(c) versus (C)
[helenos.git] / kernel / generic / src / adt / btree.c
blobab37fab4aecff8cdf3703e3dad0d38c7f13a89bc
1 /*
2 * Copyright (c) 2006 Jakub Jermar
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 /** @addtogroup genericadt
30 * @{
33 /**
34 * @file
35 * @brief B+tree implementation.
37 * This file implements B+tree type and operations.
39 * The B+tree has the following properties:
40 * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5)
41 * @li values (i.e. pointers to values) are stored only in leaves
42 * @li leaves are linked in a list
44 * Be carefull when using these trees. They need to allocate
45 * and deallocate memory for their index nodes and as such
46 * can sleep.
49 #include <adt/btree.h>
50 #include <adt/list.h>
51 #include <mm/slab.h>
52 #include <debug.h>
53 #include <panic.h>
54 #include <typedefs.h>
55 #include <print.h>
57 static void btree_destroy_subtree(btree_node_t *root);
58 static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node);
59 static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node);
60 static void node_initialize(btree_node_t *node);
61 static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree);
62 static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
63 static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key);
64 static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key);
65 static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median);
66 static btree_node_t *node_combine(btree_node_t *node);
67 static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
68 static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
69 static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
70 static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
71 static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
72 static bool try_rotation_from_left(btree_node_t *rnode);
73 static bool try_rotation_from_right(btree_node_t *lnode);
75 #define ROOT_NODE(n) (!(n)->parent)
76 #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
77 #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
79 #define FILL_FACTOR ((BTREE_M-1)/2)
81 #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
82 #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
83 #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
84 #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
86 static slab_cache_t *btree_node_slab;
88 /** Initialize B-trees. */
89 void btree_init(void)
91 btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
94 /** Create empty B-tree.
96 * @param t B-tree.
98 void btree_create(btree_t *t)
100 list_initialize(&t->leaf_head);
101 t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
102 node_initialize(t->root);
103 list_append(&t->root->leaf_link, &t->leaf_head);
106 /** Destroy empty B-tree. */
107 void btree_destroy(btree_t *t)
109 btree_destroy_subtree(t->root);
112 /** Insert key-value pair into B-tree.
114 * @param t B-tree.
115 * @param key Key to be inserted.
116 * @param value Value to be inserted.
117 * @param leaf_node Leaf node where the insertion should begin.
119 void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node)
121 btree_node_t *lnode;
123 ASSERT(value);
125 lnode = leaf_node;
126 if (!lnode) {
127 if (btree_search(t, key, &lnode)) {
128 panic("B-tree %p already contains key %d\n", t, key);
132 _btree_insert(t, key, value, NULL, lnode);
135 /** Destroy subtree rooted in a node.
137 * @param root Root of the subtree.
139 void btree_destroy_subtree(btree_node_t *root)
141 int i;
143 if (root->keys) {
144 for (i = 0; i < root->keys + 1; i++) {
145 if (root->subtree[i])
146 btree_destroy_subtree(root->subtree[i]);
149 slab_free(btree_node_slab, root);
152 /** Recursively insert into B-tree.
154 * @param t B-tree.
155 * @param key Key to be inserted.
156 * @param value Value to be inserted.
157 * @param rsubtree Right subtree of the inserted key.
158 * @param node Start inserting into this node.
160 void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node)
162 if (node->keys < BTREE_MAX_KEYS) {
164 * Node conatins enough space, the key can be stored immediately.
166 node_insert_key_and_rsubtree(node, key, value, rsubtree);
167 } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
169 * The key-value-rsubtree triplet has been inserted because
170 * some keys could have been moved to the left sibling.
172 } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
174 * The key-value-rsubtree triplet has been inserted because
175 * some keys could have been moved to the right sibling.
177 } else {
178 btree_node_t *rnode;
179 btree_key_t median;
182 * Node is full and both siblings (if both exist) are full too.
183 * Split the node and insert the smallest key from the node containing
184 * bigger keys (i.e. the new node) into its parent.
187 rnode = node_split(node, key, value, rsubtree, &median);
189 if (LEAF_NODE(node)) {
190 list_prepend(&rnode->leaf_link, &node->leaf_link);
193 if (ROOT_NODE(node)) {
195 * We split the root node. Create new root.
197 t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
198 node->parent = t->root;
199 rnode->parent = t->root;
200 node_initialize(t->root);
203 * Left-hand side subtree will be the old root (i.e. node).
204 * Right-hand side subtree will be rnode.
206 t->root->subtree[0] = node;
208 t->root->depth = node->depth + 1;
210 _btree_insert(t, median, NULL, rnode, node->parent);
215 /** Remove B-tree node.
217 * @param t B-tree.
218 * @param key Key to be removed from the B-tree along with its associated value.
219 * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
221 void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
223 btree_node_t *lnode;
225 lnode = leaf_node;
226 if (!lnode) {
227 if (!btree_search(t, key, &lnode)) {
228 panic("B-tree %p does not contain key %d\n", t, key);
232 _btree_remove(t, key, lnode);
235 /** Recursively remove B-tree node.
237 * @param t B-tree.
238 * @param key Key to be removed from the B-tree along with its associated value.
239 * @param node Node where the key being removed resides.
241 void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node)
243 if (ROOT_NODE(node)) {
244 if (node->keys == 1 && node->subtree[0]) {
246 * Free the current root and set new root.
248 t->root = node->subtree[0];
249 t->root->parent = NULL;
250 slab_free(btree_node_slab, node);
251 } else {
253 * Remove the key from the root node.
254 * Note that the right subtree is removed because when
255 * combining two nodes, the left-side sibling is preserved
256 * and the right-side sibling is freed.
258 node_remove_key_and_rsubtree(node, key);
260 return;
263 if (node->keys <= FILL_FACTOR) {
265 * If the node is below the fill factor,
266 * try to borrow keys from left or right sibling.
268 if (!try_rotation_from_left(node))
269 try_rotation_from_right(node);
272 if (node->keys > FILL_FACTOR) {
273 int i;
276 * The key can be immediatelly removed.
278 * Note that the right subtree is removed because when
279 * combining two nodes, the left-side sibling is preserved
280 * and the right-side sibling is freed.
282 node_remove_key_and_rsubtree(node, key);
283 for (i = 0; i < node->parent->keys; i++) {
284 if (node->parent->key[i] == key)
285 node->parent->key[i] = node->key[0];
288 } else {
289 index_t idx;
290 btree_node_t *rnode, *parent;
293 * The node is below the fill factor as well as its left and right sibling.
294 * Resort to combining the node with one of its siblings.
295 * The node which is on the left is preserved and the node on the right is
296 * freed.
298 parent = node->parent;
299 node_remove_key_and_rsubtree(node, key);
300 rnode = node_combine(node);
301 if (LEAF_NODE(rnode))
302 list_remove(&rnode->leaf_link);
303 idx = find_key_by_subtree(parent, rnode, true);
304 ASSERT((int) idx != -1);
305 slab_free(btree_node_slab, rnode);
306 _btree_remove(t, parent->key[idx], parent);
310 /** Search key in a B-tree.
312 * @param t B-tree.
313 * @param key Key to be searched.
314 * @param leaf_node Address where to put pointer to visited leaf node.
316 * @return Pointer to value or NULL if there is no such key.
318 void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
320 btree_node_t *cur, *next;
323 * Iteratively descend to the leaf that can contain the searched key.
325 for (cur = t->root; cur; cur = next) {
327 /* Last iteration will set this with proper leaf node address. */
328 *leaf_node = cur;
331 * The key can be in the leftmost subtree.
332 * Test it separately.
334 if (key < cur->key[0]) {
335 next = cur->subtree[0];
336 continue;
337 } else {
338 void *val;
339 int i;
342 * Now if the key is smaller than cur->key[i]
343 * it can only mean that the value is in cur->subtree[i]
344 * or it is not in the tree at all.
346 for (i = 1; i < cur->keys; i++) {
347 if (key < cur->key[i]) {
348 next = cur->subtree[i];
349 val = cur->value[i - 1];
351 if (LEAF_NODE(cur))
352 return key == cur->key[i - 1] ? val : NULL;
354 goto descend;
359 * Last possibility is that the key is in the rightmost subtree.
361 next = cur->subtree[i];
362 val = cur->value[i - 1];
363 if (LEAF_NODE(cur))
364 return key == cur->key[i - 1] ? val : NULL;
366 descend:
371 * The key was not found in the *leaf_node and is smaller than any of its keys.
373 return NULL;
376 /** Return pointer to B-tree leaf node's left neighbour.
378 * @param t B-tree.
379 * @param node Node whose left neighbour will be returned.
381 * @return Left neighbour of the node or NULL if the node does not have the left neighbour.
383 btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
385 ASSERT(LEAF_NODE(node));
386 if (node->leaf_link.prev != &t->leaf_head)
387 return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
388 else
389 return NULL;
392 /** Return pointer to B-tree leaf node's right neighbour.
394 * @param t B-tree.
395 * @param node Node whose right neighbour will be returned.
397 * @return Right neighbour of the node or NULL if the node does not have the right neighbour.
399 btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
401 ASSERT(LEAF_NODE(node));
402 if (node->leaf_link.next != &t->leaf_head)
403 return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
404 else
405 return NULL;
408 /** Initialize B-tree node.
410 * @param node B-tree node.
412 void node_initialize(btree_node_t *node)
414 int i;
416 node->keys = 0;
418 /* Clean also space for the extra key. */
419 for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
420 node->key[i] = 0;
421 node->value[i] = NULL;
422 node->subtree[i] = NULL;
424 node->subtree[i] = NULL;
426 node->parent = NULL;
428 link_initialize(&node->leaf_link);
430 link_initialize(&node->bfs_link);
431 node->depth = 0;
434 /** Insert key-value-lsubtree triplet into B-tree node.
436 * It is actually possible to have more keys than BTREE_MAX_KEYS.
437 * This feature is used during insert by right rotation.
439 * @param node B-tree node into wich the new key is to be inserted.
440 * @param key The key to be inserted.
441 * @param value Pointer to value to be inserted.
442 * @param lsubtree Pointer to the left subtree.
444 void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree)
446 int i;
448 for (i = 0; i < node->keys; i++) {
449 if (key < node->key[i]) {
450 int j;
452 for (j = node->keys; j > i; j--) {
453 node->key[j] = node->key[j - 1];
454 node->value[j] = node->value[j - 1];
455 node->subtree[j + 1] = node->subtree[j];
457 node->subtree[j + 1] = node->subtree[j];
458 break;
461 node->key[i] = key;
462 node->value[i] = value;
463 node->subtree[i] = lsubtree;
465 node->keys++;
468 /** Insert key-value-rsubtree triplet into B-tree node.
470 * It is actually possible to have more keys than BTREE_MAX_KEYS.
471 * This feature is used during splitting the node when the
472 * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
473 * also makes use of this feature.
475 * @param node B-tree node into wich the new key is to be inserted.
476 * @param key The key to be inserted.
477 * @param value Pointer to value to be inserted.
478 * @param rsubtree Pointer to the right subtree.
480 void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree)
482 int i;
484 for (i = 0; i < node->keys; i++) {
485 if (key < node->key[i]) {
486 int j;
488 for (j = node->keys; j > i; j--) {
489 node->key[j] = node->key[j - 1];
490 node->value[j] = node->value[j - 1];
491 node->subtree[j + 1] = node->subtree[j];
493 break;
496 node->key[i] = key;
497 node->value[i] = value;
498 node->subtree[i + 1] = rsubtree;
500 node->keys++;
503 /** Remove key and its left subtree pointer from B-tree node.
505 * Remove the key and eliminate gaps in node->key array.
506 * Note that the value pointer and the left subtree pointer
507 * is removed from the node as well.
509 * @param node B-tree node.
510 * @param key Key to be removed.
512 void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key)
514 int i, j;
516 for (i = 0; i < node->keys; i++) {
517 if (key == node->key[i]) {
518 for (j = i + 1; j < node->keys; j++) {
519 node->key[j - 1] = node->key[j];
520 node->value[j - 1] = node->value[j];
521 node->subtree[j - 1] = node->subtree[j];
523 node->subtree[j - 1] = node->subtree[j];
524 node->keys--;
525 return;
528 panic("node %p does not contain key %d\n", node, key);
531 /** Remove key and its right subtree pointer from B-tree node.
533 * Remove the key and eliminate gaps in node->key array.
534 * Note that the value pointer and the right subtree pointer
535 * is removed from the node as well.
537 * @param node B-tree node.
538 * @param key Key to be removed.
540 void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key)
542 int i, j;
544 for (i = 0; i < node->keys; i++) {
545 if (key == node->key[i]) {
546 for (j = i + 1; j < node->keys; j++) {
547 node->key[j - 1] = node->key[j];
548 node->value[j - 1] = node->value[j];
549 node->subtree[j] = node->subtree[j + 1];
551 node->keys--;
552 return;
555 panic("node %p does not contain key %d\n", node, key);
558 /** Split full B-tree node and insert new key-value-right-subtree triplet.
560 * This function will split a node and return a pointer to a newly created
561 * node containing keys greater than or equal to the greater of medians
562 * (or median) of the old keys and the newly added key. It will also write
563 * the median key to a memory address supplied by the caller.
565 * If the node being split is an index node, the median will not be
566 * included in the new node. If the node is a leaf node,
567 * the median will be copied there.
569 * @param node B-tree node wich is going to be split.
570 * @param key The key to be inserted.
571 * @param value Pointer to the value to be inserted.
572 * @param rsubtree Pointer to the right subtree of the key being added.
573 * @param median Address in memory, where the median key will be stored.
575 * @return Newly created right sibling of node.
577 btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median)
579 btree_node_t *rnode;
580 int i, j;
582 ASSERT(median);
583 ASSERT(node->keys == BTREE_MAX_KEYS);
586 * Use the extra space to store the extra node.
588 node_insert_key_and_rsubtree(node, key, value, rsubtree);
591 * Compute median of keys.
593 *median = MEDIAN_HIGH(node);
596 * Allocate and initialize new right sibling.
598 rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0);
599 node_initialize(rnode);
600 rnode->parent = node->parent;
601 rnode->depth = node->depth;
604 * Copy big keys, values and subtree pointers to the new right sibling.
605 * If this is an index node, do not copy the median.
607 i = (int) INDEX_NODE(node);
608 for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
609 rnode->key[j] = node->key[i];
610 rnode->value[j] = node->value[i];
611 rnode->subtree[j] = node->subtree[i];
614 * Fix parent links in subtrees.
616 if (rnode->subtree[j])
617 rnode->subtree[j]->parent = rnode;
620 rnode->subtree[j] = node->subtree[i];
621 if (rnode->subtree[j])
622 rnode->subtree[j]->parent = rnode;
624 rnode->keys = j; /* Set number of keys of the new node. */
625 node->keys /= 2; /* Shrink the old node. */
627 return rnode;
630 /** Combine node with any of its siblings.
632 * The siblings are required to be below the fill factor.
634 * @param node Node to combine with one of its siblings.
636 * @return Pointer to the rightmost of the two nodes.
638 btree_node_t *node_combine(btree_node_t *node)
640 index_t idx;
641 btree_node_t *rnode;
642 int i;
644 ASSERT(!ROOT_NODE(node));
646 idx = find_key_by_subtree(node->parent, node, false);
647 if (idx == node->parent->keys) {
649 * Rightmost subtree of its parent, combine with the left sibling.
651 idx--;
652 rnode = node;
653 node = node->parent->subtree[idx];
654 } else {
655 rnode = node->parent->subtree[idx + 1];
658 /* Index nodes need to insert parent node key in between left and right node. */
659 if (INDEX_NODE(node))
660 node->key[node->keys++] = node->parent->key[idx];
662 /* Copy the key-value-subtree triplets from the right node. */
663 for (i = 0; i < rnode->keys; i++) {
664 node->key[node->keys + i] = rnode->key[i];
665 node->value[node->keys + i] = rnode->value[i];
666 if (INDEX_NODE(node)) {
667 node->subtree[node->keys + i] = rnode->subtree[i];
668 rnode->subtree[i]->parent = node;
671 if (INDEX_NODE(node)) {
672 node->subtree[node->keys + i] = rnode->subtree[i];
673 rnode->subtree[i]->parent = node;
676 node->keys += rnode->keys;
678 return rnode;
681 /** Find key by its left or right subtree.
683 * @param node B-tree node.
684 * @param subtree Left or right subtree of a key found in node.
685 * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
687 * @return Index of the key associated with the subtree.
689 index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
691 int i;
693 for (i = 0; i < node->keys + 1; i++) {
694 if (subtree == node->subtree[i])
695 return i - (int) (right != false);
697 panic("node %p does not contain subtree %p\n", node, subtree);
700 /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
702 * The biggest key and its value and right subtree is rotated from the left node
703 * to the right. If the node is an index node, than the parent node key belonging to
704 * the left node takes part in the rotation.
706 * @param lnode Left sibling.
707 * @param rnode Right sibling.
708 * @param idx Index of the parent node key that is taking part in the rotation.
710 void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
712 btree_key_t key;
714 key = lnode->key[lnode->keys - 1];
716 if (LEAF_NODE(lnode)) {
717 void *value;
719 value = lnode->value[lnode->keys - 1];
720 node_remove_key_and_rsubtree(lnode, key);
721 node_insert_key_and_lsubtree(rnode, key, value, NULL);
722 lnode->parent->key[idx] = key;
723 } else {
724 btree_node_t *rsubtree;
726 rsubtree = lnode->subtree[lnode->keys];
727 node_remove_key_and_rsubtree(lnode, key);
728 node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
729 lnode->parent->key[idx] = key;
731 /* Fix parent link of the reconnected right subtree. */
732 rsubtree->parent = rnode;
737 /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
739 * The smallest key and its value and left subtree is rotated from the right node
740 * to the left. If the node is an index node, than the parent node key belonging to
741 * the right node takes part in the rotation.
743 * @param lnode Left sibling.
744 * @param rnode Right sibling.
745 * @param idx Index of the parent node key that is taking part in the rotation.
747 void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
749 btree_key_t key;
751 key = rnode->key[0];
753 if (LEAF_NODE(rnode)) {
754 void *value;
756 value = rnode->value[0];
757 node_remove_key_and_lsubtree(rnode, key);
758 node_insert_key_and_rsubtree(lnode, key, value, NULL);
759 rnode->parent->key[idx] = rnode->key[0];
760 } else {
761 btree_node_t *lsubtree;
763 lsubtree = rnode->subtree[0];
764 node_remove_key_and_lsubtree(rnode, key);
765 node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
766 rnode->parent->key[idx] = key;
768 /* Fix parent link of the reconnected left subtree. */
769 lsubtree->parent = lnode;
774 /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
776 * Left sibling of the node (if it exists) is checked for free space.
777 * If there is free space, the key is inserted and the smallest key of
778 * the node is moved there. The index node which is the parent of both
779 * nodes is fixed.
781 * @param node B-tree node.
782 * @param inskey Key to be inserted.
783 * @param insvalue Value to be inserted.
784 * @param rsubtree Right subtree of inskey.
786 * @return True if the rotation was performed, false otherwise.
788 bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
790 index_t idx;
791 btree_node_t *lnode;
794 * If this is root node, the rotation can not be done.
796 if (ROOT_NODE(node))
797 return false;
799 idx = find_key_by_subtree(node->parent, node, true);
800 if ((int) idx == -1) {
802 * If this node is the leftmost subtree of its parent,
803 * the rotation can not be done.
805 return false;
808 lnode = node->parent->subtree[idx];
809 if (lnode->keys < BTREE_MAX_KEYS) {
811 * The rotaion can be done. The left sibling has free space.
813 node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
814 rotate_from_right(lnode, node, idx);
815 return true;
818 return false;
821 /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
823 * Right sibling of the node (if it exists) is checked for free space.
824 * If there is free space, the key is inserted and the biggest key of
825 * the node is moved there. The index node which is the parent of both
826 * nodes is fixed.
828 * @param node B-tree node.
829 * @param inskey Key to be inserted.
830 * @param insvalue Value to be inserted.
831 * @param rsubtree Right subtree of inskey.
833 * @return True if the rotation was performed, false otherwise.
835 bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
837 index_t idx;
838 btree_node_t *rnode;
841 * If this is root node, the rotation can not be done.
843 if (ROOT_NODE(node))
844 return false;
846 idx = find_key_by_subtree(node->parent, node, false);
847 if (idx == node->parent->keys) {
849 * If this node is the rightmost subtree of its parent,
850 * the rotation can not be done.
852 return false;
855 rnode = node->parent->subtree[idx + 1];
856 if (rnode->keys < BTREE_MAX_KEYS) {
858 * The rotaion can be done. The right sibling has free space.
860 node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
861 rotate_from_left(node, rnode, idx);
862 return true;
865 return false;
868 /** Rotate in a key from the left sibling or from the index node, if this operation can be done.
870 * @param rnode Node into which to add key from its left sibling or from the index node.
872 * @return True if the rotation was performed, false otherwise.
874 bool try_rotation_from_left(btree_node_t *rnode)
876 index_t idx;
877 btree_node_t *lnode;
880 * If this is root node, the rotation can not be done.
882 if (ROOT_NODE(rnode))
883 return false;
885 idx = find_key_by_subtree(rnode->parent, rnode, true);
886 if ((int) idx == -1) {
888 * If this node is the leftmost subtree of its parent,
889 * the rotation can not be done.
891 return false;
894 lnode = rnode->parent->subtree[idx];
895 if (lnode->keys > FILL_FACTOR) {
896 rotate_from_left(lnode, rnode, idx);
897 return true;
900 return false;
903 /** Rotate in a key from the right sibling or from the index node, if this operation can be done.
905 * @param lnode Node into which to add key from its right sibling or from the index node.
907 * @return True if the rotation was performed, false otherwise.
909 bool try_rotation_from_right(btree_node_t *lnode)
911 index_t idx;
912 btree_node_t *rnode;
915 * If this is root node, the rotation can not be done.
917 if (ROOT_NODE(lnode))
918 return false;
920 idx = find_key_by_subtree(lnode->parent, lnode, false);
921 if (idx == lnode->parent->keys) {
923 * If this node is the rightmost subtree of its parent,
924 * the rotation can not be done.
926 return false;
929 rnode = lnode->parent->subtree[idx + 1];
930 if (rnode->keys > FILL_FACTOR) {
931 rotate_from_right(lnode, rnode, idx);
932 return true;
935 return false;
938 /** Print B-tree.
940 * @param t Print out B-tree.
942 void btree_print(btree_t *t)
944 int i, depth = t->root->depth;
945 link_t head, *cur;
947 printf("Printing B-tree:\n");
948 list_initialize(&head);
949 list_append(&t->root->bfs_link, &head);
952 * Use BFS search to print out the tree.
953 * Levels are distinguished from one another by node->depth.
955 while (!list_empty(&head)) {
956 link_t *hlp;
957 btree_node_t *node;
959 hlp = head.next;
960 ASSERT(hlp != &head);
961 node = list_get_instance(hlp, btree_node_t, bfs_link);
962 list_remove(hlp);
964 ASSERT(node);
966 if (node->depth != depth) {
967 printf("\n");
968 depth = node->depth;
971 printf("(");
972 for (i = 0; i < node->keys; i++) {
973 printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
974 if (node->depth && node->subtree[i]) {
975 list_append(&node->subtree[i]->bfs_link, &head);
978 if (node->depth && node->subtree[i]) {
979 list_append(&node->subtree[i]->bfs_link, &head);
981 printf(")");
983 printf("\n");
985 printf("Printing list of leaves:\n");
986 for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
987 btree_node_t *node;
989 node = list_get_instance(cur, btree_node_t, leaf_link);
991 ASSERT(node);
993 printf("(");
994 for (i = 0; i < node->keys; i++)
995 printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
996 printf(")");
998 printf("\n");
1001 /** @}