[contrib] add a commad line
[hkl.git] / contrib / hkl.hs
blob30acaf5bedae99e1292b0d8e59ae63ff7ce2b39d
1 {-# LANGUAGE ScopedTypeVariables #-}
2 {-# OPTIONS_GHC -fglasgow-exts -fallow-undecidable-instances #-}
3 {-
4 Copyright : Copyright (C) 2014-2015 Synchrotron Soleil
5 License : GPL3+
7 Maintainer : picca@synchrotron-soleil.fr
8 Stability : Experimental
9 Portability: GHC only?
12 import Prelude hiding (sqrt, sin, cos, (+), (-), (*), (**), (/))
13 import qualified Prelude
15 import Numeric.LinearAlgebra (fromLists, Vector, Matrix,
16 ident, scalar, fromList,
17 (@>), (<>), vecdisp, disps, inv,
18 toList, dispf)
20 import Numeric.GSL.Root (root, RootMethod (Hybrids))
22 -- import Text.Printf (printf)
24 import Numeric.Units.Dimensional.Prelude (_0, _1, _2, nano, meter, degree,
25 (*~), (/~), (+), (-), (*), (**), (/),
26 Length, Angle, sin, cos, one, sqrt,
27 Dimensionless, (*~~), (/~~))
29 import Options.Applicative hiding ((<>))
31 data Lattice = Cubic (Length Double) -- a = b = c, alpha = beta = gamma = 90
32 | Tetragonal (Length Double) (Length Double) -- a = b != c, alpha = beta = gamma = 90
33 | Orthorhombic (Length Double) (Length Double) (Length Double) -- a != b != c, alpha = beta = gamma = 90
34 | Rhombohedral (Length Double) (Angle Double) -- a = b = c, alpha = beta = gamma != 90
35 | Hexagonal (Length Double) (Length Double) -- a = b != c, alpha = beta = 90, gamma = 120
36 | Monoclinic (Length Double) (Length Double) (Length Double) (Angle Double) -- a != b != c, alpha = gamma = 90, beta != 90
37 | Triclinic (Length Double) (Length Double) (Length Double) (Angle Double) (Angle Double) (Angle Double) -- a != b != c, alpha != beta != gamma != 90
38 deriving (Show)
40 busing' :: Length Double -> Length Double -> Length Double -> Angle Double -> Angle Double-> Angle Double -> Matrix Double
41 busing' a b c alpha beta gamma = fromLists [[b00 /~ (one / meter), b01/~ (one / meter), b02/~ (one / meter)],
42 [0 , b11 /~ (one / meter), b12 /~ (one / meter)],
43 [0 , 0 , b22 /~ (one / meter)]]
44 where
45 b00 = tau * sin alpha / (a * d)
46 b01 = b11 / d * (cos alpha * cos beta - cos gamma)
47 b02 = tmp / d * (cos gamma * cos alpha - cos beta)
48 b11 = tau / (b * sin alpha)
49 b12 = tmp / (sin beta * sin gamma) * (cos beta * cos gamma - cos alpha)
50 b22 = tau / c
51 d = sqrt(_1 - cos alpha ** _2 - cos beta ** _2 - cos gamma ** _2 + _2 * cos alpha * cos beta * cos gamma)
52 tmp = b22 / sin alpha;
54 busing :: Lattice -> Matrix Double
55 busing (Cubic a) = busing' a a a (90 *~ degree) (90 *~ degree) (90 *~ degree)
56 busing (Tetragonal a c) = busing' a a c (90 *~ degree) (90 *~ degree) (90 *~ degree)
57 busing (Orthorhombic a b c) = busing' a b c (90 *~ degree) (90 *~ degree) (90 *~ degree)
58 busing (Rhombohedral a alpha)= busing' a a a alpha alpha alpha
59 busing (Hexagonal a c) = busing' a a c (90 *~ degree) (90 *~ degree) (120 *~ degree)
60 busing (Monoclinic a b c beta) = busing' a b c (90 *~ degree) beta (90 *~ degree)
61 busing (Triclinic a b c alpha beta gamma) = busing' a b c alpha beta gamma
63 -- A Transformation which can be apply to a Vector of Double
64 data Transformation = NoTransformation -- Doesn't transform the vector at all
65 | Rotation [Double] (Angle Double)
66 | UB Lattice
67 | Holder [Transformation]
69 tau :: Dimensionless Double
70 tau = _1 -- 1 or 2*pi
72 crossprod :: Vector Double -> Matrix Double
73 crossprod axis = fromLists [[ 0, -z, y],
74 [ z, 0, -x],
75 [-y, x, 0]]
76 where
77 x = axis @> 0
78 y = axis @> 1
79 z = axis @> 2
81 -- apply a transformation
82 apply :: Transformation -> Vector Double -> Vector Double
83 apply NoTransformation v = v
84 apply (Rotation axis angle) v = (ident 3 Prelude.+ s Prelude.* q Prelude.+ c Prelude.* (q <> q)) <> v
85 where
86 ax = fromList axis
87 c = scalar (1 Prelude.- cos angle /~ one)
88 s = scalar (sin angle /~ one)
89 q = crossprod ax
90 apply (UB lattice) v = busing lattice <> v
91 apply (Holder t) v = foldr apply v t
93 -- unapply a transformation
94 unapply :: Vector Double -> Transformation -> Vector Double
95 unapply v NoTransformation = v
96 unapply v (Rotation axis angle) = apply (Rotation axis (_0 - angle)) v
97 unapply v (UB lattice) = inv (busing lattice) <> v
98 unapply v (Holder t) = foldl unapply v t
100 -- source
101 lambda :: Length Double
102 lambda = 1.54 *~ nano meter
104 ki :: Vector Double
105 ki = fromList [(tau / lambda) /~ (one / meter), 0, 0]
107 -- diffractometer
108 data Diffractometer = Diffractometer [Angle Double -> Transformation] [Angle Double -> Transformation]
109 data Mode = ModeHklE4CConstantPhi
111 e4c :: Diffractometer
112 e4c = Diffractometer [omega, chi, phi, rx, ry, rz] [tth]
113 where
114 rx = Rotation [1, 0, 0]
115 ry = Rotation [0, 1, 0]
116 rz = Rotation [0, 0, 1]
117 omega = Rotation [0, -1, 0]
118 chi = Rotation [1, 0, 0]
119 phi = Rotation [0, -1, 0]
120 tth = Rotation [0, -1, 0]
122 computeHkl :: Diffractometer -> [Angle Double] -> Lattice -> Vector Double
123 computeHkl (Diffractometer sample detector) values lattice =
124 unapply q (Holder (zipWith ($) sample s ++ [UB lattice]))
125 where
126 (s, d) = splitAt 6 values
127 kf = apply (Holder (zipWith ($) detector d)) ki
128 q = kf Prelude.- ki
130 fromMode :: Mode -> [Double] -> [Angle Double] -> [Angle Double]
131 fromMode ModeHklE4CConstantPhi fitted angles =
132 newAngles
133 where
134 (_vs, _d) = splitAt 2 fitted
135 (_cs, _) = splitAt 6 angles
136 (_, _ccs) = splitAt 2 _cs
137 newAngles = _vs *~~ degree ++ _ccs ++ _d *~~ degree
139 toMode :: Mode -> [Angle Double] -> [Double]
140 toMode ModeHklE4CConstantPhi angles =
142 where
143 (_s, _d) = splitAt 6 angles
144 (_ss, _) = splitAt 2 _s
145 v = (_ss ++ _d) /~~ degree
147 computeAngles' :: Diffractometer -> [Angle Double] -> Lattice -> Mode -> [Double] -> [Double] -> [Double]
148 computeAngles' diffractometer angles lattice mode hkl fitted =
149 toList (computeHkl diffractometer newAngles lattice Prelude.- fromList hkl)
150 where
151 newAngles = fromMode mode fitted angles
153 computeAngles :: Diffractometer -> [Angle Double] -> Lattice -> Mode -> [Double] -> ([Double], Matrix Double)
154 computeAngles diffractometer angles lattice mode hkl =
155 root Hybrids 1E-7 30 f guess
156 where
157 f = computeAngles' diffractometer angles lattice mode hkl
158 guess = toMode mode angles
160 dispv :: Vector Double -> IO ()
161 dispv = putStr . vecdisp (disps 2)
163 disp :: Matrix Double -> IO ()
164 disp = putStr . dispf 3
166 -- command parsing
167 data Command
168 = Ca Double Double Double -- ca command
170 data Options
171 = Options Command
173 withInfo :: Parser a -> String -> ParserInfo a
174 withInfo opts desc = info (helper <*> opts) $ progDesc desc
176 parseCa :: Parser Command
177 parseCa = Ca
178 <$> argument auto (metavar "H")
179 <*> argument auto (metavar "K")
180 <*> argument auto (metavar "L")
182 parseCommand :: Parser Command
183 parseCommand = subparser $
184 command "ca" (parseCa `withInfo` "compute angles for the given hkl")
186 parseOptions :: Parser Options
187 parseOptions = Options <$> parseCommand
189 -- Actual program logic
190 run :: Options -> IO ()
191 run (Options cmd) =
192 case cmd of
193 Ca h k l-> do
194 print (solution /~~ degree)
195 dispv (computeHkl e4c solution lattice)
196 disp path
197 where
198 (sol, path) = computeAngles e4c angles lattice mode [h, k, l]
199 s = [30.0, 0.0, 0.0, 0.0, 10.0, 0.0]
200 d = [60.0]
201 angles = (s ++ d) *~~ degree
202 solution = fromMode mode sol angles
203 lattice = Cubic (1.54 *~ nano meter)
204 mode = ModeHklE4CConstantPhi
206 main :: IO ()
207 main = run =<< execParser
208 (parseOptions `withInfo` "Interact with hkl API")