5045 use atomic_{inc,dec}_* instead of atomic_add_*
[illumos-gate.git] / usr / src / uts / common / os / contract.c
blobf3c888a1dbe986b7260c26c0f2e24b152de2ec05
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Contracts
28 * ---------
30 * Contracts are a primitive which enrich the relationships between
31 * processes and system resources. The primary purpose of contracts is
32 * to provide a means for the system to negotiate the departure from a
33 * binding relationship (e.g. pages locked in memory or a thread bound
34 * to processor), but they can also be used as a purely asynchronous
35 * error reporting mechanism as they are with process contracts.
37 * More information on how one interfaces with contracts and what
38 * contracts can do for you can be found in:
39 * PSARC 2003/193 Solaris Contracts
40 * PSARC 2004/460 Contracts addendum
42 * This file contains the core contracts framework. By itself it is
43 * useless: it depends the contracts filesystem (ctfs) to provide an
44 * interface to user processes and individual contract types to
45 * implement the process/resource relationships.
47 * Data structure overview
48 * -----------------------
50 * A contract is represented by a contract_t, which itself points to an
51 * encapsulating contract-type specific contract object. A contract_t
52 * contains the contract's static identity (including its terms), its
53 * linkage to various bookkeeping structures, the contract-specific
54 * event queue, and a reference count.
56 * A contract template is represented by a ct_template_t, which, like a
57 * contract, points to an encapsulating contract-type specific template
58 * object. A ct_template_t contains the template's terms.
60 * An event queue is represented by a ct_equeue_t, and consists of a
61 * list of events, a list of listeners, and a list of listeners who are
62 * waiting for new events (affectionately referred to as "tail
63 * listeners"). There are three queue types, defined by ct_listnum_t
64 * (an enum). An event may be on one of each type of queue
65 * simultaneously; the list linkage used by a queue is determined by
66 * its type.
68 * An event is represented by a ct_kevent_t, which contains mostly
69 * static event data (e.g. id, payload). It also has an array of
70 * ct_member_t structures, each of which contains a list_node_t and
71 * represent the event's linkage in a specific event queue.
73 * Each open of an event endpoint results in the creation of a new
74 * listener, represented by a ct_listener_t. In addition to linkage
75 * into the aforementioned lists in the event_queue, a ct_listener_t
76 * contains a pointer to the ct_kevent_t it is currently positioned at
77 * as well as a set of status flags and other administrative data.
79 * Each process has a list of contracts it owns, p_ct_held; a pointer
80 * to the process contract it is a member of, p_ct_process; the linkage
81 * for that membership, p_ct_member; and an array of event queue
82 * structures representing the process bundle queues.
84 * Each LWP has an array of its active templates, lwp_ct_active; and
85 * the most recently created contracts, lwp_ct_latest.
87 * A process contract has a list of member processes and a list of
88 * inherited contracts.
90 * There is a system-wide list of all contracts, as well as per-type
91 * lists of contracts.
93 * Lock ordering overview
94 * ----------------------
96 * Locks at the top are taken first:
98 * ct_evtlock
99 * regent ct_lock
100 * member ct_lock
101 * pidlock
102 * p_lock
103 * contract ctq_lock contract_lock
104 * pbundle ctq_lock
105 * cte_lock
106 * ct_reflock
108 * contract_lock and ctq_lock/cte_lock are not currently taken at the
109 * same time.
111 * Reference counting and locking
112 * ------------------------------
114 * A contract has a reference count, protected by ct_reflock.
115 * (ct_reflock is also used in a couple other places where atomic
116 * access to a variable is needed in an innermost context). A process
117 * maintains a hold on each contract it owns. A process contract has a
118 * hold on each contract is has inherited. Each event has a hold on
119 * the contract which generated it. Process contract templates have
120 * holds on the contracts referred to by their transfer terms. CTFS
121 * contract directory nodes have holds on contracts. Lastly, various
122 * code paths may temporarily take holds on contracts to prevent them
123 * from disappearing while other processing is going on. It is
124 * important to note that the global contract lists do not hold
125 * references on contracts; a contract is removed from these structures
126 * atomically with the release of its last reference.
128 * At a given point in time, a contract can either be owned by a
129 * process, inherited by a regent process contract, or orphaned. A
130 * contract_t's owner and regent pointers, ct_owner and ct_regent, are
131 * protected by its ct_lock. The linkage in the holder's (holder =
132 * owner or regent) list of contracts, ct_ctlist, is protected by
133 * whatever lock protects the holder's data structure. In order for
134 * these two directions to remain consistent, changing the holder of a
135 * contract requires that both locks be held.
137 * Events also have reference counts. There is one hold on an event
138 * per queue it is present on, in addition to those needed for the
139 * usual sundry reasons. Individual listeners are associated with
140 * specific queues, and increase a queue-specific reference count
141 * stored in the ct_member_t structure.
143 * The dynamic contents of an event (reference count and flags) are
144 * protected by its cte_lock, while the contents of the embedded
145 * ct_member_t structures are protected by the locks of the queues they
146 * are linked into. A ct_listener_t's contents are also protected by
147 * its event queue's ctq_lock.
149 * Resource controls
150 * -----------------
152 * Control: project.max-contracts (rc_project_contract)
153 * Description: Maximum number of contracts allowed a project.
155 * When a contract is created, the project's allocation is tested and
156 * (assuming success) increased. When the last reference to a
157 * contract is released, the creating project's allocation is
158 * decreased.
161 #include <sys/mutex.h>
162 #include <sys/debug.h>
163 #include <sys/types.h>
164 #include <sys/param.h>
165 #include <sys/kmem.h>
166 #include <sys/thread.h>
167 #include <sys/id_space.h>
168 #include <sys/avl.h>
169 #include <sys/list.h>
170 #include <sys/sysmacros.h>
171 #include <sys/proc.h>
172 #include <sys/ctfs.h>
173 #include <sys/contract_impl.h>
174 #include <sys/contract/process_impl.h>
175 #include <sys/dditypes.h>
176 #include <sys/contract/device_impl.h>
177 #include <sys/systm.h>
178 #include <sys/atomic.h>
179 #include <sys/cmn_err.h>
180 #include <sys/model.h>
181 #include <sys/policy.h>
182 #include <sys/zone.h>
183 #include <sys/task.h>
184 #include <sys/ddi.h>
185 #include <sys/sunddi.h>
187 extern rctl_hndl_t rc_project_contract;
189 static id_space_t *contract_ids;
190 static avl_tree_t contract_avl;
191 static kmutex_t contract_lock;
193 int ct_ntypes = CTT_MAXTYPE;
194 static ct_type_t *ct_types_static[CTT_MAXTYPE];
195 ct_type_t **ct_types = ct_types_static;
196 int ct_debug;
198 static void cte_queue_create(ct_equeue_t *, ct_listnum_t, int, int);
199 static void cte_queue_destroy(ct_equeue_t *);
200 static void cte_queue_drain(ct_equeue_t *, int);
201 static void cte_trim(ct_equeue_t *, contract_t *);
202 static void cte_copy(ct_equeue_t *, ct_equeue_t *);
205 * contract_compar
207 * A contract comparator which sorts on contract ID.
210 contract_compar(const void *x, const void *y)
212 const contract_t *ct1 = x;
213 const contract_t *ct2 = y;
215 if (ct1->ct_id < ct2->ct_id)
216 return (-1);
217 if (ct1->ct_id > ct2->ct_id)
218 return (1);
219 return (0);
223 * contract_init
225 * Initializes the contract subsystem, the specific contract types, and
226 * process 0.
228 void
229 contract_init(void)
232 * Initialize contract subsystem.
234 contract_ids = id_space_create("contracts", 1, INT_MAX);
235 avl_create(&contract_avl, contract_compar, sizeof (contract_t),
236 offsetof(contract_t, ct_ctavl));
237 mutex_init(&contract_lock, NULL, MUTEX_DEFAULT, NULL);
240 * Initialize contract types.
242 contract_process_init();
243 contract_device_init();
246 * Initialize p0/lwp0 contract state.
248 avl_create(&p0.p_ct_held, contract_compar, sizeof (contract_t),
249 offsetof(contract_t, ct_ctlist));
253 * contract_dtor
255 * Performs basic destruction of the common portions of a contract.
256 * Called from the failure path of contract_ctor and from
257 * contract_rele.
259 static void
260 contract_dtor(contract_t *ct)
262 cte_queue_destroy(&ct->ct_events);
263 list_destroy(&ct->ct_vnodes);
264 mutex_destroy(&ct->ct_reflock);
265 mutex_destroy(&ct->ct_lock);
266 mutex_destroy(&ct->ct_evtlock);
270 * contract_ctor
272 * Called by a contract type to initialize a contract. Fails if the
273 * max-contract resource control would have been exceeded. After a
274 * successful call to contract_ctor, the contract is unlocked and
275 * visible in all namespaces; any type-specific initialization should
276 * be completed before calling contract_ctor. Returns 0 on success.
278 * Because not all callers can tolerate failure, a 0 value for canfail
279 * instructs contract_ctor to ignore the project.max-contracts resource
280 * control. Obviously, this "out" should only be employed by callers
281 * who are sufficiently constrained in other ways (e.g. newproc).
284 contract_ctor(contract_t *ct, ct_type_t *type, ct_template_t *tmpl, void *data,
285 ctflags_t flags, proc_t *author, int canfail)
287 avl_index_t where;
288 klwp_t *curlwp = ttolwp(curthread);
290 ASSERT(author == curproc);
292 mutex_init(&ct->ct_lock, NULL, MUTEX_DEFAULT, NULL);
293 mutex_init(&ct->ct_reflock, NULL, MUTEX_DEFAULT, NULL);
294 mutex_init(&ct->ct_evtlock, NULL, MUTEX_DEFAULT, NULL);
295 ct->ct_id = id_alloc(contract_ids);
297 cte_queue_create(&ct->ct_events, CTEL_CONTRACT, 20, 0);
298 list_create(&ct->ct_vnodes, sizeof (contract_vnode_t),
299 offsetof(contract_vnode_t, ctv_node));
302 * Instance data
304 ct->ct_ref = 2; /* one for the holder, one for "latest" */
305 ct->ct_cuid = crgetuid(CRED());
306 ct->ct_type = type;
307 ct->ct_data = data;
308 gethrestime(&ct->ct_ctime);
309 ct->ct_state = CTS_OWNED;
310 ct->ct_flags = flags;
311 ct->ct_regent = author->p_ct_process ?
312 &author->p_ct_process->conp_contract : NULL;
313 ct->ct_ev_info = tmpl->ctmpl_ev_info;
314 ct->ct_ev_crit = tmpl->ctmpl_ev_crit;
315 ct->ct_cookie = tmpl->ctmpl_cookie;
316 ct->ct_owner = author;
317 ct->ct_ntime.ctm_total = -1;
318 ct->ct_qtime.ctm_total = -1;
319 ct->ct_nevent = NULL;
322 * Test project.max-contracts.
324 mutex_enter(&author->p_lock);
325 mutex_enter(&contract_lock);
326 if (canfail && rctl_test(rc_project_contract,
327 author->p_task->tk_proj->kpj_rctls, author, 1,
328 RCA_SAFE) & RCT_DENY) {
329 id_free(contract_ids, ct->ct_id);
330 mutex_exit(&contract_lock);
331 mutex_exit(&author->p_lock);
332 ct->ct_events.ctq_flags |= CTQ_DEAD;
333 contract_dtor(ct);
334 return (1);
336 ct->ct_proj = author->p_task->tk_proj;
337 ct->ct_proj->kpj_data.kpd_contract++;
338 (void) project_hold(ct->ct_proj);
339 mutex_exit(&contract_lock);
342 * Insert into holder's avl of contracts.
343 * We use an avl not because order is important, but because
344 * readdir of /proc/contracts requires we be able to use a
345 * scalar as an index into the process's list of contracts
347 ct->ct_zoneid = author->p_zone->zone_id;
348 ct->ct_czuniqid = ct->ct_mzuniqid = author->p_zone->zone_uniqid;
349 VERIFY(avl_find(&author->p_ct_held, ct, &where) == NULL);
350 avl_insert(&author->p_ct_held, ct, where);
351 mutex_exit(&author->p_lock);
354 * Insert into global contract AVL
356 mutex_enter(&contract_lock);
357 VERIFY(avl_find(&contract_avl, ct, &where) == NULL);
358 avl_insert(&contract_avl, ct, where);
359 mutex_exit(&contract_lock);
362 * Insert into type AVL
364 mutex_enter(&type->ct_type_lock);
365 VERIFY(avl_find(&type->ct_type_avl, ct, &where) == NULL);
366 avl_insert(&type->ct_type_avl, ct, where);
367 type->ct_type_timestruc = ct->ct_ctime;
368 mutex_exit(&type->ct_type_lock);
370 if (curlwp->lwp_ct_latest[type->ct_type_index])
371 contract_rele(curlwp->lwp_ct_latest[type->ct_type_index]);
372 curlwp->lwp_ct_latest[type->ct_type_index] = ct;
374 return (0);
378 * contract_rele
380 * Releases a reference to a contract. If the caller had the last
381 * reference, the contract is removed from all namespaces, its
382 * allocation against the max-contracts resource control is released,
383 * and the contract type's free entry point is invoked for any
384 * type-specific deconstruction and to (presumably) free the object.
386 void
387 contract_rele(contract_t *ct)
389 uint64_t nref;
391 mutex_enter(&ct->ct_reflock);
392 ASSERT(ct->ct_ref > 0);
393 nref = --ct->ct_ref;
394 mutex_exit(&ct->ct_reflock);
395 if (nref == 0) {
397 * ct_owner is cleared when it drops its reference.
399 ASSERT(ct->ct_owner == NULL);
400 ASSERT(ct->ct_evcnt == 0);
403 * Remove from global contract AVL
405 mutex_enter(&contract_lock);
406 avl_remove(&contract_avl, ct);
407 mutex_exit(&contract_lock);
410 * Remove from type AVL
412 mutex_enter(&ct->ct_type->ct_type_lock);
413 avl_remove(&ct->ct_type->ct_type_avl, ct);
414 mutex_exit(&ct->ct_type->ct_type_lock);
417 * Release the contract's ID
419 id_free(contract_ids, ct->ct_id);
422 * Release project hold
424 mutex_enter(&contract_lock);
425 ct->ct_proj->kpj_data.kpd_contract--;
426 project_rele(ct->ct_proj);
427 mutex_exit(&contract_lock);
430 * Free the contract
432 contract_dtor(ct);
433 ct->ct_type->ct_type_ops->contop_free(ct);
438 * contract_hold
440 * Adds a reference to a contract
442 void
443 contract_hold(contract_t *ct)
445 mutex_enter(&ct->ct_reflock);
446 ASSERT(ct->ct_ref < UINT64_MAX);
447 ct->ct_ref++;
448 mutex_exit(&ct->ct_reflock);
452 * contract_getzuniqid
454 * Get a contract's zone unique ID. Needed because 64-bit reads and
455 * writes aren't atomic on x86. Since there are contexts where we are
456 * unable to take ct_lock, we instead use ct_reflock; in actuality any
457 * lock would do.
459 uint64_t
460 contract_getzuniqid(contract_t *ct)
462 uint64_t zuniqid;
464 mutex_enter(&ct->ct_reflock);
465 zuniqid = ct->ct_mzuniqid;
466 mutex_exit(&ct->ct_reflock);
468 return (zuniqid);
472 * contract_setzuniqid
474 * Sets a contract's zone unique ID. See contract_getzuniqid.
476 void
477 contract_setzuniqid(contract_t *ct, uint64_t zuniqid)
479 mutex_enter(&ct->ct_reflock);
480 ct->ct_mzuniqid = zuniqid;
481 mutex_exit(&ct->ct_reflock);
485 * contract_abandon
487 * Abandons the specified contract. If "explicit" is clear, the
488 * contract was implicitly abandoned (by process exit) and should be
489 * inherited if its terms allow it and its owner was a member of a
490 * regent contract. Otherwise, the contract type's abandon entry point
491 * is invoked to either destroy or orphan the contract.
494 contract_abandon(contract_t *ct, proc_t *p, int explicit)
496 ct_equeue_t *q = NULL;
497 contract_t *parent = &p->p_ct_process->conp_contract;
498 int inherit = 0;
500 VERIFY(p == curproc);
502 mutex_enter(&ct->ct_lock);
505 * Multiple contract locks are taken contract -> subcontract.
506 * Check if the contract will be inherited so we can acquire
507 * all the necessary locks before making sensitive changes.
509 if (!explicit && (ct->ct_flags & CTF_INHERIT) &&
510 contract_process_accept(parent)) {
511 mutex_exit(&ct->ct_lock);
512 mutex_enter(&parent->ct_lock);
513 mutex_enter(&ct->ct_lock);
514 inherit = 1;
517 if (ct->ct_owner != p) {
518 mutex_exit(&ct->ct_lock);
519 if (inherit)
520 mutex_exit(&parent->ct_lock);
521 return (EINVAL);
524 mutex_enter(&p->p_lock);
525 if (explicit)
526 avl_remove(&p->p_ct_held, ct);
527 ct->ct_owner = NULL;
528 mutex_exit(&p->p_lock);
531 * Since we can't call cte_trim with the contract lock held,
532 * we grab the queue pointer here.
534 if (p->p_ct_equeue)
535 q = p->p_ct_equeue[ct->ct_type->ct_type_index];
538 * contop_abandon may destroy the contract so we rely on it to
539 * drop ct_lock. We retain a reference on the contract so that
540 * the cte_trim which follows functions properly. Even though
541 * cte_trim doesn't dereference the contract pointer, it is
542 * still necessary to retain a reference to the contract so
543 * that we don't trim events which are sent by a subsequently
544 * allocated contract infortuitously located at the same address.
546 contract_hold(ct);
548 if (inherit) {
549 ct->ct_state = CTS_INHERITED;
550 VERIFY(ct->ct_regent == parent);
551 contract_process_take(parent, ct);
554 * We are handing off the process's reference to the
555 * parent contract. For this reason, the order in
556 * which we drop the contract locks is also important.
558 mutex_exit(&ct->ct_lock);
559 mutex_exit(&parent->ct_lock);
560 } else {
561 ct->ct_regent = NULL;
562 ct->ct_type->ct_type_ops->contop_abandon(ct);
566 * ct_lock has been dropped; we can safely trim the event
567 * queue now.
569 if (q) {
570 mutex_enter(&q->ctq_lock);
571 cte_trim(q, ct);
572 mutex_exit(&q->ctq_lock);
575 contract_rele(ct);
577 return (0);
581 contract_newct(contract_t *ct)
583 return (ct->ct_type->ct_type_ops->contop_newct(ct));
587 * contract_adopt
589 * Adopts a contract. After a successful call to this routine, the
590 * previously inherited contract will belong to the calling process,
591 * and its events will have been appended to its new owner's process
592 * bundle queue.
595 contract_adopt(contract_t *ct, proc_t *p)
597 avl_index_t where;
598 ct_equeue_t *q;
599 contract_t *parent;
601 ASSERT(p == curproc);
604 * Ensure the process has an event queue. Checked by ASSERTs
605 * below.
607 (void) contract_type_pbundle(ct->ct_type, p);
609 mutex_enter(&ct->ct_lock);
610 parent = ct->ct_regent;
611 if (ct->ct_state != CTS_INHERITED ||
612 &p->p_ct_process->conp_contract != parent ||
613 p->p_zone->zone_uniqid != ct->ct_czuniqid) {
614 mutex_exit(&ct->ct_lock);
615 return (EINVAL);
619 * Multiple contract locks are taken contract -> subcontract.
621 mutex_exit(&ct->ct_lock);
622 mutex_enter(&parent->ct_lock);
623 mutex_enter(&ct->ct_lock);
626 * It is possible that the contract was adopted by someone else
627 * while its lock was dropped. It isn't possible for the
628 * contract to have been inherited by a different regent
629 * contract.
631 if (ct->ct_state != CTS_INHERITED) {
632 mutex_exit(&parent->ct_lock);
633 mutex_exit(&ct->ct_lock);
634 return (EBUSY);
636 ASSERT(ct->ct_regent == parent);
638 ct->ct_state = CTS_OWNED;
640 contract_process_adopt(ct, p);
642 mutex_enter(&p->p_lock);
643 ct->ct_owner = p;
644 VERIFY(avl_find(&p->p_ct_held, ct, &where) == NULL);
645 avl_insert(&p->p_ct_held, ct, where);
646 mutex_exit(&p->p_lock);
648 ASSERT(ct->ct_owner->p_ct_equeue);
649 ASSERT(ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index]);
650 q = ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index];
651 cte_copy(&ct->ct_events, q);
652 mutex_exit(&ct->ct_lock);
654 return (0);
658 * contract_ack
660 * Acknowledges receipt of a critical event.
663 contract_ack(contract_t *ct, uint64_t evid, int ack)
665 ct_kevent_t *ev;
666 list_t *queue = &ct->ct_events.ctq_events;
667 int error = ESRCH;
668 int nego = 0;
669 uint_t evtype;
671 ASSERT(ack == CT_ACK || ack == CT_NACK);
673 mutex_enter(&ct->ct_lock);
674 mutex_enter(&ct->ct_events.ctq_lock);
676 * We are probably ACKing something near the head of the queue.
678 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
679 if (ev->cte_id == evid) {
680 if (ev->cte_flags & CTE_NEG)
681 nego = 1;
682 else if (ack == CT_NACK)
683 break;
684 if ((ev->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
685 ev->cte_flags |= CTE_ACK;
686 ct->ct_evcnt--;
687 evtype = ev->cte_type;
688 error = 0;
690 break;
693 mutex_exit(&ct->ct_events.ctq_lock);
694 mutex_exit(&ct->ct_lock);
697 * Not all critical events are negotiation events, however
698 * every negotiation event is a critical event. NEGEND events
699 * are critical events but are not negotiation events
701 if (error || !nego)
702 return (error);
704 if (ack == CT_ACK)
705 error = ct->ct_type->ct_type_ops->contop_ack(ct, evtype, evid);
706 else
707 error = ct->ct_type->ct_type_ops->contop_nack(ct, evtype, evid);
709 return (error);
712 /*ARGSUSED*/
714 contract_ack_inval(contract_t *ct, uint_t evtype, uint64_t evid)
716 cmn_err(CE_PANIC, "contract_ack_inval: unsupported call: ctid: %u",
717 ct->ct_id);
718 return (ENOSYS);
721 /*ARGSUSED*/
723 contract_qack_inval(contract_t *ct, uint_t evtype, uint64_t evid)
725 cmn_err(CE_PANIC, "contract_ack_inval: unsupported call: ctid: %u",
726 ct->ct_id);
727 return (ENOSYS);
730 /*ARGSUSED*/
732 contract_qack_notsup(contract_t *ct, uint_t evtype, uint64_t evid)
734 return (ERANGE);
738 * contract_qack
740 * Asks that negotiations be extended by another time quantum
743 contract_qack(contract_t *ct, uint64_t evid)
745 ct_kevent_t *ev;
746 list_t *queue = &ct->ct_events.ctq_events;
747 int nego = 0;
748 uint_t evtype;
750 mutex_enter(&ct->ct_lock);
751 mutex_enter(&ct->ct_events.ctq_lock);
753 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
754 if (ev->cte_id == evid) {
755 if ((ev->cte_flags & (CTE_NEG | CTE_ACK)) == CTE_NEG) {
756 evtype = ev->cte_type;
757 nego = 1;
759 break;
762 mutex_exit(&ct->ct_events.ctq_lock);
763 mutex_exit(&ct->ct_lock);
766 * Only a negotiated event (which is by definition also a critical
767 * event) which has not yet been acknowledged can provide
768 * time quanta to a negotiating owner process.
770 if (!nego)
771 return (ESRCH);
773 return (ct->ct_type->ct_type_ops->contop_qack(ct, evtype, evid));
777 * contract_orphan
779 * Icky-poo. This is a process-contract special, used to ACK all
780 * critical messages when a contract is orphaned.
782 void
783 contract_orphan(contract_t *ct)
785 ct_kevent_t *ev;
786 list_t *queue = &ct->ct_events.ctq_events;
788 ASSERT(MUTEX_HELD(&ct->ct_lock));
789 ASSERT(ct->ct_state != CTS_ORPHAN);
791 mutex_enter(&ct->ct_events.ctq_lock);
792 ct->ct_state = CTS_ORPHAN;
793 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
794 if ((ev->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
795 ev->cte_flags |= CTE_ACK;
796 ct->ct_evcnt--;
799 mutex_exit(&ct->ct_events.ctq_lock);
801 ASSERT(ct->ct_evcnt == 0);
805 * contract_destroy
807 * Explicit contract destruction. Called when contract is empty.
808 * The contract will actually stick around until all of its events are
809 * removed from the bundle and and process bundle queues, and all fds
810 * which refer to it are closed. See contract_dtor if you are looking
811 * for what destroys the contract structure.
813 void
814 contract_destroy(contract_t *ct)
816 ASSERT(MUTEX_HELD(&ct->ct_lock));
817 ASSERT(ct->ct_state != CTS_DEAD);
818 ASSERT(ct->ct_owner == NULL);
820 ct->ct_state = CTS_DEAD;
821 cte_queue_drain(&ct->ct_events, 1);
822 mutex_exit(&ct->ct_lock);
823 mutex_enter(&ct->ct_type->ct_type_events.ctq_lock);
824 cte_trim(&ct->ct_type->ct_type_events, ct);
825 mutex_exit(&ct->ct_type->ct_type_events.ctq_lock);
826 mutex_enter(&ct->ct_lock);
827 ct->ct_type->ct_type_ops->contop_destroy(ct);
828 mutex_exit(&ct->ct_lock);
829 contract_rele(ct);
833 * contract_vnode_get
835 * Obtains the contract directory vnode for this contract, if there is
836 * one. The caller must VN_RELE the vnode when they are through using
837 * it.
839 vnode_t *
840 contract_vnode_get(contract_t *ct, vfs_t *vfsp)
842 contract_vnode_t *ctv;
843 vnode_t *vp = NULL;
845 mutex_enter(&ct->ct_lock);
846 for (ctv = list_head(&ct->ct_vnodes); ctv != NULL;
847 ctv = list_next(&ct->ct_vnodes, ctv))
848 if (ctv->ctv_vnode->v_vfsp == vfsp) {
849 vp = ctv->ctv_vnode;
850 VN_HOLD(vp);
851 break;
853 mutex_exit(&ct->ct_lock);
854 return (vp);
858 * contract_vnode_set
860 * Sets the contract directory vnode for this contract. We don't hold
861 * a reference on the vnode because we don't want to prevent it from
862 * being freed. The vnode's inactive entry point will take care of
863 * notifying us when it should be removed.
865 void
866 contract_vnode_set(contract_t *ct, contract_vnode_t *ctv, vnode_t *vnode)
868 mutex_enter(&ct->ct_lock);
869 ctv->ctv_vnode = vnode;
870 list_insert_head(&ct->ct_vnodes, ctv);
871 mutex_exit(&ct->ct_lock);
875 * contract_vnode_clear
877 * Removes this vnode as the contract directory vnode for this
878 * contract. Called from a contract directory's inactive entry point,
879 * this may return 0 indicating that the vnode gained another reference
880 * because of a simultaneous call to contract_vnode_get.
883 contract_vnode_clear(contract_t *ct, contract_vnode_t *ctv)
885 vnode_t *vp = ctv->ctv_vnode;
886 int result;
888 mutex_enter(&ct->ct_lock);
889 mutex_enter(&vp->v_lock);
890 if (vp->v_count == 1) {
891 list_remove(&ct->ct_vnodes, ctv);
892 result = 1;
893 } else {
894 vp->v_count--;
895 result = 0;
897 mutex_exit(&vp->v_lock);
898 mutex_exit(&ct->ct_lock);
900 return (result);
904 * contract_exit
906 * Abandons all contracts held by process p, and drains process p's
907 * bundle queues. Called on process exit.
909 void
910 contract_exit(proc_t *p)
912 contract_t *ct;
913 void *cookie = NULL;
914 int i;
916 ASSERT(p == curproc);
919 * Abandon held contracts. contract_abandon knows enough not
920 * to remove the contract from the list a second time. We are
921 * exiting, so no locks are needed here. But because
922 * contract_abandon will take p_lock, we need to make sure we
923 * aren't holding it.
925 ASSERT(MUTEX_NOT_HELD(&p->p_lock));
926 while ((ct = avl_destroy_nodes(&p->p_ct_held, &cookie)) != NULL)
927 VERIFY(contract_abandon(ct, p, 0) == 0);
930 * Drain pbundles. Because a process bundle queue could have
931 * been passed to another process, they may not be freed right
932 * away.
934 if (p->p_ct_equeue) {
935 for (i = 0; i < CTT_MAXTYPE; i++)
936 if (p->p_ct_equeue[i])
937 cte_queue_drain(p->p_ct_equeue[i], 0);
938 kmem_free(p->p_ct_equeue, CTT_MAXTYPE * sizeof (ct_equeue_t *));
942 static int
943 get_time_left(struct ct_time *t)
945 clock_t ticks_elapsed;
946 int secs_elapsed;
948 if (t->ctm_total == -1)
949 return (-1);
951 ticks_elapsed = ddi_get_lbolt() - t->ctm_start;
952 secs_elapsed = t->ctm_total - (drv_hztousec(ticks_elapsed)/MICROSEC);
953 return (secs_elapsed > 0 ? secs_elapsed : 0);
957 * contract_status_common
959 * Populates a ct_status structure. Used by contract types in their
960 * status entry points and ctfs when only common information is
961 * requested.
963 void
964 contract_status_common(contract_t *ct, zone_t *zone, void *status,
965 model_t model)
967 STRUCT_HANDLE(ct_status, lstatus);
969 STRUCT_SET_HANDLE(lstatus, model, status);
970 ASSERT(MUTEX_HELD(&ct->ct_lock));
971 if (zone->zone_uniqid == GLOBAL_ZONEUNIQID ||
972 zone->zone_uniqid == ct->ct_czuniqid) {
973 zone_t *czone;
974 zoneid_t zoneid = -1;
977 * Contracts don't have holds on the zones they were
978 * created by. If the contract's zone no longer
979 * exists, we say its zoneid is -1.
981 if (zone->zone_uniqid == ct->ct_czuniqid ||
982 ct->ct_czuniqid == GLOBAL_ZONEUNIQID) {
983 zoneid = ct->ct_zoneid;
984 } else if ((czone = zone_find_by_id(ct->ct_zoneid)) != NULL) {
985 if (czone->zone_uniqid == ct->ct_mzuniqid)
986 zoneid = ct->ct_zoneid;
987 zone_rele(czone);
990 STRUCT_FSET(lstatus, ctst_zoneid, zoneid);
991 STRUCT_FSET(lstatus, ctst_holder,
992 (ct->ct_state == CTS_OWNED) ? ct->ct_owner->p_pid :
993 (ct->ct_state == CTS_INHERITED) ? ct->ct_regent->ct_id : 0);
994 STRUCT_FSET(lstatus, ctst_state, ct->ct_state);
995 } else {
997 * We are looking at a contract which was created by a
998 * process outside of our zone. We provide fake zone,
999 * holder, and state information.
1002 STRUCT_FSET(lstatus, ctst_zoneid, zone->zone_id);
1004 * Since "zone" can't disappear until the calling ctfs
1005 * is unmounted, zone_zsched must be valid.
1007 STRUCT_FSET(lstatus, ctst_holder, (ct->ct_state < CTS_ORPHAN) ?
1008 zone->zone_zsched->p_pid : 0);
1009 STRUCT_FSET(lstatus, ctst_state, (ct->ct_state < CTS_ORPHAN) ?
1010 CTS_OWNED : ct->ct_state);
1012 STRUCT_FSET(lstatus, ctst_nevents, ct->ct_evcnt);
1013 STRUCT_FSET(lstatus, ctst_ntime, get_time_left(&ct->ct_ntime));
1014 STRUCT_FSET(lstatus, ctst_qtime, get_time_left(&ct->ct_qtime));
1015 STRUCT_FSET(lstatus, ctst_nevid,
1016 ct->ct_nevent ? ct->ct_nevent->cte_id : 0);
1017 STRUCT_FSET(lstatus, ctst_critical, ct->ct_ev_crit);
1018 STRUCT_FSET(lstatus, ctst_informative, ct->ct_ev_info);
1019 STRUCT_FSET(lstatus, ctst_cookie, ct->ct_cookie);
1020 STRUCT_FSET(lstatus, ctst_type, ct->ct_type->ct_type_index);
1021 STRUCT_FSET(lstatus, ctst_id, ct->ct_id);
1025 * contract_checkcred
1027 * Determines if the specified contract is owned by a process with the
1028 * same effective uid as the specified credential. The caller must
1029 * ensure that the uid spaces are the same. Returns 1 on success.
1031 static int
1032 contract_checkcred(contract_t *ct, const cred_t *cr)
1034 proc_t *p;
1035 int fail = 1;
1037 mutex_enter(&ct->ct_lock);
1038 if ((p = ct->ct_owner) != NULL) {
1039 mutex_enter(&p->p_crlock);
1040 fail = crgetuid(cr) != crgetuid(p->p_cred);
1041 mutex_exit(&p->p_crlock);
1043 mutex_exit(&ct->ct_lock);
1045 return (!fail);
1049 * contract_owned
1051 * Determines if the specified credential can view an event generated
1052 * by the specified contract. If locked is set, the contract's ct_lock
1053 * is held and the caller will need to do additional work to determine
1054 * if they truly can see the event. Returns 1 on success.
1057 contract_owned(contract_t *ct, const cred_t *cr, int locked)
1059 int owner, cmatch, zmatch;
1060 uint64_t zuniqid, mzuniqid;
1061 uid_t euid;
1063 ASSERT(locked || MUTEX_NOT_HELD(&ct->ct_lock));
1065 zuniqid = curproc->p_zone->zone_uniqid;
1066 mzuniqid = contract_getzuniqid(ct);
1067 euid = crgetuid(cr);
1070 * owner: we own the contract
1071 * cmatch: we are in the creator's (and holder's) zone and our
1072 * uid matches the creator's or holder's
1073 * zmatch: we are in the effective zone of a contract created
1074 * in the global zone, and our uid matches that of the
1075 * virtualized holder's (zsched/kcred)
1077 owner = (ct->ct_owner == curproc);
1078 cmatch = (zuniqid == ct->ct_czuniqid) &&
1079 ((ct->ct_cuid == euid) || (!locked && contract_checkcred(ct, cr)));
1080 zmatch = (ct->ct_czuniqid != mzuniqid) && (zuniqid == mzuniqid) &&
1081 (crgetuid(kcred) == euid);
1083 return (owner || cmatch || zmatch);
1088 * contract_type_init
1090 * Called by contract types to register themselves with the contracts
1091 * framework.
1093 ct_type_t *
1094 contract_type_init(ct_typeid_t type, const char *name, contops_t *ops,
1095 ct_f_default_t *dfault)
1097 ct_type_t *result;
1099 ASSERT(type < CTT_MAXTYPE);
1101 result = kmem_alloc(sizeof (ct_type_t), KM_SLEEP);
1103 mutex_init(&result->ct_type_lock, NULL, MUTEX_DEFAULT, NULL);
1104 avl_create(&result->ct_type_avl, contract_compar, sizeof (contract_t),
1105 offsetof(contract_t, ct_cttavl));
1106 cte_queue_create(&result->ct_type_events, CTEL_BUNDLE, 20, 0);
1107 result->ct_type_name = name;
1108 result->ct_type_ops = ops;
1109 result->ct_type_default = dfault;
1110 result->ct_type_evid = 0;
1111 gethrestime(&result->ct_type_timestruc);
1112 result->ct_type_index = type;
1114 ct_types[type] = result;
1116 return (result);
1120 * contract_type_count
1122 * Obtains the number of contracts of a particular type.
1125 contract_type_count(ct_type_t *type)
1127 ulong_t count;
1129 mutex_enter(&type->ct_type_lock);
1130 count = avl_numnodes(&type->ct_type_avl);
1131 mutex_exit(&type->ct_type_lock);
1133 return (count);
1137 * contract_type_max
1139 * Obtains the maximum contract id of of a particular type.
1141 ctid_t
1142 contract_type_max(ct_type_t *type)
1144 contract_t *ct;
1145 ctid_t res;
1147 mutex_enter(&type->ct_type_lock);
1148 ct = avl_last(&type->ct_type_avl);
1149 res = ct ? ct->ct_id : -1;
1150 mutex_exit(&type->ct_type_lock);
1152 return (res);
1156 * contract_max
1158 * Obtains the maximum contract id.
1160 ctid_t
1161 contract_max(void)
1163 contract_t *ct;
1164 ctid_t res;
1166 mutex_enter(&contract_lock);
1167 ct = avl_last(&contract_avl);
1168 res = ct ? ct->ct_id : -1;
1169 mutex_exit(&contract_lock);
1171 return (res);
1175 * contract_lookup_common
1177 * Common code for contract_lookup and contract_type_lookup. Takes a
1178 * pointer to an AVL tree to search in. Should be called with the
1179 * appropriate tree-protecting lock held (unfortunately unassertable).
1181 static ctid_t
1182 contract_lookup_common(avl_tree_t *tree, uint64_t zuniqid, ctid_t current)
1184 contract_t template, *ct;
1185 avl_index_t where;
1186 ctid_t res;
1188 template.ct_id = current;
1189 ct = avl_find(tree, &template, &where);
1190 if (ct == NULL)
1191 ct = avl_nearest(tree, where, AVL_AFTER);
1192 if (zuniqid != GLOBAL_ZONEUNIQID)
1193 while (ct && (contract_getzuniqid(ct) != zuniqid))
1194 ct = AVL_NEXT(tree, ct);
1195 res = ct ? ct->ct_id : -1;
1197 return (res);
1201 * contract_type_lookup
1203 * Returns the next type contract after the specified id, visible from
1204 * the specified zone.
1206 ctid_t
1207 contract_type_lookup(ct_type_t *type, uint64_t zuniqid, ctid_t current)
1209 ctid_t res;
1211 mutex_enter(&type->ct_type_lock);
1212 res = contract_lookup_common(&type->ct_type_avl, zuniqid, current);
1213 mutex_exit(&type->ct_type_lock);
1215 return (res);
1219 * contract_lookup
1221 * Returns the next contract after the specified id, visible from the
1222 * specified zone.
1224 ctid_t
1225 contract_lookup(uint64_t zuniqid, ctid_t current)
1227 ctid_t res;
1229 mutex_enter(&contract_lock);
1230 res = contract_lookup_common(&contract_avl, zuniqid, current);
1231 mutex_exit(&contract_lock);
1233 return (res);
1237 * contract_plookup
1239 * Returns the next contract held by process p after the specified id,
1240 * visible from the specified zone. Made complicated by the fact that
1241 * contracts visible in a zone but held by processes outside of the
1242 * zone need to appear as being held by zsched to zone members.
1244 ctid_t
1245 contract_plookup(proc_t *p, ctid_t current, uint64_t zuniqid)
1247 contract_t template, *ct;
1248 avl_index_t where;
1249 ctid_t res;
1251 template.ct_id = current;
1252 if (zuniqid != GLOBAL_ZONEUNIQID &&
1253 (p->p_flag & (SSYS|SZONETOP)) == (SSYS|SZONETOP)) {
1254 /* This is inelegant. */
1255 mutex_enter(&contract_lock);
1256 ct = avl_find(&contract_avl, &template, &where);
1257 if (ct == NULL)
1258 ct = avl_nearest(&contract_avl, where, AVL_AFTER);
1259 while (ct && !(ct->ct_state < CTS_ORPHAN &&
1260 contract_getzuniqid(ct) == zuniqid &&
1261 ct->ct_czuniqid == GLOBAL_ZONEUNIQID))
1262 ct = AVL_NEXT(&contract_avl, ct);
1263 res = ct ? ct->ct_id : -1;
1264 mutex_exit(&contract_lock);
1265 } else {
1266 mutex_enter(&p->p_lock);
1267 ct = avl_find(&p->p_ct_held, &template, &where);
1268 if (ct == NULL)
1269 ct = avl_nearest(&p->p_ct_held, where, AVL_AFTER);
1270 res = ct ? ct->ct_id : -1;
1271 mutex_exit(&p->p_lock);
1274 return (res);
1278 * contract_ptr_common
1280 * Common code for contract_ptr and contract_type_ptr. Takes a pointer
1281 * to an AVL tree to search in. Should be called with the appropriate
1282 * tree-protecting lock held (unfortunately unassertable).
1284 static contract_t *
1285 contract_ptr_common(avl_tree_t *tree, ctid_t id, uint64_t zuniqid)
1287 contract_t template, *ct;
1289 template.ct_id = id;
1290 ct = avl_find(tree, &template, NULL);
1291 if (ct == NULL || (zuniqid != GLOBAL_ZONEUNIQID &&
1292 contract_getzuniqid(ct) != zuniqid)) {
1293 return (NULL);
1297 * Check to see if a thread is in the window in contract_rele
1298 * between dropping the reference count and removing the
1299 * contract from the type AVL.
1301 mutex_enter(&ct->ct_reflock);
1302 if (ct->ct_ref) {
1303 ct->ct_ref++;
1304 mutex_exit(&ct->ct_reflock);
1305 } else {
1306 mutex_exit(&ct->ct_reflock);
1307 ct = NULL;
1310 return (ct);
1314 * contract_type_ptr
1316 * Returns a pointer to the contract with the specified id. The
1317 * contract is held, so the caller needs to release the reference when
1318 * it is through with the contract.
1320 contract_t *
1321 contract_type_ptr(ct_type_t *type, ctid_t id, uint64_t zuniqid)
1323 contract_t *ct;
1325 mutex_enter(&type->ct_type_lock);
1326 ct = contract_ptr_common(&type->ct_type_avl, id, zuniqid);
1327 mutex_exit(&type->ct_type_lock);
1329 return (ct);
1333 * contract_ptr
1335 * Returns a pointer to the contract with the specified id. The
1336 * contract is held, so the caller needs to release the reference when
1337 * it is through with the contract.
1339 contract_t *
1340 contract_ptr(ctid_t id, uint64_t zuniqid)
1342 contract_t *ct;
1344 mutex_enter(&contract_lock);
1345 ct = contract_ptr_common(&contract_avl, id, zuniqid);
1346 mutex_exit(&contract_lock);
1348 return (ct);
1352 * contract_type_time
1354 * Obtains the last time a contract of a particular type was created.
1356 void
1357 contract_type_time(ct_type_t *type, timestruc_t *time)
1359 mutex_enter(&type->ct_type_lock);
1360 *time = type->ct_type_timestruc;
1361 mutex_exit(&type->ct_type_lock);
1365 * contract_type_bundle
1367 * Obtains a type's bundle queue.
1369 ct_equeue_t *
1370 contract_type_bundle(ct_type_t *type)
1372 return (&type->ct_type_events);
1376 * contract_type_pbundle
1378 * Obtain's a process's bundle queue. If one doesn't exist, one is
1379 * created. Often used simply to ensure that a bundle queue is
1380 * allocated.
1382 ct_equeue_t *
1383 contract_type_pbundle(ct_type_t *type, proc_t *pp)
1386 * If there isn't an array of bundle queues, allocate one.
1388 if (pp->p_ct_equeue == NULL) {
1389 size_t size = CTT_MAXTYPE * sizeof (ct_equeue_t *);
1390 ct_equeue_t **qa = kmem_zalloc(size, KM_SLEEP);
1392 mutex_enter(&pp->p_lock);
1393 if (pp->p_ct_equeue)
1394 kmem_free(qa, size);
1395 else
1396 pp->p_ct_equeue = qa;
1397 mutex_exit(&pp->p_lock);
1401 * If there isn't a bundle queue of the required type, allocate
1402 * one.
1404 if (pp->p_ct_equeue[type->ct_type_index] == NULL) {
1405 ct_equeue_t *q = kmem_zalloc(sizeof (ct_equeue_t), KM_SLEEP);
1406 cte_queue_create(q, CTEL_PBUNDLE, 20, 1);
1408 mutex_enter(&pp->p_lock);
1409 if (pp->p_ct_equeue[type->ct_type_index])
1410 cte_queue_drain(q, 0);
1411 else
1412 pp->p_ct_equeue[type->ct_type_index] = q;
1413 mutex_exit(&pp->p_lock);
1416 return (pp->p_ct_equeue[type->ct_type_index]);
1420 * ctparam_copyin
1422 * copyin a ct_param_t for CT_TSET or CT_TGET commands.
1423 * If ctparam_copyout() is not called after ctparam_copyin(), then
1424 * the caller must kmem_free() the buffer pointed by kparam->ctpm_kbuf.
1426 * The copyin/out of ct_param_t is not done in ctmpl_set() and ctmpl_get()
1427 * because prctioctl() calls ctmpl_set() and ctmpl_get() while holding a
1428 * process lock.
1431 ctparam_copyin(const void *uaddr, ct_kparam_t *kparam, int flag, int cmd)
1433 uint32_t size;
1434 void *ubuf;
1435 ct_param_t *param = &kparam->param;
1436 STRUCT_DECL(ct_param, uarg);
1438 STRUCT_INIT(uarg, flag);
1439 if (copyin(uaddr, STRUCT_BUF(uarg), STRUCT_SIZE(uarg)))
1440 return (EFAULT);
1441 size = STRUCT_FGET(uarg, ctpm_size);
1442 ubuf = STRUCT_FGETP(uarg, ctpm_value);
1444 if (size > CT_PARAM_MAX_SIZE || size == 0)
1445 return (EINVAL);
1447 kparam->ctpm_kbuf = kmem_alloc(size, KM_SLEEP);
1448 if (cmd == CT_TSET) {
1449 if (copyin(ubuf, kparam->ctpm_kbuf, size)) {
1450 kmem_free(kparam->ctpm_kbuf, size);
1451 return (EFAULT);
1454 param->ctpm_id = STRUCT_FGET(uarg, ctpm_id);
1455 param->ctpm_size = size;
1456 param->ctpm_value = ubuf;
1457 kparam->ret_size = 0;
1459 return (0);
1463 * ctparam_copyout
1465 * copyout a ct_kparam_t and frees the buffer pointed by the member
1466 * ctpm_kbuf of ct_kparam_t
1469 ctparam_copyout(ct_kparam_t *kparam, void *uaddr, int flag)
1471 int r = 0;
1472 ct_param_t *param = &kparam->param;
1473 STRUCT_DECL(ct_param, uarg);
1475 STRUCT_INIT(uarg, flag);
1477 STRUCT_FSET(uarg, ctpm_id, param->ctpm_id);
1478 STRUCT_FSET(uarg, ctpm_size, kparam->ret_size);
1479 STRUCT_FSETP(uarg, ctpm_value, param->ctpm_value);
1480 if (copyout(STRUCT_BUF(uarg), uaddr, STRUCT_SIZE(uarg))) {
1481 r = EFAULT;
1482 goto error;
1484 if (copyout(kparam->ctpm_kbuf, param->ctpm_value,
1485 MIN(kparam->ret_size, param->ctpm_size))) {
1486 r = EFAULT;
1489 error:
1490 kmem_free(kparam->ctpm_kbuf, param->ctpm_size);
1492 return (r);
1496 * ctmpl_free
1498 * Frees a template.
1500 void
1501 ctmpl_free(ct_template_t *template)
1503 mutex_destroy(&template->ctmpl_lock);
1504 template->ctmpl_ops->ctop_free(template);
1508 * ctmpl_dup
1510 * Creates a copy of a template.
1512 ct_template_t *
1513 ctmpl_dup(ct_template_t *template)
1515 ct_template_t *new;
1517 if (template == NULL)
1518 return (NULL);
1520 new = template->ctmpl_ops->ctop_dup(template);
1522 * ctmpl_lock was taken by ctop_dup's call to ctmpl_copy and
1523 * should have remain held until now.
1525 mutex_exit(&template->ctmpl_lock);
1527 return (new);
1531 * ctmpl_set
1533 * Sets the requested terms of a template.
1536 ctmpl_set(ct_template_t *template, ct_kparam_t *kparam, const cred_t *cr)
1538 int result = 0;
1539 ct_param_t *param = &kparam->param;
1540 uint64_t param_value;
1542 if (param->ctpm_id == CTP_COOKIE ||
1543 param->ctpm_id == CTP_EV_INFO ||
1544 param->ctpm_id == CTP_EV_CRITICAL) {
1545 if (param->ctpm_size < sizeof (uint64_t)) {
1546 return (EINVAL);
1547 } else {
1548 param_value = *(uint64_t *)kparam->ctpm_kbuf;
1552 mutex_enter(&template->ctmpl_lock);
1553 switch (param->ctpm_id) {
1554 case CTP_COOKIE:
1555 template->ctmpl_cookie = param_value;
1556 break;
1557 case CTP_EV_INFO:
1558 if (param_value & ~(uint64_t)template->ctmpl_ops->allevents)
1559 result = EINVAL;
1560 else
1561 template->ctmpl_ev_info = param_value;
1562 break;
1563 case CTP_EV_CRITICAL:
1564 if (param_value & ~(uint64_t)template->ctmpl_ops->allevents) {
1565 result = EINVAL;
1566 break;
1567 } else if ((~template->ctmpl_ev_crit & param_value) == 0) {
1569 * Assume that a pure reduction of the critical
1570 * set is allowed by the contract type.
1572 template->ctmpl_ev_crit = param_value;
1573 break;
1576 * There may be restrictions on what we can make
1577 * critical, so we defer to the judgement of the
1578 * contract type.
1580 /* FALLTHROUGH */
1581 default:
1582 result = template->ctmpl_ops->ctop_set(template, kparam, cr);
1584 mutex_exit(&template->ctmpl_lock);
1586 return (result);
1590 * ctmpl_get
1592 * Obtains the requested terms from a template.
1594 * If the term requested is a variable-sized term and the buffer
1595 * provided is too small for the data, we truncate the data and return
1596 * the buffer size necessary to fit the term in kparam->ret_size. If the
1597 * term requested is fix-sized (uint64_t) and the buffer provided is too
1598 * small, we return EINVAL. This should never happen if you're using
1599 * libcontract(3LIB), only if you call ioctl with a hand constructed
1600 * ct_param_t argument.
1602 * Currently, only contract specific parameters have variable-sized
1603 * parameters.
1606 ctmpl_get(ct_template_t *template, ct_kparam_t *kparam)
1608 int result = 0;
1609 ct_param_t *param = &kparam->param;
1610 uint64_t *param_value;
1612 if (param->ctpm_id == CTP_COOKIE ||
1613 param->ctpm_id == CTP_EV_INFO ||
1614 param->ctpm_id == CTP_EV_CRITICAL) {
1615 if (param->ctpm_size < sizeof (uint64_t)) {
1616 return (EINVAL);
1617 } else {
1618 param_value = kparam->ctpm_kbuf;
1619 kparam->ret_size = sizeof (uint64_t);
1623 mutex_enter(&template->ctmpl_lock);
1624 switch (param->ctpm_id) {
1625 case CTP_COOKIE:
1626 *param_value = template->ctmpl_cookie;
1627 break;
1628 case CTP_EV_INFO:
1629 *param_value = template->ctmpl_ev_info;
1630 break;
1631 case CTP_EV_CRITICAL:
1632 *param_value = template->ctmpl_ev_crit;
1633 break;
1634 default:
1635 result = template->ctmpl_ops->ctop_get(template, kparam);
1637 mutex_exit(&template->ctmpl_lock);
1639 return (result);
1643 * ctmpl_makecurrent
1645 * Used by ctmpl_activate and ctmpl_clear to set the current thread's
1646 * active template. Frees the old active template, if there was one.
1648 static void
1649 ctmpl_makecurrent(ct_template_t *template, ct_template_t *new)
1651 klwp_t *curlwp = ttolwp(curthread);
1652 proc_t *p = curproc;
1653 ct_template_t *old;
1655 mutex_enter(&p->p_lock);
1656 old = curlwp->lwp_ct_active[template->ctmpl_type->ct_type_index];
1657 curlwp->lwp_ct_active[template->ctmpl_type->ct_type_index] = new;
1658 mutex_exit(&p->p_lock);
1660 if (old)
1661 ctmpl_free(old);
1665 * ctmpl_activate
1667 * Copy the specified template as the current thread's activate
1668 * template of that type.
1670 void
1671 ctmpl_activate(ct_template_t *template)
1673 ctmpl_makecurrent(template, ctmpl_dup(template));
1677 * ctmpl_clear
1679 * Clears the current thread's activate template of the same type as
1680 * the specified template.
1682 void
1683 ctmpl_clear(ct_template_t *template)
1685 ctmpl_makecurrent(template, NULL);
1689 * ctmpl_create
1691 * Creates a new contract using the specified template.
1694 ctmpl_create(ct_template_t *template, ctid_t *ctidp)
1696 return (template->ctmpl_ops->ctop_create(template, ctidp));
1700 * ctmpl_init
1702 * Initializes the common portion of a new contract template.
1704 void
1705 ctmpl_init(ct_template_t *new, ctmplops_t *ops, ct_type_t *type, void *data)
1707 mutex_init(&new->ctmpl_lock, NULL, MUTEX_DEFAULT, NULL);
1708 new->ctmpl_ops = ops;
1709 new->ctmpl_type = type;
1710 new->ctmpl_data = data;
1711 new->ctmpl_ev_info = new->ctmpl_ev_crit = 0;
1712 new->ctmpl_cookie = 0;
1716 * ctmpl_copy
1718 * Copies the common portions of a contract template. Intended for use
1719 * by a contract type's ctop_dup template op. Returns with the old
1720 * template's lock held, which will should remain held until the
1721 * template op returns (it is dropped by ctmpl_dup).
1723 void
1724 ctmpl_copy(ct_template_t *new, ct_template_t *old)
1726 mutex_init(&new->ctmpl_lock, NULL, MUTEX_DEFAULT, NULL);
1727 mutex_enter(&old->ctmpl_lock);
1728 new->ctmpl_ops = old->ctmpl_ops;
1729 new->ctmpl_type = old->ctmpl_type;
1730 new->ctmpl_ev_crit = old->ctmpl_ev_crit;
1731 new->ctmpl_ev_info = old->ctmpl_ev_info;
1732 new->ctmpl_cookie = old->ctmpl_cookie;
1736 * ctmpl_create_inval
1738 * Returns EINVAL. Provided for the convenience of those contract
1739 * types which don't support ct_tmpl_create(3contract) and would
1740 * otherwise need to create their own stub for the ctop_create template
1741 * op.
1743 /*ARGSUSED*/
1745 ctmpl_create_inval(ct_template_t *template, ctid_t *ctidp)
1747 return (EINVAL);
1752 * cte_queue_create
1754 * Initializes a queue of a particular type. If dynamic is set, the
1755 * queue is to be freed when its last listener is removed after being
1756 * drained.
1758 static void
1759 cte_queue_create(ct_equeue_t *q, ct_listnum_t list, int maxinf, int dynamic)
1761 mutex_init(&q->ctq_lock, NULL, MUTEX_DEFAULT, NULL);
1762 q->ctq_listno = list;
1763 list_create(&q->ctq_events, sizeof (ct_kevent_t),
1764 offsetof(ct_kevent_t, cte_nodes[list].ctm_node));
1765 list_create(&q->ctq_listeners, sizeof (ct_listener_t),
1766 offsetof(ct_listener_t, ctl_allnode));
1767 list_create(&q->ctq_tail, sizeof (ct_listener_t),
1768 offsetof(ct_listener_t, ctl_tailnode));
1769 gethrestime(&q->ctq_atime);
1770 q->ctq_nlisteners = 0;
1771 q->ctq_nreliable = 0;
1772 q->ctq_ninf = 0;
1773 q->ctq_max = maxinf;
1776 * Bundle queues and contract queues are embedded in other
1777 * structures and are implicitly referenced counted by virtue
1778 * of their vnodes' indirect hold on their contracts. Process
1779 * bundle queues are dynamically allocated and may persist
1780 * after the death of the process, so they must be explicitly
1781 * reference counted.
1783 q->ctq_flags = dynamic ? CTQ_REFFED : 0;
1787 * cte_queue_destroy
1789 * Destroys the specified queue. The queue is freed if referenced
1790 * counted.
1792 static void
1793 cte_queue_destroy(ct_equeue_t *q)
1795 ASSERT(q->ctq_flags & CTQ_DEAD);
1796 ASSERT(q->ctq_nlisteners == 0);
1797 ASSERT(q->ctq_nreliable == 0);
1798 list_destroy(&q->ctq_events);
1799 list_destroy(&q->ctq_listeners);
1800 list_destroy(&q->ctq_tail);
1801 mutex_destroy(&q->ctq_lock);
1802 if (q->ctq_flags & CTQ_REFFED)
1803 kmem_free(q, sizeof (ct_equeue_t));
1807 * cte_hold
1809 * Takes a hold on the specified event.
1811 static void
1812 cte_hold(ct_kevent_t *e)
1814 mutex_enter(&e->cte_lock);
1815 ASSERT(e->cte_refs > 0);
1816 e->cte_refs++;
1817 mutex_exit(&e->cte_lock);
1821 * cte_rele
1823 * Releases a hold on the specified event. If the caller had the last
1824 * reference, frees the event and releases its hold on the contract
1825 * that generated it.
1827 static void
1828 cte_rele(ct_kevent_t *e)
1830 mutex_enter(&e->cte_lock);
1831 ASSERT(e->cte_refs > 0);
1832 if (--e->cte_refs) {
1833 mutex_exit(&e->cte_lock);
1834 return;
1837 contract_rele(e->cte_contract);
1839 mutex_destroy(&e->cte_lock);
1840 if (e->cte_data)
1841 nvlist_free(e->cte_data);
1842 if (e->cte_gdata)
1843 nvlist_free(e->cte_gdata);
1844 kmem_free(e, sizeof (ct_kevent_t));
1848 * cte_qrele
1850 * Remove this listener's hold on the specified event, removing and
1851 * releasing the queue's hold on the event if appropriate.
1853 static void
1854 cte_qrele(ct_equeue_t *q, ct_listener_t *l, ct_kevent_t *e)
1856 ct_member_t *member = &e->cte_nodes[q->ctq_listno];
1858 ASSERT(MUTEX_HELD(&q->ctq_lock));
1860 if (l->ctl_flags & CTLF_RELIABLE)
1861 member->ctm_nreliable--;
1862 if ((--member->ctm_refs == 0) && member->ctm_trimmed) {
1863 member->ctm_trimmed = 0;
1864 list_remove(&q->ctq_events, e);
1865 cte_rele(e);
1870 * cte_qmove
1872 * Move this listener to the specified event in the queue.
1874 static ct_kevent_t *
1875 cte_qmove(ct_equeue_t *q, ct_listener_t *l, ct_kevent_t *e)
1877 ct_kevent_t *olde;
1879 ASSERT(MUTEX_HELD(&q->ctq_lock));
1880 ASSERT(l->ctl_equeue == q);
1882 if ((olde = l->ctl_position) == NULL)
1883 list_remove(&q->ctq_tail, l);
1885 while (e != NULL && e->cte_nodes[q->ctq_listno].ctm_trimmed)
1886 e = list_next(&q->ctq_events, e);
1888 if (e != NULL) {
1889 e->cte_nodes[q->ctq_listno].ctm_refs++;
1890 if (l->ctl_flags & CTLF_RELIABLE)
1891 e->cte_nodes[q->ctq_listno].ctm_nreliable++;
1892 } else {
1893 list_insert_tail(&q->ctq_tail, l);
1896 l->ctl_position = e;
1897 if (olde)
1898 cte_qrele(q, l, olde);
1900 return (e);
1904 * cte_checkcred
1906 * Determines if the specified event's contract is owned by a process
1907 * with the same effective uid as the specified credential. Called
1908 * after a failed call to contract_owned with locked set. Because it
1909 * drops the queue lock, its caller (cte_qreadable) needs to make sure
1910 * we're still in the same place after we return. Returns 1 on
1911 * success.
1913 static int
1914 cte_checkcred(ct_equeue_t *q, ct_kevent_t *e, const cred_t *cr)
1916 int result;
1917 contract_t *ct = e->cte_contract;
1919 cte_hold(e);
1920 mutex_exit(&q->ctq_lock);
1921 result = curproc->p_zone->zone_uniqid == ct->ct_czuniqid &&
1922 contract_checkcred(ct, cr);
1923 mutex_enter(&q->ctq_lock);
1924 cte_rele(e);
1926 return (result);
1930 * cte_qreadable
1932 * Ensures that the listener is pointing to a valid event that the
1933 * caller has the credentials to read. Returns 0 if we can read the
1934 * event we're pointing to.
1936 static int
1937 cte_qreadable(ct_equeue_t *q, ct_listener_t *l, const cred_t *cr,
1938 uint64_t zuniqid, int crit)
1940 ct_kevent_t *e, *next;
1941 contract_t *ct;
1943 ASSERT(MUTEX_HELD(&q->ctq_lock));
1944 ASSERT(l->ctl_equeue == q);
1946 if (l->ctl_flags & CTLF_COPYOUT)
1947 return (1);
1949 next = l->ctl_position;
1950 while (e = cte_qmove(q, l, next)) {
1951 ct = e->cte_contract;
1953 * Check obvious things first. If we are looking for a
1954 * critical message, is this one? If we aren't in the
1955 * global zone, is this message meant for us?
1957 if ((crit && (e->cte_flags & (CTE_INFO | CTE_ACK))) ||
1958 (cr != NULL && zuniqid != GLOBAL_ZONEUNIQID &&
1959 zuniqid != contract_getzuniqid(ct))) {
1961 next = list_next(&q->ctq_events, e);
1964 * Next, see if our effective uid equals that of owner
1965 * or author of the contract. Since we are holding the
1966 * queue lock, contract_owned can't always check if we
1967 * have the same effective uid as the contract's
1968 * owner. If it comes to that, it fails and we take
1969 * the slow(er) path.
1971 } else if (cr != NULL && !contract_owned(ct, cr, B_TRUE)) {
1974 * At this point we either don't have any claim
1975 * to this contract or we match the effective
1976 * uid of the owner but couldn't tell. We
1977 * first test for a NULL holder so that events
1978 * from orphans and inherited contracts avoid
1979 * the penalty phase.
1981 if (e->cte_contract->ct_owner == NULL &&
1982 !secpolicy_contract_observer_choice(cr))
1983 next = list_next(&q->ctq_events, e);
1986 * cte_checkcred will juggle locks to see if we
1987 * have the same uid as the event's contract's
1988 * current owner. If it succeeds, we have to
1989 * make sure we are in the same point in the
1990 * queue.
1992 else if (cte_checkcred(q, e, cr) &&
1993 l->ctl_position == e)
1994 break;
1997 * cte_checkcred failed; see if we're in the
1998 * same place.
2000 else if (l->ctl_position == e)
2001 if (secpolicy_contract_observer_choice(cr))
2002 break;
2003 else
2004 next = list_next(&q->ctq_events, e);
2007 * cte_checkcred failed, and our position was
2008 * changed. Start from there.
2010 else
2011 next = l->ctl_position;
2012 } else {
2013 break;
2018 * We check for CTLF_COPYOUT again in case we dropped the queue
2019 * lock in cte_checkcred.
2021 return ((l->ctl_flags & CTLF_COPYOUT) || (l->ctl_position == NULL));
2025 * cte_qwakeup
2027 * Wakes up any waiting listeners and points them at the specified event.
2029 static void
2030 cte_qwakeup(ct_equeue_t *q, ct_kevent_t *e)
2032 ct_listener_t *l;
2034 ASSERT(MUTEX_HELD(&q->ctq_lock));
2036 while (l = list_head(&q->ctq_tail)) {
2037 list_remove(&q->ctq_tail, l);
2038 e->cte_nodes[q->ctq_listno].ctm_refs++;
2039 if (l->ctl_flags & CTLF_RELIABLE)
2040 e->cte_nodes[q->ctq_listno].ctm_nreliable++;
2041 l->ctl_position = e;
2042 cv_signal(&l->ctl_cv);
2043 pollwakeup(&l->ctl_pollhead, POLLIN);
2048 * cte_copy
2050 * Copies events from the specified contract event queue to the
2051 * end of the specified process bundle queue. Only called from
2052 * contract_adopt.
2054 * We copy to the end of the target queue instead of mixing the events
2055 * in their proper order because otherwise the act of adopting a
2056 * contract would require a process to reset all process bundle
2057 * listeners it needed to see the new events. This would, in turn,
2058 * require the process to keep track of which preexisting events had
2059 * already been processed.
2061 static void
2062 cte_copy(ct_equeue_t *q, ct_equeue_t *newq)
2064 ct_kevent_t *e, *first = NULL;
2066 VERIFY(q->ctq_listno == CTEL_CONTRACT);
2067 VERIFY(newq->ctq_listno == CTEL_PBUNDLE);
2069 mutex_enter(&q->ctq_lock);
2070 mutex_enter(&newq->ctq_lock);
2073 * For now, only copy critical events.
2075 for (e = list_head(&q->ctq_events); e != NULL;
2076 e = list_next(&q->ctq_events, e)) {
2077 if ((e->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
2078 if (first == NULL)
2079 first = e;
2081 * It is possible for adoption to race with an owner's
2082 * cte_publish_all(); we must only enqueue events that
2083 * have not already been enqueued.
2085 if (!list_link_active((list_node_t *)
2086 ((uintptr_t)e + newq->ctq_events.list_offset))) {
2087 list_insert_tail(&newq->ctq_events, e);
2088 cte_hold(e);
2093 mutex_exit(&q->ctq_lock);
2095 if (first)
2096 cte_qwakeup(newq, first);
2098 mutex_exit(&newq->ctq_lock);
2102 * cte_trim
2104 * Trims unneeded events from an event queue. Algorithm works as
2105 * follows:
2107 * Removes all informative and acknowledged critical events until the
2108 * first referenced event is found.
2110 * If a contract is specified, removes all events (regardless of
2111 * acknowledgement) generated by that contract until the first event
2112 * referenced by a reliable listener is found. Reference events are
2113 * removed by marking them "trimmed". Such events will be removed
2114 * when the last reference is dropped and will be skipped by future
2115 * listeners.
2117 * This is pretty basic. Ideally this should remove from the middle of
2118 * the list (i.e. beyond the first referenced event), and even
2119 * referenced events.
2121 static void
2122 cte_trim(ct_equeue_t *q, contract_t *ct)
2124 ct_kevent_t *e, *next;
2125 int flags, stopper;
2126 int start = 1;
2128 VERIFY(MUTEX_HELD(&q->ctq_lock));
2130 for (e = list_head(&q->ctq_events); e != NULL; e = next) {
2131 next = list_next(&q->ctq_events, e);
2132 flags = e->cte_flags;
2133 stopper = (q->ctq_listno != CTEL_PBUNDLE) &&
2134 (e->cte_nodes[q->ctq_listno].ctm_nreliable > 0);
2135 if (e->cte_nodes[q->ctq_listno].ctm_refs == 0) {
2136 if ((start && (flags & (CTE_INFO | CTE_ACK))) ||
2137 (e->cte_contract == ct)) {
2139 * Toss informative and ACKed critical messages.
2141 list_remove(&q->ctq_events, e);
2142 cte_rele(e);
2144 } else if ((e->cte_contract == ct) && !stopper) {
2145 ASSERT(q->ctq_nlisteners != 0);
2146 e->cte_nodes[q->ctq_listno].ctm_trimmed = 1;
2147 } else if (ct && !stopper) {
2148 start = 0;
2149 } else {
2151 * Don't free messages past the first reader.
2153 break;
2159 * cte_queue_drain
2161 * Drain all events from the specified queue, and mark it dead. If
2162 * "ack" is set, acknowledge any critical events we find along the
2163 * way.
2165 static void
2166 cte_queue_drain(ct_equeue_t *q, int ack)
2168 ct_kevent_t *e, *next;
2169 ct_listener_t *l;
2171 mutex_enter(&q->ctq_lock);
2173 for (e = list_head(&q->ctq_events); e != NULL; e = next) {
2174 next = list_next(&q->ctq_events, e);
2175 if (ack && ((e->cte_flags & (CTE_INFO | CTE_ACK)) == 0)) {
2177 * Make sure critical messages are eventually
2178 * removed from the bundle queues.
2180 mutex_enter(&e->cte_lock);
2181 e->cte_flags |= CTE_ACK;
2182 mutex_exit(&e->cte_lock);
2183 ASSERT(MUTEX_HELD(&e->cte_contract->ct_lock));
2184 e->cte_contract->ct_evcnt--;
2186 list_remove(&q->ctq_events, e);
2187 e->cte_nodes[q->ctq_listno].ctm_refs = 0;
2188 e->cte_nodes[q->ctq_listno].ctm_nreliable = 0;
2189 e->cte_nodes[q->ctq_listno].ctm_trimmed = 0;
2190 cte_rele(e);
2194 * This is necessary only because of CTEL_PBUNDLE listeners;
2195 * the events they point to can move from one pbundle to
2196 * another. Fortunately, this only happens if the contract is
2197 * inherited, which (in turn) only happens if the process
2198 * exits, which means it's an all-or-nothing deal. If this
2199 * wasn't the case, we would instead need to keep track of
2200 * listeners on a per-event basis, not just a per-queue basis.
2201 * This would have the side benefit of letting us clean up
2202 * trimmed events sooner (i.e. immediately), but would
2203 * unfortunately make events even bigger than they already
2204 * are.
2206 for (l = list_head(&q->ctq_listeners); l;
2207 l = list_next(&q->ctq_listeners, l)) {
2208 l->ctl_flags |= CTLF_DEAD;
2209 if (l->ctl_position) {
2210 l->ctl_position = NULL;
2211 list_insert_tail(&q->ctq_tail, l);
2213 cv_broadcast(&l->ctl_cv);
2217 * Disallow events.
2219 q->ctq_flags |= CTQ_DEAD;
2222 * If we represent the last reference to a reference counted
2223 * process bundle queue, free it.
2225 if ((q->ctq_flags & CTQ_REFFED) && (q->ctq_nlisteners == 0))
2226 cte_queue_destroy(q);
2227 else
2228 mutex_exit(&q->ctq_lock);
2232 * cte_publish
2234 * Publishes an event to a specific queue. Only called by
2235 * cte_publish_all.
2237 static void
2238 cte_publish(ct_equeue_t *q, ct_kevent_t *e, timespec_t *tsp, boolean_t mayexist)
2240 ASSERT(MUTEX_HELD(&q->ctq_lock));
2242 q->ctq_atime = *tsp;
2245 * If this event may already exist on this queue, check to see if it
2246 * is already there and return if so.
2248 if (mayexist && list_link_active((list_node_t *)((uintptr_t)e +
2249 q->ctq_events.list_offset))) {
2250 mutex_exit(&q->ctq_lock);
2251 cte_rele(e);
2252 return;
2256 * Don't publish if the event is informative and there aren't
2257 * any listeners, or if the queue has been shut down.
2259 if (((q->ctq_nlisteners == 0) && (e->cte_flags & (CTE_INFO|CTE_ACK))) ||
2260 (q->ctq_flags & CTQ_DEAD)) {
2261 mutex_exit(&q->ctq_lock);
2262 cte_rele(e);
2263 return;
2267 * Enqueue event
2269 VERIFY(!list_link_active((list_node_t *)
2270 ((uintptr_t)e + q->ctq_events.list_offset)));
2271 list_insert_tail(&q->ctq_events, e);
2274 * Check for waiting listeners
2276 cte_qwakeup(q, e);
2279 * Trim unnecessary events from the queue.
2281 cte_trim(q, NULL);
2282 mutex_exit(&q->ctq_lock);
2286 * cte_publish_all
2288 * Publish an event to all necessary event queues. The event, e, must
2289 * be zallocated by the caller, and the event's flags and type must be
2290 * set. The rest of the event's fields are initialized here.
2292 uint64_t
2293 cte_publish_all(contract_t *ct, ct_kevent_t *e, nvlist_t *data, nvlist_t *gdata)
2295 ct_equeue_t *q;
2296 timespec_t ts;
2297 uint64_t evid;
2298 ct_kevent_t *negev;
2299 int negend;
2301 e->cte_contract = ct;
2302 e->cte_data = data;
2303 e->cte_gdata = gdata;
2304 e->cte_refs = 3;
2305 evid = e->cte_id = atomic_inc_64_nv(&ct->ct_type->ct_type_evid);
2306 contract_hold(ct);
2309 * For a negotiation event we set the ct->ct_nevent field of the
2310 * contract for the duration of the negotiation
2312 negend = 0;
2313 if (e->cte_flags & CTE_NEG) {
2314 cte_hold(e);
2315 ct->ct_nevent = e;
2316 } else if (e->cte_type == CT_EV_NEGEND) {
2317 negend = 1;
2320 gethrestime(&ts);
2323 * ct_evtlock simply (and only) ensures that two events sent
2324 * from the same contract are delivered to all queues in the
2325 * same order.
2327 mutex_enter(&ct->ct_evtlock);
2330 * CTEL_CONTRACT - First deliver to the contract queue, acking
2331 * the event if the contract has been orphaned.
2333 mutex_enter(&ct->ct_lock);
2334 mutex_enter(&ct->ct_events.ctq_lock);
2335 if ((e->cte_flags & CTE_INFO) == 0) {
2336 if (ct->ct_state >= CTS_ORPHAN)
2337 e->cte_flags |= CTE_ACK;
2338 else
2339 ct->ct_evcnt++;
2341 mutex_exit(&ct->ct_lock);
2342 cte_publish(&ct->ct_events, e, &ts, B_FALSE);
2345 * CTEL_BUNDLE - Next deliver to the contract type's bundle
2346 * queue.
2348 mutex_enter(&ct->ct_type->ct_type_events.ctq_lock);
2349 cte_publish(&ct->ct_type->ct_type_events, e, &ts, B_FALSE);
2352 * CTEL_PBUNDLE - Finally, if the contract has an owner,
2353 * deliver to the owner's process bundle queue.
2355 mutex_enter(&ct->ct_lock);
2356 if (ct->ct_owner) {
2358 * proc_exit doesn't free event queues until it has
2359 * abandoned all contracts.
2361 ASSERT(ct->ct_owner->p_ct_equeue);
2362 ASSERT(ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index]);
2363 q = ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index];
2364 mutex_enter(&q->ctq_lock);
2365 mutex_exit(&ct->ct_lock);
2368 * It is possible for this code to race with adoption; we
2369 * publish the event indicating that the event may already
2370 * be enqueued because adoption beat us to it (in which case
2371 * cte_pubish() does nothing).
2373 cte_publish(q, e, &ts, B_TRUE);
2374 } else {
2375 mutex_exit(&ct->ct_lock);
2376 cte_rele(e);
2379 if (negend) {
2380 mutex_enter(&ct->ct_lock);
2381 negev = ct->ct_nevent;
2382 ct->ct_nevent = NULL;
2383 cte_rele(negev);
2384 mutex_exit(&ct->ct_lock);
2387 mutex_exit(&ct->ct_evtlock);
2389 return (evid);
2393 * cte_add_listener
2395 * Add a new listener to an event queue.
2397 void
2398 cte_add_listener(ct_equeue_t *q, ct_listener_t *l)
2400 cv_init(&l->ctl_cv, NULL, CV_DEFAULT, NULL);
2401 l->ctl_equeue = q;
2402 l->ctl_position = NULL;
2403 l->ctl_flags = 0;
2405 mutex_enter(&q->ctq_lock);
2406 list_insert_head(&q->ctq_tail, l);
2407 list_insert_head(&q->ctq_listeners, l);
2408 q->ctq_nlisteners++;
2409 mutex_exit(&q->ctq_lock);
2413 * cte_remove_listener
2415 * Remove a listener from an event queue. No other queue activities
2416 * (e.g. cte_get event) may be in progress at this endpoint when this
2417 * is called.
2419 void
2420 cte_remove_listener(ct_listener_t *l)
2422 ct_equeue_t *q = l->ctl_equeue;
2423 ct_kevent_t *e;
2425 mutex_enter(&q->ctq_lock);
2427 ASSERT((l->ctl_flags & (CTLF_COPYOUT|CTLF_RESET)) == 0);
2429 if ((e = l->ctl_position) != NULL)
2430 cte_qrele(q, l, e);
2431 else
2432 list_remove(&q->ctq_tail, l);
2433 l->ctl_position = NULL;
2435 q->ctq_nlisteners--;
2436 list_remove(&q->ctq_listeners, l);
2438 if (l->ctl_flags & CTLF_RELIABLE)
2439 q->ctq_nreliable--;
2442 * If we are a the last listener of a dead reference counted
2443 * queue (i.e. a process bundle) we free it. Otherwise we just
2444 * trim any events which may have been kept around for our
2445 * benefit.
2447 if ((q->ctq_flags & CTQ_REFFED) && (q->ctq_flags & CTQ_DEAD) &&
2448 (q->ctq_nlisteners == 0)) {
2449 cte_queue_destroy(q);
2450 } else {
2451 cte_trim(q, NULL);
2452 mutex_exit(&q->ctq_lock);
2457 * cte_reset_listener
2459 * Moves a listener's queue pointer to the beginning of the queue.
2461 void
2462 cte_reset_listener(ct_listener_t *l)
2464 ct_equeue_t *q = l->ctl_equeue;
2466 mutex_enter(&q->ctq_lock);
2469 * We allow an asynchronous reset because it doesn't make a
2470 * whole lot of sense to make reset block or fail. We already
2471 * have most of the mechanism needed thanks to queue trimming,
2472 * so implementing it isn't a big deal.
2474 if (l->ctl_flags & CTLF_COPYOUT)
2475 l->ctl_flags |= CTLF_RESET;
2477 (void) cte_qmove(q, l, list_head(&q->ctq_events));
2480 * Inform blocked readers.
2482 cv_broadcast(&l->ctl_cv);
2483 pollwakeup(&l->ctl_pollhead, POLLIN);
2484 mutex_exit(&q->ctq_lock);
2488 * cte_next_event
2490 * Moves the event pointer for the specified listener to the next event
2491 * on the queue. To avoid races, this movement only occurs if the
2492 * specified event id matches that of the current event. This is used
2493 * primarily to skip events that have been read but whose extended data
2494 * haven't been copied out.
2497 cte_next_event(ct_listener_t *l, uint64_t id)
2499 ct_equeue_t *q = l->ctl_equeue;
2500 ct_kevent_t *old;
2502 mutex_enter(&q->ctq_lock);
2504 if (l->ctl_flags & CTLF_COPYOUT)
2505 l->ctl_flags |= CTLF_RESET;
2507 if (((old = l->ctl_position) != NULL) && (old->cte_id == id))
2508 (void) cte_qmove(q, l, list_next(&q->ctq_events, old));
2510 mutex_exit(&q->ctq_lock);
2512 return (0);
2516 * cte_get_event
2518 * Reads an event from an event endpoint. If "nonblock" is clear, we
2519 * block until a suitable event is ready. If "crit" is set, we only
2520 * read critical events. Note that while "cr" is the caller's cred,
2521 * "zuniqid" is the unique id of the zone the calling contract
2522 * filesystem was mounted in.
2525 cte_get_event(ct_listener_t *l, int nonblock, void *uaddr, const cred_t *cr,
2526 uint64_t zuniqid, int crit)
2528 ct_equeue_t *q = l->ctl_equeue;
2529 ct_kevent_t *temp;
2530 int result = 0;
2531 int partial = 0;
2532 size_t size, gsize, len;
2533 model_t mdl = get_udatamodel();
2534 STRUCT_DECL(ct_event, ev);
2535 STRUCT_INIT(ev, mdl);
2538 * cte_qreadable checks for CTLF_COPYOUT as well as ensures
2539 * that there exists, and we are pointing to, an appropriate
2540 * event. It may temporarily drop ctq_lock, but that doesn't
2541 * really matter to us.
2543 mutex_enter(&q->ctq_lock);
2544 while (cte_qreadable(q, l, cr, zuniqid, crit)) {
2545 if (nonblock) {
2546 result = EAGAIN;
2547 goto error;
2549 if (q->ctq_flags & CTQ_DEAD) {
2550 result = EIDRM;
2551 goto error;
2553 result = cv_wait_sig(&l->ctl_cv, &q->ctq_lock);
2554 if (result == 0) {
2555 result = EINTR;
2556 goto error;
2559 temp = l->ctl_position;
2560 cte_hold(temp);
2561 l->ctl_flags |= CTLF_COPYOUT;
2562 mutex_exit(&q->ctq_lock);
2565 * We now have an event. Copy in the user event structure to
2566 * see how much space we have to work with.
2568 result = copyin(uaddr, STRUCT_BUF(ev), STRUCT_SIZE(ev));
2569 if (result)
2570 goto copyerr;
2573 * Determine what data we have and what the user should be
2574 * allowed to see.
2576 size = gsize = 0;
2577 if (temp->cte_data) {
2578 VERIFY(nvlist_size(temp->cte_data, &size,
2579 NV_ENCODE_NATIVE) == 0);
2580 ASSERT(size != 0);
2582 if (zuniqid == GLOBAL_ZONEUNIQID && temp->cte_gdata) {
2583 VERIFY(nvlist_size(temp->cte_gdata, &gsize,
2584 NV_ENCODE_NATIVE) == 0);
2585 ASSERT(gsize != 0);
2589 * If we have enough space, copy out the extended event data.
2591 len = size + gsize;
2592 if (len) {
2593 if (STRUCT_FGET(ev, ctev_nbytes) >= len) {
2594 char *buf = kmem_alloc(len, KM_SLEEP);
2596 if (size)
2597 VERIFY(nvlist_pack(temp->cte_data, &buf, &size,
2598 NV_ENCODE_NATIVE, KM_SLEEP) == 0);
2599 if (gsize) {
2600 char *tmp = buf + size;
2602 VERIFY(nvlist_pack(temp->cte_gdata, &tmp,
2603 &gsize, NV_ENCODE_NATIVE, KM_SLEEP) == 0);
2606 /* This shouldn't have changed */
2607 ASSERT(size + gsize == len);
2608 result = copyout(buf, STRUCT_FGETP(ev, ctev_buffer),
2609 len);
2610 kmem_free(buf, len);
2611 if (result)
2612 goto copyerr;
2613 } else {
2614 partial = 1;
2619 * Copy out the common event data.
2621 STRUCT_FSET(ev, ctev_id, temp->cte_contract->ct_id);
2622 STRUCT_FSET(ev, ctev_evid, temp->cte_id);
2623 STRUCT_FSET(ev, ctev_cttype,
2624 temp->cte_contract->ct_type->ct_type_index);
2625 STRUCT_FSET(ev, ctev_flags, temp->cte_flags &
2626 (CTE_ACK|CTE_INFO|CTE_NEG));
2627 STRUCT_FSET(ev, ctev_type, temp->cte_type);
2628 STRUCT_FSET(ev, ctev_nbytes, len);
2629 STRUCT_FSET(ev, ctev_goffset, size);
2630 result = copyout(STRUCT_BUF(ev), uaddr, STRUCT_SIZE(ev));
2632 copyerr:
2634 * Only move our location in the queue if all copyouts were
2635 * successful, the caller provided enough space for the entire
2636 * event, and our endpoint wasn't reset or otherwise moved by
2637 * another thread.
2639 mutex_enter(&q->ctq_lock);
2640 if (result)
2641 result = EFAULT;
2642 else if (!partial && ((l->ctl_flags & CTLF_RESET) == 0) &&
2643 (l->ctl_position == temp))
2644 (void) cte_qmove(q, l, list_next(&q->ctq_events, temp));
2645 l->ctl_flags &= ~(CTLF_COPYOUT|CTLF_RESET);
2647 * Signal any readers blocked on our CTLF_COPYOUT.
2649 cv_signal(&l->ctl_cv);
2650 cte_rele(temp);
2652 error:
2653 mutex_exit(&q->ctq_lock);
2654 return (result);
2658 * cte_set_reliable
2660 * Requests that events be reliably delivered to an event endpoint.
2661 * Unread informative and acknowledged critical events will not be
2662 * removed from the queue until this listener reads or skips them.
2663 * Because a listener could maliciously request reliable delivery and
2664 * then do nothing, this requires that PRIV_CONTRACT_EVENT be in the
2665 * caller's effective set.
2668 cte_set_reliable(ct_listener_t *l, const cred_t *cr)
2670 ct_equeue_t *q = l->ctl_equeue;
2671 int error;
2673 if ((error = secpolicy_contract_event(cr)) != 0)
2674 return (error);
2676 mutex_enter(&q->ctq_lock);
2677 if ((l->ctl_flags & CTLF_RELIABLE) == 0) {
2678 l->ctl_flags |= CTLF_RELIABLE;
2679 q->ctq_nreliable++;
2680 if (l->ctl_position != NULL)
2681 l->ctl_position->cte_nodes[q->ctq_listno].
2682 ctm_nreliable++;
2684 mutex_exit(&q->ctq_lock);
2686 return (0);