A quote from from SPARC V9 specification:
[helenos.git] / kernel / generic / src / mm / as.c
blob60530414ed59ba0c749eaf09d918011dccd21325
1 /*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 /** @addtogroup genericmm
30 * @{
33 /**
34 * @file
35 * @brief Address space related functions.
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
45 * @see page.c
49 #include <mm/as.h>
50 #include <arch/mm/as.h>
51 #include <mm/page.h>
52 #include <mm/frame.h>
53 #include <mm/slab.h>
54 #include <mm/tlb.h>
55 #include <arch/mm/page.h>
56 #include <genarch/mm/page_pt.h>
57 #include <genarch/mm/page_ht.h>
58 #include <mm/asid.h>
59 #include <arch/mm/asid.h>
60 #include <synch/spinlock.h>
61 #include <synch/mutex.h>
62 #include <adt/list.h>
63 #include <adt/btree.h>
64 #include <proc/task.h>
65 #include <proc/thread.h>
66 #include <arch/asm.h>
67 #include <panic.h>
68 #include <debug.h>
69 #include <print.h>
70 #include <memstr.h>
71 #include <macros.h>
72 #include <arch.h>
73 #include <errno.h>
74 #include <config.h>
75 #include <align.h>
76 #include <arch/types.h>
77 #include <typedefs.h>
78 #include <syscall/copy.h>
79 #include <arch/interrupt.h>
81 /**
82 * Each architecture decides what functions will be used to carry out
83 * address space operations such as creating or locking page tables.
85 as_operations_t *as_operations = NULL;
87 /**
88 * Slab for as_t objects.
90 static slab_cache_t *as_slab;
92 /** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93 SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
95 /**
96 * This list contains address spaces that are not active on any
97 * processor and that have valid ASID.
99 LIST_INITIALIZE(inactive_as_with_asid_head);
101 /** Kernel address space. */
102 as_t *AS_KERNEL = NULL;
104 static int area_flags_to_page_flags(int aflags);
105 static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106 static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
107 static void sh_info_remove_reference(share_info_t *sh_info);
109 static int as_constructor(void *obj, int flags)
111 as_t *as = (as_t *) obj;
112 int rc;
114 link_initialize(&as->inactive_as_with_asid_link);
115 mutex_initialize(&as->lock);
117 rc = as_constructor_arch(as, flags);
119 return rc;
122 static int as_destructor(void *obj)
124 as_t *as = (as_t *) obj;
126 return as_destructor_arch(as);
129 /** Initialize address space subsystem. */
130 void as_init(void)
132 as_arch_init();
134 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
135 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
137 AS_KERNEL = as_create(FLAG_AS_KERNEL);
138 if (!AS_KERNEL)
139 panic("can't create kernel address space\n");
143 /** Create address space.
145 * @param flags Flags that influence way in wich the address space is created.
147 as_t *as_create(int flags)
149 as_t *as;
151 as = (as_t *) slab_alloc(as_slab, 0);
152 (void) as_create_arch(as, 0);
154 btree_create(&as->as_area_btree);
156 if (flags & FLAG_AS_KERNEL)
157 as->asid = ASID_KERNEL;
158 else
159 as->asid = ASID_INVALID;
161 as->refcount = 0;
162 as->cpu_refcount = 0;
163 as->page_table = page_table_create(flags);
165 return as;
168 /** Destroy adress space.
170 * When there are no tasks referencing this address space (i.e. its refcount is zero),
171 * the address space can be destroyed.
173 void as_destroy(as_t *as)
175 ipl_t ipl;
176 bool cond;
178 ASSERT(as->refcount == 0);
181 * Since there is no reference to this area,
182 * it is safe not to lock its mutex.
184 ipl = interrupts_disable();
185 spinlock_lock(&inactive_as_with_asid_lock);
186 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
187 if (as != AS && as->cpu_refcount == 0)
188 list_remove(&as->inactive_as_with_asid_link);
189 asid_put(as->asid);
191 spinlock_unlock(&inactive_as_with_asid_lock);
194 * Destroy address space areas of the address space.
195 * The B+tee must be walked carefully because it is
196 * also being destroyed.
198 for (cond = true; cond; ) {
199 btree_node_t *node;
201 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
202 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
204 if ((cond = node->keys)) {
205 as_area_destroy(as, node->key[0]);
209 btree_destroy(&as->as_area_btree);
210 page_table_destroy(as->page_table);
212 interrupts_restore(ipl);
214 slab_free(as_slab, as);
217 /** Create address space area of common attributes.
219 * The created address space area is added to the target address space.
221 * @param as Target address space.
222 * @param flags Flags of the area memory.
223 * @param size Size of area.
224 * @param base Base address of area.
225 * @param attrs Attributes of the area.
226 * @param backend Address space area backend. NULL if no backend is used.
227 * @param backend_data NULL or a pointer to an array holding two void *.
229 * @return Address space area on success or NULL on failure.
231 as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
232 mem_backend_t *backend, mem_backend_data_t *backend_data)
234 ipl_t ipl;
235 as_area_t *a;
237 if (base % PAGE_SIZE)
238 return NULL;
240 if (!size)
241 return NULL;
243 /* Writeable executable areas are not supported. */
244 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
245 return NULL;
247 ipl = interrupts_disable();
248 mutex_lock(&as->lock);
250 if (!check_area_conflicts(as, base, size, NULL)) {
251 mutex_unlock(&as->lock);
252 interrupts_restore(ipl);
253 return NULL;
256 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
258 mutex_initialize(&a->lock);
260 a->as = as;
261 a->flags = flags;
262 a->attributes = attrs;
263 a->pages = SIZE2FRAMES(size);
264 a->base = base;
265 a->sh_info = NULL;
266 a->backend = backend;
267 if (backend_data)
268 a->backend_data = *backend_data;
269 else
270 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
272 btree_create(&a->used_space);
274 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
276 mutex_unlock(&as->lock);
277 interrupts_restore(ipl);
279 return a;
282 /** Find address space area and change it.
284 * @param as Address space.
285 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
286 * @param size New size of the virtual memory block starting at address.
287 * @param flags Flags influencing the remap operation. Currently unused.
289 * @return Zero on success or a value from @ref errno.h otherwise.
291 int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
293 as_area_t *area;
294 ipl_t ipl;
295 size_t pages;
297 ipl = interrupts_disable();
298 mutex_lock(&as->lock);
301 * Locate the area.
303 area = find_area_and_lock(as, address);
304 if (!area) {
305 mutex_unlock(&as->lock);
306 interrupts_restore(ipl);
307 return ENOENT;
310 if (area->backend == &phys_backend) {
312 * Remapping of address space areas associated
313 * with memory mapped devices is not supported.
315 mutex_unlock(&area->lock);
316 mutex_unlock(&as->lock);
317 interrupts_restore(ipl);
318 return ENOTSUP;
320 if (area->sh_info) {
322 * Remapping of shared address space areas
323 * is not supported.
325 mutex_unlock(&area->lock);
326 mutex_unlock(&as->lock);
327 interrupts_restore(ipl);
328 return ENOTSUP;
331 pages = SIZE2FRAMES((address - area->base) + size);
332 if (!pages) {
334 * Zero size address space areas are not allowed.
336 mutex_unlock(&area->lock);
337 mutex_unlock(&as->lock);
338 interrupts_restore(ipl);
339 return EPERM;
342 if (pages < area->pages) {
343 bool cond;
344 uintptr_t start_free = area->base + pages*PAGE_SIZE;
347 * Shrinking the area.
348 * No need to check for overlaps.
352 * Start TLB shootdown sequence.
354 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
357 * Remove frames belonging to used space starting from
358 * the highest addresses downwards until an overlap with
359 * the resized address space area is found. Note that this
360 * is also the right way to remove part of the used_space
361 * B+tree leaf list.
363 for (cond = true; cond;) {
364 btree_node_t *node;
366 ASSERT(!list_empty(&area->used_space.leaf_head));
367 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
368 if ((cond = (bool) node->keys)) {
369 uintptr_t b = node->key[node->keys - 1];
370 count_t c = (count_t) node->value[node->keys - 1];
371 int i = 0;
373 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
375 if (b + c*PAGE_SIZE <= start_free) {
377 * The whole interval fits completely
378 * in the resized address space area.
380 break;
384 * Part of the interval corresponding to b and c
385 * overlaps with the resized address space area.
388 cond = false; /* we are almost done */
389 i = (start_free - b) >> PAGE_WIDTH;
390 if (!used_space_remove(area, start_free, c - i))
391 panic("Could not remove used space.\n");
392 } else {
394 * The interval of used space can be completely removed.
396 if (!used_space_remove(area, b, c))
397 panic("Could not remove used space.\n");
400 for (; i < c; i++) {
401 pte_t *pte;
403 page_table_lock(as, false);
404 pte = page_mapping_find(as, b + i*PAGE_SIZE);
405 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
406 if (area->backend && area->backend->frame_free) {
407 area->backend->frame_free(area,
408 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
410 page_mapping_remove(as, b + i*PAGE_SIZE);
411 page_table_unlock(as, false);
417 * Finish TLB shootdown sequence.
419 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
420 tlb_shootdown_finalize();
423 * Invalidate software translation caches (e.g. TSB on sparc64).
425 as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
426 } else {
428 * Growing the area.
429 * Check for overlaps with other address space areas.
431 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
432 mutex_unlock(&area->lock);
433 mutex_unlock(&as->lock);
434 interrupts_restore(ipl);
435 return EADDRNOTAVAIL;
439 area->pages = pages;
441 mutex_unlock(&area->lock);
442 mutex_unlock(&as->lock);
443 interrupts_restore(ipl);
445 return 0;
448 /** Destroy address space area.
450 * @param as Address space.
451 * @param address Address withing the area to be deleted.
453 * @return Zero on success or a value from @ref errno.h on failure.
455 int as_area_destroy(as_t *as, uintptr_t address)
457 as_area_t *area;
458 uintptr_t base;
459 link_t *cur;
460 ipl_t ipl;
462 ipl = interrupts_disable();
463 mutex_lock(&as->lock);
465 area = find_area_and_lock(as, address);
466 if (!area) {
467 mutex_unlock(&as->lock);
468 interrupts_restore(ipl);
469 return ENOENT;
472 base = area->base;
475 * Start TLB shootdown sequence.
477 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
480 * Visit only the pages mapped by used_space B+tree.
482 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
483 btree_node_t *node;
484 int i;
486 node = list_get_instance(cur, btree_node_t, leaf_link);
487 for (i = 0; i < node->keys; i++) {
488 uintptr_t b = node->key[i];
489 count_t j;
490 pte_t *pte;
492 for (j = 0; j < (count_t) node->value[i]; j++) {
493 page_table_lock(as, false);
494 pte = page_mapping_find(as, b + j*PAGE_SIZE);
495 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
496 if (area->backend && area->backend->frame_free) {
497 area->backend->frame_free(area,
498 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
500 page_mapping_remove(as, b + j*PAGE_SIZE);
501 page_table_unlock(as, false);
507 * Finish TLB shootdown sequence.
509 tlb_invalidate_pages(as->asid, area->base, area->pages);
510 tlb_shootdown_finalize();
513 * Invalidate potential software translation caches (e.g. TSB on sparc64).
515 as_invalidate_translation_cache(as, area->base, area->pages);
517 btree_destroy(&area->used_space);
519 area->attributes |= AS_AREA_ATTR_PARTIAL;
521 if (area->sh_info)
522 sh_info_remove_reference(area->sh_info);
524 mutex_unlock(&area->lock);
527 * Remove the empty area from address space.
529 btree_remove(&as->as_area_btree, base, NULL);
531 free(area);
533 mutex_unlock(&as->lock);
534 interrupts_restore(ipl);
535 return 0;
538 /** Share address space area with another or the same address space.
540 * Address space area mapping is shared with a new address space area.
541 * If the source address space area has not been shared so far,
542 * a new sh_info is created. The new address space area simply gets the
543 * sh_info of the source area. The process of duplicating the
544 * mapping is done through the backend share function.
546 * @param src_as Pointer to source address space.
547 * @param src_base Base address of the source address space area.
548 * @param acc_size Expected size of the source area.
549 * @param dst_as Pointer to destination address space.
550 * @param dst_base Target base address.
551 * @param dst_flags_mask Destination address space area flags mask.
553 * @return Zero on success or ENOENT if there is no such task or
554 * if there is no such address space area,
555 * EPERM if there was a problem in accepting the area or
556 * ENOMEM if there was a problem in allocating destination
557 * address space area. ENOTSUP is returned if an attempt
558 * to share non-anonymous address space area is detected.
560 int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
561 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
563 ipl_t ipl;
564 int src_flags;
565 size_t src_size;
566 as_area_t *src_area, *dst_area;
567 share_info_t *sh_info;
568 mem_backend_t *src_backend;
569 mem_backend_data_t src_backend_data;
571 ipl = interrupts_disable();
572 mutex_lock(&src_as->lock);
573 src_area = find_area_and_lock(src_as, src_base);
574 if (!src_area) {
576 * Could not find the source address space area.
578 mutex_unlock(&src_as->lock);
579 interrupts_restore(ipl);
580 return ENOENT;
583 if (!src_area->backend || !src_area->backend->share) {
585 * There is no backend or the backend does not
586 * know how to share the area.
588 mutex_unlock(&src_area->lock);
589 mutex_unlock(&src_as->lock);
590 interrupts_restore(ipl);
591 return ENOTSUP;
594 src_size = src_area->pages * PAGE_SIZE;
595 src_flags = src_area->flags;
596 src_backend = src_area->backend;
597 src_backend_data = src_area->backend_data;
599 /* Share the cacheable flag from the original mapping */
600 if (src_flags & AS_AREA_CACHEABLE)
601 dst_flags_mask |= AS_AREA_CACHEABLE;
603 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
604 mutex_unlock(&src_area->lock);
605 mutex_unlock(&src_as->lock);
606 interrupts_restore(ipl);
607 return EPERM;
611 * Now we are committed to sharing the area.
612 * First prepare the area for sharing.
613 * Then it will be safe to unlock it.
615 sh_info = src_area->sh_info;
616 if (!sh_info) {
617 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
618 mutex_initialize(&sh_info->lock);
619 sh_info->refcount = 2;
620 btree_create(&sh_info->pagemap);
621 src_area->sh_info = sh_info;
622 } else {
623 mutex_lock(&sh_info->lock);
624 sh_info->refcount++;
625 mutex_unlock(&sh_info->lock);
628 src_area->backend->share(src_area);
630 mutex_unlock(&src_area->lock);
631 mutex_unlock(&src_as->lock);
634 * Create copy of the source address space area.
635 * The destination area is created with AS_AREA_ATTR_PARTIAL
636 * attribute set which prevents race condition with
637 * preliminary as_page_fault() calls.
638 * The flags of the source area are masked against dst_flags_mask
639 * to support sharing in less privileged mode.
641 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
642 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
643 if (!dst_area) {
645 * Destination address space area could not be created.
647 sh_info_remove_reference(sh_info);
649 interrupts_restore(ipl);
650 return ENOMEM;
654 * Now the destination address space area has been
655 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
656 * attribute and set the sh_info.
658 mutex_lock(&dst_area->lock);
659 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
660 dst_area->sh_info = sh_info;
661 mutex_unlock(&dst_area->lock);
663 interrupts_restore(ipl);
665 return 0;
668 /** Check access mode for address space area.
670 * The address space area must be locked prior to this call.
672 * @param area Address space area.
673 * @param access Access mode.
675 * @return False if access violates area's permissions, true otherwise.
677 bool as_area_check_access(as_area_t *area, pf_access_t access)
679 int flagmap[] = {
680 [PF_ACCESS_READ] = AS_AREA_READ,
681 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
682 [PF_ACCESS_EXEC] = AS_AREA_EXEC
685 if (!(area->flags & flagmap[access]))
686 return false;
688 return true;
691 /** Handle page fault within the current address space.
693 * This is the high-level page fault handler. It decides
694 * whether the page fault can be resolved by any backend
695 * and if so, it invokes the backend to resolve the page
696 * fault.
698 * Interrupts are assumed disabled.
700 * @param page Faulting page.
701 * @param access Access mode that caused the fault (i.e. read/write/exec).
702 * @param istate Pointer to interrupted state.
704 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
705 * fault was caused by copy_to_uspace() or copy_from_uspace().
707 int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
709 pte_t *pte;
710 as_area_t *area;
712 if (!THREAD)
713 return AS_PF_FAULT;
715 ASSERT(AS);
717 mutex_lock(&AS->lock);
718 area = find_area_and_lock(AS, page);
719 if (!area) {
721 * No area contained mapping for 'page'.
722 * Signal page fault to low-level handler.
724 mutex_unlock(&AS->lock);
725 goto page_fault;
728 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
730 * The address space area is not fully initialized.
731 * Avoid possible race by returning error.
733 mutex_unlock(&area->lock);
734 mutex_unlock(&AS->lock);
735 goto page_fault;
738 if (!area->backend || !area->backend->page_fault) {
740 * The address space area is not backed by any backend
741 * or the backend cannot handle page faults.
743 mutex_unlock(&area->lock);
744 mutex_unlock(&AS->lock);
745 goto page_fault;
748 page_table_lock(AS, false);
751 * To avoid race condition between two page faults
752 * on the same address, we need to make sure
753 * the mapping has not been already inserted.
755 if ((pte = page_mapping_find(AS, page))) {
756 if (PTE_PRESENT(pte)) {
757 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
758 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
759 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
760 page_table_unlock(AS, false);
761 mutex_unlock(&area->lock);
762 mutex_unlock(&AS->lock);
763 return AS_PF_OK;
769 * Resort to the backend page fault handler.
771 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
772 page_table_unlock(AS, false);
773 mutex_unlock(&area->lock);
774 mutex_unlock(&AS->lock);
775 goto page_fault;
778 page_table_unlock(AS, false);
779 mutex_unlock(&area->lock);
780 mutex_unlock(&AS->lock);
781 return AS_PF_OK;
783 page_fault:
784 if (THREAD->in_copy_from_uspace) {
785 THREAD->in_copy_from_uspace = false;
786 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
787 } else if (THREAD->in_copy_to_uspace) {
788 THREAD->in_copy_to_uspace = false;
789 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
790 } else {
791 return AS_PF_FAULT;
794 return AS_PF_DEFER;
797 /** Switch address spaces.
799 * Note that this function cannot sleep as it is essentially a part of
800 * scheduling. Sleeping here would lead to deadlock on wakeup.
802 * @param old Old address space or NULL.
803 * @param new New address space.
805 void as_switch(as_t *old, as_t *new)
807 ipl_t ipl;
808 bool needs_asid = false;
810 ipl = interrupts_disable();
811 spinlock_lock(&inactive_as_with_asid_lock);
814 * First, take care of the old address space.
816 if (old) {
817 mutex_lock_active(&old->lock);
818 ASSERT(old->cpu_refcount);
819 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
821 * The old address space is no longer active on
822 * any processor. It can be appended to the
823 * list of inactive address spaces with assigned
824 * ASID.
826 ASSERT(old->asid != ASID_INVALID);
827 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
829 mutex_unlock(&old->lock);
832 * Perform architecture-specific tasks when the address space
833 * is being removed from the CPU.
835 as_deinstall_arch(old);
839 * Second, prepare the new address space.
841 mutex_lock_active(&new->lock);
842 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
843 if (new->asid != ASID_INVALID)
844 list_remove(&new->inactive_as_with_asid_link);
845 else
846 needs_asid = true; /* defer call to asid_get() until new->lock is released */
848 SET_PTL0_ADDRESS(new->page_table);
849 mutex_unlock(&new->lock);
851 if (needs_asid) {
853 * Allocation of new ASID was deferred
854 * until now in order to avoid deadlock.
856 asid_t asid;
858 asid = asid_get();
859 mutex_lock_active(&new->lock);
860 new->asid = asid;
861 mutex_unlock(&new->lock);
863 spinlock_unlock(&inactive_as_with_asid_lock);
864 interrupts_restore(ipl);
867 * Perform architecture-specific steps.
868 * (e.g. write ASID to hardware register etc.)
870 as_install_arch(new);
872 AS = new;
875 /** Convert address space area flags to page flags.
877 * @param aflags Flags of some address space area.
879 * @return Flags to be passed to page_mapping_insert().
881 int area_flags_to_page_flags(int aflags)
883 int flags;
885 flags = PAGE_USER | PAGE_PRESENT;
887 if (aflags & AS_AREA_READ)
888 flags |= PAGE_READ;
890 if (aflags & AS_AREA_WRITE)
891 flags |= PAGE_WRITE;
893 if (aflags & AS_AREA_EXEC)
894 flags |= PAGE_EXEC;
896 if (aflags & AS_AREA_CACHEABLE)
897 flags |= PAGE_CACHEABLE;
899 return flags;
902 /** Compute flags for virtual address translation subsytem.
904 * The address space area must be locked.
905 * Interrupts must be disabled.
907 * @param a Address space area.
909 * @return Flags to be used in page_mapping_insert().
911 int as_area_get_flags(as_area_t *a)
913 return area_flags_to_page_flags(a->flags);
916 /** Create page table.
918 * Depending on architecture, create either address space
919 * private or global page table.
921 * @param flags Flags saying whether the page table is for kernel address space.
923 * @return First entry of the page table.
925 pte_t *page_table_create(int flags)
927 ASSERT(as_operations);
928 ASSERT(as_operations->page_table_create);
930 return as_operations->page_table_create(flags);
933 /** Destroy page table.
935 * Destroy page table in architecture specific way.
937 * @param page_table Physical address of PTL0.
939 void page_table_destroy(pte_t *page_table)
941 ASSERT(as_operations);
942 ASSERT(as_operations->page_table_destroy);
944 as_operations->page_table_destroy(page_table);
947 /** Lock page table.
949 * This function should be called before any page_mapping_insert(),
950 * page_mapping_remove() and page_mapping_find().
952 * Locking order is such that address space areas must be locked
953 * prior to this call. Address space can be locked prior to this
954 * call in which case the lock argument is false.
956 * @param as Address space.
957 * @param lock If false, do not attempt to lock as->lock.
959 void page_table_lock(as_t *as, bool lock)
961 ASSERT(as_operations);
962 ASSERT(as_operations->page_table_lock);
964 as_operations->page_table_lock(as, lock);
967 /** Unlock page table.
969 * @param as Address space.
970 * @param unlock If false, do not attempt to unlock as->lock.
972 void page_table_unlock(as_t *as, bool unlock)
974 ASSERT(as_operations);
975 ASSERT(as_operations->page_table_unlock);
977 as_operations->page_table_unlock(as, unlock);
981 /** Find address space area and lock it.
983 * The address space must be locked and interrupts must be disabled.
985 * @param as Address space.
986 * @param va Virtual address.
988 * @return Locked address space area containing va on success or NULL on failure.
990 as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
992 as_area_t *a;
993 btree_node_t *leaf, *lnode;
994 int i;
996 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
997 if (a) {
998 /* va is the base address of an address space area */
999 mutex_lock(&a->lock);
1000 return a;
1004 * Search the leaf node and the righmost record of its left neighbour
1005 * to find out whether this is a miss or va belongs to an address
1006 * space area found there.
1009 /* First, search the leaf node itself. */
1010 for (i = 0; i < leaf->keys; i++) {
1011 a = (as_area_t *) leaf->value[i];
1012 mutex_lock(&a->lock);
1013 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1014 return a;
1016 mutex_unlock(&a->lock);
1020 * Second, locate the left neighbour and test its last record.
1021 * Because of its position in the B+tree, it must have base < va.
1023 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1024 a = (as_area_t *) lnode->value[lnode->keys - 1];
1025 mutex_lock(&a->lock);
1026 if (va < a->base + a->pages * PAGE_SIZE) {
1027 return a;
1029 mutex_unlock(&a->lock);
1032 return NULL;
1035 /** Check area conflicts with other areas.
1037 * The address space must be locked and interrupts must be disabled.
1039 * @param as Address space.
1040 * @param va Starting virtual address of the area being tested.
1041 * @param size Size of the area being tested.
1042 * @param avoid_area Do not touch this area.
1044 * @return True if there is no conflict, false otherwise.
1046 bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 as_area_t *a;
1049 btree_node_t *leaf, *node;
1050 int i;
1053 * We don't want any area to have conflicts with NULL page.
1055 if (overlaps(va, size, NULL, PAGE_SIZE))
1056 return false;
1059 * The leaf node is found in O(log n), where n is proportional to
1060 * the number of address space areas belonging to as.
1061 * The check for conflicts is then attempted on the rightmost
1062 * record in the left neighbour, the leftmost record in the right
1063 * neighbour and all records in the leaf node itself.
1066 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1067 if (a != avoid_area)
1068 return false;
1071 /* First, check the two border cases. */
1072 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1073 a = (as_area_t *) node->value[node->keys - 1];
1074 mutex_lock(&a->lock);
1075 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1076 mutex_unlock(&a->lock);
1077 return false;
1079 mutex_unlock(&a->lock);
1081 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1082 a = (as_area_t *) node->value[0];
1083 mutex_lock(&a->lock);
1084 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1085 mutex_unlock(&a->lock);
1086 return false;
1088 mutex_unlock(&a->lock);
1091 /* Second, check the leaf node. */
1092 for (i = 0; i < leaf->keys; i++) {
1093 a = (as_area_t *) leaf->value[i];
1095 if (a == avoid_area)
1096 continue;
1098 mutex_lock(&a->lock);
1099 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1100 mutex_unlock(&a->lock);
1101 return false;
1103 mutex_unlock(&a->lock);
1107 * So far, the area does not conflict with other areas.
1108 * Check if it doesn't conflict with kernel address space.
1110 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1111 return !overlaps(va, size,
1112 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1115 return true;
1118 /** Return size of the address space area with given base. */
1119 size_t as_get_size(uintptr_t base)
1121 ipl_t ipl;
1122 as_area_t *src_area;
1123 size_t size;
1125 ipl = interrupts_disable();
1126 src_area = find_area_and_lock(AS, base);
1127 if (src_area){
1128 size = src_area->pages * PAGE_SIZE;
1129 mutex_unlock(&src_area->lock);
1130 } else {
1131 size = 0;
1133 interrupts_restore(ipl);
1134 return size;
1137 /** Mark portion of address space area as used.
1139 * The address space area must be already locked.
1141 * @param a Address space area.
1142 * @param page First page to be marked.
1143 * @param count Number of page to be marked.
1145 * @return 0 on failure and 1 on success.
1147 int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1149 btree_node_t *leaf, *node;
1150 count_t pages;
1151 int i;
1153 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1154 ASSERT(count);
1156 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1157 if (pages) {
1159 * We hit the beginning of some used space.
1161 return 0;
1164 if (!leaf->keys) {
1165 btree_insert(&a->used_space, page, (void *) count, leaf);
1166 return 1;
1169 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1170 if (node) {
1171 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1172 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1175 * Examine the possibility that the interval fits
1176 * somewhere between the rightmost interval of
1177 * the left neigbour and the first interval of the leaf.
1180 if (page >= right_pg) {
1181 /* Do nothing. */
1182 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1183 /* The interval intersects with the left interval. */
1184 return 0;
1185 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1186 /* The interval intersects with the right interval. */
1187 return 0;
1188 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1189 /* The interval can be added by merging the two already present intervals. */
1190 node->value[node->keys - 1] += count + right_cnt;
1191 btree_remove(&a->used_space, right_pg, leaf);
1192 return 1;
1193 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1194 /* The interval can be added by simply growing the left interval. */
1195 node->value[node->keys - 1] += count;
1196 return 1;
1197 } else if (page + count*PAGE_SIZE == right_pg) {
1199 * The interval can be addded by simply moving base of the right
1200 * interval down and increasing its size accordingly.
1202 leaf->value[0] += count;
1203 leaf->key[0] = page;
1204 return 1;
1205 } else {
1207 * The interval is between both neigbouring intervals,
1208 * but cannot be merged with any of them.
1210 btree_insert(&a->used_space, page, (void *) count, leaf);
1211 return 1;
1213 } else if (page < leaf->key[0]) {
1214 uintptr_t right_pg = leaf->key[0];
1215 count_t right_cnt = (count_t) leaf->value[0];
1218 * Investigate the border case in which the left neighbour does not
1219 * exist but the interval fits from the left.
1222 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1223 /* The interval intersects with the right interval. */
1224 return 0;
1225 } else if (page + count*PAGE_SIZE == right_pg) {
1227 * The interval can be added by moving the base of the right interval down
1228 * and increasing its size accordingly.
1230 leaf->key[0] = page;
1231 leaf->value[0] += count;
1232 return 1;
1233 } else {
1235 * The interval doesn't adjoin with the right interval.
1236 * It must be added individually.
1238 btree_insert(&a->used_space, page, (void *) count, leaf);
1239 return 1;
1243 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1244 if (node) {
1245 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1246 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1249 * Examine the possibility that the interval fits
1250 * somewhere between the leftmost interval of
1251 * the right neigbour and the last interval of the leaf.
1254 if (page < left_pg) {
1255 /* Do nothing. */
1256 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1257 /* The interval intersects with the left interval. */
1258 return 0;
1259 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1260 /* The interval intersects with the right interval. */
1261 return 0;
1262 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1263 /* The interval can be added by merging the two already present intervals. */
1264 leaf->value[leaf->keys - 1] += count + right_cnt;
1265 btree_remove(&a->used_space, right_pg, node);
1266 return 1;
1267 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1268 /* The interval can be added by simply growing the left interval. */
1269 leaf->value[leaf->keys - 1] += count;
1270 return 1;
1271 } else if (page + count*PAGE_SIZE == right_pg) {
1273 * The interval can be addded by simply moving base of the right
1274 * interval down and increasing its size accordingly.
1276 node->value[0] += count;
1277 node->key[0] = page;
1278 return 1;
1279 } else {
1281 * The interval is between both neigbouring intervals,
1282 * but cannot be merged with any of them.
1284 btree_insert(&a->used_space, page, (void *) count, leaf);
1285 return 1;
1287 } else if (page >= leaf->key[leaf->keys - 1]) {
1288 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1289 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1292 * Investigate the border case in which the right neighbour does not
1293 * exist but the interval fits from the right.
1296 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1297 /* The interval intersects with the left interval. */
1298 return 0;
1299 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1300 /* The interval can be added by growing the left interval. */
1301 leaf->value[leaf->keys - 1] += count;
1302 return 1;
1303 } else {
1305 * The interval doesn't adjoin with the left interval.
1306 * It must be added individually.
1308 btree_insert(&a->used_space, page, (void *) count, leaf);
1309 return 1;
1314 * Note that if the algorithm made it thus far, the interval can fit only
1315 * between two other intervals of the leaf. The two border cases were already
1316 * resolved.
1318 for (i = 1; i < leaf->keys; i++) {
1319 if (page < leaf->key[i]) {
1320 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1321 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1324 * The interval fits between left_pg and right_pg.
1327 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1328 /* The interval intersects with the left interval. */
1329 return 0;
1330 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1331 /* The interval intersects with the right interval. */
1332 return 0;
1333 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1334 /* The interval can be added by merging the two already present intervals. */
1335 leaf->value[i - 1] += count + right_cnt;
1336 btree_remove(&a->used_space, right_pg, leaf);
1337 return 1;
1338 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1339 /* The interval can be added by simply growing the left interval. */
1340 leaf->value[i - 1] += count;
1341 return 1;
1342 } else if (page + count*PAGE_SIZE == right_pg) {
1344 * The interval can be addded by simply moving base of the right
1345 * interval down and increasing its size accordingly.
1347 leaf->value[i] += count;
1348 leaf->key[i] = page;
1349 return 1;
1350 } else {
1352 * The interval is between both neigbouring intervals,
1353 * but cannot be merged with any of them.
1355 btree_insert(&a->used_space, page, (void *) count, leaf);
1356 return 1;
1361 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1364 /** Mark portion of address space area as unused.
1366 * The address space area must be already locked.
1368 * @param a Address space area.
1369 * @param page First page to be marked.
1370 * @param count Number of page to be marked.
1372 * @return 0 on failure and 1 on success.
1374 int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1376 btree_node_t *leaf, *node;
1377 count_t pages;
1378 int i;
1380 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1381 ASSERT(count);
1383 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1384 if (pages) {
1386 * We are lucky, page is the beginning of some interval.
1388 if (count > pages) {
1389 return 0;
1390 } else if (count == pages) {
1391 btree_remove(&a->used_space, page, leaf);
1392 return 1;
1393 } else {
1395 * Find the respective interval.
1396 * Decrease its size and relocate its start address.
1398 for (i = 0; i < leaf->keys; i++) {
1399 if (leaf->key[i] == page) {
1400 leaf->key[i] += count*PAGE_SIZE;
1401 leaf->value[i] -= count;
1402 return 1;
1405 goto error;
1409 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1410 if (node && page < leaf->key[0]) {
1411 uintptr_t left_pg = node->key[node->keys - 1];
1412 count_t left_cnt = (count_t) node->value[node->keys - 1];
1414 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1415 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1417 * The interval is contained in the rightmost interval
1418 * of the left neighbour and can be removed by
1419 * updating the size of the bigger interval.
1421 node->value[node->keys - 1] -= count;
1422 return 1;
1423 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1424 count_t new_cnt;
1427 * The interval is contained in the rightmost interval
1428 * of the left neighbour but its removal requires
1429 * both updating the size of the original interval and
1430 * also inserting a new interval.
1432 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1433 node->value[node->keys - 1] -= count + new_cnt;
1434 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1435 return 1;
1438 return 0;
1439 } else if (page < leaf->key[0]) {
1440 return 0;
1443 if (page > leaf->key[leaf->keys - 1]) {
1444 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1445 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1447 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1448 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1450 * The interval is contained in the rightmost interval
1451 * of the leaf and can be removed by updating the size
1452 * of the bigger interval.
1454 leaf->value[leaf->keys - 1] -= count;
1455 return 1;
1456 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1457 count_t new_cnt;
1460 * The interval is contained in the rightmost interval
1461 * of the leaf but its removal requires both updating
1462 * the size of the original interval and
1463 * also inserting a new interval.
1465 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1466 leaf->value[leaf->keys - 1] -= count + new_cnt;
1467 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1468 return 1;
1471 return 0;
1475 * The border cases have been already resolved.
1476 * Now the interval can be only between intervals of the leaf.
1478 for (i = 1; i < leaf->keys - 1; i++) {
1479 if (page < leaf->key[i]) {
1480 uintptr_t left_pg = leaf->key[i - 1];
1481 count_t left_cnt = (count_t) leaf->value[i - 1];
1484 * Now the interval is between intervals corresponding to (i - 1) and i.
1486 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1487 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1489 * The interval is contained in the interval (i - 1)
1490 * of the leaf and can be removed by updating the size
1491 * of the bigger interval.
1493 leaf->value[i - 1] -= count;
1494 return 1;
1495 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1496 count_t new_cnt;
1499 * The interval is contained in the interval (i - 1)
1500 * of the leaf but its removal requires both updating
1501 * the size of the original interval and
1502 * also inserting a new interval.
1504 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1505 leaf->value[i - 1] -= count + new_cnt;
1506 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1507 return 1;
1510 return 0;
1514 error:
1515 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1518 /** Remove reference to address space area share info.
1520 * If the reference count drops to 0, the sh_info is deallocated.
1522 * @param sh_info Pointer to address space area share info.
1524 void sh_info_remove_reference(share_info_t *sh_info)
1526 bool dealloc = false;
1528 mutex_lock(&sh_info->lock);
1529 ASSERT(sh_info->refcount);
1530 if (--sh_info->refcount == 0) {
1531 dealloc = true;
1532 link_t *cur;
1535 * Now walk carefully the pagemap B+tree and free/remove
1536 * reference from all frames found there.
1538 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1539 btree_node_t *node;
1540 int i;
1542 node = list_get_instance(cur, btree_node_t, leaf_link);
1543 for (i = 0; i < node->keys; i++)
1544 frame_free((uintptr_t) node->value[i]);
1548 mutex_unlock(&sh_info->lock);
1550 if (dealloc) {
1551 btree_destroy(&sh_info->pagemap);
1552 free(sh_info);
1557 * Address space related syscalls.
1560 /** Wrapper for as_area_create(). */
1561 unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1563 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1564 return (unative_t) address;
1565 else
1566 return (unative_t) -1;
1569 /** Wrapper for as_area_resize(). */
1570 unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1572 return (unative_t) as_area_resize(AS, address, size, 0);
1575 /** Wrapper for as_area_destroy(). */
1576 unative_t sys_as_area_destroy(uintptr_t address)
1578 return (unative_t) as_area_destroy(AS, address);
1581 /** Print out information about address space.
1583 * @param as Address space.
1585 void as_print(as_t *as)
1587 ipl_t ipl;
1589 ipl = interrupts_disable();
1590 mutex_lock(&as->lock);
1592 /* print out info about address space areas */
1593 link_t *cur;
1594 for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1595 btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1597 int i;
1598 for (i = 0; i < node->keys; i++) {
1599 as_area_t *area = node->value[i];
1601 mutex_lock(&area->lock);
1602 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1603 area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1604 mutex_unlock(&area->lock);
1608 mutex_unlock(&as->lock);
1609 interrupts_restore(ipl);
1612 /** @}