[contrib][haskell] add the useHMatrixGsl option and simplify profiling
[hkl.git] / hkl / hkl-matrix.c
blob45ac1467ed07ced9b0ce04955d5f204d1e96d67a
1 /* This file is part of the hkl library.
3 * The hkl library is free software: you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation, either version 3 of the License, or
6 * (at your option) any later version.
8 * The hkl library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with the hkl library. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2003-2016 Synchrotron SOLEIL
17 * L'Orme des Merisiers Saint-Aubin
18 * BP 48 91192 GIF-sur-YVETTE CEDEX
20 * Authors: Picca Frédéric-Emmanuel <picca@synchrotron-soleil.fr>
22 #include <math.h> // for cos, fabs, atan2, sin, asin
23 #include <stdio.h> // for fprintf, FILE
24 #include <stdlib.h> // for free
25 #include <string.h> // for memcpy
26 #include "hkl-macros-private.h" // for HKL_MALLOC
27 #include "hkl-matrix-private.h" // for _HklMatrix
28 #include "hkl-vector-private.h" // for HklVector, etc
29 #include "hkl.h" // for HklMatrix, HKL_EPSILON, etc
31 /**
32 * hkl_matrix_new: (skip)
34 * Returns: a new uninitialized HklMatrix
36 HklMatrix *hkl_matrix_new()
38 return HKL_MALLOC(HklMatrix);
41 /**
42 * hkl_matrix_new_full: (skip)
43 * @m11: the matrix 11 value
44 * @m12: the matrix 12 value
45 * @m13: the matrix 13 value
46 * @m21: the matrix 21 value
47 * @m22: the matrix 22 value
48 * @m23: the matrix 23 value
49 * @m31: the matrix 31 value
50 * @m32: the matrix 32 value
51 * @m33: the matrix 33 value
53 * @todo test
54 * Returns: a new HklMAtrix
55 **/
56 HklMatrix *hkl_matrix_new_full(double m11, double m12, double m13,
57 double m21, double m22, double m23,
58 double m31, double m32, double m33)
60 HklMatrix *self = hkl_matrix_new();
61 hkl_matrix_init(self,
62 m11, m12, m13,
63 m21, m22, m23,
64 m31, m32, m33);
66 return self;
69 /**
70 * hkl_matrix_new_euler:
71 * @euler_x: the eulerian value along X
72 * @euler_y: the eulerian value along Y
73 * @euler_z: the eulerian value along Z
75 * Returns: Create a rotation #HklMatrix from three eulerians angles.
76 **/
77 HklMatrix *hkl_matrix_new_euler(double euler_x, double euler_y, double euler_z)
79 HklMatrix *self = hkl_matrix_new();
80 hkl_matrix_init_from_euler(self, euler_x, euler_y, euler_z);
82 return self;
85 /**
86 * hkl_matrix_dup: (skip)
87 * @self:
91 * Returns:
92 **/
93 HklMatrix *hkl_matrix_dup(const HklMatrix* self)
95 HklMatrix *dup;
97 dup = HKL_MALLOC(HklMatrix);
98 memcpy(dup, self, sizeof(*self));
100 return dup;
104 * hkl_matrix_free: (skip)
105 * @self:
109 void hkl_matrix_free(HklMatrix *self)
111 free(self);
115 * hkl_matrix_init:
116 * @self: the #HklMatrix to initialize
117 * @m11: the matrix 11 value
118 * @m12: the matrix 12 value
119 * @m13: the matrix 13 value
120 * @m21: the matrix 21 value
121 * @m22: the matrix 22 value
122 * @m23: the matrix 23 value
123 * @m31: the matrix 31 value
124 * @m32: the matrix 32 value
125 * @m33: the matrix 33 value
129 void hkl_matrix_init(HklMatrix *self,
130 double m11, double m12, double m13,
131 double m21, double m22, double m23,
132 double m31, double m32, double m33)
134 double (*M)[3] = self->data;
136 M[0][0] = m11, M[0][1] = m12, M[0][2] = m13;
137 M[1][0] = m21, M[1][1] = m22, M[1][2] = m23;
138 M[2][0] = m31, M[2][1] = m32, M[2][2] = m33;
142 * hkl_matrix_matrix_set: (skip)
143 * @self: the this ptr
144 * @m: the matrix to set
146 * @todo test
148 void hkl_matrix_matrix_set(HklMatrix *self, const HklMatrix *m)
150 if (self == m)
151 return;
153 memcpy(self->data, m->data, sizeof(double) * 9);
157 * hkl_matrix_get:
158 * @self: the this ptr
159 * @i: the i coordinate
160 * @j: the j coordinate
162 * @todo test
163 * Return value: the Mij value
165 double hkl_matrix_get(const HklMatrix *self, unsigned int i, unsigned int j)
167 return self->data[i][j];
171 * hkl_matrix_fprintf:
172 * @file: the FILE stream
173 * @self: the #HklMatrix to print into the file stream
175 * printf an #HklMatrix into a FILE stream.
177 void hkl_matrix_fprintf(FILE *file, const HklMatrix *self)
179 double const (*M)[3] = self->data;
181 fprintf(file, "|%f, %f, %f|\n", M[0][0], M[0][1], M[0][2]);
182 fprintf(file, "|%f, %f, %f|\n", M[1][0], M[1][1], M[1][2]);
183 fprintf(file, "|%f, %f, %f|\n", M[2][0], M[2][1], M[2][2]);
187 * hkl_matrix_init_from_two_vector:
188 * @self: The #HklMatrix to initialize
189 * @v1: the first #HklVector
190 * @v2: the second #HklVector
192 * Create an #HklMatrix which represent a direct oriented base of the space
193 * the first row correspond to the |v1|, the second row |v2| and the last one
194 * is |v1 ^ v2|
196 void hkl_matrix_init_from_two_vector(HklMatrix *self,
197 const HklVector *v1, const HklVector *v2)
199 HklVector x, y, z;
200 double (*M)[3] = self->data;
202 x = *v1;
203 hkl_vector_normalize(&x);
205 z = *v1;
206 hkl_vector_vectorial_product(&z, v2);
207 hkl_vector_normalize(&z);
209 y = z;
210 hkl_vector_vectorial_product(&y, &x);
212 M[0][0] = x.data[0], M[0][1] = y.data[0], M[0][2] = z.data[0];
213 M[1][0] = x.data[1], M[1][1] = y.data[1], M[1][2] = z.data[1];
214 M[2][0] = x.data[2], M[2][1] = y.data[2], M[2][2] = z.data[2];
218 * hkl_matrix_init_from_euler:
219 * @self: the #HklMatrix to initialize
220 * @euler_x: the eulerian value along X
221 * @euler_y: the eulerian value along Y
222 * @euler_z: the eulerian value along Z
224 * Create a rotation #HklMatrix from three eulerians angles.
226 void hkl_matrix_init_from_euler(HklMatrix *self,
227 double euler_x, double euler_y, double euler_z)
229 double (*M)[3] = self->data;
231 double A = cos(euler_x);
232 double B = sin(euler_x);
233 double C = cos(euler_y);
234 double D = sin(euler_y);
235 double E = cos(euler_z);
236 double F = sin(euler_z);
237 double AD = A *D;
238 double BD = B *D;
240 M[0][0] = C*E;
241 M[0][1] =-C*F;
242 M[0][2] = D;
243 M[1][0] = BD *E + A *F;
244 M[1][1] =-BD *F + A *E;
245 M[1][2] =-B *C;
246 M[2][0] =-AD *E + B *F;
247 M[2][1] = AD *F + B *E;
248 M[2][2] = A *C;
252 * hkl_matrix_to_euler:
253 * @self: the rotation #HklMatrix use to compute the eulerians angles
254 * @euler_x: the eulerian value along X
255 * @euler_y: the eulerian value along Y
256 * @euler_z: the eulerian value along Z
258 * compute the three eulerians values for a given rotation #HklMatrix
260 void hkl_matrix_to_euler(const HklMatrix *self,
261 double *euler_x, double *euler_y, double *euler_z)
263 double tx, ty;
264 double C;
265 double const (*M)[3] = self->data;
267 *euler_y = asin( self->data[0][2] ); /*Calculate Y-axis angle */
268 C = cos( *euler_y );
269 if (fabs(C) > HKL_EPSILON) {
270 /*Gimball lock? */
271 tx = M[2][2] / C; /*No, so get X-axis angle */
272 ty = -M[1][2] / C;
273 *euler_x = atan2( ty, tx );
274 tx = M[0][0] / C; /*Get Z-axis angle */
275 ty = -M[0][1] / C;
276 *euler_z = atan2( ty, tx );
277 } else {
278 /*Gimball lock has occurred */
279 *euler_x = 0.; /*Set X-axis angle to zero */
280 tx = M[1][1]; /*And calculate Z-axis angle */
281 ty = M[1][0];
282 *euler_z = atan2( ty, tx );
287 * hkl_matrix_cmp:
288 * @self: the first #HklMatrix
289 * @m: the #HklMatrix to compare with
291 * compare two #HklMatrix.
293 * Returns: return TRUE if | self - m | > HKL_EPSILON
295 int hkl_matrix_cmp(const HklMatrix *self, const HklMatrix *m)
297 unsigned int i;
298 unsigned int j;
299 for(i=0;i<3;i++)
300 for(j=0;j<3;j++)
301 if( fabs(self->data[i][j] - m->data[i][j]) > HKL_EPSILON )
302 return FALSE;
303 return TRUE;
308 * hkl_matrix_times_matrix:
309 * @self: the #HklMatrix to modify
310 * @m: the #HklMatrix to multiply by
312 * compute the matrix multiplication self = self * m
314 void hkl_matrix_times_matrix(HklMatrix *self, const HklMatrix *m)
316 HklMatrix const tmp = *self;
317 double (*M)[3] = self->data;
318 double const (*Tmp)[3] = tmp.data;
319 double const (*M1)[3];
320 if (self == m)
321 M1 = tmp.data;
322 else
323 M1 = m->data;
325 M[0][0] = Tmp[0][0]*M1[0][0] + Tmp[0][1]*M1[1][0] + Tmp[0][2]*M1[2][0];
326 M[0][1] = Tmp[0][0]*M1[0][1] + Tmp[0][1]*M1[1][1] + Tmp[0][2]*M1[2][1];
327 M[0][2] = Tmp[0][0]*M1[0][2] + Tmp[0][1]*M1[1][2] + Tmp[0][2]*M1[2][2];
329 M[1][0] = Tmp[1][0]*M1[0][0] + Tmp[1][1]*M1[1][0] + Tmp[1][2]*M1[2][0];
330 M[1][1] = Tmp[1][0]*M1[0][1] + Tmp[1][1]*M1[1][1] + Tmp[1][2]*M1[2][1];
331 M[1][2] = Tmp[1][0]*M1[0][2] + Tmp[1][1]*M1[1][2] + Tmp[1][2]*M1[2][2];
333 M[2][0] = Tmp[2][0]*M1[0][0] + Tmp[2][1]*M1[1][0] + Tmp[2][2]*M1[2][0];
334 M[2][1] = Tmp[2][0]*M1[0][1] + Tmp[2][1]*M1[1][1] + Tmp[2][2]*M1[2][1];
335 M[2][2] = Tmp[2][0]*M1[0][2] + Tmp[2][1]*M1[1][2] + Tmp[2][2]*M1[2][2];
340 * hkl_matrix_times_vector:
341 * @self: the #HklMatrix use to multiply the #HklVector
342 * @v: the #HklVector multiply by the #HklMatrix
344 * multiply an #HklVector by an #HklMatrix
346 void hkl_matrix_times_vector(const HklMatrix *self, HklVector *v)
348 HklVector tmp;
349 double *Tmp;
350 double *V = v->data;
351 double const (*M)[3] = self->data;
353 tmp = *v;
354 Tmp = tmp.data;
356 V[0] = Tmp[0]*M[0][0] + Tmp[1]*M[0][1] + Tmp[2]*M[0][2];
357 V[1] = Tmp[0]*M[1][0] + Tmp[1]*M[1][1] + Tmp[2]*M[1][2];
358 V[2] = Tmp[0]*M[2][0] + Tmp[1]*M[2][1] + Tmp[2]*M[2][2];
363 * hkl_matrix_transpose:
364 * @self: the #HklMatrix to transpose
366 * transpose an #HklMatrix
368 void hkl_matrix_transpose(HklMatrix *self)
370 #define SWAP(a, b) {double tmp=a; a=b; b=tmp;}
371 SWAP(self->data[1][0], self->data[0][1]);
372 SWAP(self->data[2][0], self->data[0][2]);
373 SWAP(self->data[2][1], self->data[1][2]);
377 * hkl_matrix_det:
378 * @self: the #HklMatrix use to compute the determinant
380 * compute the determinant of an #HklMatrix
382 * Returns: the determinant of the self #HklMatrix
383 * Todo: test
385 double hkl_matrix_det(const HklMatrix *self)
387 double det;
388 double const (*M)[3] = self->data;
390 det = M[0][0] * (M[1][1] * M[2][2] - M[2][1] * M[1][2]);
391 det += -M[0][1] * (M[1][0] * M[2][2] - M[2][0] * M[1][2]);
392 det += M[0][2] * (M[1][0] * M[2][1] - M[2][0] * M[1][1]);
394 return det;
398 * hkl_matrix_solve:
399 * @self: The #HklMatrix of the system
400 * @x: the #HklVector to compute.
401 * @b: the #hklVector of the system to solve.
403 * solve the system self . X = b
405 * Returns: -1 if the système has no solution, 0 otherwise.
406 * Todo: test
408 int hkl_matrix_solve(const HklMatrix *self, HklVector *x, const HklVector *b)
410 double det;
411 double const (*M)[3] = self->data;
412 double *X = x->data;
413 double const *B = b->data;
415 det = hkl_matrix_det(self);
416 if (fabs(det) < HKL_EPSILON)
417 return -1;
418 else {
419 X[0] = B[0] * (M[1][1]*M[2][2] - M[1][2]*M[2][1]);
420 X[0] += -B[1] * (M[0][1]*M[2][2] - M[0][2]*M[2][1]);
421 X[0] += B[2] * (M[0][1]*M[1][2] - M[0][2]*M[1][1]);
423 X[1] = -B[0] * (M[1][0]*M[2][2] - M[1][2]*M[2][0]);
424 X[1] += B[1] * (M[0][0]*M[2][2] - M[0][2]*M[2][0]);
425 X[1] += -B[2] * (M[0][0]*M[1][2] - M[0][2]*M[1][0]);
427 X[2] = B[0] * (M[1][0]*M[2][1] - M[1][1]*M[2][0]);
428 X[2] += -B[1] * (M[0][0]*M[2][1] - M[0][1]*M[2][0]);
429 X[2] += B[2] * (M[0][0]*M[1][1] - M[0][1]*M[1][0]);
431 hkl_vector_div_double(x, det);
433 return 0;
437 * hkl_matrix_is_null:
438 * @self: the #HklMatrix to test
440 * is all #hklMatrix elementes bellow #HKL_EPSILON
442 * Returns: TRUE if the self #HklMatrix is null
443 * Todo: test
445 int hkl_matrix_is_null(const HklMatrix *self)
447 unsigned int i;
448 unsigned int j;
449 for (i=0;i<3;i++)
450 for (j=0;j<3;j++)
451 if ( fabs(self->data[i][j]) > HKL_EPSILON )
452 return FALSE;
453 return TRUE;