1 /* This file is part of the hkl library.
3 * The hkl library is free software: you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation, either version 3 of the License, or
6 * (at your option) any later version.
8 * The hkl library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with the hkl library. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2003-2017 Synchrotron SOLEIL
17 * L'Orme des Merisiers Saint-Aubin
18 * BP 48 91192 GIF-sur-YVETTE CEDEX
20 * Authors: Picca Frédéric-Emmanuel <picca@synchrotron-soleil.fr>
22 #include <math.h> // for cos, fabs, atan2, sin, asin
23 #include <stdio.h> // for fprintf, FILE
24 #include <stdlib.h> // for free
25 #include <string.h> // for memcpy
26 #include "hkl-macros-private.h" // for HKL_MALLOC
27 #include "hkl-matrix-private.h" // for _HklMatrix
28 #include "hkl-vector-private.h" // for HklVector, etc
29 #include "hkl.h" // for HklMatrix, HKL_EPSILON, etc
32 * hkl_matrix_new: (skip)
34 * Returns: a new uninitialized HklMatrix
36 HklMatrix
*hkl_matrix_new()
38 return HKL_MALLOC(HklMatrix
);
42 * hkl_matrix_new_full: (skip)
43 * @m11: the matrix 11 value
44 * @m12: the matrix 12 value
45 * @m13: the matrix 13 value
46 * @m21: the matrix 21 value
47 * @m22: the matrix 22 value
48 * @m23: the matrix 23 value
49 * @m31: the matrix 31 value
50 * @m32: the matrix 32 value
51 * @m33: the matrix 33 value
54 * Returns: a new HklMAtrix
56 HklMatrix
*hkl_matrix_new_full(double m11
, double m12
, double m13
,
57 double m21
, double m22
, double m23
,
58 double m31
, double m32
, double m33
)
60 HklMatrix
*self
= hkl_matrix_new();
70 * hkl_matrix_new_euler:
71 * @euler_x: the eulerian value along X
72 * @euler_y: the eulerian value along Y
73 * @euler_z: the eulerian value along Z
75 * Returns: Create a rotation #HklMatrix from three eulerians angles.
77 HklMatrix
*hkl_matrix_new_euler(double euler_x
, double euler_y
, double euler_z
)
79 HklMatrix
*self
= hkl_matrix_new();
80 hkl_matrix_init_from_euler(self
, euler_x
, euler_y
, euler_z
);
86 * hkl_matrix_dup: (skip)
93 HklMatrix
*hkl_matrix_dup(const HklMatrix
* self
)
97 dup
= HKL_MALLOC(HklMatrix
);
98 memcpy(dup
, self
, sizeof(*self
));
104 * hkl_matrix_free: (skip)
109 void hkl_matrix_free(HklMatrix
*self
)
116 * @self: the #HklMatrix to initialize
117 * @m11: the matrix 11 value
118 * @m12: the matrix 12 value
119 * @m13: the matrix 13 value
120 * @m21: the matrix 21 value
121 * @m22: the matrix 22 value
122 * @m23: the matrix 23 value
123 * @m31: the matrix 31 value
124 * @m32: the matrix 32 value
125 * @m33: the matrix 33 value
129 void hkl_matrix_init(HklMatrix
*self
,
130 double m11
, double m12
, double m13
,
131 double m21
, double m22
, double m23
,
132 double m31
, double m32
, double m33
)
134 double (*M
)[3] = self
->data
;
136 M
[0][0] = m11
, M
[0][1] = m12
, M
[0][2] = m13
;
137 M
[1][0] = m21
, M
[1][1] = m22
, M
[1][2] = m23
;
138 M
[2][0] = m31
, M
[2][1] = m32
, M
[2][2] = m33
;
142 * hkl_matrix_matrix_set: (skip)
143 * @self: the this ptr
144 * @m: the matrix to set
148 void hkl_matrix_matrix_set(HklMatrix
*self
, const HklMatrix
*m
)
153 memcpy(self
->data
, m
->data
, sizeof(double) * 9);
158 * @self: the this ptr
159 * @i: the i coordinate
160 * @j: the j coordinate
163 * Return value: the Mij value
165 double hkl_matrix_get(const HklMatrix
*self
, unsigned int i
, unsigned int j
)
167 return self
->data
[i
][j
];
171 * hkl_matrix_fprintf:
172 * @file: the FILE stream
173 * @self: the #HklMatrix to print into the file stream
175 * printf an #HklMatrix into a FILE stream.
177 void hkl_matrix_fprintf(FILE *file
, const HklMatrix
*self
)
179 double const (*M
)[3] = self
->data
;
181 fprintf(file
, "|%f, %f, %f|\n", M
[0][0], M
[0][1], M
[0][2]);
182 fprintf(file
, "|%f, %f, %f|\n", M
[1][0], M
[1][1], M
[1][2]);
183 fprintf(file
, "|%f, %f, %f|\n", M
[2][0], M
[2][1], M
[2][2]);
187 * hkl_matrix_init_from_two_vector:
188 * @self: The #HklMatrix to initialize
189 * @v1: the first #HklVector
190 * @v2: the second #HklVector
192 * Create an #HklMatrix which represent a direct oriented base of the space
193 * the first row correspond to the |v1|, the second row |v2| and the last one
196 void hkl_matrix_init_from_two_vector(HklMatrix
*self
,
197 const HklVector
*v1
, const HklVector
*v2
)
200 double (*M
)[3] = self
->data
;
203 hkl_vector_normalize(&x
);
206 hkl_vector_vectorial_product(&z
, v2
);
207 hkl_vector_normalize(&z
);
210 hkl_vector_vectorial_product(&y
, &x
);
212 M
[0][0] = x
.data
[0], M
[0][1] = y
.data
[0], M
[0][2] = z
.data
[0];
213 M
[1][0] = x
.data
[1], M
[1][1] = y
.data
[1], M
[1][2] = z
.data
[1];
214 M
[2][0] = x
.data
[2], M
[2][1] = y
.data
[2], M
[2][2] = z
.data
[2];
218 * hkl_matrix_init_from_euler:
219 * @self: the #HklMatrix to initialize
220 * @euler_x: the eulerian value along X
221 * @euler_y: the eulerian value along Y
222 * @euler_z: the eulerian value along Z
224 * Create a rotation #HklMatrix from three eulerians angles.
226 void hkl_matrix_init_from_euler(HklMatrix
*self
,
227 double euler_x
, double euler_y
, double euler_z
)
229 double (*M
)[3] = self
->data
;
231 double A
= cos(euler_x
);
232 double B
= sin(euler_x
);
233 double C
= cos(euler_y
);
234 double D
= sin(euler_y
);
235 double E
= cos(euler_z
);
236 double F
= sin(euler_z
);
243 M
[1][0] = BD
*E
+ A
*F
;
244 M
[1][1] =-BD
*F
+ A
*E
;
246 M
[2][0] =-AD
*E
+ B
*F
;
247 M
[2][1] = AD
*F
+ B
*E
;
252 * hkl_matrix_to_euler:
253 * @self: the rotation #HklMatrix use to compute the eulerians angles
254 * @euler_x: the eulerian value along X
255 * @euler_y: the eulerian value along Y
256 * @euler_z: the eulerian value along Z
258 * compute the three eulerians values for a given rotation #HklMatrix
260 void hkl_matrix_to_euler(const HklMatrix
*self
,
261 double *euler_x
, double *euler_y
, double *euler_z
)
265 double const (*M
)[3] = self
->data
;
267 *euler_y
= asin( self
->data
[0][2] ); /*Calculate Y-axis angle */
269 if (fabs(C
) > HKL_EPSILON
) {
271 tx
= M
[2][2] / C
; /*No, so get X-axis angle */
273 *euler_x
= atan2( ty
, tx
);
274 tx
= M
[0][0] / C
; /*Get Z-axis angle */
276 *euler_z
= atan2( ty
, tx
);
278 /*Gimball lock has occurred */
279 *euler_x
= 0.; /*Set X-axis angle to zero */
280 tx
= M
[1][1]; /*And calculate Z-axis angle */
282 *euler_z
= atan2( ty
, tx
);
288 * @self: the first #HklMatrix
289 * @m: the #HklMatrix to compare with
291 * compare two #HklMatrix.
293 * Returns: return TRUE if | self - m | > HKL_EPSILON
295 int hkl_matrix_cmp(const HklMatrix
*self
, const HklMatrix
*m
)
301 if( fabs(self
->data
[i
][j
] - m
->data
[i
][j
]) > HKL_EPSILON
)
308 * hkl_matrix_times_matrix:
309 * @self: the #HklMatrix to modify
310 * @m: the #HklMatrix to multiply by
312 * compute the matrix multiplication self = self * m
314 void hkl_matrix_times_matrix(HklMatrix
*self
, const HklMatrix
*m
)
316 HklMatrix
const tmp
= *self
;
317 double (*M
)[3] = self
->data
;
318 double const (*Tmp
)[3] = tmp
.data
;
319 double const (*M1
)[3];
325 M
[0][0] = Tmp
[0][0]*M1
[0][0] + Tmp
[0][1]*M1
[1][0] + Tmp
[0][2]*M1
[2][0];
326 M
[0][1] = Tmp
[0][0]*M1
[0][1] + Tmp
[0][1]*M1
[1][1] + Tmp
[0][2]*M1
[2][1];
327 M
[0][2] = Tmp
[0][0]*M1
[0][2] + Tmp
[0][1]*M1
[1][2] + Tmp
[0][2]*M1
[2][2];
329 M
[1][0] = Tmp
[1][0]*M1
[0][0] + Tmp
[1][1]*M1
[1][0] + Tmp
[1][2]*M1
[2][0];
330 M
[1][1] = Tmp
[1][0]*M1
[0][1] + Tmp
[1][1]*M1
[1][1] + Tmp
[1][2]*M1
[2][1];
331 M
[1][2] = Tmp
[1][0]*M1
[0][2] + Tmp
[1][1]*M1
[1][2] + Tmp
[1][2]*M1
[2][2];
333 M
[2][0] = Tmp
[2][0]*M1
[0][0] + Tmp
[2][1]*M1
[1][0] + Tmp
[2][2]*M1
[2][0];
334 M
[2][1] = Tmp
[2][0]*M1
[0][1] + Tmp
[2][1]*M1
[1][1] + Tmp
[2][2]*M1
[2][1];
335 M
[2][2] = Tmp
[2][0]*M1
[0][2] + Tmp
[2][1]*M1
[1][2] + Tmp
[2][2]*M1
[2][2];
340 * hkl_matrix_times_vector:
341 * @self: the #HklMatrix use to multiply the #HklVector
342 * @v: the #HklVector multiply by the #HklMatrix
344 * multiply an #HklVector by an #HklMatrix
346 void hkl_matrix_times_vector(const HklMatrix
*self
, HklVector
*v
)
351 double const (*M
)[3] = self
->data
;
356 V
[0] = Tmp
[0]*M
[0][0] + Tmp
[1]*M
[0][1] + Tmp
[2]*M
[0][2];
357 V
[1] = Tmp
[0]*M
[1][0] + Tmp
[1]*M
[1][1] + Tmp
[2]*M
[1][2];
358 V
[2] = Tmp
[0]*M
[2][0] + Tmp
[1]*M
[2][1] + Tmp
[2]*M
[2][2];
363 * hkl_matrix_transpose:
364 * @self: the #HklMatrix to transpose
366 * transpose an #HklMatrix
368 void hkl_matrix_transpose(HklMatrix
*self
)
370 #define SWAP(a, b) {double tmp=a; a=b; b=tmp;}
371 SWAP(self
->data
[1][0], self
->data
[0][1]);
372 SWAP(self
->data
[2][0], self
->data
[0][2]);
373 SWAP(self
->data
[2][1], self
->data
[1][2]);
378 * @self: the #HklMatrix use to compute the determinant
380 * compute the determinant of an #HklMatrix
382 * Returns: the determinant of the self #HklMatrix
385 double hkl_matrix_det(const HklMatrix
*self
)
388 double const (*M
)[3] = self
->data
;
390 det
= M
[0][0] * (M
[1][1] * M
[2][2] - M
[2][1] * M
[1][2]);
391 det
+= -M
[0][1] * (M
[1][0] * M
[2][2] - M
[2][0] * M
[1][2]);
392 det
+= M
[0][2] * (M
[1][0] * M
[2][1] - M
[2][0] * M
[1][1]);
399 * @self: The #HklMatrix of the system
400 * @x: the #HklVector to compute.
401 * @b: the #hklVector of the system to solve.
403 * solve the system self . X = b
405 * Returns: -1 if the système has no solution, 0 otherwise.
408 int hkl_matrix_solve(const HklMatrix
*self
, HklVector
*x
, const HklVector
*b
)
411 double const (*M
)[3] = self
->data
;
413 double const *B
= b
->data
;
415 det
= hkl_matrix_det(self
);
416 if (fabs(det
) < HKL_EPSILON
)
419 X
[0] = B
[0] * (M
[1][1]*M
[2][2] - M
[1][2]*M
[2][1]);
420 X
[0] += -B
[1] * (M
[0][1]*M
[2][2] - M
[0][2]*M
[2][1]);
421 X
[0] += B
[2] * (M
[0][1]*M
[1][2] - M
[0][2]*M
[1][1]);
423 X
[1] = -B
[0] * (M
[1][0]*M
[2][2] - M
[1][2]*M
[2][0]);
424 X
[1] += B
[1] * (M
[0][0]*M
[2][2] - M
[0][2]*M
[2][0]);
425 X
[1] += -B
[2] * (M
[0][0]*M
[1][2] - M
[0][2]*M
[1][0]);
427 X
[2] = B
[0] * (M
[1][0]*M
[2][1] - M
[1][1]*M
[2][0]);
428 X
[2] += -B
[1] * (M
[0][0]*M
[2][1] - M
[0][1]*M
[2][0]);
429 X
[2] += B
[2] * (M
[0][0]*M
[1][1] - M
[0][1]*M
[1][0]);
431 hkl_vector_div_double(x
, det
);
437 * hkl_matrix_is_null:
438 * @self: the #HklMatrix to test
440 * is all #hklMatrix elementes bellow #HKL_EPSILON
442 * Returns: TRUE if the self #HklMatrix is null
445 int hkl_matrix_is_null(const HklMatrix
*self
)
451 if ( fabs(self
->data
[i
][j
]) > HKL_EPSILON
)