5045 use atomic_{inc,dec}_* instead of atomic_add_*
[illumos-gate.git] / usr / src / uts / common / io / chxge / pe.c
blob816d5ce8a51f4196998f2804c6924710b9654a28
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * This file is part of the Chelsio T1 Ethernet driver.
30 * Copyright (C) 2003-2005 Chelsio Communications. All rights reserved.
34 * Solaris Multithreaded STREAMS Chelsio PCI Ethernet Driver.
35 * Interface code
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/cmn_err.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/byteorder.h>
44 #include <sys/atomic.h>
45 #include <sys/ethernet.h>
46 #if PE_PROFILING_ENABLED
47 #include <sys/time.h>
48 #endif
49 #include <sys/gld.h>
50 #include "ostypes.h"
51 #include "common.h"
52 #include "oschtoe.h"
53 #ifdef CONFIG_CHELSIO_T1_1G
54 #include "fpga_defs.h"
55 #endif
56 #include "regs.h"
57 #ifdef CONFIG_CHELSIO_T1_OFFLOAD
58 #include "mc3.h"
59 #include "mc4.h"
60 #endif
61 #include "sge.h"
62 #include "tp.h"
63 #ifdef CONFIG_CHELSIO_T1_OFFLOAD
64 #include "ulp.h"
65 #endif
66 #include "espi.h"
67 #include "elmer0.h"
68 #include "gmac.h"
69 #include "cphy.h"
70 #include "suni1x10gexp_regs.h"
71 #include "ch.h"
73 #define MLEN(mp) ((mp)->b_wptr - (mp)->b_rptr)
75 extern uint32_t buffers_in_use[];
76 extern kmutex_t in_use_l;
77 extern uint32_t in_use_index;
79 static void link_start(ch_t *sa, struct pe_port_t *pp);
80 static ch_esb_t *ch_alloc_small_esbbuf(ch_t *sa, uint32_t i);
81 static ch_esb_t *ch_alloc_big_esbbuf(ch_t *sa, uint32_t i);
82 void ch_big_rbuf_recycle(ch_esb_t *rbp);
83 void ch_small_rbuf_recycle(ch_esb_t *rbp);
84 static const struct board_info *pe_sa_init(ch_t *sa);
85 static int ch_set_config_data(ch_t *chp);
86 void pe_rbuf_pool_free(ch_t *chp);
87 static void pe_free_driver_resources(ch_t *sa);
88 static void update_mtu_tab(ch_t *adapter);
89 static int pe_change_mtu(ch_t *chp);
92 * CPL5 Defines (from netinet/cpl5_commands.h)
94 #define FLITSTOBYTES 8
96 #define CPL_FORMAT_0_SIZE 8
97 #define CPL_FORMAT_1_SIZE 16
98 #define CPL_FORMAT_2_SIZE 24
99 #define CPL_FORMAT_3_SIZE 32
100 #define CPL_FORMAT_4_SIZE 40
101 #define CPL_FORMAT_5_SIZE 48
103 #define TID_MASK 0xffffff
105 #define PE_LINK_SPEED_AUTONEG 5
107 static int pe_small_rbuf_pool_init(ch_t *sa);
108 static int pe_big_rbuf_pool_init(ch_t *sa);
109 static int pe_make_fake_arp(ch_t *chp, unsigned char *arpp);
110 static uint32_t pe_get_ip(unsigned char *arpp);
113 * May be set in /etc/system to 0 to use default latency timer for 10G.
114 * See PCI register 0xc definition.
116 int enable_latency_timer = 1;
119 * May be set in /etc/system to 0 to disable hardware checksum for
120 * TCP and UDP.
122 int enable_checksum_offload = 1;
125 * Multiplier for freelist pool.
127 int fl_sz_multiplier = 6;
129 uint_t
130 pe_intr(ch_t *sa)
132 mutex_enter(&sa->ch_intr);
134 if (sge_data_in(sa->sge)) {
135 sa->isr_intr++;
136 mutex_exit(&sa->ch_intr);
137 return (DDI_INTR_CLAIMED);
140 mutex_exit(&sa->ch_intr);
142 return (DDI_INTR_UNCLAIMED);
146 * Each setup struct will call this function to
147 * initialize.
149 void
150 pe_init(void* xsa)
152 ch_t *sa = NULL;
153 int i = 0;
155 sa = (ch_t *)xsa;
158 * Need to count the number of times this routine is called
159 * because we only want the resources to be allocated once.
160 * The 7500 has four ports and so this routine can be called
161 * once for each port.
163 if (sa->init_counter == 0) {
164 for_each_port(sa, i) {
167 * We only want to initialize the line if it is down.
169 if (sa->port[i].line_up == 0) {
170 link_start(sa, &sa->port[i]);
171 sa->port[i].line_up = 1;
175 (void) t1_init_hw_modules(sa);
178 * Enable/Disable checksum offloading.
180 if (sa->ch_config.cksum_enabled) {
181 if (sa->config_data.offload_ip_cksum) {
182 /* Notify that HW will do the checksum. */
183 t1_tp_set_ip_checksum_offload(sa->tp, 1);
186 if (sa->config_data.offload_tcp_cksum) {
187 /* Notify that HW will do the checksum. */
188 t1_tp_set_tcp_checksum_offload(sa->tp, 1);
191 if (sa->config_data.offload_udp_cksum) {
192 /* Notify that HW will do the checksum. */
193 t1_tp_set_udp_checksum_offload(sa->tp, 1);
197 sa->ch_flags |= PEINITDONE;
199 sa->init_counter++;
203 * Enable interrupts after starting the SGE so
204 * that the SGE is ready to handle interrupts.
206 (void) sge_start(sa->sge);
207 t1_interrupts_enable(sa);
210 * set mtu (either 1500 or bigger)
212 (void) pe_change_mtu(sa);
213 #ifdef HOST_PAUSE
215 * get the configured value of the MAC.
217 (void) t1_tpi_read(sa, SUNI1x10GEXP_REG_TXXG_CONFIG_1 << 2,
218 &sa->txxg_cfg1);
219 #endif
222 /* ARGSUSED */
223 static void
224 link_start(ch_t *sa, struct pe_port_t *p)
226 struct cmac *mac = p->mac;
228 mac->ops->reset(mac);
229 if (mac->ops->macaddress_set)
230 mac->ops->macaddress_set(mac, p->enaddr);
231 (void) t1_link_start(p->phy, mac, &p->link_config);
232 mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
236 * turn off interrupts...
238 void
239 pe_stop(ch_t *sa)
241 t1_interrupts_disable(sa);
242 (void) sge_stop(sa->sge);
245 * we can still be running an interrupt thread in sge_data_in().
246 * If we are, we'll block on the ch_intr lock
248 mutex_enter(&sa->ch_intr);
249 mutex_exit(&sa->ch_intr);
253 * output mblk to SGE level and out to the wire.
257 pe_start(ch_t *sa, mblk_t *mp, uint32_t flg)
259 mblk_t *m0 = mp;
260 cmdQ_ce_t cm[16];
261 cmdQ_ce_t *cmp;
262 cmdQ_ce_t *hmp = &cm[0]; /* head of cm table (may be kmem_alloed) */
263 int cm_flg = 0; /* flag (1 - if kmem-alloced) */
264 int nseg = 0; /* number cmdQ_ce entries created */
265 int mseg = 16; /* maximum entries in hmp arrary */
266 int freeme = 0; /* we have an mblk to free in case of error */
267 uint32_t ch_bind_dma_handle(ch_t *, int, caddr_t, cmdQ_ce_t *,
268 uint32_t);
269 #if defined(__sparc)
270 uint32_t ch_bind_dvma_handle(ch_t *, int, caddr_t, cmdQ_ce_t *,
271 uint32_t);
272 #endif
273 int rv; /* return value on error */
275 #ifdef CONFIG_CHELSIO_T1_OFFLOAD
276 if (flg & CH_OFFLOAD) {
277 hmp->ce_pa = ((tbuf_t *)mp)->tb_pa;
278 hmp->ce_dh = NULL;
279 hmp->ce_flg = DH_TOE;
280 hmp->ce_len = ((tbuf_t *)mp)->tb_len;
281 hmp->ce_mp = mp;
283 /* make sure data is flushed to physical memory */
284 (void) ddi_dma_sync((ddi_dma_handle_t)((tbuf_t *)mp)->tb_dh,
285 (off_t)0, hmp->ce_len, DDI_DMA_SYNC_FORDEV);
287 if (sge_data_out(sa->sge, 0, mp, hmp, 1, flg) == 0) {
288 return (0);
292 * set a flag so we'll restart upper layer when
293 * resources become available.
295 sa->ch_blked = 1;
296 return (1);
298 #endif /* CONFIG_CHELSIO_T1_OFFLOAD */
300 /* writes from toe will always have CPL header in place */
301 if (flg & CH_NO_CPL) {
302 struct cpl_tx_pkt *cpl;
304 /* PR2928 & PR3309 */
305 if (sa->ch_ip == NULL) {
306 ushort_t ethertype = ntohs(*(short *)&mp->b_rptr[12]);
307 if (ethertype == ETHERTYPE_ARP) {
308 if (is_T2(sa)) {
310 * We assume here that the arp will be
311 * contained in one mblk.
313 if (pe_make_fake_arp(sa, mp->b_rptr)) {
314 freemsg(mp);
315 sa->oerr++;
316 return (0);
318 } else {
319 sa->ch_ip = pe_get_ip(mp->b_rptr);
325 * if space in front of packet big enough for CPL
326 * header, then use it. We'll allocate an mblk
327 * otherwise.
329 if ((mp->b_rptr - mp->b_datap->db_base) >= SZ_CPL_TX_PKT) {
331 mp->b_rptr -= SZ_CPL_TX_PKT;
333 } else {
335 #ifdef SUN_KSTATS
336 sa->sge->intr_cnt.tx_need_cpl_space++;
337 #endif
338 m0 = allocb(SZ_CPL_TX_PKT, BPRI_HI);
339 if (m0 == NULL) {
340 freemsg(mp);
341 sa->oerr++;
342 return (0);
345 m0->b_wptr = m0->b_rptr + SZ_CPL_TX_PKT;
346 m0->b_cont = mp;
347 freeme = 1;
349 mp = m0;
352 /* fill in cpl header */
353 cpl = (struct cpl_tx_pkt *)mp->b_rptr;
354 cpl->opcode = CPL_TX_PKT;
355 cpl->iff = 0; /* XXX port 0 needs fixing with NEMO */
356 cpl->ip_csum_dis = 1; /* no IP header cksum */
357 cpl->l4_csum_dis =
358 flg & CH_NO_HWCKSUM; /* CH_NO_HWCKSUM == 1 */
359 cpl->vlan_valid = 0; /* no vlan */
362 if (m0->b_cont) {
364 #ifdef SUN_KSTATS
365 sa->sge->intr_cnt.tx_multi_mblks++;
366 #endif
368 while (mp) {
369 int lseg; /* added by ch_bind_dma_handle() */
370 int len;
372 len = MLEN(mp);
373 /* skip mlks with no data */
374 if (len == 0) {
375 mp = mp->b_cont;
376 continue;
380 * if we've run out of space on stack, then we
381 * allocate a temporary buffer to hold the
382 * information. This will kill the the performance,
383 * but since it shouldn't really occur, we can live
384 * with it. Since jumbo frames may map multiple
385 * descriptors, we reallocate the hmp[] array before
386 * we reach the end.
388 if (nseg >= (mseg-4)) {
389 cmdQ_ce_t *buf;
390 int j;
392 buf = kmem_alloc(sizeof (cmdQ_ce_t) * 2 * mseg,
393 KM_SLEEP);
395 for (j = 0; j < nseg; j++)
396 buf[j] = hmp[j];
398 if (cm_flg) {
399 kmem_free(hmp,
400 mseg * sizeof (cmdQ_ce_t));
401 } else
402 cm_flg = 1;
404 hmp = buf;
405 mseg = 2*mseg;
408 * We've used up ch table on stack
412 #if defined(__sparc)
413 if (sa->ch_config.enable_dvma) {
414 lseg = ch_bind_dvma_handle(sa, len,
415 (void *)mp->b_rptr,
416 &hmp[nseg], mseg - nseg);
417 if (lseg == NULL) {
418 sa->sge->intr_cnt.tx_no_dvma1++;
419 if ((lseg = ch_bind_dma_handle(sa, len,
420 (void *)mp->b_rptr,
421 &hmp[nseg],
422 mseg - nseg)) == NULL) {
423 sa->sge->intr_cnt.tx_no_dma1++;
426 * ran out of space. Gonna bale
428 rv = 0;
431 * we may have processed
432 * previous mblks and have
433 * descriptors. If so, we need
434 * to free the meta struct
435 * entries before freeing
436 * the mblk.
438 if (nseg)
439 goto error;
440 goto error1;
443 } else {
444 lseg = ch_bind_dma_handle(sa, len,
445 (void *)mp->b_rptr, &hmp[nseg],
446 mseg - nseg);
447 if (lseg == NULL) {
448 sa->sge->intr_cnt.tx_no_dma1++;
451 * ran out of space. Gona bale
453 rv = 0;
456 * we may have processed previous
457 * mblks and have descriptors. If so,
458 * we need to free the meta struct
459 * entries before freeing the mblk.
461 if (nseg)
462 goto error;
463 goto error1;
466 #else /* defined(__sparc) */
467 lseg = ch_bind_dma_handle(sa, len,
468 (void *)mp->b_rptr, &hmp[nseg],
469 mseg - nseg);
470 if (lseg == NULL) {
471 sa->sge->intr_cnt.tx_no_dma1++;
474 * ran out of space. Gona bale
476 rv = 0;
479 * we may have processed previous mblks and
480 * have descriptors. If so, we need to free
481 * the meta struct entries before freeing
482 * the mblk.
484 if (nseg)
485 goto error;
486 goto error1;
488 #endif /* defined(__sparc) */
489 nseg += lseg;
490 mp = mp->b_cont;
494 * SHOULD NEVER OCCUR, BUT...
495 * no data if nseg 0 or
496 * nseg 1 and a CPL mblk (CPL mblk only with offload mode)
497 * and no data
499 if ((nseg == 0) || (freeme && (nseg == 1))) {
500 rv = 0;
501 goto error1;
504 } else {
505 int len;
507 /* we assume that we always have data with one packet */
508 len = MLEN(mp);
510 #if defined(__sparc)
511 if (sa->ch_config.enable_dvma) {
512 nseg = ch_bind_dvma_handle(sa, len,
513 (void *)mp->b_rptr,
514 &hmp[0], 16);
515 if (nseg == NULL) {
516 sa->sge->intr_cnt.tx_no_dvma2++;
517 nseg = ch_bind_dma_handle(sa, len,
518 (void *)mp->b_rptr,
519 &hmp[0], 16);
520 if (nseg == NULL) {
521 sa->sge->intr_cnt.tx_no_dma2++;
524 * ran out of space. Gona bale
526 rv = 0;
527 goto error1;
530 } else {
531 nseg = ch_bind_dma_handle(sa, len,
532 (void *)mp->b_rptr, &hmp[0], 16);
533 if (nseg == NULL) {
534 sa->sge->intr_cnt.tx_no_dma2++;
537 * ran out of space. Gona bale
539 rv = 0;
540 goto error1;
543 #else /* defined(__sparc) */
544 nseg = ch_bind_dma_handle(sa, len,
545 (void *)mp->b_rptr, &hmp[0], 16);
546 if (nseg == NULL) {
547 sa->sge->intr_cnt.tx_no_dma2++;
550 * ran out of space. Gona bale
552 rv = 0;
553 goto error1;
555 #endif /* defined(__sparc) */
558 * dummy arp message to handle PR3309 & PR2928
560 if (flg & CH_ARP)
561 hmp->ce_flg |= DH_ARP;
564 if (sge_data_out(sa->sge, 0, m0, hmp, nseg, flg) == 0) {
565 if (cm_flg)
566 kmem_free(hmp, mseg * sizeof (cmdQ_ce_t));
567 return (0);
571 * set a flag so we'll restart upper layer when
572 * resources become available.
574 if ((flg & CH_ARP) == 0)
575 sa->ch_blked = 1;
576 rv = 1;
578 error:
580 * unmap the physical addresses allocated earlier.
582 cmp = hmp;
583 for (--nseg; nseg >= 0; nseg--) {
584 if (cmp->ce_dh) {
585 if (cmp->ce_flg == DH_DMA)
586 ch_unbind_dma_handle(sa, cmp->ce_dh);
587 #if defined(__sparc)
588 else
589 ch_unbind_dvma_handle(sa, cmp->ce_dh);
590 #endif
592 cmp++;
595 error1:
597 /* free the temporary array */
598 if (cm_flg)
599 kmem_free(hmp, mseg * sizeof (cmdQ_ce_t));
602 * if we've allocated an mblk above, then we need to free it
603 * before returning. This is safe since we haven't done anything to
604 * the original message. The caller, gld, will still have a pointer
605 * to the original mblk.
607 if (rv == 1) {
608 if (freeme) {
609 /* we had to allocate an mblk. Free it. */
610 freeb(m0);
611 } else {
612 /* adjust the mblk back to original start */
613 if (flg & CH_NO_CPL)
614 m0->b_rptr += SZ_CPL_TX_PKT;
616 } else {
617 freemsg(m0);
618 sa->oerr++;
621 return (rv);
624 /* KLUDGE ALERT. HARD WIRED TO PORT ZERO */
625 void
626 pe_set_mac(ch_t *sa, unsigned char *ac_enaddr)
628 sa->port[0].mac->ops->macaddress_set(sa->port[0].mac, ac_enaddr);
631 /* KLUDGE ALERT. HARD WIRED TO PORT ZERO */
632 unsigned char *
633 pe_get_mac(ch_t *sa)
635 return (sa->port[0].enaddr);
638 /* KLUDGE ALERT. HARD WIRED TO ONE PORT */
639 void
640 pe_set_promiscuous(ch_t *sa, int flag)
642 struct cmac *mac = sa->port[0].mac;
643 struct t1_rx_mode rm;
645 switch (flag) {
646 case 0: /* turn off promiscuous mode */
647 sa->ch_flags &= ~(PEPROMISC|PEALLMULTI);
648 break;
650 case 1: /* turn on promiscuous mode */
651 sa->ch_flags |= PEPROMISC;
652 break;
654 case 2: /* turn on multicast reception */
655 sa->ch_flags |= PEALLMULTI;
656 break;
659 mutex_enter(&sa->ch_mc_lck);
660 rm.chp = sa;
661 rm.mc = sa->ch_mc;
663 mac->ops->set_rx_mode(mac, &rm);
664 mutex_exit(&sa->ch_mc_lck);
668 pe_set_mc(ch_t *sa, uint8_t *ep, int flg)
670 struct cmac *mac = sa->port[0].mac;
671 struct t1_rx_mode rm;
673 if (flg == GLD_MULTI_ENABLE) {
674 ch_mc_t *mcp;
676 mcp = (ch_mc_t *)kmem_zalloc(sizeof (struct ch_mc),
677 KM_NOSLEEP);
678 if (mcp == NULL)
679 return (GLD_NORESOURCES);
681 bcopy(ep, &mcp->cmc_mca, 6);
683 mutex_enter(&sa->ch_mc_lck);
684 mcp->cmc_next = sa->ch_mc;
685 sa->ch_mc = mcp;
686 sa->ch_mc_cnt++;
687 mutex_exit(&sa->ch_mc_lck);
689 } else if (flg == GLD_MULTI_DISABLE) {
690 ch_mc_t **p = &sa->ch_mc;
691 ch_mc_t *q = NULL;
693 mutex_enter(&sa->ch_mc_lck);
694 p = &sa->ch_mc;
695 while (*p) {
696 if (bcmp(ep, (*p)->cmc_mca, 6) == 0) {
697 q = *p;
698 *p = (*p)->cmc_next;
699 kmem_free(q, sizeof (*q));
700 sa->ch_mc_cnt--;
701 break;
704 p = &(*p)->cmc_next;
706 mutex_exit(&sa->ch_mc_lck);
708 if (q == NULL)
709 return (GLD_BADARG);
710 } else
711 return (GLD_BADARG);
713 mutex_enter(&sa->ch_mc_lck);
714 rm.chp = sa;
715 rm.mc = sa->ch_mc;
717 mac->ops->set_rx_mode(mac, &rm);
718 mutex_exit(&sa->ch_mc_lck);
720 return (GLD_SUCCESS);
724 * return: speed - bandwidth of interface
725 * return: intrcnt - # interrupts
726 * return: norcvbuf - # recedived packets dropped by driver
727 * return: oerrors - # bad send packets
728 * return: ierrors - # bad receive packets
729 * return: underrun - # bad underrun xmit packets
730 * return: overrun - # bad overrun recv packets
731 * return: framing - # bad aligned recv packets
732 * return: crc - # bad FCS (crc) recv packets
733 * return: carrier - times carrier was lost
734 * return: collisions - # xmit collisions
735 * return: xcollisions - # xmit pkts dropped due to collisions
736 * return: late - # late xmit collisions
737 * return: defer - # deferred xmit packets
738 * return: xerrs - # xmit dropped packets
739 * return: rerrs - # recv dropped packets
740 * return: toolong - # recv pkts too long
741 * return: runt - # recv runt pkts
742 * return: multixmt - # multicast pkts xmitted
743 * return: multircv - # multicast pkts recved
744 * return: brdcstxmt - # broadcast pkts xmitted
745 * return: brdcstrcv - # broadcast pkts rcv
749 pe_get_stats(ch_t *sa, uint64_t *speed, uint32_t *intrcnt, uint32_t *norcvbuf,
750 uint32_t *oerrors, uint32_t *ierrors, uint32_t *underrun,
751 uint32_t *overrun, uint32_t *framing, uint32_t *crc,
752 uint32_t *carrier, uint32_t *collisions, uint32_t *xcollisions,
753 uint32_t *late, uint32_t *defer, uint32_t *xerrs, uint32_t *rerrs,
754 uint32_t *toolong, uint32_t *runt, ulong_t *multixmt, ulong_t *multircv,
755 ulong_t *brdcstxmt, ulong_t *brdcstrcv)
757 struct pe_port_t *pt;
758 int line_speed;
759 int line_duplex;
760 int line_is_active;
761 uint64_t v;
762 const struct cmac_statistics *sp;
764 pt = &(sa->port[0]);
765 (void) pt->phy->ops->get_link_status(pt->phy,
766 &line_is_active, &line_speed, &line_duplex, NULL);
768 switch (line_speed) {
769 case SPEED_10:
770 *speed = 10000000;
771 break;
772 case SPEED_100:
773 *speed = 100000000;
774 break;
775 case SPEED_1000:
776 *speed = 1000000000;
777 break;
778 case SPEED_10000:
780 * kludge to get 10,000,000,000 constant (and keep
781 * compiler happy).
783 v = 10000000;
784 v *= 1000;
785 *speed = v;
786 break;
787 default:
788 goto error;
791 *intrcnt = sa->isr_intr;
792 *norcvbuf = sa->norcvbuf;
794 sp = sa->port[0].mac->ops->statistics_update(sa->port[0].mac,
795 MAC_STATS_UPDATE_FULL);
797 *ierrors = sp->RxOctetsBad;
800 * not sure this is correct. # aborted at driver level +
801 * # at hardware level
803 *oerrors = sa->oerr + sp->TxFramesAbortedDueToXSCollisions +
804 sp->TxUnderrun + sp->TxLengthErrors +
805 sp->TxInternalMACXmitError +
806 sp->TxFramesWithExcessiveDeferral +
807 sp->TxFCSErrors;
809 *underrun = sp->TxUnderrun;
810 *overrun = sp->RxFrameTooLongErrors;
811 *framing = sp->RxAlignErrors;
812 *crc = sp->RxFCSErrors;
813 *carrier = 0; /* need to find this */
814 *collisions = sp->TxTotalCollisions;
815 *xcollisions = sp->TxFramesAbortedDueToXSCollisions;
816 *late = sp->TxLateCollisions;
817 *defer = sp->TxFramesWithDeferredXmissions;
818 *xerrs = sp->TxUnderrun + sp->TxLengthErrors +
819 sp->TxInternalMACXmitError + sp->TxFCSErrors;
820 *rerrs = sp->RxSymbolErrors + sp->RxSequenceErrors + sp->RxRuntErrors +
821 sp->RxJabberErrors + sp->RxInternalMACRcvError +
822 sp->RxInRangeLengthErrors + sp->RxOutOfRangeLengthField;
823 *toolong = sp->RxFrameTooLongErrors;
824 *runt = sp->RxRuntErrors;
826 *multixmt = sp->TxMulticastFramesOK;
827 *multircv = sp->RxMulticastFramesOK;
828 *brdcstxmt = sp->TxBroadcastFramesOK;
829 *brdcstrcv = sp->RxBroadcastFramesOK;
831 return (0);
833 error:
834 *speed = 0;
835 *intrcnt = 0;
836 *norcvbuf = 0;
837 *norcvbuf = 0;
838 *oerrors = 0;
839 *ierrors = 0;
840 *underrun = 0;
841 *overrun = 0;
842 *framing = 0;
843 *crc = 0;
844 *carrier = 0;
845 *collisions = 0;
846 *xcollisions = 0;
847 *late = 0;
848 *defer = 0;
849 *xerrs = 0;
850 *rerrs = 0;
851 *toolong = 0;
852 *runt = 0;
853 *multixmt = 0;
854 *multircv = 0;
855 *brdcstxmt = 0;
856 *brdcstrcv = 0;
858 return (1);
861 uint32_t ch_gtm = 0; /* Default: Global Tunnel Mode off */
862 uint32_t ch_global_config = 0x07000000; /* Default: errors, warnings, status */
863 uint32_t ch_is_asic = 0; /* Default: non-ASIC */
864 uint32_t ch_link_speed = PE_LINK_SPEED_AUTONEG; /* Default: auto-negoiate */
865 uint32_t ch_num_of_ports = 1; /* Default: 1 port */
866 uint32_t ch_tp_reset_cm = 1; /* Default: reset CM memory map */
867 uint32_t ch_phy_tx_fifo = 0; /* Default: 0 phy tx fifo depth */
868 uint32_t ch_phy_rx_fifo = 0; /* Default: 0 phy rx fifo depth */
869 uint32_t ch_phy_force_master = 1; /* Default: link always master mode */
870 uint32_t ch_mc5_rtbl_size = 2048; /* Default: TCAM routing table size */
871 uint32_t ch_mc5_dbsvr_size = 128; /* Default: TCAM server size */
872 uint32_t ch_mc5_parity = 1; /* Default: parity error checking */
873 uint32_t ch_mc5_issue_syn = 0; /* Default: Allow transaction overlap */
874 uint32_t ch_packet_tracing = 0; /* Default: no packet tracing */
875 uint32_t ch_server_region_len =
876 DEFAULT_SERVER_REGION_LEN;
877 uint32_t ch_rt_region_len =
878 DEFAULT_RT_REGION_LEN;
879 uint32_t ch_offload_ip_cksum = 0; /* Default: no checksum offloading */
880 uint32_t ch_offload_udp_cksum = 1; /* Default: offload UDP ckecksum */
881 uint32_t ch_offload_tcp_cksum = 1; /* Default: offload TCP checksum */
882 uint32_t ch_sge_cmdq_threshold = 0; /* Default: threshold 0 */
883 uint32_t ch_sge_flq_threshold = 0; /* Default: SGE flq threshold */
884 uint32_t ch_sge_cmdq0_cnt = /* Default: cmd queue 0 size */
885 SGE_CMDQ0_CNT;
886 uint32_t ch_sge_cmdq1_cnt = /* Default: cmd queue 1 size */
887 SGE_CMDQ0_CNT;
888 uint32_t ch_sge_flq0_cnt = /* Default: free list queue-0 length */
889 SGE_FLQ0_CNT;
890 uint32_t ch_sge_flq1_cnt = /* Default: free list queue-1 length */
891 SGE_FLQ0_CNT;
892 uint32_t ch_sge_respq_cnt = /* Default: reqsponse queue size */
893 SGE_RESPQ_CNT;
894 uint32_t ch_stats = 1; /* Default: Automatic Update MAC stats */
895 uint32_t ch_tx_delay_us = 0; /* Default: No Msec delay to Tx pkts */
896 int32_t ch_chip = -1; /* Default: use hardware lookup tbl */
897 uint32_t ch_exit_early = 0; /* Default: complete initialization */
898 uint32_t ch_rb_num_of_entries = 1000; /* Default: number ring buffer entries */
899 uint32_t ch_rb_size_of_entries = 64; /* Default: ring buffer entry size */
900 uint32_t ch_rb_flag = 1; /* Default: ring buffer flag */
901 uint32_t ch_type;
902 uint64_t ch_cat_opt0 = 0;
903 uint64_t ch_cat_opt1 = 0;
904 uint32_t ch_timer_delay = 0; /* Default: use value from board entry */
907 pe_attach(ch_t *chp)
909 int return_val = 1;
910 const struct board_info *bi;
911 uint32_t pcix_cmd;
913 (void) ch_set_config_data(chp);
915 bi = pe_sa_init(chp);
916 if (bi == 0)
917 return (1);
919 if (t1_init_sw_modules(chp, bi) < 0)
920 return (1);
922 if (pe_small_rbuf_pool_init(chp) == NULL)
923 return (1);
925 if (pe_big_rbuf_pool_init(chp) == NULL)
926 return (1);
929 * We gain significaint performance improvements when we
930 * increase the PCI's maximum memory read byte count to
931 * 2K(HW doesn't support 4K at this time) and set the PCI's
932 * maximum outstanding split transactions to 4. We want to do
933 * this for 10G. Done by software utility.
936 if (board_info(chp)->caps & SUPPORTED_10000baseT_Full) {
937 (void) t1_os_pci_read_config_4(chp, A_PCICFG_PCIX_CMD,
938 &pcix_cmd);
940 * if the burstsize is set, then use it instead of default
942 if (chp->ch_config.burstsize_set) {
943 pcix_cmd &= ~0xc0000;
944 pcix_cmd |= (chp->ch_config.burstsize << 18);
947 * if the split transaction count is set, then use it.
949 if (chp->ch_config.transaction_cnt_set) {
950 pcix_cmd &= ~ 0x700000;
951 pcix_cmd |= (chp->ch_config.transaction_cnt << 20);
955 * set ralaxed ordering flag as configured in chxge.conf
957 pcix_cmd |= (chp->ch_config.relaxed_ordering << 17);
959 (void) t1_os_pci_write_config_4(chp, A_PCICFG_PCIX_CMD,
960 pcix_cmd);
964 * set the latency time to F8 for 10G cards.
965 * Done by software utiltiy.
967 if (enable_latency_timer) {
968 if (board_info(chp)->caps & SUPPORTED_10000baseT_Full) {
969 (void) t1_os_pci_write_config_4(chp, 0xc, 0xf800);
974 * update mtu table (regs: 0x404 - 0x420) with bigger values than
975 * default.
977 update_mtu_tab(chp);
980 * Clear all interrupts now. Don't enable
981 * them until later.
983 t1_interrupts_clear(chp);
986 * Function succeeded.
988 return_val = 0;
990 return (return_val);
994 * DESC: Read variables set in /boot/loader.conf and save
995 * them internally. These internal values are then
996 * used to make decisions at run-time on behavior thus
997 * allowing a certain level of customization.
998 * OUT: p_config - pointer to config structure that
999 * contains all of the new values.
1000 * RTN: 0 - Success;
1002 static int
1003 ch_set_config_data(ch_t *chp)
1005 pe_config_data_t *p_config = (pe_config_data_t *)&chp->config_data;
1007 bzero(p_config, sizeof (pe_config_data_t));
1010 * Global Tunnel Mode configuration
1012 p_config->gtm = ch_gtm;
1014 p_config->global_config = ch_global_config;
1016 if (p_config->gtm)
1017 p_config->global_config |= CFGMD_TUNNEL;
1019 p_config->tp_reset_cm = ch_tp_reset_cm;
1020 p_config->is_asic = ch_is_asic;
1023 * MC5 configuration.
1025 p_config->mc5_rtbl_size = ch_mc5_rtbl_size;
1026 p_config->mc5_dbsvr_size = ch_mc5_dbsvr_size;
1027 p_config->mc5_parity = ch_mc5_parity;
1028 p_config->mc5_issue_syn = ch_mc5_issue_syn;
1030 p_config->offload_ip_cksum = ch_offload_ip_cksum;
1031 p_config->offload_udp_cksum = ch_offload_udp_cksum;
1032 p_config->offload_tcp_cksum = ch_offload_tcp_cksum;
1034 p_config->packet_tracing = ch_packet_tracing;
1036 p_config->server_region_len = ch_server_region_len;
1037 p_config->rt_region_len = ch_rt_region_len;
1040 * Link configuration.
1042 * 5-auto-neg 2-1000Gbps; 1-100Gbps; 0-10Gbps
1044 p_config->link_speed = ch_link_speed;
1045 p_config->num_of_ports = ch_num_of_ports;
1048 * Catp options
1050 p_config->cat_opt0 = ch_cat_opt0;
1051 p_config->cat_opt1 = ch_cat_opt1;
1054 * SGE configuration.
1056 p_config->sge_cmdq0_cnt = ch_sge_cmdq0_cnt;
1057 p_config->sge_cmdq1_cnt = ch_sge_cmdq1_cnt;
1058 p_config->sge_flq0_cnt = ch_sge_flq0_cnt;
1059 p_config->sge_flq1_cnt = ch_sge_flq1_cnt;
1060 p_config->sge_respq_cnt = ch_sge_respq_cnt;
1062 p_config->phy_rx_fifo = ch_phy_rx_fifo;
1063 p_config->phy_tx_fifo = ch_phy_tx_fifo;
1065 p_config->sge_cmdq_threshold = ch_sge_cmdq_threshold;
1067 p_config->sge_flq_threshold = ch_sge_flq_threshold;
1069 p_config->phy_force_master = ch_phy_force_master;
1071 p_config->rb_num_of_entries = ch_rb_num_of_entries;
1073 p_config->rb_size_of_entries = ch_rb_size_of_entries;
1075 p_config->rb_flag = ch_rb_flag;
1077 p_config->exit_early = ch_exit_early;
1079 p_config->chip = ch_chip;
1081 p_config->stats = ch_stats;
1083 p_config->tx_delay_us = ch_tx_delay_us;
1085 return (0);
1088 static const struct board_info *
1089 pe_sa_init(ch_t *sa)
1091 uint16_t device_id;
1092 uint16_t device_subid;
1093 const struct board_info *bi;
1095 sa->config = sa->config_data.global_config;
1096 device_id = pci_config_get16(sa->ch_hpci, 2);
1097 device_subid = pci_config_get16(sa->ch_hpci, 0x2e);
1099 bi = t1_get_board_info_from_ids(device_id, device_subid);
1100 if (bi == NULL) {
1101 cmn_err(CE_NOTE,
1102 "The adapter with device_id %d %d is not supported.\n",
1103 device_id, device_subid);
1104 return (NULL);
1107 if (t1_get_board_rev(sa, bi, &sa->params)) {
1108 cmn_err(CE_NOTE, "unknown device_id %d %d\n",
1109 device_id, device_subid);
1110 return ((const struct board_info *)NULL);
1113 return (bi);
1117 * allocate pool of small receive buffers (with vaddr & paddr) and
1118 * receiver buffer control structure (ch_esb_t *rbp).
1119 * XXX we should allow better tuning of the # of preallocated
1120 * free buffers against the # of freelist entries.
1122 static int
1123 pe_small_rbuf_pool_init(ch_t *sa)
1125 int i;
1126 ch_esb_t *rbp;
1127 extern uint32_t sge_flq0_cnt;
1128 extern uint32_t sge_flq1_cnt;
1129 int size;
1130 uint32_t j;
1132 if (is_T2(sa))
1133 size = sge_flq1_cnt * fl_sz_multiplier;
1134 else
1135 size = sge_flq0_cnt * fl_sz_multiplier;
1137 mutex_init(&sa->ch_small_esbl, NULL, MUTEX_DRIVER, sa->ch_icookp);
1139 mutex_enter(&in_use_l);
1140 j = in_use_index++;
1141 if (in_use_index >= SZ_INUSE)
1142 in_use_index = 0;
1143 mutex_exit(&in_use_l);
1145 sa->ch_small_owner = NULL;
1146 sa->ch_sm_index = j;
1147 sa->ch_small_esb_free = NULL;
1148 for (i = 0; i < size; i++) {
1149 rbp = ch_alloc_small_esbbuf(sa, j);
1150 if (rbp == NULL)
1151 goto error;
1153 * add entry to free list
1155 rbp->cs_next = sa->ch_small_esb_free;
1156 sa->ch_small_esb_free = rbp;
1159 * add entry to owned list
1161 rbp->cs_owner = sa->ch_small_owner;
1162 sa->ch_small_owner = rbp;
1164 return (1);
1166 error:
1167 sa->ch_small_owner = NULL;
1169 /* free whatever we've already allocated */
1170 pe_rbuf_pool_free(sa);
1172 return (0);
1176 * allocate pool of receive buffers (with vaddr & paddr) and
1177 * receiver buffer control structure (ch_esb_t *rbp).
1178 * XXX we should allow better tuning of the # of preallocated
1179 * free buffers against the # of freelist entries.
1181 static int
1182 pe_big_rbuf_pool_init(ch_t *sa)
1184 int i;
1185 ch_esb_t *rbp;
1186 extern uint32_t sge_flq0_cnt;
1187 extern uint32_t sge_flq1_cnt;
1188 int size;
1189 uint32_t j;
1191 if (is_T2(sa))
1192 size = sge_flq0_cnt * fl_sz_multiplier;
1193 else
1194 size = sge_flq1_cnt * fl_sz_multiplier;
1196 mutex_init(&sa->ch_big_esbl, NULL, MUTEX_DRIVER, sa->ch_icookp);
1198 mutex_enter(&in_use_l);
1199 j = in_use_index++;
1200 if (in_use_index >= SZ_INUSE)
1201 in_use_index = 0;
1202 mutex_exit(&in_use_l);
1204 sa->ch_big_owner = NULL;
1205 sa->ch_big_index = j;
1206 sa->ch_big_esb_free = NULL;
1207 for (i = 0; i < size; i++) {
1208 rbp = ch_alloc_big_esbbuf(sa, j);
1209 if (rbp == NULL)
1210 goto error;
1211 rbp->cs_next = sa->ch_big_esb_free;
1212 sa->ch_big_esb_free = rbp;
1215 * add entry to owned list
1217 rbp->cs_owner = sa->ch_big_owner;
1218 sa->ch_big_owner = rbp;
1220 return (1);
1222 error:
1223 sa->ch_big_owner = NULL;
1225 /* free whatever we've already allocated */
1226 pe_rbuf_pool_free(sa);
1228 return (0);
1232 * allocate receive buffer structure and dma mapped buffer (SGE_SM_BUF_SZ bytes)
1233 * note that we will DMA at a 2 byte offset for Solaris when checksum offload
1234 * is enabled.
1236 static ch_esb_t *
1237 ch_alloc_small_esbbuf(ch_t *sa, uint32_t i)
1239 ch_esb_t *rbp;
1241 rbp = (ch_esb_t *)kmem_zalloc(sizeof (ch_esb_t), KM_SLEEP);
1242 if (rbp == NULL) {
1243 return ((ch_esb_t *)0);
1246 #if BYTE_ORDER == BIG_ENDIAN
1247 rbp->cs_buf = (caddr_t)ch_alloc_dma_mem(sa, 1, DMA_STREAM|DMA_SMALN,
1248 SGE_SM_BUF_SZ(sa), &rbp->cs_pa, &rbp->cs_dh, &rbp->cs_ah);
1249 #else
1250 rbp->cs_buf = (caddr_t)ch_alloc_dma_mem(sa, 0, DMA_STREAM|DMA_SMALN,
1251 SGE_SM_BUF_SZ(sa), &rbp->cs_pa, &rbp->cs_dh, &rbp->cs_ah);
1252 #endif
1254 if (rbp->cs_buf == NULL) {
1255 kmem_free(rbp, sizeof (ch_esb_t));
1256 return ((ch_esb_t *)0);
1259 rbp->cs_sa = sa;
1260 rbp->cs_index = i;
1262 rbp->cs_frtn.free_func = (void (*)())&ch_small_rbuf_recycle;
1263 rbp->cs_frtn.free_arg = (caddr_t)rbp;
1265 return (rbp);
1269 * allocate receive buffer structure and dma mapped buffer (SGE_BG_BUF_SZ bytes)
1270 * note that we will DMA at a 2 byte offset for Solaris when checksum offload
1271 * is enabled.
1273 static ch_esb_t *
1274 ch_alloc_big_esbbuf(ch_t *sa, uint32_t i)
1276 ch_esb_t *rbp;
1278 rbp = (ch_esb_t *)kmem_zalloc(sizeof (ch_esb_t), KM_SLEEP);
1279 if (rbp == NULL) {
1280 return ((ch_esb_t *)0);
1283 #if BYTE_ORDER == BIG_ENDIAN
1284 rbp->cs_buf = (caddr_t)ch_alloc_dma_mem(sa, 1, DMA_STREAM|DMA_BGALN,
1285 SGE_BG_BUF_SZ(sa), &rbp->cs_pa, &rbp->cs_dh, &rbp->cs_ah);
1286 #else
1287 rbp->cs_buf = (caddr_t)ch_alloc_dma_mem(sa, 0, DMA_STREAM|DMA_BGALN,
1288 SGE_BG_BUF_SZ(sa), &rbp->cs_pa, &rbp->cs_dh, &rbp->cs_ah);
1289 #endif
1291 if (rbp->cs_buf == NULL) {
1292 kmem_free(rbp, sizeof (ch_esb_t));
1293 return ((ch_esb_t *)0);
1296 rbp->cs_sa = sa;
1297 rbp->cs_index = i;
1299 rbp->cs_frtn.free_func = (void (*)())&ch_big_rbuf_recycle;
1300 rbp->cs_frtn.free_arg = (caddr_t)rbp;
1302 return (rbp);
1306 * free entries on the receive buffer list.
1308 void
1309 pe_rbuf_pool_free(ch_t *sa)
1311 ch_esb_t *rbp;
1313 mutex_enter(&sa->ch_small_esbl);
1316 * Now set-up the rest to commit suicide.
1318 while (sa->ch_small_owner) {
1319 rbp = sa->ch_small_owner;
1320 sa->ch_small_owner = rbp->cs_owner;
1321 rbp->cs_owner = NULL;
1322 rbp->cs_flag = 1;
1325 while ((rbp = sa->ch_small_esb_free) != NULL) {
1326 /* advance head ptr to next entry */
1327 sa->ch_small_esb_free = rbp->cs_next;
1328 /* free private buffer allocated in ch_alloc_esbbuf() */
1329 ch_free_dma_mem(rbp->cs_dh, rbp->cs_ah);
1330 /* free descripter buffer */
1331 kmem_free(rbp, sizeof (ch_esb_t));
1334 mutex_exit(&sa->ch_small_esbl);
1336 /* destroy ch_esbl lock */
1337 mutex_destroy(&sa->ch_small_esbl);
1340 mutex_enter(&sa->ch_big_esbl);
1343 * Now set-up the rest to commit suicide.
1345 while (sa->ch_big_owner) {
1346 rbp = sa->ch_big_owner;
1347 sa->ch_big_owner = rbp->cs_owner;
1348 rbp->cs_owner = NULL;
1349 rbp->cs_flag = 1;
1352 while ((rbp = sa->ch_big_esb_free) != NULL) {
1353 /* advance head ptr to next entry */
1354 sa->ch_big_esb_free = rbp->cs_next;
1355 /* free private buffer allocated in ch_alloc_esbbuf() */
1356 ch_free_dma_mem(rbp->cs_dh, rbp->cs_ah);
1357 /* free descripter buffer */
1358 kmem_free(rbp, sizeof (ch_esb_t));
1361 mutex_exit(&sa->ch_big_esbl);
1363 /* destroy ch_esbl lock */
1364 mutex_destroy(&sa->ch_big_esbl);
1367 void
1368 ch_small_rbuf_recycle(ch_esb_t *rbp)
1370 ch_t *sa = rbp->cs_sa;
1372 if (rbp->cs_flag) {
1373 uint32_t i;
1375 * free private buffer allocated in ch_alloc_esbbuf()
1377 ch_free_dma_mem(rbp->cs_dh, rbp->cs_ah);
1379 i = rbp->cs_index;
1382 * free descripter buffer
1384 kmem_free(rbp, sizeof (ch_esb_t));
1387 * decrement count of receive buffers freed by callback
1388 * We decrement here so anyone trying to do fini will
1389 * only remove the driver once the counts go to 0.
1391 atomic_dec_32(&buffers_in_use[i]);
1393 return;
1396 mutex_enter(&sa->ch_small_esbl);
1397 rbp->cs_next = sa->ch_small_esb_free;
1398 sa->ch_small_esb_free = rbp;
1399 mutex_exit(&sa->ch_small_esbl);
1402 * decrement count of receive buffers freed by callback
1404 atomic_dec_32(&buffers_in_use[rbp->cs_index]);
1408 * callback function from freeb() when esballoced mblk freed.
1410 void
1411 ch_big_rbuf_recycle(ch_esb_t *rbp)
1413 ch_t *sa = rbp->cs_sa;
1415 if (rbp->cs_flag) {
1416 uint32_t i;
1418 * free private buffer allocated in ch_alloc_esbbuf()
1420 ch_free_dma_mem(rbp->cs_dh, rbp->cs_ah);
1422 i = rbp->cs_index;
1425 * free descripter buffer
1427 kmem_free(rbp, sizeof (ch_esb_t));
1430 * decrement count of receive buffers freed by callback
1431 * We decrement here so anyone trying to do fini will
1432 * only remove the driver once the counts go to 0.
1434 atomic_dec_32(&buffers_in_use[i]);
1436 return;
1439 mutex_enter(&sa->ch_big_esbl);
1440 rbp->cs_next = sa->ch_big_esb_free;
1441 sa->ch_big_esb_free = rbp;
1442 mutex_exit(&sa->ch_big_esbl);
1445 * decrement count of receive buffers freed by callback
1447 atomic_dec_32(&buffers_in_use[rbp->cs_index]);
1451 * get a pre-allocated, pre-mapped receive buffer from free list.
1452 * (used sge.c)
1454 ch_esb_t *
1455 ch_get_small_rbuf(ch_t *sa)
1457 ch_esb_t *rbp;
1459 mutex_enter(&sa->ch_small_esbl);
1460 rbp = sa->ch_small_esb_free;
1461 if (rbp) {
1462 sa->ch_small_esb_free = rbp->cs_next;
1464 mutex_exit(&sa->ch_small_esbl);
1466 return (rbp);
1470 * get a pre-allocated, pre-mapped receive buffer from free list.
1471 * (used sge.c)
1474 ch_esb_t *
1475 ch_get_big_rbuf(ch_t *sa)
1477 ch_esb_t *rbp;
1479 mutex_enter(&sa->ch_big_esbl);
1480 rbp = sa->ch_big_esb_free;
1481 if (rbp) {
1482 sa->ch_big_esb_free = rbp->cs_next;
1484 mutex_exit(&sa->ch_big_esbl);
1486 return (rbp);
1489 void
1490 pe_detach(ch_t *sa)
1492 (void) sge_stop(sa->sge);
1494 pe_free_driver_resources(sa);
1497 static void
1498 pe_free_driver_resources(ch_t *sa)
1500 if (sa) {
1501 t1_free_sw_modules(sa);
1503 /* free pool of receive buffers */
1504 pe_rbuf_pool_free(sa);
1509 * Processes elmer0 external interrupts in process context.
1511 static void
1512 ext_intr_task(ch_t *adapter)
1514 u32 enable;
1516 (void) elmer0_ext_intr_handler(adapter);
1518 /* Now reenable external interrupts */
1519 t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_EXT);
1520 enable = t1_read_reg_4(adapter, A_PL_ENABLE);
1521 t1_write_reg_4(adapter, A_PL_ENABLE, enable | F_PL_INTR_EXT);
1522 adapter->slow_intr_mask |= F_PL_INTR_EXT;
1526 * Interrupt-context handler for elmer0 external interrupts.
1528 void
1529 t1_os_elmer0_ext_intr(ch_t *adapter)
1531 u32 enable = t1_read_reg_4(adapter, A_PL_ENABLE);
1533 adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
1534 t1_write_reg_4(adapter, A_PL_ENABLE, enable & ~F_PL_INTR_EXT);
1535 #ifdef NOTYET
1536 schedule_work(&adapter->ext_intr_handler_task);
1537 #else
1538 ext_intr_task(adapter);
1539 #endif
1542 uint8_t *
1543 t1_get_next_mcaddr(struct t1_rx_mode *rmp)
1545 uint8_t *addr = 0;
1546 if (rmp->mc) {
1547 addr = rmp->mc->cmc_mca;
1548 rmp->mc = rmp->mc->cmc_next;
1550 return (addr);
1553 void
1554 pe_dma_handle_init(ch_t *chp, int cnt)
1556 free_dh_t *dhe;
1557 #if defined(__sparc)
1558 int tcnt = cnt/2;
1560 for (; cnt; cnt--) {
1561 dhe = ch_get_dvma_handle(chp);
1562 if (dhe == NULL)
1563 break;
1564 mutex_enter(&chp->ch_dh_lck);
1565 dhe->dhe_next = chp->ch_vdh;
1566 chp->ch_vdh = dhe;
1567 mutex_exit(&chp->ch_dh_lck);
1570 cnt += tcnt;
1571 #endif
1572 while (cnt--) {
1573 dhe = ch_get_dma_handle(chp);
1574 if (dhe == NULL)
1575 return;
1576 mutex_enter(&chp->ch_dh_lck);
1577 dhe->dhe_next = chp->ch_dh;
1578 chp->ch_dh = dhe;
1579 mutex_exit(&chp->ch_dh_lck);
1584 * Write new values to the MTU table. Caller must validate that the new MTUs
1585 * are in ascending order. params.mtus[] is initialized by init_mtus()
1586 * called in t1_init_sw_modules().
1588 #define MTUREG(idx) (A_TP_MTU_REG0 + (idx) * 4)
1590 static void
1591 update_mtu_tab(ch_t *adapter)
1593 int i;
1595 for (i = 0; i < NMTUS; ++i) {
1596 int mtu = (unsigned int)adapter->params.mtus[i];
1598 t1_write_reg_4(adapter, MTUREG(i), mtu);
1602 static int
1603 pe_change_mtu(ch_t *chp)
1605 struct cmac *mac = chp->port[0].mac;
1606 int ret;
1608 if (!mac->ops->set_mtu) {
1609 return (EOPNOTSUPP);
1611 if (chp->ch_mtu < 68) {
1612 return (EINVAL);
1614 if (ret = mac->ops->set_mtu(mac, chp->ch_mtu)) {
1615 return (ret);
1618 return (0);
1621 typedef struct fake_arp {
1622 char fa_dst[6]; /* ethernet header */
1623 char fa_src[6]; /* ethernet header */
1624 ushort_t fa_typ; /* ethernet header */
1626 ushort_t fa_hrd; /* arp */
1627 ushort_t fa_pro;
1628 char fa_hln;
1629 char fa_pln;
1630 ushort_t fa_op;
1631 char fa_src_mac[6];
1632 uint_t fa_src_ip;
1633 char fa_dst_mac[6];
1634 char fa_dst_ip[4];
1635 } fake_arp_t;
1638 * PR2928 & PR3309
1639 * construct packet in mblk and attach it to sge structure.
1641 static int
1642 pe_make_fake_arp(ch_t *chp, unsigned char *arpp)
1644 pesge *sge = chp->sge;
1645 mblk_t *bp;
1646 fake_arp_t *fap;
1647 static char buf[6] = {0, 7, 0x43, 0, 0, 0};
1648 struct cpl_tx_pkt *cpl;
1650 bp = allocb(sizeof (struct fake_arp) + SZ_CPL_TX_PKT, BPRI_HI);
1651 if (bp == NULL) {
1652 return (1);
1654 bzero(bp->b_rptr, sizeof (struct fake_arp) + SZ_CPL_TX_PKT);
1656 /* fill in cpl header */
1657 cpl = (struct cpl_tx_pkt *)bp->b_rptr;
1658 cpl->opcode = CPL_TX_PKT;
1659 cpl->iff = 0; /* XXX port 0 needs fixing with NEMO */
1660 cpl->ip_csum_dis = 1; /* no IP header cksum */
1661 cpl->l4_csum_dis = 1; /* no tcp/udp cksum */
1662 cpl->vlan_valid = 0; /* no vlan */
1664 fap = (fake_arp_t *)&bp->b_rptr[SZ_CPL_TX_PKT];
1666 bcopy(arpp, fap, sizeof (*fap)); /* copy first arp to mblk */
1668 bcopy(buf, fap->fa_dst, 6); /* overwrite dst mac */
1669 chp->ch_ip = fap->fa_src_ip; /* not used yet */
1670 bcopy(buf, fap->fa_dst_mac, 6); /* overwrite dst mac */
1672 bp->b_wptr = bp->b_rptr + sizeof (struct fake_arp)+SZ_CPL_TX_PKT;
1674 sge_add_fake_arp(sge, (void *)bp);
1676 return (0);
1680 * PR2928 & PR3309
1681 * free the fake arp's mblk on sge structure.
1683 void
1684 pe_free_fake_arp(void *arp)
1686 mblk_t *bp = (mblk_t *)(arp);
1688 freemsg(bp);
1692 * extract ip address of nic from first outgoing arp.
1694 static uint32_t
1695 pe_get_ip(unsigned char *arpp)
1697 fake_arp_t fap;
1700 * first copy packet to buffer so we know
1701 * it will be properly aligned.
1703 bcopy(arpp, &fap, sizeof (fap)); /* copy first arp to buffer */
1704 return (fap.fa_src_ip);
1707 /* ARGSUSED */
1708 void
1709 t1_os_link_changed(ch_t *obj, int port_id, int link_status,
1710 int speed, int duplex, int fc)
1712 gld_mac_info_t *macinfo = obj->ch_macp;
1713 if (link_status) {
1714 gld_linkstate(macinfo, GLD_LINKSTATE_UP);
1716 * Link states should be reported to user
1717 * whenever it changes
1719 cmn_err(CE_NOTE, "%s: link is up", adapter_name(obj));
1720 } else {
1721 gld_linkstate(macinfo, GLD_LINKSTATE_DOWN);
1723 * Link states should be reported to user
1724 * whenever it changes
1726 cmn_err(CE_NOTE, "%s: link is down", adapter_name(obj));