4039 zfs_rename()/zfs_link() needs stronger test for XDEV
[illumos-gate.git] / usr / src / uts / common / fs / zfs / zfs_vnops.c
blob19dd2ecc934f022ef29f2d4f2b34f0ef16e7bea7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
85 * Programming rules.
87 * Each vnode op performs some logical unit of work. To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory. The example below illustrates the following Big Rules:
95 * (1) A check must be made in each zfs thread for a mounted file system.
96 * This is done avoiding races using ZFS_ENTER(zfsvfs).
97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
99 * can return EIO from the calling function.
101 * (2) VN_RELE() should always be the last thing except for zil_commit()
102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 * First, if it's the last reference, the vnode/znode
104 * can be freed, so the zp may point to freed memory. Second, the last
105 * reference will call zfs_zinactive(), which may induce a lot of work --
106 * pushing cached pages (which acquires range locks) and syncing out
107 * cached atime changes. Third, zfs_zinactive() may require a new tx,
108 * which could deadlock the system if you were already holding one.
109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
111 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
112 * as they can span dmu_tx_assign() calls.
114 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
115 * This is critical because we don't want to block while holding locks.
116 * Note, in particular, that if a lock is sometimes acquired before
117 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
118 * use a non-blocking assign can deadlock the system. The scenario:
120 * Thread A has grabbed a lock before calling dmu_tx_assign().
121 * Thread B is in an already-assigned tx, and blocks for this lock.
122 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123 * forever, because the previous txg can't quiesce until B's tx commits.
125 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126 * then drop all locks, call dmu_tx_wait(), and try again.
128 * (5) If the operation succeeded, generate the intent log entry for it
129 * before dropping locks. This ensures that the ordering of events
130 * in the intent log matches the order in which they actually occurred.
131 * During ZIL replay the zfs_log_* functions will update the sequence
132 * number to indicate the zil transaction has replayed.
134 * (6) At the end of each vnode op, the DMU tx must always commit,
135 * regardless of whether there were any errors.
137 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
138 * to ensure that synchronous semantics are provided when necessary.
140 * In general, this is how things should be ordered in each vnode op:
142 * ZFS_ENTER(zfsvfs); // exit if unmounted
143 * top:
144 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
145 * rw_enter(...); // grab any other locks you need
146 * tx = dmu_tx_create(...); // get DMU tx
147 * dmu_tx_hold_*(); // hold each object you might modify
148 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
149 * if (error) {
150 * rw_exit(...); // drop locks
151 * zfs_dirent_unlock(dl); // unlock directory entry
152 * VN_RELE(...); // release held vnodes
153 * if (error == ERESTART) {
154 * dmu_tx_wait(tx);
155 * dmu_tx_abort(tx);
156 * goto top;
158 * dmu_tx_abort(tx); // abort DMU tx
159 * ZFS_EXIT(zfsvfs); // finished in zfs
160 * return (error); // really out of space
162 * error = do_real_work(); // do whatever this VOP does
163 * if (error == 0)
164 * zfs_log_*(...); // on success, make ZIL entry
165 * dmu_tx_commit(tx); // commit DMU tx -- error or not
166 * rw_exit(...); // drop locks
167 * zfs_dirent_unlock(dl); // unlock directory entry
168 * VN_RELE(...); // release held vnodes
169 * zil_commit(zilog, foid); // synchronous when necessary
170 * ZFS_EXIT(zfsvfs); // finished in zfs
171 * return (error); // done, report error
174 /* ARGSUSED */
175 static int
176 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
178 znode_t *zp = VTOZ(*vpp);
179 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
181 ZFS_ENTER(zfsvfs);
182 ZFS_VERIFY_ZP(zp);
184 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
185 ((flag & FAPPEND) == 0)) {
186 ZFS_EXIT(zfsvfs);
187 return (SET_ERROR(EPERM));
190 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
191 ZTOV(zp)->v_type == VREG &&
192 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
193 if (fs_vscan(*vpp, cr, 0) != 0) {
194 ZFS_EXIT(zfsvfs);
195 return (SET_ERROR(EACCES));
199 /* Keep a count of the synchronous opens in the znode */
200 if (flag & (FSYNC | FDSYNC))
201 atomic_inc_32(&zp->z_sync_cnt);
203 ZFS_EXIT(zfsvfs);
204 return (0);
207 /* ARGSUSED */
208 static int
209 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
210 caller_context_t *ct)
212 znode_t *zp = VTOZ(vp);
213 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
216 * Clean up any locks held by this process on the vp.
218 cleanlocks(vp, ddi_get_pid(), 0);
219 cleanshares(vp, ddi_get_pid());
221 ZFS_ENTER(zfsvfs);
222 ZFS_VERIFY_ZP(zp);
224 /* Decrement the synchronous opens in the znode */
225 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
226 atomic_dec_32(&zp->z_sync_cnt);
228 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
229 ZTOV(zp)->v_type == VREG &&
230 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
231 VERIFY(fs_vscan(vp, cr, 1) == 0);
233 ZFS_EXIT(zfsvfs);
234 return (0);
238 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
239 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
241 static int
242 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
244 znode_t *zp = VTOZ(vp);
245 uint64_t noff = (uint64_t)*off; /* new offset */
246 uint64_t file_sz;
247 int error;
248 boolean_t hole;
250 file_sz = zp->z_size;
251 if (noff >= file_sz) {
252 return (SET_ERROR(ENXIO));
255 if (cmd == _FIO_SEEK_HOLE)
256 hole = B_TRUE;
257 else
258 hole = B_FALSE;
260 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
262 /* end of file? */
263 if ((error == ESRCH) || (noff > file_sz)) {
265 * Handle the virtual hole at the end of file.
267 if (hole) {
268 *off = file_sz;
269 return (0);
271 return (SET_ERROR(ENXIO));
274 if (noff < *off)
275 return (error);
276 *off = noff;
277 return (error);
280 /* ARGSUSED */
281 static int
282 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
283 int *rvalp, caller_context_t *ct)
285 offset_t off;
286 int error;
287 zfsvfs_t *zfsvfs;
288 znode_t *zp;
290 switch (com) {
291 case _FIOFFS:
292 return (zfs_sync(vp->v_vfsp, 0, cred));
295 * The following two ioctls are used by bfu. Faking out,
296 * necessary to avoid bfu errors.
298 case _FIOGDIO:
299 case _FIOSDIO:
300 return (0);
302 case _FIO_SEEK_DATA:
303 case _FIO_SEEK_HOLE:
304 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
305 return (SET_ERROR(EFAULT));
307 zp = VTOZ(vp);
308 zfsvfs = zp->z_zfsvfs;
309 ZFS_ENTER(zfsvfs);
310 ZFS_VERIFY_ZP(zp);
312 /* offset parameter is in/out */
313 error = zfs_holey(vp, com, &off);
314 ZFS_EXIT(zfsvfs);
315 if (error)
316 return (error);
317 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
318 return (SET_ERROR(EFAULT));
319 return (0);
321 return (SET_ERROR(ENOTTY));
325 * Utility functions to map and unmap a single physical page. These
326 * are used to manage the mappable copies of ZFS file data, and therefore
327 * do not update ref/mod bits.
329 caddr_t
330 zfs_map_page(page_t *pp, enum seg_rw rw)
332 if (kpm_enable)
333 return (hat_kpm_mapin(pp, 0));
334 ASSERT(rw == S_READ || rw == S_WRITE);
335 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
336 (caddr_t)-1));
339 void
340 zfs_unmap_page(page_t *pp, caddr_t addr)
342 if (kpm_enable) {
343 hat_kpm_mapout(pp, 0, addr);
344 } else {
345 ppmapout(addr);
350 * When a file is memory mapped, we must keep the IO data synchronized
351 * between the DMU cache and the memory mapped pages. What this means:
353 * On Write: If we find a memory mapped page, we write to *both*
354 * the page and the dmu buffer.
356 static void
357 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
359 int64_t off;
361 off = start & PAGEOFFSET;
362 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
363 page_t *pp;
364 uint64_t nbytes = MIN(PAGESIZE - off, len);
366 if (pp = page_lookup(vp, start, SE_SHARED)) {
367 caddr_t va;
369 va = zfs_map_page(pp, S_WRITE);
370 (void) dmu_read(os, oid, start+off, nbytes, va+off,
371 DMU_READ_PREFETCH);
372 zfs_unmap_page(pp, va);
373 page_unlock(pp);
375 len -= nbytes;
376 off = 0;
381 * When a file is memory mapped, we must keep the IO data synchronized
382 * between the DMU cache and the memory mapped pages. What this means:
384 * On Read: We "read" preferentially from memory mapped pages,
385 * else we default from the dmu buffer.
387 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
388 * the file is memory mapped.
390 static int
391 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
393 znode_t *zp = VTOZ(vp);
394 objset_t *os = zp->z_zfsvfs->z_os;
395 int64_t start, off;
396 int len = nbytes;
397 int error = 0;
399 start = uio->uio_loffset;
400 off = start & PAGEOFFSET;
401 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
402 page_t *pp;
403 uint64_t bytes = MIN(PAGESIZE - off, len);
405 if (pp = page_lookup(vp, start, SE_SHARED)) {
406 caddr_t va;
408 va = zfs_map_page(pp, S_READ);
409 error = uiomove(va + off, bytes, UIO_READ, uio);
410 zfs_unmap_page(pp, va);
411 page_unlock(pp);
412 } else {
413 error = dmu_read_uio(os, zp->z_id, uio, bytes);
415 len -= bytes;
416 off = 0;
417 if (error)
418 break;
420 return (error);
423 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
426 * Read bytes from specified file into supplied buffer.
428 * IN: vp - vnode of file to be read from.
429 * uio - structure supplying read location, range info,
430 * and return buffer.
431 * ioflag - SYNC flags; used to provide FRSYNC semantics.
432 * cr - credentials of caller.
433 * ct - caller context
435 * OUT: uio - updated offset and range, buffer filled.
437 * RETURN: 0 on success, error code on failure.
439 * Side Effects:
440 * vp - atime updated if byte count > 0
442 /* ARGSUSED */
443 static int
444 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
446 znode_t *zp = VTOZ(vp);
447 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
448 objset_t *os;
449 ssize_t n, nbytes;
450 int error = 0;
451 rl_t *rl;
452 xuio_t *xuio = NULL;
454 ZFS_ENTER(zfsvfs);
455 ZFS_VERIFY_ZP(zp);
456 os = zfsvfs->z_os;
458 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
459 ZFS_EXIT(zfsvfs);
460 return (SET_ERROR(EACCES));
464 * Validate file offset
466 if (uio->uio_loffset < (offset_t)0) {
467 ZFS_EXIT(zfsvfs);
468 return (SET_ERROR(EINVAL));
472 * Fasttrack empty reads
474 if (uio->uio_resid == 0) {
475 ZFS_EXIT(zfsvfs);
476 return (0);
480 * Check for mandatory locks
482 if (MANDMODE(zp->z_mode)) {
483 if (error = chklock(vp, FREAD,
484 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
485 ZFS_EXIT(zfsvfs);
486 return (error);
491 * If we're in FRSYNC mode, sync out this znode before reading it.
493 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
494 zil_commit(zfsvfs->z_log, zp->z_id);
497 * Lock the range against changes.
499 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
502 * If we are reading past end-of-file we can skip
503 * to the end; but we might still need to set atime.
505 if (uio->uio_loffset >= zp->z_size) {
506 error = 0;
507 goto out;
510 ASSERT(uio->uio_loffset < zp->z_size);
511 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
513 if ((uio->uio_extflg == UIO_XUIO) &&
514 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
515 int nblk;
516 int blksz = zp->z_blksz;
517 uint64_t offset = uio->uio_loffset;
519 xuio = (xuio_t *)uio;
520 if ((ISP2(blksz))) {
521 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
522 blksz)) / blksz;
523 } else {
524 ASSERT(offset + n <= blksz);
525 nblk = 1;
527 (void) dmu_xuio_init(xuio, nblk);
529 if (vn_has_cached_data(vp)) {
531 * For simplicity, we always allocate a full buffer
532 * even if we only expect to read a portion of a block.
534 while (--nblk >= 0) {
535 (void) dmu_xuio_add(xuio,
536 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
537 blksz), 0, blksz);
542 while (n > 0) {
543 nbytes = MIN(n, zfs_read_chunk_size -
544 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
546 if (vn_has_cached_data(vp))
547 error = mappedread(vp, nbytes, uio);
548 else
549 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
550 if (error) {
551 /* convert checksum errors into IO errors */
552 if (error == ECKSUM)
553 error = SET_ERROR(EIO);
554 break;
557 n -= nbytes;
559 out:
560 zfs_range_unlock(rl);
562 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
563 ZFS_EXIT(zfsvfs);
564 return (error);
568 * Write the bytes to a file.
570 * IN: vp - vnode of file to be written to.
571 * uio - structure supplying write location, range info,
572 * and data buffer.
573 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
574 * set if in append mode.
575 * cr - credentials of caller.
576 * ct - caller context (NFS/CIFS fem monitor only)
578 * OUT: uio - updated offset and range.
580 * RETURN: 0 on success, error code on failure.
582 * Timestamps:
583 * vp - ctime|mtime updated if byte count > 0
586 /* ARGSUSED */
587 static int
588 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
590 znode_t *zp = VTOZ(vp);
591 rlim64_t limit = uio->uio_llimit;
592 ssize_t start_resid = uio->uio_resid;
593 ssize_t tx_bytes;
594 uint64_t end_size;
595 dmu_tx_t *tx;
596 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
597 zilog_t *zilog;
598 offset_t woff;
599 ssize_t n, nbytes;
600 rl_t *rl;
601 int max_blksz = zfsvfs->z_max_blksz;
602 int error = 0;
603 arc_buf_t *abuf;
604 iovec_t *aiov = NULL;
605 xuio_t *xuio = NULL;
606 int i_iov = 0;
607 int iovcnt = uio->uio_iovcnt;
608 iovec_t *iovp = uio->uio_iov;
609 int write_eof;
610 int count = 0;
611 sa_bulk_attr_t bulk[4];
612 uint64_t mtime[2], ctime[2];
615 * Fasttrack empty write
617 n = start_resid;
618 if (n == 0)
619 return (0);
621 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
622 limit = MAXOFFSET_T;
624 ZFS_ENTER(zfsvfs);
625 ZFS_VERIFY_ZP(zp);
627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
629 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
630 &zp->z_size, 8);
631 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
632 &zp->z_pflags, 8);
635 * If immutable or not appending then return EPERM
637 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
638 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
639 (uio->uio_loffset < zp->z_size))) {
640 ZFS_EXIT(zfsvfs);
641 return (SET_ERROR(EPERM));
644 zilog = zfsvfs->z_log;
647 * Validate file offset
649 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
650 if (woff < 0) {
651 ZFS_EXIT(zfsvfs);
652 return (SET_ERROR(EINVAL));
656 * Check for mandatory locks before calling zfs_range_lock()
657 * in order to prevent a deadlock with locks set via fcntl().
659 if (MANDMODE((mode_t)zp->z_mode) &&
660 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
661 ZFS_EXIT(zfsvfs);
662 return (error);
666 * Pre-fault the pages to ensure slow (eg NFS) pages
667 * don't hold up txg.
668 * Skip this if uio contains loaned arc_buf.
670 if ((uio->uio_extflg == UIO_XUIO) &&
671 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
672 xuio = (xuio_t *)uio;
673 else
674 uio_prefaultpages(MIN(n, max_blksz), uio);
677 * If in append mode, set the io offset pointer to eof.
679 if (ioflag & FAPPEND) {
681 * Obtain an appending range lock to guarantee file append
682 * semantics. We reset the write offset once we have the lock.
684 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
685 woff = rl->r_off;
686 if (rl->r_len == UINT64_MAX) {
688 * We overlocked the file because this write will cause
689 * the file block size to increase.
690 * Note that zp_size cannot change with this lock held.
692 woff = zp->z_size;
694 uio->uio_loffset = woff;
695 } else {
697 * Note that if the file block size will change as a result of
698 * this write, then this range lock will lock the entire file
699 * so that we can re-write the block safely.
701 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
704 if (woff >= limit) {
705 zfs_range_unlock(rl);
706 ZFS_EXIT(zfsvfs);
707 return (SET_ERROR(EFBIG));
710 if ((woff + n) > limit || woff > (limit - n))
711 n = limit - woff;
713 /* Will this write extend the file length? */
714 write_eof = (woff + n > zp->z_size);
716 end_size = MAX(zp->z_size, woff + n);
719 * Write the file in reasonable size chunks. Each chunk is written
720 * in a separate transaction; this keeps the intent log records small
721 * and allows us to do more fine-grained space accounting.
723 while (n > 0) {
724 abuf = NULL;
725 woff = uio->uio_loffset;
726 again:
727 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
728 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
729 if (abuf != NULL)
730 dmu_return_arcbuf(abuf);
731 error = SET_ERROR(EDQUOT);
732 break;
735 if (xuio && abuf == NULL) {
736 ASSERT(i_iov < iovcnt);
737 aiov = &iovp[i_iov];
738 abuf = dmu_xuio_arcbuf(xuio, i_iov);
739 dmu_xuio_clear(xuio, i_iov);
740 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
741 iovec_t *, aiov, arc_buf_t *, abuf);
742 ASSERT((aiov->iov_base == abuf->b_data) ||
743 ((char *)aiov->iov_base - (char *)abuf->b_data +
744 aiov->iov_len == arc_buf_size(abuf)));
745 i_iov++;
746 } else if (abuf == NULL && n >= max_blksz &&
747 woff >= zp->z_size &&
748 P2PHASE(woff, max_blksz) == 0 &&
749 zp->z_blksz == max_blksz) {
751 * This write covers a full block. "Borrow" a buffer
752 * from the dmu so that we can fill it before we enter
753 * a transaction. This avoids the possibility of
754 * holding up the transaction if the data copy hangs
755 * up on a pagefault (e.g., from an NFS server mapping).
757 size_t cbytes;
759 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
760 max_blksz);
761 ASSERT(abuf != NULL);
762 ASSERT(arc_buf_size(abuf) == max_blksz);
763 if (error = uiocopy(abuf->b_data, max_blksz,
764 UIO_WRITE, uio, &cbytes)) {
765 dmu_return_arcbuf(abuf);
766 break;
768 ASSERT(cbytes == max_blksz);
772 * Start a transaction.
774 tx = dmu_tx_create(zfsvfs->z_os);
775 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
776 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
777 zfs_sa_upgrade_txholds(tx, zp);
778 error = dmu_tx_assign(tx, TXG_NOWAIT);
779 if (error) {
780 if (error == ERESTART) {
781 dmu_tx_wait(tx);
782 dmu_tx_abort(tx);
783 goto again;
785 dmu_tx_abort(tx);
786 if (abuf != NULL)
787 dmu_return_arcbuf(abuf);
788 break;
792 * If zfs_range_lock() over-locked we grow the blocksize
793 * and then reduce the lock range. This will only happen
794 * on the first iteration since zfs_range_reduce() will
795 * shrink down r_len to the appropriate size.
797 if (rl->r_len == UINT64_MAX) {
798 uint64_t new_blksz;
800 if (zp->z_blksz > max_blksz) {
801 ASSERT(!ISP2(zp->z_blksz));
802 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
803 } else {
804 new_blksz = MIN(end_size, max_blksz);
806 zfs_grow_blocksize(zp, new_blksz, tx);
807 zfs_range_reduce(rl, woff, n);
811 * XXX - should we really limit each write to z_max_blksz?
812 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
814 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
816 if (abuf == NULL) {
817 tx_bytes = uio->uio_resid;
818 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
819 uio, nbytes, tx);
820 tx_bytes -= uio->uio_resid;
821 } else {
822 tx_bytes = nbytes;
823 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
825 * If this is not a full block write, but we are
826 * extending the file past EOF and this data starts
827 * block-aligned, use assign_arcbuf(). Otherwise,
828 * write via dmu_write().
830 if (tx_bytes < max_blksz && (!write_eof ||
831 aiov->iov_base != abuf->b_data)) {
832 ASSERT(xuio);
833 dmu_write(zfsvfs->z_os, zp->z_id, woff,
834 aiov->iov_len, aiov->iov_base, tx);
835 dmu_return_arcbuf(abuf);
836 xuio_stat_wbuf_copied();
837 } else {
838 ASSERT(xuio || tx_bytes == max_blksz);
839 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
840 woff, abuf, tx);
842 ASSERT(tx_bytes <= uio->uio_resid);
843 uioskip(uio, tx_bytes);
845 if (tx_bytes && vn_has_cached_data(vp)) {
846 update_pages(vp, woff,
847 tx_bytes, zfsvfs->z_os, zp->z_id);
851 * If we made no progress, we're done. If we made even
852 * partial progress, update the znode and ZIL accordingly.
854 if (tx_bytes == 0) {
855 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
856 (void *)&zp->z_size, sizeof (uint64_t), tx);
857 dmu_tx_commit(tx);
858 ASSERT(error != 0);
859 break;
863 * Clear Set-UID/Set-GID bits on successful write if not
864 * privileged and at least one of the excute bits is set.
866 * It would be nice to to this after all writes have
867 * been done, but that would still expose the ISUID/ISGID
868 * to another app after the partial write is committed.
870 * Note: we don't call zfs_fuid_map_id() here because
871 * user 0 is not an ephemeral uid.
873 mutex_enter(&zp->z_acl_lock);
874 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
875 (S_IXUSR >> 6))) != 0 &&
876 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
877 secpolicy_vnode_setid_retain(cr,
878 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
879 uint64_t newmode;
880 zp->z_mode &= ~(S_ISUID | S_ISGID);
881 newmode = zp->z_mode;
882 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
883 (void *)&newmode, sizeof (uint64_t), tx);
885 mutex_exit(&zp->z_acl_lock);
887 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
888 B_TRUE);
891 * Update the file size (zp_size) if it has changed;
892 * account for possible concurrent updates.
894 while ((end_size = zp->z_size) < uio->uio_loffset) {
895 (void) atomic_cas_64(&zp->z_size, end_size,
896 uio->uio_loffset);
897 ASSERT(error == 0);
900 * If we are replaying and eof is non zero then force
901 * the file size to the specified eof. Note, there's no
902 * concurrency during replay.
904 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
905 zp->z_size = zfsvfs->z_replay_eof;
907 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
909 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
910 dmu_tx_commit(tx);
912 if (error != 0)
913 break;
914 ASSERT(tx_bytes == nbytes);
915 n -= nbytes;
917 if (!xuio && n > 0)
918 uio_prefaultpages(MIN(n, max_blksz), uio);
921 zfs_range_unlock(rl);
924 * If we're in replay mode, or we made no progress, return error.
925 * Otherwise, it's at least a partial write, so it's successful.
927 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
928 ZFS_EXIT(zfsvfs);
929 return (error);
932 if (ioflag & (FSYNC | FDSYNC) ||
933 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
934 zil_commit(zilog, zp->z_id);
936 ZFS_EXIT(zfsvfs);
937 return (0);
940 void
941 zfs_get_done(zgd_t *zgd, int error)
943 znode_t *zp = zgd->zgd_private;
944 objset_t *os = zp->z_zfsvfs->z_os;
946 if (zgd->zgd_db)
947 dmu_buf_rele(zgd->zgd_db, zgd);
949 zfs_range_unlock(zgd->zgd_rl);
952 * Release the vnode asynchronously as we currently have the
953 * txg stopped from syncing.
955 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
957 if (error == 0 && zgd->zgd_bp)
958 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
960 kmem_free(zgd, sizeof (zgd_t));
963 #ifdef DEBUG
964 static int zil_fault_io = 0;
965 #endif
968 * Get data to generate a TX_WRITE intent log record.
971 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
973 zfsvfs_t *zfsvfs = arg;
974 objset_t *os = zfsvfs->z_os;
975 znode_t *zp;
976 uint64_t object = lr->lr_foid;
977 uint64_t offset = lr->lr_offset;
978 uint64_t size = lr->lr_length;
979 blkptr_t *bp = &lr->lr_blkptr;
980 dmu_buf_t *db;
981 zgd_t *zgd;
982 int error = 0;
984 ASSERT(zio != NULL);
985 ASSERT(size != 0);
988 * Nothing to do if the file has been removed
990 if (zfs_zget(zfsvfs, object, &zp) != 0)
991 return (SET_ERROR(ENOENT));
992 if (zp->z_unlinked) {
994 * Release the vnode asynchronously as we currently have the
995 * txg stopped from syncing.
997 VN_RELE_ASYNC(ZTOV(zp),
998 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
999 return (SET_ERROR(ENOENT));
1002 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1003 zgd->zgd_zilog = zfsvfs->z_log;
1004 zgd->zgd_private = zp;
1007 * Write records come in two flavors: immediate and indirect.
1008 * For small writes it's cheaper to store the data with the
1009 * log record (immediate); for large writes it's cheaper to
1010 * sync the data and get a pointer to it (indirect) so that
1011 * we don't have to write the data twice.
1013 if (buf != NULL) { /* immediate write */
1014 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1015 /* test for truncation needs to be done while range locked */
1016 if (offset >= zp->z_size) {
1017 error = SET_ERROR(ENOENT);
1018 } else {
1019 error = dmu_read(os, object, offset, size, buf,
1020 DMU_READ_NO_PREFETCH);
1022 ASSERT(error == 0 || error == ENOENT);
1023 } else { /* indirect write */
1025 * Have to lock the whole block to ensure when it's
1026 * written out and it's checksum is being calculated
1027 * that no one can change the data. We need to re-check
1028 * blocksize after we get the lock in case it's changed!
1030 for (;;) {
1031 uint64_t blkoff;
1032 size = zp->z_blksz;
1033 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1034 offset -= blkoff;
1035 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1036 RL_READER);
1037 if (zp->z_blksz == size)
1038 break;
1039 offset += blkoff;
1040 zfs_range_unlock(zgd->zgd_rl);
1042 /* test for truncation needs to be done while range locked */
1043 if (lr->lr_offset >= zp->z_size)
1044 error = SET_ERROR(ENOENT);
1045 #ifdef DEBUG
1046 if (zil_fault_io) {
1047 error = SET_ERROR(EIO);
1048 zil_fault_io = 0;
1050 #endif
1051 if (error == 0)
1052 error = dmu_buf_hold(os, object, offset, zgd, &db,
1053 DMU_READ_NO_PREFETCH);
1055 if (error == 0) {
1056 blkptr_t *obp = dmu_buf_get_blkptr(db);
1057 if (obp) {
1058 ASSERT(BP_IS_HOLE(bp));
1059 *bp = *obp;
1062 zgd->zgd_db = db;
1063 zgd->zgd_bp = bp;
1065 ASSERT(db->db_offset == offset);
1066 ASSERT(db->db_size == size);
1068 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1069 zfs_get_done, zgd);
1070 ASSERT(error || lr->lr_length <= zp->z_blksz);
1073 * On success, we need to wait for the write I/O
1074 * initiated by dmu_sync() to complete before we can
1075 * release this dbuf. We will finish everything up
1076 * in the zfs_get_done() callback.
1078 if (error == 0)
1079 return (0);
1081 if (error == EALREADY) {
1082 lr->lr_common.lrc_txtype = TX_WRITE2;
1083 error = 0;
1088 zfs_get_done(zgd, error);
1090 return (error);
1093 /*ARGSUSED*/
1094 static int
1095 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1096 caller_context_t *ct)
1098 znode_t *zp = VTOZ(vp);
1099 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1100 int error;
1102 ZFS_ENTER(zfsvfs);
1103 ZFS_VERIFY_ZP(zp);
1105 if (flag & V_ACE_MASK)
1106 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1107 else
1108 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1110 ZFS_EXIT(zfsvfs);
1111 return (error);
1115 * If vnode is for a device return a specfs vnode instead.
1117 static int
1118 specvp_check(vnode_t **vpp, cred_t *cr)
1120 int error = 0;
1122 if (IS_DEVVP(*vpp)) {
1123 struct vnode *svp;
1125 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1126 VN_RELE(*vpp);
1127 if (svp == NULL)
1128 error = SET_ERROR(ENOSYS);
1129 *vpp = svp;
1131 return (error);
1136 * Lookup an entry in a directory, or an extended attribute directory.
1137 * If it exists, return a held vnode reference for it.
1139 * IN: dvp - vnode of directory to search.
1140 * nm - name of entry to lookup.
1141 * pnp - full pathname to lookup [UNUSED].
1142 * flags - LOOKUP_XATTR set if looking for an attribute.
1143 * rdir - root directory vnode [UNUSED].
1144 * cr - credentials of caller.
1145 * ct - caller context
1146 * direntflags - directory lookup flags
1147 * realpnp - returned pathname.
1149 * OUT: vpp - vnode of located entry, NULL if not found.
1151 * RETURN: 0 on success, error code on failure.
1153 * Timestamps:
1154 * NA
1156 /* ARGSUSED */
1157 static int
1158 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1159 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1160 int *direntflags, pathname_t *realpnp)
1162 znode_t *zdp = VTOZ(dvp);
1163 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1164 int error = 0;
1166 /* fast path */
1167 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1169 if (dvp->v_type != VDIR) {
1170 return (SET_ERROR(ENOTDIR));
1171 } else if (zdp->z_sa_hdl == NULL) {
1172 return (SET_ERROR(EIO));
1175 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1176 error = zfs_fastaccesschk_execute(zdp, cr);
1177 if (!error) {
1178 *vpp = dvp;
1179 VN_HOLD(*vpp);
1180 return (0);
1182 return (error);
1183 } else {
1184 vnode_t *tvp = dnlc_lookup(dvp, nm);
1186 if (tvp) {
1187 error = zfs_fastaccesschk_execute(zdp, cr);
1188 if (error) {
1189 VN_RELE(tvp);
1190 return (error);
1192 if (tvp == DNLC_NO_VNODE) {
1193 VN_RELE(tvp);
1194 return (SET_ERROR(ENOENT));
1195 } else {
1196 *vpp = tvp;
1197 return (specvp_check(vpp, cr));
1203 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1205 ZFS_ENTER(zfsvfs);
1206 ZFS_VERIFY_ZP(zdp);
1208 *vpp = NULL;
1210 if (flags & LOOKUP_XATTR) {
1212 * If the xattr property is off, refuse the lookup request.
1214 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1215 ZFS_EXIT(zfsvfs);
1216 return (SET_ERROR(EINVAL));
1220 * We don't allow recursive attributes..
1221 * Maybe someday we will.
1223 if (zdp->z_pflags & ZFS_XATTR) {
1224 ZFS_EXIT(zfsvfs);
1225 return (SET_ERROR(EINVAL));
1228 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1229 ZFS_EXIT(zfsvfs);
1230 return (error);
1234 * Do we have permission to get into attribute directory?
1237 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1238 B_FALSE, cr)) {
1239 VN_RELE(*vpp);
1240 *vpp = NULL;
1243 ZFS_EXIT(zfsvfs);
1244 return (error);
1247 if (dvp->v_type != VDIR) {
1248 ZFS_EXIT(zfsvfs);
1249 return (SET_ERROR(ENOTDIR));
1253 * Check accessibility of directory.
1256 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1257 ZFS_EXIT(zfsvfs);
1258 return (error);
1261 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1262 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1263 ZFS_EXIT(zfsvfs);
1264 return (SET_ERROR(EILSEQ));
1267 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1268 if (error == 0)
1269 error = specvp_check(vpp, cr);
1271 ZFS_EXIT(zfsvfs);
1272 return (error);
1276 * Attempt to create a new entry in a directory. If the entry
1277 * already exists, truncate the file if permissible, else return
1278 * an error. Return the vp of the created or trunc'd file.
1280 * IN: dvp - vnode of directory to put new file entry in.
1281 * name - name of new file entry.
1282 * vap - attributes of new file.
1283 * excl - flag indicating exclusive or non-exclusive mode.
1284 * mode - mode to open file with.
1285 * cr - credentials of caller.
1286 * flag - large file flag [UNUSED].
1287 * ct - caller context
1288 * vsecp - ACL to be set
1290 * OUT: vpp - vnode of created or trunc'd entry.
1292 * RETURN: 0 on success, error code on failure.
1294 * Timestamps:
1295 * dvp - ctime|mtime updated if new entry created
1296 * vp - ctime|mtime always, atime if new
1299 /* ARGSUSED */
1300 static int
1301 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1302 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1303 vsecattr_t *vsecp)
1305 znode_t *zp, *dzp = VTOZ(dvp);
1306 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1307 zilog_t *zilog;
1308 objset_t *os;
1309 zfs_dirlock_t *dl;
1310 dmu_tx_t *tx;
1311 int error;
1312 ksid_t *ksid;
1313 uid_t uid;
1314 gid_t gid = crgetgid(cr);
1315 zfs_acl_ids_t acl_ids;
1316 boolean_t fuid_dirtied;
1317 boolean_t have_acl = B_FALSE;
1320 * If we have an ephemeral id, ACL, or XVATTR then
1321 * make sure file system is at proper version
1324 ksid = crgetsid(cr, KSID_OWNER);
1325 if (ksid)
1326 uid = ksid_getid(ksid);
1327 else
1328 uid = crgetuid(cr);
1330 if (zfsvfs->z_use_fuids == B_FALSE &&
1331 (vsecp || (vap->va_mask & AT_XVATTR) ||
1332 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1333 return (SET_ERROR(EINVAL));
1335 ZFS_ENTER(zfsvfs);
1336 ZFS_VERIFY_ZP(dzp);
1337 os = zfsvfs->z_os;
1338 zilog = zfsvfs->z_log;
1340 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1341 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1342 ZFS_EXIT(zfsvfs);
1343 return (SET_ERROR(EILSEQ));
1346 if (vap->va_mask & AT_XVATTR) {
1347 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1348 crgetuid(cr), cr, vap->va_type)) != 0) {
1349 ZFS_EXIT(zfsvfs);
1350 return (error);
1353 top:
1354 *vpp = NULL;
1356 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1357 vap->va_mode &= ~VSVTX;
1359 if (*name == '\0') {
1361 * Null component name refers to the directory itself.
1363 VN_HOLD(dvp);
1364 zp = dzp;
1365 dl = NULL;
1366 error = 0;
1367 } else {
1368 /* possible VN_HOLD(zp) */
1369 int zflg = 0;
1371 if (flag & FIGNORECASE)
1372 zflg |= ZCILOOK;
1374 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1375 NULL, NULL);
1376 if (error) {
1377 if (have_acl)
1378 zfs_acl_ids_free(&acl_ids);
1379 if (strcmp(name, "..") == 0)
1380 error = SET_ERROR(EISDIR);
1381 ZFS_EXIT(zfsvfs);
1382 return (error);
1386 if (zp == NULL) {
1387 uint64_t txtype;
1390 * Create a new file object and update the directory
1391 * to reference it.
1393 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1394 if (have_acl)
1395 zfs_acl_ids_free(&acl_ids);
1396 goto out;
1400 * We only support the creation of regular files in
1401 * extended attribute directories.
1404 if ((dzp->z_pflags & ZFS_XATTR) &&
1405 (vap->va_type != VREG)) {
1406 if (have_acl)
1407 zfs_acl_ids_free(&acl_ids);
1408 error = SET_ERROR(EINVAL);
1409 goto out;
1412 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1413 cr, vsecp, &acl_ids)) != 0)
1414 goto out;
1415 have_acl = B_TRUE;
1417 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1418 zfs_acl_ids_free(&acl_ids);
1419 error = SET_ERROR(EDQUOT);
1420 goto out;
1423 tx = dmu_tx_create(os);
1425 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1426 ZFS_SA_BASE_ATTR_SIZE);
1428 fuid_dirtied = zfsvfs->z_fuid_dirty;
1429 if (fuid_dirtied)
1430 zfs_fuid_txhold(zfsvfs, tx);
1431 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1432 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1433 if (!zfsvfs->z_use_sa &&
1434 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1435 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1436 0, acl_ids.z_aclp->z_acl_bytes);
1438 error = dmu_tx_assign(tx, TXG_NOWAIT);
1439 if (error) {
1440 zfs_dirent_unlock(dl);
1441 if (error == ERESTART) {
1442 dmu_tx_wait(tx);
1443 dmu_tx_abort(tx);
1444 goto top;
1446 zfs_acl_ids_free(&acl_ids);
1447 dmu_tx_abort(tx);
1448 ZFS_EXIT(zfsvfs);
1449 return (error);
1451 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1453 if (fuid_dirtied)
1454 zfs_fuid_sync(zfsvfs, tx);
1456 (void) zfs_link_create(dl, zp, tx, ZNEW);
1457 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1458 if (flag & FIGNORECASE)
1459 txtype |= TX_CI;
1460 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1461 vsecp, acl_ids.z_fuidp, vap);
1462 zfs_acl_ids_free(&acl_ids);
1463 dmu_tx_commit(tx);
1464 } else {
1465 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1467 if (have_acl)
1468 zfs_acl_ids_free(&acl_ids);
1469 have_acl = B_FALSE;
1472 * A directory entry already exists for this name.
1475 * Can't truncate an existing file if in exclusive mode.
1477 if (excl == EXCL) {
1478 error = SET_ERROR(EEXIST);
1479 goto out;
1482 * Can't open a directory for writing.
1484 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1485 error = SET_ERROR(EISDIR);
1486 goto out;
1489 * Verify requested access to file.
1491 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1492 goto out;
1495 mutex_enter(&dzp->z_lock);
1496 dzp->z_seq++;
1497 mutex_exit(&dzp->z_lock);
1500 * Truncate regular files if requested.
1502 if ((ZTOV(zp)->v_type == VREG) &&
1503 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1504 /* we can't hold any locks when calling zfs_freesp() */
1505 zfs_dirent_unlock(dl);
1506 dl = NULL;
1507 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1508 if (error == 0) {
1509 vnevent_create(ZTOV(zp), ct);
1513 out:
1515 if (dl)
1516 zfs_dirent_unlock(dl);
1518 if (error) {
1519 if (zp)
1520 VN_RELE(ZTOV(zp));
1521 } else {
1522 *vpp = ZTOV(zp);
1523 error = specvp_check(vpp, cr);
1526 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1527 zil_commit(zilog, 0);
1529 ZFS_EXIT(zfsvfs);
1530 return (error);
1534 * Remove an entry from a directory.
1536 * IN: dvp - vnode of directory to remove entry from.
1537 * name - name of entry to remove.
1538 * cr - credentials of caller.
1539 * ct - caller context
1540 * flags - case flags
1542 * RETURN: 0 on success, error code on failure.
1544 * Timestamps:
1545 * dvp - ctime|mtime
1546 * vp - ctime (if nlink > 0)
1549 uint64_t null_xattr = 0;
1551 /*ARGSUSED*/
1552 static int
1553 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1554 int flags)
1556 znode_t *zp, *dzp = VTOZ(dvp);
1557 znode_t *xzp;
1558 vnode_t *vp;
1559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1560 zilog_t *zilog;
1561 uint64_t acl_obj, xattr_obj;
1562 uint64_t xattr_obj_unlinked = 0;
1563 uint64_t obj = 0;
1564 zfs_dirlock_t *dl;
1565 dmu_tx_t *tx;
1566 boolean_t may_delete_now, delete_now = FALSE;
1567 boolean_t unlinked, toobig = FALSE;
1568 uint64_t txtype;
1569 pathname_t *realnmp = NULL;
1570 pathname_t realnm;
1571 int error;
1572 int zflg = ZEXISTS;
1574 ZFS_ENTER(zfsvfs);
1575 ZFS_VERIFY_ZP(dzp);
1576 zilog = zfsvfs->z_log;
1578 if (flags & FIGNORECASE) {
1579 zflg |= ZCILOOK;
1580 pn_alloc(&realnm);
1581 realnmp = &realnm;
1584 top:
1585 xattr_obj = 0;
1586 xzp = NULL;
1588 * Attempt to lock directory; fail if entry doesn't exist.
1590 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1591 NULL, realnmp)) {
1592 if (realnmp)
1593 pn_free(realnmp);
1594 ZFS_EXIT(zfsvfs);
1595 return (error);
1598 vp = ZTOV(zp);
1600 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1601 goto out;
1605 * Need to use rmdir for removing directories.
1607 if (vp->v_type == VDIR) {
1608 error = SET_ERROR(EPERM);
1609 goto out;
1612 vnevent_remove(vp, dvp, name, ct);
1614 if (realnmp)
1615 dnlc_remove(dvp, realnmp->pn_buf);
1616 else
1617 dnlc_remove(dvp, name);
1619 mutex_enter(&vp->v_lock);
1620 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1621 mutex_exit(&vp->v_lock);
1624 * We may delete the znode now, or we may put it in the unlinked set;
1625 * it depends on whether we're the last link, and on whether there are
1626 * other holds on the vnode. So we dmu_tx_hold() the right things to
1627 * allow for either case.
1629 obj = zp->z_id;
1630 tx = dmu_tx_create(zfsvfs->z_os);
1631 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1632 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1633 zfs_sa_upgrade_txholds(tx, zp);
1634 zfs_sa_upgrade_txholds(tx, dzp);
1635 if (may_delete_now) {
1636 toobig =
1637 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1638 /* if the file is too big, only hold_free a token amount */
1639 dmu_tx_hold_free(tx, zp->z_id, 0,
1640 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1643 /* are there any extended attributes? */
1644 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1645 &xattr_obj, sizeof (xattr_obj));
1646 if (error == 0 && xattr_obj) {
1647 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1648 ASSERT0(error);
1649 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1650 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1653 mutex_enter(&zp->z_lock);
1654 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1655 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1656 mutex_exit(&zp->z_lock);
1658 /* charge as an update -- would be nice not to charge at all */
1659 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1661 error = dmu_tx_assign(tx, TXG_NOWAIT);
1662 if (error) {
1663 zfs_dirent_unlock(dl);
1664 VN_RELE(vp);
1665 if (xzp)
1666 VN_RELE(ZTOV(xzp));
1667 if (error == ERESTART) {
1668 dmu_tx_wait(tx);
1669 dmu_tx_abort(tx);
1670 goto top;
1672 if (realnmp)
1673 pn_free(realnmp);
1674 dmu_tx_abort(tx);
1675 ZFS_EXIT(zfsvfs);
1676 return (error);
1680 * Remove the directory entry.
1682 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1684 if (error) {
1685 dmu_tx_commit(tx);
1686 goto out;
1689 if (unlinked) {
1692 * Hold z_lock so that we can make sure that the ACL obj
1693 * hasn't changed. Could have been deleted due to
1694 * zfs_sa_upgrade().
1696 mutex_enter(&zp->z_lock);
1697 mutex_enter(&vp->v_lock);
1698 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1699 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1700 delete_now = may_delete_now && !toobig &&
1701 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1702 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1703 acl_obj;
1704 mutex_exit(&vp->v_lock);
1707 if (delete_now) {
1708 if (xattr_obj_unlinked) {
1709 ASSERT3U(xzp->z_links, ==, 2);
1710 mutex_enter(&xzp->z_lock);
1711 xzp->z_unlinked = 1;
1712 xzp->z_links = 0;
1713 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1714 &xzp->z_links, sizeof (xzp->z_links), tx);
1715 ASSERT3U(error, ==, 0);
1716 mutex_exit(&xzp->z_lock);
1717 zfs_unlinked_add(xzp, tx);
1719 if (zp->z_is_sa)
1720 error = sa_remove(zp->z_sa_hdl,
1721 SA_ZPL_XATTR(zfsvfs), tx);
1722 else
1723 error = sa_update(zp->z_sa_hdl,
1724 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1725 sizeof (uint64_t), tx);
1726 ASSERT0(error);
1728 mutex_enter(&vp->v_lock);
1729 vp->v_count--;
1730 ASSERT0(vp->v_count);
1731 mutex_exit(&vp->v_lock);
1732 mutex_exit(&zp->z_lock);
1733 zfs_znode_delete(zp, tx);
1734 } else if (unlinked) {
1735 mutex_exit(&zp->z_lock);
1736 zfs_unlinked_add(zp, tx);
1739 txtype = TX_REMOVE;
1740 if (flags & FIGNORECASE)
1741 txtype |= TX_CI;
1742 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1744 dmu_tx_commit(tx);
1745 out:
1746 if (realnmp)
1747 pn_free(realnmp);
1749 zfs_dirent_unlock(dl);
1751 if (!delete_now)
1752 VN_RELE(vp);
1753 if (xzp)
1754 VN_RELE(ZTOV(xzp));
1756 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1757 zil_commit(zilog, 0);
1759 ZFS_EXIT(zfsvfs);
1760 return (error);
1764 * Create a new directory and insert it into dvp using the name
1765 * provided. Return a pointer to the inserted directory.
1767 * IN: dvp - vnode of directory to add subdir to.
1768 * dirname - name of new directory.
1769 * vap - attributes of new directory.
1770 * cr - credentials of caller.
1771 * ct - caller context
1772 * flags - case flags
1773 * vsecp - ACL to be set
1775 * OUT: vpp - vnode of created directory.
1777 * RETURN: 0 on success, error code on failure.
1779 * Timestamps:
1780 * dvp - ctime|mtime updated
1781 * vp - ctime|mtime|atime updated
1783 /*ARGSUSED*/
1784 static int
1785 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1786 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1788 znode_t *zp, *dzp = VTOZ(dvp);
1789 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1790 zilog_t *zilog;
1791 zfs_dirlock_t *dl;
1792 uint64_t txtype;
1793 dmu_tx_t *tx;
1794 int error;
1795 int zf = ZNEW;
1796 ksid_t *ksid;
1797 uid_t uid;
1798 gid_t gid = crgetgid(cr);
1799 zfs_acl_ids_t acl_ids;
1800 boolean_t fuid_dirtied;
1802 ASSERT(vap->va_type == VDIR);
1805 * If we have an ephemeral id, ACL, or XVATTR then
1806 * make sure file system is at proper version
1809 ksid = crgetsid(cr, KSID_OWNER);
1810 if (ksid)
1811 uid = ksid_getid(ksid);
1812 else
1813 uid = crgetuid(cr);
1814 if (zfsvfs->z_use_fuids == B_FALSE &&
1815 (vsecp || (vap->va_mask & AT_XVATTR) ||
1816 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1817 return (SET_ERROR(EINVAL));
1819 ZFS_ENTER(zfsvfs);
1820 ZFS_VERIFY_ZP(dzp);
1821 zilog = zfsvfs->z_log;
1823 if (dzp->z_pflags & ZFS_XATTR) {
1824 ZFS_EXIT(zfsvfs);
1825 return (SET_ERROR(EINVAL));
1828 if (zfsvfs->z_utf8 && u8_validate(dirname,
1829 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1830 ZFS_EXIT(zfsvfs);
1831 return (SET_ERROR(EILSEQ));
1833 if (flags & FIGNORECASE)
1834 zf |= ZCILOOK;
1836 if (vap->va_mask & AT_XVATTR) {
1837 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1838 crgetuid(cr), cr, vap->va_type)) != 0) {
1839 ZFS_EXIT(zfsvfs);
1840 return (error);
1844 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1845 vsecp, &acl_ids)) != 0) {
1846 ZFS_EXIT(zfsvfs);
1847 return (error);
1850 * First make sure the new directory doesn't exist.
1852 * Existence is checked first to make sure we don't return
1853 * EACCES instead of EEXIST which can cause some applications
1854 * to fail.
1856 top:
1857 *vpp = NULL;
1859 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1860 NULL, NULL)) {
1861 zfs_acl_ids_free(&acl_ids);
1862 ZFS_EXIT(zfsvfs);
1863 return (error);
1866 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1867 zfs_acl_ids_free(&acl_ids);
1868 zfs_dirent_unlock(dl);
1869 ZFS_EXIT(zfsvfs);
1870 return (error);
1873 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1874 zfs_acl_ids_free(&acl_ids);
1875 zfs_dirent_unlock(dl);
1876 ZFS_EXIT(zfsvfs);
1877 return (SET_ERROR(EDQUOT));
1881 * Add a new entry to the directory.
1883 tx = dmu_tx_create(zfsvfs->z_os);
1884 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1885 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1886 fuid_dirtied = zfsvfs->z_fuid_dirty;
1887 if (fuid_dirtied)
1888 zfs_fuid_txhold(zfsvfs, tx);
1889 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1890 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1891 acl_ids.z_aclp->z_acl_bytes);
1894 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1895 ZFS_SA_BASE_ATTR_SIZE);
1897 error = dmu_tx_assign(tx, TXG_NOWAIT);
1898 if (error) {
1899 zfs_dirent_unlock(dl);
1900 if (error == ERESTART) {
1901 dmu_tx_wait(tx);
1902 dmu_tx_abort(tx);
1903 goto top;
1905 zfs_acl_ids_free(&acl_ids);
1906 dmu_tx_abort(tx);
1907 ZFS_EXIT(zfsvfs);
1908 return (error);
1912 * Create new node.
1914 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1916 if (fuid_dirtied)
1917 zfs_fuid_sync(zfsvfs, tx);
1920 * Now put new name in parent dir.
1922 (void) zfs_link_create(dl, zp, tx, ZNEW);
1924 *vpp = ZTOV(zp);
1926 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1927 if (flags & FIGNORECASE)
1928 txtype |= TX_CI;
1929 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1930 acl_ids.z_fuidp, vap);
1932 zfs_acl_ids_free(&acl_ids);
1934 dmu_tx_commit(tx);
1936 zfs_dirent_unlock(dl);
1938 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1939 zil_commit(zilog, 0);
1941 ZFS_EXIT(zfsvfs);
1942 return (0);
1946 * Remove a directory subdir entry. If the current working
1947 * directory is the same as the subdir to be removed, the
1948 * remove will fail.
1950 * IN: dvp - vnode of directory to remove from.
1951 * name - name of directory to be removed.
1952 * cwd - vnode of current working directory.
1953 * cr - credentials of caller.
1954 * ct - caller context
1955 * flags - case flags
1957 * RETURN: 0 on success, error code on failure.
1959 * Timestamps:
1960 * dvp - ctime|mtime updated
1962 /*ARGSUSED*/
1963 static int
1964 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1965 caller_context_t *ct, int flags)
1967 znode_t *dzp = VTOZ(dvp);
1968 znode_t *zp;
1969 vnode_t *vp;
1970 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1971 zilog_t *zilog;
1972 zfs_dirlock_t *dl;
1973 dmu_tx_t *tx;
1974 int error;
1975 int zflg = ZEXISTS;
1977 ZFS_ENTER(zfsvfs);
1978 ZFS_VERIFY_ZP(dzp);
1979 zilog = zfsvfs->z_log;
1981 if (flags & FIGNORECASE)
1982 zflg |= ZCILOOK;
1983 top:
1984 zp = NULL;
1987 * Attempt to lock directory; fail if entry doesn't exist.
1989 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1990 NULL, NULL)) {
1991 ZFS_EXIT(zfsvfs);
1992 return (error);
1995 vp = ZTOV(zp);
1997 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1998 goto out;
2001 if (vp->v_type != VDIR) {
2002 error = SET_ERROR(ENOTDIR);
2003 goto out;
2006 if (vp == cwd) {
2007 error = SET_ERROR(EINVAL);
2008 goto out;
2011 vnevent_rmdir(vp, dvp, name, ct);
2014 * Grab a lock on the directory to make sure that noone is
2015 * trying to add (or lookup) entries while we are removing it.
2017 rw_enter(&zp->z_name_lock, RW_WRITER);
2020 * Grab a lock on the parent pointer to make sure we play well
2021 * with the treewalk and directory rename code.
2023 rw_enter(&zp->z_parent_lock, RW_WRITER);
2025 tx = dmu_tx_create(zfsvfs->z_os);
2026 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2027 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2028 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2029 zfs_sa_upgrade_txholds(tx, zp);
2030 zfs_sa_upgrade_txholds(tx, dzp);
2031 error = dmu_tx_assign(tx, TXG_NOWAIT);
2032 if (error) {
2033 rw_exit(&zp->z_parent_lock);
2034 rw_exit(&zp->z_name_lock);
2035 zfs_dirent_unlock(dl);
2036 VN_RELE(vp);
2037 if (error == ERESTART) {
2038 dmu_tx_wait(tx);
2039 dmu_tx_abort(tx);
2040 goto top;
2042 dmu_tx_abort(tx);
2043 ZFS_EXIT(zfsvfs);
2044 return (error);
2047 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2049 if (error == 0) {
2050 uint64_t txtype = TX_RMDIR;
2051 if (flags & FIGNORECASE)
2052 txtype |= TX_CI;
2053 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2056 dmu_tx_commit(tx);
2058 rw_exit(&zp->z_parent_lock);
2059 rw_exit(&zp->z_name_lock);
2060 out:
2061 zfs_dirent_unlock(dl);
2063 VN_RELE(vp);
2065 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2066 zil_commit(zilog, 0);
2068 ZFS_EXIT(zfsvfs);
2069 return (error);
2073 * Read as many directory entries as will fit into the provided
2074 * buffer from the given directory cursor position (specified in
2075 * the uio structure).
2077 * IN: vp - vnode of directory to read.
2078 * uio - structure supplying read location, range info,
2079 * and return buffer.
2080 * cr - credentials of caller.
2081 * ct - caller context
2082 * flags - case flags
2084 * OUT: uio - updated offset and range, buffer filled.
2085 * eofp - set to true if end-of-file detected.
2087 * RETURN: 0 on success, error code on failure.
2089 * Timestamps:
2090 * vp - atime updated
2092 * Note that the low 4 bits of the cookie returned by zap is always zero.
2093 * This allows us to use the low range for "special" directory entries:
2094 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2095 * we use the offset 2 for the '.zfs' directory.
2097 /* ARGSUSED */
2098 static int
2099 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2100 caller_context_t *ct, int flags)
2102 znode_t *zp = VTOZ(vp);
2103 iovec_t *iovp;
2104 edirent_t *eodp;
2105 dirent64_t *odp;
2106 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2107 objset_t *os;
2108 caddr_t outbuf;
2109 size_t bufsize;
2110 zap_cursor_t zc;
2111 zap_attribute_t zap;
2112 uint_t bytes_wanted;
2113 uint64_t offset; /* must be unsigned; checks for < 1 */
2114 uint64_t parent;
2115 int local_eof;
2116 int outcount;
2117 int error;
2118 uint8_t prefetch;
2119 boolean_t check_sysattrs;
2121 ZFS_ENTER(zfsvfs);
2122 ZFS_VERIFY_ZP(zp);
2124 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2125 &parent, sizeof (parent))) != 0) {
2126 ZFS_EXIT(zfsvfs);
2127 return (error);
2131 * If we are not given an eof variable,
2132 * use a local one.
2134 if (eofp == NULL)
2135 eofp = &local_eof;
2138 * Check for valid iov_len.
2140 if (uio->uio_iov->iov_len <= 0) {
2141 ZFS_EXIT(zfsvfs);
2142 return (SET_ERROR(EINVAL));
2146 * Quit if directory has been removed (posix)
2148 if ((*eofp = zp->z_unlinked) != 0) {
2149 ZFS_EXIT(zfsvfs);
2150 return (0);
2153 error = 0;
2154 os = zfsvfs->z_os;
2155 offset = uio->uio_loffset;
2156 prefetch = zp->z_zn_prefetch;
2159 * Initialize the iterator cursor.
2161 if (offset <= 3) {
2163 * Start iteration from the beginning of the directory.
2165 zap_cursor_init(&zc, os, zp->z_id);
2166 } else {
2168 * The offset is a serialized cursor.
2170 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2174 * Get space to change directory entries into fs independent format.
2176 iovp = uio->uio_iov;
2177 bytes_wanted = iovp->iov_len;
2178 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2179 bufsize = bytes_wanted;
2180 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2181 odp = (struct dirent64 *)outbuf;
2182 } else {
2183 bufsize = bytes_wanted;
2184 outbuf = NULL;
2185 odp = (struct dirent64 *)iovp->iov_base;
2187 eodp = (struct edirent *)odp;
2190 * If this VFS supports the system attribute view interface; and
2191 * we're looking at an extended attribute directory; and we care
2192 * about normalization conflicts on this vfs; then we must check
2193 * for normalization conflicts with the sysattr name space.
2195 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2196 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2197 (flags & V_RDDIR_ENTFLAGS);
2200 * Transform to file-system independent format
2202 outcount = 0;
2203 while (outcount < bytes_wanted) {
2204 ino64_t objnum;
2205 ushort_t reclen;
2206 off64_t *next = NULL;
2209 * Special case `.', `..', and `.zfs'.
2211 if (offset == 0) {
2212 (void) strcpy(zap.za_name, ".");
2213 zap.za_normalization_conflict = 0;
2214 objnum = zp->z_id;
2215 } else if (offset == 1) {
2216 (void) strcpy(zap.za_name, "..");
2217 zap.za_normalization_conflict = 0;
2218 objnum = parent;
2219 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2220 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2221 zap.za_normalization_conflict = 0;
2222 objnum = ZFSCTL_INO_ROOT;
2223 } else {
2225 * Grab next entry.
2227 if (error = zap_cursor_retrieve(&zc, &zap)) {
2228 if ((*eofp = (error == ENOENT)) != 0)
2229 break;
2230 else
2231 goto update;
2234 if (zap.za_integer_length != 8 ||
2235 zap.za_num_integers != 1) {
2236 cmn_err(CE_WARN, "zap_readdir: bad directory "
2237 "entry, obj = %lld, offset = %lld\n",
2238 (u_longlong_t)zp->z_id,
2239 (u_longlong_t)offset);
2240 error = SET_ERROR(ENXIO);
2241 goto update;
2244 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2246 * MacOS X can extract the object type here such as:
2247 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2250 if (check_sysattrs && !zap.za_normalization_conflict) {
2251 zap.za_normalization_conflict =
2252 xattr_sysattr_casechk(zap.za_name);
2256 if (flags & V_RDDIR_ACCFILTER) {
2258 * If we have no access at all, don't include
2259 * this entry in the returned information
2261 znode_t *ezp;
2262 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2263 goto skip_entry;
2264 if (!zfs_has_access(ezp, cr)) {
2265 VN_RELE(ZTOV(ezp));
2266 goto skip_entry;
2268 VN_RELE(ZTOV(ezp));
2271 if (flags & V_RDDIR_ENTFLAGS)
2272 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2273 else
2274 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2277 * Will this entry fit in the buffer?
2279 if (outcount + reclen > bufsize) {
2281 * Did we manage to fit anything in the buffer?
2283 if (!outcount) {
2284 error = SET_ERROR(EINVAL);
2285 goto update;
2287 break;
2289 if (flags & V_RDDIR_ENTFLAGS) {
2291 * Add extended flag entry:
2293 eodp->ed_ino = objnum;
2294 eodp->ed_reclen = reclen;
2295 /* NOTE: ed_off is the offset for the *next* entry */
2296 next = &(eodp->ed_off);
2297 eodp->ed_eflags = zap.za_normalization_conflict ?
2298 ED_CASE_CONFLICT : 0;
2299 (void) strncpy(eodp->ed_name, zap.za_name,
2300 EDIRENT_NAMELEN(reclen));
2301 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2302 } else {
2304 * Add normal entry:
2306 odp->d_ino = objnum;
2307 odp->d_reclen = reclen;
2308 /* NOTE: d_off is the offset for the *next* entry */
2309 next = &(odp->d_off);
2310 (void) strncpy(odp->d_name, zap.za_name,
2311 DIRENT64_NAMELEN(reclen));
2312 odp = (dirent64_t *)((intptr_t)odp + reclen);
2314 outcount += reclen;
2316 ASSERT(outcount <= bufsize);
2318 /* Prefetch znode */
2319 if (prefetch)
2320 dmu_prefetch(os, objnum, 0, 0);
2322 skip_entry:
2324 * Move to the next entry, fill in the previous offset.
2326 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2327 zap_cursor_advance(&zc);
2328 offset = zap_cursor_serialize(&zc);
2329 } else {
2330 offset += 1;
2332 if (next)
2333 *next = offset;
2335 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2337 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2338 iovp->iov_base += outcount;
2339 iovp->iov_len -= outcount;
2340 uio->uio_resid -= outcount;
2341 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2343 * Reset the pointer.
2345 offset = uio->uio_loffset;
2348 update:
2349 zap_cursor_fini(&zc);
2350 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2351 kmem_free(outbuf, bufsize);
2353 if (error == ENOENT)
2354 error = 0;
2356 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2358 uio->uio_loffset = offset;
2359 ZFS_EXIT(zfsvfs);
2360 return (error);
2363 ulong_t zfs_fsync_sync_cnt = 4;
2365 static int
2366 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2368 znode_t *zp = VTOZ(vp);
2369 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2372 * Regardless of whether this is required for standards conformance,
2373 * this is the logical behavior when fsync() is called on a file with
2374 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2375 * going to be pushed out as part of the zil_commit().
2377 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2378 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2379 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2381 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2383 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2384 ZFS_ENTER(zfsvfs);
2385 ZFS_VERIFY_ZP(zp);
2386 zil_commit(zfsvfs->z_log, zp->z_id);
2387 ZFS_EXIT(zfsvfs);
2389 return (0);
2394 * Get the requested file attributes and place them in the provided
2395 * vattr structure.
2397 * IN: vp - vnode of file.
2398 * vap - va_mask identifies requested attributes.
2399 * If AT_XVATTR set, then optional attrs are requested
2400 * flags - ATTR_NOACLCHECK (CIFS server context)
2401 * cr - credentials of caller.
2402 * ct - caller context
2404 * OUT: vap - attribute values.
2406 * RETURN: 0 (always succeeds).
2408 /* ARGSUSED */
2409 static int
2410 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2411 caller_context_t *ct)
2413 znode_t *zp = VTOZ(vp);
2414 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2415 int error = 0;
2416 uint64_t links;
2417 uint64_t mtime[2], ctime[2];
2418 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2419 xoptattr_t *xoap = NULL;
2420 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2421 sa_bulk_attr_t bulk[2];
2422 int count = 0;
2424 ZFS_ENTER(zfsvfs);
2425 ZFS_VERIFY_ZP(zp);
2427 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2432 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2433 ZFS_EXIT(zfsvfs);
2434 return (error);
2438 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2439 * Also, if we are the owner don't bother, since owner should
2440 * always be allowed to read basic attributes of file.
2442 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2443 (vap->va_uid != crgetuid(cr))) {
2444 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2445 skipaclchk, cr)) {
2446 ZFS_EXIT(zfsvfs);
2447 return (error);
2452 * Return all attributes. It's cheaper to provide the answer
2453 * than to determine whether we were asked the question.
2456 mutex_enter(&zp->z_lock);
2457 vap->va_type = vp->v_type;
2458 vap->va_mode = zp->z_mode & MODEMASK;
2459 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2460 vap->va_nodeid = zp->z_id;
2461 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2462 links = zp->z_links + 1;
2463 else
2464 links = zp->z_links;
2465 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2466 vap->va_size = zp->z_size;
2467 vap->va_rdev = vp->v_rdev;
2468 vap->va_seq = zp->z_seq;
2471 * Add in any requested optional attributes and the create time.
2472 * Also set the corresponding bits in the returned attribute bitmap.
2474 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2475 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2476 xoap->xoa_archive =
2477 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2478 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2481 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2482 xoap->xoa_readonly =
2483 ((zp->z_pflags & ZFS_READONLY) != 0);
2484 XVA_SET_RTN(xvap, XAT_READONLY);
2487 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2488 xoap->xoa_system =
2489 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2490 XVA_SET_RTN(xvap, XAT_SYSTEM);
2493 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2494 xoap->xoa_hidden =
2495 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2496 XVA_SET_RTN(xvap, XAT_HIDDEN);
2499 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2500 xoap->xoa_nounlink =
2501 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2502 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2505 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2506 xoap->xoa_immutable =
2507 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2508 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2511 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2512 xoap->xoa_appendonly =
2513 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2514 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2517 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2518 xoap->xoa_nodump =
2519 ((zp->z_pflags & ZFS_NODUMP) != 0);
2520 XVA_SET_RTN(xvap, XAT_NODUMP);
2523 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2524 xoap->xoa_opaque =
2525 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2526 XVA_SET_RTN(xvap, XAT_OPAQUE);
2529 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2530 xoap->xoa_av_quarantined =
2531 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2532 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2535 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2536 xoap->xoa_av_modified =
2537 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2538 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2541 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2542 vp->v_type == VREG) {
2543 zfs_sa_get_scanstamp(zp, xvap);
2546 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2547 uint64_t times[2];
2549 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2550 times, sizeof (times));
2551 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2552 XVA_SET_RTN(xvap, XAT_CREATETIME);
2555 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2556 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2557 XVA_SET_RTN(xvap, XAT_REPARSE);
2559 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2560 xoap->xoa_generation = zp->z_gen;
2561 XVA_SET_RTN(xvap, XAT_GEN);
2564 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2565 xoap->xoa_offline =
2566 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2567 XVA_SET_RTN(xvap, XAT_OFFLINE);
2570 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2571 xoap->xoa_sparse =
2572 ((zp->z_pflags & ZFS_SPARSE) != 0);
2573 XVA_SET_RTN(xvap, XAT_SPARSE);
2577 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2578 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2579 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2581 mutex_exit(&zp->z_lock);
2583 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2585 if (zp->z_blksz == 0) {
2587 * Block size hasn't been set; suggest maximal I/O transfers.
2589 vap->va_blksize = zfsvfs->z_max_blksz;
2592 ZFS_EXIT(zfsvfs);
2593 return (0);
2597 * Set the file attributes to the values contained in the
2598 * vattr structure.
2600 * IN: vp - vnode of file to be modified.
2601 * vap - new attribute values.
2602 * If AT_XVATTR set, then optional attrs are being set
2603 * flags - ATTR_UTIME set if non-default time values provided.
2604 * - ATTR_NOACLCHECK (CIFS context only).
2605 * cr - credentials of caller.
2606 * ct - caller context
2608 * RETURN: 0 on success, error code on failure.
2610 * Timestamps:
2611 * vp - ctime updated, mtime updated if size changed.
2613 /* ARGSUSED */
2614 static int
2615 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2616 caller_context_t *ct)
2618 znode_t *zp = VTOZ(vp);
2619 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2620 zilog_t *zilog;
2621 dmu_tx_t *tx;
2622 vattr_t oldva;
2623 xvattr_t tmpxvattr;
2624 uint_t mask = vap->va_mask;
2625 uint_t saved_mask = 0;
2626 int trim_mask = 0;
2627 uint64_t new_mode;
2628 uint64_t new_uid, new_gid;
2629 uint64_t xattr_obj;
2630 uint64_t mtime[2], ctime[2];
2631 znode_t *attrzp;
2632 int need_policy = FALSE;
2633 int err, err2;
2634 zfs_fuid_info_t *fuidp = NULL;
2635 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2636 xoptattr_t *xoap;
2637 zfs_acl_t *aclp;
2638 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2639 boolean_t fuid_dirtied = B_FALSE;
2640 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2641 int count = 0, xattr_count = 0;
2643 if (mask == 0)
2644 return (0);
2646 if (mask & AT_NOSET)
2647 return (SET_ERROR(EINVAL));
2649 ZFS_ENTER(zfsvfs);
2650 ZFS_VERIFY_ZP(zp);
2652 zilog = zfsvfs->z_log;
2655 * Make sure that if we have ephemeral uid/gid or xvattr specified
2656 * that file system is at proper version level
2659 if (zfsvfs->z_use_fuids == B_FALSE &&
2660 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2661 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2662 (mask & AT_XVATTR))) {
2663 ZFS_EXIT(zfsvfs);
2664 return (SET_ERROR(EINVAL));
2667 if (mask & AT_SIZE && vp->v_type == VDIR) {
2668 ZFS_EXIT(zfsvfs);
2669 return (SET_ERROR(EISDIR));
2672 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2673 ZFS_EXIT(zfsvfs);
2674 return (SET_ERROR(EINVAL));
2678 * If this is an xvattr_t, then get a pointer to the structure of
2679 * optional attributes. If this is NULL, then we have a vattr_t.
2681 xoap = xva_getxoptattr(xvap);
2683 xva_init(&tmpxvattr);
2686 * Immutable files can only alter immutable bit and atime
2688 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2689 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2690 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2691 ZFS_EXIT(zfsvfs);
2692 return (SET_ERROR(EPERM));
2695 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2696 ZFS_EXIT(zfsvfs);
2697 return (SET_ERROR(EPERM));
2701 * Verify timestamps doesn't overflow 32 bits.
2702 * ZFS can handle large timestamps, but 32bit syscalls can't
2703 * handle times greater than 2039. This check should be removed
2704 * once large timestamps are fully supported.
2706 if (mask & (AT_ATIME | AT_MTIME)) {
2707 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2708 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2709 ZFS_EXIT(zfsvfs);
2710 return (SET_ERROR(EOVERFLOW));
2714 top:
2715 attrzp = NULL;
2716 aclp = NULL;
2718 /* Can this be moved to before the top label? */
2719 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2720 ZFS_EXIT(zfsvfs);
2721 return (SET_ERROR(EROFS));
2725 * First validate permissions
2728 if (mask & AT_SIZE) {
2729 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2730 if (err) {
2731 ZFS_EXIT(zfsvfs);
2732 return (err);
2735 * XXX - Note, we are not providing any open
2736 * mode flags here (like FNDELAY), so we may
2737 * block if there are locks present... this
2738 * should be addressed in openat().
2740 /* XXX - would it be OK to generate a log record here? */
2741 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2742 if (err) {
2743 ZFS_EXIT(zfsvfs);
2744 return (err);
2748 if (mask & (AT_ATIME|AT_MTIME) ||
2749 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2750 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2751 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2752 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2753 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2754 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2755 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2756 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2757 skipaclchk, cr);
2760 if (mask & (AT_UID|AT_GID)) {
2761 int idmask = (mask & (AT_UID|AT_GID));
2762 int take_owner;
2763 int take_group;
2766 * NOTE: even if a new mode is being set,
2767 * we may clear S_ISUID/S_ISGID bits.
2770 if (!(mask & AT_MODE))
2771 vap->va_mode = zp->z_mode;
2774 * Take ownership or chgrp to group we are a member of
2777 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2778 take_group = (mask & AT_GID) &&
2779 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2782 * If both AT_UID and AT_GID are set then take_owner and
2783 * take_group must both be set in order to allow taking
2784 * ownership.
2786 * Otherwise, send the check through secpolicy_vnode_setattr()
2790 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2791 ((idmask == AT_UID) && take_owner) ||
2792 ((idmask == AT_GID) && take_group)) {
2793 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2794 skipaclchk, cr) == 0) {
2796 * Remove setuid/setgid for non-privileged users
2798 secpolicy_setid_clear(vap, cr);
2799 trim_mask = (mask & (AT_UID|AT_GID));
2800 } else {
2801 need_policy = TRUE;
2803 } else {
2804 need_policy = TRUE;
2808 mutex_enter(&zp->z_lock);
2809 oldva.va_mode = zp->z_mode;
2810 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2811 if (mask & AT_XVATTR) {
2813 * Update xvattr mask to include only those attributes
2814 * that are actually changing.
2816 * the bits will be restored prior to actually setting
2817 * the attributes so the caller thinks they were set.
2819 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2820 if (xoap->xoa_appendonly !=
2821 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2822 need_policy = TRUE;
2823 } else {
2824 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2825 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2829 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2830 if (xoap->xoa_nounlink !=
2831 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2832 need_policy = TRUE;
2833 } else {
2834 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2835 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2839 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2840 if (xoap->xoa_immutable !=
2841 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2842 need_policy = TRUE;
2843 } else {
2844 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2845 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2849 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2850 if (xoap->xoa_nodump !=
2851 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2852 need_policy = TRUE;
2853 } else {
2854 XVA_CLR_REQ(xvap, XAT_NODUMP);
2855 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2859 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2860 if (xoap->xoa_av_modified !=
2861 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2862 need_policy = TRUE;
2863 } else {
2864 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2865 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2869 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2870 if ((vp->v_type != VREG &&
2871 xoap->xoa_av_quarantined) ||
2872 xoap->xoa_av_quarantined !=
2873 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2874 need_policy = TRUE;
2875 } else {
2876 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2877 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2881 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2882 mutex_exit(&zp->z_lock);
2883 ZFS_EXIT(zfsvfs);
2884 return (SET_ERROR(EPERM));
2887 if (need_policy == FALSE &&
2888 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2889 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2890 need_policy = TRUE;
2894 mutex_exit(&zp->z_lock);
2896 if (mask & AT_MODE) {
2897 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2898 err = secpolicy_setid_setsticky_clear(vp, vap,
2899 &oldva, cr);
2900 if (err) {
2901 ZFS_EXIT(zfsvfs);
2902 return (err);
2904 trim_mask |= AT_MODE;
2905 } else {
2906 need_policy = TRUE;
2910 if (need_policy) {
2912 * If trim_mask is set then take ownership
2913 * has been granted or write_acl is present and user
2914 * has the ability to modify mode. In that case remove
2915 * UID|GID and or MODE from mask so that
2916 * secpolicy_vnode_setattr() doesn't revoke it.
2919 if (trim_mask) {
2920 saved_mask = vap->va_mask;
2921 vap->va_mask &= ~trim_mask;
2923 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2924 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2925 if (err) {
2926 ZFS_EXIT(zfsvfs);
2927 return (err);
2930 if (trim_mask)
2931 vap->va_mask |= saved_mask;
2935 * secpolicy_vnode_setattr, or take ownership may have
2936 * changed va_mask
2938 mask = vap->va_mask;
2940 if ((mask & (AT_UID | AT_GID))) {
2941 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2942 &xattr_obj, sizeof (xattr_obj));
2944 if (err == 0 && xattr_obj) {
2945 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2946 if (err)
2947 goto out2;
2949 if (mask & AT_UID) {
2950 new_uid = zfs_fuid_create(zfsvfs,
2951 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2952 if (new_uid != zp->z_uid &&
2953 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2954 if (attrzp)
2955 VN_RELE(ZTOV(attrzp));
2956 err = SET_ERROR(EDQUOT);
2957 goto out2;
2961 if (mask & AT_GID) {
2962 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2963 cr, ZFS_GROUP, &fuidp);
2964 if (new_gid != zp->z_gid &&
2965 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2966 if (attrzp)
2967 VN_RELE(ZTOV(attrzp));
2968 err = SET_ERROR(EDQUOT);
2969 goto out2;
2973 tx = dmu_tx_create(zfsvfs->z_os);
2975 if (mask & AT_MODE) {
2976 uint64_t pmode = zp->z_mode;
2977 uint64_t acl_obj;
2978 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2980 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2981 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2982 err = SET_ERROR(EPERM);
2983 goto out;
2986 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2987 goto out;
2989 mutex_enter(&zp->z_lock);
2990 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2992 * Are we upgrading ACL from old V0 format
2993 * to V1 format?
2995 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2996 zfs_znode_acl_version(zp) ==
2997 ZFS_ACL_VERSION_INITIAL) {
2998 dmu_tx_hold_free(tx, acl_obj, 0,
2999 DMU_OBJECT_END);
3000 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3001 0, aclp->z_acl_bytes);
3002 } else {
3003 dmu_tx_hold_write(tx, acl_obj, 0,
3004 aclp->z_acl_bytes);
3006 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3007 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3008 0, aclp->z_acl_bytes);
3010 mutex_exit(&zp->z_lock);
3011 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3012 } else {
3013 if ((mask & AT_XVATTR) &&
3014 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3015 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3016 else
3017 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3020 if (attrzp) {
3021 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3024 fuid_dirtied = zfsvfs->z_fuid_dirty;
3025 if (fuid_dirtied)
3026 zfs_fuid_txhold(zfsvfs, tx);
3028 zfs_sa_upgrade_txholds(tx, zp);
3030 err = dmu_tx_assign(tx, TXG_NOWAIT);
3031 if (err) {
3032 if (err == ERESTART)
3033 dmu_tx_wait(tx);
3034 goto out;
3037 count = 0;
3039 * Set each attribute requested.
3040 * We group settings according to the locks they need to acquire.
3042 * Note: you cannot set ctime directly, although it will be
3043 * updated as a side-effect of calling this function.
3047 if (mask & (AT_UID|AT_GID|AT_MODE))
3048 mutex_enter(&zp->z_acl_lock);
3049 mutex_enter(&zp->z_lock);
3051 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3052 &zp->z_pflags, sizeof (zp->z_pflags));
3054 if (attrzp) {
3055 if (mask & (AT_UID|AT_GID|AT_MODE))
3056 mutex_enter(&attrzp->z_acl_lock);
3057 mutex_enter(&attrzp->z_lock);
3058 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3059 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3060 sizeof (attrzp->z_pflags));
3063 if (mask & (AT_UID|AT_GID)) {
3065 if (mask & AT_UID) {
3066 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3067 &new_uid, sizeof (new_uid));
3068 zp->z_uid = new_uid;
3069 if (attrzp) {
3070 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3071 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3072 sizeof (new_uid));
3073 attrzp->z_uid = new_uid;
3077 if (mask & AT_GID) {
3078 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3079 NULL, &new_gid, sizeof (new_gid));
3080 zp->z_gid = new_gid;
3081 if (attrzp) {
3082 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3083 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3084 sizeof (new_gid));
3085 attrzp->z_gid = new_gid;
3088 if (!(mask & AT_MODE)) {
3089 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3090 NULL, &new_mode, sizeof (new_mode));
3091 new_mode = zp->z_mode;
3093 err = zfs_acl_chown_setattr(zp);
3094 ASSERT(err == 0);
3095 if (attrzp) {
3096 err = zfs_acl_chown_setattr(attrzp);
3097 ASSERT(err == 0);
3101 if (mask & AT_MODE) {
3102 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3103 &new_mode, sizeof (new_mode));
3104 zp->z_mode = new_mode;
3105 ASSERT3U((uintptr_t)aclp, !=, NULL);
3106 err = zfs_aclset_common(zp, aclp, cr, tx);
3107 ASSERT0(err);
3108 if (zp->z_acl_cached)
3109 zfs_acl_free(zp->z_acl_cached);
3110 zp->z_acl_cached = aclp;
3111 aclp = NULL;
3115 if (mask & AT_ATIME) {
3116 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3117 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3118 &zp->z_atime, sizeof (zp->z_atime));
3121 if (mask & AT_MTIME) {
3122 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3123 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3124 mtime, sizeof (mtime));
3127 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3128 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3129 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3130 NULL, mtime, sizeof (mtime));
3131 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3132 &ctime, sizeof (ctime));
3133 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3134 B_TRUE);
3135 } else if (mask != 0) {
3136 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3137 &ctime, sizeof (ctime));
3138 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3139 B_TRUE);
3140 if (attrzp) {
3141 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3142 SA_ZPL_CTIME(zfsvfs), NULL,
3143 &ctime, sizeof (ctime));
3144 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3145 mtime, ctime, B_TRUE);
3149 * Do this after setting timestamps to prevent timestamp
3150 * update from toggling bit
3153 if (xoap && (mask & AT_XVATTR)) {
3156 * restore trimmed off masks
3157 * so that return masks can be set for caller.
3160 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3161 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3163 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3164 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3166 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3167 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3169 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3170 XVA_SET_REQ(xvap, XAT_NODUMP);
3172 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3173 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3175 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3176 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3179 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3180 ASSERT(vp->v_type == VREG);
3182 zfs_xvattr_set(zp, xvap, tx);
3185 if (fuid_dirtied)
3186 zfs_fuid_sync(zfsvfs, tx);
3188 if (mask != 0)
3189 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3191 mutex_exit(&zp->z_lock);
3192 if (mask & (AT_UID|AT_GID|AT_MODE))
3193 mutex_exit(&zp->z_acl_lock);
3195 if (attrzp) {
3196 if (mask & (AT_UID|AT_GID|AT_MODE))
3197 mutex_exit(&attrzp->z_acl_lock);
3198 mutex_exit(&attrzp->z_lock);
3200 out:
3201 if (err == 0 && attrzp) {
3202 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3203 xattr_count, tx);
3204 ASSERT(err2 == 0);
3207 if (attrzp)
3208 VN_RELE(ZTOV(attrzp));
3210 if (aclp)
3211 zfs_acl_free(aclp);
3213 if (fuidp) {
3214 zfs_fuid_info_free(fuidp);
3215 fuidp = NULL;
3218 if (err) {
3219 dmu_tx_abort(tx);
3220 if (err == ERESTART)
3221 goto top;
3222 } else {
3223 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3224 dmu_tx_commit(tx);
3227 out2:
3228 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3229 zil_commit(zilog, 0);
3231 ZFS_EXIT(zfsvfs);
3232 return (err);
3235 typedef struct zfs_zlock {
3236 krwlock_t *zl_rwlock; /* lock we acquired */
3237 znode_t *zl_znode; /* znode we held */
3238 struct zfs_zlock *zl_next; /* next in list */
3239 } zfs_zlock_t;
3242 * Drop locks and release vnodes that were held by zfs_rename_lock().
3244 static void
3245 zfs_rename_unlock(zfs_zlock_t **zlpp)
3247 zfs_zlock_t *zl;
3249 while ((zl = *zlpp) != NULL) {
3250 if (zl->zl_znode != NULL)
3251 VN_RELE(ZTOV(zl->zl_znode));
3252 rw_exit(zl->zl_rwlock);
3253 *zlpp = zl->zl_next;
3254 kmem_free(zl, sizeof (*zl));
3259 * Search back through the directory tree, using the ".." entries.
3260 * Lock each directory in the chain to prevent concurrent renames.
3261 * Fail any attempt to move a directory into one of its own descendants.
3262 * XXX - z_parent_lock can overlap with map or grow locks
3264 static int
3265 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3267 zfs_zlock_t *zl;
3268 znode_t *zp = tdzp;
3269 uint64_t rootid = zp->z_zfsvfs->z_root;
3270 uint64_t oidp = zp->z_id;
3271 krwlock_t *rwlp = &szp->z_parent_lock;
3272 krw_t rw = RW_WRITER;
3275 * First pass write-locks szp and compares to zp->z_id.
3276 * Later passes read-lock zp and compare to zp->z_parent.
3278 do {
3279 if (!rw_tryenter(rwlp, rw)) {
3281 * Another thread is renaming in this path.
3282 * Note that if we are a WRITER, we don't have any
3283 * parent_locks held yet.
3285 if (rw == RW_READER && zp->z_id > szp->z_id) {
3287 * Drop our locks and restart
3289 zfs_rename_unlock(&zl);
3290 *zlpp = NULL;
3291 zp = tdzp;
3292 oidp = zp->z_id;
3293 rwlp = &szp->z_parent_lock;
3294 rw = RW_WRITER;
3295 continue;
3296 } else {
3298 * Wait for other thread to drop its locks
3300 rw_enter(rwlp, rw);
3304 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3305 zl->zl_rwlock = rwlp;
3306 zl->zl_znode = NULL;
3307 zl->zl_next = *zlpp;
3308 *zlpp = zl;
3310 if (oidp == szp->z_id) /* We're a descendant of szp */
3311 return (SET_ERROR(EINVAL));
3313 if (oidp == rootid) /* We've hit the top */
3314 return (0);
3316 if (rw == RW_READER) { /* i.e. not the first pass */
3317 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3318 if (error)
3319 return (error);
3320 zl->zl_znode = zp;
3322 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3323 &oidp, sizeof (oidp));
3324 rwlp = &zp->z_parent_lock;
3325 rw = RW_READER;
3327 } while (zp->z_id != sdzp->z_id);
3329 return (0);
3333 * Move an entry from the provided source directory to the target
3334 * directory. Change the entry name as indicated.
3336 * IN: sdvp - Source directory containing the "old entry".
3337 * snm - Old entry name.
3338 * tdvp - Target directory to contain the "new entry".
3339 * tnm - New entry name.
3340 * cr - credentials of caller.
3341 * ct - caller context
3342 * flags - case flags
3344 * RETURN: 0 on success, error code on failure.
3346 * Timestamps:
3347 * sdvp,tdvp - ctime|mtime updated
3349 /*ARGSUSED*/
3350 static int
3351 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3352 caller_context_t *ct, int flags)
3354 znode_t *tdzp, *szp, *tzp;
3355 znode_t *sdzp = VTOZ(sdvp);
3356 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3357 zilog_t *zilog;
3358 vnode_t *realvp;
3359 zfs_dirlock_t *sdl, *tdl;
3360 dmu_tx_t *tx;
3361 zfs_zlock_t *zl;
3362 int cmp, serr, terr;
3363 int error = 0;
3364 int zflg = 0;
3366 ZFS_ENTER(zfsvfs);
3367 ZFS_VERIFY_ZP(sdzp);
3368 zilog = zfsvfs->z_log;
3371 * Make sure we have the real vp for the target directory.
3373 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3374 tdvp = realvp;
3376 tdzp = VTOZ(tdvp);
3377 ZFS_VERIFY_ZP(tdzp);
3380 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3381 * ctldir appear to have the same v_vfsp.
3383 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3384 ZFS_EXIT(zfsvfs);
3385 return (SET_ERROR(EXDEV));
3388 if (zfsvfs->z_utf8 && u8_validate(tnm,
3389 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3390 ZFS_EXIT(zfsvfs);
3391 return (SET_ERROR(EILSEQ));
3394 if (flags & FIGNORECASE)
3395 zflg |= ZCILOOK;
3397 top:
3398 szp = NULL;
3399 tzp = NULL;
3400 zl = NULL;
3403 * This is to prevent the creation of links into attribute space
3404 * by renaming a linked file into/outof an attribute directory.
3405 * See the comment in zfs_link() for why this is considered bad.
3407 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3408 ZFS_EXIT(zfsvfs);
3409 return (SET_ERROR(EINVAL));
3413 * Lock source and target directory entries. To prevent deadlock,
3414 * a lock ordering must be defined. We lock the directory with
3415 * the smallest object id first, or if it's a tie, the one with
3416 * the lexically first name.
3418 if (sdzp->z_id < tdzp->z_id) {
3419 cmp = -1;
3420 } else if (sdzp->z_id > tdzp->z_id) {
3421 cmp = 1;
3422 } else {
3424 * First compare the two name arguments without
3425 * considering any case folding.
3427 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3429 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3430 ASSERT(error == 0 || !zfsvfs->z_utf8);
3431 if (cmp == 0) {
3433 * POSIX: "If the old argument and the new argument
3434 * both refer to links to the same existing file,
3435 * the rename() function shall return successfully
3436 * and perform no other action."
3438 ZFS_EXIT(zfsvfs);
3439 return (0);
3442 * If the file system is case-folding, then we may
3443 * have some more checking to do. A case-folding file
3444 * system is either supporting mixed case sensitivity
3445 * access or is completely case-insensitive. Note
3446 * that the file system is always case preserving.
3448 * In mixed sensitivity mode case sensitive behavior
3449 * is the default. FIGNORECASE must be used to
3450 * explicitly request case insensitive behavior.
3452 * If the source and target names provided differ only
3453 * by case (e.g., a request to rename 'tim' to 'Tim'),
3454 * we will treat this as a special case in the
3455 * case-insensitive mode: as long as the source name
3456 * is an exact match, we will allow this to proceed as
3457 * a name-change request.
3459 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3460 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3461 flags & FIGNORECASE)) &&
3462 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3463 &error) == 0) {
3465 * case preserving rename request, require exact
3466 * name matches
3468 zflg |= ZCIEXACT;
3469 zflg &= ~ZCILOOK;
3474 * If the source and destination directories are the same, we should
3475 * grab the z_name_lock of that directory only once.
3477 if (sdzp == tdzp) {
3478 zflg |= ZHAVELOCK;
3479 rw_enter(&sdzp->z_name_lock, RW_READER);
3482 if (cmp < 0) {
3483 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3484 ZEXISTS | zflg, NULL, NULL);
3485 terr = zfs_dirent_lock(&tdl,
3486 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3487 } else {
3488 terr = zfs_dirent_lock(&tdl,
3489 tdzp, tnm, &tzp, zflg, NULL, NULL);
3490 serr = zfs_dirent_lock(&sdl,
3491 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3492 NULL, NULL);
3495 if (serr) {
3497 * Source entry invalid or not there.
3499 if (!terr) {
3500 zfs_dirent_unlock(tdl);
3501 if (tzp)
3502 VN_RELE(ZTOV(tzp));
3505 if (sdzp == tdzp)
3506 rw_exit(&sdzp->z_name_lock);
3508 if (strcmp(snm, "..") == 0)
3509 serr = SET_ERROR(EINVAL);
3510 ZFS_EXIT(zfsvfs);
3511 return (serr);
3513 if (terr) {
3514 zfs_dirent_unlock(sdl);
3515 VN_RELE(ZTOV(szp));
3517 if (sdzp == tdzp)
3518 rw_exit(&sdzp->z_name_lock);
3520 if (strcmp(tnm, "..") == 0)
3521 terr = SET_ERROR(EINVAL);
3522 ZFS_EXIT(zfsvfs);
3523 return (terr);
3527 * Must have write access at the source to remove the old entry
3528 * and write access at the target to create the new entry.
3529 * Note that if target and source are the same, this can be
3530 * done in a single check.
3533 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3534 goto out;
3536 if (ZTOV(szp)->v_type == VDIR) {
3538 * Check to make sure rename is valid.
3539 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3541 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3542 goto out;
3546 * Does target exist?
3548 if (tzp) {
3550 * Source and target must be the same type.
3552 if (ZTOV(szp)->v_type == VDIR) {
3553 if (ZTOV(tzp)->v_type != VDIR) {
3554 error = SET_ERROR(ENOTDIR);
3555 goto out;
3557 } else {
3558 if (ZTOV(tzp)->v_type == VDIR) {
3559 error = SET_ERROR(EISDIR);
3560 goto out;
3564 * POSIX dictates that when the source and target
3565 * entries refer to the same file object, rename
3566 * must do nothing and exit without error.
3568 if (szp->z_id == tzp->z_id) {
3569 error = 0;
3570 goto out;
3574 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3575 if (tzp)
3576 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3579 * notify the target directory if it is not the same
3580 * as source directory.
3582 if (tdvp != sdvp) {
3583 vnevent_rename_dest_dir(tdvp, ct);
3586 tx = dmu_tx_create(zfsvfs->z_os);
3587 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3588 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3589 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3590 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3591 if (sdzp != tdzp) {
3592 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3593 zfs_sa_upgrade_txholds(tx, tdzp);
3595 if (tzp) {
3596 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3597 zfs_sa_upgrade_txholds(tx, tzp);
3600 zfs_sa_upgrade_txholds(tx, szp);
3601 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3602 error = dmu_tx_assign(tx, TXG_NOWAIT);
3603 if (error) {
3604 if (zl != NULL)
3605 zfs_rename_unlock(&zl);
3606 zfs_dirent_unlock(sdl);
3607 zfs_dirent_unlock(tdl);
3609 if (sdzp == tdzp)
3610 rw_exit(&sdzp->z_name_lock);
3612 VN_RELE(ZTOV(szp));
3613 if (tzp)
3614 VN_RELE(ZTOV(tzp));
3615 if (error == ERESTART) {
3616 dmu_tx_wait(tx);
3617 dmu_tx_abort(tx);
3618 goto top;
3620 dmu_tx_abort(tx);
3621 ZFS_EXIT(zfsvfs);
3622 return (error);
3625 if (tzp) /* Attempt to remove the existing target */
3626 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3628 if (error == 0) {
3629 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3630 if (error == 0) {
3631 szp->z_pflags |= ZFS_AV_MODIFIED;
3633 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3634 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3635 ASSERT0(error);
3637 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3638 if (error == 0) {
3639 zfs_log_rename(zilog, tx, TX_RENAME |
3640 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3641 sdl->dl_name, tdzp, tdl->dl_name, szp);
3644 * Update path information for the target vnode
3646 vn_renamepath(tdvp, ZTOV(szp), tnm,
3647 strlen(tnm));
3648 } else {
3650 * At this point, we have successfully created
3651 * the target name, but have failed to remove
3652 * the source name. Since the create was done
3653 * with the ZRENAMING flag, there are
3654 * complications; for one, the link count is
3655 * wrong. The easiest way to deal with this
3656 * is to remove the newly created target, and
3657 * return the original error. This must
3658 * succeed; fortunately, it is very unlikely to
3659 * fail, since we just created it.
3661 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3662 ZRENAMING, NULL), ==, 0);
3667 dmu_tx_commit(tx);
3668 out:
3669 if (zl != NULL)
3670 zfs_rename_unlock(&zl);
3672 zfs_dirent_unlock(sdl);
3673 zfs_dirent_unlock(tdl);
3675 if (sdzp == tdzp)
3676 rw_exit(&sdzp->z_name_lock);
3679 VN_RELE(ZTOV(szp));
3680 if (tzp)
3681 VN_RELE(ZTOV(tzp));
3683 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3684 zil_commit(zilog, 0);
3686 ZFS_EXIT(zfsvfs);
3687 return (error);
3691 * Insert the indicated symbolic reference entry into the directory.
3693 * IN: dvp - Directory to contain new symbolic link.
3694 * link - Name for new symlink entry.
3695 * vap - Attributes of new entry.
3696 * cr - credentials of caller.
3697 * ct - caller context
3698 * flags - case flags
3700 * RETURN: 0 on success, error code on failure.
3702 * Timestamps:
3703 * dvp - ctime|mtime updated
3705 /*ARGSUSED*/
3706 static int
3707 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3708 caller_context_t *ct, int flags)
3710 znode_t *zp, *dzp = VTOZ(dvp);
3711 zfs_dirlock_t *dl;
3712 dmu_tx_t *tx;
3713 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3714 zilog_t *zilog;
3715 uint64_t len = strlen(link);
3716 int error;
3717 int zflg = ZNEW;
3718 zfs_acl_ids_t acl_ids;
3719 boolean_t fuid_dirtied;
3720 uint64_t txtype = TX_SYMLINK;
3722 ASSERT(vap->va_type == VLNK);
3724 ZFS_ENTER(zfsvfs);
3725 ZFS_VERIFY_ZP(dzp);
3726 zilog = zfsvfs->z_log;
3728 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3729 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3730 ZFS_EXIT(zfsvfs);
3731 return (SET_ERROR(EILSEQ));
3733 if (flags & FIGNORECASE)
3734 zflg |= ZCILOOK;
3736 if (len > MAXPATHLEN) {
3737 ZFS_EXIT(zfsvfs);
3738 return (SET_ERROR(ENAMETOOLONG));
3741 if ((error = zfs_acl_ids_create(dzp, 0,
3742 vap, cr, NULL, &acl_ids)) != 0) {
3743 ZFS_EXIT(zfsvfs);
3744 return (error);
3746 top:
3748 * Attempt to lock directory; fail if entry already exists.
3750 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3751 if (error) {
3752 zfs_acl_ids_free(&acl_ids);
3753 ZFS_EXIT(zfsvfs);
3754 return (error);
3757 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3758 zfs_acl_ids_free(&acl_ids);
3759 zfs_dirent_unlock(dl);
3760 ZFS_EXIT(zfsvfs);
3761 return (error);
3764 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3765 zfs_acl_ids_free(&acl_ids);
3766 zfs_dirent_unlock(dl);
3767 ZFS_EXIT(zfsvfs);
3768 return (SET_ERROR(EDQUOT));
3770 tx = dmu_tx_create(zfsvfs->z_os);
3771 fuid_dirtied = zfsvfs->z_fuid_dirty;
3772 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3773 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3774 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3775 ZFS_SA_BASE_ATTR_SIZE + len);
3776 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3777 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3778 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3779 acl_ids.z_aclp->z_acl_bytes);
3781 if (fuid_dirtied)
3782 zfs_fuid_txhold(zfsvfs, tx);
3783 error = dmu_tx_assign(tx, TXG_NOWAIT);
3784 if (error) {
3785 zfs_dirent_unlock(dl);
3786 if (error == ERESTART) {
3787 dmu_tx_wait(tx);
3788 dmu_tx_abort(tx);
3789 goto top;
3791 zfs_acl_ids_free(&acl_ids);
3792 dmu_tx_abort(tx);
3793 ZFS_EXIT(zfsvfs);
3794 return (error);
3798 * Create a new object for the symlink.
3799 * for version 4 ZPL datsets the symlink will be an SA attribute
3801 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3803 if (fuid_dirtied)
3804 zfs_fuid_sync(zfsvfs, tx);
3806 mutex_enter(&zp->z_lock);
3807 if (zp->z_is_sa)
3808 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3809 link, len, tx);
3810 else
3811 zfs_sa_symlink(zp, link, len, tx);
3812 mutex_exit(&zp->z_lock);
3814 zp->z_size = len;
3815 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3816 &zp->z_size, sizeof (zp->z_size), tx);
3818 * Insert the new object into the directory.
3820 (void) zfs_link_create(dl, zp, tx, ZNEW);
3822 if (flags & FIGNORECASE)
3823 txtype |= TX_CI;
3824 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3826 zfs_acl_ids_free(&acl_ids);
3828 dmu_tx_commit(tx);
3830 zfs_dirent_unlock(dl);
3832 VN_RELE(ZTOV(zp));
3834 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3835 zil_commit(zilog, 0);
3837 ZFS_EXIT(zfsvfs);
3838 return (error);
3842 * Return, in the buffer contained in the provided uio structure,
3843 * the symbolic path referred to by vp.
3845 * IN: vp - vnode of symbolic link.
3846 * uio - structure to contain the link path.
3847 * cr - credentials of caller.
3848 * ct - caller context
3850 * OUT: uio - structure containing the link path.
3852 * RETURN: 0 on success, error code on failure.
3854 * Timestamps:
3855 * vp - atime updated
3857 /* ARGSUSED */
3858 static int
3859 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3861 znode_t *zp = VTOZ(vp);
3862 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3863 int error;
3865 ZFS_ENTER(zfsvfs);
3866 ZFS_VERIFY_ZP(zp);
3868 mutex_enter(&zp->z_lock);
3869 if (zp->z_is_sa)
3870 error = sa_lookup_uio(zp->z_sa_hdl,
3871 SA_ZPL_SYMLINK(zfsvfs), uio);
3872 else
3873 error = zfs_sa_readlink(zp, uio);
3874 mutex_exit(&zp->z_lock);
3876 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3878 ZFS_EXIT(zfsvfs);
3879 return (error);
3883 * Insert a new entry into directory tdvp referencing svp.
3885 * IN: tdvp - Directory to contain new entry.
3886 * svp - vnode of new entry.
3887 * name - name of new entry.
3888 * cr - credentials of caller.
3889 * ct - caller context
3891 * RETURN: 0 on success, error code on failure.
3893 * Timestamps:
3894 * tdvp - ctime|mtime updated
3895 * svp - ctime updated
3897 /* ARGSUSED */
3898 static int
3899 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3900 caller_context_t *ct, int flags)
3902 znode_t *dzp = VTOZ(tdvp);
3903 znode_t *tzp, *szp;
3904 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3905 zilog_t *zilog;
3906 zfs_dirlock_t *dl;
3907 dmu_tx_t *tx;
3908 vnode_t *realvp;
3909 int error;
3910 int zf = ZNEW;
3911 uint64_t parent;
3912 uid_t owner;
3914 ASSERT(tdvp->v_type == VDIR);
3916 ZFS_ENTER(zfsvfs);
3917 ZFS_VERIFY_ZP(dzp);
3918 zilog = zfsvfs->z_log;
3920 if (VOP_REALVP(svp, &realvp, ct) == 0)
3921 svp = realvp;
3924 * POSIX dictates that we return EPERM here.
3925 * Better choices include ENOTSUP or EISDIR.
3927 if (svp->v_type == VDIR) {
3928 ZFS_EXIT(zfsvfs);
3929 return (SET_ERROR(EPERM));
3932 szp = VTOZ(svp);
3933 ZFS_VERIFY_ZP(szp);
3936 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3937 * ctldir appear to have the same v_vfsp.
3939 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3940 ZFS_EXIT(zfsvfs);
3941 return (SET_ERROR(EXDEV));
3944 /* Prevent links to .zfs/shares files */
3946 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3947 &parent, sizeof (uint64_t))) != 0) {
3948 ZFS_EXIT(zfsvfs);
3949 return (error);
3951 if (parent == zfsvfs->z_shares_dir) {
3952 ZFS_EXIT(zfsvfs);
3953 return (SET_ERROR(EPERM));
3956 if (zfsvfs->z_utf8 && u8_validate(name,
3957 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3958 ZFS_EXIT(zfsvfs);
3959 return (SET_ERROR(EILSEQ));
3961 if (flags & FIGNORECASE)
3962 zf |= ZCILOOK;
3965 * We do not support links between attributes and non-attributes
3966 * because of the potential security risk of creating links
3967 * into "normal" file space in order to circumvent restrictions
3968 * imposed in attribute space.
3970 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3971 ZFS_EXIT(zfsvfs);
3972 return (SET_ERROR(EINVAL));
3976 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3977 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3978 ZFS_EXIT(zfsvfs);
3979 return (SET_ERROR(EPERM));
3982 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3983 ZFS_EXIT(zfsvfs);
3984 return (error);
3987 top:
3989 * Attempt to lock directory; fail if entry already exists.
3991 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3992 if (error) {
3993 ZFS_EXIT(zfsvfs);
3994 return (error);
3997 tx = dmu_tx_create(zfsvfs->z_os);
3998 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3999 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4000 zfs_sa_upgrade_txholds(tx, szp);
4001 zfs_sa_upgrade_txholds(tx, dzp);
4002 error = dmu_tx_assign(tx, TXG_NOWAIT);
4003 if (error) {
4004 zfs_dirent_unlock(dl);
4005 if (error == ERESTART) {
4006 dmu_tx_wait(tx);
4007 dmu_tx_abort(tx);
4008 goto top;
4010 dmu_tx_abort(tx);
4011 ZFS_EXIT(zfsvfs);
4012 return (error);
4015 error = zfs_link_create(dl, szp, tx, 0);
4017 if (error == 0) {
4018 uint64_t txtype = TX_LINK;
4019 if (flags & FIGNORECASE)
4020 txtype |= TX_CI;
4021 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4024 dmu_tx_commit(tx);
4026 zfs_dirent_unlock(dl);
4028 if (error == 0) {
4029 vnevent_link(svp, ct);
4032 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4033 zil_commit(zilog, 0);
4035 ZFS_EXIT(zfsvfs);
4036 return (error);
4040 * zfs_null_putapage() is used when the file system has been force
4041 * unmounted. It just drops the pages.
4043 /* ARGSUSED */
4044 static int
4045 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4046 size_t *lenp, int flags, cred_t *cr)
4048 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4049 return (0);
4053 * Push a page out to disk, klustering if possible.
4055 * IN: vp - file to push page to.
4056 * pp - page to push.
4057 * flags - additional flags.
4058 * cr - credentials of caller.
4060 * OUT: offp - start of range pushed.
4061 * lenp - len of range pushed.
4063 * RETURN: 0 on success, error code on failure.
4065 * NOTE: callers must have locked the page to be pushed. On
4066 * exit, the page (and all other pages in the kluster) must be
4067 * unlocked.
4069 /* ARGSUSED */
4070 static int
4071 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4072 size_t *lenp, int flags, cred_t *cr)
4074 znode_t *zp = VTOZ(vp);
4075 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4076 dmu_tx_t *tx;
4077 u_offset_t off, koff;
4078 size_t len, klen;
4079 int err;
4081 off = pp->p_offset;
4082 len = PAGESIZE;
4084 * If our blocksize is bigger than the page size, try to kluster
4085 * multiple pages so that we write a full block (thus avoiding
4086 * a read-modify-write).
4088 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4089 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4090 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4091 ASSERT(koff <= zp->z_size);
4092 if (koff + klen > zp->z_size)
4093 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4094 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4096 ASSERT3U(btop(len), ==, btopr(len));
4099 * Can't push pages past end-of-file.
4101 if (off >= zp->z_size) {
4102 /* ignore all pages */
4103 err = 0;
4104 goto out;
4105 } else if (off + len > zp->z_size) {
4106 int npages = btopr(zp->z_size - off);
4107 page_t *trunc;
4109 page_list_break(&pp, &trunc, npages);
4110 /* ignore pages past end of file */
4111 if (trunc)
4112 pvn_write_done(trunc, flags);
4113 len = zp->z_size - off;
4116 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4117 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4118 err = SET_ERROR(EDQUOT);
4119 goto out;
4121 top:
4122 tx = dmu_tx_create(zfsvfs->z_os);
4123 dmu_tx_hold_write(tx, zp->z_id, off, len);
4125 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4126 zfs_sa_upgrade_txholds(tx, zp);
4127 err = dmu_tx_assign(tx, TXG_NOWAIT);
4128 if (err != 0) {
4129 if (err == ERESTART) {
4130 dmu_tx_wait(tx);
4131 dmu_tx_abort(tx);
4132 goto top;
4134 dmu_tx_abort(tx);
4135 goto out;
4138 if (zp->z_blksz <= PAGESIZE) {
4139 caddr_t va = zfs_map_page(pp, S_READ);
4140 ASSERT3U(len, <=, PAGESIZE);
4141 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4142 zfs_unmap_page(pp, va);
4143 } else {
4144 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4147 if (err == 0) {
4148 uint64_t mtime[2], ctime[2];
4149 sa_bulk_attr_t bulk[3];
4150 int count = 0;
4152 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4153 &mtime, 16);
4154 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4155 &ctime, 16);
4156 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4157 &zp->z_pflags, 8);
4158 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4159 B_TRUE);
4160 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4162 dmu_tx_commit(tx);
4164 out:
4165 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4166 if (offp)
4167 *offp = off;
4168 if (lenp)
4169 *lenp = len;
4171 return (err);
4175 * Copy the portion of the file indicated from pages into the file.
4176 * The pages are stored in a page list attached to the files vnode.
4178 * IN: vp - vnode of file to push page data to.
4179 * off - position in file to put data.
4180 * len - amount of data to write.
4181 * flags - flags to control the operation.
4182 * cr - credentials of caller.
4183 * ct - caller context.
4185 * RETURN: 0 on success, error code on failure.
4187 * Timestamps:
4188 * vp - ctime|mtime updated
4190 /*ARGSUSED*/
4191 static int
4192 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4193 caller_context_t *ct)
4195 znode_t *zp = VTOZ(vp);
4196 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4197 page_t *pp;
4198 size_t io_len;
4199 u_offset_t io_off;
4200 uint_t blksz;
4201 rl_t *rl;
4202 int error = 0;
4204 ZFS_ENTER(zfsvfs);
4205 ZFS_VERIFY_ZP(zp);
4208 * There's nothing to do if no data is cached.
4210 if (!vn_has_cached_data(vp)) {
4211 ZFS_EXIT(zfsvfs);
4212 return (0);
4216 * Align this request to the file block size in case we kluster.
4217 * XXX - this can result in pretty aggresive locking, which can
4218 * impact simultanious read/write access. One option might be
4219 * to break up long requests (len == 0) into block-by-block
4220 * operations to get narrower locking.
4222 blksz = zp->z_blksz;
4223 if (ISP2(blksz))
4224 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4225 else
4226 io_off = 0;
4227 if (len > 0 && ISP2(blksz))
4228 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4229 else
4230 io_len = 0;
4232 if (io_len == 0) {
4234 * Search the entire vp list for pages >= io_off.
4236 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4237 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4238 goto out;
4240 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4242 if (off > zp->z_size) {
4243 /* past end of file */
4244 zfs_range_unlock(rl);
4245 ZFS_EXIT(zfsvfs);
4246 return (0);
4249 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4251 for (off = io_off; io_off < off + len; io_off += io_len) {
4252 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4253 pp = page_lookup(vp, io_off,
4254 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4255 } else {
4256 pp = page_lookup_nowait(vp, io_off,
4257 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4260 if (pp != NULL && pvn_getdirty(pp, flags)) {
4261 int err;
4264 * Found a dirty page to push
4266 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4267 if (err)
4268 error = err;
4269 } else {
4270 io_len = PAGESIZE;
4273 out:
4274 zfs_range_unlock(rl);
4275 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4276 zil_commit(zfsvfs->z_log, zp->z_id);
4277 ZFS_EXIT(zfsvfs);
4278 return (error);
4281 /*ARGSUSED*/
4282 void
4283 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4285 znode_t *zp = VTOZ(vp);
4286 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4287 int error;
4289 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4290 if (zp->z_sa_hdl == NULL) {
4292 * The fs has been unmounted, or we did a
4293 * suspend/resume and this file no longer exists.
4295 if (vn_has_cached_data(vp)) {
4296 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4297 B_INVAL, cr);
4300 mutex_enter(&zp->z_lock);
4301 mutex_enter(&vp->v_lock);
4302 ASSERT(vp->v_count == 1);
4303 vp->v_count = 0;
4304 mutex_exit(&vp->v_lock);
4305 mutex_exit(&zp->z_lock);
4306 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4307 zfs_znode_free(zp);
4308 return;
4312 * Attempt to push any data in the page cache. If this fails
4313 * we will get kicked out later in zfs_zinactive().
4315 if (vn_has_cached_data(vp)) {
4316 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4317 cr);
4320 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4321 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4323 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4324 zfs_sa_upgrade_txholds(tx, zp);
4325 error = dmu_tx_assign(tx, TXG_WAIT);
4326 if (error) {
4327 dmu_tx_abort(tx);
4328 } else {
4329 mutex_enter(&zp->z_lock);
4330 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4331 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4332 zp->z_atime_dirty = 0;
4333 mutex_exit(&zp->z_lock);
4334 dmu_tx_commit(tx);
4338 zfs_zinactive(zp);
4339 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4343 * Bounds-check the seek operation.
4345 * IN: vp - vnode seeking within
4346 * ooff - old file offset
4347 * noffp - pointer to new file offset
4348 * ct - caller context
4350 * RETURN: 0 on success, EINVAL if new offset invalid.
4352 /* ARGSUSED */
4353 static int
4354 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4355 caller_context_t *ct)
4357 if (vp->v_type == VDIR)
4358 return (0);
4359 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4363 * Pre-filter the generic locking function to trap attempts to place
4364 * a mandatory lock on a memory mapped file.
4366 static int
4367 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4368 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4370 znode_t *zp = VTOZ(vp);
4371 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4373 ZFS_ENTER(zfsvfs);
4374 ZFS_VERIFY_ZP(zp);
4377 * We are following the UFS semantics with respect to mapcnt
4378 * here: If we see that the file is mapped already, then we will
4379 * return an error, but we don't worry about races between this
4380 * function and zfs_map().
4382 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4383 ZFS_EXIT(zfsvfs);
4384 return (SET_ERROR(EAGAIN));
4386 ZFS_EXIT(zfsvfs);
4387 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4391 * If we can't find a page in the cache, we will create a new page
4392 * and fill it with file data. For efficiency, we may try to fill
4393 * multiple pages at once (klustering) to fill up the supplied page
4394 * list. Note that the pages to be filled are held with an exclusive
4395 * lock to prevent access by other threads while they are being filled.
4397 static int
4398 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4399 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4401 znode_t *zp = VTOZ(vp);
4402 page_t *pp, *cur_pp;
4403 objset_t *os = zp->z_zfsvfs->z_os;
4404 u_offset_t io_off, total;
4405 size_t io_len;
4406 int err;
4408 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4410 * We only have a single page, don't bother klustering
4412 io_off = off;
4413 io_len = PAGESIZE;
4414 pp = page_create_va(vp, io_off, io_len,
4415 PG_EXCL | PG_WAIT, seg, addr);
4416 } else {
4418 * Try to find enough pages to fill the page list
4420 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4421 &io_len, off, plsz, 0);
4423 if (pp == NULL) {
4425 * The page already exists, nothing to do here.
4427 *pl = NULL;
4428 return (0);
4432 * Fill the pages in the kluster.
4434 cur_pp = pp;
4435 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4436 caddr_t va;
4438 ASSERT3U(io_off, ==, cur_pp->p_offset);
4439 va = zfs_map_page(cur_pp, S_WRITE);
4440 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4441 DMU_READ_PREFETCH);
4442 zfs_unmap_page(cur_pp, va);
4443 if (err) {
4444 /* On error, toss the entire kluster */
4445 pvn_read_done(pp, B_ERROR);
4446 /* convert checksum errors into IO errors */
4447 if (err == ECKSUM)
4448 err = SET_ERROR(EIO);
4449 return (err);
4451 cur_pp = cur_pp->p_next;
4455 * Fill in the page list array from the kluster starting
4456 * from the desired offset `off'.
4457 * NOTE: the page list will always be null terminated.
4459 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4460 ASSERT(pl == NULL || (*pl)->p_offset == off);
4462 return (0);
4466 * Return pointers to the pages for the file region [off, off + len]
4467 * in the pl array. If plsz is greater than len, this function may
4468 * also return page pointers from after the specified region
4469 * (i.e. the region [off, off + plsz]). These additional pages are
4470 * only returned if they are already in the cache, or were created as
4471 * part of a klustered read.
4473 * IN: vp - vnode of file to get data from.
4474 * off - position in file to get data from.
4475 * len - amount of data to retrieve.
4476 * plsz - length of provided page list.
4477 * seg - segment to obtain pages for.
4478 * addr - virtual address of fault.
4479 * rw - mode of created pages.
4480 * cr - credentials of caller.
4481 * ct - caller context.
4483 * OUT: protp - protection mode of created pages.
4484 * pl - list of pages created.
4486 * RETURN: 0 on success, error code on failure.
4488 * Timestamps:
4489 * vp - atime updated
4491 /* ARGSUSED */
4492 static int
4493 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4494 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4495 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4497 znode_t *zp = VTOZ(vp);
4498 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4499 page_t **pl0 = pl;
4500 int err = 0;
4502 /* we do our own caching, faultahead is unnecessary */
4503 if (pl == NULL)
4504 return (0);
4505 else if (len > plsz)
4506 len = plsz;
4507 else
4508 len = P2ROUNDUP(len, PAGESIZE);
4509 ASSERT(plsz >= len);
4511 ZFS_ENTER(zfsvfs);
4512 ZFS_VERIFY_ZP(zp);
4514 if (protp)
4515 *protp = PROT_ALL;
4518 * Loop through the requested range [off, off + len) looking
4519 * for pages. If we don't find a page, we will need to create
4520 * a new page and fill it with data from the file.
4522 while (len > 0) {
4523 if (*pl = page_lookup(vp, off, SE_SHARED))
4524 *(pl+1) = NULL;
4525 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4526 goto out;
4527 while (*pl) {
4528 ASSERT3U((*pl)->p_offset, ==, off);
4529 off += PAGESIZE;
4530 addr += PAGESIZE;
4531 if (len > 0) {
4532 ASSERT3U(len, >=, PAGESIZE);
4533 len -= PAGESIZE;
4535 ASSERT3U(plsz, >=, PAGESIZE);
4536 plsz -= PAGESIZE;
4537 pl++;
4542 * Fill out the page array with any pages already in the cache.
4544 while (plsz > 0 &&
4545 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4546 off += PAGESIZE;
4547 plsz -= PAGESIZE;
4549 out:
4550 if (err) {
4552 * Release any pages we have previously locked.
4554 while (pl > pl0)
4555 page_unlock(*--pl);
4556 } else {
4557 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4560 *pl = NULL;
4562 ZFS_EXIT(zfsvfs);
4563 return (err);
4567 * Request a memory map for a section of a file. This code interacts
4568 * with common code and the VM system as follows:
4570 * - common code calls mmap(), which ends up in smmap_common()
4571 * - this calls VOP_MAP(), which takes you into (say) zfs
4572 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4573 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4574 * - zfs_addmap() updates z_mapcnt
4576 /*ARGSUSED*/
4577 static int
4578 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4579 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4580 caller_context_t *ct)
4582 znode_t *zp = VTOZ(vp);
4583 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4584 segvn_crargs_t vn_a;
4585 int error;
4587 ZFS_ENTER(zfsvfs);
4588 ZFS_VERIFY_ZP(zp);
4590 if ((prot & PROT_WRITE) && (zp->z_pflags &
4591 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4592 ZFS_EXIT(zfsvfs);
4593 return (SET_ERROR(EPERM));
4596 if ((prot & (PROT_READ | PROT_EXEC)) &&
4597 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4598 ZFS_EXIT(zfsvfs);
4599 return (SET_ERROR(EACCES));
4602 if (vp->v_flag & VNOMAP) {
4603 ZFS_EXIT(zfsvfs);
4604 return (SET_ERROR(ENOSYS));
4607 if (off < 0 || len > MAXOFFSET_T - off) {
4608 ZFS_EXIT(zfsvfs);
4609 return (SET_ERROR(ENXIO));
4612 if (vp->v_type != VREG) {
4613 ZFS_EXIT(zfsvfs);
4614 return (SET_ERROR(ENODEV));
4618 * If file is locked, disallow mapping.
4620 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4621 ZFS_EXIT(zfsvfs);
4622 return (SET_ERROR(EAGAIN));
4625 as_rangelock(as);
4626 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4627 if (error != 0) {
4628 as_rangeunlock(as);
4629 ZFS_EXIT(zfsvfs);
4630 return (error);
4633 vn_a.vp = vp;
4634 vn_a.offset = (u_offset_t)off;
4635 vn_a.type = flags & MAP_TYPE;
4636 vn_a.prot = prot;
4637 vn_a.maxprot = maxprot;
4638 vn_a.cred = cr;
4639 vn_a.amp = NULL;
4640 vn_a.flags = flags & ~MAP_TYPE;
4641 vn_a.szc = 0;
4642 vn_a.lgrp_mem_policy_flags = 0;
4644 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4646 as_rangeunlock(as);
4647 ZFS_EXIT(zfsvfs);
4648 return (error);
4651 /* ARGSUSED */
4652 static int
4653 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4654 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4655 caller_context_t *ct)
4657 uint64_t pages = btopr(len);
4659 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4660 return (0);
4664 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4665 * more accurate mtime for the associated file. Since we don't have a way of
4666 * detecting when the data was actually modified, we have to resort to
4667 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4668 * last page is pushed. The problem occurs when the msync() call is omitted,
4669 * which by far the most common case:
4671 * open()
4672 * mmap()
4673 * <modify memory>
4674 * munmap()
4675 * close()
4676 * <time lapse>
4677 * putpage() via fsflush
4679 * If we wait until fsflush to come along, we can have a modification time that
4680 * is some arbitrary point in the future. In order to prevent this in the
4681 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4682 * torn down.
4684 /* ARGSUSED */
4685 static int
4686 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4687 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4688 caller_context_t *ct)
4690 uint64_t pages = btopr(len);
4692 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4693 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4695 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4696 vn_has_cached_data(vp))
4697 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4699 return (0);
4703 * Free or allocate space in a file. Currently, this function only
4704 * supports the `F_FREESP' command. However, this command is somewhat
4705 * misnamed, as its functionality includes the ability to allocate as
4706 * well as free space.
4708 * IN: vp - vnode of file to free data in.
4709 * cmd - action to take (only F_FREESP supported).
4710 * bfp - section of file to free/alloc.
4711 * flag - current file open mode flags.
4712 * offset - current file offset.
4713 * cr - credentials of caller [UNUSED].
4714 * ct - caller context.
4716 * RETURN: 0 on success, error code on failure.
4718 * Timestamps:
4719 * vp - ctime|mtime updated
4721 /* ARGSUSED */
4722 static int
4723 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4724 offset_t offset, cred_t *cr, caller_context_t *ct)
4726 znode_t *zp = VTOZ(vp);
4727 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4728 uint64_t off, len;
4729 int error;
4731 ZFS_ENTER(zfsvfs);
4732 ZFS_VERIFY_ZP(zp);
4734 if (cmd != F_FREESP) {
4735 ZFS_EXIT(zfsvfs);
4736 return (SET_ERROR(EINVAL));
4739 if (error = convoff(vp, bfp, 0, offset)) {
4740 ZFS_EXIT(zfsvfs);
4741 return (error);
4744 if (bfp->l_len < 0) {
4745 ZFS_EXIT(zfsvfs);
4746 return (SET_ERROR(EINVAL));
4749 off = bfp->l_start;
4750 len = bfp->l_len; /* 0 means from off to end of file */
4752 error = zfs_freesp(zp, off, len, flag, TRUE);
4754 ZFS_EXIT(zfsvfs);
4755 return (error);
4758 /*ARGSUSED*/
4759 static int
4760 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4762 znode_t *zp = VTOZ(vp);
4763 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4764 uint32_t gen;
4765 uint64_t gen64;
4766 uint64_t object = zp->z_id;
4767 zfid_short_t *zfid;
4768 int size, i, error;
4770 ZFS_ENTER(zfsvfs);
4771 ZFS_VERIFY_ZP(zp);
4773 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4774 &gen64, sizeof (uint64_t))) != 0) {
4775 ZFS_EXIT(zfsvfs);
4776 return (error);
4779 gen = (uint32_t)gen64;
4781 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4782 if (fidp->fid_len < size) {
4783 fidp->fid_len = size;
4784 ZFS_EXIT(zfsvfs);
4785 return (SET_ERROR(ENOSPC));
4788 zfid = (zfid_short_t *)fidp;
4790 zfid->zf_len = size;
4792 for (i = 0; i < sizeof (zfid->zf_object); i++)
4793 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4795 /* Must have a non-zero generation number to distinguish from .zfs */
4796 if (gen == 0)
4797 gen = 1;
4798 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4799 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4801 if (size == LONG_FID_LEN) {
4802 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4803 zfid_long_t *zlfid;
4805 zlfid = (zfid_long_t *)fidp;
4807 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4808 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4810 /* XXX - this should be the generation number for the objset */
4811 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4812 zlfid->zf_setgen[i] = 0;
4815 ZFS_EXIT(zfsvfs);
4816 return (0);
4819 static int
4820 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4821 caller_context_t *ct)
4823 znode_t *zp, *xzp;
4824 zfsvfs_t *zfsvfs;
4825 zfs_dirlock_t *dl;
4826 int error;
4828 switch (cmd) {
4829 case _PC_LINK_MAX:
4830 *valp = ULONG_MAX;
4831 return (0);
4833 case _PC_FILESIZEBITS:
4834 *valp = 64;
4835 return (0);
4837 case _PC_XATTR_EXISTS:
4838 zp = VTOZ(vp);
4839 zfsvfs = zp->z_zfsvfs;
4840 ZFS_ENTER(zfsvfs);
4841 ZFS_VERIFY_ZP(zp);
4842 *valp = 0;
4843 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4844 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4845 if (error == 0) {
4846 zfs_dirent_unlock(dl);
4847 if (!zfs_dirempty(xzp))
4848 *valp = 1;
4849 VN_RELE(ZTOV(xzp));
4850 } else if (error == ENOENT) {
4852 * If there aren't extended attributes, it's the
4853 * same as having zero of them.
4855 error = 0;
4857 ZFS_EXIT(zfsvfs);
4858 return (error);
4860 case _PC_SATTR_ENABLED:
4861 case _PC_SATTR_EXISTS:
4862 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4863 (vp->v_type == VREG || vp->v_type == VDIR);
4864 return (0);
4866 case _PC_ACCESS_FILTERING:
4867 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4868 vp->v_type == VDIR;
4869 return (0);
4871 case _PC_ACL_ENABLED:
4872 *valp = _ACL_ACE_ENABLED;
4873 return (0);
4875 case _PC_MIN_HOLE_SIZE:
4876 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4877 return (0);
4879 case _PC_TIMESTAMP_RESOLUTION:
4880 /* nanosecond timestamp resolution */
4881 *valp = 1L;
4882 return (0);
4884 default:
4885 return (fs_pathconf(vp, cmd, valp, cr, ct));
4889 /*ARGSUSED*/
4890 static int
4891 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4892 caller_context_t *ct)
4894 znode_t *zp = VTOZ(vp);
4895 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4896 int error;
4897 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4899 ZFS_ENTER(zfsvfs);
4900 ZFS_VERIFY_ZP(zp);
4901 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4902 ZFS_EXIT(zfsvfs);
4904 return (error);
4907 /*ARGSUSED*/
4908 static int
4909 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4910 caller_context_t *ct)
4912 znode_t *zp = VTOZ(vp);
4913 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4914 int error;
4915 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4916 zilog_t *zilog = zfsvfs->z_log;
4918 ZFS_ENTER(zfsvfs);
4919 ZFS_VERIFY_ZP(zp);
4921 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4923 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4924 zil_commit(zilog, 0);
4926 ZFS_EXIT(zfsvfs);
4927 return (error);
4931 * The smallest read we may consider to loan out an arcbuf.
4932 * This must be a power of 2.
4934 int zcr_blksz_min = (1 << 10); /* 1K */
4936 * If set to less than the file block size, allow loaning out of an
4937 * arcbuf for a partial block read. This must be a power of 2.
4939 int zcr_blksz_max = (1 << 17); /* 128K */
4941 /*ARGSUSED*/
4942 static int
4943 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4944 caller_context_t *ct)
4946 znode_t *zp = VTOZ(vp);
4947 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4948 int max_blksz = zfsvfs->z_max_blksz;
4949 uio_t *uio = &xuio->xu_uio;
4950 ssize_t size = uio->uio_resid;
4951 offset_t offset = uio->uio_loffset;
4952 int blksz;
4953 int fullblk, i;
4954 arc_buf_t *abuf;
4955 ssize_t maxsize;
4956 int preamble, postamble;
4958 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4959 return (SET_ERROR(EINVAL));
4961 ZFS_ENTER(zfsvfs);
4962 ZFS_VERIFY_ZP(zp);
4963 switch (ioflag) {
4964 case UIO_WRITE:
4966 * Loan out an arc_buf for write if write size is bigger than
4967 * max_blksz, and the file's block size is also max_blksz.
4969 blksz = max_blksz;
4970 if (size < blksz || zp->z_blksz != blksz) {
4971 ZFS_EXIT(zfsvfs);
4972 return (SET_ERROR(EINVAL));
4975 * Caller requests buffers for write before knowing where the
4976 * write offset might be (e.g. NFS TCP write).
4978 if (offset == -1) {
4979 preamble = 0;
4980 } else {
4981 preamble = P2PHASE(offset, blksz);
4982 if (preamble) {
4983 preamble = blksz - preamble;
4984 size -= preamble;
4988 postamble = P2PHASE(size, blksz);
4989 size -= postamble;
4991 fullblk = size / blksz;
4992 (void) dmu_xuio_init(xuio,
4993 (preamble != 0) + fullblk + (postamble != 0));
4994 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4995 int, postamble, int,
4996 (preamble != 0) + fullblk + (postamble != 0));
4999 * Have to fix iov base/len for partial buffers. They
5000 * currently represent full arc_buf's.
5002 if (preamble) {
5003 /* data begins in the middle of the arc_buf */
5004 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5005 blksz);
5006 ASSERT(abuf);
5007 (void) dmu_xuio_add(xuio, abuf,
5008 blksz - preamble, preamble);
5011 for (i = 0; i < fullblk; i++) {
5012 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5013 blksz);
5014 ASSERT(abuf);
5015 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5018 if (postamble) {
5019 /* data ends in the middle of the arc_buf */
5020 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5021 blksz);
5022 ASSERT(abuf);
5023 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5025 break;
5026 case UIO_READ:
5028 * Loan out an arc_buf for read if the read size is larger than
5029 * the current file block size. Block alignment is not
5030 * considered. Partial arc_buf will be loaned out for read.
5032 blksz = zp->z_blksz;
5033 if (blksz < zcr_blksz_min)
5034 blksz = zcr_blksz_min;
5035 if (blksz > zcr_blksz_max)
5036 blksz = zcr_blksz_max;
5037 /* avoid potential complexity of dealing with it */
5038 if (blksz > max_blksz) {
5039 ZFS_EXIT(zfsvfs);
5040 return (SET_ERROR(EINVAL));
5043 maxsize = zp->z_size - uio->uio_loffset;
5044 if (size > maxsize)
5045 size = maxsize;
5047 if (size < blksz || vn_has_cached_data(vp)) {
5048 ZFS_EXIT(zfsvfs);
5049 return (SET_ERROR(EINVAL));
5051 break;
5052 default:
5053 ZFS_EXIT(zfsvfs);
5054 return (SET_ERROR(EINVAL));
5057 uio->uio_extflg = UIO_XUIO;
5058 XUIO_XUZC_RW(xuio) = ioflag;
5059 ZFS_EXIT(zfsvfs);
5060 return (0);
5063 /*ARGSUSED*/
5064 static int
5065 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5067 int i;
5068 arc_buf_t *abuf;
5069 int ioflag = XUIO_XUZC_RW(xuio);
5071 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5073 i = dmu_xuio_cnt(xuio);
5074 while (i-- > 0) {
5075 abuf = dmu_xuio_arcbuf(xuio, i);
5077 * if abuf == NULL, it must be a write buffer
5078 * that has been returned in zfs_write().
5080 if (abuf)
5081 dmu_return_arcbuf(abuf);
5082 ASSERT(abuf || ioflag == UIO_WRITE);
5085 dmu_xuio_fini(xuio);
5086 return (0);
5090 * Predeclare these here so that the compiler assumes that
5091 * this is an "old style" function declaration that does
5092 * not include arguments => we won't get type mismatch errors
5093 * in the initializations that follow.
5095 static int zfs_inval();
5096 static int zfs_isdir();
5098 static int
5099 zfs_inval()
5101 return (SET_ERROR(EINVAL));
5104 static int
5105 zfs_isdir()
5107 return (SET_ERROR(EISDIR));
5110 * Directory vnode operations template
5112 vnodeops_t *zfs_dvnodeops;
5113 const fs_operation_def_t zfs_dvnodeops_template[] = {
5114 VOPNAME_OPEN, { .vop_open = zfs_open },
5115 VOPNAME_CLOSE, { .vop_close = zfs_close },
5116 VOPNAME_READ, { .error = zfs_isdir },
5117 VOPNAME_WRITE, { .error = zfs_isdir },
5118 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5119 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5120 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5121 VOPNAME_ACCESS, { .vop_access = zfs_access },
5122 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5123 VOPNAME_CREATE, { .vop_create = zfs_create },
5124 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5125 VOPNAME_LINK, { .vop_link = zfs_link },
5126 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5127 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5128 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5129 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5130 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5131 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5132 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5133 VOPNAME_FID, { .vop_fid = zfs_fid },
5134 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5135 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5136 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5137 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5138 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5139 NULL, NULL
5143 * Regular file vnode operations template
5145 vnodeops_t *zfs_fvnodeops;
5146 const fs_operation_def_t zfs_fvnodeops_template[] = {
5147 VOPNAME_OPEN, { .vop_open = zfs_open },
5148 VOPNAME_CLOSE, { .vop_close = zfs_close },
5149 VOPNAME_READ, { .vop_read = zfs_read },
5150 VOPNAME_WRITE, { .vop_write = zfs_write },
5151 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5152 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5153 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5154 VOPNAME_ACCESS, { .vop_access = zfs_access },
5155 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5156 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5157 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5158 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5159 VOPNAME_FID, { .vop_fid = zfs_fid },
5160 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5161 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5162 VOPNAME_SPACE, { .vop_space = zfs_space },
5163 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5164 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5165 VOPNAME_MAP, { .vop_map = zfs_map },
5166 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5167 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5168 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5169 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5170 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5171 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5172 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5173 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5174 NULL, NULL
5178 * Symbolic link vnode operations template
5180 vnodeops_t *zfs_symvnodeops;
5181 const fs_operation_def_t zfs_symvnodeops_template[] = {
5182 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5183 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5184 VOPNAME_ACCESS, { .vop_access = zfs_access },
5185 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5186 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5187 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5188 VOPNAME_FID, { .vop_fid = zfs_fid },
5189 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5190 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5191 NULL, NULL
5195 * special share hidden files vnode operations template
5197 vnodeops_t *zfs_sharevnodeops;
5198 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5199 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5200 VOPNAME_ACCESS, { .vop_access = zfs_access },
5201 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5202 VOPNAME_FID, { .vop_fid = zfs_fid },
5203 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5204 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5205 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5206 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5207 NULL, NULL
5211 * Extended attribute directory vnode operations template
5213 * This template is identical to the directory vnodes
5214 * operation template except for restricted operations:
5215 * VOP_MKDIR()
5216 * VOP_SYMLINK()
5218 * Note that there are other restrictions embedded in:
5219 * zfs_create() - restrict type to VREG
5220 * zfs_link() - no links into/out of attribute space
5221 * zfs_rename() - no moves into/out of attribute space
5223 vnodeops_t *zfs_xdvnodeops;
5224 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5225 VOPNAME_OPEN, { .vop_open = zfs_open },
5226 VOPNAME_CLOSE, { .vop_close = zfs_close },
5227 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5228 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5229 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5230 VOPNAME_ACCESS, { .vop_access = zfs_access },
5231 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5232 VOPNAME_CREATE, { .vop_create = zfs_create },
5233 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5234 VOPNAME_LINK, { .vop_link = zfs_link },
5235 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5236 VOPNAME_MKDIR, { .error = zfs_inval },
5237 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5238 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5239 VOPNAME_SYMLINK, { .error = zfs_inval },
5240 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5241 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5242 VOPNAME_FID, { .vop_fid = zfs_fid },
5243 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5244 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5245 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5246 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5247 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5248 NULL, NULL
5252 * Error vnode operations template
5254 vnodeops_t *zfs_evnodeops;
5255 const fs_operation_def_t zfs_evnodeops_template[] = {
5256 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5257 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5258 NULL, NULL