5045 use atomic_{inc,dec}_* instead of atomic_add_*
[illumos-gate.git] / usr / src / uts / common / vm / vm_page.c
blob4c6ec13587aa670a0a514d9a4ac2a1d8cc525039
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
29 * University Copyright- Copyright (c) 1982, 1986, 1988
30 * The Regents of the University of California
31 * All Rights Reserved
33 * University Acknowledgment- Portions of this document are derived from
34 * software developed by the University of California, Berkeley, and its
35 * contributors.
39 * VM - physical page management.
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/time.h>
48 #include <sys/vnode.h>
49 #include <sys/vm.h>
50 #include <sys/vtrace.h>
51 #include <sys/swap.h>
52 #include <sys/cmn_err.h>
53 #include <sys/tuneable.h>
54 #include <sys/sysmacros.h>
55 #include <sys/cpuvar.h>
56 #include <sys/callb.h>
57 #include <sys/debug.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/condvar_impl.h>
60 #include <sys/mem_config.h>
61 #include <sys/mem_cage.h>
62 #include <sys/kmem.h>
63 #include <sys/atomic.h>
64 #include <sys/strlog.h>
65 #include <sys/mman.h>
66 #include <sys/ontrap.h>
67 #include <sys/lgrp.h>
68 #include <sys/vfs.h>
70 #include <vm/hat.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/seg.h>
74 #include <vm/pvn.h>
75 #include <vm/seg_kmem.h>
76 #include <vm/vm_dep.h>
77 #include <sys/vm_usage.h>
78 #include <fs/fs_subr.h>
79 #include <sys/ddi.h>
80 #include <sys/modctl.h>
82 static int nopageage = 0;
84 static pgcnt_t max_page_get; /* max page_get request size in pages */
85 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */
88 * freemem_lock protects all freemem variables:
89 * availrmem. Also this lock protects the globals which track the
90 * availrmem changes for accurate kernel footprint calculation.
91 * See below for an explanation of these
92 * globals.
94 kmutex_t freemem_lock;
95 pgcnt_t availrmem;
96 pgcnt_t availrmem_initial;
99 * These globals track availrmem changes to get a more accurate
100 * estimate of tke kernel size. Historically pp_kernel is used for
101 * kernel size and is based on availrmem. But availrmem is adjusted for
102 * locked pages in the system not just for kernel locked pages.
103 * These new counters will track the pages locked through segvn and
104 * by explicit user locking.
106 * pages_locked : How many pages are locked because of user specified
107 * locking through mlock or plock.
109 * pages_useclaim,pages_claimed : These two variables track the
110 * claim adjustments because of the protection changes on a segvn segment.
112 * All these globals are protected by the same lock which protects availrmem.
114 pgcnt_t pages_locked = 0;
115 pgcnt_t pages_useclaim = 0;
116 pgcnt_t pages_claimed = 0;
120 * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122 static kmutex_t new_freemem_lock;
123 static uint_t freemem_wait; /* someone waiting for freemem */
124 static kcondvar_t freemem_cv;
127 * The logical page free list is maintained as two lists, the 'free'
128 * and the 'cache' lists.
129 * The free list contains those pages that should be reused first.
131 * The implementation of the lists is machine dependent.
132 * page_get_freelist(), page_get_cachelist(),
133 * page_list_sub(), and page_list_add()
134 * form the interface to the machine dependent implementation.
136 * Pages with p_free set are on the cache list.
137 * Pages with p_free and p_age set are on the free list,
139 * A page may be locked while on either list.
143 * free list accounting stuff.
146 * Spread out the value for the number of pages on the
147 * page free and page cache lists. If there is just one
148 * value, then it must be under just one lock.
149 * The lock contention and cache traffic are a real bother.
151 * When we acquire and then drop a single pcf lock
152 * we can start in the middle of the array of pcf structures.
153 * If we acquire more than one pcf lock at a time, we need to
154 * start at the front to avoid deadlocking.
156 * pcf_count holds the number of pages in each pool.
158 * pcf_block is set when page_create_get_something() has asked the
159 * PSM page freelist and page cachelist routines without specifying
160 * a color and nothing came back. This is used to block anything
161 * else from moving pages from one list to the other while the
162 * lists are searched again. If a page is freeed while pcf_block is
163 * set, then pcf_reserve is incremented. pcgs_unblock() takes care
164 * of clearning pcf_block, doing the wakeups, etc.
167 #define MAX_PCF_FANOUT NCPU
168 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
169 static uint_t pcf_fanout_mask = 0;
171 struct pcf {
172 kmutex_t pcf_lock; /* protects the structure */
173 uint_t pcf_count; /* page count */
174 uint_t pcf_wait; /* number of waiters */
175 uint_t pcf_block; /* pcgs flag to page_free() */
176 uint_t pcf_reserve; /* pages freed after pcf_block set */
177 uint_t pcf_fill[10]; /* to line up on the caches */
181 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
182 * it will hash the cpu to). This is done to prevent a drain condition
183 * from happening. This drain condition will occur when pcf_count decrement
184 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An
185 * example of this shows up with device interrupts. The dma buffer is allocated
186 * by the cpu requesting the IO thus the pcf_count is decremented based on that.
187 * When the memory is returned by the interrupt thread, the pcf_count will be
188 * incremented based on the cpu servicing the interrupt.
190 static struct pcf pcf[MAX_PCF_FANOUT];
191 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
192 (randtick() >> 24)) & (pcf_fanout_mask))
194 static int pcf_decrement_bucket(pgcnt_t);
195 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
197 kmutex_t pcgs_lock; /* serializes page_create_get_ */
198 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */
199 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */
200 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */
202 #ifdef VM_STATS
205 * No locks, but so what, they are only statistics.
208 static struct page_tcnt {
209 int pc_free_cache; /* free's into cache list */
210 int pc_free_dontneed; /* free's with dontneed */
211 int pc_free_pageout; /* free's from pageout */
212 int pc_free_free; /* free's into free list */
213 int pc_free_pages; /* free's into large page free list */
214 int pc_destroy_pages; /* large page destroy's */
215 int pc_get_cache; /* get's from cache list */
216 int pc_get_free; /* get's from free list */
217 int pc_reclaim; /* reclaim's */
218 int pc_abortfree; /* abort's of free pages */
219 int pc_find_hit; /* find's that find page */
220 int pc_find_miss; /* find's that don't find page */
221 int pc_destroy_free; /* # of free pages destroyed */
222 #define PC_HASH_CNT (4*PAGE_HASHAVELEN)
223 int pc_find_hashlen[PC_HASH_CNT+1];
224 int pc_addclaim_pages;
225 int pc_subclaim_pages;
226 int pc_free_replacement_page[2];
227 int pc_try_demote_pages[6];
228 int pc_demote_pages[2];
229 } pagecnt;
231 uint_t hashin_count;
232 uint_t hashin_not_held;
233 uint_t hashin_already;
235 uint_t hashout_count;
236 uint_t hashout_not_held;
238 uint_t page_create_count;
239 uint_t page_create_not_enough;
240 uint_t page_create_not_enough_again;
241 uint_t page_create_zero;
242 uint_t page_create_hashout;
243 uint_t page_create_page_lock_failed;
244 uint_t page_create_trylock_failed;
245 uint_t page_create_found_one;
246 uint_t page_create_hashin_failed;
247 uint_t page_create_dropped_phm;
249 uint_t page_create_new;
250 uint_t page_create_exists;
251 uint_t page_create_putbacks;
252 uint_t page_create_overshoot;
254 uint_t page_reclaim_zero;
255 uint_t page_reclaim_zero_locked;
257 uint_t page_rename_exists;
258 uint_t page_rename_count;
260 uint_t page_lookup_cnt[20];
261 uint_t page_lookup_nowait_cnt[10];
262 uint_t page_find_cnt;
263 uint_t page_exists_cnt;
264 uint_t page_exists_forreal_cnt;
265 uint_t page_lookup_dev_cnt;
266 uint_t get_cachelist_cnt;
267 uint_t page_create_cnt[10];
268 uint_t alloc_pages[9];
269 uint_t page_exphcontg[19];
270 uint_t page_create_large_cnt[10];
273 * Collects statistics.
275 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \
276 uint_t mylen = 0; \
278 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
279 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
280 break; \
282 if ((pp) != NULL) \
283 pagecnt.pc_find_hit++; \
284 else \
285 pagecnt.pc_find_miss++; \
286 if (mylen > PC_HASH_CNT) \
287 mylen = PC_HASH_CNT; \
288 pagecnt.pc_find_hashlen[mylen]++; \
291 #else /* VM_STATS */
294 * Don't collect statistics
296 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \
297 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
298 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
299 break; \
303 #endif /* VM_STATS */
307 #ifdef DEBUG
308 #define MEMSEG_SEARCH_STATS
309 #endif
311 #ifdef MEMSEG_SEARCH_STATS
312 struct memseg_stats {
313 uint_t nsearch;
314 uint_t nlastwon;
315 uint_t nhashwon;
316 uint_t nnotfound;
317 } memseg_stats;
319 #define MEMSEG_STAT_INCR(v) \
320 atomic_inc_32(&memseg_stats.v)
321 #else
322 #define MEMSEG_STAT_INCR(x)
323 #endif
325 struct memseg *memsegs; /* list of memory segments */
328 * /etc/system tunable to control large page allocation hueristic.
330 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
331 * for large page allocation requests. If a large page is not readily
332 * avaliable on the local freelists we will go through additional effort
333 * to create a large page, potentially moving smaller pages around to coalesce
334 * larger pages in the local lgroup.
335 * Default value of LPAP_DEFAULT will go to remote freelists if large pages
336 * are not readily available in the local lgroup.
338 enum lpap {
339 LPAP_DEFAULT, /* default large page allocation policy */
340 LPAP_LOCAL /* local large page allocation policy */
343 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
345 static void page_init_mem_config(void);
346 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
347 static void page_do_hashout(page_t *);
348 static void page_capture_init();
349 int page_capture_take_action(page_t *, uint_t, void *);
351 static void page_demote_vp_pages(page_t *);
354 void
355 pcf_init(void)
358 if (boot_ncpus != -1) {
359 pcf_fanout = boot_ncpus;
360 } else {
361 pcf_fanout = max_ncpus;
363 #ifdef sun4v
365 * Force at least 4 buckets if possible for sun4v.
367 pcf_fanout = MAX(pcf_fanout, 4);
368 #endif /* sun4v */
371 * Round up to the nearest power of 2.
373 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
374 if (!ISP2(pcf_fanout)) {
375 pcf_fanout = 1 << highbit(pcf_fanout);
377 if (pcf_fanout > MAX_PCF_FANOUT) {
378 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
381 pcf_fanout_mask = pcf_fanout - 1;
385 * vm subsystem related initialization
387 void
388 vm_init(void)
390 boolean_t callb_vm_cpr(void *, int);
392 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
393 page_init_mem_config();
394 page_retire_init();
395 vm_usage_init();
396 page_capture_init();
400 * This function is called at startup and when memory is added or deleted.
402 void
403 init_pages_pp_maximum()
405 static pgcnt_t p_min;
406 static pgcnt_t pages_pp_maximum_startup;
407 static pgcnt_t avrmem_delta;
408 static int init_done;
409 static int user_set; /* true if set in /etc/system */
411 if (init_done == 0) {
413 /* If the user specified a value, save it */
414 if (pages_pp_maximum != 0) {
415 user_set = 1;
416 pages_pp_maximum_startup = pages_pp_maximum;
420 * Setting of pages_pp_maximum is based first time
421 * on the value of availrmem just after the start-up
422 * allocations. To preserve this relationship at run
423 * time, use a delta from availrmem_initial.
425 ASSERT(availrmem_initial >= availrmem);
426 avrmem_delta = availrmem_initial - availrmem;
428 /* The allowable floor of pages_pp_maximum */
429 p_min = tune.t_minarmem + 100;
431 /* Make sure we don't come through here again. */
432 init_done = 1;
435 * Determine pages_pp_maximum, the number of currently available
436 * pages (availrmem) that can't be `locked'. If not set by
437 * the user, we set it to 4% of the currently available memory
438 * plus 4MB.
439 * But we also insist that it be greater than tune.t_minarmem;
440 * otherwise a process could lock down a lot of memory, get swapped
441 * out, and never have enough to get swapped back in.
443 if (user_set)
444 pages_pp_maximum = pages_pp_maximum_startup;
445 else
446 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
447 + btop(4 * 1024 * 1024);
449 if (pages_pp_maximum <= p_min) {
450 pages_pp_maximum = p_min;
454 void
455 set_max_page_get(pgcnt_t target_total_pages)
457 max_page_get = target_total_pages / 2;
460 static pgcnt_t pending_delete;
462 /*ARGSUSED*/
463 static void
464 page_mem_config_post_add(
465 void *arg,
466 pgcnt_t delta_pages)
468 set_max_page_get(total_pages - pending_delete);
469 init_pages_pp_maximum();
472 /*ARGSUSED*/
473 static int
474 page_mem_config_pre_del(
475 void *arg,
476 pgcnt_t delta_pages)
478 pgcnt_t nv;
480 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
481 set_max_page_get(total_pages - nv);
482 return (0);
485 /*ARGSUSED*/
486 static void
487 page_mem_config_post_del(
488 void *arg,
489 pgcnt_t delta_pages,
490 int cancelled)
492 pgcnt_t nv;
494 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
495 set_max_page_get(total_pages - nv);
496 if (!cancelled)
497 init_pages_pp_maximum();
500 static kphysm_setup_vector_t page_mem_config_vec = {
501 KPHYSM_SETUP_VECTOR_VERSION,
502 page_mem_config_post_add,
503 page_mem_config_pre_del,
504 page_mem_config_post_del,
507 static void
508 page_init_mem_config(void)
510 int ret;
512 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
513 ASSERT(ret == 0);
517 * Evenly spread out the PCF counters for large free pages
519 static void
520 page_free_large_ctr(pgcnt_t npages)
522 static struct pcf *p = pcf;
523 pgcnt_t lump;
525 freemem += npages;
527 lump = roundup(npages, pcf_fanout) / pcf_fanout;
529 while (npages > 0) {
531 ASSERT(!p->pcf_block);
533 if (lump < npages) {
534 p->pcf_count += (uint_t)lump;
535 npages -= lump;
536 } else {
537 p->pcf_count += (uint_t)npages;
538 npages = 0;
541 ASSERT(!p->pcf_wait);
543 if (++p > &pcf[pcf_fanout - 1])
544 p = pcf;
547 ASSERT(npages == 0);
551 * Add a physical chunk of memory to the system free lists during startup.
552 * Platform specific startup() allocates the memory for the page structs.
554 * num - number of page structures
555 * base - page number (pfn) to be associated with the first page.
557 * Since we are doing this during startup (ie. single threaded), we will
558 * use shortcut routines to avoid any locking overhead while putting all
559 * these pages on the freelists.
561 * NOTE: Any changes performed to page_free(), must also be performed to
562 * add_physmem() since this is how we initialize all page_t's at
563 * boot time.
565 void
566 add_physmem(
567 page_t *pp,
568 pgcnt_t num,
569 pfn_t pnum)
571 page_t *root = NULL;
572 uint_t szc = page_num_pagesizes() - 1;
573 pgcnt_t large = page_get_pagecnt(szc);
574 pgcnt_t cnt = 0;
576 TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
577 "add_physmem:pp %p num %lu", pp, num);
580 * Arbitrarily limit the max page_get request
581 * to 1/2 of the page structs we have.
583 total_pages += num;
584 set_max_page_get(total_pages);
586 PLCNT_MODIFY_MAX(pnum, (long)num);
589 * The physical space for the pages array
590 * representing ram pages has already been
591 * allocated. Here we initialize each lock
592 * in the page structure, and put each on
593 * the free list
595 for (; num; pp++, pnum++, num--) {
598 * this needs to fill in the page number
599 * and do any other arch specific initialization
601 add_physmem_cb(pp, pnum);
603 pp->p_lckcnt = 0;
604 pp->p_cowcnt = 0;
605 pp->p_slckcnt = 0;
608 * Initialize the page lock as unlocked, since nobody
609 * can see or access this page yet.
611 pp->p_selock = 0;
614 * Initialize IO lock
616 page_iolock_init(pp);
619 * initialize other fields in the page_t
621 PP_SETFREE(pp);
622 page_clr_all_props(pp);
623 PP_SETAGED(pp);
624 pp->p_offset = (u_offset_t)-1;
625 pp->p_next = pp;
626 pp->p_prev = pp;
629 * Simple case: System doesn't support large pages.
631 if (szc == 0) {
632 pp->p_szc = 0;
633 page_free_at_startup(pp);
634 continue;
638 * Handle unaligned pages, we collect them up onto
639 * the root page until we have a full large page.
641 if (!IS_P2ALIGNED(pnum, large)) {
644 * If not in a large page,
645 * just free as small page.
647 if (root == NULL) {
648 pp->p_szc = 0;
649 page_free_at_startup(pp);
650 continue;
654 * Link a constituent page into the large page.
656 pp->p_szc = szc;
657 page_list_concat(&root, &pp);
660 * When large page is fully formed, free it.
662 if (++cnt == large) {
663 page_free_large_ctr(cnt);
664 page_list_add_pages(root, PG_LIST_ISINIT);
665 root = NULL;
666 cnt = 0;
668 continue;
672 * At this point we have a page number which
673 * is aligned. We assert that we aren't already
674 * in a different large page.
676 ASSERT(IS_P2ALIGNED(pnum, large));
677 ASSERT(root == NULL && cnt == 0);
680 * If insufficient number of pages left to form
681 * a large page, just free the small page.
683 if (num < large) {
684 pp->p_szc = 0;
685 page_free_at_startup(pp);
686 continue;
690 * Otherwise start a new large page.
692 pp->p_szc = szc;
693 cnt++;
694 root = pp;
696 ASSERT(root == NULL && cnt == 0);
700 * Find a page representing the specified [vp, offset].
701 * If we find the page but it is intransit coming in,
702 * it will have an "exclusive" lock and we wait for
703 * the i/o to complete. A page found on the free list
704 * is always reclaimed and then locked. On success, the page
705 * is locked, its data is valid and it isn't on the free
706 * list, while a NULL is returned if the page doesn't exist.
708 page_t *
709 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
711 return (page_lookup_create(vp, off, se, NULL, NULL, 0));
715 * Find a page representing the specified [vp, offset].
716 * We either return the one we found or, if passed in,
717 * create one with identity of [vp, offset] of the
718 * pre-allocated page. If we find existing page but it is
719 * intransit coming in, it will have an "exclusive" lock
720 * and we wait for the i/o to complete. A page found on
721 * the free list is always reclaimed and then locked.
722 * On success, the page is locked, its data is valid and
723 * it isn't on the free list, while a NULL is returned
724 * if the page doesn't exist and newpp is NULL;
726 page_t *
727 page_lookup_create(
728 vnode_t *vp,
729 u_offset_t off,
730 se_t se,
731 page_t *newpp,
732 spgcnt_t *nrelocp,
733 int flags)
735 page_t *pp;
736 kmutex_t *phm;
737 ulong_t index;
738 uint_t hash_locked;
739 uint_t es;
741 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
742 VM_STAT_ADD(page_lookup_cnt[0]);
743 ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
746 * Acquire the appropriate page hash lock since
747 * we have to search the hash list. Pages that
748 * hash to this list can't change identity while
749 * this lock is held.
751 hash_locked = 0;
752 index = PAGE_HASH_FUNC(vp, off);
753 phm = NULL;
754 top:
755 PAGE_HASH_SEARCH(index, pp, vp, off);
756 if (pp != NULL) {
757 VM_STAT_ADD(page_lookup_cnt[1]);
758 es = (newpp != NULL) ? 1 : 0;
759 es |= flags;
760 if (!hash_locked) {
761 VM_STAT_ADD(page_lookup_cnt[2]);
762 if (!page_try_reclaim_lock(pp, se, es)) {
764 * On a miss, acquire the phm. Then
765 * next time, page_lock() will be called,
766 * causing a wait if the page is busy.
767 * just looping with page_trylock() would
768 * get pretty boring.
770 VM_STAT_ADD(page_lookup_cnt[3]);
771 phm = PAGE_HASH_MUTEX(index);
772 mutex_enter(phm);
773 hash_locked = 1;
774 goto top;
776 } else {
777 VM_STAT_ADD(page_lookup_cnt[4]);
778 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
779 VM_STAT_ADD(page_lookup_cnt[5]);
780 goto top;
785 * Since `pp' is locked it can not change identity now.
786 * Reconfirm we locked the correct page.
788 * Both the p_vnode and p_offset *must* be cast volatile
789 * to force a reload of their values: The PAGE_HASH_SEARCH
790 * macro will have stuffed p_vnode and p_offset into
791 * registers before calling page_trylock(); another thread,
792 * actually holding the hash lock, could have changed the
793 * page's identity in memory, but our registers would not
794 * be changed, fooling the reconfirmation. If the hash
795 * lock was held during the search, the casting would
796 * not be needed.
798 VM_STAT_ADD(page_lookup_cnt[6]);
799 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
800 ((volatile u_offset_t)(pp->p_offset) != off)) {
801 VM_STAT_ADD(page_lookup_cnt[7]);
802 if (hash_locked) {
803 panic("page_lookup_create: lost page %p",
804 (void *)pp);
805 /*NOTREACHED*/
807 page_unlock(pp);
808 phm = PAGE_HASH_MUTEX(index);
809 mutex_enter(phm);
810 hash_locked = 1;
811 goto top;
815 * If page_trylock() was called, then pp may still be on
816 * the cachelist (can't be on the free list, it would not
817 * have been found in the search). If it is on the
818 * cachelist it must be pulled now. To pull the page from
819 * the cachelist, it must be exclusively locked.
821 * The other big difference between page_trylock() and
822 * page_lock(), is that page_lock() will pull the
823 * page from whatever free list (the cache list in this
824 * case) the page is on. If page_trylock() was used
825 * above, then we have to do the reclaim ourselves.
827 if ((!hash_locked) && (PP_ISFREE(pp))) {
828 ASSERT(PP_ISAGED(pp) == 0);
829 VM_STAT_ADD(page_lookup_cnt[8]);
832 * page_relcaim will insure that we
833 * have this page exclusively
836 if (!page_reclaim(pp, NULL)) {
838 * Page_reclaim dropped whatever lock
839 * we held.
841 VM_STAT_ADD(page_lookup_cnt[9]);
842 phm = PAGE_HASH_MUTEX(index);
843 mutex_enter(phm);
844 hash_locked = 1;
845 goto top;
846 } else if (se == SE_SHARED && newpp == NULL) {
847 VM_STAT_ADD(page_lookup_cnt[10]);
848 page_downgrade(pp);
852 if (hash_locked) {
853 mutex_exit(phm);
856 if (newpp != NULL && pp->p_szc < newpp->p_szc &&
857 PAGE_EXCL(pp) && nrelocp != NULL) {
858 ASSERT(nrelocp != NULL);
859 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
860 NULL);
861 if (*nrelocp > 0) {
862 VM_STAT_COND_ADD(*nrelocp == 1,
863 page_lookup_cnt[11]);
864 VM_STAT_COND_ADD(*nrelocp > 1,
865 page_lookup_cnt[12]);
866 pp = newpp;
867 se = SE_EXCL;
868 } else {
869 if (se == SE_SHARED) {
870 page_downgrade(pp);
872 VM_STAT_ADD(page_lookup_cnt[13]);
874 } else if (newpp != NULL && nrelocp != NULL) {
875 if (PAGE_EXCL(pp) && se == SE_SHARED) {
876 page_downgrade(pp);
878 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
879 page_lookup_cnt[14]);
880 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
881 page_lookup_cnt[15]);
882 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
883 page_lookup_cnt[16]);
884 } else if (newpp != NULL && PAGE_EXCL(pp)) {
885 se = SE_EXCL;
887 } else if (!hash_locked) {
888 VM_STAT_ADD(page_lookup_cnt[17]);
889 phm = PAGE_HASH_MUTEX(index);
890 mutex_enter(phm);
891 hash_locked = 1;
892 goto top;
893 } else if (newpp != NULL) {
895 * If we have a preallocated page then
896 * insert it now and basically behave like
897 * page_create.
899 VM_STAT_ADD(page_lookup_cnt[18]);
901 * Since we hold the page hash mutex and
902 * just searched for this page, page_hashin
903 * had better not fail. If it does, that
904 * means some thread did not follow the
905 * page hash mutex rules. Panic now and
906 * get it over with. As usual, go down
907 * holding all the locks.
909 ASSERT(MUTEX_HELD(phm));
910 if (!page_hashin(newpp, vp, off, phm)) {
911 ASSERT(MUTEX_HELD(phm));
912 panic("page_lookup_create: hashin failed %p %p %llx %p",
913 (void *)newpp, (void *)vp, off, (void *)phm);
914 /*NOTREACHED*/
916 ASSERT(MUTEX_HELD(phm));
917 mutex_exit(phm);
918 phm = NULL;
919 page_set_props(newpp, P_REF);
920 page_io_lock(newpp);
921 pp = newpp;
922 se = SE_EXCL;
923 } else {
924 VM_STAT_ADD(page_lookup_cnt[19]);
925 mutex_exit(phm);
928 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
930 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
932 return (pp);
936 * Search the hash list for the page representing the
937 * specified [vp, offset] and return it locked. Skip
938 * free pages and pages that cannot be locked as requested.
939 * Used while attempting to kluster pages.
941 page_t *
942 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
944 page_t *pp;
945 kmutex_t *phm;
946 ulong_t index;
947 uint_t locked;
949 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
950 VM_STAT_ADD(page_lookup_nowait_cnt[0]);
952 index = PAGE_HASH_FUNC(vp, off);
953 PAGE_HASH_SEARCH(index, pp, vp, off);
954 locked = 0;
955 if (pp == NULL) {
956 top:
957 VM_STAT_ADD(page_lookup_nowait_cnt[1]);
958 locked = 1;
959 phm = PAGE_HASH_MUTEX(index);
960 mutex_enter(phm);
961 PAGE_HASH_SEARCH(index, pp, vp, off);
964 if (pp == NULL || PP_ISFREE(pp)) {
965 VM_STAT_ADD(page_lookup_nowait_cnt[2]);
966 pp = NULL;
967 } else {
968 if (!page_trylock(pp, se)) {
969 VM_STAT_ADD(page_lookup_nowait_cnt[3]);
970 pp = NULL;
971 } else {
972 VM_STAT_ADD(page_lookup_nowait_cnt[4]);
974 * See the comment in page_lookup()
976 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
977 ((u_offset_t)(pp->p_offset) != off)) {
978 VM_STAT_ADD(page_lookup_nowait_cnt[5]);
979 if (locked) {
980 panic("page_lookup_nowait %p",
981 (void *)pp);
982 /*NOTREACHED*/
984 page_unlock(pp);
985 goto top;
987 if (PP_ISFREE(pp)) {
988 VM_STAT_ADD(page_lookup_nowait_cnt[6]);
989 page_unlock(pp);
990 pp = NULL;
994 if (locked) {
995 VM_STAT_ADD(page_lookup_nowait_cnt[7]);
996 mutex_exit(phm);
999 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1001 return (pp);
1005 * Search the hash list for a page with the specified [vp, off]
1006 * that is known to exist and is already locked. This routine
1007 * is typically used by segment SOFTUNLOCK routines.
1009 page_t *
1010 page_find(vnode_t *vp, u_offset_t off)
1012 page_t *pp;
1013 kmutex_t *phm;
1014 ulong_t index;
1016 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1017 VM_STAT_ADD(page_find_cnt);
1019 index = PAGE_HASH_FUNC(vp, off);
1020 phm = PAGE_HASH_MUTEX(index);
1022 mutex_enter(phm);
1023 PAGE_HASH_SEARCH(index, pp, vp, off);
1024 mutex_exit(phm);
1026 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1027 return (pp);
1031 * Determine whether a page with the specified [vp, off]
1032 * currently exists in the system. Obviously this should
1033 * only be considered as a hint since nothing prevents the
1034 * page from disappearing or appearing immediately after
1035 * the return from this routine. Subsequently, we don't
1036 * even bother to lock the list.
1038 page_t *
1039 page_exists(vnode_t *vp, u_offset_t off)
1041 page_t *pp;
1042 ulong_t index;
1044 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1045 VM_STAT_ADD(page_exists_cnt);
1047 index = PAGE_HASH_FUNC(vp, off);
1048 PAGE_HASH_SEARCH(index, pp, vp, off);
1050 return (pp);
1054 * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1055 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array
1056 * with these pages locked SHARED. If necessary reclaim pages from
1057 * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1059 * If we fail to lock pages still return 1 if pages exist and contiguous.
1060 * But in this case return value is just a hint. ppa array won't be filled.
1061 * Caller should initialize ppa[0] as NULL to distinguish return value.
1063 * Returns 0 if pages don't exist or not physically contiguous.
1065 * This routine doesn't work for anonymous(swapfs) pages.
1068 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1070 pgcnt_t pages;
1071 pfn_t pfn;
1072 page_t *rootpp;
1073 pgcnt_t i;
1074 pgcnt_t j;
1075 u_offset_t save_off = off;
1076 ulong_t index;
1077 kmutex_t *phm;
1078 page_t *pp;
1079 uint_t pszc;
1080 int loopcnt = 0;
1082 ASSERT(szc != 0);
1083 ASSERT(vp != NULL);
1084 ASSERT(!IS_SWAPFSVP(vp));
1085 ASSERT(!VN_ISKAS(vp));
1087 again:
1088 if (++loopcnt > 3) {
1089 VM_STAT_ADD(page_exphcontg[0]);
1090 return (0);
1093 index = PAGE_HASH_FUNC(vp, off);
1094 phm = PAGE_HASH_MUTEX(index);
1096 mutex_enter(phm);
1097 PAGE_HASH_SEARCH(index, pp, vp, off);
1098 mutex_exit(phm);
1100 VM_STAT_ADD(page_exphcontg[1]);
1102 if (pp == NULL) {
1103 VM_STAT_ADD(page_exphcontg[2]);
1104 return (0);
1107 pages = page_get_pagecnt(szc);
1108 rootpp = pp;
1109 pfn = rootpp->p_pagenum;
1111 if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1112 VM_STAT_ADD(page_exphcontg[3]);
1113 if (!page_trylock(pp, SE_SHARED)) {
1114 VM_STAT_ADD(page_exphcontg[4]);
1115 return (1);
1118 * Also check whether p_pagenum was modified by DR.
1120 if (pp->p_szc != pszc || pp->p_vnode != vp ||
1121 pp->p_offset != off || pp->p_pagenum != pfn) {
1122 VM_STAT_ADD(page_exphcontg[5]);
1123 page_unlock(pp);
1124 off = save_off;
1125 goto again;
1128 * szc was non zero and vnode and offset matched after we
1129 * locked the page it means it can't become free on us.
1131 ASSERT(!PP_ISFREE(pp));
1132 if (!IS_P2ALIGNED(pfn, pages)) {
1133 page_unlock(pp);
1134 return (0);
1136 ppa[0] = pp;
1137 pp++;
1138 off += PAGESIZE;
1139 pfn++;
1140 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1141 if (!page_trylock(pp, SE_SHARED)) {
1142 VM_STAT_ADD(page_exphcontg[6]);
1143 pp--;
1144 while (i-- > 0) {
1145 page_unlock(pp);
1146 pp--;
1148 ppa[0] = NULL;
1149 return (1);
1151 if (pp->p_szc != pszc) {
1152 VM_STAT_ADD(page_exphcontg[7]);
1153 page_unlock(pp);
1154 pp--;
1155 while (i-- > 0) {
1156 page_unlock(pp);
1157 pp--;
1159 ppa[0] = NULL;
1160 off = save_off;
1161 goto again;
1164 * szc the same as for previous already locked pages
1165 * with right identity. Since this page had correct
1166 * szc after we locked it can't get freed or destroyed
1167 * and therefore must have the expected identity.
1169 ASSERT(!PP_ISFREE(pp));
1170 if (pp->p_vnode != vp ||
1171 pp->p_offset != off) {
1172 panic("page_exists_physcontig: "
1173 "large page identity doesn't match");
1175 ppa[i] = pp;
1176 ASSERT(pp->p_pagenum == pfn);
1178 VM_STAT_ADD(page_exphcontg[8]);
1179 ppa[pages] = NULL;
1180 return (1);
1181 } else if (pszc >= szc) {
1182 VM_STAT_ADD(page_exphcontg[9]);
1183 if (!IS_P2ALIGNED(pfn, pages)) {
1184 return (0);
1186 return (1);
1189 if (!IS_P2ALIGNED(pfn, pages)) {
1190 VM_STAT_ADD(page_exphcontg[10]);
1191 return (0);
1194 if (page_numtomemseg_nolock(pfn) !=
1195 page_numtomemseg_nolock(pfn + pages - 1)) {
1196 VM_STAT_ADD(page_exphcontg[11]);
1197 return (0);
1201 * We loop up 4 times across pages to promote page size.
1202 * We're extra cautious to promote page size atomically with respect
1203 * to everybody else. But we can probably optimize into 1 loop if
1204 * this becomes an issue.
1207 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1208 if (!page_trylock(pp, SE_EXCL)) {
1209 VM_STAT_ADD(page_exphcontg[12]);
1210 break;
1213 * Check whether p_pagenum was modified by DR.
1215 if (pp->p_pagenum != pfn) {
1216 page_unlock(pp);
1217 break;
1219 if (pp->p_vnode != vp ||
1220 pp->p_offset != off) {
1221 VM_STAT_ADD(page_exphcontg[13]);
1222 page_unlock(pp);
1223 break;
1225 if (pp->p_szc >= szc) {
1226 ASSERT(i == 0);
1227 page_unlock(pp);
1228 off = save_off;
1229 goto again;
1233 if (i != pages) {
1234 VM_STAT_ADD(page_exphcontg[14]);
1235 --pp;
1236 while (i-- > 0) {
1237 page_unlock(pp);
1238 --pp;
1240 return (0);
1243 pp = rootpp;
1244 for (i = 0; i < pages; i++, pp++) {
1245 if (PP_ISFREE(pp)) {
1246 VM_STAT_ADD(page_exphcontg[15]);
1247 ASSERT(!PP_ISAGED(pp));
1248 ASSERT(pp->p_szc == 0);
1249 if (!page_reclaim(pp, NULL)) {
1250 break;
1252 } else {
1253 ASSERT(pp->p_szc < szc);
1254 VM_STAT_ADD(page_exphcontg[16]);
1255 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1258 if (i < pages) {
1259 VM_STAT_ADD(page_exphcontg[17]);
1261 * page_reclaim failed because we were out of memory.
1262 * drop the rest of the locks and return because this page
1263 * must be already reallocated anyway.
1265 pp = rootpp;
1266 for (j = 0; j < pages; j++, pp++) {
1267 if (j != i) {
1268 page_unlock(pp);
1271 return (0);
1274 off = save_off;
1275 pp = rootpp;
1276 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1277 ASSERT(PAGE_EXCL(pp));
1278 ASSERT(!PP_ISFREE(pp));
1279 ASSERT(!hat_page_is_mapped(pp));
1280 ASSERT(pp->p_vnode == vp);
1281 ASSERT(pp->p_offset == off);
1282 pp->p_szc = szc;
1284 pp = rootpp;
1285 for (i = 0; i < pages; i++, pp++) {
1286 if (ppa == NULL) {
1287 page_unlock(pp);
1288 } else {
1289 ppa[i] = pp;
1290 page_downgrade(ppa[i]);
1293 if (ppa != NULL) {
1294 ppa[pages] = NULL;
1296 VM_STAT_ADD(page_exphcontg[18]);
1297 ASSERT(vp->v_pages != NULL);
1298 return (1);
1302 * Determine whether a page with the specified [vp, off]
1303 * currently exists in the system and if so return its
1304 * size code. Obviously this should only be considered as
1305 * a hint since nothing prevents the page from disappearing
1306 * or appearing immediately after the return from this routine.
1309 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1311 page_t *pp;
1312 kmutex_t *phm;
1313 ulong_t index;
1314 int rc = 0;
1316 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1317 ASSERT(szc != NULL);
1318 VM_STAT_ADD(page_exists_forreal_cnt);
1320 index = PAGE_HASH_FUNC(vp, off);
1321 phm = PAGE_HASH_MUTEX(index);
1323 mutex_enter(phm);
1324 PAGE_HASH_SEARCH(index, pp, vp, off);
1325 if (pp != NULL) {
1326 *szc = pp->p_szc;
1327 rc = 1;
1329 mutex_exit(phm);
1330 return (rc);
1333 /* wakeup threads waiting for pages in page_create_get_something() */
1334 void
1335 wakeup_pcgs(void)
1337 if (!CV_HAS_WAITERS(&pcgs_cv))
1338 return;
1339 cv_broadcast(&pcgs_cv);
1343 * 'freemem' is used all over the kernel as an indication of how many
1344 * pages are free (either on the cache list or on the free page list)
1345 * in the system. In very few places is a really accurate 'freemem'
1346 * needed. To avoid contention of the lock protecting a the
1347 * single freemem, it was spread out into NCPU buckets. Set_freemem
1348 * sets freemem to the total of all NCPU buckets. It is called from
1349 * clock() on each TICK.
1351 void
1352 set_freemem()
1354 struct pcf *p;
1355 ulong_t t;
1356 uint_t i;
1358 t = 0;
1359 p = pcf;
1360 for (i = 0; i < pcf_fanout; i++) {
1361 t += p->pcf_count;
1362 p++;
1364 freemem = t;
1367 * Don't worry about grabbing mutex. It's not that
1368 * critical if we miss a tick or two. This is
1369 * where we wakeup possible delayers in
1370 * page_create_get_something().
1372 wakeup_pcgs();
1375 ulong_t
1376 get_freemem()
1378 struct pcf *p;
1379 ulong_t t;
1380 uint_t i;
1382 t = 0;
1383 p = pcf;
1384 for (i = 0; i < pcf_fanout; i++) {
1385 t += p->pcf_count;
1386 p++;
1389 * We just calculated it, might as well set it.
1391 freemem = t;
1392 return (t);
1396 * Acquire all of the page cache & free (pcf) locks.
1398 void
1399 pcf_acquire_all()
1401 struct pcf *p;
1402 uint_t i;
1404 p = pcf;
1405 for (i = 0; i < pcf_fanout; i++) {
1406 mutex_enter(&p->pcf_lock);
1407 p++;
1412 * Release all the pcf_locks.
1414 void
1415 pcf_release_all()
1417 struct pcf *p;
1418 uint_t i;
1420 p = pcf;
1421 for (i = 0; i < pcf_fanout; i++) {
1422 mutex_exit(&p->pcf_lock);
1423 p++;
1428 * Inform the VM system that we need some pages freed up.
1429 * Calls must be symmetric, e.g.:
1431 * page_needfree(100);
1432 * wait a bit;
1433 * page_needfree(-100);
1435 void
1436 page_needfree(spgcnt_t npages)
1438 mutex_enter(&new_freemem_lock);
1439 needfree += npages;
1440 mutex_exit(&new_freemem_lock);
1444 * Throttle for page_create(): try to prevent freemem from dropping
1445 * below throttlefree. We can't provide a 100% guarantee because
1446 * KM_NOSLEEP allocations, page_reclaim(), and various other things
1447 * nibble away at the freelist. However, we can block all PG_WAIT
1448 * allocations until memory becomes available. The motivation is
1449 * that several things can fall apart when there's no free memory:
1451 * (1) If pageout() needs memory to push a page, the system deadlocks.
1453 * (2) By (broken) specification, timeout(9F) can neither fail nor
1454 * block, so it has no choice but to panic the system if it
1455 * cannot allocate a callout structure.
1457 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1458 * it panics if it cannot allocate a callback structure.
1460 * (4) Untold numbers of third-party drivers have not yet been hardened
1461 * against KM_NOSLEEP and/or allocb() failures; they simply assume
1462 * success and panic the system with a data fault on failure.
1463 * (The long-term solution to this particular problem is to ship
1464 * hostile fault-injecting DEBUG kernels with the DDK.)
1466 * It is theoretically impossible to guarantee success of non-blocking
1467 * allocations, but in practice, this throttle is very hard to break.
1469 static int
1470 page_create_throttle(pgcnt_t npages, int flags)
1472 ulong_t fm;
1473 uint_t i;
1474 pgcnt_t tf; /* effective value of throttlefree */
1477 * Normal priority allocations.
1479 if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1480 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1481 return (freemem >= npages + throttlefree);
1485 * Never deny pages when:
1486 * - it's a thread that cannot block [NOMEMWAIT()]
1487 * - the allocation cannot block and must not fail
1488 * - the allocation cannot block and is pageout dispensated
1490 if (NOMEMWAIT() ||
1491 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1492 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1493 return (1);
1496 * If the allocation can't block, we look favorably upon it
1497 * unless we're below pageout_reserve. In that case we fail
1498 * the allocation because we want to make sure there are a few
1499 * pages available for pageout.
1501 if ((flags & PG_WAIT) == 0)
1502 return (freemem >= npages + pageout_reserve);
1504 /* Calculate the effective throttlefree value */
1505 tf = throttlefree -
1506 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1508 cv_signal(&proc_pageout->p_cv);
1510 for (;;) {
1511 fm = 0;
1512 pcf_acquire_all();
1513 mutex_enter(&new_freemem_lock);
1514 for (i = 0; i < pcf_fanout; i++) {
1515 fm += pcf[i].pcf_count;
1516 pcf[i].pcf_wait++;
1517 mutex_exit(&pcf[i].pcf_lock);
1519 freemem = fm;
1520 if (freemem >= npages + tf) {
1521 mutex_exit(&new_freemem_lock);
1522 break;
1524 needfree += npages;
1525 freemem_wait++;
1526 cv_wait(&freemem_cv, &new_freemem_lock);
1527 freemem_wait--;
1528 needfree -= npages;
1529 mutex_exit(&new_freemem_lock);
1531 return (1);
1535 * page_create_wait() is called to either coalesce pages from the
1536 * different pcf buckets or to wait because there simply are not
1537 * enough pages to satisfy the caller's request.
1539 * Sadly, this is called from platform/vm/vm_machdep.c
1542 page_create_wait(pgcnt_t npages, uint_t flags)
1544 pgcnt_t total;
1545 uint_t i;
1546 struct pcf *p;
1549 * Wait until there are enough free pages to satisfy our
1550 * entire request.
1551 * We set needfree += npages before prodding pageout, to make sure
1552 * it does real work when npages > lotsfree > freemem.
1554 VM_STAT_ADD(page_create_not_enough);
1556 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1557 checkagain:
1558 if ((flags & PG_NORELOC) &&
1559 kcage_freemem < kcage_throttlefree + npages)
1560 (void) kcage_create_throttle(npages, flags);
1562 if (freemem < npages + throttlefree)
1563 if (!page_create_throttle(npages, flags))
1564 return (0);
1566 if (pcf_decrement_bucket(npages) ||
1567 pcf_decrement_multiple(&total, npages, 0))
1568 return (1);
1571 * All of the pcf locks are held, there are not enough pages
1572 * to satisfy the request (npages < total).
1573 * Be sure to acquire the new_freemem_lock before dropping
1574 * the pcf locks. This prevents dropping wakeups in page_free().
1575 * The order is always pcf_lock then new_freemem_lock.
1577 * Since we hold all the pcf locks, it is a good time to set freemem.
1579 * If the caller does not want to wait, return now.
1580 * Else turn the pageout daemon loose to find something
1581 * and wait till it does.
1584 freemem = total;
1586 if ((flags & PG_WAIT) == 0) {
1587 pcf_release_all();
1589 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1590 "page_create_nomem:npages %ld freemem %ld", npages, freemem);
1591 return (0);
1594 ASSERT(proc_pageout != NULL);
1595 cv_signal(&proc_pageout->p_cv);
1597 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1598 "page_create_sleep_start: freemem %ld needfree %ld",
1599 freemem, needfree);
1602 * We are going to wait.
1603 * We currently hold all of the pcf_locks,
1604 * get the new_freemem_lock (it protects freemem_wait),
1605 * before dropping the pcf_locks.
1607 mutex_enter(&new_freemem_lock);
1609 p = pcf;
1610 for (i = 0; i < pcf_fanout; i++) {
1611 p->pcf_wait++;
1612 mutex_exit(&p->pcf_lock);
1613 p++;
1616 needfree += npages;
1617 freemem_wait++;
1619 cv_wait(&freemem_cv, &new_freemem_lock);
1621 freemem_wait--;
1622 needfree -= npages;
1624 mutex_exit(&new_freemem_lock);
1626 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1627 "page_create_sleep_end: freemem %ld needfree %ld",
1628 freemem, needfree);
1630 VM_STAT_ADD(page_create_not_enough_again);
1631 goto checkagain;
1634 * A routine to do the opposite of page_create_wait().
1636 void
1637 page_create_putback(spgcnt_t npages)
1639 struct pcf *p;
1640 pgcnt_t lump;
1641 uint_t *which;
1644 * When a contiguous lump is broken up, we have to
1645 * deal with lots of pages (min 64) so lets spread
1646 * the wealth around.
1648 lump = roundup(npages, pcf_fanout) / pcf_fanout;
1649 freemem += npages;
1651 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1652 which = &p->pcf_count;
1654 mutex_enter(&p->pcf_lock);
1656 if (p->pcf_block) {
1657 which = &p->pcf_reserve;
1660 if (lump < npages) {
1661 *which += (uint_t)lump;
1662 npages -= lump;
1663 } else {
1664 *which += (uint_t)npages;
1665 npages = 0;
1668 if (p->pcf_wait) {
1669 mutex_enter(&new_freemem_lock);
1671 * Check to see if some other thread
1672 * is actually waiting. Another bucket
1673 * may have woken it up by now. If there
1674 * are no waiters, then set our pcf_wait
1675 * count to zero to avoid coming in here
1676 * next time.
1678 if (freemem_wait) {
1679 if (npages > 1) {
1680 cv_broadcast(&freemem_cv);
1681 } else {
1682 cv_signal(&freemem_cv);
1684 p->pcf_wait--;
1685 } else {
1686 p->pcf_wait = 0;
1688 mutex_exit(&new_freemem_lock);
1690 mutex_exit(&p->pcf_lock);
1692 ASSERT(npages == 0);
1696 * A helper routine for page_create_get_something.
1697 * The indenting got to deep down there.
1698 * Unblock the pcf counters. Any pages freed after
1699 * pcf_block got set are moved to pcf_count and
1700 * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1702 static void
1703 pcgs_unblock(void)
1705 int i;
1706 struct pcf *p;
1708 /* Update freemem while we're here. */
1709 freemem = 0;
1710 p = pcf;
1711 for (i = 0; i < pcf_fanout; i++) {
1712 mutex_enter(&p->pcf_lock);
1713 ASSERT(p->pcf_count == 0);
1714 p->pcf_count = p->pcf_reserve;
1715 p->pcf_block = 0;
1716 freemem += p->pcf_count;
1717 if (p->pcf_wait) {
1718 mutex_enter(&new_freemem_lock);
1719 if (freemem_wait) {
1720 if (p->pcf_reserve > 1) {
1721 cv_broadcast(&freemem_cv);
1722 p->pcf_wait = 0;
1723 } else {
1724 cv_signal(&freemem_cv);
1725 p->pcf_wait--;
1727 } else {
1728 p->pcf_wait = 0;
1730 mutex_exit(&new_freemem_lock);
1732 p->pcf_reserve = 0;
1733 mutex_exit(&p->pcf_lock);
1734 p++;
1739 * Called from page_create_va() when both the cache and free lists
1740 * have been checked once.
1742 * Either returns a page or panics since the accounting was done
1743 * way before we got here.
1745 * We don't come here often, so leave the accounting on permanently.
1748 #define MAX_PCGS 100
1750 #ifdef DEBUG
1751 #define PCGS_TRIES 100
1752 #else /* DEBUG */
1753 #define PCGS_TRIES 10
1754 #endif /* DEBUG */
1756 #ifdef VM_STATS
1757 uint_t pcgs_counts[PCGS_TRIES];
1758 uint_t pcgs_too_many;
1759 uint_t pcgs_entered;
1760 uint_t pcgs_entered_noreloc;
1761 uint_t pcgs_locked;
1762 uint_t pcgs_cagelocked;
1763 #endif /* VM_STATS */
1765 static page_t *
1766 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1767 caddr_t vaddr, uint_t flags)
1769 uint_t count;
1770 page_t *pp;
1771 uint_t locked, i;
1772 struct pcf *p;
1773 lgrp_t *lgrp;
1774 int cagelocked = 0;
1776 VM_STAT_ADD(pcgs_entered);
1779 * Tap any reserve freelists: if we fail now, we'll die
1780 * since the page(s) we're looking for have already been
1781 * accounted for.
1783 flags |= PG_PANIC;
1785 if ((flags & PG_NORELOC) != 0) {
1786 VM_STAT_ADD(pcgs_entered_noreloc);
1788 * Requests for free pages from critical threads
1789 * such as pageout still won't throttle here, but
1790 * we must try again, to give the cageout thread
1791 * another chance to catch up. Since we already
1792 * accounted for the pages, we had better get them
1793 * this time.
1795 * N.B. All non-critical threads acquire the pcgs_cagelock
1796 * to serialize access to the freelists. This implements a
1797 * turnstile-type synchornization to avoid starvation of
1798 * critical requests for PG_NORELOC memory by non-critical
1799 * threads: all non-critical threads must acquire a 'ticket'
1800 * before passing through, which entails making sure
1801 * kcage_freemem won't fall below minfree prior to grabbing
1802 * pages from the freelists.
1804 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1805 mutex_enter(&pcgs_cagelock);
1806 cagelocked = 1;
1807 VM_STAT_ADD(pcgs_cagelocked);
1812 * Time to get serious.
1813 * We failed to get a `correctly colored' page from both the
1814 * free and cache lists.
1815 * We escalate in stage.
1817 * First try both lists without worring about color.
1819 * Then, grab all page accounting locks (ie. pcf[]) and
1820 * steal any pages that they have and set the pcf_block flag to
1821 * stop deletions from the lists. This will help because
1822 * a page can get added to the free list while we are looking
1823 * at the cache list, then another page could be added to the cache
1824 * list allowing the page on the free list to be removed as we
1825 * move from looking at the cache list to the free list. This
1826 * could happen over and over. We would never find the page
1827 * we have accounted for.
1829 * Noreloc pages are a subset of the global (relocatable) page pool.
1830 * They are not tracked separately in the pcf bins, so it is
1831 * impossible to know when doing pcf accounting if the available
1832 * page(s) are noreloc pages or not. When looking for a noreloc page
1833 * it is quite easy to end up here even if the global (relocatable)
1834 * page pool has plenty of free pages but the noreloc pool is empty.
1836 * When the noreloc pool is empty (or low), additional noreloc pages
1837 * are created by converting pages from the global page pool. This
1838 * process will stall during pcf accounting if the pcf bins are
1839 * already locked. Such is the case when a noreloc allocation is
1840 * looping here in page_create_get_something waiting for more noreloc
1841 * pages to appear.
1843 * Short of adding a new field to the pcf bins to accurately track
1844 * the number of free noreloc pages, we instead do not grab the
1845 * pcgs_lock, do not set the pcf blocks and do not timeout when
1846 * allocating a noreloc page. This allows noreloc allocations to
1847 * loop without blocking global page pool allocations.
1849 * NOTE: the behaviour of page_create_get_something has not changed
1850 * for the case of global page pool allocations.
1853 flags &= ~PG_MATCH_COLOR;
1854 locked = 0;
1855 #if defined(__i386) || defined(__amd64)
1856 flags = page_create_update_flags_x86(flags);
1857 #endif
1859 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1861 for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1862 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1863 flags, lgrp);
1864 if (pp == NULL) {
1865 pp = page_get_cachelist(vp, off, seg, vaddr,
1866 flags, lgrp);
1868 if (pp == NULL) {
1870 * Serialize. Don't fight with other pcgs().
1872 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1873 mutex_enter(&pcgs_lock);
1874 VM_STAT_ADD(pcgs_locked);
1875 locked = 1;
1876 p = pcf;
1877 for (i = 0; i < pcf_fanout; i++) {
1878 mutex_enter(&p->pcf_lock);
1879 ASSERT(p->pcf_block == 0);
1880 p->pcf_block = 1;
1881 p->pcf_reserve = p->pcf_count;
1882 p->pcf_count = 0;
1883 mutex_exit(&p->pcf_lock);
1884 p++;
1886 freemem = 0;
1889 if (count) {
1891 * Since page_free() puts pages on
1892 * a list then accounts for it, we
1893 * just have to wait for page_free()
1894 * to unlock any page it was working
1895 * with. The page_lock()-page_reclaim()
1896 * path falls in the same boat.
1898 * We don't need to check on the
1899 * PG_WAIT flag, we have already
1900 * accounted for the page we are
1901 * looking for in page_create_va().
1903 * We just wait a moment to let any
1904 * locked pages on the lists free up,
1905 * then continue around and try again.
1907 * Will be awakened by set_freemem().
1909 mutex_enter(&pcgs_wait_lock);
1910 cv_wait(&pcgs_cv, &pcgs_wait_lock);
1911 mutex_exit(&pcgs_wait_lock);
1913 } else {
1914 #ifdef VM_STATS
1915 if (count >= PCGS_TRIES) {
1916 VM_STAT_ADD(pcgs_too_many);
1917 } else {
1918 VM_STAT_ADD(pcgs_counts[count]);
1920 #endif
1921 if (locked) {
1922 pcgs_unblock();
1923 mutex_exit(&pcgs_lock);
1925 if (cagelocked)
1926 mutex_exit(&pcgs_cagelock);
1927 return (pp);
1931 * we go down holding the pcf locks.
1933 panic("no %spage found %d",
1934 ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1935 /*NOTREACHED*/
1939 * Create enough pages for "bytes" worth of data starting at
1940 * "off" in "vp".
1942 * Where flag must be one of:
1944 * PG_EXCL: Exclusive create (fail if any page already
1945 * exists in the page cache) which does not
1946 * wait for memory to become available.
1948 * PG_WAIT: Non-exclusive create which can wait for
1949 * memory to become available.
1951 * PG_PHYSCONTIG: Allocate physically contiguous pages.
1952 * (Not Supported)
1954 * A doubly linked list of pages is returned to the caller. Each page
1955 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1956 * lock.
1958 * Unable to change the parameters to page_create() in a minor release,
1959 * we renamed page_create() to page_create_va(), changed all known calls
1960 * from page_create() to page_create_va(), and created this wrapper.
1962 * Upon a major release, we should break compatibility by deleting this
1963 * wrapper, and replacing all the strings "page_create_va", with "page_create".
1965 * NOTE: There is a copy of this interface as page_create_io() in
1966 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1967 * there.
1969 page_t *
1970 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1972 caddr_t random_vaddr;
1973 struct seg kseg;
1975 #ifdef DEBUG
1976 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1977 (void *)caller());
1978 #endif
1980 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1981 (uintptr_t)(off >> PAGESHIFT));
1982 kseg.s_as = &kas;
1984 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1987 #ifdef DEBUG
1988 uint32_t pg_alloc_pgs_mtbf = 0;
1989 #endif
1992 * Used for large page support. It will attempt to allocate
1993 * a large page(s) off the freelist.
1995 * Returns non zero on failure.
1998 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1999 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2001 pgcnt_t npgs, curnpgs, totpgs;
2002 size_t pgsz;
2003 page_t *pplist = NULL, *pp;
2004 int err = 0;
2005 lgrp_t *lgrp;
2007 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2008 ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2011 * Check if system heavily prefers local large pages over remote
2012 * on systems with multiple lgroups.
2014 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2015 pgflags = PG_LOCAL;
2018 VM_STAT_ADD(alloc_pages[0]);
2020 #ifdef DEBUG
2021 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2022 return (ENOMEM);
2024 #endif
2027 * One must be NULL but not both.
2028 * And one must be non NULL but not both.
2030 ASSERT(basepp != NULL || ppa != NULL);
2031 ASSERT(basepp == NULL || ppa == NULL);
2033 #if defined(__i386) || defined(__amd64)
2034 while (page_chk_freelist(szc) == 0) {
2035 VM_STAT_ADD(alloc_pages[8]);
2036 if (anypgsz == 0 || --szc == 0)
2037 return (ENOMEM);
2039 #endif
2041 pgsz = page_get_pagesize(szc);
2042 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2044 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2046 (void) page_create_wait(npgs, PG_WAIT);
2048 while (npgs && szc) {
2049 lgrp = lgrp_mem_choose(seg, addr, pgsz);
2050 if (pgflags == PG_LOCAL) {
2051 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2052 pgflags, lgrp);
2053 if (pp == NULL) {
2054 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2055 0, lgrp);
2057 } else {
2058 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2059 0, lgrp);
2061 if (pp != NULL) {
2062 VM_STAT_ADD(alloc_pages[1]);
2063 page_list_concat(&pplist, &pp);
2064 ASSERT(npgs >= curnpgs);
2065 npgs -= curnpgs;
2066 } else if (anypgsz) {
2067 VM_STAT_ADD(alloc_pages[2]);
2068 szc--;
2069 pgsz = page_get_pagesize(szc);
2070 curnpgs = pgsz >> PAGESHIFT;
2071 } else {
2072 VM_STAT_ADD(alloc_pages[3]);
2073 ASSERT(npgs == totpgs);
2074 page_create_putback(npgs);
2075 return (ENOMEM);
2078 if (szc == 0) {
2079 VM_STAT_ADD(alloc_pages[4]);
2080 ASSERT(npgs != 0);
2081 page_create_putback(npgs);
2082 err = ENOMEM;
2083 } else if (basepp != NULL) {
2084 ASSERT(npgs == 0);
2085 ASSERT(ppa == NULL);
2086 *basepp = pplist;
2089 npgs = totpgs - npgs;
2090 pp = pplist;
2093 * Clear the free and age bits. Also if we were passed in a ppa then
2094 * fill it in with all the constituent pages from the large page. But
2095 * if we failed to allocate all the pages just free what we got.
2097 while (npgs != 0) {
2098 ASSERT(PP_ISFREE(pp));
2099 ASSERT(PP_ISAGED(pp));
2100 if (ppa != NULL || err != 0) {
2101 if (err == 0) {
2102 VM_STAT_ADD(alloc_pages[5]);
2103 PP_CLRFREE(pp);
2104 PP_CLRAGED(pp);
2105 page_sub(&pplist, pp);
2106 *ppa++ = pp;
2107 npgs--;
2108 } else {
2109 VM_STAT_ADD(alloc_pages[6]);
2110 ASSERT(pp->p_szc != 0);
2111 curnpgs = page_get_pagecnt(pp->p_szc);
2112 page_list_break(&pp, &pplist, curnpgs);
2113 page_list_add_pages(pp, 0);
2114 page_create_putback(curnpgs);
2115 ASSERT(npgs >= curnpgs);
2116 npgs -= curnpgs;
2118 pp = pplist;
2119 } else {
2120 VM_STAT_ADD(alloc_pages[7]);
2121 PP_CLRFREE(pp);
2122 PP_CLRAGED(pp);
2123 pp = pp->p_next;
2124 npgs--;
2127 return (err);
2131 * Get a single large page off of the freelists, and set it up for use.
2132 * Number of bytes requested must be a supported page size.
2134 * Note that this call may fail even if there is sufficient
2135 * memory available or PG_WAIT is set, so the caller must
2136 * be willing to fallback on page_create_va(), block and retry,
2137 * or fail the requester.
2139 page_t *
2140 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2141 struct seg *seg, caddr_t vaddr, void *arg)
2143 pgcnt_t npages;
2144 page_t *pp;
2145 page_t *rootpp;
2146 lgrp_t *lgrp;
2147 lgrp_id_t *lgrpid = (lgrp_id_t *)arg;
2149 ASSERT(vp != NULL);
2151 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2152 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2153 /* but no others */
2155 ASSERT((flags & PG_EXCL) == PG_EXCL);
2157 npages = btop(bytes);
2159 if (!kcage_on || panicstr) {
2161 * Cage is OFF, or we are single threaded in
2162 * panic, so make everything a RELOC request.
2164 flags &= ~PG_NORELOC;
2168 * Make sure there's adequate physical memory available.
2169 * Note: PG_WAIT is ignored here.
2171 if (freemem <= throttlefree + npages) {
2172 VM_STAT_ADD(page_create_large_cnt[1]);
2173 return (NULL);
2177 * If cage is on, dampen draw from cage when available
2178 * cage space is low.
2180 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) &&
2181 kcage_freemem < kcage_throttlefree + npages) {
2184 * The cage is on, the caller wants PG_NORELOC
2185 * pages and available cage memory is very low.
2186 * Call kcage_create_throttle() to attempt to
2187 * control demand on the cage.
2189 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2190 VM_STAT_ADD(page_create_large_cnt[2]);
2191 return (NULL);
2195 if (!pcf_decrement_bucket(npages) &&
2196 !pcf_decrement_multiple(NULL, npages, 1)) {
2197 VM_STAT_ADD(page_create_large_cnt[4]);
2198 return (NULL);
2202 * This is where this function behaves fundamentally differently
2203 * than page_create_va(); since we're intending to map the page
2204 * with a single TTE, we have to get it as a physically contiguous
2205 * hardware pagesize chunk. If we can't, we fail.
2207 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2208 LGRP_EXISTS(lgrp_table[*lgrpid]))
2209 lgrp = lgrp_table[*lgrpid];
2210 else
2211 lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2213 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2214 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2215 page_create_putback(npages);
2216 VM_STAT_ADD(page_create_large_cnt[5]);
2217 return (NULL);
2221 * if we got the page with the wrong mtype give it back this is a
2222 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2223 * inside "if" and the workaround becomes just a nop
2225 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2226 page_list_add_pages(rootpp, 0);
2227 page_create_putback(npages);
2228 VM_STAT_ADD(page_create_large_cnt[6]);
2229 return (NULL);
2233 * If satisfying this request has left us with too little
2234 * memory, start the wheels turning to get some back. The
2235 * first clause of the test prevents waking up the pageout
2236 * daemon in situations where it would decide that there's
2237 * nothing to do.
2239 if (nscan < desscan && freemem < minfree) {
2240 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2241 "pageout_cv_signal:freemem %ld", freemem);
2242 cv_signal(&proc_pageout->p_cv);
2245 pp = rootpp;
2246 while (npages--) {
2247 ASSERT(PAGE_EXCL(pp));
2248 ASSERT(pp->p_vnode == NULL);
2249 ASSERT(!hat_page_is_mapped(pp));
2250 PP_CLRFREE(pp);
2251 PP_CLRAGED(pp);
2252 if (!page_hashin(pp, vp, off, NULL))
2253 panic("page_create_large: hashin failed: page %p",
2254 (void *)pp);
2255 page_io_lock(pp);
2256 off += PAGESIZE;
2257 pp = pp->p_next;
2260 VM_STAT_ADD(page_create_large_cnt[0]);
2261 return (rootpp);
2264 page_t *
2265 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2266 struct seg *seg, caddr_t vaddr)
2268 page_t *plist = NULL;
2269 pgcnt_t npages;
2270 pgcnt_t found_on_free = 0;
2271 pgcnt_t pages_req;
2272 page_t *npp = NULL;
2273 struct pcf *p;
2274 lgrp_t *lgrp;
2276 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2277 "page_create_start:vp %p off %llx bytes %lu flags %x",
2278 vp, off, bytes, flags);
2280 ASSERT(bytes != 0 && vp != NULL);
2282 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2283 panic("page_create: invalid flags");
2284 /*NOTREACHED*/
2286 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2287 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2288 /* but no others */
2290 pages_req = npages = btopr(bytes);
2292 * Try to see whether request is too large to *ever* be
2293 * satisfied, in order to prevent deadlock. We arbitrarily
2294 * decide to limit maximum size requests to max_page_get.
2296 if (npages >= max_page_get) {
2297 if ((flags & PG_WAIT) == 0) {
2298 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2299 "page_create_toobig:vp %p off %llx npages "
2300 "%lu max_page_get %lu",
2301 vp, off, npages, max_page_get);
2302 return (NULL);
2303 } else {
2304 cmn_err(CE_WARN,
2305 "Request for too much kernel memory "
2306 "(%lu bytes), will hang forever", bytes);
2307 for (;;)
2308 delay(1000000000);
2312 if (!kcage_on || panicstr) {
2314 * Cage is OFF, or we are single threaded in
2315 * panic, so make everything a RELOC request.
2317 flags &= ~PG_NORELOC;
2320 if (freemem <= throttlefree + npages)
2321 if (!page_create_throttle(npages, flags))
2322 return (NULL);
2325 * If cage is on, dampen draw from cage when available
2326 * cage space is low.
2328 if ((flags & PG_NORELOC) &&
2329 kcage_freemem < kcage_throttlefree + npages) {
2332 * The cage is on, the caller wants PG_NORELOC
2333 * pages and available cage memory is very low.
2334 * Call kcage_create_throttle() to attempt to
2335 * control demand on the cage.
2337 if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2338 return (NULL);
2341 VM_STAT_ADD(page_create_cnt[0]);
2343 if (!pcf_decrement_bucket(npages)) {
2345 * Have to look harder. If npages is greater than
2346 * one, then we might have to coalesce the counters.
2348 * Go wait. We come back having accounted
2349 * for the memory.
2351 VM_STAT_ADD(page_create_cnt[1]);
2352 if (!page_create_wait(npages, flags)) {
2353 VM_STAT_ADD(page_create_cnt[2]);
2354 return (NULL);
2358 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2359 "page_create_success:vp %p off %llx", vp, off);
2362 * If satisfying this request has left us with too little
2363 * memory, start the wheels turning to get some back. The
2364 * first clause of the test prevents waking up the pageout
2365 * daemon in situations where it would decide that there's
2366 * nothing to do.
2368 if (nscan < desscan && freemem < minfree) {
2369 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2370 "pageout_cv_signal:freemem %ld", freemem);
2371 cv_signal(&proc_pageout->p_cv);
2375 * Loop around collecting the requested number of pages.
2376 * Most of the time, we have to `create' a new page. With
2377 * this in mind, pull the page off the free list before
2378 * getting the hash lock. This will minimize the hash
2379 * lock hold time, nesting, and the like. If it turns
2380 * out we don't need the page, we put it back at the end.
2382 while (npages--) {
2383 page_t *pp;
2384 kmutex_t *phm = NULL;
2385 ulong_t index;
2387 index = PAGE_HASH_FUNC(vp, off);
2388 top:
2389 ASSERT(phm == NULL);
2390 ASSERT(index == PAGE_HASH_FUNC(vp, off));
2391 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2393 if (npp == NULL) {
2395 * Try to get a page from the freelist (ie,
2396 * a page with no [vp, off] tag). If that
2397 * fails, use the cachelist.
2399 * During the first attempt at both the free
2400 * and cache lists we try for the correct color.
2403 * XXXX-how do we deal with virtual indexed
2404 * caches and and colors?
2406 VM_STAT_ADD(page_create_cnt[4]);
2408 * Get lgroup to allocate next page of shared memory
2409 * from and use it to specify where to allocate
2410 * the physical memory
2412 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2413 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2414 flags | PG_MATCH_COLOR, lgrp);
2415 if (npp == NULL) {
2416 npp = page_get_cachelist(vp, off, seg,
2417 vaddr, flags | PG_MATCH_COLOR, lgrp);
2418 if (npp == NULL) {
2419 npp = page_create_get_something(vp,
2420 off, seg, vaddr,
2421 flags & ~PG_MATCH_COLOR);
2424 if (PP_ISAGED(npp) == 0) {
2426 * Since this page came from the
2427 * cachelist, we must destroy the
2428 * old vnode association.
2430 page_hashout(npp, NULL);
2436 * We own this page!
2438 ASSERT(PAGE_EXCL(npp));
2439 ASSERT(npp->p_vnode == NULL);
2440 ASSERT(!hat_page_is_mapped(npp));
2441 PP_CLRFREE(npp);
2442 PP_CLRAGED(npp);
2445 * Here we have a page in our hot little mits and are
2446 * just waiting to stuff it on the appropriate lists.
2447 * Get the mutex and check to see if it really does
2448 * not exist.
2450 phm = PAGE_HASH_MUTEX(index);
2451 mutex_enter(phm);
2452 PAGE_HASH_SEARCH(index, pp, vp, off);
2453 if (pp == NULL) {
2454 VM_STAT_ADD(page_create_new);
2455 pp = npp;
2456 npp = NULL;
2457 if (!page_hashin(pp, vp, off, phm)) {
2459 * Since we hold the page hash mutex and
2460 * just searched for this page, page_hashin
2461 * had better not fail. If it does, that
2462 * means somethread did not follow the
2463 * page hash mutex rules. Panic now and
2464 * get it over with. As usual, go down
2465 * holding all the locks.
2467 ASSERT(MUTEX_HELD(phm));
2468 panic("page_create: "
2469 "hashin failed %p %p %llx %p",
2470 (void *)pp, (void *)vp, off, (void *)phm);
2471 /*NOTREACHED*/
2473 ASSERT(MUTEX_HELD(phm));
2474 mutex_exit(phm);
2475 phm = NULL;
2478 * Hat layer locking need not be done to set
2479 * the following bits since the page is not hashed
2480 * and was on the free list (i.e., had no mappings).
2482 * Set the reference bit to protect
2483 * against immediate pageout
2485 * XXXmh modify freelist code to set reference
2486 * bit so we don't have to do it here.
2488 page_set_props(pp, P_REF);
2489 found_on_free++;
2490 } else {
2491 VM_STAT_ADD(page_create_exists);
2492 if (flags & PG_EXCL) {
2494 * Found an existing page, and the caller
2495 * wanted all new pages. Undo all of the work
2496 * we have done.
2498 mutex_exit(phm);
2499 phm = NULL;
2500 while (plist != NULL) {
2501 pp = plist;
2502 page_sub(&plist, pp);
2503 page_io_unlock(pp);
2504 /* large pages should not end up here */
2505 ASSERT(pp->p_szc == 0);
2506 /*LINTED: constant in conditional ctx*/
2507 VN_DISPOSE(pp, B_INVAL, 0, kcred);
2509 VM_STAT_ADD(page_create_found_one);
2510 goto fail;
2512 ASSERT(flags & PG_WAIT);
2513 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2515 * Start all over again if we blocked trying
2516 * to lock the page.
2518 mutex_exit(phm);
2519 VM_STAT_ADD(page_create_page_lock_failed);
2520 phm = NULL;
2521 goto top;
2523 mutex_exit(phm);
2524 phm = NULL;
2526 if (PP_ISFREE(pp)) {
2527 ASSERT(PP_ISAGED(pp) == 0);
2528 VM_STAT_ADD(pagecnt.pc_get_cache);
2529 page_list_sub(pp, PG_CACHE_LIST);
2530 PP_CLRFREE(pp);
2531 found_on_free++;
2536 * Got a page! It is locked. Acquire the i/o
2537 * lock since we are going to use the p_next and
2538 * p_prev fields to link the requested pages together.
2540 page_io_lock(pp);
2541 page_add(&plist, pp);
2542 plist = plist->p_next;
2543 off += PAGESIZE;
2544 vaddr += PAGESIZE;
2547 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2548 fail:
2549 if (npp != NULL) {
2551 * Did not need this page after all.
2552 * Put it back on the free list.
2554 VM_STAT_ADD(page_create_putbacks);
2555 PP_SETFREE(npp);
2556 PP_SETAGED(npp);
2557 npp->p_offset = (u_offset_t)-1;
2558 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2559 page_unlock(npp);
2563 ASSERT(pages_req >= found_on_free);
2566 uint_t overshoot = (uint_t)(pages_req - found_on_free);
2568 if (overshoot) {
2569 VM_STAT_ADD(page_create_overshoot);
2570 p = &pcf[PCF_INDEX()];
2571 mutex_enter(&p->pcf_lock);
2572 if (p->pcf_block) {
2573 p->pcf_reserve += overshoot;
2574 } else {
2575 p->pcf_count += overshoot;
2576 if (p->pcf_wait) {
2577 mutex_enter(&new_freemem_lock);
2578 if (freemem_wait) {
2579 cv_signal(&freemem_cv);
2580 p->pcf_wait--;
2581 } else {
2582 p->pcf_wait = 0;
2584 mutex_exit(&new_freemem_lock);
2587 mutex_exit(&p->pcf_lock);
2588 /* freemem is approximate, so this test OK */
2589 if (!p->pcf_block)
2590 freemem += overshoot;
2594 return (plist);
2598 * One or more constituent pages of this large page has been marked
2599 * toxic. Simply demote the large page to PAGESIZE pages and let
2600 * page_free() handle it. This routine should only be called by
2601 * large page free routines (page_free_pages() and page_destroy_pages().
2602 * All pages are locked SE_EXCL and have already been marked free.
2604 static void
2605 page_free_toxic_pages(page_t *rootpp)
2607 page_t *tpp;
2608 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2609 uint_t szc = rootpp->p_szc;
2611 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2612 ASSERT(tpp->p_szc == szc);
2613 ASSERT((PAGE_EXCL(tpp) &&
2614 !page_iolock_assert(tpp)) || panicstr);
2615 tpp->p_szc = 0;
2618 while (rootpp != NULL) {
2619 tpp = rootpp;
2620 page_sub(&rootpp, tpp);
2621 ASSERT(PP_ISFREE(tpp));
2622 PP_CLRFREE(tpp);
2623 page_free(tpp, 1);
2628 * Put page on the "free" list.
2629 * The free list is really two lists maintained by
2630 * the PSM of whatever machine we happen to be on.
2632 void
2633 page_free(page_t *pp, int dontneed)
2635 struct pcf *p;
2636 uint_t pcf_index;
2638 ASSERT((PAGE_EXCL(pp) &&
2639 !page_iolock_assert(pp)) || panicstr);
2641 if (PP_ISFREE(pp)) {
2642 panic("page_free: page %p is free", (void *)pp);
2645 if (pp->p_szc != 0) {
2646 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2647 PP_ISKAS(pp)) {
2648 panic("page_free: anon or kernel "
2649 "or no vnode large page %p", (void *)pp);
2651 page_demote_vp_pages(pp);
2652 ASSERT(pp->p_szc == 0);
2656 * The page_struct_lock need not be acquired to examine these
2657 * fields since the page has an "exclusive" lock.
2659 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2660 pp->p_slckcnt != 0) {
2661 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2662 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2663 pp->p_cowcnt, pp->p_slckcnt);
2664 /*NOTREACHED*/
2667 ASSERT(!hat_page_getshare(pp));
2669 PP_SETFREE(pp);
2670 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2671 !hat_ismod(pp));
2672 page_clr_all_props(pp);
2673 ASSERT(!hat_page_getshare(pp));
2676 * Now we add the page to the head of the free list.
2677 * But if this page is associated with a paged vnode
2678 * then we adjust the head forward so that the page is
2679 * effectively at the end of the list.
2681 if (pp->p_vnode == NULL) {
2683 * Page has no identity, put it on the free list.
2685 PP_SETAGED(pp);
2686 pp->p_offset = (u_offset_t)-1;
2687 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2688 VM_STAT_ADD(pagecnt.pc_free_free);
2689 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2690 "page_free_free:pp %p", pp);
2691 } else {
2692 PP_CLRAGED(pp);
2694 if (!dontneed || nopageage) {
2695 /* move it to the tail of the list */
2696 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2698 VM_STAT_ADD(pagecnt.pc_free_cache);
2699 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2700 "page_free_cache_tail:pp %p", pp);
2701 } else {
2702 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2704 VM_STAT_ADD(pagecnt.pc_free_dontneed);
2705 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2706 "page_free_cache_head:pp %p", pp);
2709 page_unlock(pp);
2712 * Now do the `freemem' accounting.
2714 pcf_index = PCF_INDEX();
2715 p = &pcf[pcf_index];
2717 mutex_enter(&p->pcf_lock);
2718 if (p->pcf_block) {
2719 p->pcf_reserve += 1;
2720 } else {
2721 p->pcf_count += 1;
2722 if (p->pcf_wait) {
2723 mutex_enter(&new_freemem_lock);
2725 * Check to see if some other thread
2726 * is actually waiting. Another bucket
2727 * may have woken it up by now. If there
2728 * are no waiters, then set our pcf_wait
2729 * count to zero to avoid coming in here
2730 * next time. Also, since only one page
2731 * was put on the free list, just wake
2732 * up one waiter.
2734 if (freemem_wait) {
2735 cv_signal(&freemem_cv);
2736 p->pcf_wait--;
2737 } else {
2738 p->pcf_wait = 0;
2740 mutex_exit(&new_freemem_lock);
2743 mutex_exit(&p->pcf_lock);
2745 /* freemem is approximate, so this test OK */
2746 if (!p->pcf_block)
2747 freemem += 1;
2751 * Put page on the "free" list during intial startup.
2752 * This happens during initial single threaded execution.
2754 void
2755 page_free_at_startup(page_t *pp)
2757 struct pcf *p;
2758 uint_t pcf_index;
2760 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2761 VM_STAT_ADD(pagecnt.pc_free_free);
2764 * Now do the `freemem' accounting.
2766 pcf_index = PCF_INDEX();
2767 p = &pcf[pcf_index];
2769 ASSERT(p->pcf_block == 0);
2770 ASSERT(p->pcf_wait == 0);
2771 p->pcf_count += 1;
2773 /* freemem is approximate, so this is OK */
2774 freemem += 1;
2777 void
2778 page_free_pages(page_t *pp)
2780 page_t *tpp, *rootpp = NULL;
2781 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
2782 pgcnt_t i;
2783 uint_t szc = pp->p_szc;
2785 VM_STAT_ADD(pagecnt.pc_free_pages);
2786 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2787 "page_free_free:pp %p", pp);
2789 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2790 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2791 panic("page_free_pages: not root page %p", (void *)pp);
2792 /*NOTREACHED*/
2795 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2796 ASSERT((PAGE_EXCL(tpp) &&
2797 !page_iolock_assert(tpp)) || panicstr);
2798 if (PP_ISFREE(tpp)) {
2799 panic("page_free_pages: page %p is free", (void *)tpp);
2800 /*NOTREACHED*/
2802 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2803 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2804 panic("page_free_pages %p", (void *)tpp);
2805 /*NOTREACHED*/
2808 ASSERT(!hat_page_getshare(tpp));
2809 ASSERT(tpp->p_vnode == NULL);
2810 ASSERT(tpp->p_szc == szc);
2812 PP_SETFREE(tpp);
2813 page_clr_all_props(tpp);
2814 PP_SETAGED(tpp);
2815 tpp->p_offset = (u_offset_t)-1;
2816 ASSERT(tpp->p_next == tpp);
2817 ASSERT(tpp->p_prev == tpp);
2818 page_list_concat(&rootpp, &tpp);
2820 ASSERT(rootpp == pp);
2822 page_list_add_pages(rootpp, 0);
2823 page_create_putback(pgcnt);
2826 int free_pages = 1;
2829 * This routine attempts to return pages to the cachelist via page_release().
2830 * It does not *have* to be successful in all cases, since the pageout scanner
2831 * will catch any pages it misses. It does need to be fast and not introduce
2832 * too much overhead.
2834 * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2835 * don't lock and retry. This is ok, since the page scanner will eventually
2836 * find any page we miss in free_vp_pages().
2838 void
2839 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2841 page_t *pp;
2842 u_offset_t eoff;
2843 extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2845 eoff = off + len;
2847 if (free_pages == 0)
2848 return;
2849 if (swap_in_range(vp, off, len))
2850 return;
2852 for (; off < eoff; off += PAGESIZE) {
2855 * find the page using a fast, but inexact search. It'll be OK
2856 * if a few pages slip through the cracks here.
2858 pp = page_exists(vp, off);
2861 * If we didn't find the page (it may not exist), the page
2862 * is free, looks still in use (shared), or we can't lock it,
2863 * just give up.
2865 if (pp == NULL ||
2866 PP_ISFREE(pp) ||
2867 page_share_cnt(pp) > 0 ||
2868 !page_trylock(pp, SE_EXCL))
2869 continue;
2872 * Once we have locked pp, verify that it's still the
2873 * correct page and not already free
2875 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2876 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2877 page_unlock(pp);
2878 continue;
2882 * try to release the page...
2884 (void) page_release(pp, 1);
2889 * Reclaim the given page from the free list.
2890 * If pp is part of a large pages, only the given constituent page is reclaimed
2891 * and the large page it belonged to will be demoted. This can only happen
2892 * if the page is not on the cachelist.
2894 * Returns 1 on success or 0 on failure.
2896 * The page is unlocked if it can't be reclaimed (when freemem == 0).
2897 * If `lock' is non-null, it will be dropped and re-acquired if
2898 * the routine must wait while freemem is 0.
2900 * As it turns out, boot_getpages() does this. It picks a page,
2901 * based on where OBP mapped in some address, gets its pfn, searches
2902 * the memsegs, locks the page, then pulls it off the free list!
2905 page_reclaim(page_t *pp, kmutex_t *lock)
2907 struct pcf *p;
2908 struct cpu *cpup;
2909 int enough;
2910 uint_t i;
2912 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2913 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2916 * If `freemem' is 0, we cannot reclaim this page from the
2917 * freelist, so release every lock we might hold: the page,
2918 * and the `lock' before blocking.
2920 * The only way `freemem' can become 0 while there are pages
2921 * marked free (have their p->p_free bit set) is when the
2922 * system is low on memory and doing a page_create(). In
2923 * order to guarantee that once page_create() starts acquiring
2924 * pages it will be able to get all that it needs since `freemem'
2925 * was decreased by the requested amount. So, we need to release
2926 * this page, and let page_create() have it.
2928 * Since `freemem' being zero is not supposed to happen, just
2929 * use the usual hash stuff as a starting point. If that bucket
2930 * is empty, then assume the worst, and start at the beginning
2931 * of the pcf array. If we always start at the beginning
2932 * when acquiring more than one pcf lock, there won't be any
2933 * deadlock problems.
2936 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2938 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2939 pcf_acquire_all();
2940 goto page_reclaim_nomem;
2943 enough = pcf_decrement_bucket(1);
2945 if (!enough) {
2946 VM_STAT_ADD(page_reclaim_zero);
2948 * Check again. Its possible that some other thread
2949 * could have been right behind us, and added one
2950 * to a list somewhere. Acquire each of the pcf locks
2951 * until we find a page.
2953 p = pcf;
2954 for (i = 0; i < pcf_fanout; i++) {
2955 mutex_enter(&p->pcf_lock);
2956 if (p->pcf_count >= 1) {
2957 p->pcf_count -= 1;
2959 * freemem is not protected by any lock. Thus,
2960 * we cannot have any assertion containing
2961 * freemem here.
2963 freemem -= 1;
2964 enough = 1;
2965 break;
2967 p++;
2970 if (!enough) {
2971 page_reclaim_nomem:
2973 * We really can't have page `pp'.
2974 * Time for the no-memory dance with
2975 * page_free(). This is just like
2976 * page_create_wait(). Plus the added
2977 * attraction of releasing whatever mutex
2978 * we held when we were called with in `lock'.
2979 * Page_unlock() will wakeup any thread
2980 * waiting around for this page.
2982 if (lock) {
2983 VM_STAT_ADD(page_reclaim_zero_locked);
2984 mutex_exit(lock);
2986 page_unlock(pp);
2989 * get this before we drop all the pcf locks.
2991 mutex_enter(&new_freemem_lock);
2993 p = pcf;
2994 for (i = 0; i < pcf_fanout; i++) {
2995 p->pcf_wait++;
2996 mutex_exit(&p->pcf_lock);
2997 p++;
3000 freemem_wait++;
3001 cv_wait(&freemem_cv, &new_freemem_lock);
3002 freemem_wait--;
3004 mutex_exit(&new_freemem_lock);
3006 if (lock) {
3007 mutex_enter(lock);
3009 return (0);
3013 * The pcf accounting has been done,
3014 * though none of the pcf_wait flags have been set,
3015 * drop the locks and continue on.
3017 while (p >= pcf) {
3018 mutex_exit(&p->pcf_lock);
3019 p--;
3024 VM_STAT_ADD(pagecnt.pc_reclaim);
3027 * page_list_sub will handle the case where pp is a large page.
3028 * It's possible that the page was promoted while on the freelist
3030 if (PP_ISAGED(pp)) {
3031 page_list_sub(pp, PG_FREE_LIST);
3032 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3033 "page_reclaim_free:pp %p", pp);
3034 } else {
3035 page_list_sub(pp, PG_CACHE_LIST);
3036 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3037 "page_reclaim_cache:pp %p", pp);
3041 * clear the p_free & p_age bits since this page is no longer
3042 * on the free list. Notice that there was a brief time where
3043 * a page is marked as free, but is not on the list.
3045 * Set the reference bit to protect against immediate pageout.
3047 PP_CLRFREE(pp);
3048 PP_CLRAGED(pp);
3049 page_set_props(pp, P_REF);
3051 CPU_STATS_ENTER_K();
3052 cpup = CPU; /* get cpup now that CPU cannot change */
3053 CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3054 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3055 CPU_STATS_EXIT_K();
3056 ASSERT(pp->p_szc == 0);
3058 return (1);
3062 * Destroy identity of the page and put it back on
3063 * the page free list. Assumes that the caller has
3064 * acquired the "exclusive" lock on the page.
3066 void
3067 page_destroy(page_t *pp, int dontfree)
3069 ASSERT((PAGE_EXCL(pp) &&
3070 !page_iolock_assert(pp)) || panicstr);
3071 ASSERT(pp->p_slckcnt == 0 || panicstr);
3073 if (pp->p_szc != 0) {
3074 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3075 PP_ISKAS(pp)) {
3076 panic("page_destroy: anon or kernel or no vnode "
3077 "large page %p", (void *)pp);
3079 page_demote_vp_pages(pp);
3080 ASSERT(pp->p_szc == 0);
3083 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3086 * Unload translations, if any, then hash out the
3087 * page to erase its identity.
3089 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3090 page_hashout(pp, NULL);
3092 if (!dontfree) {
3094 * Acquire the "freemem_lock" for availrmem.
3095 * The page_struct_lock need not be acquired for lckcnt
3096 * and cowcnt since the page has an "exclusive" lock.
3097 * We are doing a modified version of page_pp_unlock here.
3099 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3100 mutex_enter(&freemem_lock);
3101 if (pp->p_lckcnt != 0) {
3102 availrmem++;
3103 pages_locked--;
3104 pp->p_lckcnt = 0;
3106 if (pp->p_cowcnt != 0) {
3107 availrmem += pp->p_cowcnt;
3108 pages_locked -= pp->p_cowcnt;
3109 pp->p_cowcnt = 0;
3111 mutex_exit(&freemem_lock);
3114 * Put the page on the "free" list.
3116 page_free(pp, 0);
3120 void
3121 page_destroy_pages(page_t *pp)
3124 page_t *tpp, *rootpp = NULL;
3125 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
3126 pgcnt_t i, pglcks = 0;
3127 uint_t szc = pp->p_szc;
3129 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3131 VM_STAT_ADD(pagecnt.pc_destroy_pages);
3133 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3135 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3136 panic("page_destroy_pages: not root page %p", (void *)pp);
3137 /*NOTREACHED*/
3140 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3141 ASSERT((PAGE_EXCL(tpp) &&
3142 !page_iolock_assert(tpp)) || panicstr);
3143 ASSERT(tpp->p_slckcnt == 0 || panicstr);
3144 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3145 page_hashout(tpp, NULL);
3146 ASSERT(tpp->p_offset == (u_offset_t)-1);
3147 if (tpp->p_lckcnt != 0) {
3148 pglcks++;
3149 tpp->p_lckcnt = 0;
3150 } else if (tpp->p_cowcnt != 0) {
3151 pglcks += tpp->p_cowcnt;
3152 tpp->p_cowcnt = 0;
3154 ASSERT(!hat_page_getshare(tpp));
3155 ASSERT(tpp->p_vnode == NULL);
3156 ASSERT(tpp->p_szc == szc);
3158 PP_SETFREE(tpp);
3159 page_clr_all_props(tpp);
3160 PP_SETAGED(tpp);
3161 ASSERT(tpp->p_next == tpp);
3162 ASSERT(tpp->p_prev == tpp);
3163 page_list_concat(&rootpp, &tpp);
3166 ASSERT(rootpp == pp);
3167 if (pglcks != 0) {
3168 mutex_enter(&freemem_lock);
3169 availrmem += pglcks;
3170 mutex_exit(&freemem_lock);
3173 page_list_add_pages(rootpp, 0);
3174 page_create_putback(pgcnt);
3178 * Similar to page_destroy(), but destroys pages which are
3179 * locked and known to be on the page free list. Since
3180 * the page is known to be free and locked, no one can access
3181 * it.
3183 * Also, the number of free pages does not change.
3185 void
3186 page_destroy_free(page_t *pp)
3188 ASSERT(PAGE_EXCL(pp));
3189 ASSERT(PP_ISFREE(pp));
3190 ASSERT(pp->p_vnode);
3191 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3192 ASSERT(!hat_page_is_mapped(pp));
3193 ASSERT(PP_ISAGED(pp) == 0);
3194 ASSERT(pp->p_szc == 0);
3196 VM_STAT_ADD(pagecnt.pc_destroy_free);
3197 page_list_sub(pp, PG_CACHE_LIST);
3199 page_hashout(pp, NULL);
3200 ASSERT(pp->p_vnode == NULL);
3201 ASSERT(pp->p_offset == (u_offset_t)-1);
3202 ASSERT(pp->p_hash == NULL);
3204 PP_SETAGED(pp);
3205 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3206 page_unlock(pp);
3208 mutex_enter(&new_freemem_lock);
3209 if (freemem_wait) {
3210 cv_signal(&freemem_cv);
3212 mutex_exit(&new_freemem_lock);
3216 * Rename the page "opp" to have an identity specified
3217 * by [vp, off]. If a page already exists with this name
3218 * it is locked and destroyed. Note that the page's
3219 * translations are not unloaded during the rename.
3221 * This routine is used by the anon layer to "steal" the
3222 * original page and is not unlike destroying a page and
3223 * creating a new page using the same page frame.
3225 * XXX -- Could deadlock if caller 1 tries to rename A to B while
3226 * caller 2 tries to rename B to A.
3228 void
3229 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3231 page_t *pp;
3232 int olckcnt = 0;
3233 int ocowcnt = 0;
3234 kmutex_t *phm;
3235 ulong_t index;
3237 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3238 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3239 ASSERT(PP_ISFREE(opp) == 0);
3241 VM_STAT_ADD(page_rename_count);
3243 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3244 "page rename:pp %p vp %p off %llx", opp, vp, off);
3247 * CacheFS may call page_rename for a large NFS page
3248 * when both CacheFS and NFS mount points are used
3249 * by applications. Demote this large page before
3250 * renaming it, to ensure that there are no "partial"
3251 * large pages left lying around.
3253 if (opp->p_szc != 0) {
3254 vnode_t *ovp = opp->p_vnode;
3255 ASSERT(ovp != NULL);
3256 ASSERT(!IS_SWAPFSVP(ovp));
3257 ASSERT(!VN_ISKAS(ovp));
3258 page_demote_vp_pages(opp);
3259 ASSERT(opp->p_szc == 0);
3262 page_hashout(opp, NULL);
3263 PP_CLRAGED(opp);
3266 * Acquire the appropriate page hash lock, since
3267 * we're going to rename the page.
3269 index = PAGE_HASH_FUNC(vp, off);
3270 phm = PAGE_HASH_MUTEX(index);
3271 mutex_enter(phm);
3272 top:
3274 * Look for an existing page with this name and destroy it if found.
3275 * By holding the page hash lock all the way to the page_hashin()
3276 * call, we are assured that no page can be created with this
3277 * identity. In the case when the phm lock is dropped to undo any
3278 * hat layer mappings, the existing page is held with an "exclusive"
3279 * lock, again preventing another page from being created with
3280 * this identity.
3282 PAGE_HASH_SEARCH(index, pp, vp, off);
3283 if (pp != NULL) {
3284 VM_STAT_ADD(page_rename_exists);
3287 * As it turns out, this is one of only two places where
3288 * page_lock() needs to hold the passed in lock in the
3289 * successful case. In all of the others, the lock could
3290 * be dropped as soon as the attempt is made to lock
3291 * the page. It is tempting to add yet another arguement,
3292 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3294 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3296 * Went to sleep because the page could not
3297 * be locked. We were woken up when the page
3298 * was unlocked, or when the page was destroyed.
3299 * In either case, `phm' was dropped while we
3300 * slept. Hence we should not just roar through
3301 * this loop.
3303 goto top;
3307 * If an existing page is a large page, then demote
3308 * it to ensure that no "partial" large pages are
3309 * "created" after page_rename. An existing page
3310 * can be a CacheFS page, and can't belong to swapfs.
3312 if (hat_page_is_mapped(pp)) {
3314 * Unload translations. Since we hold the
3315 * exclusive lock on this page, the page
3316 * can not be changed while we drop phm.
3317 * This is also not a lock protocol violation,
3318 * but rather the proper way to do things.
3320 mutex_exit(phm);
3321 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3322 if (pp->p_szc != 0) {
3323 ASSERT(!IS_SWAPFSVP(vp));
3324 ASSERT(!VN_ISKAS(vp));
3325 page_demote_vp_pages(pp);
3326 ASSERT(pp->p_szc == 0);
3328 mutex_enter(phm);
3329 } else if (pp->p_szc != 0) {
3330 ASSERT(!IS_SWAPFSVP(vp));
3331 ASSERT(!VN_ISKAS(vp));
3332 mutex_exit(phm);
3333 page_demote_vp_pages(pp);
3334 ASSERT(pp->p_szc == 0);
3335 mutex_enter(phm);
3337 page_hashout(pp, phm);
3340 * Hash in the page with the new identity.
3342 if (!page_hashin(opp, vp, off, phm)) {
3344 * We were holding phm while we searched for [vp, off]
3345 * and only dropped phm if we found and locked a page.
3346 * If we can't create this page now, then some thing
3347 * is really broken.
3349 panic("page_rename: Can't hash in page: %p", (void *)pp);
3350 /*NOTREACHED*/
3353 ASSERT(MUTEX_HELD(phm));
3354 mutex_exit(phm);
3357 * Now that we have dropped phm, lets get around to finishing up
3358 * with pp.
3360 if (pp != NULL) {
3361 ASSERT(!hat_page_is_mapped(pp));
3362 /* for now large pages should not end up here */
3363 ASSERT(pp->p_szc == 0);
3365 * Save the locks for transfer to the new page and then
3366 * clear them so page_free doesn't think they're important.
3367 * The page_struct_lock need not be acquired for lckcnt and
3368 * cowcnt since the page has an "exclusive" lock.
3370 olckcnt = pp->p_lckcnt;
3371 ocowcnt = pp->p_cowcnt;
3372 pp->p_lckcnt = pp->p_cowcnt = 0;
3375 * Put the page on the "free" list after we drop
3376 * the lock. The less work under the lock the better.
3378 /*LINTED: constant in conditional context*/
3379 VN_DISPOSE(pp, B_FREE, 0, kcred);
3383 * Transfer the lock count from the old page (if any).
3384 * The page_struct_lock need not be acquired for lckcnt and
3385 * cowcnt since the page has an "exclusive" lock.
3387 opp->p_lckcnt += olckcnt;
3388 opp->p_cowcnt += ocowcnt;
3392 * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3394 * Pages are normally inserted at the start of a vnode's v_pages list.
3395 * If the vnode is VMODSORT and the page is modified, it goes at the end.
3396 * This can happen when a modified page is relocated for DR.
3398 * Returns 1 on success and 0 on failure.
3400 static int
3401 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3403 page_t **listp;
3404 page_t *tp;
3405 ulong_t index;
3407 ASSERT(PAGE_EXCL(pp));
3408 ASSERT(vp != NULL);
3409 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3412 * Be sure to set these up before the page is inserted on the hash
3413 * list. As soon as the page is placed on the list some other
3414 * thread might get confused and wonder how this page could
3415 * possibly hash to this list.
3417 pp->p_vnode = vp;
3418 pp->p_offset = offset;
3421 * record if this page is on a swap vnode
3423 if ((vp->v_flag & VISSWAP) != 0)
3424 PP_SETSWAP(pp);
3426 index = PAGE_HASH_FUNC(vp, offset);
3427 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3428 listp = &page_hash[index];
3431 * If this page is already hashed in, fail this attempt to add it.
3433 for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3434 if (tp->p_vnode == vp && tp->p_offset == offset) {
3435 pp->p_vnode = NULL;
3436 pp->p_offset = (u_offset_t)(-1);
3437 return (0);
3440 pp->p_hash = *listp;
3441 *listp = pp;
3444 * Add the page to the vnode's list of pages
3446 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3447 listp = &vp->v_pages->p_vpprev->p_vpnext;
3448 else
3449 listp = &vp->v_pages;
3451 page_vpadd(listp, pp);
3453 return (1);
3457 * Add page `pp' to both the hash and vp chains for [vp, offset].
3459 * Returns 1 on success and 0 on failure.
3460 * If hold is passed in, it is not dropped.
3463 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3465 kmutex_t *phm = NULL;
3466 kmutex_t *vphm;
3467 int rc;
3469 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3470 ASSERT(pp->p_fsdata == 0 || panicstr);
3472 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3473 "page_hashin:pp %p vp %p offset %llx",
3474 pp, vp, offset);
3476 VM_STAT_ADD(hashin_count);
3478 if (hold != NULL)
3479 phm = hold;
3480 else {
3481 VM_STAT_ADD(hashin_not_held);
3482 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3483 mutex_enter(phm);
3486 vphm = page_vnode_mutex(vp);
3487 mutex_enter(vphm);
3488 rc = page_do_hashin(pp, vp, offset);
3489 mutex_exit(vphm);
3490 if (hold == NULL)
3491 mutex_exit(phm);
3492 if (rc == 0)
3493 VM_STAT_ADD(hashin_already);
3494 return (rc);
3498 * Remove page ``pp'' from the hash and vp chains and remove vp association.
3499 * All mutexes must be held
3501 static void
3502 page_do_hashout(page_t *pp)
3504 page_t **hpp;
3505 page_t *hp;
3506 vnode_t *vp = pp->p_vnode;
3508 ASSERT(vp != NULL);
3509 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3512 * First, take pp off of its hash chain.
3514 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3516 for (;;) {
3517 hp = *hpp;
3518 if (hp == pp)
3519 break;
3520 if (hp == NULL) {
3521 panic("page_do_hashout");
3522 /*NOTREACHED*/
3524 hpp = &hp->p_hash;
3526 *hpp = pp->p_hash;
3529 * Now remove it from its associated vnode.
3531 if (vp->v_pages)
3532 page_vpsub(&vp->v_pages, pp);
3534 pp->p_hash = NULL;
3535 page_clr_all_props(pp);
3536 PP_CLRSWAP(pp);
3537 pp->p_vnode = NULL;
3538 pp->p_offset = (u_offset_t)-1;
3539 pp->p_fsdata = 0;
3543 * Remove page ``pp'' from the hash and vp chains and remove vp association.
3545 * When `phm' is non-NULL it contains the address of the mutex protecting the
3546 * hash list pp is on. It is not dropped.
3548 void
3549 page_hashout(page_t *pp, kmutex_t *phm)
3551 vnode_t *vp;
3552 ulong_t index;
3553 kmutex_t *nphm;
3554 kmutex_t *vphm;
3555 kmutex_t *sep;
3557 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3558 ASSERT(pp->p_vnode != NULL);
3559 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3560 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3562 vp = pp->p_vnode;
3564 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3565 "page_hashout:pp %p vp %p", pp, vp);
3567 /* Kernel probe */
3568 TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3569 tnf_opaque, vnode, vp,
3570 tnf_offset, offset, pp->p_offset);
3575 VM_STAT_ADD(hashout_count);
3576 index = PAGE_HASH_FUNC(vp, pp->p_offset);
3577 if (phm == NULL) {
3578 VM_STAT_ADD(hashout_not_held);
3579 nphm = PAGE_HASH_MUTEX(index);
3580 mutex_enter(nphm);
3582 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3586 * grab page vnode mutex and remove it...
3588 vphm = page_vnode_mutex(vp);
3589 mutex_enter(vphm);
3591 page_do_hashout(pp);
3593 mutex_exit(vphm);
3594 if (phm == NULL)
3595 mutex_exit(nphm);
3598 * Wake up processes waiting for this page. The page's
3599 * identity has been changed, and is probably not the
3600 * desired page any longer.
3602 sep = page_se_mutex(pp);
3603 mutex_enter(sep);
3604 pp->p_selock &= ~SE_EWANTED;
3605 if (CV_HAS_WAITERS(&pp->p_cv))
3606 cv_broadcast(&pp->p_cv);
3607 mutex_exit(sep);
3611 * Add the page to the front of a linked list of pages
3612 * using the p_next & p_prev pointers for the list.
3613 * The caller is responsible for protecting the list pointers.
3615 void
3616 page_add(page_t **ppp, page_t *pp)
3618 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3620 page_add_common(ppp, pp);
3626 * Common code for page_add() and mach_page_add()
3628 void
3629 page_add_common(page_t **ppp, page_t *pp)
3631 if (*ppp == NULL) {
3632 pp->p_next = pp->p_prev = pp;
3633 } else {
3634 pp->p_next = *ppp;
3635 pp->p_prev = (*ppp)->p_prev;
3636 (*ppp)->p_prev = pp;
3637 pp->p_prev->p_next = pp;
3639 *ppp = pp;
3644 * Remove this page from a linked list of pages
3645 * using the p_next & p_prev pointers for the list.
3647 * The caller is responsible for protecting the list pointers.
3649 void
3650 page_sub(page_t **ppp, page_t *pp)
3652 ASSERT((PP_ISFREE(pp)) ? 1 :
3653 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3655 if (*ppp == NULL || pp == NULL) {
3656 panic("page_sub: bad arg(s): pp %p, *ppp %p",
3657 (void *)pp, (void *)(*ppp));
3658 /*NOTREACHED*/
3661 page_sub_common(ppp, pp);
3666 * Common code for page_sub() and mach_page_sub()
3668 void
3669 page_sub_common(page_t **ppp, page_t *pp)
3671 if (*ppp == pp)
3672 *ppp = pp->p_next; /* go to next page */
3674 if (*ppp == pp)
3675 *ppp = NULL; /* page list is gone */
3676 else {
3677 pp->p_prev->p_next = pp->p_next;
3678 pp->p_next->p_prev = pp->p_prev;
3680 pp->p_prev = pp->p_next = pp; /* make pp a list of one */
3685 * Break page list cppp into two lists with npages in the first list.
3686 * The tail is returned in nppp.
3688 void
3689 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3691 page_t *s1pp = *oppp;
3692 page_t *s2pp;
3693 page_t *e1pp, *e2pp;
3694 long n = 0;
3696 if (s1pp == NULL) {
3697 *nppp = NULL;
3698 return;
3700 if (npages == 0) {
3701 *nppp = s1pp;
3702 *oppp = NULL;
3703 return;
3705 for (n = 0, s2pp = *oppp; n < npages; n++) {
3706 s2pp = s2pp->p_next;
3708 /* Fix head and tail of new lists */
3709 e1pp = s2pp->p_prev;
3710 e2pp = s1pp->p_prev;
3711 s1pp->p_prev = e1pp;
3712 e1pp->p_next = s1pp;
3713 s2pp->p_prev = e2pp;
3714 e2pp->p_next = s2pp;
3716 /* second list empty */
3717 if (s2pp == s1pp) {
3718 *oppp = s1pp;
3719 *nppp = NULL;
3720 } else {
3721 *oppp = s1pp;
3722 *nppp = s2pp;
3727 * Concatenate page list nppp onto the end of list ppp.
3729 void
3730 page_list_concat(page_t **ppp, page_t **nppp)
3732 page_t *s1pp, *s2pp, *e1pp, *e2pp;
3734 if (*nppp == NULL) {
3735 return;
3737 if (*ppp == NULL) {
3738 *ppp = *nppp;
3739 return;
3741 s1pp = *ppp;
3742 e1pp = s1pp->p_prev;
3743 s2pp = *nppp;
3744 e2pp = s2pp->p_prev;
3745 s1pp->p_prev = e2pp;
3746 e2pp->p_next = s1pp;
3747 e1pp->p_next = s2pp;
3748 s2pp->p_prev = e1pp;
3752 * return the next page in the page list
3754 page_t *
3755 page_list_next(page_t *pp)
3757 return (pp->p_next);
3762 * Add the page to the front of the linked list of pages
3763 * using p_vpnext/p_vpprev pointers for the list.
3765 * The caller is responsible for protecting the lists.
3767 void
3768 page_vpadd(page_t **ppp, page_t *pp)
3770 if (*ppp == NULL) {
3771 pp->p_vpnext = pp->p_vpprev = pp;
3772 } else {
3773 pp->p_vpnext = *ppp;
3774 pp->p_vpprev = (*ppp)->p_vpprev;
3775 (*ppp)->p_vpprev = pp;
3776 pp->p_vpprev->p_vpnext = pp;
3778 *ppp = pp;
3782 * Remove this page from the linked list of pages
3783 * using p_vpnext/p_vpprev pointers for the list.
3785 * The caller is responsible for protecting the lists.
3787 void
3788 page_vpsub(page_t **ppp, page_t *pp)
3790 if (*ppp == NULL || pp == NULL) {
3791 panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3792 (void *)pp, (void *)(*ppp));
3793 /*NOTREACHED*/
3796 if (*ppp == pp)
3797 *ppp = pp->p_vpnext; /* go to next page */
3799 if (*ppp == pp)
3800 *ppp = NULL; /* page list is gone */
3801 else {
3802 pp->p_vpprev->p_vpnext = pp->p_vpnext;
3803 pp->p_vpnext->p_vpprev = pp->p_vpprev;
3805 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */
3809 * Lock a physical page into memory "long term". Used to support "lock
3810 * in memory" functions. Accepts the page to be locked, and a cow variable
3811 * to indicate whether a the lock will travel to the new page during
3812 * a potential copy-on-write.
3815 page_pp_lock(
3816 page_t *pp, /* page to be locked */
3817 int cow, /* cow lock */
3818 int kernel) /* must succeed -- ignore checking */
3820 int r = 0; /* result -- assume failure */
3822 ASSERT(PAGE_LOCKED(pp));
3824 page_struct_lock(pp);
3826 * Acquire the "freemem_lock" for availrmem.
3828 if (cow) {
3829 mutex_enter(&freemem_lock);
3830 if ((availrmem > pages_pp_maximum) &&
3831 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3832 availrmem--;
3833 pages_locked++;
3834 mutex_exit(&freemem_lock);
3835 r = 1;
3836 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3837 cmn_err(CE_WARN,
3838 "COW lock limit reached on pfn 0x%lx",
3839 page_pptonum(pp));
3841 } else
3842 mutex_exit(&freemem_lock);
3843 } else {
3844 if (pp->p_lckcnt) {
3845 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3846 r = 1;
3847 if (++pp->p_lckcnt ==
3848 (ushort_t)PAGE_LOCK_MAXIMUM) {
3849 cmn_err(CE_WARN, "Page lock limit "
3850 "reached on pfn 0x%lx",
3851 page_pptonum(pp));
3854 } else {
3855 if (kernel) {
3856 /* availrmem accounting done by caller */
3857 ++pp->p_lckcnt;
3858 r = 1;
3859 } else {
3860 mutex_enter(&freemem_lock);
3861 if (availrmem > pages_pp_maximum) {
3862 availrmem--;
3863 pages_locked++;
3864 ++pp->p_lckcnt;
3865 r = 1;
3867 mutex_exit(&freemem_lock);
3871 page_struct_unlock(pp);
3872 return (r);
3876 * Decommit a lock on a physical page frame. Account for cow locks if
3877 * appropriate.
3879 void
3880 page_pp_unlock(
3881 page_t *pp, /* page to be unlocked */
3882 int cow, /* expect cow lock */
3883 int kernel) /* this was a kernel lock */
3885 ASSERT(PAGE_LOCKED(pp));
3887 page_struct_lock(pp);
3889 * Acquire the "freemem_lock" for availrmem.
3890 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3891 * could be called to unlock even if nothing is locked. This could
3892 * happen if locked file pages were truncated (removing the lock)
3893 * and the file was grown again and new pages faulted in; the new
3894 * pages are unlocked but the segment still thinks they're locked.
3896 if (cow) {
3897 if (pp->p_cowcnt) {
3898 mutex_enter(&freemem_lock);
3899 pp->p_cowcnt--;
3900 availrmem++;
3901 pages_locked--;
3902 mutex_exit(&freemem_lock);
3904 } else {
3905 if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3906 if (!kernel) {
3907 mutex_enter(&freemem_lock);
3908 availrmem++;
3909 pages_locked--;
3910 mutex_exit(&freemem_lock);
3914 page_struct_unlock(pp);
3918 * This routine reserves availrmem for npages;
3919 * flags: KM_NOSLEEP or KM_SLEEP
3920 * returns 1 on success or 0 on failure
3923 page_resv(pgcnt_t npages, uint_t flags)
3925 mutex_enter(&freemem_lock);
3926 while (availrmem < tune.t_minarmem + npages) {
3927 if (flags & KM_NOSLEEP) {
3928 mutex_exit(&freemem_lock);
3929 return (0);
3931 mutex_exit(&freemem_lock);
3932 page_needfree(npages);
3933 kmem_reap();
3934 delay(hz >> 2);
3935 page_needfree(-(spgcnt_t)npages);
3936 mutex_enter(&freemem_lock);
3938 availrmem -= npages;
3939 mutex_exit(&freemem_lock);
3940 return (1);
3944 * This routine unreserves availrmem for npages;
3946 void
3947 page_unresv(pgcnt_t npages)
3949 mutex_enter(&freemem_lock);
3950 availrmem += npages;
3951 mutex_exit(&freemem_lock);
3955 * See Statement at the beginning of segvn_lockop() regarding
3956 * the way we handle cowcnts and lckcnts.
3958 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3959 * that breaks COW has PROT_WRITE.
3961 * Note that, we may also break COW in case we are softlocking
3962 * on read access during physio;
3963 * in this softlock case, the vpage may not have PROT_WRITE.
3964 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3965 * if the vpage doesn't have PROT_WRITE.
3967 * This routine is never called if we are stealing a page
3968 * in anon_private.
3970 * The caller subtracted from availrmem for read only mapping.
3971 * if lckcnt is 1 increment availrmem.
3973 void
3974 page_pp_useclaim(
3975 page_t *opp, /* original page frame losing lock */
3976 page_t *npp, /* new page frame gaining lock */
3977 uint_t write_perm) /* set if vpage has PROT_WRITE */
3979 int payback = 0;
3980 int nidx, oidx;
3982 ASSERT(PAGE_LOCKED(opp));
3983 ASSERT(PAGE_LOCKED(npp));
3986 * Since we have two pages we probably have two locks. We need to take
3987 * them in a defined order to avoid deadlocks. It's also possible they
3988 * both hash to the same lock in which case this is a non-issue.
3990 nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
3991 oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
3992 if (nidx < oidx) {
3993 page_struct_lock(npp);
3994 page_struct_lock(opp);
3995 } else if (oidx < nidx) {
3996 page_struct_lock(opp);
3997 page_struct_lock(npp);
3998 } else { /* The pages hash to the same lock */
3999 page_struct_lock(npp);
4002 ASSERT(npp->p_cowcnt == 0);
4003 ASSERT(npp->p_lckcnt == 0);
4005 /* Don't use claim if nothing is locked (see page_pp_unlock above) */
4006 if ((write_perm && opp->p_cowcnt != 0) ||
4007 (!write_perm && opp->p_lckcnt != 0)) {
4009 if (write_perm) {
4010 npp->p_cowcnt++;
4011 ASSERT(opp->p_cowcnt != 0);
4012 opp->p_cowcnt--;
4013 } else {
4015 ASSERT(opp->p_lckcnt != 0);
4018 * We didn't need availrmem decremented if p_lckcnt on
4019 * original page is 1. Here, we are unlocking
4020 * read-only copy belonging to original page and
4021 * are locking a copy belonging to new page.
4023 if (opp->p_lckcnt == 1)
4024 payback = 1;
4026 npp->p_lckcnt++;
4027 opp->p_lckcnt--;
4030 if (payback) {
4031 mutex_enter(&freemem_lock);
4032 availrmem++;
4033 pages_useclaim--;
4034 mutex_exit(&freemem_lock);
4037 if (nidx < oidx) {
4038 page_struct_unlock(opp);
4039 page_struct_unlock(npp);
4040 } else if (oidx < nidx) {
4041 page_struct_unlock(npp);
4042 page_struct_unlock(opp);
4043 } else { /* The pages hash to the same lock */
4044 page_struct_unlock(npp);
4049 * Simple claim adjust functions -- used to support changes in
4050 * claims due to changes in access permissions. Used by segvn_setprot().
4053 page_addclaim(page_t *pp)
4055 int r = 0; /* result */
4057 ASSERT(PAGE_LOCKED(pp));
4059 page_struct_lock(pp);
4060 ASSERT(pp->p_lckcnt != 0);
4062 if (pp->p_lckcnt == 1) {
4063 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4064 --pp->p_lckcnt;
4065 r = 1;
4066 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4067 cmn_err(CE_WARN,
4068 "COW lock limit reached on pfn 0x%lx",
4069 page_pptonum(pp));
4072 } else {
4073 mutex_enter(&freemem_lock);
4074 if ((availrmem > pages_pp_maximum) &&
4075 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4076 --availrmem;
4077 ++pages_claimed;
4078 mutex_exit(&freemem_lock);
4079 --pp->p_lckcnt;
4080 r = 1;
4081 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4082 cmn_err(CE_WARN,
4083 "COW lock limit reached on pfn 0x%lx",
4084 page_pptonum(pp));
4086 } else
4087 mutex_exit(&freemem_lock);
4089 page_struct_unlock(pp);
4090 return (r);
4094 page_subclaim(page_t *pp)
4096 int r = 0;
4098 ASSERT(PAGE_LOCKED(pp));
4100 page_struct_lock(pp);
4101 ASSERT(pp->p_cowcnt != 0);
4103 if (pp->p_lckcnt) {
4104 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4105 r = 1;
4107 * for availrmem
4109 mutex_enter(&freemem_lock);
4110 availrmem++;
4111 pages_claimed--;
4112 mutex_exit(&freemem_lock);
4114 pp->p_cowcnt--;
4116 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4117 cmn_err(CE_WARN,
4118 "Page lock limit reached on pfn 0x%lx",
4119 page_pptonum(pp));
4122 } else {
4123 r = 1;
4124 pp->p_cowcnt--;
4125 pp->p_lckcnt++;
4127 page_struct_unlock(pp);
4128 return (r);
4132 * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4133 * page.
4136 page_addclaim_pages(page_t **ppa)
4138 pgcnt_t lckpgs = 0, pg_idx;
4140 VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4143 * Only need to take the page struct lock on the large page root.
4145 page_struct_lock(ppa[0]);
4146 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4148 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4149 ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4150 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4151 page_struct_unlock(ppa[0]);
4152 return (0);
4154 if (ppa[pg_idx]->p_lckcnt > 1)
4155 lckpgs++;
4158 if (lckpgs != 0) {
4159 mutex_enter(&freemem_lock);
4160 if (availrmem >= pages_pp_maximum + lckpgs) {
4161 availrmem -= lckpgs;
4162 pages_claimed += lckpgs;
4163 } else {
4164 mutex_exit(&freemem_lock);
4165 page_struct_unlock(ppa[0]);
4166 return (0);
4168 mutex_exit(&freemem_lock);
4171 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4172 ppa[pg_idx]->p_lckcnt--;
4173 ppa[pg_idx]->p_cowcnt++;
4175 page_struct_unlock(ppa[0]);
4176 return (1);
4180 * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4181 * page.
4184 page_subclaim_pages(page_t **ppa)
4186 pgcnt_t ulckpgs = 0, pg_idx;
4188 VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4191 * Only need to take the page struct lock on the large page root.
4193 page_struct_lock(ppa[0]);
4194 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4196 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4197 ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4198 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4199 page_struct_unlock(ppa[0]);
4200 return (0);
4202 if (ppa[pg_idx]->p_lckcnt != 0)
4203 ulckpgs++;
4206 if (ulckpgs != 0) {
4207 mutex_enter(&freemem_lock);
4208 availrmem += ulckpgs;
4209 pages_claimed -= ulckpgs;
4210 mutex_exit(&freemem_lock);
4213 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4214 ppa[pg_idx]->p_cowcnt--;
4215 ppa[pg_idx]->p_lckcnt++;
4218 page_struct_unlock(ppa[0]);
4219 return (1);
4222 page_t *
4223 page_numtopp(pfn_t pfnum, se_t se)
4225 page_t *pp;
4227 retry:
4228 pp = page_numtopp_nolock(pfnum);
4229 if (pp == NULL) {
4230 return ((page_t *)NULL);
4234 * Acquire the appropriate lock on the page.
4236 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4237 if (page_pptonum(pp) != pfnum)
4238 goto retry;
4239 continue;
4242 if (page_pptonum(pp) != pfnum) {
4243 page_unlock(pp);
4244 goto retry;
4247 return (pp);
4250 page_t *
4251 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4253 page_t *pp;
4255 retry:
4256 pp = page_numtopp_nolock(pfnum);
4257 if (pp == NULL) {
4258 return ((page_t *)NULL);
4262 * Acquire the appropriate lock on the page.
4264 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4265 if (page_pptonum(pp) != pfnum)
4266 goto retry;
4267 continue;
4270 if (page_pptonum(pp) != pfnum) {
4271 page_unlock(pp);
4272 goto retry;
4275 return (pp);
4279 * This routine is like page_numtopp, but will only return page structs
4280 * for pages which are ok for loading into hardware using the page struct.
4282 page_t *
4283 page_numtopp_nowait(pfn_t pfnum, se_t se)
4285 page_t *pp;
4287 retry:
4288 pp = page_numtopp_nolock(pfnum);
4289 if (pp == NULL) {
4290 return ((page_t *)NULL);
4294 * Try to acquire the appropriate lock on the page.
4296 if (PP_ISFREE(pp))
4297 pp = NULL;
4298 else {
4299 if (!page_trylock(pp, se))
4300 pp = NULL;
4301 else {
4302 if (page_pptonum(pp) != pfnum) {
4303 page_unlock(pp);
4304 goto retry;
4306 if (PP_ISFREE(pp)) {
4307 page_unlock(pp);
4308 pp = NULL;
4312 return (pp);
4315 #define SYNC_PROGRESS_NPAGES 1000
4318 * Returns a count of dirty pages that are in the process
4319 * of being written out. If 'cleanit' is set, try to push the page.
4321 pgcnt_t
4322 page_busy(int cleanit)
4324 page_t *page0 = page_first();
4325 page_t *pp = page0;
4326 pgcnt_t nppbusy = 0;
4327 int counter = 0;
4328 u_offset_t off;
4330 do {
4331 vnode_t *vp = pp->p_vnode;
4334 * Reset the sync timeout. The page list is very long
4335 * on large memory systems.
4337 if (++counter > SYNC_PROGRESS_NPAGES) {
4338 counter = 0;
4339 vfs_syncprogress();
4343 * A page is a candidate for syncing if it is:
4345 * (a) On neither the freelist nor the cachelist
4346 * (b) Hashed onto a vnode
4347 * (c) Not a kernel page
4348 * (d) Dirty
4349 * (e) Not part of a swapfile
4350 * (f) a page which belongs to a real vnode; eg has a non-null
4351 * v_vfsp pointer.
4352 * (g) Backed by a filesystem which doesn't have a
4353 * stubbed-out sync operation
4355 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4356 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4357 vfs_can_sync(vp->v_vfsp)) {
4358 nppbusy++;
4360 if (!cleanit)
4361 continue;
4362 if (!page_trylock(pp, SE_EXCL))
4363 continue;
4365 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4366 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4367 !(hat_pagesync(pp,
4368 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4369 page_unlock(pp);
4370 continue;
4372 off = pp->p_offset;
4373 VN_HOLD(vp);
4374 page_unlock(pp);
4375 (void) VOP_PUTPAGE(vp, off, PAGESIZE,
4376 B_ASYNC | B_FREE, kcred, NULL);
4377 VN_RELE(vp);
4379 } while ((pp = page_next(pp)) != page0);
4381 vfs_syncprogress();
4382 return (nppbusy);
4385 void page_invalidate_pages(void);
4388 * callback handler to vm sub-system
4390 * callers make sure no recursive entries to this func.
4392 /*ARGSUSED*/
4393 boolean_t
4394 callb_vm_cpr(void *arg, int code)
4396 if (code == CB_CODE_CPR_CHKPT)
4397 page_invalidate_pages();
4398 return (B_TRUE);
4402 * Invalidate all pages of the system.
4403 * It shouldn't be called until all user page activities are all stopped.
4405 void
4406 page_invalidate_pages()
4408 page_t *pp;
4409 page_t *page0;
4410 pgcnt_t nbusypages;
4411 int retry = 0;
4412 const int MAXRETRIES = 4;
4413 top:
4415 * Flush dirty pages and destroy the clean ones.
4417 nbusypages = 0;
4419 pp = page0 = page_first();
4420 do {
4421 struct vnode *vp;
4422 u_offset_t offset;
4423 int mod;
4426 * skip the page if it has no vnode or the page associated
4427 * with the kernel vnode or prom allocated kernel mem.
4429 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4430 continue;
4433 * skip the page which is already free invalidated.
4435 if (PP_ISFREE(pp) && PP_ISAGED(pp))
4436 continue;
4439 * skip pages that are already locked or can't be "exclusively"
4440 * locked or are already free. After we lock the page, check
4441 * the free and age bits again to be sure it's not destroyed
4442 * yet.
4443 * To achieve max. parallelization, we use page_trylock instead
4444 * of page_lock so that we don't get block on individual pages
4445 * while we have thousands of other pages to process.
4447 if (!page_trylock(pp, SE_EXCL)) {
4448 nbusypages++;
4449 continue;
4450 } else if (PP_ISFREE(pp)) {
4451 if (!PP_ISAGED(pp)) {
4452 page_destroy_free(pp);
4453 } else {
4454 page_unlock(pp);
4456 continue;
4459 * Is this page involved in some I/O? shared?
4461 * The page_struct_lock need not be acquired to
4462 * examine these fields since the page has an
4463 * "exclusive" lock.
4465 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4466 page_unlock(pp);
4467 continue;
4470 if (vp->v_type == VCHR) {
4471 panic("vp->v_type == VCHR");
4472 /*NOTREACHED*/
4475 if (!page_try_demote_pages(pp)) {
4476 page_unlock(pp);
4477 continue;
4481 * Check the modified bit. Leave the bits alone in hardware
4482 * (they will be modified if we do the putpage).
4484 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4485 & P_MOD);
4486 if (mod) {
4487 offset = pp->p_offset;
4489 * Hold the vnode before releasing the page lock
4490 * to prevent it from being freed and re-used by
4491 * some other thread.
4493 VN_HOLD(vp);
4494 page_unlock(pp);
4496 * No error return is checked here. Callers such as
4497 * cpr deals with the dirty pages at the dump time
4498 * if this putpage fails.
4500 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4501 kcred, NULL);
4502 VN_RELE(vp);
4503 } else {
4504 /*LINTED: constant in conditional context*/
4505 VN_DISPOSE(pp, B_INVAL, 0, kcred);
4507 } while ((pp = page_next(pp)) != page0);
4508 if (nbusypages && retry++ < MAXRETRIES) {
4509 delay(1);
4510 goto top;
4515 * Replace the page "old" with the page "new" on the page hash and vnode lists
4517 * the replacement must be done in place, ie the equivalent sequence:
4519 * vp = old->p_vnode;
4520 * off = old->p_offset;
4521 * page_do_hashout(old)
4522 * page_do_hashin(new, vp, off)
4524 * doesn't work, since
4525 * 1) if old is the only page on the vnode, the v_pages list has a window
4526 * where it looks empty. This will break file system assumptions.
4527 * and
4528 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4530 static void
4531 page_do_relocate_hash(page_t *new, page_t *old)
4533 page_t **hash_list;
4534 vnode_t *vp = old->p_vnode;
4535 kmutex_t *sep;
4537 ASSERT(PAGE_EXCL(old));
4538 ASSERT(PAGE_EXCL(new));
4539 ASSERT(vp != NULL);
4540 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4541 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4544 * First find old page on the page hash list
4546 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4548 for (;;) {
4549 if (*hash_list == old)
4550 break;
4551 if (*hash_list == NULL) {
4552 panic("page_do_hashout");
4553 /*NOTREACHED*/
4555 hash_list = &(*hash_list)->p_hash;
4559 * update new and replace old with new on the page hash list
4561 new->p_vnode = old->p_vnode;
4562 new->p_offset = old->p_offset;
4563 new->p_hash = old->p_hash;
4564 *hash_list = new;
4566 if ((new->p_vnode->v_flag & VISSWAP) != 0)
4567 PP_SETSWAP(new);
4570 * replace old with new on the vnode's page list
4572 if (old->p_vpnext == old) {
4573 new->p_vpnext = new;
4574 new->p_vpprev = new;
4575 } else {
4576 new->p_vpnext = old->p_vpnext;
4577 new->p_vpprev = old->p_vpprev;
4578 new->p_vpnext->p_vpprev = new;
4579 new->p_vpprev->p_vpnext = new;
4581 if (vp->v_pages == old)
4582 vp->v_pages = new;
4585 * clear out the old page
4587 old->p_hash = NULL;
4588 old->p_vpnext = NULL;
4589 old->p_vpprev = NULL;
4590 old->p_vnode = NULL;
4591 PP_CLRSWAP(old);
4592 old->p_offset = (u_offset_t)-1;
4593 page_clr_all_props(old);
4596 * Wake up processes waiting for this page. The page's
4597 * identity has been changed, and is probably not the
4598 * desired page any longer.
4600 sep = page_se_mutex(old);
4601 mutex_enter(sep);
4602 old->p_selock &= ~SE_EWANTED;
4603 if (CV_HAS_WAITERS(&old->p_cv))
4604 cv_broadcast(&old->p_cv);
4605 mutex_exit(sep);
4609 * This function moves the identity of page "pp_old" to page "pp_new".
4610 * Both pages must be locked on entry. "pp_new" is free, has no identity,
4611 * and need not be hashed out from anywhere.
4613 void
4614 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4616 vnode_t *vp = pp_old->p_vnode;
4617 u_offset_t off = pp_old->p_offset;
4618 kmutex_t *phm, *vphm;
4621 * Rehash two pages
4623 ASSERT(PAGE_EXCL(pp_old));
4624 ASSERT(PAGE_EXCL(pp_new));
4625 ASSERT(vp != NULL);
4626 ASSERT(pp_new->p_vnode == NULL);
4629 * hashout then hashin while holding the mutexes
4631 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4632 mutex_enter(phm);
4633 vphm = page_vnode_mutex(vp);
4634 mutex_enter(vphm);
4636 page_do_relocate_hash(pp_new, pp_old);
4638 /* The following comment preserved from page_flip(). */
4639 pp_new->p_fsdata = pp_old->p_fsdata;
4640 pp_old->p_fsdata = 0;
4641 mutex_exit(vphm);
4642 mutex_exit(phm);
4645 * The page_struct_lock need not be acquired for lckcnt and
4646 * cowcnt since the page has an "exclusive" lock.
4648 ASSERT(pp_new->p_lckcnt == 0);
4649 ASSERT(pp_new->p_cowcnt == 0);
4650 pp_new->p_lckcnt = pp_old->p_lckcnt;
4651 pp_new->p_cowcnt = pp_old->p_cowcnt;
4652 pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4657 * Helper routine used to lock all remaining members of a
4658 * large page. The caller is responsible for passing in a locked
4659 * pp. If pp is a large page, then it succeeds in locking all the
4660 * remaining constituent pages or it returns with only the
4661 * original page locked.
4663 * Returns 1 on success, 0 on failure.
4665 * If success is returned this routine guarantees p_szc for all constituent
4666 * pages of a large page pp belongs to can't change. To achieve this we
4667 * recheck szc of pp after locking all constituent pages and retry if szc
4668 * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4669 * lock on one of constituent pages it can't be running after all constituent
4670 * pages are locked. hat_page_demote() with a lock on a constituent page
4671 * outside of this large page (i.e. pp belonged to a larger large page) is
4672 * already done with all constituent pages of pp since the root's p_szc is
4673 * changed last. Therefore no need to synchronize with hat_page_demote() that
4674 * locked a constituent page outside of pp's current large page.
4676 #ifdef DEBUG
4677 uint32_t gpg_trylock_mtbf = 0;
4678 #endif
4681 group_page_trylock(page_t *pp, se_t se)
4683 page_t *tpp;
4684 pgcnt_t npgs, i, j;
4685 uint_t pszc = pp->p_szc;
4687 #ifdef DEBUG
4688 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4689 return (0);
4691 #endif
4693 if (pp != PP_GROUPLEADER(pp, pszc)) {
4694 return (0);
4697 retry:
4698 ASSERT(PAGE_LOCKED_SE(pp, se));
4699 ASSERT(!PP_ISFREE(pp));
4700 if (pszc == 0) {
4701 return (1);
4703 npgs = page_get_pagecnt(pszc);
4704 tpp = pp + 1;
4705 for (i = 1; i < npgs; i++, tpp++) {
4706 if (!page_trylock(tpp, se)) {
4707 tpp = pp + 1;
4708 for (j = 1; j < i; j++, tpp++) {
4709 page_unlock(tpp);
4711 return (0);
4714 if (pp->p_szc != pszc) {
4715 ASSERT(pp->p_szc < pszc);
4716 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4717 !IS_SWAPFSVP(pp->p_vnode));
4718 tpp = pp + 1;
4719 for (i = 1; i < npgs; i++, tpp++) {
4720 page_unlock(tpp);
4722 pszc = pp->p_szc;
4723 goto retry;
4725 return (1);
4728 void
4729 group_page_unlock(page_t *pp)
4731 page_t *tpp;
4732 pgcnt_t npgs, i;
4734 ASSERT(PAGE_LOCKED(pp));
4735 ASSERT(!PP_ISFREE(pp));
4736 ASSERT(pp == PP_PAGEROOT(pp));
4737 npgs = page_get_pagecnt(pp->p_szc);
4738 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4739 page_unlock(tpp);
4744 * returns
4745 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages
4746 * ERANGE : this is not a base page
4747 * EBUSY : failure to get locks on the page/pages
4748 * ENOMEM : failure to obtain replacement pages
4749 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel
4750 * EIO : An error occurred while trying to copy the page data
4752 * Return with all constituent members of target and replacement
4753 * SE_EXCL locked. It is the callers responsibility to drop the
4754 * locks.
4757 do_page_relocate(
4758 page_t **target,
4759 page_t **replacement,
4760 int grouplock,
4761 spgcnt_t *nrelocp,
4762 lgrp_t *lgrp)
4764 page_t *first_repl;
4765 page_t *repl;
4766 page_t *targ;
4767 page_t *pl = NULL;
4768 uint_t ppattr;
4769 pfn_t pfn, repl_pfn;
4770 uint_t szc;
4771 spgcnt_t npgs, i;
4772 int repl_contig = 0;
4773 uint_t flags = 0;
4774 spgcnt_t dofree = 0;
4776 *nrelocp = 0;
4778 #if defined(__sparc)
4780 * We need to wait till OBP has completed
4781 * its boot-time handoff of its resources to the kernel
4782 * before we allow page relocation
4784 if (page_relocate_ready == 0) {
4785 return (EAGAIN);
4787 #endif
4790 * If this is not a base page,
4791 * just return with 0x0 pages relocated.
4793 targ = *target;
4794 ASSERT(PAGE_EXCL(targ));
4795 ASSERT(!PP_ISFREE(targ));
4796 szc = targ->p_szc;
4797 ASSERT(szc < mmu_page_sizes);
4798 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4799 pfn = targ->p_pagenum;
4800 if (pfn != PFN_BASE(pfn, szc)) {
4801 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4802 return (ERANGE);
4805 if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4806 repl_pfn = repl->p_pagenum;
4807 if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4808 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4809 return (ERANGE);
4811 repl_contig = 1;
4815 * We must lock all members of this large page or we cannot
4816 * relocate any part of it.
4818 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4819 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4820 return (EBUSY);
4824 * reread szc it could have been decreased before
4825 * group_page_trylock() was done.
4827 szc = targ->p_szc;
4828 ASSERT(szc < mmu_page_sizes);
4829 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4830 ASSERT(pfn == PFN_BASE(pfn, szc));
4832 npgs = page_get_pagecnt(targ->p_szc);
4834 if (repl == NULL) {
4835 dofree = npgs; /* Size of target page in MMU pages */
4836 if (!page_create_wait(dofree, 0)) {
4837 if (grouplock != 0) {
4838 group_page_unlock(targ);
4840 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4841 return (ENOMEM);
4845 * seg kmem pages require that the target and replacement
4846 * page be the same pagesize.
4848 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4849 repl = page_get_replacement_page(targ, lgrp, flags);
4850 if (repl == NULL) {
4851 if (grouplock != 0) {
4852 group_page_unlock(targ);
4854 page_create_putback(dofree);
4855 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4856 return (ENOMEM);
4859 #ifdef DEBUG
4860 else {
4861 ASSERT(PAGE_LOCKED(repl));
4863 #endif /* DEBUG */
4865 #if defined(__sparc)
4867 * Let hat_page_relocate() complete the relocation if it's kernel page
4869 if (VN_ISKAS(targ->p_vnode)) {
4870 *replacement = repl;
4871 if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4872 if (grouplock != 0) {
4873 group_page_unlock(targ);
4875 if (dofree) {
4876 *replacement = NULL;
4877 page_free_replacement_page(repl);
4878 page_create_putback(dofree);
4880 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4881 return (EAGAIN);
4883 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4884 return (0);
4886 #else
4887 #if defined(lint)
4888 dofree = dofree;
4889 #endif
4890 #endif
4892 first_repl = repl;
4894 for (i = 0; i < npgs; i++) {
4895 ASSERT(PAGE_EXCL(targ));
4896 ASSERT(targ->p_slckcnt == 0);
4897 ASSERT(repl->p_slckcnt == 0);
4899 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4901 ASSERT(hat_page_getshare(targ) == 0);
4902 ASSERT(!PP_ISFREE(targ));
4903 ASSERT(targ->p_pagenum == (pfn + i));
4904 ASSERT(repl_contig == 0 ||
4905 repl->p_pagenum == (repl_pfn + i));
4908 * Copy the page contents and attributes then
4909 * relocate the page in the page hash.
4911 if (ppcopy(targ, repl) == 0) {
4912 targ = *target;
4913 repl = first_repl;
4914 VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4915 if (grouplock != 0) {
4916 group_page_unlock(targ);
4918 if (dofree) {
4919 *replacement = NULL;
4920 page_free_replacement_page(repl);
4921 page_create_putback(dofree);
4923 return (EIO);
4926 targ++;
4927 if (repl_contig != 0) {
4928 repl++;
4929 } else {
4930 repl = repl->p_next;
4934 repl = first_repl;
4935 targ = *target;
4937 for (i = 0; i < npgs; i++) {
4938 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4939 page_clr_all_props(repl);
4940 page_set_props(repl, ppattr);
4941 page_relocate_hash(repl, targ);
4943 ASSERT(hat_page_getshare(targ) == 0);
4944 ASSERT(hat_page_getshare(repl) == 0);
4946 * Now clear the props on targ, after the
4947 * page_relocate_hash(), they no longer
4948 * have any meaning.
4950 page_clr_all_props(targ);
4951 ASSERT(targ->p_next == targ);
4952 ASSERT(targ->p_prev == targ);
4953 page_list_concat(&pl, &targ);
4955 targ++;
4956 if (repl_contig != 0) {
4957 repl++;
4958 } else {
4959 repl = repl->p_next;
4962 /* assert that we have come full circle with repl */
4963 ASSERT(repl_contig == 1 || first_repl == repl);
4965 *target = pl;
4966 if (*replacement == NULL) {
4967 ASSERT(first_repl == repl);
4968 *replacement = repl;
4970 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4971 *nrelocp = npgs;
4972 return (0);
4975 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4978 page_relocate(
4979 page_t **target,
4980 page_t **replacement,
4981 int grouplock,
4982 int freetarget,
4983 spgcnt_t *nrelocp,
4984 lgrp_t *lgrp)
4986 spgcnt_t ret;
4988 /* do_page_relocate returns 0 on success or errno value */
4989 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4991 if (ret != 0 || freetarget == 0) {
4992 return (ret);
4994 if (*nrelocp == 1) {
4995 ASSERT(*target != NULL);
4996 page_free(*target, 1);
4997 } else {
4998 page_t *tpp = *target;
4999 uint_t szc = tpp->p_szc;
5000 pgcnt_t npgs = page_get_pagecnt(szc);
5001 ASSERT(npgs > 1);
5002 ASSERT(szc != 0);
5003 do {
5004 ASSERT(PAGE_EXCL(tpp));
5005 ASSERT(!hat_page_is_mapped(tpp));
5006 ASSERT(tpp->p_szc == szc);
5007 PP_SETFREE(tpp);
5008 PP_SETAGED(tpp);
5009 npgs--;
5010 } while ((tpp = tpp->p_next) != *target);
5011 ASSERT(npgs == 0);
5012 page_list_add_pages(*target, 0);
5013 npgs = page_get_pagecnt(szc);
5014 page_create_putback(npgs);
5016 return (ret);
5020 * it is up to the caller to deal with pcf accounting.
5022 void
5023 page_free_replacement_page(page_t *pplist)
5025 page_t *pp;
5027 while (pplist != NULL) {
5029 * pp_targ is a linked list.
5031 pp = pplist;
5032 if (pp->p_szc == 0) {
5033 page_sub(&pplist, pp);
5034 page_clr_all_props(pp);
5035 PP_SETFREE(pp);
5036 PP_SETAGED(pp);
5037 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5038 page_unlock(pp);
5039 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5040 } else {
5041 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5042 page_t *tpp;
5043 page_list_break(&pp, &pplist, curnpgs);
5044 tpp = pp;
5045 do {
5046 ASSERT(PAGE_EXCL(tpp));
5047 ASSERT(!hat_page_is_mapped(tpp));
5048 page_clr_all_props(tpp);
5049 PP_SETFREE(tpp);
5050 PP_SETAGED(tpp);
5051 } while ((tpp = tpp->p_next) != pp);
5052 page_list_add_pages(pp, 0);
5053 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5059 * Relocate target to non-relocatable replacement page.
5062 page_relocate_cage(page_t **target, page_t **replacement)
5064 page_t *tpp, *rpp;
5065 spgcnt_t pgcnt, npgs;
5066 int result;
5068 tpp = *target;
5070 ASSERT(PAGE_EXCL(tpp));
5071 ASSERT(tpp->p_szc == 0);
5073 pgcnt = btop(page_get_pagesize(tpp->p_szc));
5075 do {
5076 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5077 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5078 if (rpp == NULL) {
5079 page_create_putback(pgcnt);
5080 kcage_cageout_wakeup();
5082 } while (rpp == NULL);
5084 ASSERT(PP_ISNORELOC(rpp));
5086 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5088 if (result == 0) {
5089 *replacement = rpp;
5090 if (pgcnt != npgs)
5091 panic("page_relocate_cage: partial relocation");
5094 return (result);
5098 * Release the page lock on a page, place on cachelist
5099 * tail if no longer mapped. Caller can let us know if
5100 * the page is known to be clean.
5103 page_release(page_t *pp, int checkmod)
5105 int status;
5107 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5108 (pp->p_vnode != NULL));
5110 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5111 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5112 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5113 !hat_page_is_mapped(pp)) {
5116 * If page is modified, unlock it
5118 * (p_nrm & P_MOD) bit has the latest stuff because:
5119 * (1) We found that this page doesn't have any mappings
5120 * _after_ holding SE_EXCL and
5121 * (2) We didn't drop SE_EXCL lock after the check in (1)
5123 if (checkmod && hat_ismod(pp)) {
5124 page_unlock(pp);
5125 status = PGREL_MOD;
5126 } else {
5127 /*LINTED: constant in conditional context*/
5128 VN_DISPOSE(pp, B_FREE, 0, kcred);
5129 status = PGREL_CLEAN;
5131 } else {
5132 page_unlock(pp);
5133 status = PGREL_NOTREL;
5135 return (status);
5139 * Given a constituent page, try to demote the large page on the freelist.
5141 * Returns nonzero if the page could be demoted successfully. Returns with
5142 * the constituent page still locked.
5145 page_try_demote_free_pages(page_t *pp)
5147 page_t *rootpp = pp;
5148 pfn_t pfn = page_pptonum(pp);
5149 spgcnt_t npgs;
5150 uint_t szc = pp->p_szc;
5152 ASSERT(PP_ISFREE(pp));
5153 ASSERT(PAGE_EXCL(pp));
5156 * Adjust rootpp and lock it, if `pp' is not the base
5157 * constituent page.
5159 npgs = page_get_pagecnt(pp->p_szc);
5160 if (npgs == 1) {
5161 return (0);
5164 if (!IS_P2ALIGNED(pfn, npgs)) {
5165 pfn = P2ALIGN(pfn, npgs);
5166 rootpp = page_numtopp_nolock(pfn);
5169 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5170 return (0);
5173 if (rootpp->p_szc != szc) {
5174 if (pp != rootpp)
5175 page_unlock(rootpp);
5176 return (0);
5179 page_demote_free_pages(rootpp);
5181 if (pp != rootpp)
5182 page_unlock(rootpp);
5184 ASSERT(PP_ISFREE(pp));
5185 ASSERT(PAGE_EXCL(pp));
5186 return (1);
5190 * Given a constituent page, try to demote the large page.
5192 * Returns nonzero if the page could be demoted successfully. Returns with
5193 * the constituent page still locked.
5196 page_try_demote_pages(page_t *pp)
5198 page_t *tpp, *rootpp = pp;
5199 pfn_t pfn = page_pptonum(pp);
5200 spgcnt_t i, npgs;
5201 uint_t szc = pp->p_szc;
5202 vnode_t *vp = pp->p_vnode;
5204 ASSERT(PAGE_EXCL(pp));
5206 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5208 if (pp->p_szc == 0) {
5209 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5210 return (1);
5213 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5214 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5215 page_demote_vp_pages(pp);
5216 ASSERT(pp->p_szc == 0);
5217 return (1);
5221 * Adjust rootpp if passed in is not the base
5222 * constituent page.
5224 npgs = page_get_pagecnt(pp->p_szc);
5225 ASSERT(npgs > 1);
5226 if (!IS_P2ALIGNED(pfn, npgs)) {
5227 pfn = P2ALIGN(pfn, npgs);
5228 rootpp = page_numtopp_nolock(pfn);
5229 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5230 ASSERT(rootpp->p_vnode != NULL);
5231 ASSERT(rootpp->p_szc == szc);
5235 * We can't demote kernel pages since we can't hat_unload()
5236 * the mappings.
5238 if (VN_ISKAS(rootpp->p_vnode))
5239 return (0);
5242 * Attempt to lock all constituent pages except the page passed
5243 * in since it's already locked.
5245 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5246 ASSERT(!PP_ISFREE(tpp));
5247 ASSERT(tpp->p_vnode != NULL);
5249 if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5250 break;
5251 ASSERT(tpp->p_szc == rootpp->p_szc);
5252 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5256 * If we failed to lock them all then unlock what we have
5257 * locked so far and bail.
5259 if (i < npgs) {
5260 tpp = rootpp;
5261 while (i-- > 0) {
5262 if (tpp != pp)
5263 page_unlock(tpp);
5264 tpp++;
5266 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5267 return (0);
5270 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5271 ASSERT(PAGE_EXCL(tpp));
5272 ASSERT(tpp->p_slckcnt == 0);
5273 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5274 tpp->p_szc = 0;
5278 * Unlock all pages except the page passed in.
5280 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5281 ASSERT(!hat_page_is_mapped(tpp));
5282 if (tpp != pp)
5283 page_unlock(tpp);
5286 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5287 return (1);
5291 * Called by page_free() and page_destroy() to demote the page size code
5292 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5293 * p_szc on free list, neither can we just clear p_szc of a single page_t
5294 * within a large page since it will break other code that relies on p_szc
5295 * being the same for all page_t's of a large page). Anonymous pages should
5296 * never end up here because anon_map_getpages() cannot deal with p_szc
5297 * changes after a single constituent page is locked. While anonymous or
5298 * kernel large pages are demoted or freed the entire large page at a time
5299 * with all constituent pages locked EXCL for the file system pages we
5300 * have to be able to demote a large page (i.e. decrease all constituent pages
5301 * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5302 * we can easily deal with anonymous page demotion the entire large page at a
5303 * time is that those operation originate at address space level and concern
5304 * the entire large page region with actual demotion only done when pages are
5305 * not shared with any other processes (therefore we can always get EXCL lock
5306 * on all anonymous constituent pages after clearing segment page
5307 * cache). However file system pages can be truncated or invalidated at a
5308 * PAGESIZE level from the file system side and end up in page_free() or
5309 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5310 * and therefore pageout should be able to demote a large page by EXCL locking
5311 * any constituent page that is not under SOFTLOCK). In those cases we cannot
5312 * rely on being able to lock EXCL all constituent pages.
5314 * To prevent szc changes on file system pages one has to lock all constituent
5315 * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5316 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5317 * prevent szc changes is hat layer that uses its own page level mlist
5318 * locks. hat assumes that szc doesn't change after mlist lock for a page is
5319 * taken. Therefore we need to change szc under hat level locks if we only
5320 * have an EXCL lock on a single constituent page and hat still references any
5321 * of constituent pages. (Note we can't "ignore" hat layer by simply
5322 * hat_pageunload() all constituent pages without having EXCL locks on all of
5323 * constituent pages). We use hat_page_demote() call to safely demote szc of
5324 * all constituent pages under hat locks when we only have an EXCL lock on one
5325 * of constituent pages.
5327 * This routine calls page_szc_lock() before calling hat_page_demote() to
5328 * allow segvn in one special case not to lock all constituent pages SHARED
5329 * before calling hat_memload_array() that relies on p_szc not changing even
5330 * before hat level mlist lock is taken. In that case segvn uses
5331 * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5333 * Anonymous or kernel page demotion still has to lock all pages exclusively
5334 * and do hat_pageunload() on all constituent pages before demoting the page
5335 * therefore there's no need for anonymous or kernel page demotion to use
5336 * hat_page_demote() mechanism.
5338 * hat_page_demote() removes all large mappings that map pp and then decreases
5339 * p_szc starting from the last constituent page of the large page. By working
5340 * from the tail of a large page in pfn decreasing order allows one looking at
5341 * the root page to know that hat_page_demote() is done for root's szc area.
5342 * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5343 * pages within szc 1 area to prevent szc changes because hat_page_demote()
5344 * that started on this page when it had szc > 1 is done for this szc 1 area.
5346 * We are guaranteed that all constituent pages of pp's large page belong to
5347 * the same vnode with the consecutive offsets increasing in the direction of
5348 * the pfn i.e. the identity of constituent pages can't change until their
5349 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5350 * large mappings to pp even though we don't lock any constituent page except
5351 * pp (i.e. we won't unload e.g. kernel locked page).
5353 static void
5354 page_demote_vp_pages(page_t *pp)
5356 kmutex_t *mtx;
5358 ASSERT(PAGE_EXCL(pp));
5359 ASSERT(!PP_ISFREE(pp));
5360 ASSERT(pp->p_vnode != NULL);
5361 ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5362 ASSERT(!PP_ISKAS(pp));
5364 VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5366 mtx = page_szc_lock(pp);
5367 if (mtx != NULL) {
5368 hat_page_demote(pp);
5369 mutex_exit(mtx);
5371 ASSERT(pp->p_szc == 0);
5375 * Mark any existing pages for migration in the given range
5377 void
5378 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5379 struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5380 u_offset_t vnoff, int rflag)
5382 struct anon *ap;
5383 vnode_t *curvp;
5384 lgrp_t *from;
5385 pgcnt_t nlocked;
5386 u_offset_t off;
5387 pfn_t pfn;
5388 size_t pgsz;
5389 size_t segpgsz;
5390 pgcnt_t pages;
5391 uint_t pszc;
5392 page_t *pp0, *pp;
5393 caddr_t va;
5394 ulong_t an_idx;
5395 anon_sync_obj_t cookie;
5397 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5400 * Don't do anything if don't need to do lgroup optimizations
5401 * on this system
5403 if (!lgrp_optimizations())
5404 return;
5407 * Align address and length to (potentially large) page boundary
5409 segpgsz = page_get_pagesize(seg->s_szc);
5410 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5411 if (rflag)
5412 len = P2ROUNDUP(len, segpgsz);
5415 * Do one (large) page at a time
5417 va = addr;
5418 while (va < addr + len) {
5420 * Lookup (root) page for vnode and offset corresponding to
5421 * this virtual address
5422 * Try anonmap first since there may be copy-on-write
5423 * pages, but initialize vnode pointer and offset using
5424 * vnode arguments just in case there isn't an amp.
5426 curvp = vp;
5427 off = vnoff + va - seg->s_base;
5428 if (amp) {
5429 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5430 an_idx = anon_index + seg_page(seg, va);
5431 anon_array_enter(amp, an_idx, &cookie);
5432 ap = anon_get_ptr(amp->ahp, an_idx);
5433 if (ap)
5434 swap_xlate(ap, &curvp, &off);
5435 anon_array_exit(&cookie);
5436 ANON_LOCK_EXIT(&amp->a_rwlock);
5439 pp = NULL;
5440 if (curvp)
5441 pp = page_lookup(curvp, off, SE_SHARED);
5444 * If there isn't a page at this virtual address,
5445 * skip to next page
5447 if (pp == NULL) {
5448 va += PAGESIZE;
5449 continue;
5453 * Figure out which lgroup this page is in for kstats
5455 pfn = page_pptonum(pp);
5456 from = lgrp_pfn_to_lgrp(pfn);
5459 * Get page size, and round up and skip to next page boundary
5460 * if unaligned address
5462 pszc = pp->p_szc;
5463 pgsz = page_get_pagesize(pszc);
5464 pages = btop(pgsz);
5465 if (!IS_P2ALIGNED(va, pgsz) ||
5466 !IS_P2ALIGNED(pfn, pages) ||
5467 pgsz > segpgsz) {
5468 pgsz = MIN(pgsz, segpgsz);
5469 page_unlock(pp);
5470 pages = btop(P2END((uintptr_t)va, pgsz) -
5471 (uintptr_t)va);
5472 va = (caddr_t)P2END((uintptr_t)va, pgsz);
5473 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5474 continue;
5478 * Upgrade to exclusive lock on page
5480 if (!page_tryupgrade(pp)) {
5481 page_unlock(pp);
5482 va += pgsz;
5483 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5484 btop(pgsz));
5485 continue;
5488 pp0 = pp++;
5489 nlocked = 1;
5492 * Lock constituent pages if this is large page
5494 if (pages > 1) {
5496 * Lock all constituents except root page, since it
5497 * should be locked already.
5499 for (; nlocked < pages; nlocked++) {
5500 if (!page_trylock(pp, SE_EXCL)) {
5501 break;
5503 if (PP_ISFREE(pp) ||
5504 pp->p_szc != pszc) {
5506 * hat_page_demote() raced in with us.
5508 ASSERT(!IS_SWAPFSVP(curvp));
5509 page_unlock(pp);
5510 break;
5512 pp++;
5517 * If all constituent pages couldn't be locked,
5518 * unlock pages locked so far and skip to next page.
5520 if (nlocked < pages) {
5521 while (pp0 < pp) {
5522 page_unlock(pp0++);
5524 va += pgsz;
5525 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5526 btop(pgsz));
5527 continue;
5531 * hat_page_demote() can no longer happen
5532 * since last cons page had the right p_szc after
5533 * all cons pages were locked. all cons pages
5534 * should now have the same p_szc.
5538 * All constituent pages locked successfully, so mark
5539 * large page for migration and unload the mappings of
5540 * constituent pages, so a fault will occur on any part of the
5541 * large page
5543 PP_SETMIGRATE(pp0);
5544 while (pp0 < pp) {
5545 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5546 ASSERT(hat_page_getshare(pp0) == 0);
5547 page_unlock(pp0++);
5549 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5551 va += pgsz;
5556 * Migrate any pages that have been marked for migration in the given range
5558 void
5559 page_migrate(
5560 struct seg *seg,
5561 caddr_t addr,
5562 page_t **ppa,
5563 pgcnt_t npages)
5565 lgrp_t *from;
5566 lgrp_t *to;
5567 page_t *newpp;
5568 page_t *pp;
5569 pfn_t pfn;
5570 size_t pgsz;
5571 spgcnt_t page_cnt;
5572 spgcnt_t i;
5573 uint_t pszc;
5575 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5577 while (npages > 0) {
5578 pp = *ppa;
5579 pszc = pp->p_szc;
5580 pgsz = page_get_pagesize(pszc);
5581 page_cnt = btop(pgsz);
5584 * Check to see whether this page is marked for migration
5586 * Assume that root page of large page is marked for
5587 * migration and none of the other constituent pages
5588 * are marked. This really simplifies clearing the
5589 * migrate bit by not having to clear it from each
5590 * constituent page.
5592 * note we don't want to relocate an entire large page if
5593 * someone is only using one subpage.
5595 if (npages < page_cnt)
5596 break;
5599 * Is it marked for migration?
5601 if (!PP_ISMIGRATE(pp))
5602 goto next;
5605 * Determine lgroups that page is being migrated between
5607 pfn = page_pptonum(pp);
5608 if (!IS_P2ALIGNED(pfn, page_cnt)) {
5609 break;
5611 from = lgrp_pfn_to_lgrp(pfn);
5612 to = lgrp_mem_choose(seg, addr, pgsz);
5615 * Need to get exclusive lock's to migrate
5617 for (i = 0; i < page_cnt; i++) {
5618 ASSERT(PAGE_LOCKED(ppa[i]));
5619 if (page_pptonum(ppa[i]) != pfn + i ||
5620 ppa[i]->p_szc != pszc) {
5621 break;
5623 if (!page_tryupgrade(ppa[i])) {
5624 lgrp_stat_add(from->lgrp_id,
5625 LGRP_PM_FAIL_LOCK_PGS,
5626 page_cnt);
5627 break;
5631 * Check to see whether we are trying to migrate
5632 * page to lgroup where it is allocated already.
5633 * If so, clear the migrate bit and skip to next
5634 * page.
5636 if (i == 0 && to == from) {
5637 PP_CLRMIGRATE(ppa[0]);
5638 page_downgrade(ppa[0]);
5639 goto next;
5644 * If all constituent pages couldn't be locked,
5645 * unlock pages locked so far and skip to next page.
5647 if (i != page_cnt) {
5648 while (--i != -1) {
5649 page_downgrade(ppa[i]);
5651 goto next;
5654 (void) page_create_wait(page_cnt, PG_WAIT);
5655 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5656 if (newpp == NULL) {
5657 page_create_putback(page_cnt);
5658 for (i = 0; i < page_cnt; i++) {
5659 page_downgrade(ppa[i]);
5661 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5662 page_cnt);
5663 goto next;
5665 ASSERT(newpp->p_szc == pszc);
5667 * Clear migrate bit and relocate page
5669 PP_CLRMIGRATE(pp);
5670 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5671 panic("page_migrate: page_relocate failed");
5673 ASSERT(page_cnt * PAGESIZE == pgsz);
5676 * Keep stats for number of pages migrated from and to
5677 * each lgroup
5679 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5680 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5682 * update the page_t array we were passed in and
5683 * unlink constituent pages of a large page.
5685 for (i = 0; i < page_cnt; ++i, ++pp) {
5686 ASSERT(PAGE_EXCL(newpp));
5687 ASSERT(newpp->p_szc == pszc);
5688 ppa[i] = newpp;
5689 pp = newpp;
5690 page_sub(&newpp, pp);
5691 page_downgrade(pp);
5693 ASSERT(newpp == NULL);
5694 next:
5695 addr += pgsz;
5696 ppa += page_cnt;
5697 npages -= page_cnt;
5701 #define MAX_CNT 60 /* max num of iterations */
5703 * Reclaim/reserve availrmem for npages.
5704 * If there is not enough memory start reaping seg, kmem caches.
5705 * Start pageout scanner (via page_needfree()).
5706 * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5707 * Note: There is no guarantee that any availrmem will be freed as
5708 * this memory typically is locked (kernel heap) or reserved for swap.
5709 * Also due to memory fragmentation kmem allocator may not be able
5710 * to free any memory (single user allocated buffer will prevent
5711 * freeing slab or a page).
5714 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5716 int i = 0;
5717 int ret = 0;
5718 pgcnt_t deficit;
5719 pgcnt_t old_availrmem;
5721 mutex_enter(&freemem_lock);
5722 old_availrmem = availrmem - 1;
5723 while ((availrmem < tune.t_minarmem + npages + epages) &&
5724 (old_availrmem < availrmem) && (i++ < MAX_CNT)) {
5725 old_availrmem = availrmem;
5726 deficit = tune.t_minarmem + npages + epages - availrmem;
5727 mutex_exit(&freemem_lock);
5728 page_needfree(deficit);
5729 kmem_reap();
5730 delay(hz);
5731 page_needfree(-(spgcnt_t)deficit);
5732 mutex_enter(&freemem_lock);
5735 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5736 availrmem -= npages;
5737 ret = 1;
5740 mutex_exit(&freemem_lock);
5742 return (ret);
5746 * Search the memory segments to locate the desired page. Within a
5747 * segment, pages increase linearly with one page structure per
5748 * physical page frame (size PAGESIZE). The search begins
5749 * with the segment that was accessed last, to take advantage of locality.
5750 * If the hint misses, we start from the beginning of the sorted memseg list
5755 * Some data structures for pfn to pp lookup.
5757 ulong_t mhash_per_slot;
5758 struct memseg *memseg_hash[N_MEM_SLOTS];
5760 page_t *
5761 page_numtopp_nolock(pfn_t pfnum)
5763 struct memseg *seg;
5764 page_t *pp;
5765 vm_cpu_data_t *vc;
5768 * We need to disable kernel preemption while referencing the
5769 * cpu_vm_data field in order to prevent us from being switched to
5770 * another cpu and trying to reference it after it has been freed.
5771 * This will keep us on cpu and prevent it from being removed while
5772 * we are still on it.
5774 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5775 * which is being resued by DR who will flush those references
5776 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5778 kpreempt_disable();
5779 vc = CPU->cpu_vm_data;
5780 ASSERT(vc != NULL);
5782 MEMSEG_STAT_INCR(nsearch);
5784 /* Try last winner first */
5785 if (((seg = vc->vc_pnum_memseg) != NULL) &&
5786 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5787 MEMSEG_STAT_INCR(nlastwon);
5788 pp = seg->pages + (pfnum - seg->pages_base);
5789 if (pp->p_pagenum == pfnum) {
5790 kpreempt_enable();
5791 return ((page_t *)pp);
5795 /* Else Try hash */
5796 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5797 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5798 MEMSEG_STAT_INCR(nhashwon);
5799 vc->vc_pnum_memseg = seg;
5800 pp = seg->pages + (pfnum - seg->pages_base);
5801 if (pp->p_pagenum == pfnum) {
5802 kpreempt_enable();
5803 return ((page_t *)pp);
5807 /* Else Brute force */
5808 for (seg = memsegs; seg != NULL; seg = seg->next) {
5809 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5810 vc->vc_pnum_memseg = seg;
5811 pp = seg->pages + (pfnum - seg->pages_base);
5812 if (pp->p_pagenum == pfnum) {
5813 kpreempt_enable();
5814 return ((page_t *)pp);
5818 vc->vc_pnum_memseg = NULL;
5819 kpreempt_enable();
5820 MEMSEG_STAT_INCR(nnotfound);
5821 return ((page_t *)NULL);
5825 struct memseg *
5826 page_numtomemseg_nolock(pfn_t pfnum)
5828 struct memseg *seg;
5829 page_t *pp;
5832 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5833 * which is being resued by DR who will flush those references
5834 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5836 kpreempt_disable();
5837 /* Try hash */
5838 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5839 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5840 pp = seg->pages + (pfnum - seg->pages_base);
5841 if (pp->p_pagenum == pfnum) {
5842 kpreempt_enable();
5843 return (seg);
5847 /* Else Brute force */
5848 for (seg = memsegs; seg != NULL; seg = seg->next) {
5849 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5850 pp = seg->pages + (pfnum - seg->pages_base);
5851 if (pp->p_pagenum == pfnum) {
5852 kpreempt_enable();
5853 return (seg);
5857 kpreempt_enable();
5858 return ((struct memseg *)NULL);
5862 * Given a page and a count return the page struct that is
5863 * n structs away from the current one in the global page
5864 * list.
5866 * This function wraps to the first page upon
5867 * reaching the end of the memseg list.
5869 page_t *
5870 page_nextn(page_t *pp, ulong_t n)
5872 struct memseg *seg;
5873 page_t *ppn;
5874 vm_cpu_data_t *vc;
5877 * We need to disable kernel preemption while referencing the
5878 * cpu_vm_data field in order to prevent us from being switched to
5879 * another cpu and trying to reference it after it has been freed.
5880 * This will keep us on cpu and prevent it from being removed while
5881 * we are still on it.
5883 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5884 * which is being resued by DR who will flush those references
5885 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5887 kpreempt_disable();
5888 vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5890 ASSERT(vc != NULL);
5892 if (((seg = vc->vc_pnext_memseg) == NULL) ||
5893 (seg->pages_base == seg->pages_end) ||
5894 !(pp >= seg->pages && pp < seg->epages)) {
5896 for (seg = memsegs; seg; seg = seg->next) {
5897 if (pp >= seg->pages && pp < seg->epages)
5898 break;
5901 if (seg == NULL) {
5902 /* Memory delete got in, return something valid. */
5903 /* TODO: fix me. */
5904 seg = memsegs;
5905 pp = seg->pages;
5909 /* check for wraparound - possible if n is large */
5910 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5911 n -= seg->epages - pp;
5912 seg = seg->next;
5913 if (seg == NULL)
5914 seg = memsegs;
5915 pp = seg->pages;
5917 vc->vc_pnext_memseg = seg;
5918 kpreempt_enable();
5919 return (ppn);
5923 * Initialize for a loop using page_next_scan_large().
5925 page_t *
5926 page_next_scan_init(void **cookie)
5928 ASSERT(cookie != NULL);
5929 *cookie = (void *)memsegs;
5930 return ((page_t *)memsegs->pages);
5934 * Return the next page in a scan of page_t's, assuming we want
5935 * to skip over sub-pages within larger page sizes.
5937 * The cookie is used to keep track of the current memseg.
5939 page_t *
5940 page_next_scan_large(
5941 page_t *pp,
5942 ulong_t *n,
5943 void **cookie)
5945 struct memseg *seg = (struct memseg *)*cookie;
5946 page_t *new_pp;
5947 ulong_t cnt;
5948 pfn_t pfn;
5952 * get the count of page_t's to skip based on the page size
5954 ASSERT(pp != NULL);
5955 if (pp->p_szc == 0) {
5956 cnt = 1;
5957 } else {
5958 pfn = page_pptonum(pp);
5959 cnt = page_get_pagecnt(pp->p_szc);
5960 cnt -= pfn & (cnt - 1);
5962 *n += cnt;
5963 new_pp = pp + cnt;
5966 * Catch if we went past the end of the current memory segment. If so,
5967 * just move to the next segment with pages.
5969 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
5970 do {
5971 seg = seg->next;
5972 if (seg == NULL)
5973 seg = memsegs;
5974 } while (seg->pages_base == seg->pages_end);
5975 new_pp = seg->pages;
5976 *cookie = (void *)seg;
5979 return (new_pp);
5984 * Returns next page in list. Note: this function wraps
5985 * to the first page in the list upon reaching the end
5986 * of the list. Callers should be aware of this fact.
5989 /* We should change this be a #define */
5991 page_t *
5992 page_next(page_t *pp)
5994 return (page_nextn(pp, 1));
5997 page_t *
5998 page_first()
6000 return ((page_t *)memsegs->pages);
6005 * This routine is called at boot with the initial memory configuration
6006 * and when memory is added or removed.
6008 void
6009 build_pfn_hash()
6011 pfn_t cur;
6012 pgcnt_t index;
6013 struct memseg *pseg;
6014 int i;
6017 * Clear memseg_hash array.
6018 * Since memory add/delete is designed to operate concurrently
6019 * with normal operation, the hash rebuild must be able to run
6020 * concurrently with page_numtopp_nolock(). To support this
6021 * functionality, assignments to memseg_hash array members must
6022 * be done atomically.
6024 * NOTE: bzero() does not currently guarantee this for kernel
6025 * threads, and cannot be used here.
6027 for (i = 0; i < N_MEM_SLOTS; i++)
6028 memseg_hash[i] = NULL;
6030 hat_kpm_mseghash_clear(N_MEM_SLOTS);
6033 * Physmax is the last valid pfn.
6035 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6036 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6037 index = MEMSEG_PFN_HASH(pseg->pages_base);
6038 cur = pseg->pages_base;
6039 do {
6040 if (index >= N_MEM_SLOTS)
6041 index = MEMSEG_PFN_HASH(cur);
6043 if (memseg_hash[index] == NULL ||
6044 memseg_hash[index]->pages_base > pseg->pages_base) {
6045 memseg_hash[index] = pseg;
6046 hat_kpm_mseghash_update(index, pseg);
6048 cur += mhash_per_slot;
6049 index++;
6050 } while (cur < pseg->pages_end);
6055 * Return the pagenum for the pp
6057 pfn_t
6058 page_pptonum(page_t *pp)
6060 return (pp->p_pagenum);
6064 * interface to the referenced and modified etc bits
6065 * in the PSM part of the page struct
6066 * when no locking is desired.
6068 void
6069 page_set_props(page_t *pp, uint_t flags)
6071 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6072 pp->p_nrm |= (uchar_t)flags;
6075 void
6076 page_clr_all_props(page_t *pp)
6078 pp->p_nrm = 0;
6082 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6085 page_clear_lck_cow(page_t *pp, int adjust)
6087 int f_amount;
6089 ASSERT(PAGE_EXCL(pp));
6092 * The page_struct_lock need not be acquired here since
6093 * we require the caller hold the page exclusively locked.
6095 f_amount = 0;
6096 if (pp->p_lckcnt) {
6097 f_amount = 1;
6098 pp->p_lckcnt = 0;
6100 if (pp->p_cowcnt) {
6101 f_amount += pp->p_cowcnt;
6102 pp->p_cowcnt = 0;
6105 if (adjust && f_amount) {
6106 mutex_enter(&freemem_lock);
6107 availrmem += f_amount;
6108 mutex_exit(&freemem_lock);
6111 return (f_amount);
6115 * The following functions is called from free_vp_pages()
6116 * for an inexact estimate of a newly free'd page...
6118 ulong_t
6119 page_share_cnt(page_t *pp)
6121 return (hat_page_getshare(pp));
6125 page_isshared(page_t *pp)
6127 return (hat_page_checkshare(pp, 1));
6131 page_isfree(page_t *pp)
6133 return (PP_ISFREE(pp));
6137 page_isref(page_t *pp)
6139 return (hat_page_getattr(pp, P_REF));
6143 page_ismod(page_t *pp)
6145 return (hat_page_getattr(pp, P_MOD));
6149 * The following code all currently relates to the page capture logic:
6151 * This logic is used for cases where there is a desire to claim a certain
6152 * physical page in the system for the caller. As it may not be possible
6153 * to capture the page immediately, the p_toxic bits are used in the page
6154 * structure to indicate that someone wants to capture this page. When the
6155 * page gets unlocked, the toxic flag will be noted and an attempt to capture
6156 * the page will be made. If it is successful, the original callers callback
6157 * will be called with the page to do with it what they please.
6159 * There is also an async thread which wakes up to attempt to capture
6160 * pages occasionally which have the capture bit set. All of the pages which
6161 * need to be captured asynchronously have been inserted into the
6162 * page_capture_hash and thus this thread walks that hash list. Items in the
6163 * hash have an expiration time so this thread handles that as well by removing
6164 * the item from the hash if it has expired.
6166 * Some important things to note are:
6167 * - if the PR_CAPTURE bit is set on a page, then the page is in the
6168 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed
6169 * to set and clear this bit, and while the lock is held is the only time
6170 * you can add or remove an entry from the hash.
6171 * - the PR_CAPTURE bit can only be set and cleared while holding the
6172 * page_capture_hash_head.pchh_mutex
6173 * - the t_flag field of the thread struct is used with the T_CAPTURING
6174 * flag to prevent recursion while dealing with large pages.
6175 * - pages which need to be retired never expire on the page_capture_hash.
6178 static void page_capture_thread(void);
6179 static kthread_t *pc_thread_id;
6180 kcondvar_t pc_cv;
6181 static kmutex_t pc_thread_mutex;
6182 static clock_t pc_thread_shortwait;
6183 static clock_t pc_thread_longwait;
6184 static int pc_thread_retry;
6186 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6188 /* Note that this is a circular linked list */
6189 typedef struct page_capture_hash_bucket {
6190 page_t *pp;
6191 uchar_t szc;
6192 uchar_t pri;
6193 uint_t flags;
6194 clock_t expires; /* lbolt at which this request expires. */
6195 void *datap; /* Cached data passed in for callback */
6196 struct page_capture_hash_bucket *next;
6197 struct page_capture_hash_bucket *prev;
6198 } page_capture_hash_bucket_t;
6200 #define PC_PRI_HI 0 /* capture now */
6201 #define PC_PRI_LO 1 /* capture later */
6202 #define PC_NUM_PRI 2
6204 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6208 * Each hash bucket will have it's own mutex and two lists which are:
6209 * active (0): represents requests which have not been processed by
6210 * the page_capture async thread yet.
6211 * walked (1): represents requests which have been processed by the
6212 * page_capture async thread within it's given walk of this bucket.
6214 * These are all needed so that we can synchronize all async page_capture
6215 * events. When the async thread moves to a new bucket, it will append the
6216 * walked list to the active list and walk each item one at a time, moving it
6217 * from the active list to the walked list. Thus if there is an async request
6218 * outstanding for a given page, it will always be in one of the two lists.
6219 * New requests will always be added to the active list.
6220 * If we were not able to capture a page before the request expired, we'd free
6221 * up the request structure which would indicate to page_capture that there is
6222 * no longer a need for the given page, and clear the PR_CAPTURE flag if
6223 * possible.
6225 typedef struct page_capture_hash_head {
6226 kmutex_t pchh_mutex;
6227 uint_t num_pages[PC_NUM_PRI];
6228 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6229 } page_capture_hash_head_t;
6231 #ifdef DEBUG
6232 #define NUM_PAGE_CAPTURE_BUCKETS 4
6233 #else
6234 #define NUM_PAGE_CAPTURE_BUCKETS 64
6235 #endif
6237 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6239 /* for now use a very simple hash based upon the size of a page struct */
6240 #define PAGE_CAPTURE_HASH(pp) \
6241 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6243 extern pgcnt_t swapfs_minfree;
6245 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6248 * a callback function is required for page capture requests.
6250 void
6251 page_capture_register_callback(uint_t index, clock_t duration,
6252 int (*cb_func)(page_t *, void *, uint_t))
6254 ASSERT(pc_cb[index].cb_active == 0);
6255 ASSERT(cb_func != NULL);
6256 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6257 pc_cb[index].duration = duration;
6258 pc_cb[index].cb_func = cb_func;
6259 pc_cb[index].cb_active = 1;
6260 rw_exit(&pc_cb[index].cb_rwlock);
6263 void
6264 page_capture_unregister_callback(uint_t index)
6266 int i, j;
6267 struct page_capture_hash_bucket *bp1;
6268 struct page_capture_hash_bucket *bp2;
6269 struct page_capture_hash_bucket *head = NULL;
6270 uint_t flags = (1 << index);
6272 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6273 ASSERT(pc_cb[index].cb_active == 1);
6274 pc_cb[index].duration = 0; /* Paranoia */
6275 pc_cb[index].cb_func = NULL; /* Paranoia */
6276 pc_cb[index].cb_active = 0;
6277 rw_exit(&pc_cb[index].cb_rwlock);
6280 * Just move all the entries to a private list which we can walk
6281 * through without the need to hold any locks.
6282 * No more requests can get added to the hash lists for this consumer
6283 * as the cb_active field for the callback has been cleared.
6285 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6286 mutex_enter(&page_capture_hash[i].pchh_mutex);
6287 for (j = 0; j < 2; j++) {
6288 bp1 = page_capture_hash[i].lists[j].next;
6289 /* walk through all but first (sentinel) element */
6290 while (bp1 != &page_capture_hash[i].lists[j]) {
6291 bp2 = bp1;
6292 if (bp2->flags & flags) {
6293 bp1 = bp2->next;
6294 bp1->prev = bp2->prev;
6295 bp2->prev->next = bp1;
6296 bp2->next = head;
6297 head = bp2;
6299 * Clear the PR_CAPTURE bit as we
6300 * hold appropriate locks here.
6302 page_clrtoxic(head->pp, PR_CAPTURE);
6303 page_capture_hash[i].
6304 num_pages[bp2->pri]--;
6305 continue;
6307 bp1 = bp1->next;
6310 mutex_exit(&page_capture_hash[i].pchh_mutex);
6313 while (head != NULL) {
6314 bp1 = head;
6315 head = head->next;
6316 kmem_free(bp1, sizeof (*bp1));
6322 * Find pp in the active list and move it to the walked list if it
6323 * exists.
6324 * Note that most often pp should be at the front of the active list
6325 * as it is currently used and thus there is no other sort of optimization
6326 * being done here as this is a linked list data structure.
6327 * Returns 1 on successful move or 0 if page could not be found.
6329 static int
6330 page_capture_move_to_walked(page_t *pp)
6332 page_capture_hash_bucket_t *bp;
6333 int index;
6335 index = PAGE_CAPTURE_HASH(pp);
6337 mutex_enter(&page_capture_hash[index].pchh_mutex);
6338 bp = page_capture_hash[index].lists[0].next;
6339 while (bp != &page_capture_hash[index].lists[0]) {
6340 if (bp->pp == pp) {
6341 /* Remove from old list */
6342 bp->next->prev = bp->prev;
6343 bp->prev->next = bp->next;
6345 /* Add to new list */
6346 bp->next = page_capture_hash[index].lists[1].next;
6347 bp->prev = &page_capture_hash[index].lists[1];
6348 page_capture_hash[index].lists[1].next = bp;
6349 bp->next->prev = bp;
6352 * There is a small probability of page on a free
6353 * list being retired while being allocated
6354 * and before P_RAF is set on it. The page may
6355 * end up marked as high priority request instead
6356 * of low priority request.
6357 * If P_RAF page is not marked as low priority request
6358 * change it to low priority request.
6360 page_capture_hash[index].num_pages[bp->pri]--;
6361 bp->pri = PAGE_CAPTURE_PRIO(pp);
6362 page_capture_hash[index].num_pages[bp->pri]++;
6363 mutex_exit(&page_capture_hash[index].pchh_mutex);
6364 return (1);
6366 bp = bp->next;
6368 mutex_exit(&page_capture_hash[index].pchh_mutex);
6369 return (0);
6373 * Add a new entry to the page capture hash. The only case where a new
6374 * entry is not added is when the page capture consumer is no longer registered.
6375 * In this case, we'll silently not add the page to the hash. We know that
6376 * page retire will always be registered for the case where we are currently
6377 * unretiring a page and thus there are no conflicts.
6379 static void
6380 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6382 page_capture_hash_bucket_t *bp1;
6383 page_capture_hash_bucket_t *bp2;
6384 int index;
6385 int cb_index;
6386 int i;
6387 uchar_t pri;
6388 #ifdef DEBUG
6389 page_capture_hash_bucket_t *tp1;
6390 int l;
6391 #endif
6393 ASSERT(!(flags & CAPTURE_ASYNC));
6395 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6397 bp1->pp = pp;
6398 bp1->szc = szc;
6399 bp1->flags = flags;
6400 bp1->datap = datap;
6402 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6403 if ((flags >> cb_index) & 1) {
6404 break;
6408 ASSERT(cb_index != PC_NUM_CALLBACKS);
6410 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6411 if (pc_cb[cb_index].cb_active) {
6412 if (pc_cb[cb_index].duration == -1) {
6413 bp1->expires = (clock_t)-1;
6414 } else {
6415 bp1->expires = ddi_get_lbolt() +
6416 pc_cb[cb_index].duration;
6418 } else {
6419 /* There's no callback registered so don't add to the hash */
6420 rw_exit(&pc_cb[cb_index].cb_rwlock);
6421 kmem_free(bp1, sizeof (*bp1));
6422 return;
6425 index = PAGE_CAPTURE_HASH(pp);
6428 * Only allow capture flag to be modified under this mutex.
6429 * Prevents multiple entries for same page getting added.
6431 mutex_enter(&page_capture_hash[index].pchh_mutex);
6434 * if not already on the hash, set capture bit and add to the hash
6436 if (!(pp->p_toxic & PR_CAPTURE)) {
6437 #ifdef DEBUG
6438 /* Check for duplicate entries */
6439 for (l = 0; l < 2; l++) {
6440 tp1 = page_capture_hash[index].lists[l].next;
6441 while (tp1 != &page_capture_hash[index].lists[l]) {
6442 if (tp1->pp == pp) {
6443 panic("page pp 0x%p already on hash "
6444 "at 0x%p\n",
6445 (void *)pp, (void *)tp1);
6447 tp1 = tp1->next;
6451 #endif
6452 page_settoxic(pp, PR_CAPTURE);
6453 pri = PAGE_CAPTURE_PRIO(pp);
6454 bp1->pri = pri;
6455 bp1->next = page_capture_hash[index].lists[0].next;
6456 bp1->prev = &page_capture_hash[index].lists[0];
6457 bp1->next->prev = bp1;
6458 page_capture_hash[index].lists[0].next = bp1;
6459 page_capture_hash[index].num_pages[pri]++;
6460 if (flags & CAPTURE_RETIRE) {
6461 page_retire_incr_pend_count(datap);
6463 mutex_exit(&page_capture_hash[index].pchh_mutex);
6464 rw_exit(&pc_cb[cb_index].cb_rwlock);
6465 cv_signal(&pc_cv);
6466 return;
6470 * A page retire request will replace any other request.
6471 * A second physmem request which is for a different process than
6472 * the currently registered one will be dropped as there is
6473 * no way to hold the private data for both calls.
6474 * In the future, once there are more callers, this will have to
6475 * be worked out better as there needs to be private storage for
6476 * at least each type of caller (maybe have datap be an array of
6477 * *void's so that we can index based upon callers index).
6480 /* walk hash list to update expire time */
6481 for (i = 0; i < 2; i++) {
6482 bp2 = page_capture_hash[index].lists[i].next;
6483 while (bp2 != &page_capture_hash[index].lists[i]) {
6484 if (bp2->pp == pp) {
6485 if (flags & CAPTURE_RETIRE) {
6486 if (!(bp2->flags & CAPTURE_RETIRE)) {
6487 page_retire_incr_pend_count(
6488 datap);
6489 bp2->flags = flags;
6490 bp2->expires = bp1->expires;
6491 bp2->datap = datap;
6493 } else {
6494 ASSERT(flags & CAPTURE_PHYSMEM);
6495 if (!(bp2->flags & CAPTURE_RETIRE) &&
6496 (datap == bp2->datap)) {
6497 bp2->expires = bp1->expires;
6500 mutex_exit(&page_capture_hash[index].
6501 pchh_mutex);
6502 rw_exit(&pc_cb[cb_index].cb_rwlock);
6503 kmem_free(bp1, sizeof (*bp1));
6504 return;
6506 bp2 = bp2->next;
6511 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6512 * and thus it either has to be set or not set and can't change
6513 * while holding the mutex above.
6515 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6516 (void *)pp);
6520 * We have a page in our hands, lets try and make it ours by turning
6521 * it into a clean page like it had just come off the freelists.
6523 * Returns 0 on success, with the page still EXCL locked.
6524 * On failure, the page will be unlocked, and returns EAGAIN
6526 static int
6527 page_capture_clean_page(page_t *pp)
6529 page_t *newpp;
6530 int skip_unlock = 0;
6531 spgcnt_t count;
6532 page_t *tpp;
6533 int ret = 0;
6534 int extra;
6536 ASSERT(PAGE_EXCL(pp));
6537 ASSERT(!PP_RETIRED(pp));
6538 ASSERT(curthread->t_flag & T_CAPTURING);
6540 if (PP_ISFREE(pp)) {
6541 if (!page_reclaim(pp, NULL)) {
6542 skip_unlock = 1;
6543 ret = EAGAIN;
6544 goto cleanup;
6546 ASSERT(pp->p_szc == 0);
6547 if (pp->p_vnode != NULL) {
6549 * Since this page came from the
6550 * cachelist, we must destroy the
6551 * old vnode association.
6553 page_hashout(pp, NULL);
6555 goto cleanup;
6559 * If we know page_relocate will fail, skip it
6560 * It could still fail due to a UE on another page but we
6561 * can't do anything about that.
6563 if (pp->p_toxic & PR_UE) {
6564 goto skip_relocate;
6568 * It's possible that pages can not have a vnode as fsflush comes
6569 * through and cleans up these pages. It's ugly but that's how it is.
6571 if (pp->p_vnode == NULL) {
6572 goto skip_relocate;
6576 * Page was not free, so lets try to relocate it.
6577 * page_relocate only works with root pages, so if this is not a root
6578 * page, we need to demote it to try and relocate it.
6579 * Unfortunately this is the best we can do right now.
6581 newpp = NULL;
6582 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6583 if (page_try_demote_pages(pp) == 0) {
6584 ret = EAGAIN;
6585 goto cleanup;
6588 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6589 if (ret == 0) {
6590 page_t *npp;
6591 /* unlock the new page(s) */
6592 while (count-- > 0) {
6593 ASSERT(newpp != NULL);
6594 npp = newpp;
6595 page_sub(&newpp, npp);
6596 page_unlock(npp);
6598 ASSERT(newpp == NULL);
6600 * Check to see if the page we have is too large.
6601 * If so, demote it freeing up the extra pages.
6603 if (pp->p_szc > 0) {
6604 /* For now demote extra pages to szc == 0 */
6605 extra = page_get_pagecnt(pp->p_szc) - 1;
6606 while (extra > 0) {
6607 tpp = pp->p_next;
6608 page_sub(&pp, tpp);
6609 tpp->p_szc = 0;
6610 page_free(tpp, 1);
6611 extra--;
6613 /* Make sure to set our page to szc 0 as well */
6614 ASSERT(pp->p_next == pp && pp->p_prev == pp);
6615 pp->p_szc = 0;
6617 goto cleanup;
6618 } else if (ret == EIO) {
6619 ret = EAGAIN;
6620 goto cleanup;
6621 } else {
6623 * Need to reset return type as we failed to relocate the page
6624 * but that does not mean that some of the next steps will not
6625 * work.
6627 ret = 0;
6630 skip_relocate:
6632 if (pp->p_szc > 0) {
6633 if (page_try_demote_pages(pp) == 0) {
6634 ret = EAGAIN;
6635 goto cleanup;
6639 ASSERT(pp->p_szc == 0);
6641 if (hat_ismod(pp)) {
6642 ret = EAGAIN;
6643 goto cleanup;
6645 if (PP_ISKAS(pp)) {
6646 ret = EAGAIN;
6647 goto cleanup;
6649 if (pp->p_lckcnt || pp->p_cowcnt) {
6650 ret = EAGAIN;
6651 goto cleanup;
6654 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6655 ASSERT(!hat_page_is_mapped(pp));
6657 if (hat_ismod(pp)) {
6659 * This is a semi-odd case as the page is now modified but not
6660 * mapped as we just unloaded the mappings above.
6662 ret = EAGAIN;
6663 goto cleanup;
6665 if (pp->p_vnode != NULL) {
6666 page_hashout(pp, NULL);
6670 * At this point, the page should be in a clean state and
6671 * we can do whatever we want with it.
6674 cleanup:
6675 if (ret != 0) {
6676 if (!skip_unlock) {
6677 page_unlock(pp);
6679 } else {
6680 ASSERT(pp->p_szc == 0);
6681 ASSERT(PAGE_EXCL(pp));
6683 pp->p_next = pp;
6684 pp->p_prev = pp;
6686 return (ret);
6690 * Various callers of page_trycapture() can have different restrictions upon
6691 * what memory they have access to.
6692 * Returns 0 on success, with the following error codes on failure:
6693 * EPERM - The requested page is long term locked, and thus repeated
6694 * requests to capture this page will likely fail.
6695 * ENOMEM - There was not enough free memory in the system to safely
6696 * map the requested page.
6697 * ENOENT - The requested page was inside the kernel cage, and the
6698 * PHYSMEM_CAGE flag was not set.
6701 page_capture_pre_checks(page_t *pp, uint_t flags)
6703 ASSERT(pp != NULL);
6705 #if defined(__sparc)
6706 if (pp->p_vnode == &promvp) {
6707 return (EPERM);
6710 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6711 (flags & CAPTURE_PHYSMEM)) {
6712 return (ENOENT);
6715 if (PP_ISNORELOCKERNEL(pp)) {
6716 return (EPERM);
6718 #else
6719 if (PP_ISKAS(pp)) {
6720 return (EPERM);
6722 #endif /* __sparc */
6724 /* only physmem currently has the restrictions checked below */
6725 if (!(flags & CAPTURE_PHYSMEM)) {
6726 return (0);
6729 if (availrmem < swapfs_minfree) {
6731 * We won't try to capture this page as we are
6732 * running low on memory.
6734 return (ENOMEM);
6736 return (0);
6740 * Once we have a page in our mits, go ahead and complete the capture
6741 * operation.
6742 * Returns 1 on failure where page is no longer needed
6743 * Returns 0 on success
6744 * Returns -1 if there was a transient failure.
6745 * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6748 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6750 int cb_index;
6751 int ret = 0;
6752 page_capture_hash_bucket_t *bp1;
6753 page_capture_hash_bucket_t *bp2;
6754 int index;
6755 int found = 0;
6756 int i;
6758 ASSERT(PAGE_EXCL(pp));
6759 ASSERT(curthread->t_flag & T_CAPTURING);
6761 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6762 if ((flags >> cb_index) & 1) {
6763 break;
6766 ASSERT(cb_index < PC_NUM_CALLBACKS);
6769 * Remove the entry from the page_capture hash, but don't free it yet
6770 * as we may need to put it back.
6771 * Since we own the page at this point in time, we should find it
6772 * in the hash if this is an ASYNC call. If we don't it's likely
6773 * that the page_capture_async() thread decided that this request
6774 * had expired, in which case we just continue on.
6776 if (flags & CAPTURE_ASYNC) {
6778 index = PAGE_CAPTURE_HASH(pp);
6780 mutex_enter(&page_capture_hash[index].pchh_mutex);
6781 for (i = 0; i < 2 && !found; i++) {
6782 bp1 = page_capture_hash[index].lists[i].next;
6783 while (bp1 != &page_capture_hash[index].lists[i]) {
6784 if (bp1->pp == pp) {
6785 bp1->next->prev = bp1->prev;
6786 bp1->prev->next = bp1->next;
6787 page_capture_hash[index].
6788 num_pages[bp1->pri]--;
6789 page_clrtoxic(pp, PR_CAPTURE);
6790 found = 1;
6791 break;
6793 bp1 = bp1->next;
6796 mutex_exit(&page_capture_hash[index].pchh_mutex);
6799 /* Synchronize with the unregister func. */
6800 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6801 if (!pc_cb[cb_index].cb_active) {
6802 page_free(pp, 1);
6803 rw_exit(&pc_cb[cb_index].cb_rwlock);
6804 if (found) {
6805 kmem_free(bp1, sizeof (*bp1));
6807 return (1);
6811 * We need to remove the entry from the page capture hash and turn off
6812 * the PR_CAPTURE bit before calling the callback. We'll need to cache
6813 * the entry here, and then based upon the return value, cleanup
6814 * appropriately or re-add it to the hash, making sure that someone else
6815 * hasn't already done so.
6816 * It should be rare for the callback to fail and thus it's ok for
6817 * the failure path to be a bit complicated as the success path is
6818 * cleaner and the locking rules are easier to follow.
6821 ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6823 rw_exit(&pc_cb[cb_index].cb_rwlock);
6826 * If this was an ASYNC request, we need to cleanup the hash if the
6827 * callback was successful or if the request was no longer valid.
6828 * For non-ASYNC requests, we return failure to map and the caller
6829 * will take care of adding the request to the hash.
6830 * Note also that the callback itself is responsible for the page
6831 * at this point in time in terms of locking ... The most common
6832 * case for the failure path should just be a page_free.
6834 if (ret >= 0) {
6835 if (found) {
6836 if (bp1->flags & CAPTURE_RETIRE) {
6837 page_retire_decr_pend_count(datap);
6839 kmem_free(bp1, sizeof (*bp1));
6841 return (ret);
6843 if (!found) {
6844 return (ret);
6847 ASSERT(flags & CAPTURE_ASYNC);
6850 * Check for expiration time first as we can just free it up if it's
6851 * expired.
6853 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6854 kmem_free(bp1, sizeof (*bp1));
6855 return (ret);
6859 * The callback failed and there used to be an entry in the hash for
6860 * this page, so we need to add it back to the hash.
6862 mutex_enter(&page_capture_hash[index].pchh_mutex);
6863 if (!(pp->p_toxic & PR_CAPTURE)) {
6864 /* just add bp1 back to head of walked list */
6865 page_settoxic(pp, PR_CAPTURE);
6866 bp1->next = page_capture_hash[index].lists[1].next;
6867 bp1->prev = &page_capture_hash[index].lists[1];
6868 bp1->next->prev = bp1;
6869 bp1->pri = PAGE_CAPTURE_PRIO(pp);
6870 page_capture_hash[index].lists[1].next = bp1;
6871 page_capture_hash[index].num_pages[bp1->pri]++;
6872 mutex_exit(&page_capture_hash[index].pchh_mutex);
6873 return (ret);
6877 * Otherwise there was a new capture request added to list
6878 * Need to make sure that our original data is represented if
6879 * appropriate.
6881 for (i = 0; i < 2; i++) {
6882 bp2 = page_capture_hash[index].lists[i].next;
6883 while (bp2 != &page_capture_hash[index].lists[i]) {
6884 if (bp2->pp == pp) {
6885 if (bp1->flags & CAPTURE_RETIRE) {
6886 if (!(bp2->flags & CAPTURE_RETIRE)) {
6887 bp2->szc = bp1->szc;
6888 bp2->flags = bp1->flags;
6889 bp2->expires = bp1->expires;
6890 bp2->datap = bp1->datap;
6892 } else {
6893 ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6894 if (!(bp2->flags & CAPTURE_RETIRE)) {
6895 bp2->szc = bp1->szc;
6896 bp2->flags = bp1->flags;
6897 bp2->expires = bp1->expires;
6898 bp2->datap = bp1->datap;
6901 page_capture_hash[index].num_pages[bp2->pri]--;
6902 bp2->pri = PAGE_CAPTURE_PRIO(pp);
6903 page_capture_hash[index].num_pages[bp2->pri]++;
6904 mutex_exit(&page_capture_hash[index].
6905 pchh_mutex);
6906 kmem_free(bp1, sizeof (*bp1));
6907 return (ret);
6909 bp2 = bp2->next;
6912 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6913 /*NOTREACHED*/
6917 * Try to capture the given page for the caller specified in the flags
6918 * parameter. The page will either be captured and handed over to the
6919 * appropriate callback, or will be queued up in the page capture hash
6920 * to be captured asynchronously.
6921 * If the current request is due to an async capture, the page must be
6922 * exclusively locked before calling this function.
6923 * Currently szc must be 0 but in the future this should be expandable to
6924 * other page sizes.
6925 * Returns 0 on success, with the following error codes on failure:
6926 * EPERM - The requested page is long term locked, and thus repeated
6927 * requests to capture this page will likely fail.
6928 * ENOMEM - There was not enough free memory in the system to safely
6929 * map the requested page.
6930 * ENOENT - The requested page was inside the kernel cage, and the
6931 * CAPTURE_GET_CAGE flag was not set.
6932 * EAGAIN - The requested page could not be capturead at this point in
6933 * time but future requests will likely work.
6934 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6935 * was not set.
6938 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6940 int ret;
6941 int cb_index;
6943 if (flags & CAPTURE_ASYNC) {
6944 ASSERT(PAGE_EXCL(pp));
6945 goto async;
6948 /* Make sure there's enough availrmem ... */
6949 ret = page_capture_pre_checks(pp, flags);
6950 if (ret != 0) {
6951 return (ret);
6954 if (!page_trylock(pp, SE_EXCL)) {
6955 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6956 if ((flags >> cb_index) & 1) {
6957 break;
6960 ASSERT(cb_index < PC_NUM_CALLBACKS);
6961 ret = EAGAIN;
6962 /* Special case for retired pages */
6963 if (PP_RETIRED(pp)) {
6964 if (flags & CAPTURE_GET_RETIRED) {
6965 if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6967 * Need to set capture bit and add to
6968 * hash so that the page will be
6969 * retired when freed.
6971 page_capture_add_hash(pp, szc,
6972 CAPTURE_RETIRE, NULL);
6973 ret = 0;
6974 goto own_page;
6976 } else {
6977 return (EBUSY);
6980 page_capture_add_hash(pp, szc, flags, datap);
6981 return (ret);
6984 async:
6985 ASSERT(PAGE_EXCL(pp));
6987 /* Need to check for physmem async requests that availrmem is sane */
6988 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
6989 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
6990 (availrmem < swapfs_minfree)) {
6991 page_unlock(pp);
6992 return (ENOMEM);
6995 ret = page_capture_clean_page(pp);
6997 if (ret != 0) {
6998 /* We failed to get the page, so lets add it to the hash */
6999 if (!(flags & CAPTURE_ASYNC)) {
7000 page_capture_add_hash(pp, szc, flags, datap);
7002 return (ret);
7005 own_page:
7006 ASSERT(PAGE_EXCL(pp));
7007 ASSERT(pp->p_szc == 0);
7009 /* Call the callback */
7010 ret = page_capture_take_action(pp, flags, datap);
7012 if (ret == 0) {
7013 return (0);
7017 * Note that in the failure cases from page_capture_take_action, the
7018 * EXCL lock will have already been dropped.
7020 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7021 page_capture_add_hash(pp, szc, flags, datap);
7023 return (EAGAIN);
7027 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7029 int ret;
7031 curthread->t_flag |= T_CAPTURING;
7032 ret = page_itrycapture(pp, szc, flags, datap);
7033 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7034 return (ret);
7038 * When unlocking a page which has the PR_CAPTURE bit set, this routine
7039 * gets called to try and capture the page.
7041 void
7042 page_unlock_capture(page_t *pp)
7044 page_capture_hash_bucket_t *bp;
7045 int index;
7046 int i;
7047 uint_t szc;
7048 uint_t flags = 0;
7049 void *datap;
7050 kmutex_t *mp;
7051 extern vnode_t retired_pages;
7054 * We need to protect against a possible deadlock here where we own
7055 * the vnode page hash mutex and want to acquire it again as there
7056 * are locations in the code, where we unlock a page while holding
7057 * the mutex which can lead to the page being captured and eventually
7058 * end up here. As we may be hashing out the old page and hashing into
7059 * the retire vnode, we need to make sure we don't own them.
7060 * Other callbacks who do hash operations also need to make sure that
7061 * before they hashin to a vnode that they do not currently own the
7062 * vphm mutex otherwise there will be a panic.
7064 if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7065 page_unlock_nocapture(pp);
7066 return;
7068 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7069 page_unlock_nocapture(pp);
7070 return;
7073 index = PAGE_CAPTURE_HASH(pp);
7075 mp = &page_capture_hash[index].pchh_mutex;
7076 mutex_enter(mp);
7077 for (i = 0; i < 2; i++) {
7078 bp = page_capture_hash[index].lists[i].next;
7079 while (bp != &page_capture_hash[index].lists[i]) {
7080 if (bp->pp == pp) {
7081 szc = bp->szc;
7082 flags = bp->flags | CAPTURE_ASYNC;
7083 datap = bp->datap;
7084 mutex_exit(mp);
7085 (void) page_trycapture(pp, szc, flags, datap);
7086 return;
7088 bp = bp->next;
7092 /* Failed to find page in hash so clear flags and unlock it. */
7093 page_clrtoxic(pp, PR_CAPTURE);
7094 page_unlock(pp);
7096 mutex_exit(mp);
7099 void
7100 page_capture_init()
7102 int i;
7103 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7104 page_capture_hash[i].lists[0].next =
7105 &page_capture_hash[i].lists[0];
7106 page_capture_hash[i].lists[0].prev =
7107 &page_capture_hash[i].lists[0];
7108 page_capture_hash[i].lists[1].next =
7109 &page_capture_hash[i].lists[1];
7110 page_capture_hash[i].lists[1].prev =
7111 &page_capture_hash[i].lists[1];
7114 pc_thread_shortwait = 23 * hz;
7115 pc_thread_longwait = 1201 * hz;
7116 pc_thread_retry = 3;
7117 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7118 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7119 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7120 TS_RUN, minclsyspri);
7124 * It is necessary to scrub any failing pages prior to reboot in order to
7125 * prevent a latent error trap from occurring on the next boot.
7127 void
7128 page_retire_mdboot()
7130 page_t *pp;
7131 int i, j;
7132 page_capture_hash_bucket_t *bp;
7133 uchar_t pri;
7135 /* walk lists looking for pages to scrub */
7136 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7137 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7138 if (page_capture_hash[i].num_pages[pri] != 0) {
7139 break;
7142 if (pri == PC_NUM_PRI)
7143 continue;
7145 mutex_enter(&page_capture_hash[i].pchh_mutex);
7147 for (j = 0; j < 2; j++) {
7148 bp = page_capture_hash[i].lists[j].next;
7149 while (bp != &page_capture_hash[i].lists[j]) {
7150 pp = bp->pp;
7151 if (PP_TOXIC(pp)) {
7152 if (page_trylock(pp, SE_EXCL)) {
7153 PP_CLRFREE(pp);
7154 pagescrub(pp, 0, PAGESIZE);
7155 page_unlock(pp);
7158 bp = bp->next;
7161 mutex_exit(&page_capture_hash[i].pchh_mutex);
7166 * Walk the page_capture_hash trying to capture pages and also cleanup old
7167 * entries which have expired.
7169 void
7170 page_capture_async()
7172 page_t *pp;
7173 int i;
7174 int ret;
7175 page_capture_hash_bucket_t *bp1, *bp2;
7176 uint_t szc;
7177 uint_t flags;
7178 void *datap;
7179 uchar_t pri;
7181 /* If there are outstanding pages to be captured, get to work */
7182 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7183 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7184 if (page_capture_hash[i].num_pages[pri] != 0)
7185 break;
7187 if (pri == PC_NUM_PRI)
7188 continue;
7190 /* Append list 1 to list 0 and then walk through list 0 */
7191 mutex_enter(&page_capture_hash[i].pchh_mutex);
7192 bp1 = &page_capture_hash[i].lists[1];
7193 bp2 = bp1->next;
7194 if (bp1 != bp2) {
7195 bp1->prev->next = page_capture_hash[i].lists[0].next;
7196 bp2->prev = &page_capture_hash[i].lists[0];
7197 page_capture_hash[i].lists[0].next->prev = bp1->prev;
7198 page_capture_hash[i].lists[0].next = bp2;
7199 bp1->next = bp1;
7200 bp1->prev = bp1;
7203 /* list[1] will be empty now */
7205 bp1 = page_capture_hash[i].lists[0].next;
7206 while (bp1 != &page_capture_hash[i].lists[0]) {
7207 /* Check expiration time */
7208 if ((ddi_get_lbolt() > bp1->expires &&
7209 bp1->expires != -1) ||
7210 page_deleted(bp1->pp)) {
7211 page_capture_hash[i].lists[0].next = bp1->next;
7212 bp1->next->prev =
7213 &page_capture_hash[i].lists[0];
7214 page_capture_hash[i].num_pages[bp1->pri]--;
7217 * We can safely remove the PR_CAPTURE bit
7218 * without holding the EXCL lock on the page
7219 * as the PR_CAPTURE bit requres that the
7220 * page_capture_hash[].pchh_mutex be held
7221 * to modify it.
7223 page_clrtoxic(bp1->pp, PR_CAPTURE);
7224 mutex_exit(&page_capture_hash[i].pchh_mutex);
7225 kmem_free(bp1, sizeof (*bp1));
7226 mutex_enter(&page_capture_hash[i].pchh_mutex);
7227 bp1 = page_capture_hash[i].lists[0].next;
7228 continue;
7230 pp = bp1->pp;
7231 szc = bp1->szc;
7232 flags = bp1->flags;
7233 datap = bp1->datap;
7234 mutex_exit(&page_capture_hash[i].pchh_mutex);
7235 if (page_trylock(pp, SE_EXCL)) {
7236 ret = page_trycapture(pp, szc,
7237 flags | CAPTURE_ASYNC, datap);
7238 } else {
7239 ret = 1; /* move to walked hash */
7242 if (ret != 0) {
7243 /* Move to walked hash */
7244 (void) page_capture_move_to_walked(pp);
7246 mutex_enter(&page_capture_hash[i].pchh_mutex);
7247 bp1 = page_capture_hash[i].lists[0].next;
7250 mutex_exit(&page_capture_hash[i].pchh_mutex);
7255 * This function is called by the page_capture_thread, and is needed in
7256 * in order to initiate aio cleanup, so that pages used in aio
7257 * will be unlocked and subsequently retired by page_capture_thread.
7259 static int
7260 do_aio_cleanup(void)
7262 proc_t *procp;
7263 int (*aio_cleanup_dr_delete_memory)(proc_t *);
7264 int cleaned = 0;
7266 if (modload("sys", "kaio") == -1) {
7267 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7268 return (0);
7271 * We use the aio_cleanup_dr_delete_memory function to
7272 * initiate the actual clean up; this function will wake
7273 * up the per-process aio_cleanup_thread.
7275 aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7276 modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7277 if (aio_cleanup_dr_delete_memory == NULL) {
7278 cmn_err(CE_WARN,
7279 "aio_cleanup_dr_delete_memory not found in kaio");
7280 return (0);
7282 mutex_enter(&pidlock);
7283 for (procp = practive; (procp != NULL); procp = procp->p_next) {
7284 mutex_enter(&procp->p_lock);
7285 if (procp->p_aio != NULL) {
7286 /* cleanup proc's outstanding kaio */
7287 cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7289 mutex_exit(&procp->p_lock);
7291 mutex_exit(&pidlock);
7292 return (cleaned);
7296 * helper function for page_capture_thread
7298 static void
7299 page_capture_handle_outstanding(void)
7301 int ntry;
7303 /* Reap pages before attempting capture pages */
7304 kmem_reap();
7306 if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7307 hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7309 * Note: Purging only for platforms that support
7310 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7311 * platforms ISM pages SE_SHARED locked until destroyed.
7314 /* disable and purge seg_pcache */
7315 (void) seg_p_disable();
7316 for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7317 if (!page_retire_pend_count())
7318 break;
7319 if (do_aio_cleanup()) {
7321 * allow the apps cleanup threads
7322 * to run
7324 delay(pc_thread_shortwait);
7326 page_capture_async();
7328 /* reenable seg_pcache */
7329 seg_p_enable();
7331 /* completed what can be done. break out */
7332 return;
7336 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7337 * and then attempt to capture.
7339 seg_preap();
7340 page_capture_async();
7344 * The page_capture_thread loops forever, looking to see if there are
7345 * pages still waiting to be captured.
7347 static void
7348 page_capture_thread(void)
7350 callb_cpr_t c;
7351 int i;
7352 int high_pri_pages;
7353 int low_pri_pages;
7354 clock_t timeout;
7356 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7358 mutex_enter(&pc_thread_mutex);
7359 for (;;) {
7360 high_pri_pages = 0;
7361 low_pri_pages = 0;
7362 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7363 high_pri_pages +=
7364 page_capture_hash[i].num_pages[PC_PRI_HI];
7365 low_pri_pages +=
7366 page_capture_hash[i].num_pages[PC_PRI_LO];
7369 timeout = pc_thread_longwait;
7370 if (high_pri_pages != 0) {
7371 timeout = pc_thread_shortwait;
7372 page_capture_handle_outstanding();
7373 } else if (low_pri_pages != 0) {
7374 page_capture_async();
7376 CALLB_CPR_SAFE_BEGIN(&c);
7377 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7378 timeout, TR_CLOCK_TICK);
7379 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7381 /*NOTREACHED*/
7384 * Attempt to locate a bucket that has enough pages to satisfy the request.
7385 * The initial check is done without the lock to avoid unneeded contention.
7386 * The function returns 1 if enough pages were found, else 0 if it could not
7387 * find enough pages in a bucket.
7389 static int
7390 pcf_decrement_bucket(pgcnt_t npages)
7392 struct pcf *p;
7393 struct pcf *q;
7394 int i;
7396 p = &pcf[PCF_INDEX()];
7397 q = &pcf[pcf_fanout];
7398 for (i = 0; i < pcf_fanout; i++) {
7399 if (p->pcf_count > npages) {
7401 * a good one to try.
7403 mutex_enter(&p->pcf_lock);
7404 if (p->pcf_count > npages) {
7405 p->pcf_count -= (uint_t)npages;
7407 * freemem is not protected by any lock.
7408 * Thus, we cannot have any assertion
7409 * containing freemem here.
7411 freemem -= npages;
7412 mutex_exit(&p->pcf_lock);
7413 return (1);
7415 mutex_exit(&p->pcf_lock);
7417 p++;
7418 if (p >= q) {
7419 p = pcf;
7422 return (0);
7426 * Arguments:
7427 * pcftotal_ret: If the value is not NULL and we have walked all the
7428 * buckets but did not find enough pages then it will
7429 * be set to the total number of pages in all the pcf
7430 * buckets.
7431 * npages: Is the number of pages we have been requested to
7432 * find.
7433 * unlock: If set to 0 we will leave the buckets locked if the
7434 * requested number of pages are not found.
7436 * Go and try to satisfy the page request from any number of buckets.
7437 * This can be a very expensive operation as we have to lock the buckets
7438 * we are checking (and keep them locked), starting at bucket 0.
7440 * The function returns 1 if enough pages were found, else 0 if it could not
7441 * find enough pages in the buckets.
7444 static int
7445 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7447 struct pcf *p;
7448 pgcnt_t pcftotal;
7449 int i;
7451 p = pcf;
7452 /* try to collect pages from several pcf bins */
7453 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7454 mutex_enter(&p->pcf_lock);
7455 pcftotal += p->pcf_count;
7456 if (pcftotal >= npages) {
7458 * Wow! There are enough pages laying around
7459 * to satisfy the request. Do the accounting,
7460 * drop the locks we acquired, and go back.
7462 * freemem is not protected by any lock. So,
7463 * we cannot have any assertion containing
7464 * freemem.
7466 freemem -= npages;
7467 while (p >= pcf) {
7468 if (p->pcf_count <= npages) {
7469 npages -= p->pcf_count;
7470 p->pcf_count = 0;
7471 } else {
7472 p->pcf_count -= (uint_t)npages;
7473 npages = 0;
7475 mutex_exit(&p->pcf_lock);
7476 p--;
7478 ASSERT(npages == 0);
7479 return (1);
7481 p++;
7483 if (unlock) {
7484 /* failed to collect pages - release the locks */
7485 while (--p >= pcf) {
7486 mutex_exit(&p->pcf_lock);
7489 if (pcftotal_ret != NULL)
7490 *pcftotal_ret = pcftotal;
7491 return (0);