Introduce page colors. So far, only sparc64 uses correct page color bits. Other archi...
[helenos.git] / kernel / generic / src / mm / as.c
blob2f3d726ecd8c3884238e4a4c9c32147421946316
1 /*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 /** @addtogroup genericmm
30 * @{
33 /**
34 * @file
35 * @brief Address space related functions.
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
45 * @see page.c
49 #include <mm/as.h>
50 #include <arch/mm/as.h>
51 #include <mm/page.h>
52 #include <mm/frame.h>
53 #include <mm/slab.h>
54 #include <mm/tlb.h>
55 #include <arch/mm/page.h>
56 #include <genarch/mm/page_pt.h>
57 #include <genarch/mm/page_ht.h>
58 #include <mm/asid.h>
59 #include <arch/mm/asid.h>
60 #include <synch/spinlock.h>
61 #include <synch/mutex.h>
62 #include <adt/list.h>
63 #include <adt/btree.h>
64 #include <proc/task.h>
65 #include <proc/thread.h>
66 #include <arch/asm.h>
67 #include <panic.h>
68 #include <debug.h>
69 #include <print.h>
70 #include <memstr.h>
71 #include <macros.h>
72 #include <arch.h>
73 #include <errno.h>
74 #include <config.h>
75 #include <align.h>
76 #include <arch/types.h>
77 #include <typedefs.h>
78 #include <syscall/copy.h>
79 #include <arch/interrupt.h>
81 /**
82 * Each architecture decides what functions will be used to carry out
83 * address space operations such as creating or locking page tables.
85 as_operations_t *as_operations = NULL;
87 /**
88 * Slab for as_t objects.
90 static slab_cache_t *as_slab;
92 /** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93 SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
95 /**
96 * This list contains address spaces that are not active on any
97 * processor and that have valid ASID.
99 LIST_INITIALIZE(inactive_as_with_asid_head);
101 /** Kernel address space. */
102 as_t *AS_KERNEL = NULL;
104 static int area_flags_to_page_flags(int aflags);
105 static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106 static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
107 static void sh_info_remove_reference(share_info_t *sh_info);
109 static int as_constructor(void *obj, int flags)
111 as_t *as = (as_t *) obj;
112 int rc;
114 link_initialize(&as->inactive_as_with_asid_link);
115 mutex_initialize(&as->lock);
117 rc = as_constructor_arch(as, flags);
119 return rc;
122 static int as_destructor(void *obj)
124 as_t *as = (as_t *) obj;
126 return as_destructor_arch(as);
129 /** Initialize address space subsystem. */
130 void as_init(void)
132 as_arch_init();
134 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
135 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
137 AS_KERNEL = as_create(FLAG_AS_KERNEL);
138 if (!AS_KERNEL)
139 panic("can't create kernel address space\n");
143 /** Create address space.
145 * @param flags Flags that influence way in wich the address space is created.
147 as_t *as_create(int flags)
149 as_t *as;
151 as = (as_t *) slab_alloc(as_slab, 0);
152 (void) as_create_arch(as, 0);
154 btree_create(&as->as_area_btree);
156 if (flags & FLAG_AS_KERNEL)
157 as->asid = ASID_KERNEL;
158 else
159 as->asid = ASID_INVALID;
161 as->refcount = 0;
162 as->cpu_refcount = 0;
163 as->page_table = page_table_create(flags);
165 return as;
168 /** Destroy adress space.
170 * When there are no tasks referencing this address space (i.e. its refcount is zero),
171 * the address space can be destroyed.
173 void as_destroy(as_t *as)
175 ipl_t ipl;
176 bool cond;
178 ASSERT(as->refcount == 0);
181 * Since there is no reference to this area,
182 * it is safe not to lock its mutex.
184 ipl = interrupts_disable();
185 spinlock_lock(&inactive_as_with_asid_lock);
186 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
187 if (as != AS && as->cpu_refcount == 0)
188 list_remove(&as->inactive_as_with_asid_link);
189 asid_put(as->asid);
191 spinlock_unlock(&inactive_as_with_asid_lock);
194 * Destroy address space areas of the address space.
195 * The B+tree must be walked carefully because it is
196 * also being destroyed.
198 for (cond = true; cond; ) {
199 btree_node_t *node;
201 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
202 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
204 if ((cond = node->keys)) {
205 as_area_destroy(as, node->key[0]);
209 btree_destroy(&as->as_area_btree);
210 page_table_destroy(as->page_table);
212 interrupts_restore(ipl);
214 slab_free(as_slab, as);
217 /** Create address space area of common attributes.
219 * The created address space area is added to the target address space.
221 * @param as Target address space.
222 * @param flags Flags of the area memory.
223 * @param size Size of area.
224 * @param base Base address of area.
225 * @param attrs Attributes of the area.
226 * @param backend Address space area backend. NULL if no backend is used.
227 * @param backend_data NULL or a pointer to an array holding two void *.
229 * @return Address space area on success or NULL on failure.
231 as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
232 mem_backend_t *backend, mem_backend_data_t *backend_data)
234 ipl_t ipl;
235 as_area_t *a;
237 if (base % PAGE_SIZE)
238 return NULL;
240 if (!size)
241 return NULL;
243 /* Writeable executable areas are not supported. */
244 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
245 return NULL;
247 ipl = interrupts_disable();
248 mutex_lock(&as->lock);
250 if (!check_area_conflicts(as, base, size, NULL)) {
251 mutex_unlock(&as->lock);
252 interrupts_restore(ipl);
253 return NULL;
256 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
258 mutex_initialize(&a->lock);
260 a->as = as;
261 a->flags = flags;
262 a->attributes = attrs;
263 a->pages = SIZE2FRAMES(size);
264 a->base = base;
265 a->sh_info = NULL;
266 a->backend = backend;
267 if (backend_data)
268 a->backend_data = *backend_data;
269 else
270 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
272 btree_create(&a->used_space);
274 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
276 mutex_unlock(&as->lock);
277 interrupts_restore(ipl);
279 return a;
282 /** Find address space area and change it.
284 * @param as Address space.
285 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
286 * @param size New size of the virtual memory block starting at address.
287 * @param flags Flags influencing the remap operation. Currently unused.
289 * @return Zero on success or a value from @ref errno.h otherwise.
291 int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
293 as_area_t *area;
294 ipl_t ipl;
295 size_t pages;
297 ipl = interrupts_disable();
298 mutex_lock(&as->lock);
301 * Locate the area.
303 area = find_area_and_lock(as, address);
304 if (!area) {
305 mutex_unlock(&as->lock);
306 interrupts_restore(ipl);
307 return ENOENT;
310 if (area->backend == &phys_backend) {
312 * Remapping of address space areas associated
313 * with memory mapped devices is not supported.
315 mutex_unlock(&area->lock);
316 mutex_unlock(&as->lock);
317 interrupts_restore(ipl);
318 return ENOTSUP;
320 if (area->sh_info) {
322 * Remapping of shared address space areas
323 * is not supported.
325 mutex_unlock(&area->lock);
326 mutex_unlock(&as->lock);
327 interrupts_restore(ipl);
328 return ENOTSUP;
331 pages = SIZE2FRAMES((address - area->base) + size);
332 if (!pages) {
334 * Zero size address space areas are not allowed.
336 mutex_unlock(&area->lock);
337 mutex_unlock(&as->lock);
338 interrupts_restore(ipl);
339 return EPERM;
342 if (pages < area->pages) {
343 bool cond;
344 uintptr_t start_free = area->base + pages*PAGE_SIZE;
347 * Shrinking the area.
348 * No need to check for overlaps.
352 * Start TLB shootdown sequence.
354 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
357 * Remove frames belonging to used space starting from
358 * the highest addresses downwards until an overlap with
359 * the resized address space area is found. Note that this
360 * is also the right way to remove part of the used_space
361 * B+tree leaf list.
363 for (cond = true; cond;) {
364 btree_node_t *node;
366 ASSERT(!list_empty(&area->used_space.leaf_head));
367 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
368 if ((cond = (bool) node->keys)) {
369 uintptr_t b = node->key[node->keys - 1];
370 count_t c = (count_t) node->value[node->keys - 1];
371 int i = 0;
373 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
375 if (b + c*PAGE_SIZE <= start_free) {
377 * The whole interval fits completely
378 * in the resized address space area.
380 break;
384 * Part of the interval corresponding to b and c
385 * overlaps with the resized address space area.
388 cond = false; /* we are almost done */
389 i = (start_free - b) >> PAGE_WIDTH;
390 if (!used_space_remove(area, start_free, c - i))
391 panic("Could not remove used space.\n");
392 } else {
394 * The interval of used space can be completely removed.
396 if (!used_space_remove(area, b, c))
397 panic("Could not remove used space.\n");
400 for (; i < c; i++) {
401 pte_t *pte;
403 page_table_lock(as, false);
404 pte = page_mapping_find(as, b + i*PAGE_SIZE);
405 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
406 if (area->backend && area->backend->frame_free) {
407 area->backend->frame_free(area,
408 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
410 page_mapping_remove(as, b + i*PAGE_SIZE);
411 page_table_unlock(as, false);
417 * Finish TLB shootdown sequence.
419 tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
420 tlb_shootdown_finalize();
423 * Invalidate software translation caches (e.g. TSB on sparc64).
425 as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
426 } else {
428 * Growing the area.
429 * Check for overlaps with other address space areas.
431 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
432 mutex_unlock(&area->lock);
433 mutex_unlock(&as->lock);
434 interrupts_restore(ipl);
435 return EADDRNOTAVAIL;
439 area->pages = pages;
441 mutex_unlock(&area->lock);
442 mutex_unlock(&as->lock);
443 interrupts_restore(ipl);
445 return 0;
448 /** Destroy address space area.
450 * @param as Address space.
451 * @param address Address withing the area to be deleted.
453 * @return Zero on success or a value from @ref errno.h on failure.
455 int as_area_destroy(as_t *as, uintptr_t address)
457 as_area_t *area;
458 uintptr_t base;
459 link_t *cur;
460 ipl_t ipl;
462 ipl = interrupts_disable();
463 mutex_lock(&as->lock);
465 area = find_area_and_lock(as, address);
466 if (!area) {
467 mutex_unlock(&as->lock);
468 interrupts_restore(ipl);
469 return ENOENT;
472 base = area->base;
475 * Start TLB shootdown sequence.
477 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
480 * Visit only the pages mapped by used_space B+tree.
482 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
483 btree_node_t *node;
484 int i;
486 node = list_get_instance(cur, btree_node_t, leaf_link);
487 for (i = 0; i < node->keys; i++) {
488 uintptr_t b = node->key[i];
489 count_t j;
490 pte_t *pte;
492 for (j = 0; j < (count_t) node->value[i]; j++) {
493 page_table_lock(as, false);
494 pte = page_mapping_find(as, b + j*PAGE_SIZE);
495 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
496 if (area->backend && area->backend->frame_free) {
497 area->backend->frame_free(area,
498 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
500 page_mapping_remove(as, b + j*PAGE_SIZE);
501 page_table_unlock(as, false);
507 * Finish TLB shootdown sequence.
509 tlb_invalidate_pages(as->asid, area->base, area->pages);
510 tlb_shootdown_finalize();
513 * Invalidate potential software translation caches (e.g. TSB on sparc64).
515 as_invalidate_translation_cache(as, area->base, area->pages);
517 btree_destroy(&area->used_space);
519 area->attributes |= AS_AREA_ATTR_PARTIAL;
521 if (area->sh_info)
522 sh_info_remove_reference(area->sh_info);
524 mutex_unlock(&area->lock);
527 * Remove the empty area from address space.
529 btree_remove(&as->as_area_btree, base, NULL);
531 free(area);
533 mutex_unlock(&as->lock);
534 interrupts_restore(ipl);
535 return 0;
538 /** Share address space area with another or the same address space.
540 * Address space area mapping is shared with a new address space area.
541 * If the source address space area has not been shared so far,
542 * a new sh_info is created. The new address space area simply gets the
543 * sh_info of the source area. The process of duplicating the
544 * mapping is done through the backend share function.
546 * @param src_as Pointer to source address space.
547 * @param src_base Base address of the source address space area.
548 * @param acc_size Expected size of the source area.
549 * @param dst_as Pointer to destination address space.
550 * @param dst_base Target base address.
551 * @param dst_flags_mask Destination address space area flags mask.
553 * @return Zero on success or ENOENT if there is no such task or if there is no
554 * such address space area, EPERM if there was a problem in accepting the area
555 * or ENOMEM if there was a problem in allocating destination address space
556 * area. ENOTSUP is returned if the address space area backend does not support
557 * sharing. It can be also returned if the architecture uses virtually indexed
558 * caches and the source and destination areas start at pages with different
559 * page colors.
561 int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
562 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
564 ipl_t ipl;
565 int src_flags;
566 size_t src_size;
567 as_area_t *src_area, *dst_area;
568 share_info_t *sh_info;
569 mem_backend_t *src_backend;
570 mem_backend_data_t src_backend_data;
572 ipl = interrupts_disable();
573 mutex_lock(&src_as->lock);
574 src_area = find_area_and_lock(src_as, src_base);
575 if (!src_area) {
577 * Could not find the source address space area.
579 mutex_unlock(&src_as->lock);
580 interrupts_restore(ipl);
581 return ENOENT;
584 #if 0 /* disable the check for now */
585 #ifdef CONFIG_VIRT_IDX_CACHE
586 if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
588 * Refuse to create illegal address alias.
590 mutex_unlock(&src_area->lock);
591 mutex_unlock(&src_as->lock);
592 interrupts_restore(ipl);
593 return ENOTSUP;
595 #endif /* CONFIG_VIRT_IDX_CACHE */
596 #endif
598 if (!src_area->backend || !src_area->backend->share) {
600 * There is no backend or the backend does not
601 * know how to share the area.
603 mutex_unlock(&src_area->lock);
604 mutex_unlock(&src_as->lock);
605 interrupts_restore(ipl);
606 return ENOTSUP;
609 src_size = src_area->pages * PAGE_SIZE;
610 src_flags = src_area->flags;
611 src_backend = src_area->backend;
612 src_backend_data = src_area->backend_data;
614 /* Share the cacheable flag from the original mapping */
615 if (src_flags & AS_AREA_CACHEABLE)
616 dst_flags_mask |= AS_AREA_CACHEABLE;
618 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
619 mutex_unlock(&src_area->lock);
620 mutex_unlock(&src_as->lock);
621 interrupts_restore(ipl);
622 return EPERM;
626 * Now we are committed to sharing the area.
627 * First, prepare the area for sharing.
628 * Then it will be safe to unlock it.
630 sh_info = src_area->sh_info;
631 if (!sh_info) {
632 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
633 mutex_initialize(&sh_info->lock);
634 sh_info->refcount = 2;
635 btree_create(&sh_info->pagemap);
636 src_area->sh_info = sh_info;
637 } else {
638 mutex_lock(&sh_info->lock);
639 sh_info->refcount++;
640 mutex_unlock(&sh_info->lock);
643 src_area->backend->share(src_area);
645 mutex_unlock(&src_area->lock);
646 mutex_unlock(&src_as->lock);
649 * Create copy of the source address space area.
650 * The destination area is created with AS_AREA_ATTR_PARTIAL
651 * attribute set which prevents race condition with
652 * preliminary as_page_fault() calls.
653 * The flags of the source area are masked against dst_flags_mask
654 * to support sharing in less privileged mode.
656 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
657 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
658 if (!dst_area) {
660 * Destination address space area could not be created.
662 sh_info_remove_reference(sh_info);
664 interrupts_restore(ipl);
665 return ENOMEM;
669 * Now the destination address space area has been
670 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
671 * attribute and set the sh_info.
673 mutex_lock(&dst_area->lock);
674 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
675 dst_area->sh_info = sh_info;
676 mutex_unlock(&dst_area->lock);
678 interrupts_restore(ipl);
680 return 0;
683 /** Check access mode for address space area.
685 * The address space area must be locked prior to this call.
687 * @param area Address space area.
688 * @param access Access mode.
690 * @return False if access violates area's permissions, true otherwise.
692 bool as_area_check_access(as_area_t *area, pf_access_t access)
694 int flagmap[] = {
695 [PF_ACCESS_READ] = AS_AREA_READ,
696 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
697 [PF_ACCESS_EXEC] = AS_AREA_EXEC
700 if (!(area->flags & flagmap[access]))
701 return false;
703 return true;
706 /** Handle page fault within the current address space.
708 * This is the high-level page fault handler. It decides
709 * whether the page fault can be resolved by any backend
710 * and if so, it invokes the backend to resolve the page
711 * fault.
713 * Interrupts are assumed disabled.
715 * @param page Faulting page.
716 * @param access Access mode that caused the fault (i.e. read/write/exec).
717 * @param istate Pointer to interrupted state.
719 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
720 * fault was caused by copy_to_uspace() or copy_from_uspace().
722 int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
724 pte_t *pte;
725 as_area_t *area;
727 if (!THREAD)
728 return AS_PF_FAULT;
730 ASSERT(AS);
732 mutex_lock(&AS->lock);
733 area = find_area_and_lock(AS, page);
734 if (!area) {
736 * No area contained mapping for 'page'.
737 * Signal page fault to low-level handler.
739 mutex_unlock(&AS->lock);
740 goto page_fault;
743 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
745 * The address space area is not fully initialized.
746 * Avoid possible race by returning error.
748 mutex_unlock(&area->lock);
749 mutex_unlock(&AS->lock);
750 goto page_fault;
753 if (!area->backend || !area->backend->page_fault) {
755 * The address space area is not backed by any backend
756 * or the backend cannot handle page faults.
758 mutex_unlock(&area->lock);
759 mutex_unlock(&AS->lock);
760 goto page_fault;
763 page_table_lock(AS, false);
766 * To avoid race condition between two page faults
767 * on the same address, we need to make sure
768 * the mapping has not been already inserted.
770 if ((pte = page_mapping_find(AS, page))) {
771 if (PTE_PRESENT(pte)) {
772 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
773 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
774 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
775 page_table_unlock(AS, false);
776 mutex_unlock(&area->lock);
777 mutex_unlock(&AS->lock);
778 return AS_PF_OK;
784 * Resort to the backend page fault handler.
786 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
787 page_table_unlock(AS, false);
788 mutex_unlock(&area->lock);
789 mutex_unlock(&AS->lock);
790 goto page_fault;
793 page_table_unlock(AS, false);
794 mutex_unlock(&area->lock);
795 mutex_unlock(&AS->lock);
796 return AS_PF_OK;
798 page_fault:
799 if (THREAD->in_copy_from_uspace) {
800 THREAD->in_copy_from_uspace = false;
801 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
802 } else if (THREAD->in_copy_to_uspace) {
803 THREAD->in_copy_to_uspace = false;
804 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
805 } else {
806 return AS_PF_FAULT;
809 return AS_PF_DEFER;
812 /** Switch address spaces.
814 * Note that this function cannot sleep as it is essentially a part of
815 * scheduling. Sleeping here would lead to deadlock on wakeup.
817 * @param old Old address space or NULL.
818 * @param new New address space.
820 void as_switch(as_t *old, as_t *new)
822 ipl_t ipl;
823 bool needs_asid = false;
825 ipl = interrupts_disable();
826 spinlock_lock(&inactive_as_with_asid_lock);
829 * First, take care of the old address space.
831 if (old) {
832 mutex_lock_active(&old->lock);
833 ASSERT(old->cpu_refcount);
834 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
836 * The old address space is no longer active on
837 * any processor. It can be appended to the
838 * list of inactive address spaces with assigned
839 * ASID.
841 ASSERT(old->asid != ASID_INVALID);
842 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
844 mutex_unlock(&old->lock);
847 * Perform architecture-specific tasks when the address space
848 * is being removed from the CPU.
850 as_deinstall_arch(old);
854 * Second, prepare the new address space.
856 mutex_lock_active(&new->lock);
857 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
858 if (new->asid != ASID_INVALID)
859 list_remove(&new->inactive_as_with_asid_link);
860 else
861 needs_asid = true; /* defer call to asid_get() until new->lock is released */
863 SET_PTL0_ADDRESS(new->page_table);
864 mutex_unlock(&new->lock);
866 if (needs_asid) {
868 * Allocation of new ASID was deferred
869 * until now in order to avoid deadlock.
871 asid_t asid;
873 asid = asid_get();
874 mutex_lock_active(&new->lock);
875 new->asid = asid;
876 mutex_unlock(&new->lock);
878 spinlock_unlock(&inactive_as_with_asid_lock);
879 interrupts_restore(ipl);
882 * Perform architecture-specific steps.
883 * (e.g. write ASID to hardware register etc.)
885 as_install_arch(new);
887 AS = new;
890 /** Convert address space area flags to page flags.
892 * @param aflags Flags of some address space area.
894 * @return Flags to be passed to page_mapping_insert().
896 int area_flags_to_page_flags(int aflags)
898 int flags;
900 flags = PAGE_USER | PAGE_PRESENT;
902 if (aflags & AS_AREA_READ)
903 flags |= PAGE_READ;
905 if (aflags & AS_AREA_WRITE)
906 flags |= PAGE_WRITE;
908 if (aflags & AS_AREA_EXEC)
909 flags |= PAGE_EXEC;
911 if (aflags & AS_AREA_CACHEABLE)
912 flags |= PAGE_CACHEABLE;
914 return flags;
917 /** Compute flags for virtual address translation subsytem.
919 * The address space area must be locked.
920 * Interrupts must be disabled.
922 * @param a Address space area.
924 * @return Flags to be used in page_mapping_insert().
926 int as_area_get_flags(as_area_t *a)
928 return area_flags_to_page_flags(a->flags);
931 /** Create page table.
933 * Depending on architecture, create either address space
934 * private or global page table.
936 * @param flags Flags saying whether the page table is for kernel address space.
938 * @return First entry of the page table.
940 pte_t *page_table_create(int flags)
942 ASSERT(as_operations);
943 ASSERT(as_operations->page_table_create);
945 return as_operations->page_table_create(flags);
948 /** Destroy page table.
950 * Destroy page table in architecture specific way.
952 * @param page_table Physical address of PTL0.
954 void page_table_destroy(pte_t *page_table)
956 ASSERT(as_operations);
957 ASSERT(as_operations->page_table_destroy);
959 as_operations->page_table_destroy(page_table);
962 /** Lock page table.
964 * This function should be called before any page_mapping_insert(),
965 * page_mapping_remove() and page_mapping_find().
967 * Locking order is such that address space areas must be locked
968 * prior to this call. Address space can be locked prior to this
969 * call in which case the lock argument is false.
971 * @param as Address space.
972 * @param lock If false, do not attempt to lock as->lock.
974 void page_table_lock(as_t *as, bool lock)
976 ASSERT(as_operations);
977 ASSERT(as_operations->page_table_lock);
979 as_operations->page_table_lock(as, lock);
982 /** Unlock page table.
984 * @param as Address space.
985 * @param unlock If false, do not attempt to unlock as->lock.
987 void page_table_unlock(as_t *as, bool unlock)
989 ASSERT(as_operations);
990 ASSERT(as_operations->page_table_unlock);
992 as_operations->page_table_unlock(as, unlock);
996 /** Find address space area and lock it.
998 * The address space must be locked and interrupts must be disabled.
1000 * @param as Address space.
1001 * @param va Virtual address.
1003 * @return Locked address space area containing va on success or NULL on failure.
1005 as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1007 as_area_t *a;
1008 btree_node_t *leaf, *lnode;
1009 int i;
1011 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1012 if (a) {
1013 /* va is the base address of an address space area */
1014 mutex_lock(&a->lock);
1015 return a;
1019 * Search the leaf node and the righmost record of its left neighbour
1020 * to find out whether this is a miss or va belongs to an address
1021 * space area found there.
1024 /* First, search the leaf node itself. */
1025 for (i = 0; i < leaf->keys; i++) {
1026 a = (as_area_t *) leaf->value[i];
1027 mutex_lock(&a->lock);
1028 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1029 return a;
1031 mutex_unlock(&a->lock);
1035 * Second, locate the left neighbour and test its last record.
1036 * Because of its position in the B+tree, it must have base < va.
1038 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1039 a = (as_area_t *) lnode->value[lnode->keys - 1];
1040 mutex_lock(&a->lock);
1041 if (va < a->base + a->pages * PAGE_SIZE) {
1042 return a;
1044 mutex_unlock(&a->lock);
1047 return NULL;
1050 /** Check area conflicts with other areas.
1052 * The address space must be locked and interrupts must be disabled.
1054 * @param as Address space.
1055 * @param va Starting virtual address of the area being tested.
1056 * @param size Size of the area being tested.
1057 * @param avoid_area Do not touch this area.
1059 * @return True if there is no conflict, false otherwise.
1061 bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1063 as_area_t *a;
1064 btree_node_t *leaf, *node;
1065 int i;
1068 * We don't want any area to have conflicts with NULL page.
1070 if (overlaps(va, size, NULL, PAGE_SIZE))
1071 return false;
1074 * The leaf node is found in O(log n), where n is proportional to
1075 * the number of address space areas belonging to as.
1076 * The check for conflicts is then attempted on the rightmost
1077 * record in the left neighbour, the leftmost record in the right
1078 * neighbour and all records in the leaf node itself.
1081 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1082 if (a != avoid_area)
1083 return false;
1086 /* First, check the two border cases. */
1087 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1088 a = (as_area_t *) node->value[node->keys - 1];
1089 mutex_lock(&a->lock);
1090 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1091 mutex_unlock(&a->lock);
1092 return false;
1094 mutex_unlock(&a->lock);
1096 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1097 a = (as_area_t *) node->value[0];
1098 mutex_lock(&a->lock);
1099 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1100 mutex_unlock(&a->lock);
1101 return false;
1103 mutex_unlock(&a->lock);
1106 /* Second, check the leaf node. */
1107 for (i = 0; i < leaf->keys; i++) {
1108 a = (as_area_t *) leaf->value[i];
1110 if (a == avoid_area)
1111 continue;
1113 mutex_lock(&a->lock);
1114 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1115 mutex_unlock(&a->lock);
1116 return false;
1118 mutex_unlock(&a->lock);
1122 * So far, the area does not conflict with other areas.
1123 * Check if it doesn't conflict with kernel address space.
1125 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1126 return !overlaps(va, size,
1127 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1130 return true;
1133 /** Return size of the address space area with given base. */
1134 size_t as_get_size(uintptr_t base)
1136 ipl_t ipl;
1137 as_area_t *src_area;
1138 size_t size;
1140 ipl = interrupts_disable();
1141 src_area = find_area_and_lock(AS, base);
1142 if (src_area){
1143 size = src_area->pages * PAGE_SIZE;
1144 mutex_unlock(&src_area->lock);
1145 } else {
1146 size = 0;
1148 interrupts_restore(ipl);
1149 return size;
1152 /** Mark portion of address space area as used.
1154 * The address space area must be already locked.
1156 * @param a Address space area.
1157 * @param page First page to be marked.
1158 * @param count Number of page to be marked.
1160 * @return 0 on failure and 1 on success.
1162 int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1164 btree_node_t *leaf, *node;
1165 count_t pages;
1166 int i;
1168 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1169 ASSERT(count);
1171 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1172 if (pages) {
1174 * We hit the beginning of some used space.
1176 return 0;
1179 if (!leaf->keys) {
1180 btree_insert(&a->used_space, page, (void *) count, leaf);
1181 return 1;
1184 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1185 if (node) {
1186 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1187 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1190 * Examine the possibility that the interval fits
1191 * somewhere between the rightmost interval of
1192 * the left neigbour and the first interval of the leaf.
1195 if (page >= right_pg) {
1196 /* Do nothing. */
1197 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1198 /* The interval intersects with the left interval. */
1199 return 0;
1200 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1201 /* The interval intersects with the right interval. */
1202 return 0;
1203 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1204 /* The interval can be added by merging the two already present intervals. */
1205 node->value[node->keys - 1] += count + right_cnt;
1206 btree_remove(&a->used_space, right_pg, leaf);
1207 return 1;
1208 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1209 /* The interval can be added by simply growing the left interval. */
1210 node->value[node->keys - 1] += count;
1211 return 1;
1212 } else if (page + count*PAGE_SIZE == right_pg) {
1214 * The interval can be addded by simply moving base of the right
1215 * interval down and increasing its size accordingly.
1217 leaf->value[0] += count;
1218 leaf->key[0] = page;
1219 return 1;
1220 } else {
1222 * The interval is between both neigbouring intervals,
1223 * but cannot be merged with any of them.
1225 btree_insert(&a->used_space, page, (void *) count, leaf);
1226 return 1;
1228 } else if (page < leaf->key[0]) {
1229 uintptr_t right_pg = leaf->key[0];
1230 count_t right_cnt = (count_t) leaf->value[0];
1233 * Investigate the border case in which the left neighbour does not
1234 * exist but the interval fits from the left.
1237 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1238 /* The interval intersects with the right interval. */
1239 return 0;
1240 } else if (page + count*PAGE_SIZE == right_pg) {
1242 * The interval can be added by moving the base of the right interval down
1243 * and increasing its size accordingly.
1245 leaf->key[0] = page;
1246 leaf->value[0] += count;
1247 return 1;
1248 } else {
1250 * The interval doesn't adjoin with the right interval.
1251 * It must be added individually.
1253 btree_insert(&a->used_space, page, (void *) count, leaf);
1254 return 1;
1258 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1259 if (node) {
1260 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1261 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1264 * Examine the possibility that the interval fits
1265 * somewhere between the leftmost interval of
1266 * the right neigbour and the last interval of the leaf.
1269 if (page < left_pg) {
1270 /* Do nothing. */
1271 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1272 /* The interval intersects with the left interval. */
1273 return 0;
1274 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1275 /* The interval intersects with the right interval. */
1276 return 0;
1277 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1278 /* The interval can be added by merging the two already present intervals. */
1279 leaf->value[leaf->keys - 1] += count + right_cnt;
1280 btree_remove(&a->used_space, right_pg, node);
1281 return 1;
1282 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1283 /* The interval can be added by simply growing the left interval. */
1284 leaf->value[leaf->keys - 1] += count;
1285 return 1;
1286 } else if (page + count*PAGE_SIZE == right_pg) {
1288 * The interval can be addded by simply moving base of the right
1289 * interval down and increasing its size accordingly.
1291 node->value[0] += count;
1292 node->key[0] = page;
1293 return 1;
1294 } else {
1296 * The interval is between both neigbouring intervals,
1297 * but cannot be merged with any of them.
1299 btree_insert(&a->used_space, page, (void *) count, leaf);
1300 return 1;
1302 } else if (page >= leaf->key[leaf->keys - 1]) {
1303 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1304 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1307 * Investigate the border case in which the right neighbour does not
1308 * exist but the interval fits from the right.
1311 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1312 /* The interval intersects with the left interval. */
1313 return 0;
1314 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1315 /* The interval can be added by growing the left interval. */
1316 leaf->value[leaf->keys - 1] += count;
1317 return 1;
1318 } else {
1320 * The interval doesn't adjoin with the left interval.
1321 * It must be added individually.
1323 btree_insert(&a->used_space, page, (void *) count, leaf);
1324 return 1;
1329 * Note that if the algorithm made it thus far, the interval can fit only
1330 * between two other intervals of the leaf. The two border cases were already
1331 * resolved.
1333 for (i = 1; i < leaf->keys; i++) {
1334 if (page < leaf->key[i]) {
1335 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1336 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1339 * The interval fits between left_pg and right_pg.
1342 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1343 /* The interval intersects with the left interval. */
1344 return 0;
1345 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1346 /* The interval intersects with the right interval. */
1347 return 0;
1348 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1349 /* The interval can be added by merging the two already present intervals. */
1350 leaf->value[i - 1] += count + right_cnt;
1351 btree_remove(&a->used_space, right_pg, leaf);
1352 return 1;
1353 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1354 /* The interval can be added by simply growing the left interval. */
1355 leaf->value[i - 1] += count;
1356 return 1;
1357 } else if (page + count*PAGE_SIZE == right_pg) {
1359 * The interval can be addded by simply moving base of the right
1360 * interval down and increasing its size accordingly.
1362 leaf->value[i] += count;
1363 leaf->key[i] = page;
1364 return 1;
1365 } else {
1367 * The interval is between both neigbouring intervals,
1368 * but cannot be merged with any of them.
1370 btree_insert(&a->used_space, page, (void *) count, leaf);
1371 return 1;
1376 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1379 /** Mark portion of address space area as unused.
1381 * The address space area must be already locked.
1383 * @param a Address space area.
1384 * @param page First page to be marked.
1385 * @param count Number of page to be marked.
1387 * @return 0 on failure and 1 on success.
1389 int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1391 btree_node_t *leaf, *node;
1392 count_t pages;
1393 int i;
1395 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1396 ASSERT(count);
1398 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1399 if (pages) {
1401 * We are lucky, page is the beginning of some interval.
1403 if (count > pages) {
1404 return 0;
1405 } else if (count == pages) {
1406 btree_remove(&a->used_space, page, leaf);
1407 return 1;
1408 } else {
1410 * Find the respective interval.
1411 * Decrease its size and relocate its start address.
1413 for (i = 0; i < leaf->keys; i++) {
1414 if (leaf->key[i] == page) {
1415 leaf->key[i] += count*PAGE_SIZE;
1416 leaf->value[i] -= count;
1417 return 1;
1420 goto error;
1424 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1425 if (node && page < leaf->key[0]) {
1426 uintptr_t left_pg = node->key[node->keys - 1];
1427 count_t left_cnt = (count_t) node->value[node->keys - 1];
1429 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1430 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1432 * The interval is contained in the rightmost interval
1433 * of the left neighbour and can be removed by
1434 * updating the size of the bigger interval.
1436 node->value[node->keys - 1] -= count;
1437 return 1;
1438 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1439 count_t new_cnt;
1442 * The interval is contained in the rightmost interval
1443 * of the left neighbour but its removal requires
1444 * both updating the size of the original interval and
1445 * also inserting a new interval.
1447 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1448 node->value[node->keys - 1] -= count + new_cnt;
1449 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1450 return 1;
1453 return 0;
1454 } else if (page < leaf->key[0]) {
1455 return 0;
1458 if (page > leaf->key[leaf->keys - 1]) {
1459 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1460 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1462 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1463 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1465 * The interval is contained in the rightmost interval
1466 * of the leaf and can be removed by updating the size
1467 * of the bigger interval.
1469 leaf->value[leaf->keys - 1] -= count;
1470 return 1;
1471 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1472 count_t new_cnt;
1475 * The interval is contained in the rightmost interval
1476 * of the leaf but its removal requires both updating
1477 * the size of the original interval and
1478 * also inserting a new interval.
1480 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1481 leaf->value[leaf->keys - 1] -= count + new_cnt;
1482 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1483 return 1;
1486 return 0;
1490 * The border cases have been already resolved.
1491 * Now the interval can be only between intervals of the leaf.
1493 for (i = 1; i < leaf->keys - 1; i++) {
1494 if (page < leaf->key[i]) {
1495 uintptr_t left_pg = leaf->key[i - 1];
1496 count_t left_cnt = (count_t) leaf->value[i - 1];
1499 * Now the interval is between intervals corresponding to (i - 1) and i.
1501 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1502 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1504 * The interval is contained in the interval (i - 1)
1505 * of the leaf and can be removed by updating the size
1506 * of the bigger interval.
1508 leaf->value[i - 1] -= count;
1509 return 1;
1510 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1511 count_t new_cnt;
1514 * The interval is contained in the interval (i - 1)
1515 * of the leaf but its removal requires both updating
1516 * the size of the original interval and
1517 * also inserting a new interval.
1519 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1520 leaf->value[i - 1] -= count + new_cnt;
1521 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1522 return 1;
1525 return 0;
1529 error:
1530 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1533 /** Remove reference to address space area share info.
1535 * If the reference count drops to 0, the sh_info is deallocated.
1537 * @param sh_info Pointer to address space area share info.
1539 void sh_info_remove_reference(share_info_t *sh_info)
1541 bool dealloc = false;
1543 mutex_lock(&sh_info->lock);
1544 ASSERT(sh_info->refcount);
1545 if (--sh_info->refcount == 0) {
1546 dealloc = true;
1547 link_t *cur;
1550 * Now walk carefully the pagemap B+tree and free/remove
1551 * reference from all frames found there.
1553 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1554 btree_node_t *node;
1555 int i;
1557 node = list_get_instance(cur, btree_node_t, leaf_link);
1558 for (i = 0; i < node->keys; i++)
1559 frame_free((uintptr_t) node->value[i]);
1563 mutex_unlock(&sh_info->lock);
1565 if (dealloc) {
1566 btree_destroy(&sh_info->pagemap);
1567 free(sh_info);
1572 * Address space related syscalls.
1575 /** Wrapper for as_area_create(). */
1576 unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1578 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1579 return (unative_t) address;
1580 else
1581 return (unative_t) -1;
1584 /** Wrapper for as_area_resize(). */
1585 unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1587 return (unative_t) as_area_resize(AS, address, size, 0);
1590 /** Wrapper for as_area_destroy(). */
1591 unative_t sys_as_area_destroy(uintptr_t address)
1593 return (unative_t) as_area_destroy(AS, address);
1596 /** Print out information about address space.
1598 * @param as Address space.
1600 void as_print(as_t *as)
1602 ipl_t ipl;
1604 ipl = interrupts_disable();
1605 mutex_lock(&as->lock);
1607 /* print out info about address space areas */
1608 link_t *cur;
1609 for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1610 btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1612 int i;
1613 for (i = 0; i < node->keys; i++) {
1614 as_area_t *area = node->value[i];
1616 mutex_lock(&area->lock);
1617 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1618 area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1619 mutex_unlock(&area->lock);
1623 mutex_unlock(&as->lock);
1624 interrupts_restore(ipl);
1627 /** @}