5045 use atomic_{inc,dec}_* instead of atomic_add_*
[illumos-gate.git] / usr / src / uts / common / os / mmapobj.c
blobb33ef6922bab2c70148a75772f20e6c4065ecdf4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/types.h>
27 #include <sys/sysmacros.h>
28 #include <sys/kmem.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/errno.h>
32 #include <sys/mman.h>
33 #include <sys/cmn_err.h>
34 #include <sys/cred.h>
35 #include <sys/vmsystm.h>
36 #include <sys/machsystm.h>
37 #include <sys/debug.h>
38 #include <vm/as.h>
39 #include <vm/seg.h>
40 #include <sys/vmparam.h>
41 #include <sys/vfs.h>
42 #include <sys/elf.h>
43 #include <sys/machelf.h>
44 #include <sys/corectl.h>
45 #include <sys/exec.h>
46 #include <sys/exechdr.h>
47 #include <sys/autoconf.h>
48 #include <sys/mem.h>
49 #include <vm/seg_dev.h>
50 #include <sys/vmparam.h>
51 #include <sys/mmapobj.h>
52 #include <sys/atomic.h>
55 * Theory statement:
57 * The main driving force behind mmapobj is to interpret and map ELF files
58 * inside of the kernel instead of having the linker be responsible for this.
60 * mmapobj also supports the AOUT 4.x binary format as well as flat files in
61 * a read only manner.
63 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
64 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker
65 * and Libraries Guide" for more information about the standard and mapping
66 * rules.
68 * Having mmapobj interpret and map objects will allow the kernel to make the
69 * best decision for where to place the mappings for said objects. Thus, we
70 * can make optimizations inside of the kernel for specific platforms or
71 * cache mapping information to make mapping objects faster.
73 * The lib_va_hash will be one such optimization. For each ELF object that
74 * mmapobj is asked to interpret, we will attempt to cache the information
75 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
76 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program
77 * headers which should cover a majority of the libraries out there without
78 * wasting space. In order to make sure that the cached information is valid,
79 * we check the passed in vnode's mtime and ctime to make sure the vnode
80 * has not been modified since the last time we used it.
82 * In addition, the lib_va_hash may contain a preferred starting VA for the
83 * object which can be useful for platforms which support a shared context.
84 * This will increase the likelyhood that library text can be shared among
85 * many different processes. We limit the reserved VA space for 32 bit objects
86 * in order to minimize fragmenting the processes address space.
88 * In addition to the above, the mmapobj interface allows for padding to be
89 * requested before the first mapping and after the last mapping created.
90 * When padding is requested, no additional optimizations will be made for
91 * that request.
95 * Threshold to prevent allocating too much kernel memory to read in the
96 * program headers for an object. If it requires more than below,
97 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
98 * program headers which could possibly fail. If less memory than below is
99 * needed, then we use a KM_SLEEP allocation and are willing to wait for the
100 * memory if we need to.
102 size_t mmapobj_alloc_threshold = 65536;
104 /* Debug stats for test coverage */
105 #ifdef DEBUG
106 struct mobj_stats {
107 uint_t mobjs_unmap_called;
108 uint_t mobjs_remap_devnull;
109 uint_t mobjs_lookup_start;
110 uint_t mobjs_alloc_start;
111 uint_t mobjs_alloc_vmem;
112 uint_t mobjs_add_collision;
113 uint_t mobjs_get_addr;
114 uint_t mobjs_map_flat_no_padding;
115 uint_t mobjs_map_flat_padding;
116 uint_t mobjs_map_ptload_text;
117 uint_t mobjs_map_ptload_initdata;
118 uint_t mobjs_map_ptload_preread;
119 uint_t mobjs_map_ptload_unaligned_text;
120 uint_t mobjs_map_ptload_unaligned_map_fail;
121 uint_t mobjs_map_ptload_unaligned_read_fail;
122 uint_t mobjs_zfoddiff;
123 uint_t mobjs_zfoddiff_nowrite;
124 uint_t mobjs_zfodextra;
125 uint_t mobjs_ptload_failed;
126 uint_t mobjs_map_elf_no_holes;
127 uint_t mobjs_unmap_hole;
128 uint_t mobjs_nomem_header;
129 uint_t mobjs_inval_header;
130 uint_t mobjs_overlap_header;
131 uint_t mobjs_np2_align;
132 uint_t mobjs_np2_align_overflow;
133 uint_t mobjs_exec_padding;
134 uint_t mobjs_exec_addr_mapped;
135 uint_t mobjs_exec_addr_devnull;
136 uint_t mobjs_exec_addr_in_use;
137 uint_t mobjs_lvp_found;
138 uint_t mobjs_no_loadable_yet;
139 uint_t mobjs_nothing_to_map;
140 uint_t mobjs_e2big;
141 uint_t mobjs_dyn_pad_align;
142 uint_t mobjs_dyn_pad_noalign;
143 uint_t mobjs_alloc_start_fail;
144 uint_t mobjs_lvp_nocache;
145 uint_t mobjs_extra_padding;
146 uint_t mobjs_lvp_not_needed;
147 uint_t mobjs_no_mem_map_sz;
148 uint_t mobjs_check_exec_failed;
149 uint_t mobjs_lvp_used;
150 uint_t mobjs_wrong_model;
151 uint_t mobjs_noexec_fs;
152 uint_t mobjs_e2big_et_rel;
153 uint_t mobjs_et_rel_mapped;
154 uint_t mobjs_unknown_elf_type;
155 uint_t mobjs_phent32_too_small;
156 uint_t mobjs_phent64_too_small;
157 uint_t mobjs_inval_elf_class;
158 uint_t mobjs_too_many_phdrs;
159 uint_t mobjs_no_phsize;
160 uint_t mobjs_phsize_large;
161 uint_t mobjs_phsize_xtralarge;
162 uint_t mobjs_fast_wrong_model;
163 uint_t mobjs_fast_e2big;
164 uint_t mobjs_fast;
165 uint_t mobjs_fast_success;
166 uint_t mobjs_fast_not_now;
167 uint_t mobjs_small_file;
168 uint_t mobjs_read_error;
169 uint_t mobjs_unsupported;
170 uint_t mobjs_flat_e2big;
171 uint_t mobjs_phent_align32;
172 uint_t mobjs_phent_align64;
173 uint_t mobjs_lib_va_find_hit;
174 uint_t mobjs_lib_va_find_delay_delete;
175 uint_t mobjs_lib_va_find_delete;
176 uint_t mobjs_lib_va_add_delay_delete;
177 uint_t mobjs_lib_va_add_delete;
178 uint_t mobjs_lib_va_create_failure;
179 uint_t mobjs_min_align;
180 #if defined(__sparc)
181 uint_t mobjs_aout_uzero_fault;
182 uint_t mobjs_aout_64bit_try;
183 uint_t mobjs_aout_noexec;
184 uint_t mobjs_aout_e2big;
185 uint_t mobjs_aout_lib;
186 uint_t mobjs_aout_fixed;
187 uint_t mobjs_aout_zfoddiff;
188 uint_t mobjs_aout_map_bss;
189 uint_t mobjs_aout_bss_fail;
190 uint_t mobjs_aout_nlist;
191 uint_t mobjs_aout_addr_in_use;
192 #endif
193 } mobj_stats;
195 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++)
196 #else
197 #define MOBJ_STAT_ADD(stat)
198 #endif
201 * Check if addr is at or above the address space reserved for the stack.
202 * The stack is at the top of the address space for all sparc processes
203 * and 64 bit x86 processes. For 32 bit x86, the stack is not at the top
204 * of the address space and thus this check wil always return false for
205 * 32 bit x86 processes.
207 #if defined(__sparc)
208 #define OVERLAPS_STACK(addr, p) \
209 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
210 #elif defined(__amd64)
211 #define OVERLAPS_STACK(addr, p) \
212 ((p->p_model == DATAMODEL_LP64) && \
213 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
214 #elif defined(__i386)
215 #define OVERLAPS_STACK(addr, p) 0
216 #endif
218 /* lv_flags values - bitmap */
219 #define LV_ELF32 0x1 /* 32 bit ELF file */
220 #define LV_ELF64 0x2 /* 64 bit ELF file */
221 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */
224 * Note: lv_num_segs will denote how many segments this file has and will
225 * only be set after the lv_mps array has been filled out.
226 * lv_mps can only be valid if lv_num_segs is non-zero.
228 struct lib_va {
229 struct lib_va *lv_next;
230 caddr_t lv_base_va; /* start va for library */
231 ssize_t lv_len; /* total va span of library */
232 size_t lv_align; /* minimum alignment */
233 uint64_t lv_nodeid; /* filesystem node id */
234 uint64_t lv_fsid; /* filesystem id */
235 timestruc_t lv_ctime; /* last time file was changed */
236 timestruc_t lv_mtime; /* or modified */
237 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
238 int lv_num_segs; /* # segs for this file */
239 int lv_flags;
240 uint_t lv_refcnt; /* number of holds on struct */
243 #define LIB_VA_SIZE 1024
244 #define LIB_VA_MASK (LIB_VA_SIZE - 1)
245 #define LIB_VA_MUTEX_SHIFT 3
247 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
248 #error "LIB_VA_SIZE is not a power of 2"
249 #endif
251 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
252 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
254 #define LIB_VA_HASH_MUTEX(index) \
255 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
257 #define LIB_VA_HASH(nodeid) \
258 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
260 #define LIB_VA_MATCH_ID(arg1, arg2) \
261 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \
262 (arg1)->lv_fsid == (arg2)->va_fsid)
264 #define LIB_VA_MATCH_TIME(arg1, arg2) \
265 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \
266 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \
267 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \
268 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
270 #define LIB_VA_MATCH(arg1, arg2) \
271 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
274 * lib_va will be used for optimized allocation of address ranges for
275 * libraries, such that subsequent mappings of the same library will attempt
276 * to use the same VA as previous mappings of that library.
277 * In order to map libraries at the same VA in many processes, we need to carve
278 * out our own address space for them which is unique across many processes.
279 * We use different arenas for 32 bit and 64 bit libraries.
281 * Since the 32 bit address space is relatively small, we limit the number of
282 * libraries which try to use consistent virtual addresses to lib_threshold.
283 * For 64 bit libraries there is no such limit since the address space is large.
285 static vmem_t *lib_va_32_arena;
286 static vmem_t *lib_va_64_arena;
287 uint_t lib_threshold = 20; /* modifiable via /etc/system */
289 static kmutex_t lib_va_init_mutex; /* no need to initialize */
292 * Number of 32 bit and 64 bit libraries in lib_va hash.
294 static uint_t libs_mapped_32 = 0;
295 static uint_t libs_mapped_64 = 0;
298 * Free up the resources associated with lvp as well as lvp itself.
299 * We also decrement the number of libraries mapped via a lib_va
300 * cached virtual address.
302 void
303 lib_va_free(struct lib_va *lvp)
305 int is_64bit = lvp->lv_flags & LV_ELF64;
306 ASSERT(lvp->lv_refcnt == 0);
308 if (lvp->lv_base_va != NULL) {
309 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
310 lvp->lv_base_va, lvp->lv_len);
311 if (is_64bit) {
312 atomic_dec_32(&libs_mapped_64);
313 } else {
314 atomic_dec_32(&libs_mapped_32);
317 kmem_free(lvp, sizeof (struct lib_va));
321 * See if the file associated with the vap passed in is in the lib_va hash.
322 * If it is and the file has not been modified since last use, then
323 * return a pointer to that data. Otherwise, return NULL if the file has
324 * changed or the file was not found in the hash.
326 static struct lib_va *
327 lib_va_find(vattr_t *vap)
329 struct lib_va *lvp;
330 struct lib_va *del = NULL;
331 struct lib_va **tmp;
332 uint_t index;
333 index = LIB_VA_HASH(vap->va_nodeid);
335 mutex_enter(LIB_VA_HASH_MUTEX(index));
336 tmp = &lib_va_hash[index];
337 while (*tmp != NULL) {
338 lvp = *tmp;
339 if (LIB_VA_MATCH_ID(lvp, vap)) {
340 if (LIB_VA_MATCH_TIME(lvp, vap)) {
341 ASSERT((lvp->lv_flags & LV_DEL) == 0);
342 lvp->lv_refcnt++;
343 MOBJ_STAT_ADD(lib_va_find_hit);
344 } else {
346 * file was updated since last use.
347 * need to remove it from list.
349 del = lvp;
350 *tmp = del->lv_next;
351 del->lv_next = NULL;
353 * If we can't delete it now, mark it for later
355 if (del->lv_refcnt) {
356 MOBJ_STAT_ADD(lib_va_find_delay_delete);
357 del->lv_flags |= LV_DEL;
358 del = NULL;
360 lvp = NULL;
362 mutex_exit(LIB_VA_HASH_MUTEX(index));
363 if (del) {
364 ASSERT(del->lv_refcnt == 0);
365 MOBJ_STAT_ADD(lib_va_find_delete);
366 lib_va_free(del);
368 return (lvp);
370 tmp = &lvp->lv_next;
372 mutex_exit(LIB_VA_HASH_MUTEX(index));
373 return (NULL);
377 * Add a new entry to the lib_va hash.
378 * Search the hash while holding the appropriate mutex to make sure that the
379 * data is not already in the cache. If we find data that is in the cache
380 * already and has not been modified since last use, we return NULL. If it
381 * has been modified since last use, we will remove that entry from
382 * the hash and it will be deleted once it's reference count reaches zero.
383 * If there is no current entry in the hash we will add the new entry and
384 * return it to the caller who is responsible for calling lib_va_release to
385 * drop their reference count on it.
387 * lv_num_segs will be set to zero since the caller needs to add that
388 * information to the data structure.
390 static struct lib_va *
391 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
393 struct lib_va *lvp;
394 uint_t index;
395 model_t model;
396 struct lib_va **tmp;
397 struct lib_va *del = NULL;
399 model = get_udatamodel();
400 index = LIB_VA_HASH(vap->va_nodeid);
402 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
404 mutex_enter(LIB_VA_HASH_MUTEX(index));
407 * Make sure not adding same data a second time.
408 * The hash chains should be relatively short and adding
409 * is a relatively rare event, so it's worth the check.
411 tmp = &lib_va_hash[index];
412 while (*tmp != NULL) {
413 if (LIB_VA_MATCH_ID(*tmp, vap)) {
414 if (LIB_VA_MATCH_TIME(*tmp, vap)) {
415 mutex_exit(LIB_VA_HASH_MUTEX(index));
416 kmem_free(lvp, sizeof (struct lib_va));
417 return (NULL);
421 * We have the same nodeid and fsid but the file has
422 * been modified since we last saw it.
423 * Need to remove the old node and add this new
424 * one.
425 * Could probably use a callback mechanism to make
426 * this cleaner.
428 ASSERT(del == NULL);
429 del = *tmp;
430 *tmp = del->lv_next;
431 del->lv_next = NULL;
434 * Check to see if we can free it. If lv_refcnt
435 * is greater than zero, than some other thread
436 * has a reference to the one we want to delete
437 * and we can not delete it. All of this is done
438 * under the lib_va_hash_mutex lock so it is atomic.
440 if (del->lv_refcnt) {
441 MOBJ_STAT_ADD(lib_va_add_delay_delete);
442 del->lv_flags |= LV_DEL;
443 del = NULL;
445 /* tmp is already advanced */
446 continue;
448 tmp = &((*tmp)->lv_next);
451 lvp->lv_base_va = base_va;
452 lvp->lv_len = len;
453 lvp->lv_align = align;
454 lvp->lv_nodeid = vap->va_nodeid;
455 lvp->lv_fsid = vap->va_fsid;
456 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
457 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
458 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
459 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
460 lvp->lv_next = NULL;
461 lvp->lv_refcnt = 1;
463 /* Caller responsible for filling this and lv_mps out */
464 lvp->lv_num_segs = 0;
466 if (model == DATAMODEL_LP64) {
467 lvp->lv_flags = LV_ELF64;
468 } else {
469 ASSERT(model == DATAMODEL_ILP32);
470 lvp->lv_flags = LV_ELF32;
473 if (base_va != NULL) {
474 if (model == DATAMODEL_LP64) {
475 atomic_inc_32(&libs_mapped_64);
476 } else {
477 ASSERT(model == DATAMODEL_ILP32);
478 atomic_inc_32(&libs_mapped_32);
481 ASSERT(*tmp == NULL);
482 *tmp = lvp;
483 mutex_exit(LIB_VA_HASH_MUTEX(index));
484 if (del) {
485 ASSERT(del->lv_refcnt == 0);
486 MOBJ_STAT_ADD(lib_va_add_delete);
487 lib_va_free(del);
489 return (lvp);
493 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
494 * In addition, if this is the last hold and lvp is marked for deletion,
495 * free up it's reserved address space and free the structure.
497 static void
498 lib_va_release(struct lib_va *lvp)
500 uint_t index;
501 int to_del = 0;
503 ASSERT(lvp->lv_refcnt > 0);
505 index = LIB_VA_HASH(lvp->lv_nodeid);
506 mutex_enter(LIB_VA_HASH_MUTEX(index));
507 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
508 to_del = 1;
510 mutex_exit(LIB_VA_HASH_MUTEX(index));
511 if (to_del) {
512 ASSERT(lvp->lv_next == 0);
513 lib_va_free(lvp);
518 * Dummy function for mapping through /dev/null
519 * Normally I would have used mmmmap in common/io/mem.c
520 * but that is a static function, and for /dev/null, it
521 * just returns -1.
523 /* ARGSUSED */
524 static int
525 mmapobj_dummy(dev_t dev, off_t off, int prot)
527 return (-1);
531 * Called when an error occurred which requires mmapobj to return failure.
532 * All mapped objects will be unmapped and /dev/null mappings will be
533 * reclaimed if necessary.
534 * num_mapped is the number of elements of mrp which have been mapped, and
535 * num_segs is the total number of elements in mrp.
536 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
537 * we had already made reservations for them.
538 * If num_mapped equals num_segs, then we know that we had fully mapped
539 * the file and only need to clean up the segments described.
540 * If they are not equal, then for ET_DYN we will unmap the range from the
541 * end of the last mapped segment to the end of the last segment in mrp
542 * since we would have made a reservation for that memory earlier.
543 * If e_type is passed in as zero, num_mapped must equal num_segs.
545 void
546 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
547 ushort_t e_type)
549 int i;
550 struct as *as = curproc->p_as;
551 caddr_t addr;
552 size_t size;
554 if (e_type == ET_EXEC) {
555 num_mapped = num_segs;
557 #ifdef DEBUG
558 if (e_type == 0) {
559 ASSERT(num_mapped == num_segs);
561 #endif
563 MOBJ_STAT_ADD(unmap_called);
564 for (i = 0; i < num_mapped; i++) {
567 * If we are going to have to create a mapping we need to
568 * make sure that no one else will use the address we
569 * need to remap between the time it is unmapped and
570 * mapped below.
572 if (mrp[i].mr_flags & MR_RESV) {
573 as_rangelock(as);
575 /* Always need to unmap what we mapped */
576 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
578 /* Need to reclaim /dev/null reservation from earlier */
579 if (mrp[i].mr_flags & MR_RESV) {
580 struct segdev_crargs dev_a;
582 ASSERT(e_type != ET_DYN);
584 * Use seg_dev segment driver for /dev/null mapping.
586 dev_a.mapfunc = mmapobj_dummy;
587 dev_a.dev = makedevice(mm_major, M_NULL);
588 dev_a.offset = 0;
589 dev_a.type = 0; /* neither PRIVATE nor SHARED */
590 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
591 dev_a.hat_attr = 0;
592 dev_a.hat_flags = 0;
594 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
595 segdev_create, &dev_a);
596 MOBJ_STAT_ADD(remap_devnull);
597 as_rangeunlock(as);
601 if (num_mapped != num_segs) {
602 ASSERT(e_type == ET_DYN);
603 /* Need to unmap any reservation made after last mapped seg */
604 if (num_mapped == 0) {
605 addr = mrp[0].mr_addr;
606 } else {
607 addr = mrp[num_mapped - 1].mr_addr +
608 mrp[num_mapped - 1].mr_msize;
610 size = (size_t)mrp[num_segs - 1].mr_addr +
611 mrp[num_segs - 1].mr_msize - (size_t)addr;
612 (void) as_unmap(as, addr, size);
615 * Now we need to unmap the holes between mapped segs.
616 * Note that we have not mapped all of the segments and thus
617 * the holes between segments would not have been unmapped
618 * yet. If num_mapped == num_segs, then all of the holes
619 * between segments would have already been unmapped.
622 for (i = 1; i < num_mapped; i++) {
623 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
624 size = mrp[i].mr_addr - addr;
625 (void) as_unmap(as, addr, size);
631 * We need to add the start address into mrp so that the unmap function
632 * has absolute addresses to use.
634 static void
635 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
637 int i;
639 for (i = 0; i < num_mapped; i++) {
640 mrp[i].mr_addr += (size_t)start_addr;
642 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
645 static caddr_t
646 mmapobj_lookup_start_addr(struct lib_va *lvp)
648 proc_t *p = curproc;
649 struct as *as = p->p_as;
650 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
651 int error;
652 uint_t ma_flags = _MAP_LOW32;
653 caddr_t base = NULL;
654 size_t len;
655 size_t align;
657 ASSERT(lvp != NULL);
658 MOBJ_STAT_ADD(lookup_start);
660 as_rangelock(as);
662 base = lvp->lv_base_va;
663 len = lvp->lv_len;
666 * If we don't have an expected base address, or the one that we want
667 * to use is not available or acceptable, go get an acceptable
668 * address range.
670 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
671 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
672 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
673 if (lvp->lv_flags & LV_ELF64) {
674 ma_flags = 0;
677 align = lvp->lv_align;
678 if (align > 1) {
679 ma_flags |= MAP_ALIGN;
682 base = (caddr_t)align;
683 map_addr(&base, len, 0, 1, ma_flags);
687 * Need to reserve the address space we're going to use.
688 * Don't reserve swap space since we'll be mapping over this.
690 if (base != NULL) {
691 crargs.flags |= MAP_NORESERVE;
692 error = as_map(as, base, len, segvn_create, &crargs);
693 if (error) {
694 base = NULL;
698 as_rangeunlock(as);
699 return (base);
703 * Get the starting address for a given file to be mapped and return it
704 * to the caller. If we're using lib_va and we need to allocate an address,
705 * we will attempt to allocate it from the global reserved pool such that the
706 * same address can be used in the future for this file. If we can't use the
707 * reserved address then we just get one that will fit in our address space.
709 * Returns the starting virtual address for the range to be mapped or NULL
710 * if an error is encountered. If we successfully insert the requested info
711 * into the lib_va hash, then *lvpp will be set to point to this lib_va
712 * structure. The structure will have a hold on it and thus lib_va_release
713 * needs to be called on it by the caller. This function will not fill out
714 * lv_mps or lv_num_segs since it does not have enough information to do so.
715 * The caller is responsible for doing this making sure that any modifications
716 * to lv_mps are visible before setting lv_num_segs.
718 static caddr_t
719 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
720 size_t align, vattr_t *vap)
722 proc_t *p = curproc;
723 struct as *as = p->p_as;
724 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
725 int error;
726 model_t model;
727 uint_t ma_flags = _MAP_LOW32;
728 caddr_t base = NULL;
729 vmem_t *model_vmem;
730 size_t lib_va_start;
731 size_t lib_va_end;
732 size_t lib_va_len;
734 ASSERT(lvpp != NULL);
736 MOBJ_STAT_ADD(alloc_start);
737 model = get_udatamodel();
739 if (model == DATAMODEL_LP64) {
740 ma_flags = 0;
741 model_vmem = lib_va_64_arena;
742 } else {
743 ASSERT(model == DATAMODEL_ILP32);
744 model_vmem = lib_va_32_arena;
747 if (align > 1) {
748 ma_flags |= MAP_ALIGN;
750 if (use_lib_va) {
752 * The first time through, we need to setup the lib_va arenas.
753 * We call map_addr to find a suitable range of memory to map
754 * the given library, and we will set the highest address
755 * in our vmem arena to the end of this adddress range.
756 * We allow up to half of the address space to be used
757 * for lib_va addresses but we do not prevent any allocations
758 * in this range from other allocation paths.
760 if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
761 mutex_enter(&lib_va_init_mutex);
762 if (lib_va_64_arena == NULL) {
763 base = (caddr_t)align;
764 as_rangelock(as);
765 map_addr(&base, len, 0, 1, ma_flags);
766 as_rangeunlock(as);
767 if (base == NULL) {
768 mutex_exit(&lib_va_init_mutex);
769 MOBJ_STAT_ADD(lib_va_create_failure);
770 goto nolibva;
772 lib_va_end = (size_t)base + len;
773 lib_va_len = lib_va_end >> 1;
774 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
775 lib_va_start = lib_va_end - lib_va_len;
778 * Need to make sure we avoid the address hole.
779 * We know lib_va_end is valid but we need to
780 * make sure lib_va_start is as well.
782 if ((lib_va_end > (size_t)hole_end) &&
783 (lib_va_start < (size_t)hole_end)) {
784 lib_va_start = P2ROUNDUP(
785 (size_t)hole_end, PAGESIZE);
786 lib_va_len = lib_va_end - lib_va_start;
788 lib_va_64_arena = vmem_create("lib_va_64",
789 (void *)lib_va_start, lib_va_len, PAGESIZE,
790 NULL, NULL, NULL, 0,
791 VM_NOSLEEP | VMC_IDENTIFIER);
792 if (lib_va_64_arena == NULL) {
793 mutex_exit(&lib_va_init_mutex);
794 goto nolibva;
797 model_vmem = lib_va_64_arena;
798 mutex_exit(&lib_va_init_mutex);
799 } else if (lib_va_32_arena == NULL &&
800 model == DATAMODEL_ILP32) {
801 mutex_enter(&lib_va_init_mutex);
802 if (lib_va_32_arena == NULL) {
803 base = (caddr_t)align;
804 as_rangelock(as);
805 map_addr(&base, len, 0, 1, ma_flags);
806 as_rangeunlock(as);
807 if (base == NULL) {
808 mutex_exit(&lib_va_init_mutex);
809 MOBJ_STAT_ADD(lib_va_create_failure);
810 goto nolibva;
812 lib_va_end = (size_t)base + len;
813 lib_va_len = lib_va_end >> 1;
814 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
815 lib_va_start = lib_va_end - lib_va_len;
816 lib_va_32_arena = vmem_create("lib_va_32",
817 (void *)lib_va_start, lib_va_len, PAGESIZE,
818 NULL, NULL, NULL, 0,
819 VM_NOSLEEP | VMC_IDENTIFIER);
820 if (lib_va_32_arena == NULL) {
821 mutex_exit(&lib_va_init_mutex);
822 goto nolibva;
825 model_vmem = lib_va_32_arena;
826 mutex_exit(&lib_va_init_mutex);
829 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
830 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
831 NULL, VM_NOSLEEP | VM_ENDALLOC);
832 MOBJ_STAT_ADD(alloc_vmem);
836 * Even if the address fails to fit in our address space,
837 * or we can't use a reserved address,
838 * we should still save it off in lib_va_hash.
840 *lvpp = lib_va_add_hash(base, len, align, vap);
843 * Check for collision on insertion and free up our VA space.
844 * This is expected to be rare, so we'll just reset base to
845 * NULL instead of looking it up in the lib_va hash.
847 if (*lvpp == NULL) {
848 if (base != NULL) {
849 vmem_xfree(model_vmem, base, len);
850 base = NULL;
851 MOBJ_STAT_ADD(add_collision);
856 nolibva:
857 as_rangelock(as);
860 * If we don't have an expected base address, or the one that we want
861 * to use is not available or acceptable, go get an acceptable
862 * address range.
864 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
865 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
866 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
867 MOBJ_STAT_ADD(get_addr);
868 base = (caddr_t)align;
869 map_addr(&base, len, 0, 1, ma_flags);
873 * Need to reserve the address space we're going to use.
874 * Don't reserve swap space since we'll be mapping over this.
876 if (base != NULL) {
877 /* Don't reserve swap space since we'll be mapping over this */
878 crargs.flags |= MAP_NORESERVE;
879 error = as_map(as, base, len, segvn_create, &crargs);
880 if (error) {
881 base = NULL;
885 as_rangeunlock(as);
886 return (base);
890 * Map the file associated with vp into the address space as a single
891 * read only private mapping.
892 * Returns 0 for success, and non-zero for failure to map the file.
894 static int
895 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
896 cred_t *fcred)
898 int error = 0;
899 struct as *as = curproc->p_as;
900 caddr_t addr = NULL;
901 caddr_t start_addr;
902 size_t len;
903 size_t pad_len;
904 int prot = PROT_USER | PROT_READ;
905 uint_t ma_flags = _MAP_LOW32;
906 vattr_t vattr;
907 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
909 if (get_udatamodel() == DATAMODEL_LP64) {
910 ma_flags = 0;
913 vattr.va_mask = AT_SIZE;
914 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
915 if (error) {
916 return (error);
919 len = vattr.va_size;
921 ma_flags |= MAP_PRIVATE;
922 if (padding == 0) {
923 MOBJ_STAT_ADD(map_flat_no_padding);
924 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
925 ma_flags, fcred, NULL);
926 if (error == 0) {
927 mrp[0].mr_addr = addr;
928 mrp[0].mr_msize = len;
929 mrp[0].mr_fsize = len;
930 mrp[0].mr_offset = 0;
931 mrp[0].mr_prot = prot;
932 mrp[0].mr_flags = 0;
934 return (error);
937 /* padding was requested so there's more work to be done */
938 MOBJ_STAT_ADD(map_flat_padding);
940 /* No need to reserve swap space now since it will be reserved later */
941 crargs.flags |= MAP_NORESERVE;
943 /* Need to setup padding which can only be in PAGESIZE increments. */
944 ASSERT((padding & PAGEOFFSET) == 0);
945 pad_len = len + (2 * padding);
947 as_rangelock(as);
948 map_addr(&addr, pad_len, 0, 1, ma_flags);
949 error = as_map(as, addr, pad_len, segvn_create, &crargs);
950 as_rangeunlock(as);
951 if (error) {
952 return (error);
954 start_addr = addr;
955 addr += padding;
956 ma_flags |= MAP_FIXED;
957 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
958 fcred, NULL);
959 if (error == 0) {
960 mrp[0].mr_addr = start_addr;
961 mrp[0].mr_msize = padding;
962 mrp[0].mr_fsize = 0;
963 mrp[0].mr_offset = 0;
964 mrp[0].mr_prot = 0;
965 mrp[0].mr_flags = MR_PADDING;
967 mrp[1].mr_addr = addr;
968 mrp[1].mr_msize = len;
969 mrp[1].mr_fsize = len;
970 mrp[1].mr_offset = 0;
971 mrp[1].mr_prot = prot;
972 mrp[1].mr_flags = 0;
974 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
975 mrp[2].mr_msize = padding;
976 mrp[2].mr_fsize = 0;
977 mrp[2].mr_offset = 0;
978 mrp[2].mr_prot = 0;
979 mrp[2].mr_flags = MR_PADDING;
980 } else {
981 /* Need to cleanup the as_map from earlier */
982 (void) as_unmap(as, start_addr, pad_len);
984 return (error);
988 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
989 * address space.
990 * vp - vnode to be mapped in
991 * addr - start address
992 * len - length of vp to be mapped
993 * zfodlen - length of zero filled memory after len above
994 * offset - offset into file where mapping should start
995 * prot - protections for this mapping
996 * fcred - credentials for the file associated with vp at open time.
998 static int
999 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1000 off_t offset, int prot, cred_t *fcred)
1002 int error = 0;
1003 caddr_t zfodbase, oldaddr;
1004 size_t oldlen;
1005 size_t end;
1006 size_t zfoddiff;
1007 label_t ljb;
1008 struct as *as = curproc->p_as;
1009 model_t model;
1010 int full_page;
1013 * See if addr and offset are aligned such that we can map in
1014 * full pages instead of partial pages.
1016 full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1017 ((uintptr_t)offset & PAGEOFFSET));
1019 model = get_udatamodel();
1021 oldaddr = addr;
1022 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1023 if (len) {
1024 spgcnt_t availm, npages;
1025 int preread;
1026 uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1028 if (model == DATAMODEL_ILP32) {
1029 mflag |= _MAP_LOW32;
1031 /* We may need to map in extra bytes */
1032 oldlen = len;
1033 len += ((size_t)oldaddr & PAGEOFFSET);
1035 if (full_page) {
1036 offset = (off_t)((uintptr_t)offset & PAGEMASK);
1037 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1038 mflag |= MAP_TEXT;
1039 MOBJ_STAT_ADD(map_ptload_text);
1040 } else {
1041 mflag |= MAP_INITDATA;
1042 MOBJ_STAT_ADD(map_ptload_initdata);
1046 * maxprot is passed as PROT_ALL so that mdb can
1047 * write to this segment.
1049 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1050 len, prot, PROT_ALL, mflag, fcred, NULL)) {
1051 return (error);
1055 * If the segment can fit and is relatively small, then
1056 * we prefault the entire segment in. This is based
1057 * on the model that says the best working set of a
1058 * small program is all of its pages.
1059 * We only do this if freemem will not drop below
1060 * lotsfree since we don't want to induce paging.
1062 npages = (spgcnt_t)btopr(len);
1063 availm = freemem - lotsfree;
1064 preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1067 * If we aren't prefaulting the segment,
1068 * increment "deficit", if necessary to ensure
1069 * that pages will become available when this
1070 * process starts executing.
1072 if (preread == 0 && npages > availm &&
1073 deficit < lotsfree) {
1074 deficit += MIN((pgcnt_t)(npages - availm),
1075 lotsfree - deficit);
1078 if (preread) {
1079 (void) as_faulta(as, addr, len);
1080 MOBJ_STAT_ADD(map_ptload_preread);
1082 } else {
1084 * addr and offset were not aligned such that we could
1085 * use VOP_MAP, thus we need to as_map the memory we
1086 * need and then read the data in from disk.
1087 * This code path is a corner case which should never
1088 * be taken, but hand crafted binaries could trigger
1089 * this logic and it needs to work correctly.
1091 MOBJ_STAT_ADD(map_ptload_unaligned_text);
1092 as_rangelock(as);
1093 (void) as_unmap(as, addr, len);
1096 * We use zfod_argsp because we need to be able to
1097 * write to the mapping and then we'll change the
1098 * protections later if they are incorrect.
1100 error = as_map(as, addr, len, segvn_create, zfod_argsp);
1101 as_rangeunlock(as);
1102 if (error) {
1103 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1104 return (error);
1107 /* Now read in the data from disk */
1108 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1109 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1110 if (error) {
1111 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1112 return (error);
1116 * Now set protections.
1118 if (prot != PROT_ZFOD) {
1119 (void) as_setprot(as, addr, len, prot);
1124 if (zfodlen) {
1125 end = (size_t)addr + len;
1126 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1127 zfoddiff = (uintptr_t)zfodbase - end;
1128 if (zfoddiff) {
1129 MOBJ_STAT_ADD(zfoddiff);
1130 if ((prot & PROT_WRITE) == 0) {
1131 (void) as_setprot(as, (caddr_t)end,
1132 zfoddiff, prot | PROT_WRITE);
1133 MOBJ_STAT_ADD(zfoddiff_nowrite);
1135 if (on_fault(&ljb)) {
1136 no_fault();
1137 if ((prot & PROT_WRITE) == 0) {
1138 (void) as_setprot(as, (caddr_t)end,
1139 zfoddiff, prot);
1141 return (EFAULT);
1143 uzero((void *)end, zfoddiff);
1144 no_fault();
1147 * Remove write protection to return to original state
1149 if ((prot & PROT_WRITE) == 0) {
1150 (void) as_setprot(as, (caddr_t)end,
1151 zfoddiff, prot);
1154 if (zfodlen > zfoddiff) {
1155 struct segvn_crargs crargs =
1156 SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1158 MOBJ_STAT_ADD(zfodextra);
1159 zfodlen -= zfoddiff;
1160 crargs.szc = AS_MAP_NO_LPOOB;
1163 as_rangelock(as);
1164 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1165 error = as_map(as, (caddr_t)zfodbase,
1166 zfodlen, segvn_create, &crargs);
1167 as_rangeunlock(as);
1168 if (error) {
1169 return (error);
1173 return (0);
1177 * Map the ELF file represented by vp into the users address space. The
1178 * first mapping will start at start_addr and there will be num_elements
1179 * mappings. The mappings are described by the data in mrp which may be
1180 * modified upon returning from this function.
1181 * Returns 0 for success or errno for failure.
1183 static int
1184 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1185 int num_elements, cred_t *fcred, ushort_t e_type)
1187 int i;
1188 int ret;
1189 caddr_t lo;
1190 caddr_t hi;
1191 struct as *as = curproc->p_as;
1193 for (i = 0; i < num_elements; i++) {
1194 caddr_t addr;
1195 size_t p_memsz;
1196 size_t p_filesz;
1197 size_t zfodlen;
1198 offset_t p_offset;
1199 size_t dif;
1200 int prot;
1202 /* Always need to adjust mr_addr */
1203 addr = start_addr + (size_t)(mrp[i].mr_addr);
1204 mrp[i].mr_addr =
1205 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1207 /* Padding has already been mapped */
1208 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1209 continue;
1211 p_memsz = mrp[i].mr_msize;
1212 p_filesz = mrp[i].mr_fsize;
1213 zfodlen = p_memsz - p_filesz;
1214 p_offset = mrp[i].mr_offset;
1215 dif = (uintptr_t)(addr) & PAGEOFFSET;
1216 prot = mrp[i].mr_prot | PROT_USER;
1217 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1218 p_offset, prot, fcred);
1219 if (ret != 0) {
1220 MOBJ_STAT_ADD(ptload_failed);
1221 mmapobj_unmap(mrp, i, num_elements, e_type);
1222 return (ret);
1225 /* Need to cleanup mrp to reflect the actual values used */
1226 mrp[i].mr_msize += dif;
1227 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1230 /* Also need to unmap any holes created above */
1231 if (num_elements == 1) {
1232 MOBJ_STAT_ADD(map_elf_no_holes);
1233 return (0);
1235 if (e_type == ET_EXEC) {
1236 return (0);
1239 as_rangelock(as);
1240 lo = start_addr;
1241 hi = mrp[0].mr_addr;
1243 /* Remove holes made by the rest of the segments */
1244 for (i = 0; i < num_elements - 1; i++) {
1245 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1246 mrp[i].mr_msize, PAGESIZE);
1247 hi = mrp[i + 1].mr_addr;
1248 if (lo < hi) {
1250 * If as_unmap fails we just use up a bit of extra
1251 * space
1253 (void) as_unmap(as, (caddr_t)lo,
1254 (size_t)hi - (size_t)lo);
1255 MOBJ_STAT_ADD(unmap_hole);
1258 as_rangeunlock(as);
1260 return (0);
1263 /* Ugly hack to get STRUCT_* macros to work below */
1264 struct myphdr {
1265 Phdr x; /* native version */
1268 struct myphdr32 {
1269 Elf32_Phdr x;
1273 * Calculate and return the number of loadable segments in the ELF Phdr
1274 * represented by phdrbase as well as the len of the total mapping and
1275 * the max alignment that is needed for a given segment. On success,
1276 * 0 is returned, and *len, *loadable and *align have been filled out.
1277 * On failure, errno will be returned, which in this case is ENOTSUP
1278 * if we were passed an ELF file with overlapping segments.
1280 static int
1281 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1282 int *loadable, size_t *align)
1284 int i;
1285 int hsize;
1286 model_t model;
1287 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1288 uint_t p_type;
1289 offset_t p_offset;
1290 size_t p_memsz;
1291 size_t p_align;
1292 caddr_t vaddr;
1293 int num_segs = 0;
1294 caddr_t start_addr = NULL;
1295 caddr_t p_end = NULL;
1296 size_t max_align = 0;
1297 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */
1298 STRUCT_HANDLE(myphdr, mph);
1299 #if defined(__sparc)
1300 extern int vac_size;
1303 * Want to prevent aliasing by making the start address at least be
1304 * aligned to vac_size.
1306 min_align = MAX(PAGESIZE, vac_size);
1307 #endif
1309 model = get_udatamodel();
1310 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1312 /* hsize alignment should have been checked before calling this func */
1313 if (model == DATAMODEL_LP64) {
1314 hsize = ehdrp->e_phentsize;
1315 if (hsize & 7) {
1316 return (ENOTSUP);
1318 } else {
1319 ASSERT(model == DATAMODEL_ILP32);
1320 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1321 if (hsize & 3) {
1322 return (ENOTSUP);
1327 * Determine the span of all loadable segments and calculate the
1328 * number of loadable segments.
1330 for (i = 0; i < nphdrs; i++) {
1331 p_type = STRUCT_FGET(mph, x.p_type);
1332 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1333 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1334 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1337 * Skip this header if it requests no memory to be
1338 * mapped.
1340 if (p_memsz == 0) {
1341 STRUCT_SET_HANDLE(mph, model,
1342 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1343 hsize));
1344 MOBJ_STAT_ADD(nomem_header);
1345 continue;
1347 if (num_segs++ == 0) {
1349 * The p_vaddr of the first PT_LOAD segment
1350 * must either be NULL or within the first
1351 * page in order to be interpreted.
1352 * Otherwise, its an invalid file.
1354 if (e_type == ET_DYN &&
1355 ((caddr_t)((uintptr_t)vaddr &
1356 (uintptr_t)PAGEMASK) != NULL)) {
1357 MOBJ_STAT_ADD(inval_header);
1358 return (ENOTSUP);
1360 start_addr = vaddr;
1362 * For the first segment, we need to map from
1363 * the beginning of the file, so we will
1364 * adjust the size of the mapping to include
1365 * this memory.
1367 p_offset = STRUCT_FGET(mph, x.p_offset);
1368 } else {
1369 p_offset = 0;
1372 * Check to make sure that this mapping wouldn't
1373 * overlap a previous mapping.
1375 if (vaddr < p_end) {
1376 MOBJ_STAT_ADD(overlap_header);
1377 return (ENOTSUP);
1380 p_end = vaddr + p_memsz + p_offset;
1381 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1383 p_align = STRUCT_FGET(mph, x.p_align);
1384 if (p_align > 1 && p_align > max_align) {
1385 max_align = p_align;
1386 if (max_align < min_align) {
1387 max_align = min_align;
1388 MOBJ_STAT_ADD(min_align);
1392 STRUCT_SET_HANDLE(mph, model,
1393 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1397 * The alignment should be a power of 2, if it isn't we forgive it
1398 * and round up. On overflow, we'll set the alignment to max_align
1399 * rounded down to the nearest power of 2.
1401 if (max_align > 0 && !ISP2(max_align)) {
1402 MOBJ_STAT_ADD(np2_align);
1403 *align = 2 * (1L << (highbit(max_align) - 1));
1404 if (*align < max_align ||
1405 (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1406 MOBJ_STAT_ADD(np2_align_overflow);
1407 *align = 1L << (highbit(max_align) - 1);
1409 } else {
1410 *align = max_align;
1413 ASSERT(*align >= PAGESIZE || *align == 0);
1415 *loadable = num_segs;
1416 *len = p_end - start_addr;
1417 return (0);
1421 * Check the address space to see if the virtual addresses to be used are
1422 * available. If they are not, return errno for failure. On success, 0
1423 * will be returned, and the virtual addresses for each mmapobj_result_t
1424 * will be reserved. Note that a reservation could have earlier been made
1425 * for a given segment via a /dev/null mapping. If that is the case, then
1426 * we can use that VA space for our mappings.
1427 * Note: this function will only be used for ET_EXEC binaries.
1430 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1432 int i;
1433 struct as *as = curproc->p_as;
1434 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1435 int ret;
1436 caddr_t myaddr;
1437 size_t mylen;
1438 struct seg *seg;
1440 /* No need to reserve swap space now since it will be reserved later */
1441 crargs.flags |= MAP_NORESERVE;
1442 as_rangelock(as);
1443 for (i = 0; i < loadable; i++) {
1445 myaddr = start_addr + (size_t)mrp[i].mr_addr;
1446 mylen = mrp[i].mr_msize;
1448 /* See if there is a hole in the as for this range */
1449 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1450 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1451 ASSERT(mylen == mrp[i].mr_msize);
1453 #ifdef DEBUG
1454 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1455 MOBJ_STAT_ADD(exec_padding);
1457 #endif
1458 ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1459 if (ret) {
1460 as_rangeunlock(as);
1461 mmapobj_unmap_exec(mrp, i, start_addr);
1462 return (ret);
1464 } else {
1466 * There is a mapping that exists in the range
1467 * so check to see if it was a "reservation"
1468 * from /dev/null. The mapping is from
1469 * /dev/null if the mapping comes from
1470 * segdev and the type is neither MAP_SHARED
1471 * nor MAP_PRIVATE.
1473 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1474 seg = as_findseg(as, myaddr, 0);
1475 MOBJ_STAT_ADD(exec_addr_mapped);
1476 if (seg && seg->s_ops == &segdev_ops &&
1477 ((SEGOP_GETTYPE(seg, myaddr) &
1478 (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1479 myaddr >= seg->s_base &&
1480 myaddr + mylen <=
1481 seg->s_base + seg->s_size) {
1482 MOBJ_STAT_ADD(exec_addr_devnull);
1483 AS_LOCK_EXIT(as, &as->a_lock);
1484 (void) as_unmap(as, myaddr, mylen);
1485 ret = as_map(as, myaddr, mylen, segvn_create,
1486 &crargs);
1487 mrp[i].mr_flags |= MR_RESV;
1488 if (ret) {
1489 as_rangeunlock(as);
1490 /* Need to remap what we unmapped */
1491 mmapobj_unmap_exec(mrp, i + 1,
1492 start_addr);
1493 return (ret);
1495 } else {
1496 AS_LOCK_EXIT(as, &as->a_lock);
1497 as_rangeunlock(as);
1498 mmapobj_unmap_exec(mrp, i, start_addr);
1499 MOBJ_STAT_ADD(exec_addr_in_use);
1500 return (EADDRINUSE);
1504 as_rangeunlock(as);
1505 return (0);
1509 * Walk through the ELF program headers and extract all useful information
1510 * for PT_LOAD and PT_SUNWBSS segments into mrp.
1511 * Return 0 on success or error on failure.
1513 static int
1514 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1515 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1517 int i;
1518 caddr_t start_addr = NULL;
1519 caddr_t vaddr;
1520 size_t len = 0;
1521 size_t lib_len = 0;
1522 int ret;
1523 int prot;
1524 struct lib_va *lvp = NULL;
1525 vattr_t vattr;
1526 struct as *as = curproc->p_as;
1527 int error;
1528 int loadable = 0;
1529 int current = 0;
1530 int use_lib_va = 1;
1531 size_t align = 0;
1532 size_t add_pad = 0;
1533 int hdr_seen = 0;
1534 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1535 uint_t p_type;
1536 offset_t p_offset;
1537 size_t p_memsz;
1538 size_t p_filesz;
1539 uint_t p_flags;
1540 int hsize;
1541 model_t model;
1542 STRUCT_HANDLE(myphdr, mph);
1544 model = get_udatamodel();
1545 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1548 * Need to make sure that hsize is aligned properly.
1549 * For 32bit processes, 4 byte alignment is required.
1550 * For 64bit processes, 8 byte alignment is required.
1551 * If the alignment isn't correct, we need to return failure
1552 * since it could cause an alignment error panic while walking
1553 * the phdr array.
1555 if (model == DATAMODEL_LP64) {
1556 hsize = ehdrp->e_phentsize;
1557 if (hsize & 7) {
1558 MOBJ_STAT_ADD(phent_align64);
1559 return (ENOTSUP);
1561 } else {
1562 ASSERT(model == DATAMODEL_ILP32);
1563 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1564 if (hsize & 3) {
1565 MOBJ_STAT_ADD(phent_align32);
1566 return (ENOTSUP);
1570 if (padding != 0) {
1571 use_lib_va = 0;
1573 if (e_type == ET_DYN) {
1574 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1575 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1576 if (error) {
1577 return (error);
1579 /* Check to see if we already have a description for this lib */
1580 lvp = lib_va_find(&vattr);
1582 if (lvp != NULL) {
1583 MOBJ_STAT_ADD(lvp_found);
1584 if (use_lib_va) {
1585 start_addr = mmapobj_lookup_start_addr(lvp);
1586 if (start_addr == NULL) {
1587 lib_va_release(lvp);
1588 return (ENOMEM);
1593 * loadable may be zero if the original allocator
1594 * of lvp hasn't finished setting it up but the rest
1595 * of the fields will be accurate.
1597 loadable = lvp->lv_num_segs;
1598 len = lvp->lv_len;
1599 align = lvp->lv_align;
1604 * Determine the span of all loadable segments and calculate the
1605 * number of loadable segments, the total len spanned by the mappings
1606 * and the max alignment, if we didn't get them above.
1608 if (loadable == 0) {
1609 MOBJ_STAT_ADD(no_loadable_yet);
1610 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1611 &loadable, &align);
1612 if (ret != 0) {
1614 * Since it'd be an invalid file, we shouldn't have
1615 * cached it previously.
1617 ASSERT(lvp == NULL);
1618 return (ret);
1620 #ifdef DEBUG
1621 if (lvp) {
1622 ASSERT(len == lvp->lv_len);
1623 ASSERT(align == lvp->lv_align);
1625 #endif
1628 /* Make sure there's something to map. */
1629 if (len == 0 || loadable == 0) {
1631 * Since it'd be an invalid file, we shouldn't have
1632 * cached it previously.
1634 ASSERT(lvp == NULL);
1635 MOBJ_STAT_ADD(nothing_to_map);
1636 return (ENOTSUP);
1639 lib_len = len;
1640 if (padding != 0) {
1641 loadable += 2;
1643 if (loadable > *num_mapped) {
1644 *num_mapped = loadable;
1645 /* cleanup previous reservation */
1646 if (start_addr) {
1647 (void) as_unmap(as, start_addr, lib_len);
1649 MOBJ_STAT_ADD(e2big);
1650 if (lvp) {
1651 lib_va_release(lvp);
1653 return (E2BIG);
1657 * We now know the size of the object to map and now we need to
1658 * get the start address to map it at. It's possible we already
1659 * have it if we found all the info we need in the lib_va cache.
1661 if (e_type == ET_DYN && start_addr == NULL) {
1663 * Need to make sure padding does not throw off
1664 * required alignment. We can only specify an
1665 * alignment for the starting address to be mapped,
1666 * so we round padding up to the alignment and map
1667 * from there and then throw out the extra later.
1669 if (padding != 0) {
1670 if (align > 1) {
1671 add_pad = P2ROUNDUP(padding, align);
1672 len += add_pad;
1673 MOBJ_STAT_ADD(dyn_pad_align);
1674 } else {
1675 MOBJ_STAT_ADD(dyn_pad_noalign);
1676 len += padding; /* at beginning */
1678 len += padding; /* at end of mapping */
1681 * At this point, if lvp is non-NULL, then above we
1682 * already found it in the cache but did not get
1683 * the start address since we were not going to use lib_va.
1684 * Since we know that lib_va will not be used, it's safe
1685 * to call mmapobj_alloc_start_addr and know that lvp
1686 * will not be modified.
1688 ASSERT(lvp ? use_lib_va == 0 : 1);
1689 start_addr = mmapobj_alloc_start_addr(&lvp, len,
1690 use_lib_va, align, &vattr);
1691 if (start_addr == NULL) {
1692 if (lvp) {
1693 lib_va_release(lvp);
1695 MOBJ_STAT_ADD(alloc_start_fail);
1696 return (ENOMEM);
1699 * If we can't cache it, no need to hang on to it.
1700 * Setting lv_num_segs to non-zero will make that
1701 * field active and since there are too many segments
1702 * to cache, all future users will not try to use lv_mps.
1704 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1705 lvp->lv_num_segs = loadable;
1706 lib_va_release(lvp);
1707 lvp = NULL;
1708 MOBJ_STAT_ADD(lvp_nocache);
1711 * Free the beginning of the mapping if the padding
1712 * was not aligned correctly.
1714 if (padding != 0 && add_pad != padding) {
1715 (void) as_unmap(as, start_addr,
1716 add_pad - padding);
1717 start_addr += (add_pad - padding);
1718 MOBJ_STAT_ADD(extra_padding);
1723 * At this point, we have reserved the virtual address space
1724 * for our mappings. Now we need to start filling out the mrp
1725 * array to describe all of the individual mappings we are going
1726 * to return.
1727 * For ET_EXEC there has been no memory reservation since we are
1728 * using fixed addresses. While filling in the mrp array below,
1729 * we will have the first segment biased to start at addr 0
1730 * and the rest will be biased by this same amount. Thus if there
1731 * is padding, the first padding will start at addr 0, and the next
1732 * segment will start at the value of padding.
1735 /* We'll fill out padding later, so start filling in mrp at index 1 */
1736 if (padding != 0) {
1737 current = 1;
1740 /* If we have no more need for lvp let it go now */
1741 if (lvp != NULL && use_lib_va == 0) {
1742 lib_va_release(lvp);
1743 MOBJ_STAT_ADD(lvp_not_needed);
1744 lvp = NULL;
1747 /* Now fill out the mrp structs from the program headers */
1748 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1749 for (i = 0; i < nphdrs; i++) {
1750 p_type = STRUCT_FGET(mph, x.p_type);
1751 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1752 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1753 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1754 p_filesz = STRUCT_FGET(mph, x.p_filesz);
1755 p_offset = STRUCT_FGET(mph, x.p_offset);
1756 p_flags = STRUCT_FGET(mph, x.p_flags);
1759 * Skip this header if it requests no memory to be
1760 * mapped.
1762 if (p_memsz == 0) {
1763 STRUCT_SET_HANDLE(mph, model,
1764 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1765 hsize));
1766 MOBJ_STAT_ADD(no_mem_map_sz);
1767 continue;
1770 prot = 0;
1771 if (p_flags & PF_R)
1772 prot |= PROT_READ;
1773 if (p_flags & PF_W)
1774 prot |= PROT_WRITE;
1775 if (p_flags & PF_X)
1776 prot |= PROT_EXEC;
1778 ASSERT(current < loadable);
1779 mrp[current].mr_msize = p_memsz;
1780 mrp[current].mr_fsize = p_filesz;
1781 mrp[current].mr_offset = p_offset;
1782 mrp[current].mr_prot = prot;
1784 if (hdr_seen == 0 && p_filesz != 0) {
1785 mrp[current].mr_flags = MR_HDR_ELF;
1787 * We modify mr_offset because we
1788 * need to map the ELF header as well, and if
1789 * we didn't then the header could be left out
1790 * of the mapping that we will create later.
1791 * Since we're removing the offset, we need to
1792 * account for that in the other fields as well
1793 * since we will be mapping the memory from 0
1794 * to p_offset.
1796 if (e_type == ET_DYN) {
1797 mrp[current].mr_offset = 0;
1798 mrp[current].mr_msize += p_offset;
1799 mrp[current].mr_fsize += p_offset;
1800 } else {
1801 ASSERT(e_type == ET_EXEC);
1803 * Save off the start addr which will be
1804 * our bias for the rest of the
1805 * ET_EXEC mappings.
1807 start_addr = vaddr - padding;
1809 mrp[current].mr_addr = (caddr_t)padding;
1810 hdr_seen = 1;
1811 } else {
1812 if (e_type == ET_EXEC) {
1813 /* bias mr_addr */
1814 mrp[current].mr_addr =
1815 vaddr - (size_t)start_addr;
1816 } else {
1817 mrp[current].mr_addr = vaddr + padding;
1819 mrp[current].mr_flags = 0;
1821 current++;
1824 /* Move to next phdr */
1825 STRUCT_SET_HANDLE(mph, model,
1826 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1827 hsize));
1830 /* Now fill out the padding segments */
1831 if (padding != 0) {
1832 mrp[0].mr_addr = NULL;
1833 mrp[0].mr_msize = padding;
1834 mrp[0].mr_fsize = 0;
1835 mrp[0].mr_offset = 0;
1836 mrp[0].mr_prot = 0;
1837 mrp[0].mr_flags = MR_PADDING;
1839 /* Setup padding for the last segment */
1840 ASSERT(current == loadable - 1);
1841 mrp[current].mr_addr = (caddr_t)lib_len + padding;
1842 mrp[current].mr_msize = padding;
1843 mrp[current].mr_fsize = 0;
1844 mrp[current].mr_offset = 0;
1845 mrp[current].mr_prot = 0;
1846 mrp[current].mr_flags = MR_PADDING;
1850 * Need to make sure address ranges desired are not in use or
1851 * are previously allocated reservations from /dev/null. For
1852 * ET_DYN, we already made sure our address range was free.
1854 if (e_type == ET_EXEC) {
1855 ret = check_exec_addrs(loadable, mrp, start_addr);
1856 if (ret != 0) {
1857 ASSERT(lvp == NULL);
1858 MOBJ_STAT_ADD(check_exec_failed);
1859 return (ret);
1863 /* Finish up our business with lvp. */
1864 if (lvp) {
1865 ASSERT(e_type == ET_DYN);
1866 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1867 bcopy(mrp, lvp->lv_mps,
1868 loadable * sizeof (mmapobj_result_t));
1869 membar_producer();
1872 * Setting lv_num_segs to a non-zero value indicates that
1873 * lv_mps is now valid and can be used by other threads.
1874 * So, the above stores need to finish before lv_num_segs
1875 * is updated. lv_mps is only valid if lv_num_segs is
1876 * greater than LIBVA_CACHED_SEGS.
1878 lvp->lv_num_segs = loadable;
1879 lib_va_release(lvp);
1880 MOBJ_STAT_ADD(lvp_used);
1883 /* Now that we have mrp completely filled out go map it */
1884 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1885 if (ret == 0) {
1886 *num_mapped = loadable;
1889 return (ret);
1893 * Take the ELF file passed in, and do the work of mapping it.
1894 * num_mapped in - # elements in user buffer
1895 * num_mapped out - # sections mapped and length of mrp array if
1896 * no errors.
1898 static int
1899 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1900 uint_t *num_mapped, size_t padding, cred_t *fcred)
1902 int error;
1903 offset_t phoff;
1904 int nphdrs;
1905 unsigned char ei_class;
1906 unsigned short phentsize;
1907 ssize_t phsizep;
1908 caddr_t phbasep;
1909 int to_map;
1910 model_t model;
1912 ei_class = ehdrp->e_ident[EI_CLASS];
1913 model = get_udatamodel();
1914 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1915 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1916 MOBJ_STAT_ADD(wrong_model);
1917 return (ENOTSUP);
1920 /* Can't execute code from "noexec" mounted filesystem. */
1921 if (ehdrp->e_type == ET_EXEC &&
1922 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1923 MOBJ_STAT_ADD(noexec_fs);
1924 return (EACCES);
1928 * Relocatable and core files are mapped as a single flat file
1929 * since no interpretation is done on them by mmapobj.
1931 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1932 to_map = padding ? 3 : 1;
1933 if (*num_mapped < to_map) {
1934 *num_mapped = to_map;
1935 MOBJ_STAT_ADD(e2big_et_rel);
1936 return (E2BIG);
1938 error = mmapobj_map_flat(vp, mrp, padding, fcred);
1939 if (error == 0) {
1940 *num_mapped = to_map;
1941 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1942 MOBJ_STAT_ADD(et_rel_mapped);
1944 return (error);
1947 /* Check for an unknown ELF type */
1948 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1949 MOBJ_STAT_ADD(unknown_elf_type);
1950 return (ENOTSUP);
1953 if (ei_class == ELFCLASS32) {
1954 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1955 ASSERT(model == DATAMODEL_ILP32);
1956 nphdrs = e32hdr->e_phnum;
1957 phentsize = e32hdr->e_phentsize;
1958 if (phentsize < sizeof (Elf32_Phdr)) {
1959 MOBJ_STAT_ADD(phent32_too_small);
1960 return (ENOTSUP);
1962 phoff = e32hdr->e_phoff;
1963 } else if (ei_class == ELFCLASS64) {
1964 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1965 ASSERT(model == DATAMODEL_LP64);
1966 nphdrs = e64hdr->e_phnum;
1967 phentsize = e64hdr->e_phentsize;
1968 if (phentsize < sizeof (Elf64_Phdr)) {
1969 MOBJ_STAT_ADD(phent64_too_small);
1970 return (ENOTSUP);
1972 phoff = e64hdr->e_phoff;
1973 } else {
1974 /* fallthrough case for an invalid ELF class */
1975 MOBJ_STAT_ADD(inval_elf_class);
1976 return (ENOTSUP);
1980 * nphdrs should only have this value for core files which are handled
1981 * above as a single mapping. If other file types ever use this
1982 * sentinel, then we'll add the support needed to handle this here.
1984 if (nphdrs == PN_XNUM) {
1985 MOBJ_STAT_ADD(too_many_phdrs);
1986 return (ENOTSUP);
1989 phsizep = nphdrs * phentsize;
1991 if (phsizep == 0) {
1992 MOBJ_STAT_ADD(no_phsize);
1993 return (ENOTSUP);
1996 /* Make sure we only wait for memory if it's a reasonable request */
1997 if (phsizep > mmapobj_alloc_threshold) {
1998 MOBJ_STAT_ADD(phsize_large);
1999 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2000 MOBJ_STAT_ADD(phsize_xtralarge);
2001 return (ENOMEM);
2003 } else {
2004 phbasep = kmem_alloc(phsizep, KM_SLEEP);
2007 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2008 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2009 fcred, NULL)) != 0) {
2010 kmem_free(phbasep, phsizep);
2011 return (error);
2014 /* Now process the phdr's */
2015 error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2016 padding, fcred);
2017 kmem_free(phbasep, phsizep);
2018 return (error);
2021 #if defined(__sparc)
2023 * Hack to support 64 bit kernels running AOUT 4.x programs.
2024 * This is the sizeof (struct nlist) for a 32 bit kernel.
2025 * Since AOUT programs are 32 bit only, they will never use the 64 bit
2026 * sizeof (struct nlist) and thus creating a #define is the simplest
2027 * way around this since this is a format which is not being updated.
2028 * This will be used in the place of sizeof (struct nlist) below.
2030 #define NLIST_SIZE (0xC)
2032 static int
2033 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp,
2034 uint_t *num_mapped, struct exec *hdr, cred_t *fcred)
2036 int error;
2037 size_t size;
2038 size_t osize;
2039 size_t nsize; /* nlist size */
2040 size_t msize;
2041 size_t zfoddiff;
2042 caddr_t addr;
2043 caddr_t start_addr;
2044 struct as *as = curproc->p_as;
2045 int prot = PROT_USER | PROT_READ | PROT_EXEC;
2046 uint_t mflag = MAP_PRIVATE | _MAP_LOW32;
2047 offset_t off = 0;
2048 int segnum = 0;
2049 uint_t to_map;
2050 int is_library = 0;
2051 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2053 /* Only 32bit apps supported by this file format */
2054 if (get_udatamodel() != DATAMODEL_ILP32) {
2055 MOBJ_STAT_ADD(aout_64bit_try);
2056 return (ENOTSUP);
2059 /* Check to see if this is a library */
2060 if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) {
2061 is_library = 1;
2064 /* Can't execute code from "noexec" mounted filesystem. */
2065 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) {
2066 MOBJ_STAT_ADD(aout_noexec);
2067 return (EACCES);
2071 * There are 2 ways to calculate the mapped size of executable:
2072 * 1) rounded text size + data size + bss size.
2073 * 2) starting offset for text + text size + data size + text relocation
2074 * size + data relocation size + room for nlist data structure.
2076 * The larger of the two sizes will be used to map this binary.
2078 osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss;
2080 off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec);
2082 nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize +
2083 hdr->a_drsize + NLIST_SIZE;
2085 size = MAX(osize, nsize);
2086 if (size != nsize) {
2087 nsize = 0;
2091 * 1 seg for text and 1 seg for initialized data.
2092 * 1 seg for bss (if can't fit in leftover space of init data)
2093 * 1 seg for nlist if needed.
2095 to_map = 2 + (nsize ? 1 : 0) +
2096 (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0);
2097 if (*num_mapped < to_map) {
2098 *num_mapped = to_map;
2099 MOBJ_STAT_ADD(aout_e2big);
2100 return (E2BIG);
2103 /* Reserve address space for the whole mapping */
2104 if (is_library) {
2105 /* We'll let VOP_MAP below pick our address for us */
2106 addr = NULL;
2107 MOBJ_STAT_ADD(aout_lib);
2108 } else {
2110 * default start address for fixed binaries from AOUT 4.x
2111 * standard.
2113 MOBJ_STAT_ADD(aout_fixed);
2114 mflag |= MAP_FIXED;
2115 addr = (caddr_t)0x2000;
2116 as_rangelock(as);
2117 if (as_gap(as, size, &addr, &size, 0, NULL) != 0) {
2118 as_rangeunlock(as);
2119 MOBJ_STAT_ADD(aout_addr_in_use);
2120 return (EADDRINUSE);
2122 crargs.flags |= MAP_NORESERVE;
2123 error = as_map(as, addr, size, segvn_create, &crargs);
2124 ASSERT(addr == (caddr_t)0x2000);
2125 as_rangeunlock(as);
2128 start_addr = addr;
2129 osize = size;
2132 * Map as large as we need, backed by file, this will be text, and
2133 * possibly the nlist segment. We map over this mapping for bss and
2134 * initialized data segments.
2136 error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL,
2137 mflag, fcred, NULL);
2138 if (error) {
2139 if (!is_library) {
2140 (void) as_unmap(as, start_addr, osize);
2142 return (error);
2145 /* pickup the value of start_addr and osize for libraries */
2146 start_addr = addr;
2147 osize = size;
2150 * We have our initial reservation/allocation so we need to use fixed
2151 * addresses from now on.
2153 mflag |= MAP_FIXED;
2155 mrp[0].mr_addr = addr;
2156 mrp[0].mr_msize = hdr->a_text;
2157 mrp[0].mr_fsize = hdr->a_text;
2158 mrp[0].mr_offset = 0;
2159 mrp[0].mr_prot = PROT_READ | PROT_EXEC;
2160 mrp[0].mr_flags = MR_HDR_AOUT;
2164 * Map initialized data. We are mapping over a portion of the
2165 * previous mapping which will be unmapped in VOP_MAP below.
2167 off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE);
2168 msize = off;
2169 addr += off;
2170 size = hdr->a_data;
2171 error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL,
2172 mflag, fcred, NULL);
2173 if (error) {
2174 (void) as_unmap(as, start_addr, osize);
2175 return (error);
2177 msize += size;
2178 mrp[1].mr_addr = addr;
2179 mrp[1].mr_msize = size;
2180 mrp[1].mr_fsize = size;
2181 mrp[1].mr_offset = 0;
2182 mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2183 mrp[1].mr_flags = 0;
2185 /* Need to zero out remainder of page */
2186 addr += hdr->a_data;
2187 zfoddiff = P2PHASE((size_t)addr, PAGESIZE);
2188 if (zfoddiff) {
2189 label_t ljb;
2191 MOBJ_STAT_ADD(aout_zfoddiff);
2192 zfoddiff = PAGESIZE - zfoddiff;
2193 if (on_fault(&ljb)) {
2194 no_fault();
2195 MOBJ_STAT_ADD(aout_uzero_fault);
2196 (void) as_unmap(as, start_addr, osize);
2197 return (EFAULT);
2199 uzero(addr, zfoddiff);
2200 no_fault();
2202 msize += zfoddiff;
2203 segnum = 2;
2205 /* Map bss */
2206 if (hdr->a_bss > zfoddiff) {
2207 struct segvn_crargs crargs =
2208 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2209 MOBJ_STAT_ADD(aout_map_bss);
2210 addr += zfoddiff;
2211 size = hdr->a_bss - zfoddiff;
2212 as_rangelock(as);
2213 (void) as_unmap(as, addr, size);
2214 error = as_map(as, addr, size, segvn_create, &crargs);
2215 as_rangeunlock(as);
2216 msize += size;
2218 if (error) {
2219 MOBJ_STAT_ADD(aout_bss_fail);
2220 (void) as_unmap(as, start_addr, osize);
2221 return (error);
2223 mrp[2].mr_addr = addr;
2224 mrp[2].mr_msize = size;
2225 mrp[2].mr_fsize = 0;
2226 mrp[2].mr_offset = 0;
2227 mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2228 mrp[2].mr_flags = 0;
2230 addr += size;
2231 segnum = 3;
2235 * If we have extra bits left over, we need to include that in how
2236 * much we mapped to make sure the nlist logic is correct
2238 msize = P2ROUNDUP(msize, PAGESIZE);
2240 if (nsize && msize < nsize) {
2241 MOBJ_STAT_ADD(aout_nlist);
2242 mrp[segnum].mr_addr = addr;
2243 mrp[segnum].mr_msize = nsize - msize;
2244 mrp[segnum].mr_fsize = 0;
2245 mrp[segnum].mr_offset = 0;
2246 mrp[segnum].mr_prot = PROT_READ | PROT_EXEC;
2247 mrp[segnum].mr_flags = 0;
2250 *num_mapped = to_map;
2251 return (0);
2253 #endif
2256 * These are the two types of files that we can interpret and we want to read
2257 * in enough info to cover both types when looking at the initial header.
2259 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec)))
2262 * Map vp passed in in an interpreted manner. ELF and AOUT files will be
2263 * interpreted and mapped appropriately for execution.
2264 * num_mapped in - # elements in mrp
2265 * num_mapped out - # sections mapped and length of mrp array if
2266 * no errors or E2BIG returned.
2268 * Returns 0 on success, errno value on failure.
2270 static int
2271 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2272 uint_t *num_mapped, size_t padding, cred_t *fcred)
2274 int error = 0;
2275 vattr_t vattr;
2276 struct lib_va *lvp;
2277 caddr_t start_addr;
2278 model_t model;
2281 * header has to be aligned to the native size of ulong_t in order
2282 * to avoid an unaligned access when dereferencing the header as
2283 * a ulong_t. Thus we allocate our array on the stack of type
2284 * ulong_t and then have header, which we dereference later as a char
2285 * array point at lheader.
2287 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2288 caddr_t header = (caddr_t)&lheader;
2290 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2291 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2292 if (error) {
2293 return (error);
2297 * Check lib_va to see if we already have a full description
2298 * for this library. This is the fast path and only used for
2299 * ET_DYN ELF files (dynamic libraries).
2301 if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) {
2302 int num_segs;
2304 model = get_udatamodel();
2305 if ((model == DATAMODEL_ILP32 &&
2306 lvp->lv_flags & LV_ELF64) ||
2307 (model == DATAMODEL_LP64 &&
2308 lvp->lv_flags & LV_ELF32)) {
2309 lib_va_release(lvp);
2310 MOBJ_STAT_ADD(fast_wrong_model);
2311 return (ENOTSUP);
2313 num_segs = lvp->lv_num_segs;
2314 if (*num_mapped < num_segs) {
2315 *num_mapped = num_segs;
2316 lib_va_release(lvp);
2317 MOBJ_STAT_ADD(fast_e2big);
2318 return (E2BIG);
2322 * Check to see if we have all the mappable program headers
2323 * cached.
2325 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2326 MOBJ_STAT_ADD(fast);
2327 start_addr = mmapobj_lookup_start_addr(lvp);
2328 if (start_addr == NULL) {
2329 lib_va_release(lvp);
2330 return (ENOMEM);
2333 bcopy(lvp->lv_mps, mrp,
2334 num_segs * sizeof (mmapobj_result_t));
2336 error = mmapobj_map_elf(vp, start_addr, mrp,
2337 num_segs, fcred, ET_DYN);
2339 lib_va_release(lvp);
2340 if (error == 0) {
2341 *num_mapped = num_segs;
2342 MOBJ_STAT_ADD(fast_success);
2344 return (error);
2346 MOBJ_STAT_ADD(fast_not_now);
2348 /* Release it for now since we'll look it up below */
2349 lib_va_release(lvp);
2353 * Time to see if this is a file we can interpret. If it's smaller
2354 * than this, then we can't interpret it.
2356 if (vattr.va_size < MAX_HEADER_SIZE) {
2357 MOBJ_STAT_ADD(small_file);
2358 return (ENOTSUP);
2361 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2362 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2363 MOBJ_STAT_ADD(read_error);
2364 return (error);
2367 /* Verify file type */
2368 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2369 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2370 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2371 padding, fcred));
2374 #if defined(__sparc)
2375 /* On sparc, check for 4.X AOUT format */
2376 switch (((struct exec *)header)->a_magic) {
2377 case OMAGIC:
2378 case ZMAGIC:
2379 case NMAGIC:
2380 return (doaoutwork(vp, mrp, num_mapped,
2381 (struct exec *)lheader, fcred));
2383 #endif
2385 /* Unsupported type */
2386 MOBJ_STAT_ADD(unsupported);
2387 return (ENOTSUP);
2391 * Given a vnode, map it as either a flat file or interpret it and map
2392 * it according to the rules of the file type.
2393 * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2394 * If padding is non-zero, the mappings will be padded by that amount
2395 * rounded up to the nearest pagesize.
2396 * If the mapping is successful, *num_mapped will contain the number of
2397 * distinct mappings created, and mrp will point to the array of
2398 * mmapobj_result_t's which describe these mappings.
2400 * On error, -1 is returned and errno is set appropriately.
2401 * A special error case will set errno to E2BIG when there are more than
2402 * *num_mapped mappings to be created and *num_mapped will be set to the
2403 * number of mappings needed.
2406 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2407 uint_t *num_mapped, size_t padding, cred_t *fcred)
2409 int to_map;
2410 int error = 0;
2412 ASSERT((padding & PAGEOFFSET) == 0);
2413 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2414 ASSERT(num_mapped != NULL);
2415 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2417 if ((flags & MMOBJ_INTERPRET) == 0) {
2418 to_map = padding ? 3 : 1;
2419 if (*num_mapped < to_map) {
2420 *num_mapped = to_map;
2421 MOBJ_STAT_ADD(flat_e2big);
2422 return (E2BIG);
2424 error = mmapobj_map_flat(vp, mrp, padding, fcred);
2426 if (error) {
2427 return (error);
2429 *num_mapped = to_map;
2430 return (0);
2433 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2434 return (error);