6345 remove xhat support
[illumos-gate.git] / usr / src / uts / sfmmu / vm / hat_sfmmu.h
blob86f2bb538e672f5354d02bb3658c6582cbecaa50
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved.
26 * VM - Hardware Address Translation management.
28 * This file describes the contents of the sun-reference-mmu(sfmmu)-
29 * specific hat data structures and the sfmmu-specific hat procedures.
30 * The machine-independent interface is described in <vm/hat.h>.
33 #ifndef _VM_HAT_SFMMU_H
34 #define _VM_HAT_SFMMU_H
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
40 #ifndef _ASM
42 #include <sys/types.h>
44 #endif /* _ASM */
46 #ifdef _KERNEL
48 #include <sys/pte.h>
49 #include <vm/mach_sfmmu.h>
50 #include <sys/mmu.h>
53 * Don't alter these without considering changes to ism_map_t.
55 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M
56 #define DEFAULT_ISM_PAGESZC TTE4M
57 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift)
58 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1)
59 #define ISM_MAP_SLOTS 8 /* Change this carefully. */
61 #ifndef _ASM
63 #include <sys/t_lock.h>
64 #include <vm/hat.h>
65 #include <vm/seg.h>
66 #include <sys/machparam.h>
67 #include <sys/systm.h>
68 #include <sys/x_call.h>
69 #include <vm/page.h>
70 #include <sys/ksynch.h>
72 typedef struct hat sfmmu_t;
73 typedef struct sf_scd sf_scd_t;
76 * SFMMU attributes for hat_memload/hat_devload
78 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */
79 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */
80 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */
81 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \
82 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \
83 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
87 * sfmmu flags for hat_memload/hat_devload
89 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */
90 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \
91 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \
92 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \
93 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
96 * sfmmu internal flag to hat_pageunload that spares locked mappings
98 #define SFMMU_KERNEL_RELOC 0x8000
101 * mode for sfmmu_chgattr
103 #define SFMMU_SETATTR 0x0
104 #define SFMMU_CLRATTR 0x1
105 #define SFMMU_CHGATTR 0x2
108 * sfmmu specific flags for page_t
110 #define P_PNC 0x8 /* non-caching is permanent bit */
111 #define P_TNC 0x10 /* non-caching is temporary bit */
112 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */
113 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */
115 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO))
116 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD)
117 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF)
118 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO)
119 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC))
120 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC)
121 #ifdef VAC
122 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC)
123 #endif
124 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS)
125 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC)
127 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD)
128 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF)
129 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD))
130 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO)
131 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO))
132 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC)
133 #ifdef VAC
134 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC)
135 #endif
136 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS)
137 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC)
139 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD)
140 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF)
141 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD))
142 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO)
143 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC)
144 #ifdef VAC
145 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC)
146 #endif
147 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS)
148 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC)
151 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
152 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
153 * created ISM segment is created out of a new address space at base va
154 * of 0 we don't need to store it.
156 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */
157 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
158 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift))
161 * Pad locks out to cache sub-block boundaries to prevent
162 * false sharing, so several processes don't contend for
163 * the same line if they aren't using the same lock. Since
164 * this is a typedef we also have a bit of freedom in
165 * changing lock implementations later if we decide it
166 * is necessary.
168 typedef struct hat_lock {
169 kmutex_t hl_mutex;
170 uchar_t hl_pad[64 - sizeof (kmutex_t)];
171 } hatlock_t;
173 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex))
176 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
177 * Also size is guaranteed to be in 4M, 32M or 256M chunks.
178 * ism_seg consists of the following members:
179 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
180 * caddr_t is 64 bits or 32 bits.
181 * [21..0] size of segment.
183 * NOTE: Don't alter this structure without changing defines above and
184 * the tsb_miss and protection handlers.
186 typedef struct ism_map {
187 uintptr_t imap_seg; /* base va + sz of ISM segment */
188 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */
189 uchar_t imap_rid; /* region id for ism */
190 ushort_t imap_hatflags; /* primary ism page size */
191 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */
192 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */
193 struct ism_ment *imap_ment; /* pointer to mapping list entry */
194 } ism_map_t;
196 #define ism_start(map) ((caddr_t)((map).imap_seg & \
197 ~ISM_SZ_MASK((map).imap_vb_shift)))
198 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
199 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \
200 ISM_PG_SIZE((map).imap_vb_shift))))
202 * ISM mapping entry. Used to link all hat's sharing a ism_hat.
203 * Same function as the p_mapping list for a page.
205 typedef struct ism_ment {
206 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */
207 caddr_t iment_base_va; /* hat's va base for this ism seg */
208 struct ism_ment *iment_next; /* next ism map entry */
209 struct ism_ment *iment_prev; /* prev ism map entry */
210 } ism_ment_t;
213 * ISM segment block. One will be hung off the sfmmu structure if a
214 * a process uses ISM. More will be linked using ismblk_next if more
215 * than ISM_MAP_SLOTS segments are attached to this proc.
217 * All modifications to fields in this structure will be protected
218 * by the hat mutex. In order to avoid grabbing this lock in low level
219 * routines (tsb miss/protection handlers and vatopfn) while not
220 * introducing any race conditions with hat_unshare, we will set
221 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
222 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
223 * where it will synchronize behind the hat mutex.
225 typedef struct ism_blk {
226 ism_map_t iblk_maps[ISM_MAP_SLOTS];
227 struct ism_blk *iblk_next;
228 uint64_t iblk_nextpa;
229 } ism_blk_t;
232 * TSB access information. All fields are protected by the process's
233 * hat lock.
236 struct tsb_info {
237 caddr_t tsb_va; /* tsb base virtual address */
238 uint64_t tsb_pa; /* tsb base physical address */
239 struct tsb_info *tsb_next; /* next tsb used by this process */
240 uint16_t tsb_szc; /* tsb size code */
241 uint16_t tsb_flags; /* flags for this tsb; see below */
242 uint_t tsb_ttesz_mask; /* page size masks; see below */
244 tte_t tsb_tte; /* tte to lock into DTLB */
245 sfmmu_t *tsb_sfmmu; /* sfmmu */
246 kmem_cache_t *tsb_cache; /* cache from which mem allocated */
247 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */
251 * Values for "tsb_ttesz_mask" bitmask.
253 #define TSB8K (1 << TTE8K)
254 #define TSB64K (1 << TTE64K)
255 #define TSB512K (1 << TTE512K)
256 #define TSB4M (1 << TTE4M)
257 #define TSB32M (1 << TTE32M)
258 #define TSB256M (1 << TTE256M)
261 * Values for "tsb_flags" field.
263 #define TSB_RELOC_FLAG 0x1
264 #define TSB_FLUSH_NEEDED 0x2
265 #define TSB_SWAPPED 0x4
266 #define TSB_SHAREDCTX 0x8
268 #endif /* !_ASM */
271 * Data structures for shared hmeblk support.
275 * Do not increase the maximum number of ism/hme regions without checking first
276 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in
277 * sf_region structure.
278 * Initially, shared hmes will only be used for the main text segment
279 * therefore this value will be set to 64, it will be increased when shared
280 * libraries are included.
283 #define SFMMU_MAX_HME_REGIONS (64)
284 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS)
286 #define SFMMU_PRIVATE 0
287 #define SFMMU_SHARED 1
289 #define HMEBLK_ENDPA 1
291 #ifndef _ASM
293 #define SFMMU_MAX_ISM_REGIONS (64)
294 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS)
296 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS)
298 #define SFMMU_MAX_REGION_BUCKETS (128)
299 #define SFMMU_MAX_SRD_BUCKETS (2048)
301 typedef struct sf_hmeregion_map {
302 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS];
303 } sf_hmeregion_map_t;
305 typedef struct sf_ismregion_map {
306 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS];
307 } sf_ismregion_map_t;
309 typedef union sf_region_map_u {
310 struct _h_rmap_s {
311 sf_hmeregion_map_t hmeregion_map;
312 sf_ismregion_map_t ismregion_map;
313 } h_rmap_s;
314 ulong_t bitmap[SFMMU_RGNMAP_WORDS];
315 } sf_region_map_t;
317 #define SF_RGNMAP_ZERO(map) { \
318 int _i; \
319 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \
320 (map).bitmap[_i] = 0; \
325 * Returns 1 if map1 and map2 are equal.
327 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \
328 int _i; \
329 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \
330 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \
331 break; \
333 if (_i < SFMMU_RGNMAP_WORDS) \
334 rval = 0; \
335 else \
336 rval = 1; \
339 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r)
340 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r)
341 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r)
344 * Tests whether map2 is a subset of map1, returns 1 if
345 * this assertion is true.
347 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \
348 int _i; \
349 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \
350 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \
351 != (map2)->bitmap[_i]) { \
352 break; \
355 if (_i < SFMMU_RGNMAP_WORDS) \
356 rval = 0; \
357 else \
358 rval = 1; \
361 #define SF_SCD_INCR_REF(scdp) { \
362 atomic_inc_32((volatile uint32_t *)&(scdp)->scd_refcnt); \
365 #define SF_SCD_DECR_REF(srdp, scdp) { \
366 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \
367 if (!atomic_dec_32_nv((volatile uint32_t *)&(scdp)->scd_refcnt)) {\
368 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \
373 * A sfmmup link in the link list of sfmmups that share the same region.
375 typedef struct sf_rgn_link {
376 sfmmu_t *next;
377 sfmmu_t *prev;
378 } sf_rgn_link_t;
381 * rgn_flags values.
383 #define SFMMU_REGION_HME 0x1
384 #define SFMMU_REGION_ISM 0x2
385 #define SFMMU_REGION_FREE 0x8
387 #define SFMMU_REGION_TYPE_MASK (0x3)
390 * sf_region defines a text or (D)ISM segment which map
391 * the same underlying physical object.
393 typedef struct sf_region {
394 caddr_t rgn_saddr; /* base addr of attached seg */
395 size_t rgn_size; /* size of attached seg */
396 void *rgn_obj; /* the underlying object id */
397 u_offset_t rgn_objoff; /* offset in the object mapped */
398 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */
399 uchar_t rgn_pgszc; /* page size of the region */
400 uchar_t rgn_flags; /* region type, free flag */
401 uchar_t rgn_id;
402 int rgn_refcnt; /* # of hats sharing the region */
403 /* callback function for hat_unload_callback */
404 hat_rgn_cb_func_t rgn_cb_function;
405 struct sf_region *rgn_hash; /* hash chain linking the rgns */
406 kmutex_t rgn_mutex; /* protect region sfmmu list */
407 /* A link list of processes attached to this region */
408 sfmmu_t *rgn_sfmmu_head;
409 ulong_t rgn_ttecnt[MMU_PAGE_SIZES];
410 uint16_t rgn_hmeflags; /* rgn tte size flags */
411 } sf_region_t;
413 #define rgn_next rgn_hash
415 /* srd */
416 typedef struct sf_shared_region_domain {
417 vnode_t *srd_evp; /* executable vnode */
418 /* hme region table */
419 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS];
420 /* ism region table */
421 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS];
422 /* hash chain linking srds */
423 struct sf_shared_region_domain *srd_hash;
424 /* pointer to the next free hme region */
425 sf_region_t *srd_hmergnfree;
426 /* pointer to the next free ism region */
427 sf_region_t *srd_ismrgnfree;
428 /* id of next ism region created */
429 uint16_t srd_next_ismrid;
430 /* id of next hme region created */
431 uint16_t srd_next_hmerid;
432 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */
433 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */
434 int srd_refcnt; /* # of procs in the srd */
435 kmutex_t srd_mutex; /* sync add/remove rgns */
436 kmutex_t srd_scd_mutex;
437 sf_scd_t *srd_scdp; /* list of scds in srd */
438 /* hash of regions associated with the same executable */
439 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS];
440 } sf_srd_t;
442 typedef struct sf_srd_bucket {
443 kmutex_t srdb_lock;
444 sf_srd_t *srdb_srdp;
445 } sf_srd_bucket_t;
448 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased
449 * to 16 when the use of shared hmes for shared libraries is enabled.
452 #define SFMMU_L1_HMERLINKS (8)
453 #define SFMMU_L2_HMERLINKS (8)
454 #define SFMMU_L1_HMERLINKS_SHIFT (3)
455 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1)
456 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1)
457 #define SFMMU_L1_HMERLINKS_SIZE \
458 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *))
459 #define SFMMU_L2_HMERLINKS_SIZE \
460 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t))
462 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS)
463 #error Not Enough HMERLINKS
464 #endif
467 * This macro grabs hat lock and allocates level 2 hat chain
468 * associated with a shme rgn. In the majority of cases, the macro
469 * is called with alloc = 0, and lock = 0.
470 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp
471 * parameter.
473 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \
475 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \
476 SFMMU_L1_HMERLINKS_MASK; \
477 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \
478 hatlock_t *_hatlockp; \
479 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \
480 if (lnkp != NULL) { \
481 lnkp = &lnkp[_l2ix]; \
482 } else if (alloc && lock) { \
483 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \
484 _hatlockp = sfmmu_hat_enter(sfmmup); \
485 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \
486 sfmmu_hat_exit(_hatlockp); \
487 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \
488 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \
489 ASSERT(lnkp != NULL); \
490 } else { \
491 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \
492 sfmmu_hat_exit(_hatlockp); \
494 lnkp = &lnkp[_l2ix]; \
495 } else if (alloc) { \
496 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \
497 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \
498 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \
499 lnkp = &lnkp[_l2ix]; \
504 * Per cpu pending freelist of hmeblks.
506 typedef struct cpu_hme_pend {
507 struct hme_blk *chp_listp;
508 kmutex_t chp_mutex;
509 time_t chp_timestamp;
510 uint_t chp_count;
511 uint8_t chp_pad[36]; /* pad to 64 bytes */
512 } cpu_hme_pend_t;
515 * The default value of the threshold for the per cpu pending queues of hmeblks.
516 * The queues are flushed if either the number of hmeblks on the queue is above
517 * the threshold, or one second has elapsed since the last flush.
519 #define CPU_HME_PEND_THRESH 1000
522 * Per-MMU context domain kstats.
524 * TSB Miss Exceptions
525 * Number of times a TSB miss exception is handled in an MMU. See
526 * sfmmu_tsbmiss_exception() for more details.
527 * TSB Raise Exception
528 * Number of times the CPUs within an MMU are cross-called
529 * to invalidate either a specific process context (when the process
530 * switches MMU contexts) or the context of any process that is
531 * running on those CPUs (as part of the MMU context wrap-around).
532 * Wrap Around
533 * The number of times a wrap-around of MMU context happens.
535 typedef enum mmu_ctx_stat_types {
536 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */
537 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */
538 MMU_CTX_WRAP_AROUND, /* wraparounds */
539 MMU_CTX_NUM_STATS
540 } mmu_ctx_stat_t;
543 * Per-MMU context domain structure. This is instantiated the first time a CPU
544 * belonging to the MMU context domain is configured into the system, at boot
545 * time or at DR time.
547 * mmu_gnum
548 * The current generation number for the context IDs on this MMU context
549 * domain. It is protected by mmu_lock.
550 * mmu_cnum
551 * The current cnum to be allocated on this MMU context domain. It
552 * is protected via CAS.
553 * mmu_nctxs
554 * The max number of context IDs supported on every CPU in this
555 * MMU context domain. This is needed here in case the system supports
556 * mixed type of processors/MMUs. It also helps to make ctx switch code
557 * access fewer cache lines i.e. no need to retrieve it from some global
558 * nctxs.
559 * mmu_lock
560 * The mutex spin lock used to serialize context ID wrap around
561 * mmu_idx
562 * The index for this MMU context domain structure in the global array
563 * mmu_ctxdoms.
564 * mmu_ncpus
565 * The actual number of CPUs that have been configured in this
566 * MMU context domain. This also acts as a reference count for the
567 * structure. When the last CPU in an MMU context domain is unconfigured,
568 * the structure is freed. It is protected by mmu_lock.
569 * mmu_cpuset
570 * The CPU set of configured CPUs for this MMU context domain. Used
571 * to cross-call all the CPUs in the MMU context domain to invalidate
572 * context IDs during a wraparound operation. It is protected by mmu_lock.
575 typedef struct mmu_ctx {
576 uint64_t mmu_gnum;
577 uint_t mmu_cnum;
578 uint_t mmu_nctxs;
579 kmutex_t mmu_lock;
580 uint_t mmu_idx;
581 uint_t mmu_ncpus;
582 cpuset_t mmu_cpuset;
583 kstat_t *mmu_kstat;
584 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS];
585 } mmu_ctx_t;
587 #define mmu_tsb_exceptions \
588 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
589 #define mmu_tsb_raise_exception \
590 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
591 #define mmu_wrap_around \
592 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
594 extern uint_t max_mmu_ctxdoms;
595 extern mmu_ctx_t **mmu_ctxs_tbl;
597 extern void sfmmu_cpu_init(cpu_t *);
598 extern void sfmmu_cpu_cleanup(cpu_t *);
600 extern uint_t sfmmu_ctxdom_nctxs(int);
602 #ifdef sun4v
603 extern void sfmmu_ctxdoms_remove(void);
604 extern void sfmmu_ctxdoms_lock(void);
605 extern void sfmmu_ctxdoms_unlock(void);
606 extern void sfmmu_ctxdoms_update(void);
607 #endif
610 * The following structure is used to get MMU context domain information for
611 * a CPU from the platform.
613 * mmu_idx
614 * The MMU context domain index within the global array mmu_ctxs
615 * mmu_nctxs
616 * The number of context IDs supported in the MMU context domain
618 typedef struct mmu_ctx_info {
619 uint_t mmu_idx;
620 uint_t mmu_nctxs;
621 } mmu_ctx_info_t;
623 #pragma weak plat_cpuid_to_mmu_ctx_info
625 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
628 * Each address space has an array of sfmmu_ctx_t structures, one structure
629 * per MMU context domain.
631 * cnum
632 * The context ID allocated for an address space on an MMU context domain
633 * gnum
634 * The generation number for the context ID in the MMU context domain.
636 * This structure needs to be a power-of-two in size.
638 typedef struct sfmmu_ctx {
639 uint64_t gnum:48;
640 uint64_t cnum:16;
641 } sfmmu_ctx_t;
645 * The platform dependent hat structure.
646 * tte counts should be protected by cas.
647 * cpuset is protected by cas.
649 * ttecnt accounting for mappings which do not use shared hme is carried out
650 * during pagefault handling. In the shared hme case, only the first process
651 * to access a mapping generates a pagefault, subsequent processes simply
652 * find the shared hme entry during trap handling and therefore there is no
653 * corresponding event to initiate ttecnt accounting. Currently, as shared
654 * hmes are only used for text segments, when joining a region we assume the
655 * worst case and add the the number of ttes required to map the entire region
656 * to the ttecnt corresponding to the region pagesize. However, if the region
657 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail
658 * then 8K pages will be allocated instead and the first TSB which stores 8K
659 * mappings will potentially be undersized. To compensate for the potential
660 * underaccounting in this case we always add 1/4 of the region size to the 8K
661 * ttecnt.
664 struct hat {
665 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */
666 struct as *sfmmu_as; /* as this hat provides mapping for */
667 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */
668 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES];
669 /* shme rgns ttecnt for rgns in SCD */
670 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES];
671 /* est. ism ttes that are NOT in a SCD */
672 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES];
673 /* ttecnt for isms that are in a SCD */
674 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES];
675 /* inflate tsb0 to allow for large page alloc failure in region */
676 ulong_t sfmmu_tsb0_4minflcnt;
677 union _h_un {
678 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */
679 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */
680 } h_un;
681 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */
682 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */
683 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */
684 uchar_t sfmmu_rmstat; /* refmod stats refcnt */
685 ushort_t sfmmu_clrstart; /* start color bin for page coloring */
686 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */
687 ushort_t sfmmu_flags; /* flags */
688 uchar_t sfmmu_tteflags; /* pgsz flags */
689 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */
690 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */
691 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
692 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */
693 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */
694 uchar_t sfmmu_cext; /* context page size encoding */
695 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */
696 sf_srd_t *sfmmu_srdp;
697 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */
698 sf_region_map_t sfmmu_region_map;
699 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS];
700 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */
701 #ifdef sun4v
702 struct hv_tsb_block sfmmu_hvblock;
703 #endif
705 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
706 * elements. max_mmu_ctxdoms is determined at run-time.
707 * sfmmu_ctxs[1] is just the fist element of an array, it always
708 * has to be the last field to ensure that the memory allocated
709 * for sfmmu_ctxs is consecutive with the memory of the rest of
710 * the hat data structure.
712 sfmmu_ctx_t sfmmu_ctxs[1];
716 #define sfmmu_iblk h_un.sfmmu_iblkp
717 #define sfmmu_iment h_un.sfmmu_imentp
719 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map
720 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map
722 #define SF_RGNMAP_ISNULL(sfmmup) \
723 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map))
724 #define SF_HMERGNMAP_ISNULL(sfmmup) \
725 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map))
727 struct sf_scd {
728 sfmmu_t *scd_sfmmup; /* shared context hat */
729 /* per pgsz ttecnt for shme rgns in SCD */
730 ulong_t scd_rttecnt[MMU_PAGE_SIZES];
731 uint_t scd_refcnt; /* address spaces attached to scd */
732 sf_region_map_t scd_region_map; /* bit mask of attached segments */
733 sf_scd_t *scd_next; /* link pointers for srd_scd list */
734 sf_scd_t *scd_prev;
735 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */
736 kmutex_t scd_mutex;
738 * Link used to add an scd to the sfmmu_iment list.
740 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS];
743 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map
744 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map
746 extern int disable_shctx;
747 extern int shctx_on;
750 * bit mask for managing vac conflicts on large pages.
751 * bit 1 is for uncache flag.
752 * bits 2 through min(num of cache colors + 1,31) are
753 * for cache colors that have already been flushed.
755 #ifdef VAC
756 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT)
757 #else
758 #define CACHE_NUM_COLOR 1
759 #endif
761 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1)))
763 #define CacheColor_IsFlushed(flag, vcolor) \
764 ((flag) & CACHE_VCOLOR_MASK(vcolor))
766 #define CacheColor_SetFlushed(flag, vcolor) \
767 ((flag) |= CACHE_VCOLOR_MASK(vcolor))
769 * Flags passed to sfmmu_page_cache to flush page from vac or not.
771 #define CACHE_FLUSH 0
772 #define CACHE_NO_FLUSH 1
775 * Flags passed to sfmmu_tlbcache_demap
777 #define FLUSH_NECESSARY_CPUS 0
778 #define FLUSH_ALL_CPUS 1
780 #ifdef DEBUG
782 * For debugging purpose only. Maybe removed later.
784 struct ctx_trace {
785 sfmmu_t *sc_sfmmu_stolen;
786 sfmmu_t *sc_sfmmu_stealing;
787 clock_t sc_time;
788 ushort_t sc_type;
789 ushort_t sc_cnum;
791 #define CTX_TRC_STEAL 0x1
792 #define CTX_TRC_FREE 0x0
793 #define TRSIZE 0x400
794 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \
795 ctx_trace_first : ((ptr) + 1))
796 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
797 mutex_enter(mutex); \
798 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \
799 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \
800 (ptr)->sc_cnum = (cnum); \
801 (ptr)->sc_type = (type); \
802 (ptr)->sc_time = ddi_get_lbolt(); \
803 (ptr) = NEXT_CTXTR(ptr); \
804 num_ctx_stolen += (type); \
805 mutex_exit(mutex);
806 #else
808 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
810 #endif /* DEBUG */
812 #endif /* !_ASM */
815 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags
816 * ASSERT() that we're holding the HAT lock before changing the flags;
817 * however callers that read the flags may do so without acquiring the lock
818 * in a fast path, and then recheck the flag after acquiring the lock in
819 * a slow path.
821 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \
822 (((sfmmup)->sfmmu_flags & (flags)) == (flags))
824 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \
825 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \
826 (sfmmup)->sfmmu_flags &= ~(flags))
828 #define SFMMU_FLAGS_SET(sfmmup, flags) \
829 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \
830 (sfmmup)->sfmmu_flags |= (flags))
832 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \
833 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \
834 (flags))
838 * sfmmu tte HAT flags, must fit in 8 bits
840 #define HAT_CHKCTX1_FLAG 0x1
841 #define HAT_64K_FLAG (0x1 << TTE64K)
842 #define HAT_512K_FLAG (0x1 << TTE512K)
843 #define HAT_4M_FLAG (0x1 << TTE4M)
844 #define HAT_32M_FLAG (0x1 << TTE32M)
845 #define HAT_256M_FLAG (0x1 << TTE256M)
848 * sfmmu HAT flags, 16 bits at the moment.
850 #define HAT_4MTEXT_FLAG 0x01
851 #define HAT_32M_ISM 0x02
852 #define HAT_256M_ISM 0x04
853 #define HAT_SWAPPED 0x08 /* swapped out */
854 #define HAT_SWAPIN 0x10 /* swapping in */
855 #define HAT_BUSY 0x20 /* replacing TSB(s) */
856 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */
858 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */
859 #define HAT_JOIN_SCD 0x200 /* region is joining scd */
860 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */
862 #define SFMMU_LGPGS_INUSE(sfmmup) \
863 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \
864 ((sfmmup)->sfmmu_iblk != NULL))
867 * Starting with context 0, the first NUM_LOCKED_CTXS contexts
868 * are locked so that sfmmu_getctx can't steal any of these
869 * contexts. At the time this software was being developed, the
870 * only context that needs to be locked is context 0 (the kernel
871 * context), and context 1 (reserved for stolen context). So this constant
872 * was originally defined to be 2.
874 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many
875 * routines only care whether the context is kernel, invalid or user.
878 #define NUM_LOCKED_CTXS 2
879 #define INVALID_CONTEXT 1
881 #ifdef sun4v
882 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS
883 #endif
884 #if defined(sun4v) || defined(UTSB_PHYS)
886 * Get the location in the 4MB base TSB of the tsbe for this fault.
887 * Assumes that the second TSB only contains 4M mappings.
889 * In:
890 * tagacc = tag access register (not clobbered)
891 * tsbe = 2nd TSB base register
892 * tmp1, tmp2 = scratch registers
893 * Out:
894 * tsbe = pointer to the tsbe in the 2nd TSB
897 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \
898 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \
899 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \
900 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \
901 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \
902 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \
903 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \
904 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \
905 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \
906 add tsbe, tmp1, tsbe /* add entry offset to TSB base */
908 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \
909 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
912 * Get the location in the 3rd TSB of the tsbe for this fault.
913 * The 3rd TSB corresponds to the shared context, and is used
914 * for 8K - 512k pages.
916 * In:
917 * tagacc = tag access register (not clobbered)
918 * tsbe, tmp1, tmp2 = scratch registers
919 * Out:
920 * tsbe = pointer to the tsbe in the 3rd TSB
923 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \
924 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \
925 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \
926 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \
927 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \
928 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \
929 srlx tagacc, MMU_PAGESHIFT, tmp2; \
930 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \
931 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \
932 add tsbe, tmp1, tsbe /* add entry offset to TSB base */
934 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \
935 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
937 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss
938 * shmermap or scd_shmermap, from sfmmu_load_mmustate.
940 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \
941 /* BEGIN CSTYLED */ \
942 label: ;\
943 ldx [rgn_map], tmp ;\
944 dec cnt ;\
945 add rgn_map, CLONGSIZE, rgn_map ;\
946 stx tmp, [tsbmiss_map] ;\
947 brnz,pt cnt, label ;\
948 add tsbmiss_map, CLONGSIZE, tsbmiss_map \
949 /* END CSTYLED */
952 * If there is no scd, then zero the tsbmiss scd_shmermap,
953 * from sfmmu_load_mmustate.
955 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \
956 /* BEGIN CSTYLED */ \
957 label: ;\
958 dec cnt ;\
959 stx %g0, [tsbmiss_map] ;\
960 brnz,pt cnt, label ;\
961 add tsbmiss_map, CLONGSIZE, tsbmiss_map
962 /* END CSTYLED */
965 * Set hmemisc to 1 if the shared hme is also part of an scd.
966 * In:
967 * tsbarea = tsbmiss area (not clobbered)
968 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered)
969 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered)
970 * Out:
971 * use_shctx = 1 if shme is in scd and 0 otherwise
973 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \
974 /* BEGIN CSTYLED */ \
975 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\
976 add hmentoff, HMEBLK_TAG, hmentoff ;\
977 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\
978 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\
979 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\
980 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\
981 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\
982 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\
983 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\
984 srlx hmentoff, use_shctx, use_shctx ;\
985 and use_shctx, 0x1, use_shctx \
986 /* END CSTYLED */
989 * Synthesize a TSB base register contents for a process.
991 * In:
992 * tsbinfo = TSB info pointer (ro)
993 * tsbreg, tmp1 = scratch registers
994 * Out:
995 * tsbreg = value to program into TSB base register
998 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \
999 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \
1000 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \
1001 and tmp1, TSB_SOFTSZ_MASK, tmp1; \
1002 or tsbreg, tmp1, tsbreg;
1006 * Load TSB base register to TSBMISS area for privte contexts.
1007 * This register contains utsb_pabase in bits 63:13, and TSB size
1008 * code in bits 2:0.
1010 * For private context
1011 * In:
1012 * tsbreg = value to load (ro)
1013 * regnum = constant or register
1014 * tmp1 = scratch register
1015 * Out:
1016 * Specified scratchpad register updated
1019 #define SET_UTSBREG(regnum, tsbreg, tmp1) \
1020 mov regnum, tmp1; \
1021 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */
1023 * Get TSB base register from the scratchpad for private contexts
1025 * In:
1026 * regnum = constant or register
1027 * tsbreg = scratch
1028 * Out:
1029 * tsbreg = tsbreg from the specified scratchpad register
1031 #define GET_UTSBREG(regnum, tsbreg) \
1032 mov regnum, tsbreg; \
1033 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg
1036 * Load TSB base register to TSBMISS area for shared contexts.
1037 * This register contains utsb_pabase in bits 63:13, and TSB size
1038 * code in bits 2:0.
1040 * In:
1041 * tsbmiss = pointer to tsbmiss area
1042 * tsbmissoffset = offset to right tsb pointer
1043 * tsbreg = value to load (ro)
1044 * Out:
1045 * Specified tsbmiss area updated
1048 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \
1049 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */
1052 * Get TSB base register from the scratchpad for
1053 * shared contexts
1055 * In:
1056 * tsbmiss = pointer to tsbmiss area
1057 * tsbmissoffset = offset to right tsb pointer
1058 * tsbreg = scratch
1059 * Out:
1060 * tsbreg = tsbreg from the specified scratchpad register
1062 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \
1063 ldx [tsbmiss + tsbmissoffset], tsbreg
1065 #endif /* defined(sun4v) || defined(UTSB_PHYS) */
1067 #ifndef _ASM
1070 * Kernel page relocation stuff.
1072 struct sfmmu_callback {
1073 int key;
1074 int (*prehandler)(caddr_t, uint_t, uint_t, void *);
1075 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
1076 int (*errhandler)(caddr_t, uint_t, uint_t, void *);
1077 int capture_cpus;
1080 extern int sfmmu_max_cb_id;
1081 extern struct sfmmu_callback *sfmmu_cb_table;
1083 struct pa_hment;
1086 * RFE: With multihat gone we gain back an int. We could use this to
1087 * keep ref bits on a per cpu basis to eliminate xcalls.
1089 struct sf_hment {
1090 tte_t hme_tte; /* tte for this hment */
1092 union {
1093 struct page *page; /* what page this maps */
1094 struct pa_hment *data; /* pa_hment */
1095 } sf_hment_un;
1097 struct sf_hment *hme_next; /* next hment */
1098 struct sf_hment *hme_prev; /* prev hment */
1101 struct pa_hment {
1102 caddr_t addr; /* va */
1103 uint_t len; /* bytes */
1104 ushort_t flags; /* internal flags */
1105 ushort_t refcnt; /* reference count */
1106 id_t cb_id; /* callback id, table index */
1107 void *pvt; /* handler's private data */
1108 struct sf_hment sfment; /* corresponding dummy sf_hment */
1111 #define hme_page sf_hment_un.page
1112 #define hme_data sf_hment_un.data
1113 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
1114 #define PAHME_SZ (sizeof (struct pa_hment))
1115 #define SFHME_SZ (sizeof (struct sf_hment))
1117 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0)
1120 * hmeblk_tag structure
1121 * structure used to obtain a match on a hme_blk. Currently consists of
1122 * the address of the sfmmu struct (or hatid), the base page address of the
1123 * hme_blk, and the rehash count. The rehash count is actually only 2 bits
1124 * and has the following meaning:
1125 * 1 = 8k or 64k hash sequence.
1126 * 2 = 512k hash sequence.
1127 * 3 = 4M hash sequence.
1128 * We require this count because we don't want to get a false hit on a 512K or
1129 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
1130 * Note: The ordering and size of the hmeblk_tag members are implictly known
1131 * by the tsb miss handlers written in assembly. Do not change this structure
1132 * without checking those routines. See HTAG_SFMMUPSZ define.
1136 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID.
1138 typedef union {
1139 struct {
1140 uint64_t hblk_basepg: 51, /* hme_blk base pg # */
1141 hblk_rehash: 3, /* rehash number */
1142 hblk_rid: 10; /* hme_blk region id */
1143 void *hblk_id;
1144 } hblk_tag_un;
1145 uint64_t htag_tag[2];
1146 } hmeblk_tag;
1148 #define htag_id hblk_tag_un.hblk_id
1149 #define htag_bspage hblk_tag_un.hblk_basepg
1150 #define htag_rehash hblk_tag_un.hblk_rehash
1151 #define htag_rid hblk_tag_un.hblk_rid
1153 #endif /* !_ASM */
1155 #define HTAG_REHASH_SHIFT 10
1156 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1))
1157 #define HTAG_RID_MASK HTAG_MAX_RID
1159 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */
1160 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID
1162 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1163 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1164 #endif
1166 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID)
1168 /* ISM regions */
1169 #define SFMMU_INVALID_ISMRID 0xff
1171 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1172 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1173 #endif
1175 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID)
1178 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
1179 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
1182 * this macro must only be used for comparing tags in shared hmeblks.
1184 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \
1185 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \
1186 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \
1187 ~HTAG_RID_MASK) | \
1188 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \
1189 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid))
1191 #define HME_REHASH(sfmmup) \
1192 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \
1193 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \
1194 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \
1195 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
1197 #define NHMENTS 8 /* # of hments in an 8k hme_blk */
1198 /* needs to be multiple of 2 */
1200 #ifndef _ASM
1202 #ifdef HBLK_TRACE
1204 #define HBLK_LOCK 1
1205 #define HBLK_UNLOCK 0
1206 #define HBLK_STACK_DEPTH 6
1207 #define HBLK_AUDIT_CACHE_SIZE 16
1208 #define HBLK_LOCK_PATTERN 0xaaaaaaaa
1209 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb
1211 struct hblk_lockcnt_audit {
1212 int flag; /* lock or unlock */
1213 kthread_id_t thread;
1214 int depth;
1215 pc_t stack[HBLK_STACK_DEPTH];
1218 #endif /* HBLK_TRACE */
1222 * Hment block structure.
1223 * The hme_blk is the node data structure which the hash structure
1224 * mantains. An hme_blk can have 2 different sizes depending on the
1225 * number of hments it implicitly contains. When dealing with 64K, 512K,
1226 * or 4M hments there is one hment per hme_blk. When dealing with
1227 * 8k hments we allocate an hme_blk plus an additional 7 hments to
1228 * give us a total of 8 (NHMENTS) hments that can be referenced through a
1229 * hme_blk.
1231 * The hmeblk structure contains 2 tte reference counters used to determine if
1232 * it is ok to free up the hmeblk. Both counters have to be zero in order
1233 * to be able to free up hmeblk. They are protected by cas.
1234 * hblk_hmecnt is the number of hments present on pp mapping lists.
1235 * hblk_vcnt reflects number of valid ttes in hmeblk.
1237 * The hmeblk now also has per tte lock cnts. This is required because
1238 * the counts can be high and there are not enough bits in the tte. When
1239 * physio is fixed to not lock the translations we should be able to move
1240 * the lock cnt back to the tte. See bug id 1198554.
1243 struct hme_blk_misc {
1244 uint_t notused:26;
1245 uint_t shared_bit:1; /* set for SRD shared hmeblk */
1246 uint_t shadow_bit:1; /* set for a shadow hme_blk */
1247 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */
1248 uint_t ttesize:3; /* contains ttesz of hmeblk */
1251 struct hme_blk {
1252 volatile uint64_t hblk_nextpa; /* physical address for hash list */
1254 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */
1256 struct hme_blk *hblk_next; /* on free list or on hash list */
1257 /* protected by hash lock */
1259 struct hme_blk *hblk_shadow; /* pts to shadow hblk */
1260 /* protected by hash lock */
1261 uint_t hblk_span; /* span of memory hmeblk maps */
1263 struct hme_blk_misc hblk_misc;
1265 union {
1266 struct {
1267 ushort_t hblk_hmecount; /* hment on mlists counter */
1268 ushort_t hblk_validcnt; /* valid tte reference count */
1269 } hblk_counts;
1270 uint_t hblk_shadow_mask;
1271 } hblk_un;
1273 uint_t hblk_lckcnt;
1275 #ifdef HBLK_TRACE
1276 kmutex_t hblk_audit_lock; /* lock to protect index */
1277 uint_t hblk_audit_index; /* index into audit_cache */
1278 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
1279 #endif /* HBLK_AUDIT */
1281 struct sf_hment hblk_hme[1]; /* hment array */
1284 #define hblk_shared hblk_misc.shared_bit
1285 #define hblk_shw_bit hblk_misc.shadow_bit
1286 #define hblk_nuc_bit hblk_misc.nucleus_bit
1287 #define hblk_ttesz hblk_misc.ttesize
1288 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount
1289 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt
1290 #define hblk_shw_mask hblk_un.hblk_shadow_mask
1292 #define MAX_HBLK_LCKCNT 0xFFFFFFFF
1293 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */
1295 #ifdef HBLK_TRACE
1297 #define HBLK_STACK_TRACE(hmeblkp, lock) \
1299 int flag = lock; /* to pacify lint */ \
1300 int audit_index; \
1302 mutex_enter(&hmeblkp->hblk_audit_lock); \
1303 audit_index = hmeblkp->hblk_audit_index; \
1304 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \
1305 (HBLK_AUDIT_CACHE_SIZE - 1)); \
1306 mutex_exit(&hmeblkp->hblk_audit_lock); \
1308 if (flag) \
1309 hmeblkp->hblk_audit_cache[audit_index].flag = \
1310 HBLK_LOCK_PATTERN; \
1311 else \
1312 hmeblkp->hblk_audit_cache[audit_index].flag = \
1313 HBLK_UNLOCK_PATTERN; \
1315 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \
1316 hmeblkp->hblk_audit_cache[audit_index].depth = \
1317 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \
1318 HBLK_STACK_DEPTH); \
1321 #else
1323 #define HBLK_STACK_TRACE(hmeblkp, lock)
1325 #endif /* HBLK_TRACE */
1327 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */
1330 * A maximum number of user hmeblks is defined in order to place an upper
1331 * limit on how much nucleus memory is required and to avoid overflowing the
1332 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
1333 * the number of buckets required, for an average hash chain length of 4 on
1334 * a 16TB machine.
1337 #define MAX_UHME_BUCKETS (0x1 << 30)
1338 #define MAX_KHME_BUCKETS (0x1 << 30)
1341 * The minimum number of kernel hash buckets.
1343 #define MIN_KHME_BUCKETS 0x800
1346 * The number of hash buckets must be a power of 2. If the initial calculated
1347 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
1348 * power of 2, otherwise we round down to avoid huge over allocations.
1350 #define USER_BUCKETS_THRESHOLD (1<<22)
1352 #define MAX_NUCUHME_BUCKETS 0x4000
1353 #define MAX_NUCKHME_BUCKETS 0x2000
1356 * There are 2 locks in the hmehash bucket. The hmehash_mutex is
1357 * a regular mutex used to make sure operations on a hash link are only
1358 * done by one thread. Any operation which comes into the hat with
1359 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect
1360 * the tsb miss handlers to grab the hash lock to make sure the hash list
1361 * is consistent while we traverse it. Unfortunately this can lead to
1362 * deadlocks or recursive mutex enters since it is possible for
1363 * someone holding the lock to take a tlb/tsb miss.
1364 * To solve this problem we have added the hmehash_listlock. This lock
1365 * is only grabbed by the tsb miss handlers, vatopfn, and while
1366 * adding/removing a hmeblk from the hash list. The code is written to
1367 * guarantee we won't take a tlb miss while holding this lock.
1369 struct hmehash_bucket {
1370 kmutex_t hmehash_mutex;
1371 volatile uint64_t hmeh_nextpa; /* physical address for hash list */
1372 struct hme_blk *hmeblkp;
1373 uint_t hmeh_listlock;
1376 #endif /* !_ASM */
1378 #define SFMMU_PGCNT_MASK 0x3f
1379 #define SFMMU_PGCNT_SHIFT 6
1380 #define INVALID_MMU_ID -1
1381 #define SFMMU_MMU_GNUM_RSHIFT 16
1382 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT)
1383 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */
1384 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1)
1387 * The tsb miss handlers written in assembly know that sfmmup
1388 * is a 64 bit ptr.
1390 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
1391 * bits.
1393 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */
1394 #define HTAG_BSPAGE_SHIFT 13
1397 * Assembly routines need to be able to get to ttesz
1399 #define HBLK_SZMASK 0x7
1401 #ifndef _ASM
1404 * Returns the number of bytes that an hmeblk spans given its tte size
1406 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
1407 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz)
1408 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \
1409 sfmmu8_cache : sfmmu1_cache)
1410 #define HMEBLK_SPAN(ttesz) \
1411 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
1413 #define set_hblk_sz(hmeblkp, ttesz) \
1414 (hmeblkp)->hblk_ttesz = (ttesz); \
1415 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
1417 #define get_hblk_base(hmeblkp) \
1418 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
1420 #define get_hblk_endaddr(hmeblkp) \
1421 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
1423 #define in_hblk_range(hmeblkp, vaddr) \
1424 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \
1425 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \
1426 get_hblk_span(hmeblkp))))
1428 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \
1429 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
1431 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \
1432 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1))))
1434 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \
1435 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
1436 TTE_BSZS_SHIFT((shwsz) - 1))
1438 #define HME8BLK_SZ (sizeof (struct hme_blk) + \
1439 (NHMENTS - 1) * sizeof (struct sf_hment))
1440 #define HME1BLK_SZ (sizeof (struct hme_blk))
1441 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */
1444 * Hme_blk hash structure
1445 * Active mappings are kept in a hash structure of hme_blks. The hash
1446 * function is based on (ctx, vaddr) The size of the hash table size is a
1447 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
1448 * The hash actually consists of 2 separate hashes. One hash is for the user
1449 * address space and the other hash is for the kernel address space.
1450 * The number of buckets are calculated at boot time and stored in the global
1451 * variables "uhmehash_num" and "khmehash_num". By making the hash table size
1452 * a power of 2 we can use a simply & function to derive an index instead of
1453 * a divide.
1455 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
1456 * bucket.
1457 * An hme hash bucket contains a pointer to an hme_blk and the mutex that
1458 * protects the link list.
1459 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash.
1460 * 512K pages need 2 hashes and 4M pages need 3 hashes.
1461 * The 'shift' parameter controls how many bits the vaddr will be shifted in
1462 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
1463 * and it varies depending on the page size as follows:
1464 * 8k pages: HBLK_RANGE_SHIFT
1465 * 64k pages: MMU_PAGESHIFT64K
1466 * 512K pages: MMU_PAGESHIFT512K
1467 * 4M pages: MMU_PAGESHIFT4M
1468 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
1469 * changes should be reflected in both versions. This function and the TSB
1470 * miss handlers are the only places which know about the two hashes.
1472 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
1473 * into the same bucket for a particular process. It is currently set to
1474 * be equivalent to 64K range or one hme_blk.
1476 * The hme_blks in the hash are protected by a per hash bucket mutex
1477 * known as SFMMU_HASH_LOCK.
1478 * You need to acquire this lock before traversing the hash bucket link
1479 * list, while adding/removing a hme_blk to the list, and while
1480 * modifying an hme_blk. A possible optimization is to replace these
1481 * mutexes by readers/writer lock but right now it is not clear whether
1482 * this is a win or not.
1484 * The HME_HASH_TABLE_SEARCH will search the hash table for the
1485 * hme_blk that contains the hment that corresponds to the passed
1486 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held.
1489 #endif /* ! _ASM */
1491 #define KHATID ksfmmup
1492 #define UHMEHASH_SZ uhmehash_num
1493 #define KHMEHASH_SZ khmehash_num
1494 #define HMENT_HASHAVELEN 4
1495 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
1496 #define HBLK_MIN_TTESZ 1
1497 #define HBLK_MIN_BYTES MMU_PAGESIZE64K
1498 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K
1499 #define MAX_HASHCNT 5
1500 #define DEFAULT_MAX_HASHCNT 3
1502 #ifndef _ASM
1504 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno)
1506 #define HME_HASH_SHIFT(ttesz) \
1507 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))
1509 #define HME_HASH_ADDR(vaddr, hmeshift) \
1510 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
1512 #define HME_HASH_BSPAGE(vaddr, hmeshift) \
1513 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
1515 #define HME_HASH_REHASH(ttesz) \
1516 (((ttesz) < TTE512K)? 1 : (ttesz))
1518 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \
1519 ((((void *)hatid) != ((void *)KHATID)) ? \
1520 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1521 UHMEHASH_SZ) ]): \
1522 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1523 KHMEHASH_SZ) ]))
1526 * This macro will traverse a hmeblk hash link list looking for an hme_blk
1527 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp
1528 * will be set to NULL, otherwise it will point to the correct hme_blk.
1529 * This macro also cleans empty hblks.
1531 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp) \
1533 struct hme_blk *nx_hblk; \
1535 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \
1536 hblkp = hmebp->hmeblkp; \
1537 pr_hblk = NULL; \
1538 while (hblkp) { \
1539 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \
1540 /* found hme_blk */ \
1541 break; \
1543 nx_hblk = hblkp->hblk_next; \
1544 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \
1545 sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk, \
1546 listp, 0); \
1547 } else { \
1548 pr_hblk = hblkp; \
1550 hblkp = nx_hblk; \
1554 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \
1556 struct hme_blk *pr_hblk; \
1558 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp); \
1562 * This macro will traverse a hmeblk hash link list looking for an hme_blk
1563 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp
1564 * will be set to NULL, otherwise it will point to the correct hme_blk.
1565 * It doesn't remove empty hblks.
1567 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \
1568 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \
1569 for (hblkp = hmebp->hmeblkp; hblkp; \
1570 hblkp = hblkp->hblk_next) { \
1571 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \
1572 /* found hme_blk */ \
1573 break; \
1577 #define SFMMU_HASH_LOCK(hmebp) \
1578 (mutex_enter(&hmebp->hmehash_mutex))
1580 #define SFMMU_HASH_UNLOCK(hmebp) \
1581 (mutex_exit(&hmebp->hmehash_mutex))
1583 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \
1584 (mutex_tryenter(&hmebp->hmehash_mutex))
1586 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \
1587 (mutex_owned(&hmebp->hmehash_mutex))
1589 #define SFMMU_XCALL_STATS(sfmmup) \
1591 if (sfmmup == ksfmmup) { \
1592 SFMMU_STAT(sf_kernel_xcalls); \
1593 } else { \
1594 SFMMU_STAT(sf_user_xcalls); \
1598 #define astosfmmu(as) ((as)->a_hat)
1599 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1600 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id)
1601 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as)
1603 #define sfmmutohtagid(sfmmup, rid) \
1604 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \
1605 (void *)((sfmmup)->sfmmu_srdp))
1608 * We use the sfmmu data structure to keep the per as page coloring info.
1610 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin)
1611 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart)
1613 typedef struct {
1614 char h8[HME8BLK_SZ];
1615 } hblk8_t;
1617 typedef struct {
1618 char h1[HME1BLK_SZ];
1619 } hblk1_t;
1621 typedef struct {
1622 ulong_t index;
1623 ulong_t len;
1624 hblk8_t *list;
1625 } nucleus_hblk8_info_t;
1627 typedef struct {
1628 ulong_t index;
1629 ulong_t len;
1630 hblk1_t *list;
1631 } nucleus_hblk1_info_t;
1634 * This struct is used for accumlating information about a range
1635 * of pages that are unloading so that a single xcall can flush
1636 * the entire range from remote tlbs. A function that must demap
1637 * a range of virtual addresses declares one of these structures
1638 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1639 * struct to the appropriate sfmmu_hblk_* level function which does
1640 * all the bookkeeping using the other macros. When the function has
1641 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1642 * macro to take care of any remaining unflushed mappings.
1644 * The maximum range this struct can represent is the number of bits
1645 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1646 * MMU_PAGESIZE pages are supported.
1648 * Since there are now cases where it's no longer necessary to do
1649 * flushes (e.g. when the process isn't runnable because it's swapping
1650 * out or exiting) we allow these macros to take a NULL dmr input and do
1651 * nothing in that case.
1653 typedef struct {
1654 sfmmu_t *dmr_sfmmup; /* relevant hat */
1655 caddr_t dmr_addr; /* beginning address */
1656 caddr_t dmr_endaddr; /* ending address */
1657 ulong_t dmr_bitvec; /* valid pages found */
1658 ulong_t dmr_bit; /* next page to examine */
1659 ulong_t dmr_maxbit; /* highest page in range */
1660 ulong_t dmr_pgsz; /* page size in range */
1661 } demap_range_t;
1663 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1665 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \
1666 (dmrp)->dmr_sfmmup = (sfmmup); \
1667 (dmrp)->dmr_bitvec = 0; \
1668 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1669 (dmrp)->dmr_pgsz = MMU_PAGESIZE;
1671 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1673 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1674 if ((dmrp) != NULL) { \
1675 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1676 sfmmu_tlb_range_demap(dmrp); \
1677 (dmrp)->dmr_endaddr = (endaddr); \
1680 #define DEMAP_RANGE_FLUSH(dmrp) \
1681 if ((dmrp)->dmr_bitvec != 0) \
1682 sfmmu_tlb_range_demap(dmrp);
1685 #define DEMAP_RANGE_MARKPG(dmrp, addr) \
1686 if ((dmrp) != NULL) { \
1687 if ((dmrp)->dmr_bitvec == 0) { \
1688 (dmrp)->dmr_addr = (addr); \
1689 (dmrp)->dmr_bit = 1; \
1691 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1694 #define DEMAP_RANGE_NEXTPG(dmrp) \
1695 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1696 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1697 sfmmu_tlb_range_demap(dmrp); \
1698 } else { \
1699 (dmrp)->dmr_bit <<= 1; \
1704 * TSB related structures
1706 * The TSB is made up of tte entries. Both the tag and data are present
1707 * in the TSB. The TSB locking is managed as follows:
1708 * A software bit in the tsb tag is used to indicate that entry is locked.
1709 * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1710 * fail forcing the cpu to go to the hat hash for the translation.
1711 * The cpu who holds the lock can then modify the data side, and the tag side.
1712 * The last write should be to the word containing the lock bit which will
1713 * clear the lock and allow the tsb entry to be read. It is assumed that all
1714 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128
1715 * bit load is required to prevent the following from happening:
1717 * cpu 0 cpu 1 comments
1719 * ldx tag tag unlocked
1720 * ldstub lock set lock
1721 * stx data
1722 * stx tag unlock
1723 * ldx tag incorrect tte!!!
1725 * The software also maintains a bit in the tag to indicate an invalid
1726 * tsb entry. The purpose of this bit is to allow the tsb invalidate code
1727 * to invalidate a tsb entry with a single cas. See code for details.
1730 union tsb_tag {
1731 struct {
1732 uint32_t tag_res0:16; /* reserved - context area */
1733 uint32_t tag_inv:1; /* sw - invalid tsb entry */
1734 uint32_t tag_lock:1; /* sw - locked tsb entry */
1735 uint32_t tag_res1:4; /* reserved */
1736 uint32_t tag_va_hi:10; /* va[63:54] */
1737 uint32_t tag_va_lo; /* va[53:22] */
1738 } tagbits;
1739 struct tsb_tagints {
1740 uint32_t inthi;
1741 uint32_t intlo;
1742 } tagints;
1744 #define tag_invalid tagbits.tag_inv
1745 #define tag_locked tagbits.tag_lock
1746 #define tag_vahi tagbits.tag_va_hi
1747 #define tag_valo tagbits.tag_va_lo
1748 #define tag_inthi tagints.inthi
1749 #define tag_intlo tagints.intlo
1751 struct tsbe {
1752 union tsb_tag tte_tag;
1753 tte_t tte_data;
1757 * A per cpu struct is kept that duplicates some info
1758 * used by the tl>0 tsb miss handlers plus it provides
1759 * a scratch area. Its purpose is to minimize cache misses
1760 * in the tsb miss handler and is 128 bytes (2 e$ lines).
1762 * There should be one allocated per cpu in nucleus memory
1763 * and should be aligned on an ecache line boundary.
1765 struct tsbmiss {
1766 sfmmu_t *ksfmmup; /* kernel hat id */
1767 sfmmu_t *usfmmup; /* user hat id */
1768 sf_srd_t *usrdp; /* user's SRD hat id */
1769 struct tsbe *tsbptr; /* hardware computed ptr */
1770 struct tsbe *tsbptr4m; /* hardware computed ptr */
1771 struct tsbe *tsbscdptr; /* hardware computed ptr */
1772 struct tsbe *tsbscdptr4m; /* hardware computed ptr */
1773 uint64_t ismblkpa;
1774 struct hmehash_bucket *khashstart;
1775 struct hmehash_bucket *uhashstart;
1776 uint_t khashsz;
1777 uint_t uhashsz;
1778 uint16_t dcache_line_mask; /* used to flush dcache */
1779 uchar_t uhat_tteflags; /* private page sizes */
1780 uchar_t uhat_rtteflags; /* SHME pagesizes */
1781 uint32_t utsb_misses;
1782 uint32_t ktsb_misses;
1783 uint16_t uprot_traps;
1784 uint16_t kprot_traps;
1786 * scratch[0] -> TSB_TAGACC
1787 * scratch[1] -> TSBMISS_HMEBP
1788 * scratch[2] -> TSBMISS_HATID
1790 uintptr_t scratch[3];
1791 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */
1792 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */
1793 uint8_t pad[48]; /* pad to 64 bytes */
1797 * A per cpu struct is kept for the use within the tl>0 kpm tsb
1798 * miss handler. Some members are duplicates of common data or
1799 * the physical addresses of common data. A few members are also
1800 * written by the tl>0 kpm tsb miss handler. Its purpose is to
1801 * minimize cache misses in the kpm tsb miss handler and occupies
1802 * one ecache line. There should be one allocated per cpu in
1803 * nucleus memory and it should be aligned on an ecache line
1804 * boundary. It is not merged w/ struct tsbmiss since there is
1805 * not much to share and the tsbmiss pathes are different, so
1806 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1807 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1808 * of struct tsbmiss is used on every dtlb miss.
1810 struct kpmtsbm {
1811 caddr_t vbase; /* start of address kpm range */
1812 caddr_t vend; /* end of address kpm range */
1813 uchar_t flags; /* flags needed in TL tsbmiss handler */
1814 uchar_t sz_shift; /* for single kpm window */
1815 uchar_t kpmp_shift; /* hash lock shift */
1816 uchar_t kpmp2pshft; /* kpm page to page shift */
1817 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */
1818 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */
1819 uint64_t msegphashpa; /* paddr of memseg_phash */
1820 struct tsbe *tsbptr; /* saved ktsb pointer */
1821 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */
1822 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */
1823 uintptr_t pad[1];
1826 extern size_t tsb_slab_size;
1827 extern uint_t tsb_slab_shift;
1828 extern size_t tsb_slab_mask;
1830 #endif /* !_ASM */
1833 * Flags for TL kpm tsbmiss handler
1835 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */
1836 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */
1837 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */
1840 * The TSB
1841 * All TSB sizes supported by the hardware are now supported (8K - 1M).
1842 * For kernel TSBs we may go beyond the hardware supported sizes and support
1843 * larger TSBs via software.
1844 * All TTE sizes are supported in the TSB; the manner in which this is
1845 * done is cpu dependent.
1847 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */
1848 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1850 #ifdef sun4v
1851 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */
1852 #else /* sun4u */
1853 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */
1854 #endif /* sun4v */
1856 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1858 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */
1859 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */
1860 #define TSB_8K_SZCODE 0 /* 512 entries */
1861 #define TSB_16K_SZCODE 1 /* 1k entries */
1862 #define TSB_32K_SZCODE 2 /* 2k entries */
1863 #define TSB_64K_SZCODE 3 /* 4k entries */
1864 #define TSB_128K_SZCODE 4 /* 8k entries */
1865 #define TSB_256K_SZCODE 5 /* 16k entries */
1866 #define TSB_512K_SZCODE 6 /* 32k entries */
1867 #define TSB_1M_SZCODE 7 /* 64k entries */
1868 #define TSB_2M_SZCODE 8 /* 128k entries */
1869 #define TSB_4M_SZCODE 9 /* 256k entries */
1870 #define TSB_8M_SZCODE 10 /* 512k entries */
1871 #define TSB_16M_SZCODE 11 /* 1M entries */
1872 #define TSB_32M_SZCODE 12 /* 2M entries */
1873 #define TSB_64M_SZCODE 13 /* 4M entries */
1874 #define TSB_128M_SZCODE 14 /* 8M entries */
1875 #define TSB_256M_SZCODE 15 /* 16M entries */
1876 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */
1877 #define TSB_ENTRY_SIZE (1 << 4)
1878 #define TSB_START_SIZE 9
1879 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz))
1880 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1881 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1)
1882 #define TSB_BASEADDR_MASK ((1 << 12) - 1)
1885 * sun4u platforms
1886 * ---------------
1887 * We now support two user TSBs with one TSB base register.
1888 * Hence the TSB base register is split up as follows:
1890 * When only one TSB present:
1891 * [63 62..42 41..13 12..4 3..0]
1892 * ^ ^ ^ ^ ^
1893 * | | | | |
1894 * | | | | |_ TSB size code
1895 * | | | |
1896 * | | | |_ Reserved 0
1897 * | | |
1898 * | | |_ TSB VA[41..13]
1899 * | |
1900 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1902 * |_ 0
1904 * When second TSB present:
1905 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0]
1906 * ^ ^ ^ ^ ^ ^ ^ ^
1907 * | | | | | | | |
1908 * | | | | | | | |_ First TSB size code
1909 * | | | | | | |
1910 * | | | | | | |_ Reserved 0
1911 * | | | | | |
1912 * | | | | | |_ First TSB's VA[21..13]
1913 * | | | | |
1914 * | | | | |_ Reserved for future use
1915 * | | | |
1916 * | | | |_ Second TSB's size code
1917 * | | |
1918 * | | |_ Second TSB's VA[21..13]
1919 * | |
1920 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1922 * |_ 1
1924 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1925 * may be up to 4M in size. For now, only hardware supported TSB sizes
1926 * are supported, though the slabs are usually 4M in size.
1928 * sun4u platforms that define UTSB_PHYS use physical addressing to access
1929 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base
1930 * registers. The second TSB base uses a dedicated scratchpad register which
1931 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for
1932 * both registers is equivalent to sun4v below, except the TSB PA range is
1933 * [46..13] for sun4u.
1935 * sun4v platforms
1936 * ---------------
1937 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1938 * hardware TSB base registers to hold up to two different user TSBs.
1940 * Each register contains TSB's physical base and size code information
1941 * as follows:
1943 * [63..56 55..13 12..4 3..0]
1944 * ^ ^ ^ ^
1945 * | | | |
1946 * | | | |_ TSB size code
1947 * | | |
1948 * | | |_ Reserved 0
1949 * | |
1950 * | |_ TSB PA[55..13]
1954 * |_ 0 for valid TSB
1956 * Absence of a user TSB (primarily the second user TSB) is indicated by
1957 * storing a negative value in the TSB base register. This allows us to
1958 * check for presence of a user TSB by simply checking bit# 63.
1960 #define TSBREG_MSB_SHIFT 32 /* set upper bits */
1961 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */
1962 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */
1963 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */
1964 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */
1965 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1966 /* sectsb va -> bits 21:13 */
1967 /* after clearing upper bits */
1968 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */
1969 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */
1971 #define BIGKTSB_SZ_MASK 0xf
1972 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK
1973 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */
1974 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */
1975 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1977 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */
1979 * sw bits used on tsb_tag - bit masks used only in assembly
1980 * use only a sethi for these fields.
1982 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */
1983 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */
1985 #ifdef _ASM
1988 * Marker to indicate that this instruction will be hot patched at runtime
1989 * to some other value.
1990 * This value must be zero since it fills in the imm bits of the target
1991 * instructions to be patched
1993 #define RUNTIME_PATCH (0)
1996 * V9 defines nop instruction as the following, which we use
1997 * at runtime to nullify some instructions we don't want to
1998 * execute in the trap handlers on certain platforms.
2000 #define MAKE_NOP_INSTR(reg) \
2001 sethi %hi(0x1000000), reg
2004 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0"
2005 * instruction, with the source register specified by the jump_reg_number.
2006 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14].
2007 * The instruction is returned in reg. The macro is used to patch in a jmpl
2008 * instruction at runtime.
2010 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \
2011 sethi %hi(0x81c00000), reg; \
2012 mov jump_reg_number, tmp; \
2013 sll tmp, 14, tmp; \
2014 or reg, tmp, reg
2017 * Macro to get hat per-MMU cnum on this CPU.
2018 * sfmmu - In, pass in "sfmmup" from the caller.
2019 * cnum - Out, return 'cnum' to the caller
2020 * scr - scratch
2022 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \
2023 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \
2024 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \
2025 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \
2026 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \
2027 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \
2028 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \
2029 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \
2030 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */
2033 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
2034 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
2035 * gnum - Out, return sfmmu gnum
2036 * cnum - Out, return sfmmu cnum
2037 * reg - scratch
2039 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \
2040 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \
2041 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \
2042 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \
2043 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */
2046 * Macro to get this CPU's tsbmiss area.
2048 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \
2049 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \
2050 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \
2051 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \
2052 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \
2053 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */
2057 * Macro to set kernel context + page size codes in DMMU primary context
2058 * register. It is only necessary for sun4u because sun4v does not need
2059 * page size codes
2061 #ifdef sun4v
2063 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
2065 #else
2067 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
2068 sethi %hi(kcontextreg), reg0; \
2069 ldx [reg0 + %lo(kcontextreg)], reg0; \
2070 mov MMU_PCONTEXT, reg1; \
2071 ldxa [reg1]ASI_MMU_CTX, reg2; \
2072 xor reg0, reg2, reg2; \
2073 brz reg2, label3; \
2074 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \
2075 rdpr %pstate, reg3; /* disable interrupts */ \
2076 btst PSTATE_IE, reg3; \
2077 /*CSTYLED*/ \
2078 bnz,a,pt %icc, label1; \
2079 wrpr reg3, PSTATE_IE, %pstate; \
2080 /*CSTYLED*/ \
2081 label1:; \
2082 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \
2083 sethi %hi(FLUSH_ADDR), reg4; \
2084 mov DEMAP_ALL_TYPE, reg2; \
2085 stxa %g0, [reg2]ASI_DTLB_DEMAP; \
2086 stxa %g0, [reg2]ASI_ITLB_DEMAP; \
2087 /*CSTYLED*/ \
2088 label2:; \
2089 stxa reg0, [reg1]ASI_MMU_CTX; \
2090 flush reg4; \
2091 btst PSTATE_IE, reg3; \
2092 /*CSTYLED*/ \
2093 bnz,a,pt %icc, label3; \
2094 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \
2095 label3:;
2097 #endif
2100 * Macro to setup arguments with kernel sfmmup context + page size before
2101 * calling sfmmu_setctx_sec()
2103 #ifdef sun4v
2104 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \
2105 set KCONTEXT, arg0; \
2106 set 0, arg1;
2107 #else
2108 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \
2109 ldub [sfmmup + SFMMU_CEXT], arg1; \
2110 set KCONTEXT, arg0; \
2111 sll arg1, CTXREG_EXT_SHIFT, arg1;
2112 #endif
2114 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \
2115 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \
2116 /*CSTYLED*/ \
2117 bnz,pt %icc, label; /* already disabled */ \
2118 nop; \
2120 sethi %hi(panicstr), scr; \
2121 ldx [scr + %lo(panicstr)], scr; \
2122 tst scr; \
2123 /*CSTYLED*/ \
2124 bnz,pt %xcc, label; \
2125 nop; \
2127 save %sp, -SA(MINFRAME), %sp; \
2128 sethi %hi(sfmmu_panic1), %o0; \
2129 call panic; \
2130 or %o0, %lo(sfmmu_panic1), %o0; \
2131 /*CSTYLED*/ \
2132 label:
2134 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \
2135 /* \
2136 * The caller must have disabled interrupts. \
2137 * If interrupts are not disabled, panic \
2138 */ \
2139 rdpr %pstate, scr; \
2140 andcc scr, PSTATE_IE, %g0; \
2141 /*CSTYLED*/ \
2142 bz,pt %icc, label; \
2143 nop; \
2145 sethi %hi(panicstr), scr; \
2146 ldx [scr + %lo(panicstr)], scr; \
2147 tst scr; \
2148 /*CSTYLED*/ \
2149 bnz,pt %xcc, label; \
2150 nop; \
2152 sethi %hi(sfmmu_panic6), %o0; \
2153 call panic; \
2154 or %o0, %lo(sfmmu_panic6), %o0; \
2155 /*CSTYLED*/ \
2156 label:
2158 #endif /* _ASM */
2160 #ifndef _ASM
2162 #ifdef VAC
2164 * Page coloring
2165 * The p_vcolor field of the page struct (1 byte) is used to store the
2166 * virtual page color. This provides for 255 colors. The value zero is
2167 * used to mean the page has no color - never been mapped or somehow
2168 * purified.
2171 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1)
2172 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor)
2173 #define PP_SET_VCOLOR(pp, color) \
2174 ((pp)->p_vcolor = ((color) + 1))
2177 * As mentioned p_vcolor == 0 means there is no color for this page.
2178 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
2179 * one so we define this constant.
2181 #define NO_VCOLOR (-1)
2183 #define addr_to_vcolor(addr) \
2184 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
2185 #else /* VAC */
2186 #define addr_to_vcolor(addr) (0)
2187 #endif /* VAC */
2190 * The field p_index in the psm page structure is for large pages support.
2191 * P_index is a bit-vector of the different mapping sizes that a given page
2192 * is part of. An hme structure for a large mapping is only added in the
2193 * group leader page (first page). All pages covered by a given large mapping
2194 * have the corrosponding mapping bit set in their p_index field. This allows
2195 * us to only store an explicit hme structure in the leading page which
2196 * simplifies the mapping link list management. Furthermore, it provides us
2197 * a fast mechanism for determining the largest mapping a page is part of. For
2198 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
2200 * Implementation note: even though the first bit in p_index is reserved
2201 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
2202 * In addition, the upper four bits of the p_index field are used by the
2203 * code as temporaries
2207 * Defines for psm page struct fields and large page support
2209 #define SFMMU_INDEX_SHIFT 6
2210 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)
2212 /* Return the mapping index */
2213 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK)
2216 * These macros rely on the following property:
2217 * All pages constituting a large page are covered by a virtually
2218 * contiguous set of page_t's.
2221 /* Return the leader for this mapping size */
2222 #define PP_GROUPLEADER(pp, sz) \
2223 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
2225 /* Return the root page for this page based on p_szc */
2226 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \
2227 PP_GROUPLEADER((pp), (pp)->p_szc))
2229 #define PP_PAGENEXT_N(pp, n) ((pp) + (n))
2230 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1)
2232 #define PP_PAGEPREV_N(pp, n) ((pp) - (n))
2233 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1)
2235 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0)
2237 /* Need function to test the page mappping which takes p_index into account */
2238 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
2241 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
2242 * set p_index field.
2244 #define PAGESZ_TO_INDEX(sz) (1 << (sz))
2248 * prototypes for hat assembly routines. Some of these are
2249 * known to machine dependent VM code.
2251 extern uint64_t sfmmu_make_tsbtag(caddr_t);
2252 extern struct tsbe *
2253 sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
2254 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
2255 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
2256 extern void sfmmu_load_mmustate(sfmmu_t *);
2257 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t);
2258 #ifndef sun4v
2259 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *);
2260 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
2261 #endif /* sun4v */
2262 extern void sfmmu_copytte(tte_t *, tte_t *);
2263 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
2264 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
2265 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t);
2266 extern uint_t sfmmu_disable_intrs(void);
2267 extern void sfmmu_enable_intrs(uint_t);
2269 * functions exported to machine dependent VM code
2271 extern void sfmmu_patch_ktsb(void);
2272 #ifndef UTSB_PHYS
2273 extern void sfmmu_patch_utsb(void);
2274 #endif /* UTSB_PHYS */
2275 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
2276 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
2277 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int);
2278 #ifdef DEBUG
2279 extern void sfmmu_check_kpfn(pfn_t);
2280 #else
2281 #define sfmmu_check_kpfn(pfn) /* disabled */
2282 #endif /* DEBUG */
2283 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
2284 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t);
2285 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
2286 extern void sfmmu_init_tsbs(void);
2287 extern caddr_t sfmmu_ktsb_alloc(caddr_t);
2288 extern int sfmmu_getctx_pri(void);
2289 extern int sfmmu_getctx_sec(void);
2290 extern void sfmmu_setctx_sec(uint_t);
2291 extern void sfmmu_inv_tsb(caddr_t, uint_t);
2292 extern void sfmmu_init_ktsbinfo(void);
2293 extern int sfmmu_setup_4lp(void);
2294 extern void sfmmu_patch_mmu_asi(int);
2295 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
2296 extern void sfmmu_cache_flushall(void);
2297 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t);
2298 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
2299 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
2300 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
2302 extern void hat_kern_setup(void);
2303 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *);
2304 extern int sfmmu_get_ppvcolor(struct page *);
2305 extern int sfmmu_get_addrvcolor(caddr_t);
2306 extern int sfmmu_hat_lock_held(sfmmu_t *);
2307 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int);
2309 extern kmutex_t *sfmmu_mlist_enter(page_t *);
2310 extern void sfmmu_mlist_exit(kmutex_t *);
2311 extern int sfmmu_mlist_held(struct page *);
2312 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
2315 * MMU-specific functions optionally imported from the CPU module
2317 #pragma weak mmu_init_scd
2318 #pragma weak mmu_large_pages_disabled
2319 #pragma weak mmu_set_ctx_page_sizes
2320 #pragma weak mmu_check_page_sizes
2322 extern void mmu_init_scd(sf_scd_t *);
2323 extern uint_t mmu_large_pages_disabled(uint_t);
2324 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
2325 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
2327 extern sfmmu_t *ksfmmup;
2328 extern caddr_t ktsb_base;
2329 extern uint64_t ktsb_pbase;
2330 extern int ktsb_sz;
2331 extern int ktsb_szcode;
2332 extern caddr_t ktsb4m_base;
2333 extern uint64_t ktsb4m_pbase;
2334 extern int ktsb4m_sz;
2335 extern int ktsb4m_szcode;
2336 extern uint64_t kpm_tsbbase;
2337 extern int kpm_tsbsz;
2338 extern int ktsb_phys;
2339 extern int enable_bigktsb;
2340 #ifndef sun4v
2341 extern int utsb_dtlb_ttenum;
2342 extern int utsb4m_dtlb_ttenum;
2343 #endif /* sun4v */
2344 extern int uhmehash_num;
2345 extern int khmehash_num;
2346 extern struct hmehash_bucket *uhme_hash;
2347 extern struct hmehash_bucket *khme_hash;
2348 extern uint_t hblk_alloc_dynamic;
2349 extern struct tsbmiss tsbmiss_area[NCPU];
2350 extern struct kpmtsbm kpmtsbm_area[NCPU];
2352 #ifndef sun4v
2353 extern int dtlb_resv_ttenum;
2354 extern caddr_t utsb_vabase;
2355 extern caddr_t utsb4m_vabase;
2356 #endif /* sun4v */
2357 extern vmem_t *kmem_tsb_default_arena[];
2358 extern int tsb_lgrp_affinity;
2360 extern uint_t disable_large_pages;
2361 extern uint_t disable_ism_large_pages;
2362 extern uint_t disable_auto_data_large_pages;
2363 extern uint_t disable_auto_text_large_pages;
2365 /* kpm externals */
2366 extern pfn_t sfmmu_kpm_vatopfn(caddr_t);
2367 extern void sfmmu_kpm_patch_tlbm(void);
2368 extern void sfmmu_kpm_patch_tsbm(void);
2369 extern void sfmmu_patch_shctx(void);
2370 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
2371 extern void sfmmu_kpm_unload_tsb(caddr_t, int);
2372 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int);
2373 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int);
2374 extern caddr_t kpm_vbase;
2375 extern size_t kpm_size;
2376 extern struct memseg *memseg_hash[];
2377 extern uint64_t memseg_phash[];
2378 extern kpm_hlk_t *kpmp_table;
2379 extern kpm_shlk_t *kpmp_stable;
2380 extern uint_t kpmp_table_sz;
2381 extern uint_t kpmp_stable_sz;
2382 extern uchar_t kpmp_shift;
2384 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0)
2386 #define IS_KPM_ALIAS_RANGE(vaddr) \
2387 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
2389 #endif /* !_ASM */
2391 /* sfmmu_kpm_tsbmtl flags */
2392 #define KPMTSBM_STOP 0
2393 #define KPMTSBM_START 1
2396 * For kpm_smallpages, the state about how a kpm page is mapped and whether
2397 * it is ready to go is indicated by the two 4-bit fields defined in the
2398 * kpm_spage structure as follows:
2399 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not
2400 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not
2401 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss
2402 * handler can drop the mapping in regardless of the caching state of the
2403 * mapping. Otherwise, we will have C handler resolve the VAC conflict no
2404 * matter the page is currently mapped cacheable or non-cacheable.
2406 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */
2407 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */
2408 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */
2409 #define KPM_MAPPED_MASK 0xf
2411 /* Physical memseg address NULL marker */
2412 #define MSEG_NULLPTR_PA -1
2415 * Memseg hash defines for kpm trap level tsbmiss handler.
2416 * Must be in sync w/ page.h .
2418 #define SFMMU_MEM_HASH_SHIFT 0x9
2419 #define SFMMU_N_MEM_SLOTS 0x200
2420 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3
2422 #ifndef _ASM
2423 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
2424 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
2425 #endif
2426 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
2427 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
2428 #endif
2430 /* Physical memseg address NULL marker */
2431 #define SFMMU_MEMSEG_NULLPTR_PA -1
2434 * Check KCONTEXT to be zero, asm parts depend on that assumption.
2436 #if (KCONTEXT != 0)
2437 #error KCONTEXT != 0
2438 #endif
2439 #endif /* !_ASM */
2442 #endif /* _KERNEL */
2444 #ifndef _ASM
2446 * ctx, hmeblk, mlistlock and other stats for sfmmu
2448 struct sfmmu_global_stat {
2449 int sf_tsb_exceptions; /* # of tsb exceptions */
2450 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */
2452 int sf_pagefaults; /* # of pagefaults */
2454 int sf_uhash_searches; /* # of user hash searches */
2455 int sf_uhash_links; /* # of user hash links */
2456 int sf_khash_searches; /* # of kernel hash searches */
2457 int sf_khash_links; /* # of kernel hash links */
2459 int sf_swapout; /* # times hat swapped out */
2461 int sf_tsb_alloc; /* # TSB allocations */
2462 int sf_tsb_allocfail; /* # times TSB alloc fail */
2463 int sf_tsb_sectsb_create; /* # times second TSB added */
2465 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */
2466 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */
2467 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */
2468 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */
2471 int sf_tteload8k; /* calls to sfmmu_tteload */
2472 int sf_tteload64k; /* calls to sfmmu_tteload */
2473 int sf_tteload512k; /* calls to sfmmu_tteload */
2474 int sf_tteload4m; /* calls to sfmmu_tteload */
2475 int sf_tteload32m; /* calls to sfmmu_tteload */
2476 int sf_tteload256m; /* calls to sfmmu_tteload */
2478 int sf_tsb_load8k; /* # times loaded 8K tsbent */
2479 int sf_tsb_load4m; /* # times loaded 4M tsbent */
2481 int sf_hblk_hit; /* found hblk during tteload */
2482 int sf_hblk8_ncreate; /* static hblk8's created */
2483 int sf_hblk8_nalloc; /* static hblk8's allocated */
2484 int sf_hblk1_ncreate; /* static hblk1's created */
2485 int sf_hblk1_nalloc; /* static hblk1's allocated */
2486 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */
2487 int sf_hblk_reserve_cnt; /* hblk_reserve usage */
2488 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */
2489 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */
2490 int sf_get_free_success; /* reserve list allocs */
2491 int sf_get_free_throttle; /* fails due to throttling */
2492 int sf_get_free_fail; /* fails due to empty list */
2493 int sf_put_free_success; /* reserve list frees */
2494 int sf_put_free_fail; /* fails due to full list */
2496 int sf_pgcolor_conflict; /* VAC conflict resolution */
2497 int sf_uncache_conflict; /* VAC conflict resolution */
2498 int sf_unload_conflict; /* VAC unload resolution */
2499 int sf_ism_uncache; /* VAC conflict resolution */
2500 int sf_ism_recache; /* VAC conflict resolution */
2501 int sf_recache; /* VAC conflict resolution */
2503 int sf_steal_count; /* # of hblks stolen */
2505 int sf_pagesync; /* # of pagesyncs */
2506 int sf_clrwrt; /* # of clear write perms */
2507 int sf_pagesync_invalid; /* pagesync with inv tte */
2509 int sf_kernel_xcalls; /* # of kernel cross calls */
2510 int sf_user_xcalls; /* # of user cross calls */
2512 int sf_tsb_grow; /* # of user tsb grows */
2513 int sf_tsb_shrink; /* # of user tsb shrinks */
2514 int sf_tsb_resize_failures; /* # of user tsb resize */
2515 int sf_tsb_reloc; /* # of user tsb relocations */
2517 int sf_user_vtop; /* # of user vatopfn calls */
2519 int sf_ctx_inv; /* #times invalidate MMU ctx */
2521 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */
2523 int sf_region_remap_demap; /* # times shme remap demap */
2525 int sf_create_scd; /* # times SCD is created */
2526 int sf_join_scd; /* # process joined scd */
2527 int sf_leave_scd; /* # process left scd */
2528 int sf_destroy_scd; /* # times SCD is destroyed */
2531 struct sfmmu_tsbsize_stat {
2532 int sf_tsbsz_8k;
2533 int sf_tsbsz_16k;
2534 int sf_tsbsz_32k;
2535 int sf_tsbsz_64k;
2536 int sf_tsbsz_128k;
2537 int sf_tsbsz_256k;
2538 int sf_tsbsz_512k;
2539 int sf_tsbsz_1m;
2540 int sf_tsbsz_2m;
2541 int sf_tsbsz_4m;
2542 int sf_tsbsz_8m;
2543 int sf_tsbsz_16m;
2544 int sf_tsbsz_32m;
2545 int sf_tsbsz_64m;
2546 int sf_tsbsz_128m;
2547 int sf_tsbsz_256m;
2550 struct sfmmu_percpu_stat {
2551 int sf_itlb_misses; /* # of itlb misses */
2552 int sf_dtlb_misses; /* # of dtlb misses */
2553 int sf_utsb_misses; /* # of user tsb misses */
2554 int sf_ktsb_misses; /* # of kernel tsb misses */
2555 int sf_tsb_hits; /* # of tsb hits */
2556 int sf_umod_faults; /* # of mod (prot viol) flts */
2557 int sf_kmod_faults; /* # of mod (prot viol) flts */
2560 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++
2561 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount)
2562 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count)
2564 #define SFMMU_MMU_STAT(stat) { \
2565 mmu_ctx_t *ctx = CPU->cpu_m.cpu_mmu_ctxp; \
2566 if (ctx) \
2567 ctx->stat++; \
2570 #endif /* !_ASM */
2572 #ifdef __cplusplus
2574 #endif
2576 #endif /* _VM_HAT_SFMMU_H */