGRATE();
2792 return (pfn);
2795 ht = htable_getpage(hat, vaddr, &entry);
2796 if (ht == NULL) {
2797 XPV_ALLOW_MIGRATE();
2798 return (PFN_INVALID);
2800 ASSERT(vaddr >= ht->ht_vaddr);
2801 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2802 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2803 if (ht->ht_level > 0)
2804 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2805 htable_release(ht);
2806 XPV_ALLOW_MIGRATE();
2807 return (pfn);
2811 * int hat_probe(hat, addr)
2812 * return 0 if no valid mapping is present. Faster version
2813 * of hat_getattr in certain architectures.
2816 hat_probe(hat_t *hat, caddr_t addr)
2818 uintptr_t vaddr = ALIGN2PAGE(addr);
2819 uint_t entry;
2820 htable_t *ht;
2821 pgcnt_t pg_off;
2823 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2824 ASSERT(hat == kas.a_hat ||
2825 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2826 if (IN_VA_HOLE(vaddr))
2827 return (0);
2830 * Most common use of hat_probe is from segmap. We special case it
2831 * for performance.
2833 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2834 pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2835 if (mmu.pae_hat)
2836 return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2837 else
2838 return (PTE_ISVALID(
2839 ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2842 ht = htable_getpage(hat, vaddr, &entry);
2843 htable_release(ht);
2844 return (ht != NULL);
2848 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2850 static int
2851 is_it_dism(hat_t *hat, caddr_t va)
2853 struct seg *seg;
2854 struct shm_data *shmd;
2855 struct spt_data *sptd;
2857 seg = as_findseg(hat->hat_as, va, 0);
2858 ASSERT(seg != NULL);
2859 ASSERT(seg->s_base <= va);
2860 shmd = (struct shm_data *)seg->s_data;
2861 ASSERT(shmd != NULL);
2862 sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2863 ASSERT(sptd != NULL);
2864 if (sptd->spt_flags & SHM_PAGEABLE)
2865 return (1);
2866 return (0);
2870 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2871 * except that we use the ism_hat's existing mappings to determine the pages
2872 * and protections to use for this hat. If we find a full properly aligned
2873 * and sized pagetable, we will attempt to share the pagetable itself.
2875 /*ARGSUSED*/
2877 hat_share(
2878 hat_t *hat,
2879 caddr_t addr,
2880 hat_t *ism_hat,
2881 caddr_t src_addr,
2882 size_t len, /* almost useless value, see below.. */
2883 uint_t ismszc)
2885 uintptr_t vaddr_start = (uintptr_t)addr;
2886 uintptr_t vaddr;
2887 uintptr_t eaddr = vaddr_start + len;
2888 uintptr_t ism_addr_start = (uintptr_t)src_addr;
2889 uintptr_t ism_addr = ism_addr_start;
2890 uintptr_t e_ism_addr = ism_addr + len;
2891 htable_t *ism_ht = NULL;
2892 htable_t *ht;
2893 x86pte_t pte;
2894 page_t *pp;
2895 pfn_t pfn;
2896 level_t l;
2897 pgcnt_t pgcnt;
2898 uint_t prot;
2899 int is_dism;
2900 int flags;
2903 * We might be asked to share an empty DISM hat by as_dup()
2905 ASSERT(hat != kas.a_hat);
2906 ASSERT(eaddr <= _userlimit);
2907 if (!(ism_hat->hat_flags & HAT_SHARED)) {
2908 ASSERT(hat_get_mapped_size(ism_hat) == 0);
2909 return (0);
2911 XPV_DISALLOW_MIGRATE();
2914 * The SPT segment driver often passes us a size larger than there are
2915 * valid mappings. That's because it rounds the segment size up to a
2916 * large pagesize, even if the actual memory mapped by ism_hat is less.
2918 ASSERT(IS_PAGEALIGNED(vaddr_start));
2919 ASSERT(IS_PAGEALIGNED(ism_addr_start));
2920 ASSERT(ism_hat->hat_flags & HAT_SHARED);
2921 is_dism = is_it_dism(hat, addr);
2922 while (ism_addr < e_ism_addr) {
2924 * use htable_walk to get the next valid ISM mapping
2926 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2927 if (ism_ht == NULL)
2928 break;
2931 * First check to see if we already share the page table.
2933 l = ism_ht->ht_level;
2934 vaddr = vaddr_start + (ism_addr - ism_addr_start);
2935 ht = htable_lookup(hat, vaddr, l);
2936 if (ht != NULL) {
2937 if (ht->ht_flags & HTABLE_SHARED_PFN)
2938 goto shared;
2939 htable_release(ht);
2940 goto not_shared;
2944 * Can't ever share top table.
2946 if (l == mmu.max_level)
2947 goto not_shared;
2950 * Avoid level mismatches later due to DISM faults.
2952 if (is_dism && l > 0)
2953 goto not_shared;
2956 * addresses and lengths must align
2957 * table must be fully populated
2958 * no lower level page tables
2960 if (ism_addr != ism_ht->ht_vaddr ||
2961 (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2962 goto not_shared;
2965 * The range of address space must cover a full table.
2967 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2968 goto not_shared;
2971 * All entries in the ISM page table must be leaf PTEs.
2973 if (l > 0) {
2974 int e;
2977 * We know the 0th is from htable_walk() above.
2979 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
2980 x86pte_t pte;
2981 pte = x86pte_get(ism_ht, e);
2982 if (!PTE_ISPAGE(pte, l))
2983 goto not_shared;
2988 * share the page table
2990 ht = htable_create(hat, vaddr, l, ism_ht);
2991 shared:
2992 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
2993 ASSERT(ht->ht_shares == ism_ht);
2994 hat->hat_ism_pgcnt +=
2995 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
2996 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
2997 ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
2998 htable_release(ht);
2999 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3000 htable_release(ism_ht);
3001 ism_ht = NULL;
3002 continue;
3004 not_shared:
3006 * Unable to share the page table. Instead we will
3007 * create new mappings from the values in the ISM mappings.
3008 * Figure out what level size mappings to use;
3010 for (l = ism_ht->ht_level; l > 0; --l) {
3011 if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3012 (vaddr & LEVEL_OFFSET(l)) == 0)
3013 break;
3017 * The ISM mapping might be larger than the share area,
3018 * be careful to truncate it if needed.
3020 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3021 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3022 } else {
3023 pgcnt = mmu_btop(eaddr - vaddr);
3024 l = 0;
3027 pfn = PTE2PFN(pte, ism_ht->ht_level);
3028 ASSERT(pfn != PFN_INVALID);
3029 while (pgcnt > 0) {
3031 * Make a new pte for the PFN for this level.
3032 * Copy protections for the pte from the ISM pte.
3034 pp = page_numtopp_nolock(pfn);
3035 ASSERT(pp != NULL);
3037 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3038 if (PTE_GET(pte, PT_WRITABLE))
3039 prot |= PROT_WRITE;
3040 if (!PTE_GET(pte, PT_NX))
3041 prot |= PROT_EXEC;
3043 flags = HAT_LOAD;
3044 if (!is_dism)
3045 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3046 while (hati_load_common(hat, vaddr, pp, prot, flags,
3047 l, pfn) != 0) {
3048 if (l == 0)
3049 panic("hati_load_common() failure");
3050 --l;
3053 vaddr += LEVEL_SIZE(l);
3054 ism_addr += LEVEL_SIZE(l);
3055 pfn += mmu_btop(LEVEL_SIZE(l));
3056 pgcnt -= mmu_btop(LEVEL_SIZE(l));
3059 if (ism_ht != NULL)
3060 htable_release(ism_ht);
3061 XPV_ALLOW_MIGRATE();
3062 return (0);
3067 * hat_unshare() is similar to hat_unload_callback(), but
3068 * we have to look for empty shared pagetables. Note that
3069 * hat_unshare() is always invoked against an entire segment.
3071 /*ARGSUSED*/
3072 void
3073 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3075 uint64_t vaddr = (uintptr_t)addr;
3076 uintptr_t eaddr = vaddr + len;
3077 htable_t *ht = NULL;
3078 uint_t need_demaps = 0;
3079 int flags = HAT_UNLOAD_UNMAP;
3080 level_t l;
3082 ASSERT(hat != kas.a_hat);
3083 ASSERT(eaddr <= _userlimit);
3084 ASSERT(IS_PAGEALIGNED(vaddr));
3085 ASSERT(IS_PAGEALIGNED(eaddr));
3086 XPV_DISALLOW_MIGRATE();
3089 * First go through and remove any shared pagetables.
3091 * Note that it's ok to delay the TLB shootdown till the entire range is
3092 * finished, because if hat_pageunload() were to unload a shared
3093 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3095 l = mmu.max_page_level;
3096 if (l == mmu.max_level)
3097 --l;
3098 for (; l >= 0; --l) {
3099 for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3100 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3101 ASSERT(!IN_VA_HOLE(vaddr));
3103 * find a pagetable that maps the current address
3105 ht = htable_lookup(hat, vaddr, l);
3106 if (ht == NULL)
3107 continue;
3108 if (ht->ht_flags & HTABLE_SHARED_PFN) {
3110 * clear page count, set valid_cnt to 0,
3111 * let htable_release() finish the job
3113 hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3114 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3115 ht->ht_valid_cnt = 0;
3116 need_demaps = 1;
3118 htable_release(ht);
3123 * flush the TLBs - since we're probably dealing with MANY mappings
3124 * we do just one CR3 reload.
3126 if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3127 hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3130 * Now go back and clean up any unaligned mappings that
3131 * couldn't share pagetables.
3133 if (!is_it_dism(hat, addr))
3134 flags |= HAT_UNLOAD_UNLOCK;
3135 hat_unload(hat, addr, len, flags);
3136 XPV_ALLOW_MIGRATE();
3141 * hat_reserve() does nothing
3143 /*ARGSUSED*/
3144 void
3145 hat_reserve(struct as *as, caddr_t addr, size_t len)
3151 * Called when all mappings to a page should have write permission removed.
3152 * Mostly stolen from hat_pagesync()
3154 static void
3155 hati_page_clrwrt(struct page *pp)
3157 hment_t *hm = NULL;
3158 htable_t *ht;
3159 uint_t entry;
3160 x86pte_t old;
3161 x86pte_t new;
3162 uint_t pszc = 0;
3164 XPV_DISALLOW_MIGRATE();
3165 next_size:
3167 * walk thru the mapping list clearing write permission
3169 x86_hm_enter(pp);
3170 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3171 if (ht->ht_level < pszc)
3172 continue;
3173 old = x86pte_get(ht, entry);
3175 for (;;) {
3177 * Is this mapping of interest?
3179 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3180 PTE_GET(old, PT_WRITABLE) == 0)
3181 break;
3184 * Clear ref/mod writable bits. This requires cross
3185 * calls to ensure any executing TLBs see cleared bits.
3187 new = old;
3188 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3189 old = hati_update_pte(ht, entry, old, new);
3190 if (old != 0)
3191 continue;
3193 break;
3196 x86_hm_exit(pp);
3197 while (pszc < pp->p_szc) {
3198 page_t *tpp;
3199 pszc++;
3200 tpp = PP_GROUPLEADER(pp, pszc);
3201 if (pp != tpp) {
3202 pp = tpp;
3203 goto next_size;
3206 XPV_ALLOW_MIGRATE();
3210 * void hat_page_setattr(pp, flag)
3211 * void hat_page_clrattr(pp, flag)
3212 * used to set/clr ref/mod bits.
3214 void
3215 hat_page_setattr(struct page *pp, uint_t flag)
3217 vnode_t *vp = pp->p_vnode;
3218 kmutex_t *vphm = NULL;
3219 page_t **listp;
3220 int noshuffle;
3222 noshuffle = flag & P_NSH;
3223 flag &= ~P_NSH;
3225 if (PP_GETRM(pp, flag) == flag)
3226 return;
3228 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3229 !noshuffle) {
3230 vphm = page_vnode_mutex(vp);
3231 mutex_enter(vphm);
3234 PP_SETRM(pp, flag);
3236 if (vphm != NULL) {
3239 * Some File Systems examine v_pages for NULL w/o
3240 * grabbing the vphm mutex. Must not let it become NULL when
3241 * pp is the only page on the list.
3243 if (pp->p_vpnext != pp) {
3244 page_vpsub(&vp->v_pages, pp);
3245 if (vp->v_pages != NULL)
3246 listp = &vp->v_pages->p_vpprev->p_vpnext;
3247 else
3248 listp = &vp->v_pages;
3249 page_vpadd(listp, pp);
3251 mutex_exit(vphm);
3255 void
3256 hat_page_clrattr(struct page *pp, uint_t flag)
3258 vnode_t *vp = pp->p_vnode;
3259 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3262 * Caller is expected to hold page's io lock for VMODSORT to work
3263 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3264 * bit is cleared.
3265 * We don't have assert to avoid tripping some existing third party
3266 * code. The dirty page is moved back to top of the v_page list
3267 * after IO is done in pvn_write_done().
3269 PP_CLRRM(pp, flag);
3271 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3274 * VMODSORT works by removing write permissions and getting
3275 * a fault when a page is made dirty. At this point
3276 * we need to remove write permission from all mappings
3277 * to this page.
3279 hati_page_clrwrt(pp);
3284 * If flag is specified, returns 0 if attribute is disabled
3285 * and non zero if enabled. If flag specifes multiple attributes
3286 * then returns 0 if ALL attributes are disabled. This is an advisory
3287 * call.
3289 uint_t
3290 hat_page_getattr(struct page *pp, uint_t flag)
3292 return (PP_GETRM(pp, flag));
3297 * common code used by hat_pageunload() and hment_steal()
3299 hment_t *
3300 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3302 x86pte_t old_pte;
3303 pfn_t pfn = pp->p_pagenum;
3304 hment_t *hm;
3307 * We need to acquire a hold on the htable in order to
3308 * do the invalidate. We know the htable must exist, since
3309 * unmap's don't release the htable until after removing any
3310 * hment. Having x86_hm_enter() keeps that from proceeding.
3312 htable_acquire(ht);
3315 * Invalidate the PTE and remove the hment.
3317 old_pte = x86pte_inval(ht, entry, 0, NULL);
3318 if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3319 panic("x86pte_inval() failure found PTE = " FMT_PTE
3320 " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3321 old_pte, pfn, (uintptr_t)ht, entry);
3325 * Clean up all the htable information for this mapping
3327 ASSERT(ht->ht_valid_cnt > 0);
3328 HTABLE_DEC(ht->ht_valid_cnt);
3329 PGCNT_DEC(ht->ht_hat, ht->ht_level);
3332 * sync ref/mod bits to the page_t
3334 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3335 hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3338 * Remove the mapping list entry for this page.
3340 hm = hment_remove(pp, ht, entry);
3343 * drop the mapping list lock so that we might free the
3344 * hment and htable.
3346 x86_hm_exit(pp);
3347 htable_release(ht);
3348 return (hm);
3351 extern int vpm_enable;
3353 * Unload all translations to a page. If the page is a subpage of a large
3354 * page, the large page mappings are also removed.
3356 * The forceflags are unused.
3359 /*ARGSUSED*/
3360 static int
3361 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3363 page_t *cur_pp = pp;
3364 hment_t *hm;
3365 hment_t *prev;
3366 htable_t *ht;
3367 uint_t entry;
3368 level_t level;
3370 XPV_DISALLOW_MIGRATE();
3373 * prevent recursion due to kmem_free()
3375 ++curthread->t_hatdepth;
3376 ASSERT(curthread->t_hatdepth < 16);
3378 #if defined(__amd64)
3380 * clear the vpm ref.
3382 if (vpm_enable) {
3383 pp->p_vpmref = 0;
3385 #endif
3387 * The loop with next_size handles pages with multiple pagesize mappings
3389 next_size:
3390 for (;;) {
3393 * Get a mapping list entry
3395 x86_hm_enter(cur_pp);
3396 for (prev = NULL; ; prev = hm) {
3397 hm = hment_walk(cur_pp, &ht, &entry, prev);
3398 if (hm == NULL) {
3399 x86_hm_exit(cur_pp);
3402 * If not part of a larger page, we're done.
3404 if (cur_pp->p_szc <= pg_szcd) {
3405 ASSERT(curthread->t_hatdepth > 0);
3406 --curthread->t_hatdepth;
3407 XPV_ALLOW_MIGRATE();
3408 return (0);
3412 * Else check the next larger page size.
3413 * hat_page_demote() may decrease p_szc
3414 * but that's ok we'll just take an extra
3415 * trip discover there're no larger mappings
3416 * and return.
3418 ++pg_szcd;
3419 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3420 goto next_size;
3424 * If this mapping size matches, remove it.
3426 level = ht->ht_level;
3427 if (level == pg_szcd)
3428 break;
3432 * Remove the mapping list entry for this page.
3433 * Note this does the x86_hm_exit() for us.
3435 hm = hati_page_unmap(cur_pp, ht, entry);
3436 if (hm != NULL)
3437 hment_free(hm);
3442 hat_pageunload(struct page *pp, uint_t forceflag)
3444 ASSERT(PAGE_EXCL(pp));
3445 return (hati_pageunload(pp, 0, forceflag));
3449 * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3450 * page level that included pp.
3452 * pp must be locked EXCL. Even though no other constituent pages are locked
3453 * it's legal to unload large mappings to pp because all constituent pages of
3454 * large locked mappings have to be locked SHARED. therefore if we have EXCL
3455 * lock on one of constituent pages none of the large mappings to pp are
3456 * locked.
3458 * Change (always decrease) p_szc field starting from the last constituent
3459 * page and ending with root constituent page so that root's pszc always shows
3460 * the area where hat_page_demote() may be active.
3462 * This mechanism is only used for file system pages where it's not always
3463 * possible to get EXCL locks on all constituent pages to demote the size code
3464 * (as is done for anonymous or kernel large pages).
3466 void
3467 hat_page_demote(page_t *pp)
3469 uint_t pszc;
3470 uint_t rszc;
3471 uint_t szc;
3472 page_t *rootpp;
3473 page_t *firstpp;
3474 page_t *lastpp;
3475 pgcnt_t pgcnt;
3477 ASSERT(PAGE_EXCL(pp));
3478 ASSERT(!PP_ISFREE(pp));
3479 ASSERT(page_szc_lock_assert(pp));
3481 if (pp->p_szc == 0)
3482 return;
3484 rootpp = PP_GROUPLEADER(pp, 1);
3485 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3488 * all large mappings to pp are gone
3489 * and no new can be setup since pp is locked exclusively.
3491 * Lock the root to make sure there's only one hat_page_demote()
3492 * outstanding within the area of this root's pszc.
3494 * Second potential hat_page_demote() is already eliminated by upper
3495 * VM layer via page_szc_lock() but we don't rely on it and use our
3496 * own locking (so that upper layer locking can be changed without
3497 * assumptions that hat depends on upper layer VM to prevent multiple
3498 * hat_page_demote() to be issued simultaneously to the same large
3499 * page).
3501 again:
3502 pszc = pp->p_szc;
3503 if (pszc == 0)
3504 return;
3505 rootpp = PP_GROUPLEADER(pp, pszc);
3506 x86_hm_enter(rootpp);
3508 * If root's p_szc is different from pszc we raced with another
3509 * hat_page_demote(). Drop the lock and try to find the root again.
3510 * If root's p_szc is greater than pszc previous hat_page_demote() is
3511 * not done yet. Take and release mlist lock of root's root to wait
3512 * for previous hat_page_demote() to complete.
3514 if ((rszc = rootpp->p_szc) != pszc) {
3515 x86_hm_exit(rootpp);
3516 if (rszc > pszc) {
3517 /* p_szc of a locked non free page can't increase */
3518 ASSERT(pp != rootpp);
3520 rootpp = PP_GROUPLEADER(rootpp, rszc);
3521 x86_hm_enter(rootpp);
3522 x86_hm_exit(rootpp);
3524 goto again;
3526 ASSERT(pp->p_szc == pszc);
3529 * Decrement by 1 p_szc of every constituent page of a region that
3530 * covered pp. For example if original szc is 3 it gets changed to 2
3531 * everywhere except in region 2 that covered pp. Region 2 that
3532 * covered pp gets demoted to 1 everywhere except in region 1 that
3533 * covered pp. The region 1 that covered pp is demoted to region
3534 * 0. It's done this way because from region 3 we removed level 3
3535 * mappings, from region 2 that covered pp we removed level 2 mappings
3536 * and from region 1 that covered pp we removed level 1 mappings. All
3537 * changes are done from from high pfn's to low pfn's so that roots
3538 * are changed last allowing one to know the largest region where
3539 * hat_page_demote() is stil active by only looking at the root page.
3541 * This algorithm is implemented in 2 while loops. First loop changes
3542 * p_szc of pages to the right of pp's level 1 region and second
3543 * loop changes p_szc of pages of level 1 region that covers pp
3544 * and all pages to the left of level 1 region that covers pp.
3545 * In the first loop p_szc keeps dropping with every iteration
3546 * and in the second loop it keeps increasing with every iteration.
3548 * First loop description: Demote pages to the right of pp outside of
3549 * level 1 region that covers pp. In every iteration of the while
3550 * loop below find the last page of szc region and the first page of
3551 * (szc - 1) region that is immediately to the right of (szc - 1)
3552 * region that covers pp. From last such page to first such page
3553 * change every page's szc to szc - 1. Decrement szc and continue
3554 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3555 * of szc region skip to the next iteration.
3557 szc = pszc;
3558 while (szc > 1) {
3559 lastpp = PP_GROUPLEADER(pp, szc);
3560 pgcnt = page_get_pagecnt(szc);
3561 lastpp += pgcnt - 1;
3562 firstpp = PP_GROUPLEADER(pp, (szc - 1));
3563 pgcnt = page_get_pagecnt(szc - 1);
3564 if (lastpp - firstpp < pgcnt) {
3565 szc--;
3566 continue;
3568 firstpp += pgcnt;
3569 while (lastpp != firstpp) {
3570 ASSERT(lastpp->p_szc == pszc);
3571 lastpp->p_szc = szc - 1;
3572 lastpp--;
3574 firstpp->p_szc = szc - 1;
3575 szc--;
3579 * Second loop description:
3580 * First iteration changes p_szc to 0 of every
3581 * page of level 1 region that covers pp.
3582 * Subsequent iterations find last page of szc region
3583 * immediately to the left of szc region that covered pp
3584 * and first page of (szc + 1) region that covers pp.
3585 * From last to first page change p_szc of every page to szc.
3586 * Increment szc and continue looping until szc is pszc.
3587 * If pp belongs to the fist szc region of (szc + 1) region
3588 * skip to the next iteration.
3591 szc = 0;
3592 while (szc < pszc) {
3593 firstpp = PP_GROUPLEADER(pp, (szc + 1));
3594 if (szc == 0) {
3595 pgcnt = page_get_pagecnt(1);
3596 lastpp = firstpp + (pgcnt - 1);
3597 } else {
3598 lastpp = PP_GROUPLEADER(pp, szc);
3599 if (firstpp == lastpp) {
3600 szc++;
3601 continue;
3603 lastpp--;
3604 pgcnt = page_get_pagecnt(szc);
3606 while (lastpp != firstpp) {
3607 ASSERT(lastpp->p_szc == pszc);
3608 lastpp->p_szc = szc;
3609 lastpp--;
3611 firstpp->p_szc = szc;
3612 if (firstpp == rootpp)
3613 break;
3614 szc++;
3616 x86_hm_exit(rootpp);
3620 * get hw stats from hardware into page struct and reset hw stats
3621 * returns attributes of page
3622 * Flags for hat_pagesync, hat_getstat, hat_sync
3624 * define HAT_SYNC_ZERORM 0x01
3626 * Additional flags for hat_pagesync
3628 * define HAT_SYNC_STOPON_REF 0x02
3629 * define HAT_SYNC_STOPON_MOD 0x04
3630 * define HAT_SYNC_STOPON_RM 0x06
3631 * define HAT_SYNC_STOPON_SHARED 0x08
3633 uint_t
3634 hat_pagesync(struct page *pp, uint_t flags)
3636 hment_t *hm = NULL;
3637 htable_t *ht;
3638 uint_t entry;
3639 x86pte_t old, save_old;
3640 x86pte_t new;
3641 uchar_t nrmbits = P_REF|P_MOD|P_RO;
3642 extern ulong_t po_share;
3643 page_t *save_pp = pp;
3644 uint_t pszc = 0;
3646 ASSERT(PAGE_LOCKED(pp) || panicstr);
3648 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3649 return (pp->p_nrm & nrmbits);
3651 if ((flags & HAT_SYNC_ZERORM) == 0) {
3653 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3654 return (pp->p_nrm & nrmbits);
3656 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3657 return (pp->p_nrm & nrmbits);
3659 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3660 hat_page_getshare(pp) > po_share) {
3661 if (PP_ISRO(pp))
3662 PP_SETREF(pp);
3663 return (pp->p_nrm & nrmbits);
3667 XPV_DISALLOW_MIGRATE();
3668 next_size:
3670 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3672 x86_hm_enter(pp);
3673 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3674 if (ht->ht_level < pszc)
3675 continue;
3676 old = x86pte_get(ht, entry);
3677 try_again:
3679 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3681 if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3682 continue;
3684 save_old = old;
3685 if ((flags & HAT_SYNC_ZERORM) != 0) {
3688 * Need to clear ref or mod bits. Need to demap
3689 * to make sure any executing TLBs see cleared bits.
3691 new = old;
3692 PTE_CLR(new, PT_REF | PT_MOD);
3693 old = hati_update_pte(ht, entry, old, new);
3694 if (old != 0)
3695 goto try_again;
3697 old = save_old;
3701 * Sync the PTE
3703 if (!(flags & HAT_SYNC_ZERORM) &&
3704 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3705 hati_sync_pte_to_page(pp, old, ht->ht_level);
3708 * can stop short if we found a ref'd or mod'd page
3710 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3711 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3712 x86_hm_exit(pp);
3713 goto done;
3716 x86_hm_exit(pp);
3717 while (pszc < pp->p_szc) {
3718 page_t *tpp;
3719 pszc++;
3720 tpp = PP_GROUPLEADER(pp, pszc);
3721 if (pp != tpp) {
3722 pp = tpp;
3723 goto next_size;
3726 done:
3727 XPV_ALLOW_MIGRATE();
3728 return (save_pp->p_nrm & nrmbits);
3732 * returns approx number of mappings to this pp. A return of 0 implies
3733 * there are no mappings to the page.
3735 ulong_t
3736 hat_page_getshare(page_t *pp)
3738 uint_t cnt;
3739 cnt = hment_mapcnt(pp);
3740 #if defined(__amd64)
3741 if (vpm_enable && pp->p_vpmref) {
3742 cnt += 1;
3744 #endif
3745 return (cnt);
3749 * Return 1 the number of mappings exceeds sh_thresh. Return 0
3750 * otherwise.
3753 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3755 return (hat_page_getshare(pp) > sh_thresh);
3759 * hat_softlock isn't supported anymore
3761 /*ARGSUSED*/
3762 faultcode_t
3763 hat_softlock(
3764 hat_t *hat,
3765 caddr_t addr,
3766 size_t *len,
3767 struct page **page_array,
3768 uint_t flags)
3770 return (FC_NOSUPPORT);
3776 * Routine to expose supported HAT features to platform independent code.
3778 /*ARGSUSED*/
3780 hat_supported(enum hat_features feature, void *arg)
3782 switch (feature) {
3784 case HAT_SHARED_PT: /* this is really ISM */
3785 return (1);
3787 case HAT_DYNAMIC_ISM_UNMAP:
3788 return (0);
3790 case HAT_VMODSORT:
3791 return (1);
3793 case HAT_SHARED_REGIONS:
3794 return (0);
3796 default:
3797 panic("hat_supported() - unknown feature");
3799 return (0);
3803 * Called when a thread is exiting and has been switched to the kernel AS
3805 void
3806 hat_thread_exit(kthread_t *thd)
3808 ASSERT(thd->t_procp->p_as == &kas);
3809 XPV_DISALLOW_MIGRATE();
3810 hat_switch(thd->t_procp->p_as->a_hat);
3811 XPV_ALLOW_MIGRATE();
3815 * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3817 /*ARGSUSED*/
3818 void
3819 hat_setup(hat_t *hat, int flags)
3821 XPV_DISALLOW_MIGRATE();
3822 kpreempt_disable();
3824 hat_switch(hat);
3826 kpreempt_enable();
3827 XPV_ALLOW_MIGRATE();
3831 * Prepare for a CPU private mapping for the given address.
3833 * The address can only be used from a single CPU and can be remapped
3834 * using hat_mempte_remap(). Return the address of the PTE.
3836 * We do the htable_create() if necessary and increment the valid count so
3837 * the htable can't disappear. We also hat_devload() the page table into
3838 * kernel so that the PTE is quickly accessed.
3840 hat_mempte_t
3841 hat_mempte_setup(caddr_t addr)
3843 uintptr_t va = (uintptr_t)addr;
3844 htable_t *ht;
3845 uint_t entry;
3846 x86pte_t oldpte;
3847 hat_mempte_t p;
3849 ASSERT(IS_PAGEALIGNED(va));
3850 ASSERT(!IN_VA_HOLE(va));
3851 ++curthread->t_hatdepth;
3852 XPV_DISALLOW_MIGRATE();
3853 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3854 if (ht == NULL) {
3855 ht = htable_create(kas.a_hat, va, 0, NULL);
3856 entry = htable_va2entry(va, ht);
3857 ASSERT(ht->ht_level == 0);
3858 oldpte = x86pte_get(ht, entry);
3860 if (PTE_ISVALID(oldpte))
3861 panic("hat_mempte_setup(): address already mapped"
3862 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3865 * increment ht_valid_cnt so that the pagetable can't disappear
3867 HTABLE_INC(ht->ht_valid_cnt);
3870 * return the PTE physical address to the caller.
3872 htable_release(ht);
3873 XPV_ALLOW_MIGRATE();
3874 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3875 --curthread->t_hatdepth;
3876 return (p);
3880 * Release a CPU private mapping for the given address.
3881 * We decrement the htable valid count so it might be destroyed.
3883 /*ARGSUSED1*/
3884 void
3885 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3887 htable_t *ht;
3889 XPV_DISALLOW_MIGRATE();
3891 * invalidate any left over mapping and decrement the htable valid count
3893 #ifdef __xpv
3894 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3895 UVMF_INVLPG | UVMF_LOCAL))
3896 panic("HYPERVISOR_update_va_mapping() failed");
3897 #else
3899 x86pte_t *pteptr;
3901 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3902 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3903 if (mmu.pae_hat)
3904 *pteptr = 0;
3905 else
3906 *(x86pte32_t *)pteptr = 0;
3907 mmu_tlbflush_entry(addr);
3908 x86pte_mapout();
3910 #endif
3912 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3913 if (ht == NULL)
3914 panic("hat_mempte_release(): invalid address");
3915 ASSERT(ht->ht_level == 0);
3916 HTABLE_DEC(ht->ht_valid_cnt);
3917 htable_release(ht);
3918 XPV_ALLOW_MIGRATE();
3922 * Apply a temporary CPU private mapping to a page. We flush the TLB only
3923 * on this CPU, so this ought to have been called with preemption disabled.
3925 void
3926 hat_mempte_remap(
3927 pfn_t pfn,
3928 caddr_t addr,
3929 hat_mempte_t pte_pa,
3930 uint_t attr,
3931 uint_t flags)
3933 uintptr_t va = (uintptr_t)addr;
3934 x86pte_t pte;
3937 * Remap the given PTE to the new page's PFN. Invalidate only
3938 * on this CPU.
3940 #ifdef DEBUG
3941 htable_t *ht;
3942 uint_t entry;
3944 ASSERT(IS_PAGEALIGNED(va));
3945 ASSERT(!IN_VA_HOLE(va));
3946 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3947 ASSERT(ht != NULL);
3948 ASSERT(ht->ht_level == 0);
3949 ASSERT(ht->ht_valid_cnt > 0);
3950 ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3951 htable_release(ht);
3952 #endif
3953 XPV_DISALLOW_MIGRATE();
3954 pte = hati_mkpte(pfn, attr, 0, flags);
3955 #ifdef __xpv
3956 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3957 panic("HYPERVISOR_update_va_mapping() failed");
3958 #else
3960 x86pte_t *pteptr;
3962 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3963 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3964 if (mmu.pae_hat)
3965 *(x86pte_t *)pteptr = pte;
3966 else
3967 *(x86pte32_t *)pteptr = (x86pte32_t)pte;
3968 mmu_tlbflush_entry(addr);
3969 x86pte_mapout();
3971 #endif
3972 XPV_ALLOW_MIGRATE();
3978 * Hat locking functions
3979 * XXX - these two functions are currently being used by hatstats
3980 * they can be removed by using a per-as mutex for hatstats.
3982 void
3983 hat_enter(hat_t *hat)
3985 mutex_enter(&hat->hat_mutex);
3988 void
3989 hat_exit(hat_t *hat)
3991 mutex_exit(&hat->hat_mutex);
3995 * HAT part of cpu initialization.
3997 void
3998 hat_cpu_online(struct cpu *cpup)
4000 if (cpup != CPU) {
4001 x86pte_cpu_init(cpup);
4002 hat_vlp_setup(cpup);
4004 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4008 * HAT part of cpu deletion.
4009 * (currently, we only call this after the cpu is safely passivated.)
4011 void
4012 hat_cpu_offline(struct cpu *cpup)
4014 ASSERT(cpup != CPU);
4016 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4017 hat_vlp_teardown(cpup);
4018 x86pte_cpu_fini(cpup);
4022 * Function called after all CPUs are brought online.
4023 * Used to remove low address boot mappings.
4025 void
4026 clear_boot_mappings(uintptr_t low, uintptr_t high)
4028 uintptr_t vaddr = low;
4029 htable_t *ht = NULL;
4030 level_t level;
4031 uint_t entry;
4032 x86pte_t pte;
4035 * On 1st CPU we can unload the prom mappings, basically we blow away
4036 * all virtual mappings under _userlimit.
4038 while (vaddr < high) {
4039 pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4040 if (ht == NULL)
4041 break;
4043 level = ht->ht_level;
4044 entry = htable_va2entry(vaddr, ht);
4045 ASSERT(level <= mmu.max_page_level);
4046 ASSERT(PTE_ISPAGE(pte, level));
4049 * Unload the mapping from the page tables.
4051 (void) x86pte_inval(ht, entry, 0, NULL);
4052 ASSERT(ht->ht_valid_cnt > 0);
4053 HTABLE_DEC(ht->ht_valid_cnt);
4054 PGCNT_DEC(ht->ht_hat, ht->ht_level);
4056 vaddr += LEVEL_SIZE(ht->ht_level);
4058 if (ht)
4059 htable_release(ht);
4063 * Atomically update a new translation for a single page. If the
4064 * currently installed PTE doesn't match the value we expect to find,
4065 * it's not updated and we return the PTE we found.
4067 * If activating nosync or NOWRITE and the page was modified we need to sync
4068 * with the page_t. Also sync with page_t if clearing ref/mod bits.
4070 static x86pte_t
4071 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4073 page_t *pp;
4074 uint_t rm = 0;
4075 x86pte_t replaced;
4077 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4078 PTE_GET(expected, PT_MOD | PT_REF) &&
4079 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4080 !PTE_GET(new, PT_MOD | PT_REF))) {
4082 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4083 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4084 ASSERT(pp != NULL);
4085 if (PTE_GET(expected, PT_MOD))
4086 rm |= P_MOD;
4087 if (PTE_GET(expected, PT_REF))
4088 rm |= P_REF;
4089 PTE_CLR(new, PT_MOD | PT_REF);
4092 replaced = x86pte_update(ht, entry, expected, new);
4093 if (replaced != expected)
4094 return (replaced);
4096 if (rm) {
4098 * sync to all constituent pages of a large page
4100 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4101 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4102 while (pgcnt-- > 0) {
4104 * hat_page_demote() can't decrease
4105 * pszc below this mapping size
4106 * since large mapping existed after we
4107 * took mlist lock.
4109 ASSERT(pp->p_szc >= ht->ht_level);
4110 hat_page_setattr(pp, rm);
4111 ++pp;
4115 return (0);
4118 /* ARGSUSED */
4119 void
4120 hat_join_srd(struct hat *hat, vnode_t *evp)
4124 /* ARGSUSED */
4125 hat_region_cookie_t
4126 hat_join_region(struct hat *hat,
4127 caddr_t r_saddr,
4128 size_t r_size,
4129 void *r_obj,
4130 u_offset_t r_objoff,
4131 uchar_t r_perm,
4132 uchar_t r_pgszc,
4133 hat_rgn_cb_func_t r_cb_function,
4134 uint_t flags)
4136 panic("No shared region support on x86");
4137 return (HAT_INVALID_REGION_COOKIE);
4140 /* ARGSUSED */
4141 void
4142 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4144 panic("No shared region support on x86");
4147 /* ARGSUSED */
4148 void
4149 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4151 panic("No shared region support on x86");
4156 * Kernel Physical Mapping (kpm) facility
4158 * Most of the routines needed to support segkpm are almost no-ops on the
4159 * x86 platform. We map in the entire segment when it is created and leave
4160 * it mapped in, so there is no additional work required to set up and tear
4161 * down individual mappings. All of these routines were created to support
4162 * SPARC platforms that have to avoid aliasing in their virtually indexed
4163 * caches.
4165 * Most of the routines have sanity checks in them (e.g. verifying that the
4166 * passed-in page is locked). We don't actually care about most of these
4167 * checks on x86, but we leave them in place to identify problems in the
4168 * upper levels.
4172 * Map in a locked page and return the vaddr.
4174 /*ARGSUSED*/
4175 caddr_t
4176 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4178 caddr_t vaddr;
4180 #ifdef DEBUG
4181 if (kpm_enable == 0) {
4182 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4183 return ((caddr_t)NULL);
4186 if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4187 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4188 return ((caddr_t)NULL);
4190 #endif
4192 vaddr = hat_kpm_page2va(pp, 1);
4194 return (vaddr);
4198 * Mapout a locked page.
4200 /*ARGSUSED*/
4201 void
4202 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4204 #ifdef DEBUG
4205 if (kpm_enable == 0) {
4206 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4207 return;
4210 if (IS_KPM_ADDR(vaddr) == 0) {
4211 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4212 return;
4215 if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4216 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4217 return;
4219 #endif
4223 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4224 * memory addresses that are not described by a page_t. It can
4225 * also be used for normal pages that are not locked, but beware
4226 * this is dangerous - no locking is performed, so the identity of
4227 * the page could change. hat_kpm_mapin_pfn is not supported when
4228 * vac_colors > 1, because the chosen va depends on the page identity,
4229 * which could change.
4230 * The caller must only pass pfn's for valid physical addresses; violation
4231 * of this rule will cause panic.
4233 caddr_t
4234 hat_kpm_mapin_pfn(pfn_t pfn)
4236 caddr_t paddr, vaddr;
4238 if (kpm_enable == 0)
4239 return ((caddr_t)NULL);
4241 paddr = (caddr_t)ptob(pfn);
4242 vaddr = (uintptr_t)kpm_vbase + paddr;
4244 return ((caddr_t)vaddr);
4247 /*ARGSUSED*/
4248 void
4249 hat_kpm_mapout_pfn(pfn_t pfn)
4251 /* empty */
4255 * Return the kpm virtual address for a specific pfn
4257 caddr_t
4258 hat_kpm_pfn2va(pfn_t pfn)
4260 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4262 ASSERT(!pfn_is_foreign(pfn));
4263 return ((caddr_t)vaddr);
4267 * Return the kpm virtual address for the page at pp.
4269 /*ARGSUSED*/
4270 caddr_t
4271 hat_kpm_page2va(struct page *pp, int checkswap)
4273 return (hat_kpm_pfn2va(pp->p_pagenum));
4277 * Return the page frame number for the kpm virtual address vaddr.
4279 pfn_t
4280 hat_kpm_va2pfn(caddr_t vaddr)
4282 pfn_t pfn;
4284 ASSERT(IS_KPM_ADDR(vaddr));
4286 pfn = (pfn_t)btop(vaddr - kpm_vbase);
4288 return (pfn);
4293 * Return the page for the kpm virtual address vaddr.
4295 page_t *
4296 hat_kpm_vaddr2page(caddr_t vaddr)
4298 pfn_t pfn;
4300 ASSERT(IS_KPM_ADDR(vaddr));
4302 pfn = hat_kpm_va2pfn(vaddr);
4304 return (page_numtopp_nolock(pfn));
4308 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4309 * KPM page. This should never happen on x86
4312 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4314 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p",
4315 (void *)hat, (void *)vaddr);
4317 return (0);
4320 /*ARGSUSED*/
4321 void
4322 hat_kpm_mseghash_clear(int nentries)
4325 /*ARGSUSED*/
4326 void
4327 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4330 #ifndef __xpv
4331 void
4332 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4333 offset_t kpm_pages_off)
4335 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4336 pfn_t base, end;
4339 * kphysm_add_memory_dynamic() does not set nkpmpgs
4340 * when page_t memory is externally allocated. That
4341 * code must properly calculate nkpmpgs in all cases
4342 * if nkpmpgs needs to be used at some point.
4346 * The meta (page_t) pages for dynamically added memory are allocated
4347 * either from the incoming memory itself or from existing memory.
4348 * In the former case the base of the incoming pages will be different
4349 * than the base of the dynamic segment so call memseg_get_start() to
4350 * get the actual base of the incoming memory for each case.
4353 base = memseg_get_start(msp);
4354 end = msp->pages_end;
4356 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4357 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4358 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4361 void
4362 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4364 _NOTE(ARGUNUSED(msp));
4367 void
4368 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4370 _NOTE(ARGUNUSED(msp));
4374 * Return end of metadata for an already setup memseg.
4375 * X86 platforms don't need per-page meta data to support kpm.
4377 caddr_t
4378 hat_kpm_mseg_reuse(struct memseg *msp)
4380 return ((caddr_t)msp->epages);
4383 void
4384 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
4386 _NOTE(ARGUNUSED(msp, mspp));
4387 ASSERT(0);
4390 void
4391 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
4392 struct memseg *lo, struct memseg *mid, struct memseg *hi)
4394 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
4395 ASSERT(0);
4399 * Walk the memsegs chain, applying func to each memseg span.
4401 void
4402 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
4404 pfn_t pbase, pend;
4405 void *base;
4406 size_t size;
4407 struct memseg *msp;
4409 for (msp = memsegs; msp; msp = msp->next) {
4410 pbase = msp->pages_base;
4411 pend = msp->pages_end;
4412 base = ptob(pbase) + kpm_vbase;
4413 size = ptob(pend - pbase);
4414 func(arg, base, size);
4418 #else /* __xpv */
4421 * There are specific Hypervisor calls to establish and remove mappings
4422 * to grant table references and the privcmd driver. We have to ensure
4423 * that a page table actually exists.
4425 void
4426 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4428 maddr_t base_ma;
4429 htable_t *ht;
4430 uint_t entry;
4432 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4433 XPV_DISALLOW_MIGRATE();
4434 ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4437 * if an address for pte_ma is passed in, return the MA of the pte
4438 * for this specific address. This address is only valid as long
4439 * as the htable stays locked.
4441 if (pte_ma != NULL) {
4442 entry = htable_va2entry((uintptr_t)addr, ht);
4443 base_ma = pa_to_ma(ptob(ht->ht_pfn));
4444 *pte_ma = base_ma + (entry << mmu.pte_size_shift);
4446 XPV_ALLOW_MIGRATE();
4449 void
4450 hat_release_mapping(hat_t *hat, caddr_t addr)
4452 htable_t *ht;
4454 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4455 XPV_DISALLOW_MIGRATE();
4456 ht = htable_lookup(hat, (uintptr_t)addr, 0);
4457 ASSERT(ht != NULL);
4458 ASSERT(ht->ht_busy >= 2);
4459 htable_release(ht);
4460 htable_release(ht);
4461 XPV_ALLOW_MIGRATE();
4463 #endif /* __xpv */