5518 Memory leaks in libzfs import implementation
[illumos-gate.git] / usr / src / lib / libzfs / common / libzfs_import.c
blob19f2fbc57e53142863b745cd648eaa4fbaba282c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Pool import support functions.
31 * To import a pool, we rely on reading the configuration information from the
32 * ZFS label of each device. If we successfully read the label, then we
33 * organize the configuration information in the following hierarchy:
35 * pool guid -> toplevel vdev guid -> label txg
37 * Duplicate entries matching this same tuple will be discarded. Once we have
38 * examined every device, we pick the best label txg config for each toplevel
39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
40 * update any paths that have changed. Finally, we attempt to import the pool
41 * using our derived config, and record the results.
44 #include <ctype.h>
45 #include <devid.h>
46 #include <dirent.h>
47 #include <errno.h>
48 #include <libintl.h>
49 #include <stddef.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <sys/stat.h>
53 #include <unistd.h>
54 #include <fcntl.h>
55 #include <sys/vtoc.h>
56 #include <sys/dktp/fdisk.h>
57 #include <sys/efi_partition.h>
58 #include <thread_pool.h>
60 #include <sys/vdev_impl.h>
62 #include "libzfs.h"
63 #include "libzfs_impl.h"
66 * Intermediate structures used to gather configuration information.
68 typedef struct config_entry {
69 uint64_t ce_txg;
70 nvlist_t *ce_config;
71 struct config_entry *ce_next;
72 } config_entry_t;
74 typedef struct vdev_entry {
75 uint64_t ve_guid;
76 config_entry_t *ve_configs;
77 struct vdev_entry *ve_next;
78 } vdev_entry_t;
80 typedef struct pool_entry {
81 uint64_t pe_guid;
82 vdev_entry_t *pe_vdevs;
83 struct pool_entry *pe_next;
84 } pool_entry_t;
86 typedef struct name_entry {
87 char *ne_name;
88 uint64_t ne_guid;
89 struct name_entry *ne_next;
90 } name_entry_t;
92 typedef struct pool_list {
93 pool_entry_t *pools;
94 name_entry_t *names;
95 } pool_list_t;
97 static char *
98 get_devid(const char *path)
100 int fd;
101 ddi_devid_t devid;
102 char *minor, *ret;
104 if ((fd = open(path, O_RDONLY)) < 0)
105 return (NULL);
107 minor = NULL;
108 ret = NULL;
109 if (devid_get(fd, &devid) == 0) {
110 if (devid_get_minor_name(fd, &minor) == 0)
111 ret = devid_str_encode(devid, minor);
112 if (minor != NULL)
113 devid_str_free(minor);
114 devid_free(devid);
116 (void) close(fd);
118 return (ret);
123 * Go through and fix up any path and/or devid information for the given vdev
124 * configuration.
126 static int
127 fix_paths(nvlist_t *nv, name_entry_t *names)
129 nvlist_t **child;
130 uint_t c, children;
131 uint64_t guid;
132 name_entry_t *ne, *best;
133 char *path, *devid;
134 int matched;
136 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
137 &child, &children) == 0) {
138 for (c = 0; c < children; c++)
139 if (fix_paths(child[c], names) != 0)
140 return (-1);
141 return (0);
145 * This is a leaf (file or disk) vdev. In either case, go through
146 * the name list and see if we find a matching guid. If so, replace
147 * the path and see if we can calculate a new devid.
149 * There may be multiple names associated with a particular guid, in
150 * which case we have overlapping slices or multiple paths to the same
151 * disk. If this is the case, then we want to pick the path that is
152 * the most similar to the original, where "most similar" is the number
153 * of matching characters starting from the end of the path. This will
154 * preserve slice numbers even if the disks have been reorganized, and
155 * will also catch preferred disk names if multiple paths exist.
157 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
158 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
159 path = NULL;
161 matched = 0;
162 best = NULL;
163 for (ne = names; ne != NULL; ne = ne->ne_next) {
164 if (ne->ne_guid == guid) {
165 const char *src, *dst;
166 int count;
168 if (path == NULL) {
169 best = ne;
170 break;
173 src = ne->ne_name + strlen(ne->ne_name) - 1;
174 dst = path + strlen(path) - 1;
175 for (count = 0; src >= ne->ne_name && dst >= path;
176 src--, dst--, count++)
177 if (*src != *dst)
178 break;
181 * At this point, 'count' is the number of characters
182 * matched from the end.
184 if (count > matched || best == NULL) {
185 best = ne;
186 matched = count;
191 if (best == NULL)
192 return (0);
194 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
195 return (-1);
197 if ((devid = get_devid(best->ne_name)) == NULL) {
198 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
199 } else {
200 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
201 devid_str_free(devid);
202 return (-1);
204 devid_str_free(devid);
207 return (0);
211 * Add the given configuration to the list of known devices.
213 static int
214 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
215 nvlist_t *config)
217 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
218 pool_entry_t *pe;
219 vdev_entry_t *ve;
220 config_entry_t *ce;
221 name_entry_t *ne;
224 * If this is a hot spare not currently in use or level 2 cache
225 * device, add it to the list of names to translate, but don't do
226 * anything else.
228 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
229 &state) == 0 &&
230 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
231 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
232 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
233 return (-1);
235 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
236 free(ne);
237 return (-1);
239 ne->ne_guid = vdev_guid;
240 ne->ne_next = pl->names;
241 pl->names = ne;
242 return (0);
246 * If we have a valid config but cannot read any of these fields, then
247 * it means we have a half-initialized label. In vdev_label_init()
248 * we write a label with txg == 0 so that we can identify the device
249 * in case the user refers to the same disk later on. If we fail to
250 * create the pool, we'll be left with a label in this state
251 * which should not be considered part of a valid pool.
253 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
254 &pool_guid) != 0 ||
255 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
256 &vdev_guid) != 0 ||
257 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
258 &top_guid) != 0 ||
259 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
260 &txg) != 0 || txg == 0) {
261 nvlist_free(config);
262 return (0);
266 * First, see if we know about this pool. If not, then add it to the
267 * list of known pools.
269 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
270 if (pe->pe_guid == pool_guid)
271 break;
274 if (pe == NULL) {
275 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
276 nvlist_free(config);
277 return (-1);
279 pe->pe_guid = pool_guid;
280 pe->pe_next = pl->pools;
281 pl->pools = pe;
285 * Second, see if we know about this toplevel vdev. Add it if its
286 * missing.
288 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
289 if (ve->ve_guid == top_guid)
290 break;
293 if (ve == NULL) {
294 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
295 nvlist_free(config);
296 return (-1);
298 ve->ve_guid = top_guid;
299 ve->ve_next = pe->pe_vdevs;
300 pe->pe_vdevs = ve;
304 * Third, see if we have a config with a matching transaction group. If
305 * so, then we do nothing. Otherwise, add it to the list of known
306 * configs.
308 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
309 if (ce->ce_txg == txg)
310 break;
313 if (ce == NULL) {
314 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
315 nvlist_free(config);
316 return (-1);
318 ce->ce_txg = txg;
319 ce->ce_config = config;
320 ce->ce_next = ve->ve_configs;
321 ve->ve_configs = ce;
322 } else {
323 nvlist_free(config);
327 * At this point we've successfully added our config to the list of
328 * known configs. The last thing to do is add the vdev guid -> path
329 * mappings so that we can fix up the configuration as necessary before
330 * doing the import.
332 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
333 return (-1);
335 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
336 free(ne);
337 return (-1);
340 ne->ne_guid = vdev_guid;
341 ne->ne_next = pl->names;
342 pl->names = ne;
344 return (0);
348 * Returns true if the named pool matches the given GUID.
350 static int
351 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
352 boolean_t *isactive)
354 zpool_handle_t *zhp;
355 uint64_t theguid;
357 if (zpool_open_silent(hdl, name, &zhp) != 0)
358 return (-1);
360 if (zhp == NULL) {
361 *isactive = B_FALSE;
362 return (0);
365 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
366 &theguid) == 0);
368 zpool_close(zhp);
370 *isactive = (theguid == guid);
371 return (0);
374 static nvlist_t *
375 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
377 nvlist_t *nvl;
378 zfs_cmd_t zc = { 0 };
379 int err;
381 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
382 return (NULL);
384 if (zcmd_alloc_dst_nvlist(hdl, &zc,
385 zc.zc_nvlist_conf_size * 2) != 0) {
386 zcmd_free_nvlists(&zc);
387 return (NULL);
390 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
391 &zc)) != 0 && errno == ENOMEM) {
392 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
393 zcmd_free_nvlists(&zc);
394 return (NULL);
398 if (err) {
399 zcmd_free_nvlists(&zc);
400 return (NULL);
403 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
404 zcmd_free_nvlists(&zc);
405 return (NULL);
408 zcmd_free_nvlists(&zc);
409 return (nvl);
413 * Determine if the vdev id is a hole in the namespace.
415 boolean_t
416 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
418 for (int c = 0; c < holes; c++) {
420 /* Top-level is a hole */
421 if (hole_array[c] == id)
422 return (B_TRUE);
424 return (B_FALSE);
428 * Convert our list of pools into the definitive set of configurations. We
429 * start by picking the best config for each toplevel vdev. Once that's done,
430 * we assemble the toplevel vdevs into a full config for the pool. We make a
431 * pass to fix up any incorrect paths, and then add it to the main list to
432 * return to the user.
434 static nvlist_t *
435 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
437 pool_entry_t *pe;
438 vdev_entry_t *ve;
439 config_entry_t *ce;
440 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
441 nvlist_t **spares, **l2cache;
442 uint_t i, nspares, nl2cache;
443 boolean_t config_seen;
444 uint64_t best_txg;
445 char *name, *hostname;
446 uint64_t guid;
447 uint_t children = 0;
448 nvlist_t **child = NULL;
449 uint_t holes;
450 uint64_t *hole_array, max_id;
451 uint_t c;
452 boolean_t isactive;
453 uint64_t hostid;
454 nvlist_t *nvl;
455 boolean_t found_one = B_FALSE;
456 boolean_t valid_top_config = B_FALSE;
458 if (nvlist_alloc(&ret, 0, 0) != 0)
459 goto nomem;
461 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
462 uint64_t id, max_txg = 0;
464 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
465 goto nomem;
466 config_seen = B_FALSE;
469 * Iterate over all toplevel vdevs. Grab the pool configuration
470 * from the first one we find, and then go through the rest and
471 * add them as necessary to the 'vdevs' member of the config.
473 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
476 * Determine the best configuration for this vdev by
477 * selecting the config with the latest transaction
478 * group.
480 best_txg = 0;
481 for (ce = ve->ve_configs; ce != NULL;
482 ce = ce->ce_next) {
484 if (ce->ce_txg > best_txg) {
485 tmp = ce->ce_config;
486 best_txg = ce->ce_txg;
491 * We rely on the fact that the max txg for the
492 * pool will contain the most up-to-date information
493 * about the valid top-levels in the vdev namespace.
495 if (best_txg > max_txg) {
496 (void) nvlist_remove(config,
497 ZPOOL_CONFIG_VDEV_CHILDREN,
498 DATA_TYPE_UINT64);
499 (void) nvlist_remove(config,
500 ZPOOL_CONFIG_HOLE_ARRAY,
501 DATA_TYPE_UINT64_ARRAY);
503 max_txg = best_txg;
504 hole_array = NULL;
505 holes = 0;
506 max_id = 0;
507 valid_top_config = B_FALSE;
509 if (nvlist_lookup_uint64(tmp,
510 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
511 verify(nvlist_add_uint64(config,
512 ZPOOL_CONFIG_VDEV_CHILDREN,
513 max_id) == 0);
514 valid_top_config = B_TRUE;
517 if (nvlist_lookup_uint64_array(tmp,
518 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
519 &holes) == 0) {
520 verify(nvlist_add_uint64_array(config,
521 ZPOOL_CONFIG_HOLE_ARRAY,
522 hole_array, holes) == 0);
526 if (!config_seen) {
528 * Copy the relevant pieces of data to the pool
529 * configuration:
531 * version
532 * pool guid
533 * name
534 * comment (if available)
535 * pool state
536 * hostid (if available)
537 * hostname (if available)
539 uint64_t state, version;
540 char *comment = NULL;
542 version = fnvlist_lookup_uint64(tmp,
543 ZPOOL_CONFIG_VERSION);
544 fnvlist_add_uint64(config,
545 ZPOOL_CONFIG_VERSION, version);
546 guid = fnvlist_lookup_uint64(tmp,
547 ZPOOL_CONFIG_POOL_GUID);
548 fnvlist_add_uint64(config,
549 ZPOOL_CONFIG_POOL_GUID, guid);
550 name = fnvlist_lookup_string(tmp,
551 ZPOOL_CONFIG_POOL_NAME);
552 fnvlist_add_string(config,
553 ZPOOL_CONFIG_POOL_NAME, name);
555 if (nvlist_lookup_string(tmp,
556 ZPOOL_CONFIG_COMMENT, &comment) == 0)
557 fnvlist_add_string(config,
558 ZPOOL_CONFIG_COMMENT, comment);
560 state = fnvlist_lookup_uint64(tmp,
561 ZPOOL_CONFIG_POOL_STATE);
562 fnvlist_add_uint64(config,
563 ZPOOL_CONFIG_POOL_STATE, state);
565 hostid = 0;
566 if (nvlist_lookup_uint64(tmp,
567 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
568 fnvlist_add_uint64(config,
569 ZPOOL_CONFIG_HOSTID, hostid);
570 hostname = fnvlist_lookup_string(tmp,
571 ZPOOL_CONFIG_HOSTNAME);
572 fnvlist_add_string(config,
573 ZPOOL_CONFIG_HOSTNAME, hostname);
576 config_seen = B_TRUE;
580 * Add this top-level vdev to the child array.
582 verify(nvlist_lookup_nvlist(tmp,
583 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
584 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
585 &id) == 0);
587 if (id >= children) {
588 nvlist_t **newchild;
590 newchild = zfs_alloc(hdl, (id + 1) *
591 sizeof (nvlist_t *));
592 if (newchild == NULL)
593 goto nomem;
595 for (c = 0; c < children; c++)
596 newchild[c] = child[c];
598 free(child);
599 child = newchild;
600 children = id + 1;
602 if (nvlist_dup(nvtop, &child[id], 0) != 0)
603 goto nomem;
608 * If we have information about all the top-levels then
609 * clean up the nvlist which we've constructed. This
610 * means removing any extraneous devices that are
611 * beyond the valid range or adding devices to the end
612 * of our array which appear to be missing.
614 if (valid_top_config) {
615 if (max_id < children) {
616 for (c = max_id; c < children; c++)
617 nvlist_free(child[c]);
618 children = max_id;
619 } else if (max_id > children) {
620 nvlist_t **newchild;
622 newchild = zfs_alloc(hdl, (max_id) *
623 sizeof (nvlist_t *));
624 if (newchild == NULL)
625 goto nomem;
627 for (c = 0; c < children; c++)
628 newchild[c] = child[c];
630 free(child);
631 child = newchild;
632 children = max_id;
636 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
637 &guid) == 0);
640 * The vdev namespace may contain holes as a result of
641 * device removal. We must add them back into the vdev
642 * tree before we process any missing devices.
644 if (holes > 0) {
645 ASSERT(valid_top_config);
647 for (c = 0; c < children; c++) {
648 nvlist_t *holey;
650 if (child[c] != NULL ||
651 !vdev_is_hole(hole_array, holes, c))
652 continue;
654 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
655 0) != 0)
656 goto nomem;
659 * Holes in the namespace are treated as
660 * "hole" top-level vdevs and have a
661 * special flag set on them.
663 if (nvlist_add_string(holey,
664 ZPOOL_CONFIG_TYPE,
665 VDEV_TYPE_HOLE) != 0 ||
666 nvlist_add_uint64(holey,
667 ZPOOL_CONFIG_ID, c) != 0 ||
668 nvlist_add_uint64(holey,
669 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
670 nvlist_free(holey);
671 goto nomem;
673 child[c] = holey;
678 * Look for any missing top-level vdevs. If this is the case,
679 * create a faked up 'missing' vdev as a placeholder. We cannot
680 * simply compress the child array, because the kernel performs
681 * certain checks to make sure the vdev IDs match their location
682 * in the configuration.
684 for (c = 0; c < children; c++) {
685 if (child[c] == NULL) {
686 nvlist_t *missing;
687 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
688 0) != 0)
689 goto nomem;
690 if (nvlist_add_string(missing,
691 ZPOOL_CONFIG_TYPE,
692 VDEV_TYPE_MISSING) != 0 ||
693 nvlist_add_uint64(missing,
694 ZPOOL_CONFIG_ID, c) != 0 ||
695 nvlist_add_uint64(missing,
696 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
697 nvlist_free(missing);
698 goto nomem;
700 child[c] = missing;
705 * Put all of this pool's top-level vdevs into a root vdev.
707 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
708 goto nomem;
709 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
710 VDEV_TYPE_ROOT) != 0 ||
711 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
712 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
713 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
714 child, children) != 0) {
715 nvlist_free(nvroot);
716 goto nomem;
719 for (c = 0; c < children; c++)
720 nvlist_free(child[c]);
721 free(child);
722 children = 0;
723 child = NULL;
726 * Go through and fix up any paths and/or devids based on our
727 * known list of vdev GUID -> path mappings.
729 if (fix_paths(nvroot, pl->names) != 0) {
730 nvlist_free(nvroot);
731 goto nomem;
735 * Add the root vdev to this pool's configuration.
737 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
738 nvroot) != 0) {
739 nvlist_free(nvroot);
740 goto nomem;
742 nvlist_free(nvroot);
745 * zdb uses this path to report on active pools that were
746 * imported or created using -R.
748 if (active_ok)
749 goto add_pool;
752 * Determine if this pool is currently active, in which case we
753 * can't actually import it.
755 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
756 &name) == 0);
757 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
758 &guid) == 0);
760 if (pool_active(hdl, name, guid, &isactive) != 0)
761 goto error;
763 if (isactive) {
764 nvlist_free(config);
765 config = NULL;
766 continue;
769 if ((nvl = refresh_config(hdl, config)) == NULL) {
770 nvlist_free(config);
771 config = NULL;
772 continue;
775 nvlist_free(config);
776 config = nvl;
779 * Go through and update the paths for spares, now that we have
780 * them.
782 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
783 &nvroot) == 0);
784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
785 &spares, &nspares) == 0) {
786 for (i = 0; i < nspares; i++) {
787 if (fix_paths(spares[i], pl->names) != 0)
788 goto nomem;
793 * Update the paths for l2cache devices.
795 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
796 &l2cache, &nl2cache) == 0) {
797 for (i = 0; i < nl2cache; i++) {
798 if (fix_paths(l2cache[i], pl->names) != 0)
799 goto nomem;
804 * Restore the original information read from the actual label.
806 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
807 DATA_TYPE_UINT64);
808 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
809 DATA_TYPE_STRING);
810 if (hostid != 0) {
811 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
812 hostid) == 0);
813 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
814 hostname) == 0);
817 add_pool:
819 * Add this pool to the list of configs.
821 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
822 &name) == 0);
823 if (nvlist_add_nvlist(ret, name, config) != 0)
824 goto nomem;
826 found_one = B_TRUE;
827 nvlist_free(config);
828 config = NULL;
831 if (!found_one) {
832 nvlist_free(ret);
833 ret = NULL;
836 return (ret);
838 nomem:
839 (void) no_memory(hdl);
840 error:
841 nvlist_free(config);
842 nvlist_free(ret);
843 for (c = 0; c < children; c++)
844 nvlist_free(child[c]);
845 free(child);
847 return (NULL);
851 * Return the offset of the given label.
853 static uint64_t
854 label_offset(uint64_t size, int l)
856 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
857 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
858 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
862 * Given a file descriptor, read the label information and return an nvlist
863 * describing the configuration, if there is one.
866 zpool_read_label(int fd, nvlist_t **config)
868 struct stat64 statbuf;
869 int l;
870 vdev_label_t *label;
871 uint64_t state, txg, size;
873 *config = NULL;
875 if (fstat64(fd, &statbuf) == -1)
876 return (0);
877 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
879 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
880 return (-1);
882 for (l = 0; l < VDEV_LABELS; l++) {
883 if (pread64(fd, label, sizeof (vdev_label_t),
884 label_offset(size, l)) != sizeof (vdev_label_t))
885 continue;
887 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
888 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
889 continue;
891 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
892 &state) != 0 || state > POOL_STATE_L2CACHE) {
893 nvlist_free(*config);
894 continue;
897 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
898 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
899 &txg) != 0 || txg == 0)) {
900 nvlist_free(*config);
901 continue;
904 free(label);
905 return (0);
908 free(label);
909 *config = NULL;
910 return (0);
913 typedef struct rdsk_node {
914 char *rn_name;
915 int rn_dfd;
916 libzfs_handle_t *rn_hdl;
917 nvlist_t *rn_config;
918 avl_tree_t *rn_avl;
919 avl_node_t rn_node;
920 boolean_t rn_nozpool;
921 } rdsk_node_t;
923 static int
924 slice_cache_compare(const void *arg1, const void *arg2)
926 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
927 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
928 char *nm1slice, *nm2slice;
929 int rv;
932 * slices zero and two are the most likely to provide results,
933 * so put those first
935 nm1slice = strstr(nm1, "s0");
936 nm2slice = strstr(nm2, "s0");
937 if (nm1slice && !nm2slice) {
938 return (-1);
940 if (!nm1slice && nm2slice) {
941 return (1);
943 nm1slice = strstr(nm1, "s2");
944 nm2slice = strstr(nm2, "s2");
945 if (nm1slice && !nm2slice) {
946 return (-1);
948 if (!nm1slice && nm2slice) {
949 return (1);
952 rv = strcmp(nm1, nm2);
953 if (rv == 0)
954 return (0);
955 return (rv > 0 ? 1 : -1);
958 static void
959 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
960 diskaddr_t size, uint_t blksz)
962 rdsk_node_t tmpnode;
963 rdsk_node_t *node;
964 char sname[MAXNAMELEN];
966 tmpnode.rn_name = &sname[0];
967 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
968 diskname, partno);
970 * protect against division by zero for disk labels that
971 * contain a bogus sector size
973 if (blksz == 0)
974 blksz = DEV_BSIZE;
975 /* too small to contain a zpool? */
976 if ((size < (SPA_MINDEVSIZE / blksz)) &&
977 (node = avl_find(r, &tmpnode, NULL)))
978 node->rn_nozpool = B_TRUE;
981 static void
982 nozpool_all_slices(avl_tree_t *r, const char *sname)
984 char diskname[MAXNAMELEN];
985 char *ptr;
986 int i;
988 (void) strncpy(diskname, sname, MAXNAMELEN);
989 if (((ptr = strrchr(diskname, 's')) == NULL) &&
990 ((ptr = strrchr(diskname, 'p')) == NULL))
991 return;
992 ptr[0] = 's';
993 ptr[1] = '\0';
994 for (i = 0; i < NDKMAP; i++)
995 check_one_slice(r, diskname, i, 0, 1);
996 ptr[0] = 'p';
997 for (i = 0; i <= FD_NUMPART; i++)
998 check_one_slice(r, diskname, i, 0, 1);
1001 static void
1002 check_slices(avl_tree_t *r, int fd, const char *sname)
1004 struct extvtoc vtoc;
1005 struct dk_gpt *gpt;
1006 char diskname[MAXNAMELEN];
1007 char *ptr;
1008 int i;
1010 (void) strncpy(diskname, sname, MAXNAMELEN);
1011 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1012 return;
1013 ptr[1] = '\0';
1015 if (read_extvtoc(fd, &vtoc) >= 0) {
1016 for (i = 0; i < NDKMAP; i++)
1017 check_one_slice(r, diskname, i,
1018 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1019 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1021 * on x86 we'll still have leftover links that point
1022 * to slices s[9-15], so use NDKMAP instead
1024 for (i = 0; i < NDKMAP; i++)
1025 check_one_slice(r, diskname, i,
1026 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1027 /* nodes p[1-4] are never used with EFI labels */
1028 ptr[0] = 'p';
1029 for (i = 1; i <= FD_NUMPART; i++)
1030 check_one_slice(r, diskname, i, 0, 1);
1031 efi_free(gpt);
1035 static void
1036 zpool_open_func(void *arg)
1038 rdsk_node_t *rn = arg;
1039 struct stat64 statbuf;
1040 nvlist_t *config;
1041 int fd;
1043 if (rn->rn_nozpool)
1044 return;
1045 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1046 /* symlink to a device that's no longer there */
1047 if (errno == ENOENT)
1048 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1049 return;
1052 * Ignore failed stats. We only want regular
1053 * files, character devs and block devs.
1055 if (fstat64(fd, &statbuf) != 0 ||
1056 (!S_ISREG(statbuf.st_mode) &&
1057 !S_ISCHR(statbuf.st_mode) &&
1058 !S_ISBLK(statbuf.st_mode))) {
1059 (void) close(fd);
1060 return;
1062 /* this file is too small to hold a zpool */
1063 if (S_ISREG(statbuf.st_mode) &&
1064 statbuf.st_size < SPA_MINDEVSIZE) {
1065 (void) close(fd);
1066 return;
1067 } else if (!S_ISREG(statbuf.st_mode)) {
1069 * Try to read the disk label first so we don't have to
1070 * open a bunch of minor nodes that can't have a zpool.
1072 check_slices(rn->rn_avl, fd, rn->rn_name);
1075 if ((zpool_read_label(fd, &config)) != 0) {
1076 (void) close(fd);
1077 (void) no_memory(rn->rn_hdl);
1078 return;
1080 (void) close(fd);
1083 rn->rn_config = config;
1084 if (config != NULL) {
1085 assert(rn->rn_nozpool == B_FALSE);
1090 * Given a file descriptor, clear (zero) the label information. This function
1091 * is currently only used in the appliance stack as part of the ZFS sysevent
1092 * module.
1095 zpool_clear_label(int fd)
1097 struct stat64 statbuf;
1098 int l;
1099 vdev_label_t *label;
1100 uint64_t size;
1102 if (fstat64(fd, &statbuf) == -1)
1103 return (0);
1104 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1106 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1107 return (-1);
1109 for (l = 0; l < VDEV_LABELS; l++) {
1110 if (pwrite64(fd, label, sizeof (vdev_label_t),
1111 label_offset(size, l)) != sizeof (vdev_label_t)) {
1112 free(label);
1113 return (-1);
1117 free(label);
1118 return (0);
1122 * Given a list of directories to search, find all pools stored on disk. This
1123 * includes partial pools which are not available to import. If no args are
1124 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1125 * poolname or guid (but not both) are provided by the caller when trying
1126 * to import a specific pool.
1128 static nvlist_t *
1129 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1131 int i, dirs = iarg->paths;
1132 struct dirent64 *dp;
1133 char path[MAXPATHLEN];
1134 char *end, **dir = iarg->path;
1135 size_t pathleft;
1136 nvlist_t *ret = NULL;
1137 static char *default_dir = "/dev/dsk";
1138 pool_list_t pools = { 0 };
1139 pool_entry_t *pe, *penext;
1140 vdev_entry_t *ve, *venext;
1141 config_entry_t *ce, *cenext;
1142 name_entry_t *ne, *nenext;
1143 avl_tree_t slice_cache;
1144 rdsk_node_t *slice;
1145 void *cookie;
1147 if (dirs == 0) {
1148 dirs = 1;
1149 dir = &default_dir;
1153 * Go through and read the label configuration information from every
1154 * possible device, organizing the information according to pool GUID
1155 * and toplevel GUID.
1157 for (i = 0; i < dirs; i++) {
1158 tpool_t *t;
1159 char *rdsk;
1160 int dfd;
1161 boolean_t config_failed = B_FALSE;
1162 DIR *dirp;
1164 /* use realpath to normalize the path */
1165 if (realpath(dir[i], path) == 0) {
1166 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1167 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1168 goto error;
1170 end = &path[strlen(path)];
1171 *end++ = '/';
1172 *end = 0;
1173 pathleft = &path[sizeof (path)] - end;
1176 * Using raw devices instead of block devices when we're
1177 * reading the labels skips a bunch of slow operations during
1178 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1180 if (strcmp(path, "/dev/dsk/") == 0)
1181 rdsk = "/dev/rdsk/";
1182 else
1183 rdsk = path;
1185 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1186 (dirp = fdopendir(dfd)) == NULL) {
1187 if (dfd >= 0)
1188 (void) close(dfd);
1189 zfs_error_aux(hdl, strerror(errno));
1190 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1191 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1192 rdsk);
1193 goto error;
1196 avl_create(&slice_cache, slice_cache_compare,
1197 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1199 * This is not MT-safe, but we have no MT consumers of libzfs
1201 while ((dp = readdir64(dirp)) != NULL) {
1202 const char *name = dp->d_name;
1203 if (name[0] == '.' &&
1204 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1205 continue;
1207 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1208 slice->rn_name = zfs_strdup(hdl, name);
1209 slice->rn_avl = &slice_cache;
1210 slice->rn_dfd = dfd;
1211 slice->rn_hdl = hdl;
1212 slice->rn_nozpool = B_FALSE;
1213 avl_add(&slice_cache, slice);
1216 * create a thread pool to do all of this in parallel;
1217 * rn_nozpool is not protected, so this is racy in that
1218 * multiple tasks could decide that the same slice can
1219 * not hold a zpool, which is benign. Also choose
1220 * double the number of processors; we hold a lot of
1221 * locks in the kernel, so going beyond this doesn't
1222 * buy us much.
1224 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1225 0, NULL);
1226 for (slice = avl_first(&slice_cache); slice;
1227 (slice = avl_walk(&slice_cache, slice,
1228 AVL_AFTER)))
1229 (void) tpool_dispatch(t, zpool_open_func, slice);
1230 tpool_wait(t);
1231 tpool_destroy(t);
1233 cookie = NULL;
1234 while ((slice = avl_destroy_nodes(&slice_cache,
1235 &cookie)) != NULL) {
1236 if (slice->rn_config != NULL && !config_failed) {
1237 nvlist_t *config = slice->rn_config;
1238 boolean_t matched = B_TRUE;
1240 if (iarg->poolname != NULL) {
1241 char *pname;
1243 matched = nvlist_lookup_string(config,
1244 ZPOOL_CONFIG_POOL_NAME,
1245 &pname) == 0 &&
1246 strcmp(iarg->poolname, pname) == 0;
1247 } else if (iarg->guid != 0) {
1248 uint64_t this_guid;
1250 matched = nvlist_lookup_uint64(config,
1251 ZPOOL_CONFIG_POOL_GUID,
1252 &this_guid) == 0 &&
1253 iarg->guid == this_guid;
1255 if (!matched) {
1256 nvlist_free(config);
1257 } else {
1259 * use the non-raw path for the config
1261 (void) strlcpy(end, slice->rn_name,
1262 pathleft);
1263 if (add_config(hdl, &pools, path,
1264 config) != 0)
1265 config_failed = B_TRUE;
1268 free(slice->rn_name);
1269 free(slice);
1271 avl_destroy(&slice_cache);
1273 (void) closedir(dirp);
1275 if (config_failed)
1276 goto error;
1279 ret = get_configs(hdl, &pools, iarg->can_be_active);
1281 error:
1282 for (pe = pools.pools; pe != NULL; pe = penext) {
1283 penext = pe->pe_next;
1284 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1285 venext = ve->ve_next;
1286 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1287 cenext = ce->ce_next;
1288 if (ce->ce_config)
1289 nvlist_free(ce->ce_config);
1290 free(ce);
1292 free(ve);
1294 free(pe);
1297 for (ne = pools.names; ne != NULL; ne = nenext) {
1298 nenext = ne->ne_next;
1299 free(ne->ne_name);
1300 free(ne);
1303 return (ret);
1306 nvlist_t *
1307 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1309 importargs_t iarg = { 0 };
1311 iarg.paths = argc;
1312 iarg.path = argv;
1314 return (zpool_find_import_impl(hdl, &iarg));
1318 * Given a cache file, return the contents as a list of importable pools.
1319 * poolname or guid (but not both) are provided by the caller when trying
1320 * to import a specific pool.
1322 nvlist_t *
1323 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1324 char *poolname, uint64_t guid)
1326 char *buf;
1327 int fd;
1328 struct stat64 statbuf;
1329 nvlist_t *raw, *src, *dst;
1330 nvlist_t *pools;
1331 nvpair_t *elem;
1332 char *name;
1333 uint64_t this_guid;
1334 boolean_t active;
1336 verify(poolname == NULL || guid == 0);
1338 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1339 zfs_error_aux(hdl, "%s", strerror(errno));
1340 (void) zfs_error(hdl, EZFS_BADCACHE,
1341 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1342 return (NULL);
1345 if (fstat64(fd, &statbuf) != 0) {
1346 zfs_error_aux(hdl, "%s", strerror(errno));
1347 (void) close(fd);
1348 (void) zfs_error(hdl, EZFS_BADCACHE,
1349 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1350 return (NULL);
1353 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1354 (void) close(fd);
1355 return (NULL);
1358 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1359 (void) close(fd);
1360 free(buf);
1361 (void) zfs_error(hdl, EZFS_BADCACHE,
1362 dgettext(TEXT_DOMAIN,
1363 "failed to read cache file contents"));
1364 return (NULL);
1367 (void) close(fd);
1369 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1370 free(buf);
1371 (void) zfs_error(hdl, EZFS_BADCACHE,
1372 dgettext(TEXT_DOMAIN,
1373 "invalid or corrupt cache file contents"));
1374 return (NULL);
1377 free(buf);
1380 * Go through and get the current state of the pools and refresh their
1381 * state.
1383 if (nvlist_alloc(&pools, 0, 0) != 0) {
1384 (void) no_memory(hdl);
1385 nvlist_free(raw);
1386 return (NULL);
1389 elem = NULL;
1390 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1391 src = fnvpair_value_nvlist(elem);
1393 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1394 if (poolname != NULL && strcmp(poolname, name) != 0)
1395 continue;
1397 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1398 if (guid != 0 && guid != this_guid)
1399 continue;
1401 if (pool_active(hdl, name, this_guid, &active) != 0) {
1402 nvlist_free(raw);
1403 nvlist_free(pools);
1404 return (NULL);
1407 if (active)
1408 continue;
1410 if ((dst = refresh_config(hdl, src)) == NULL) {
1411 nvlist_free(raw);
1412 nvlist_free(pools);
1413 return (NULL);
1416 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1417 (void) no_memory(hdl);
1418 nvlist_free(dst);
1419 nvlist_free(raw);
1420 nvlist_free(pools);
1421 return (NULL);
1423 nvlist_free(dst);
1426 nvlist_free(raw);
1427 return (pools);
1430 static int
1431 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1433 importargs_t *import = data;
1434 int found = 0;
1436 if (import->poolname != NULL) {
1437 char *pool_name;
1439 verify(nvlist_lookup_string(zhp->zpool_config,
1440 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1441 if (strcmp(pool_name, import->poolname) == 0)
1442 found = 1;
1443 } else {
1444 uint64_t pool_guid;
1446 verify(nvlist_lookup_uint64(zhp->zpool_config,
1447 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1448 if (pool_guid == import->guid)
1449 found = 1;
1452 zpool_close(zhp);
1453 return (found);
1456 nvlist_t *
1457 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1459 verify(import->poolname == NULL || import->guid == 0);
1461 if (import->unique)
1462 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1464 if (import->cachefile != NULL)
1465 return (zpool_find_import_cached(hdl, import->cachefile,
1466 import->poolname, import->guid));
1468 return (zpool_find_import_impl(hdl, import));
1471 boolean_t
1472 find_guid(nvlist_t *nv, uint64_t guid)
1474 uint64_t tmp;
1475 nvlist_t **child;
1476 uint_t c, children;
1478 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1479 if (tmp == guid)
1480 return (B_TRUE);
1482 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1483 &child, &children) == 0) {
1484 for (c = 0; c < children; c++)
1485 if (find_guid(child[c], guid))
1486 return (B_TRUE);
1489 return (B_FALSE);
1492 typedef struct aux_cbdata {
1493 const char *cb_type;
1494 uint64_t cb_guid;
1495 zpool_handle_t *cb_zhp;
1496 } aux_cbdata_t;
1498 static int
1499 find_aux(zpool_handle_t *zhp, void *data)
1501 aux_cbdata_t *cbp = data;
1502 nvlist_t **list;
1503 uint_t i, count;
1504 uint64_t guid;
1505 nvlist_t *nvroot;
1507 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1508 &nvroot) == 0);
1510 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1511 &list, &count) == 0) {
1512 for (i = 0; i < count; i++) {
1513 verify(nvlist_lookup_uint64(list[i],
1514 ZPOOL_CONFIG_GUID, &guid) == 0);
1515 if (guid == cbp->cb_guid) {
1516 cbp->cb_zhp = zhp;
1517 return (1);
1522 zpool_close(zhp);
1523 return (0);
1527 * Determines if the pool is in use. If so, it returns true and the state of
1528 * the pool as well as the name of the pool. Both strings are allocated and
1529 * must be freed by the caller.
1532 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1533 boolean_t *inuse)
1535 nvlist_t *config;
1536 char *name;
1537 boolean_t ret;
1538 uint64_t guid, vdev_guid;
1539 zpool_handle_t *zhp;
1540 nvlist_t *pool_config;
1541 uint64_t stateval, isspare;
1542 aux_cbdata_t cb = { 0 };
1543 boolean_t isactive;
1545 *inuse = B_FALSE;
1547 if (zpool_read_label(fd, &config) != 0) {
1548 (void) no_memory(hdl);
1549 return (-1);
1552 if (config == NULL)
1553 return (0);
1555 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1556 &stateval) == 0);
1557 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1558 &vdev_guid) == 0);
1560 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1561 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1562 &name) == 0);
1563 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1564 &guid) == 0);
1567 switch (stateval) {
1568 case POOL_STATE_EXPORTED:
1570 * A pool with an exported state may in fact be imported
1571 * read-only, so check the in-core state to see if it's
1572 * active and imported read-only. If it is, set
1573 * its state to active.
1575 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1576 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1577 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1578 stateval = POOL_STATE_ACTIVE;
1581 * All we needed the zpool handle for is the
1582 * readonly prop check.
1584 zpool_close(zhp);
1587 ret = B_TRUE;
1588 break;
1590 case POOL_STATE_ACTIVE:
1592 * For an active pool, we have to determine if it's really part
1593 * of a currently active pool (in which case the pool will exist
1594 * and the guid will be the same), or whether it's part of an
1595 * active pool that was disconnected without being explicitly
1596 * exported.
1598 if (pool_active(hdl, name, guid, &isactive) != 0) {
1599 nvlist_free(config);
1600 return (-1);
1603 if (isactive) {
1605 * Because the device may have been removed while
1606 * offlined, we only report it as active if the vdev is
1607 * still present in the config. Otherwise, pretend like
1608 * it's not in use.
1610 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1611 (pool_config = zpool_get_config(zhp, NULL))
1612 != NULL) {
1613 nvlist_t *nvroot;
1615 verify(nvlist_lookup_nvlist(pool_config,
1616 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1617 ret = find_guid(nvroot, vdev_guid);
1618 } else {
1619 ret = B_FALSE;
1623 * If this is an active spare within another pool, we
1624 * treat it like an unused hot spare. This allows the
1625 * user to create a pool with a hot spare that currently
1626 * in use within another pool. Since we return B_TRUE,
1627 * libdiskmgt will continue to prevent generic consumers
1628 * from using the device.
1630 if (ret && nvlist_lookup_uint64(config,
1631 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1632 stateval = POOL_STATE_SPARE;
1634 if (zhp != NULL)
1635 zpool_close(zhp);
1636 } else {
1637 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1638 ret = B_TRUE;
1640 break;
1642 case POOL_STATE_SPARE:
1644 * For a hot spare, it can be either definitively in use, or
1645 * potentially active. To determine if it's in use, we iterate
1646 * over all pools in the system and search for one with a spare
1647 * with a matching guid.
1649 * Due to the shared nature of spares, we don't actually report
1650 * the potentially active case as in use. This means the user
1651 * can freely create pools on the hot spares of exported pools,
1652 * but to do otherwise makes the resulting code complicated, and
1653 * we end up having to deal with this case anyway.
1655 cb.cb_zhp = NULL;
1656 cb.cb_guid = vdev_guid;
1657 cb.cb_type = ZPOOL_CONFIG_SPARES;
1658 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1659 name = (char *)zpool_get_name(cb.cb_zhp);
1660 ret = B_TRUE;
1661 } else {
1662 ret = B_FALSE;
1664 break;
1666 case POOL_STATE_L2CACHE:
1669 * Check if any pool is currently using this l2cache device.
1671 cb.cb_zhp = NULL;
1672 cb.cb_guid = vdev_guid;
1673 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1674 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1675 name = (char *)zpool_get_name(cb.cb_zhp);
1676 ret = B_TRUE;
1677 } else {
1678 ret = B_FALSE;
1680 break;
1682 default:
1683 ret = B_FALSE;
1687 if (ret) {
1688 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1689 if (cb.cb_zhp)
1690 zpool_close(cb.cb_zhp);
1691 nvlist_free(config);
1692 return (-1);
1694 *state = (pool_state_t)stateval;
1697 if (cb.cb_zhp)
1698 zpool_close(cb.cb_zhp);
1700 nvlist_free(config);
1701 *inuse = ret;
1702 return (0);