Add skeleton of the user backend
[helenos.git] / kernel / generic / src / mm / as.c
blobd6436e55b77b043c02573c64408f43a93de614fe
1 /*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 /** @addtogroup genericmm
30 * @{
33 /**
34 * @file
35 * @brief Address space related functions.
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
45 * @see page.c
49 #include <mm/as.h>
50 #include <arch/mm/as.h>
51 #include <mm/page.h>
52 #include <mm/frame.h>
53 #include <mm/slab.h>
54 #include <mm/tlb.h>
55 #include <arch/mm/page.h>
56 #include <genarch/mm/page_pt.h>
57 #include <genarch/mm/page_ht.h>
58 #include <mm/asid.h>
59 #include <arch/mm/asid.h>
60 #include <preemption.h>
61 #include <synch/spinlock.h>
62 #include <synch/mutex.h>
63 #include <adt/list.h>
64 #include <adt/btree.h>
65 #include <proc/task.h>
66 #include <proc/thread.h>
67 #include <arch/asm.h>
68 #include <panic.h>
69 #include <debug.h>
70 #include <print.h>
71 #include <memstr.h>
72 #include <macros.h>
73 #include <bitops.h>
74 #include <arch.h>
75 #include <errno.h>
76 #include <config.h>
77 #include <align.h>
78 #include <typedefs.h>
79 #include <syscall/copy.h>
80 #include <arch/interrupt.h>
81 #include <interrupt.h>
83 /**
84 * Each architecture decides what functions will be used to carry out
85 * address space operations such as creating or locking page tables.
87 as_operations_t *as_operations = NULL;
89 /** Slab for as_t objects.
92 static slab_cache_t *as_slab;
94 /** ASID subsystem lock.
96 * This lock protects:
97 * - inactive_as_with_asid_list
98 * - as->asid for each as of the as_t type
99 * - asids_allocated counter
102 SPINLOCK_INITIALIZE(asidlock);
105 * Inactive address spaces (on all processors)
106 * that have valid ASID.
108 LIST_INITIALIZE(inactive_as_with_asid_list);
110 /** Kernel address space. */
111 as_t *AS_KERNEL = NULL;
113 NO_TRACE static int as_constructor(void *obj, unsigned int flags)
115 as_t *as = (as_t *) obj;
117 link_initialize(&as->inactive_as_with_asid_link);
118 mutex_initialize(&as->lock, MUTEX_PASSIVE);
120 return as_constructor_arch(as, flags);
123 NO_TRACE static size_t as_destructor(void *obj)
125 return as_destructor_arch((as_t *) obj);
128 /** Initialize address space subsystem. */
129 void as_init(void)
131 as_arch_init();
133 as_slab = slab_cache_create("as_t", sizeof(as_t), 0,
134 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
136 AS_KERNEL = as_create(FLAG_AS_KERNEL);
137 if (!AS_KERNEL)
138 panic("Cannot create kernel address space.");
141 * Make sure the kernel address space
142 * reference count never drops to zero.
144 as_hold(AS_KERNEL);
147 /** Create address space.
149 * @param flags Flags that influence the way in wich the address
150 * space is created.
153 as_t *as_create(unsigned int flags)
155 as_t *as = (as_t *) slab_alloc(as_slab, 0);
156 (void) as_create_arch(as, 0);
158 btree_create(&as->as_area_btree);
160 if (flags & FLAG_AS_KERNEL)
161 as->asid = ASID_KERNEL;
162 else
163 as->asid = ASID_INVALID;
165 atomic_set(&as->refcount, 0);
166 as->cpu_refcount = 0;
168 #ifdef AS_PAGE_TABLE
169 as->genarch.page_table = page_table_create(flags);
170 #else
171 page_table_create(flags);
172 #endif
174 return as;
177 /** Destroy adress space.
179 * When there are no tasks referencing this address space (i.e. its refcount is
180 * zero), the address space can be destroyed.
182 * We know that we don't hold any spinlock.
184 * @param as Address space to be destroyed.
187 void as_destroy(as_t *as)
189 DEADLOCK_PROBE_INIT(p_asidlock);
191 ASSERT(as != AS);
192 ASSERT(atomic_get(&as->refcount) == 0);
195 * Since there is no reference to this address space, it is safe not to
196 * lock its mutex.
200 * We need to avoid deadlock between TLB shootdown and asidlock.
201 * We therefore try to take asid conditionally and if we don't succeed,
202 * we enable interrupts and try again. This is done while preemption is
203 * disabled to prevent nested context switches. We also depend on the
204 * fact that so far no spinlocks are held.
206 preemption_disable();
207 ipl_t ipl = interrupts_read();
209 retry:
210 interrupts_disable();
211 if (!spinlock_trylock(&asidlock)) {
212 interrupts_enable();
213 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
214 goto retry;
217 /* Interrupts disabled, enable preemption */
218 preemption_enable();
220 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
221 if (as->cpu_refcount == 0)
222 list_remove(&as->inactive_as_with_asid_link);
224 asid_put(as->asid);
227 spinlock_unlock(&asidlock);
228 interrupts_restore(ipl);
232 * Destroy address space areas of the address space.
233 * The B+tree must be walked carefully because it is
234 * also being destroyed.
236 bool cond = true;
237 while (cond) {
238 ASSERT(!list_empty(&as->as_area_btree.leaf_list));
240 btree_node_t *node =
241 list_get_instance(list_first(&as->as_area_btree.leaf_list),
242 btree_node_t, leaf_link);
244 if ((cond = node->keys))
245 as_area_destroy(as, node->key[0]);
248 btree_destroy(&as->as_area_btree);
250 #ifdef AS_PAGE_TABLE
251 page_table_destroy(as->genarch.page_table);
252 #else
253 page_table_destroy(NULL);
254 #endif
256 slab_free(as_slab, as);
259 /** Hold a reference to an address space.
261 * Holding a reference to an address space prevents destruction
262 * of that address space.
264 * @param as Address space to be held.
267 NO_TRACE void as_hold(as_t *as)
269 atomic_inc(&as->refcount);
272 /** Release a reference to an address space.
274 * The last one to release a reference to an address space
275 * destroys the address space.
277 * @param asAddress space to be released.
280 NO_TRACE void as_release(as_t *as)
282 if (atomic_predec(&as->refcount) == 0)
283 as_destroy(as);
286 /** Check area conflicts with other areas.
288 * @param as Address space.
289 * @param addr Starting virtual address of the area being tested.
290 * @param count Number of pages in the area being tested.
291 * @param guarded True if the area being tested is protected by guard pages.
292 * @param avoid Do not touch this area.
294 * @return True if there is no conflict, false otherwise.
297 NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
298 size_t count, bool guarded, as_area_t *avoid)
300 ASSERT((addr % PAGE_SIZE) == 0);
301 ASSERT(mutex_locked(&as->lock));
304 * If the addition of the supposed area address and size overflows,
305 * report conflict.
307 if (overflows_into_positive(addr, P2SZ(count)))
308 return false;
311 * We don't want any area to have conflicts with NULL page.
313 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
314 return false;
317 * The leaf node is found in O(log n), where n is proportional to
318 * the number of address space areas belonging to as.
319 * The check for conflicts is then attempted on the rightmost
320 * record in the left neighbour, the leftmost record in the right
321 * neighbour and all records in the leaf node itself.
323 btree_node_t *leaf;
324 as_area_t *area =
325 (as_area_t *) btree_search(&as->as_area_btree, addr, &leaf);
326 if (area) {
327 if (area != avoid)
328 return false;
331 /* First, check the two border cases. */
332 btree_node_t *node =
333 btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
334 if (node) {
335 area = (as_area_t *) node->value[node->keys - 1];
337 if (area != avoid) {
338 mutex_lock(&area->lock);
341 * If at least one of the two areas are protected
342 * by the AS_AREA_GUARD flag then we must be sure
343 * that they are separated by at least one unmapped
344 * page.
346 int const gp = (guarded ||
347 (area->flags & AS_AREA_GUARD)) ? 1 : 0;
350 * The area comes from the left neighbour node, which
351 * means that there already are some areas in the leaf
352 * node, which in turn means that adding gp is safe and
353 * will not cause an integer overflow.
355 if (overlaps(addr, P2SZ(count), area->base,
356 P2SZ(area->pages + gp))) {
357 mutex_unlock(&area->lock);
358 return false;
361 mutex_unlock(&area->lock);
365 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
366 if (node) {
367 area = (as_area_t *) node->value[0];
369 if (area != avoid) {
370 int gp;
372 mutex_lock(&area->lock);
374 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
375 if (gp && overflows(addr, P2SZ(count))) {
377 * Guard page not needed if the supposed area
378 * is adjacent to the end of the address space.
379 * We already know that the following test is
380 * going to fail...
382 gp--;
385 if (overlaps(addr, P2SZ(count + gp), area->base,
386 P2SZ(area->pages))) {
387 mutex_unlock(&area->lock);
388 return false;
391 mutex_unlock(&area->lock);
395 /* Second, check the leaf node. */
396 btree_key_t i;
397 for (i = 0; i < leaf->keys; i++) {
398 area = (as_area_t *) leaf->value[i];
399 int agp;
400 int gp;
402 if (area == avoid)
403 continue;
405 mutex_lock(&area->lock);
407 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
408 agp = gp;
411 * Sanitize the two possible unsigned integer overflows.
413 if (gp && overflows(addr, P2SZ(count)))
414 gp--;
415 if (agp && overflows(area->base, P2SZ(area->pages)))
416 agp--;
418 if (overlaps(addr, P2SZ(count + gp), area->base,
419 P2SZ(area->pages + agp))) {
420 mutex_unlock(&area->lock);
421 return false;
424 mutex_unlock(&area->lock);
428 * So far, the area does not conflict with other areas.
429 * Check if it is contained in the user address space.
431 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
432 return iswithin(USER_ADDRESS_SPACE_START,
433 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
434 addr, P2SZ(count));
437 return true;
440 /** Return pointer to unmapped address space area
442 * The address space must be already locked when calling
443 * this function.
445 * @param as Address space.
446 * @param bound Lowest address bound.
447 * @param size Requested size of the allocation.
448 * @param guarded True if the allocation must be protected by guard pages.
450 * @return Address of the beginning of unmapped address space area.
451 * @return -1 if no suitable address space area was found.
454 NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
455 size_t size, bool guarded)
457 ASSERT(mutex_locked(&as->lock));
459 if (size == 0)
460 return (uintptr_t) -1;
463 * Make sure we allocate from page-aligned
464 * address. Check for possible overflow in
465 * each step.
468 size_t pages = SIZE2FRAMES(size);
471 * Find the lowest unmapped address aligned on the size
472 * boundary, not smaller than bound and of the required size.
475 /* First check the bound address itself */
476 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
477 if (addr >= bound) {
478 if (guarded) {
479 /* Leave an unmapped page between the lower
480 * bound and the area's start address.
482 addr += P2SZ(1);
485 if (check_area_conflicts(as, addr, pages, guarded, NULL))
486 return addr;
489 /* Eventually check the addresses behind each area */
490 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t, node) {
492 for (btree_key_t i = 0; i < node->keys; i++) {
493 as_area_t *area = (as_area_t *) node->value[i];
495 mutex_lock(&area->lock);
497 addr =
498 ALIGN_UP(area->base + P2SZ(area->pages), PAGE_SIZE);
500 if (guarded || area->flags & AS_AREA_GUARD) {
501 /* We must leave an unmapped page
502 * between the two areas.
504 addr += P2SZ(1);
507 bool avail =
508 ((addr >= bound) && (addr >= area->base) &&
509 (check_area_conflicts(as, addr, pages, guarded, area)));
511 mutex_unlock(&area->lock);
513 if (avail)
514 return addr;
518 /* No suitable address space area found */
519 return (uintptr_t) -1;
522 /** Remove reference to address space area share info.
524 * If the reference count drops to 0, the sh_info is deallocated.
526 * @param sh_info Pointer to address space area share info.
529 NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
531 bool dealloc = false;
533 mutex_lock(&sh_info->lock);
534 ASSERT(sh_info->refcount);
536 if (--sh_info->refcount == 0) {
537 dealloc = true;
540 * Now walk carefully the pagemap B+tree and free/remove
541 * reference from all frames found there.
543 list_foreach(sh_info->pagemap.leaf_list, leaf_link,
544 btree_node_t, node) {
545 btree_key_t i;
547 for (i = 0; i < node->keys; i++)
548 frame_free((uintptr_t) node->value[i], 1);
552 mutex_unlock(&sh_info->lock);
554 if (dealloc) {
555 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
556 sh_info->backend->destroy_shared_data(
557 sh_info->backend_shared_data);
559 btree_destroy(&sh_info->pagemap);
560 free(sh_info);
565 /** Create address space area of common attributes.
567 * The created address space area is added to the target address space.
569 * @param as Target address space.
570 * @param flags Flags of the area memory.
571 * @param size Size of area.
572 * @param attrs Attributes of the area.
573 * @param backend Address space area backend. NULL if no backend is used.
574 * @param backend_data NULL or a pointer to custom backend data.
575 * @param base Starting virtual address of the area.
576 * If set to AS_AREA_ANY, a suitable mappable area is
577 * found.
578 * @param bound Lowest address bound if base is set to AS_AREA_ANY.
579 * Otherwise ignored.
581 * @return Address space area on success or NULL on failure.
584 as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
585 unsigned int attrs, mem_backend_t *backend,
586 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
588 if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
589 return NULL;
591 if (size == 0)
592 return NULL;
594 size_t pages = SIZE2FRAMES(size);
596 /* Writeable executable areas are not supported. */
597 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
598 return NULL;
600 bool const guarded = flags & AS_AREA_GUARD;
602 mutex_lock(&as->lock);
604 if (*base == (uintptr_t) AS_AREA_ANY) {
605 *base = as_get_unmapped_area(as, bound, size, guarded);
606 if (*base == (uintptr_t) -1) {
607 mutex_unlock(&as->lock);
608 return NULL;
612 if (overflows_into_positive(*base, size)) {
613 mutex_unlock(&as->lock);
614 return NULL;
617 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
618 mutex_unlock(&as->lock);
619 return NULL;
622 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t), 0);
624 mutex_initialize(&area->lock, MUTEX_PASSIVE);
626 area->as = as;
627 area->flags = flags;
628 area->attributes = attrs;
629 area->pages = pages;
630 area->resident = 0;
631 area->base = *base;
632 area->backend = backend;
633 area->sh_info = NULL;
635 if (backend_data)
636 area->backend_data = *backend_data;
637 else
638 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
640 share_info_t *si = NULL;
643 * Create the sharing info structure.
644 * We do this in advance for every new area, even if it is not going
645 * to be shared.
647 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
648 si = (share_info_t *) malloc(sizeof(share_info_t), 0);
649 mutex_initialize(&si->lock, MUTEX_PASSIVE);
650 si->refcount = 1;
651 si->shared = false;
652 si->backend_shared_data = NULL;
653 si->backend = backend;
654 btree_create(&si->pagemap);
656 area->sh_info = si;
658 if (area->backend && area->backend->create_shared_data) {
659 if (!area->backend->create_shared_data(area)) {
660 free(area);
661 mutex_unlock(&as->lock);
662 sh_info_remove_reference(si);
663 return NULL;
668 if (area->backend && area->backend->create) {
669 if (!area->backend->create(area)) {
670 free(area);
671 mutex_unlock(&as->lock);
672 if (!(attrs & AS_AREA_ATTR_PARTIAL))
673 sh_info_remove_reference(si);
674 return NULL;
678 btree_create(&area->used_space);
679 btree_insert(&as->as_area_btree, *base, (void *) area,
680 NULL);
682 mutex_unlock(&as->lock);
684 return area;
687 /** Find address space area and lock it.
689 * @param as Address space.
690 * @param va Virtual address.
692 * @return Locked address space area containing va on success or
693 * NULL on failure.
696 NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
698 ASSERT(mutex_locked(&as->lock));
700 btree_node_t *leaf;
701 as_area_t *area = (as_area_t *) btree_search(&as->as_area_btree, va,
702 &leaf);
703 if (area) {
704 /* va is the base address of an address space area */
705 mutex_lock(&area->lock);
706 return area;
710 * Search the leaf node and the rightmost record of its left neighbour
711 * to find out whether this is a miss or va belongs to an address
712 * space area found there.
715 /* First, search the leaf node itself. */
716 btree_key_t i;
718 for (i = 0; i < leaf->keys; i++) {
719 area = (as_area_t *) leaf->value[i];
721 mutex_lock(&area->lock);
723 if ((area->base <= va) &&
724 (va <= area->base + (P2SZ(area->pages) - 1)))
725 return area;
727 mutex_unlock(&area->lock);
731 * Second, locate the left neighbour and test its last record.
732 * Because of its position in the B+tree, it must have base < va.
734 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree,
735 leaf);
736 if (lnode) {
737 area = (as_area_t *) lnode->value[lnode->keys - 1];
739 mutex_lock(&area->lock);
741 if (va <= area->base + (P2SZ(area->pages) - 1))
742 return area;
744 mutex_unlock(&area->lock);
747 return NULL;
750 /** Find address space area and change it.
752 * @param as Address space.
753 * @param address Virtual address belonging to the area to be changed.
754 * Must be page-aligned.
755 * @param size New size of the virtual memory block starting at
756 * address.
757 * @param flags Flags influencing the remap operation. Currently unused.
759 * @return Zero on success or a value from @ref errno.h otherwise.
762 int as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
764 if (!IS_ALIGNED(address, PAGE_SIZE))
765 return EINVAL;
767 mutex_lock(&as->lock);
770 * Locate the area.
772 as_area_t *area = find_area_and_lock(as, address);
773 if (!area) {
774 mutex_unlock(&as->lock);
775 return ENOENT;
778 if (!area->backend->is_resizable(area)) {
780 * The backend does not support resizing for this area.
782 mutex_unlock(&area->lock);
783 mutex_unlock(&as->lock);
784 return ENOTSUP;
787 mutex_lock(&area->sh_info->lock);
788 if (area->sh_info->shared) {
790 * Remapping of shared address space areas
791 * is not supported.
793 mutex_unlock(&area->sh_info->lock);
794 mutex_unlock(&area->lock);
795 mutex_unlock(&as->lock);
796 return ENOTSUP;
798 mutex_unlock(&area->sh_info->lock);
800 size_t pages = SIZE2FRAMES((address - area->base) + size);
801 if (!pages) {
803 * Zero size address space areas are not allowed.
805 mutex_unlock(&area->lock);
806 mutex_unlock(&as->lock);
807 return EPERM;
810 if (pages < area->pages) {
811 uintptr_t start_free = area->base + P2SZ(pages);
814 * Shrinking the area.
815 * No need to check for overlaps.
818 page_table_lock(as, false);
821 * Remove frames belonging to used space starting from
822 * the highest addresses downwards until an overlap with
823 * the resized address space area is found. Note that this
824 * is also the right way to remove part of the used_space
825 * B+tree leaf list.
827 bool cond = true;
828 while (cond) {
829 ASSERT(!list_empty(&area->used_space.leaf_list));
831 btree_node_t *node =
832 list_get_instance(list_last(&area->used_space.leaf_list),
833 btree_node_t, leaf_link);
835 if ((cond = (bool) node->keys)) {
836 uintptr_t ptr = node->key[node->keys - 1];
837 size_t node_size =
838 (size_t) node->value[node->keys - 1];
839 size_t i = 0;
841 if (overlaps(ptr, P2SZ(node_size), area->base,
842 P2SZ(pages))) {
844 if (ptr + P2SZ(node_size) <= start_free) {
846 * The whole interval fits
847 * completely in the resized
848 * address space area.
850 break;
854 * Part of the interval corresponding
855 * to b and c overlaps with the resized
856 * address space area.
859 /* We are almost done */
860 cond = false;
861 i = (start_free - ptr) >> PAGE_WIDTH;
862 if (!used_space_remove(area, start_free,
863 node_size - i))
864 panic("Cannot remove used space.");
865 } else {
867 * The interval of used space can be
868 * completely removed.
870 if (!used_space_remove(area, ptr, node_size))
871 panic("Cannot remove used space.");
875 * Start TLB shootdown sequence.
877 * The sequence is rather short and can be
878 * repeated multiple times. The reason is that
879 * we don't want to have used_space_remove()
880 * inside the sequence as it may use a blocking
881 * memory allocation for its B+tree. Blocking
882 * while holding the tlblock spinlock is
883 * forbidden and would hit a kernel assertion.
886 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
887 as->asid, area->base + P2SZ(pages),
888 area->pages - pages);
890 for (; i < node_size; i++) {
891 pte_t *pte = page_mapping_find(as,
892 ptr + P2SZ(i), false);
894 ASSERT(pte);
895 ASSERT(PTE_VALID(pte));
896 ASSERT(PTE_PRESENT(pte));
898 if ((area->backend) &&
899 (area->backend->frame_free)) {
900 area->backend->frame_free(area,
901 ptr + P2SZ(i),
902 PTE_GET_FRAME(pte));
905 page_mapping_remove(as, ptr + P2SZ(i));
909 * Finish TLB shootdown sequence.
912 tlb_invalidate_pages(as->asid,
913 area->base + P2SZ(pages),
914 area->pages - pages);
917 * Invalidate software translation caches
918 * (e.g. TSB on sparc64, PHT on ppc32).
920 as_invalidate_translation_cache(as,
921 area->base + P2SZ(pages),
922 area->pages - pages);
923 tlb_shootdown_finalize(ipl);
926 page_table_unlock(as, false);
927 } else {
929 * Growing the area.
932 if (overflows_into_positive(address, P2SZ(pages)))
933 return EINVAL;
936 * Check for overlaps with other address space areas.
938 bool const guarded = area->flags & AS_AREA_GUARD;
939 if (!check_area_conflicts(as, address, pages, guarded, area)) {
940 mutex_unlock(&area->lock);
941 mutex_unlock(&as->lock);
942 return EADDRNOTAVAIL;
946 if (area->backend && area->backend->resize) {
947 if (!area->backend->resize(area, pages)) {
948 mutex_unlock(&area->lock);
949 mutex_unlock(&as->lock);
950 return ENOMEM;
954 area->pages = pages;
956 mutex_unlock(&area->lock);
957 mutex_unlock(&as->lock);
959 return 0;
962 /** Destroy address space area.
964 * @param as Address space.
965 * @param address Address within the area to be deleted.
967 * @return Zero on success or a value from @ref errno.h on failure.
970 int as_area_destroy(as_t *as, uintptr_t address)
972 mutex_lock(&as->lock);
974 as_area_t *area = find_area_and_lock(as, address);
975 if (!area) {
976 mutex_unlock(&as->lock);
977 return ENOENT;
980 if (area->backend && area->backend->destroy)
981 area->backend->destroy(area);
983 uintptr_t base = area->base;
985 page_table_lock(as, false);
988 * Start TLB shootdown sequence.
990 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
991 area->pages);
994 * Visit only the pages mapped by used_space B+tree.
996 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
997 node) {
998 btree_key_t i;
1000 for (i = 0; i < node->keys; i++) {
1001 uintptr_t ptr = node->key[i];
1002 size_t size;
1004 for (size = 0; size < (size_t) node->value[i]; size++) {
1005 pte_t *pte = page_mapping_find(as,
1006 ptr + P2SZ(size), false);
1008 ASSERT(pte);
1009 ASSERT(PTE_VALID(pte));
1010 ASSERT(PTE_PRESENT(pte));
1012 if ((area->backend) &&
1013 (area->backend->frame_free)) {
1014 area->backend->frame_free(area,
1015 ptr + P2SZ(size),
1016 PTE_GET_FRAME(pte));
1019 page_mapping_remove(as, ptr + P2SZ(size));
1025 * Finish TLB shootdown sequence.
1028 tlb_invalidate_pages(as->asid, area->base, area->pages);
1031 * Invalidate potential software translation caches
1032 * (e.g. TSB on sparc64, PHT on ppc32).
1034 as_invalidate_translation_cache(as, area->base, area->pages);
1035 tlb_shootdown_finalize(ipl);
1037 page_table_unlock(as, false);
1039 btree_destroy(&area->used_space);
1041 area->attributes |= AS_AREA_ATTR_PARTIAL;
1043 sh_info_remove_reference(area->sh_info);
1045 mutex_unlock(&area->lock);
1048 * Remove the empty area from address space.
1050 btree_remove(&as->as_area_btree, base, NULL);
1052 free(area);
1054 mutex_unlock(&as->lock);
1055 return 0;
1058 /** Share address space area with another or the same address space.
1060 * Address space area mapping is shared with a new address space area.
1061 * If the source address space area has not been shared so far,
1062 * a new sh_info is created. The new address space area simply gets the
1063 * sh_info of the source area. The process of duplicating the
1064 * mapping is done through the backend share function.
1066 * @param src_as Pointer to source address space.
1067 * @param src_base Base address of the source address space area.
1068 * @param acc_size Expected size of the source area.
1069 * @param dst_as Pointer to destination address space.
1070 * @param dst_flags_mask Destination address space area flags mask.
1071 * @param dst_base Target base address. If set to -1,
1072 * a suitable mappable area is found.
1073 * @param bound Lowest address bound if dst_base is set to -1.
1074 * Otherwise ignored.
1076 * @return Zero on success.
1077 * @return ENOENT if there is no such task or such address space.
1078 * @return EPERM if there was a problem in accepting the area.
1079 * @return ENOMEM if there was a problem in allocating destination
1080 * address space area.
1081 * @return ENOTSUP if the address space area backend does not support
1082 * sharing.
1085 int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1086 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1087 uintptr_t bound)
1089 mutex_lock(&src_as->lock);
1090 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1091 if (!src_area) {
1093 * Could not find the source address space area.
1095 mutex_unlock(&src_as->lock);
1096 return ENOENT;
1099 if (!src_area->backend->is_shareable(src_area)) {
1101 * The backend does not permit sharing of this area.
1103 mutex_unlock(&src_area->lock);
1104 mutex_unlock(&src_as->lock);
1105 return ENOTSUP;
1108 size_t src_size = P2SZ(src_area->pages);
1109 unsigned int src_flags = src_area->flags;
1110 mem_backend_t *src_backend = src_area->backend;
1111 mem_backend_data_t src_backend_data = src_area->backend_data;
1113 /* Share the cacheable flag from the original mapping */
1114 if (src_flags & AS_AREA_CACHEABLE)
1115 dst_flags_mask |= AS_AREA_CACHEABLE;
1117 if ((src_size != acc_size) ||
1118 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1119 mutex_unlock(&src_area->lock);
1120 mutex_unlock(&src_as->lock);
1121 return EPERM;
1125 * Now we are committed to sharing the area.
1126 * First, prepare the area for sharing.
1127 * Then it will be safe to unlock it.
1129 share_info_t *sh_info = src_area->sh_info;
1131 mutex_lock(&sh_info->lock);
1132 sh_info->refcount++;
1133 bool shared = sh_info->shared;
1134 sh_info->shared = true;
1135 mutex_unlock(&sh_info->lock);
1137 if (!shared) {
1139 * Call the backend to setup sharing.
1140 * This only happens once for each sh_info.
1142 src_area->backend->share(src_area);
1145 mutex_unlock(&src_area->lock);
1146 mutex_unlock(&src_as->lock);
1149 * Create copy of the source address space area.
1150 * The destination area is created with AS_AREA_ATTR_PARTIAL
1151 * attribute set which prevents race condition with
1152 * preliminary as_page_fault() calls.
1153 * The flags of the source area are masked against dst_flags_mask
1154 * to support sharing in less privileged mode.
1156 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1157 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1158 &src_backend_data, dst_base, bound);
1159 if (!dst_area) {
1161 * Destination address space area could not be created.
1163 sh_info_remove_reference(sh_info);
1165 return ENOMEM;
1169 * Now the destination address space area has been
1170 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1171 * attribute and set the sh_info.
1173 mutex_lock(&dst_as->lock);
1174 mutex_lock(&dst_area->lock);
1175 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1176 dst_area->sh_info = sh_info;
1177 mutex_unlock(&dst_area->lock);
1178 mutex_unlock(&dst_as->lock);
1180 return 0;
1183 /** Check access mode for address space area.
1185 * @param area Address space area.
1186 * @param access Access mode.
1188 * @return False if access violates area's permissions, true
1189 * otherwise.
1192 NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1194 ASSERT(mutex_locked(&area->lock));
1196 int flagmap[] = {
1197 [PF_ACCESS_READ] = AS_AREA_READ,
1198 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1199 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1202 if (!(area->flags & flagmap[access]))
1203 return false;
1205 return true;
1208 /** Convert address space area flags to page flags.
1210 * @param aflags Flags of some address space area.
1212 * @return Flags to be passed to page_mapping_insert().
1215 NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1217 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1219 if (aflags & AS_AREA_READ)
1220 flags |= PAGE_READ;
1222 if (aflags & AS_AREA_WRITE)
1223 flags |= PAGE_WRITE;
1225 if (aflags & AS_AREA_EXEC)
1226 flags |= PAGE_EXEC;
1228 if (aflags & AS_AREA_CACHEABLE)
1229 flags |= PAGE_CACHEABLE;
1231 return flags;
1234 /** Change adress space area flags.
1236 * The idea is to have the same data, but with a different access mode.
1237 * This is needed e.g. for writing code into memory and then executing it.
1238 * In order for this to work properly, this may copy the data
1239 * into private anonymous memory (unless it's already there).
1241 * @param as Address space.
1242 * @param flags Flags of the area memory.
1243 * @param address Address within the area to be changed.
1245 * @return Zero on success or a value from @ref errno.h on failure.
1248 int as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1250 /* Flags for the new memory mapping */
1251 unsigned int page_flags = area_flags_to_page_flags(flags);
1253 mutex_lock(&as->lock);
1255 as_area_t *area = find_area_and_lock(as, address);
1256 if (!area) {
1257 mutex_unlock(&as->lock);
1258 return ENOENT;
1261 if (area->backend != &anon_backend) {
1262 /* Copying non-anonymous memory not supported yet */
1263 mutex_unlock(&area->lock);
1264 mutex_unlock(&as->lock);
1265 return ENOTSUP;
1268 mutex_lock(&area->sh_info->lock);
1269 if (area->sh_info->shared) {
1270 /* Copying shared areas not supported yet */
1271 mutex_unlock(&area->sh_info->lock);
1272 mutex_unlock(&area->lock);
1273 mutex_unlock(&as->lock);
1274 return ENOTSUP;
1276 mutex_unlock(&area->sh_info->lock);
1279 * Compute total number of used pages in the used_space B+tree
1281 size_t used_pages = 0;
1283 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1284 node) {
1285 btree_key_t i;
1287 for (i = 0; i < node->keys; i++)
1288 used_pages += (size_t) node->value[i];
1291 /* An array for storing frame numbers */
1292 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
1294 page_table_lock(as, false);
1297 * Start TLB shootdown sequence.
1299 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1300 area->pages);
1303 * Remove used pages from page tables and remember their frame
1304 * numbers.
1306 size_t frame_idx = 0;
1308 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1309 node) {
1310 btree_key_t i;
1312 for (i = 0; i < node->keys; i++) {
1313 uintptr_t ptr = node->key[i];
1314 size_t size;
1316 for (size = 0; size < (size_t) node->value[i]; size++) {
1317 pte_t *pte = page_mapping_find(as,
1318 ptr + P2SZ(size), false);
1320 ASSERT(pte);
1321 ASSERT(PTE_VALID(pte));
1322 ASSERT(PTE_PRESENT(pte));
1324 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
1326 /* Remove old mapping */
1327 page_mapping_remove(as, ptr + P2SZ(size));
1333 * Finish TLB shootdown sequence.
1336 tlb_invalidate_pages(as->asid, area->base, area->pages);
1339 * Invalidate potential software translation caches
1340 * (e.g. TSB on sparc64, PHT on ppc32).
1342 as_invalidate_translation_cache(as, area->base, area->pages);
1343 tlb_shootdown_finalize(ipl);
1345 page_table_unlock(as, false);
1348 * Set the new flags.
1350 area->flags = flags;
1353 * Map pages back in with new flags. This step is kept separate
1354 * so that the memory area could not be accesed with both the old and
1355 * the new flags at once.
1357 frame_idx = 0;
1359 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1360 node) {
1361 btree_key_t i;
1363 for (i = 0; i < node->keys; i++) {
1364 uintptr_t ptr = node->key[i];
1365 size_t size;
1367 for (size = 0; size < (size_t) node->value[i]; size++) {
1368 page_table_lock(as, false);
1370 /* Insert the new mapping */
1371 page_mapping_insert(as, ptr + P2SZ(size),
1372 old_frame[frame_idx++], page_flags);
1374 page_table_unlock(as, false);
1379 free(old_frame);
1381 mutex_unlock(&area->lock);
1382 mutex_unlock(&as->lock);
1384 return 0;
1387 /** Handle page fault within the current address space.
1389 * This is the high-level page fault handler. It decides whether the page fault
1390 * can be resolved by any backend and if so, it invokes the backend to resolve
1391 * the page fault.
1393 * Interrupts are assumed disabled.
1395 * @param address Faulting address.
1396 * @param access Access mode that caused the page fault (i.e.
1397 * read/write/exec).
1398 * @param istate Pointer to the interrupted state.
1400 * @return AS_PF_FAULT on page fault.
1401 * @return AS_PF_OK on success.
1402 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1403 * or copy_from_uspace().
1406 int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1408 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1409 int rc = AS_PF_FAULT;
1411 if (!THREAD)
1412 goto page_fault;
1414 if (!AS)
1415 goto page_fault;
1417 mutex_lock(&AS->lock);
1418 as_area_t *area = find_area_and_lock(AS, page);
1419 if (!area) {
1421 * No area contained mapping for 'page'.
1422 * Signal page fault to low-level handler.
1424 mutex_unlock(&AS->lock);
1425 goto page_fault;
1428 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1430 * The address space area is not fully initialized.
1431 * Avoid possible race by returning error.
1433 mutex_unlock(&area->lock);
1434 mutex_unlock(&AS->lock);
1435 goto page_fault;
1438 if ((!area->backend) || (!area->backend->page_fault)) {
1440 * The address space area is not backed by any backend
1441 * or the backend cannot handle page faults.
1443 mutex_unlock(&area->lock);
1444 mutex_unlock(&AS->lock);
1445 goto page_fault;
1448 page_table_lock(AS, false);
1451 * To avoid race condition between two page faults on the same address,
1452 * we need to make sure the mapping has not been already inserted.
1454 pte_t *pte;
1455 if ((pte = page_mapping_find(AS, page, false))) {
1456 if (PTE_PRESENT(pte)) {
1457 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
1458 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
1459 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1460 page_table_unlock(AS, false);
1461 mutex_unlock(&area->lock);
1462 mutex_unlock(&AS->lock);
1463 return AS_PF_OK;
1469 * Resort to the backend page fault handler.
1471 rc = area->backend->page_fault(area, page, access);
1472 if (rc != AS_PF_OK) {
1473 page_table_unlock(AS, false);
1474 mutex_unlock(&area->lock);
1475 mutex_unlock(&AS->lock);
1476 goto page_fault;
1479 page_table_unlock(AS, false);
1480 mutex_unlock(&area->lock);
1481 mutex_unlock(&AS->lock);
1482 return AS_PF_OK;
1484 page_fault:
1485 if (THREAD->in_copy_from_uspace) {
1486 THREAD->in_copy_from_uspace = false;
1487 istate_set_retaddr(istate,
1488 (uintptr_t) &memcpy_from_uspace_failover_address);
1489 } else if (THREAD->in_copy_to_uspace) {
1490 THREAD->in_copy_to_uspace = false;
1491 istate_set_retaddr(istate,
1492 (uintptr_t) &memcpy_to_uspace_failover_address);
1493 } else if (rc == AS_PF_SILENT) {
1494 printf("Killing task %" PRIu64 " due to a "
1495 "failed late reservation request.\n", TASK->taskid);
1496 task_kill_self(true);
1497 } else {
1498 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1499 panic_memtrap(istate, access, address, NULL);
1502 return AS_PF_DEFER;
1505 /** Switch address spaces.
1507 * Note that this function cannot sleep as it is essentially a part of
1508 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1509 * thing which is forbidden in this context is locking the address space.
1511 * When this function is entered, no spinlocks may be held.
1513 * @param old Old address space or NULL.
1514 * @param new New address space.
1517 void as_switch(as_t *old_as, as_t *new_as)
1519 DEADLOCK_PROBE_INIT(p_asidlock);
1520 preemption_disable();
1522 retry:
1523 (void) interrupts_disable();
1524 if (!spinlock_trylock(&asidlock)) {
1526 * Avoid deadlock with TLB shootdown.
1527 * We can enable interrupts here because
1528 * preemption is disabled. We should not be
1529 * holding any other lock.
1531 (void) interrupts_enable();
1532 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1533 goto retry;
1535 preemption_enable();
1538 * First, take care of the old address space.
1540 if (old_as) {
1541 ASSERT(old_as->cpu_refcount);
1543 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1545 * The old address space is no longer active on
1546 * any processor. It can be appended to the
1547 * list of inactive address spaces with assigned
1548 * ASID.
1550 ASSERT(old_as->asid != ASID_INVALID);
1552 list_append(&old_as->inactive_as_with_asid_link,
1553 &inactive_as_with_asid_list);
1557 * Perform architecture-specific tasks when the address space
1558 * is being removed from the CPU.
1560 as_deinstall_arch(old_as);
1564 * Second, prepare the new address space.
1566 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1567 if (new_as->asid != ASID_INVALID)
1568 list_remove(&new_as->inactive_as_with_asid_link);
1569 else
1570 new_as->asid = asid_get();
1573 #ifdef AS_PAGE_TABLE
1574 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1575 #endif
1578 * Perform architecture-specific steps.
1579 * (e.g. write ASID to hardware register etc.)
1581 as_install_arch(new_as);
1583 spinlock_unlock(&asidlock);
1585 AS = new_as;
1588 /** Compute flags for virtual address translation subsytem.
1590 * @param area Address space area.
1592 * @return Flags to be used in page_mapping_insert().
1595 NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1597 ASSERT(mutex_locked(&area->lock));
1599 return area_flags_to_page_flags(area->flags);
1602 /** Create page table.
1604 * Depending on architecture, create either address space private or global page
1605 * table.
1607 * @param flags Flags saying whether the page table is for the kernel
1608 * address space.
1610 * @return First entry of the page table.
1613 NO_TRACE pte_t *page_table_create(unsigned int flags)
1615 ASSERT(as_operations);
1616 ASSERT(as_operations->page_table_create);
1618 return as_operations->page_table_create(flags);
1621 /** Destroy page table.
1623 * Destroy page table in architecture specific way.
1625 * @param page_table Physical address of PTL0.
1628 NO_TRACE void page_table_destroy(pte_t *page_table)
1630 ASSERT(as_operations);
1631 ASSERT(as_operations->page_table_destroy);
1633 as_operations->page_table_destroy(page_table);
1636 /** Lock page table.
1638 * This function should be called before any page_mapping_insert(),
1639 * page_mapping_remove() and page_mapping_find().
1641 * Locking order is such that address space areas must be locked
1642 * prior to this call. Address space can be locked prior to this
1643 * call in which case the lock argument is false.
1645 * @param as Address space.
1646 * @param lock If false, do not attempt to lock as->lock.
1649 NO_TRACE void page_table_lock(as_t *as, bool lock)
1651 ASSERT(as_operations);
1652 ASSERT(as_operations->page_table_lock);
1654 as_operations->page_table_lock(as, lock);
1657 /** Unlock page table.
1659 * @param as Address space.
1660 * @param unlock If false, do not attempt to unlock as->lock.
1663 NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1665 ASSERT(as_operations);
1666 ASSERT(as_operations->page_table_unlock);
1668 as_operations->page_table_unlock(as, unlock);
1671 /** Test whether page tables are locked.
1673 * @param as Address space where the page tables belong.
1675 * @return True if the page tables belonging to the address soace
1676 * are locked, otherwise false.
1678 NO_TRACE bool page_table_locked(as_t *as)
1680 ASSERT(as_operations);
1681 ASSERT(as_operations->page_table_locked);
1683 return as_operations->page_table_locked(as);
1686 /** Return size of the address space area with given base.
1688 * @param base Arbitrary address inside the address space area.
1690 * @return Size of the address space area in bytes or zero if it
1691 * does not exist.
1694 size_t as_area_get_size(uintptr_t base)
1696 size_t size;
1698 page_table_lock(AS, true);
1699 as_area_t *src_area = find_area_and_lock(AS, base);
1701 if (src_area) {
1702 size = P2SZ(src_area->pages);
1703 mutex_unlock(&src_area->lock);
1704 } else
1705 size = 0;
1707 page_table_unlock(AS, true);
1708 return size;
1711 /** Mark portion of address space area as used.
1713 * The address space area must be already locked.
1715 * @param area Address space area.
1716 * @param page First page to be marked.
1717 * @param count Number of page to be marked.
1719 * @return False on failure or true on success.
1722 bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1724 ASSERT(mutex_locked(&area->lock));
1725 ASSERT(IS_ALIGNED(page, PAGE_SIZE));
1726 ASSERT(count);
1728 btree_node_t *leaf = NULL;
1729 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1730 if (pages) {
1732 * We hit the beginning of some used space.
1734 return false;
1737 ASSERT(leaf != NULL);
1739 if (!leaf->keys) {
1740 btree_insert(&area->used_space, page, (void *) count, leaf);
1741 goto success;
1744 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1745 if (node) {
1746 uintptr_t left_pg = node->key[node->keys - 1];
1747 uintptr_t right_pg = leaf->key[0];
1748 size_t left_cnt = (size_t) node->value[node->keys - 1];
1749 size_t right_cnt = (size_t) leaf->value[0];
1752 * Examine the possibility that the interval fits
1753 * somewhere between the rightmost interval of
1754 * the left neigbour and the first interval of the leaf.
1757 if (page >= right_pg) {
1758 /* Do nothing. */
1759 } else if (overlaps(page, P2SZ(count), left_pg,
1760 P2SZ(left_cnt))) {
1761 /* The interval intersects with the left interval. */
1762 return false;
1763 } else if (overlaps(page, P2SZ(count), right_pg,
1764 P2SZ(right_cnt))) {
1765 /* The interval intersects with the right interval. */
1766 return false;
1767 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1768 (page + P2SZ(count) == right_pg)) {
1770 * The interval can be added by merging the two already
1771 * present intervals.
1773 node->value[node->keys - 1] += count + right_cnt;
1774 btree_remove(&area->used_space, right_pg, leaf);
1775 goto success;
1776 } else if (page == left_pg + P2SZ(left_cnt)) {
1778 * The interval can be added by simply growing the left
1779 * interval.
1781 node->value[node->keys - 1] += count;
1782 goto success;
1783 } else if (page + P2SZ(count) == right_pg) {
1785 * The interval can be addded by simply moving base of
1786 * the right interval down and increasing its size
1787 * accordingly.
1789 leaf->value[0] += count;
1790 leaf->key[0] = page;
1791 goto success;
1792 } else {
1794 * The interval is between both neigbouring intervals,
1795 * but cannot be merged with any of them.
1797 btree_insert(&area->used_space, page, (void *) count,
1798 leaf);
1799 goto success;
1801 } else if (page < leaf->key[0]) {
1802 uintptr_t right_pg = leaf->key[0];
1803 size_t right_cnt = (size_t) leaf->value[0];
1806 * Investigate the border case in which the left neighbour does
1807 * not exist but the interval fits from the left.
1810 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1811 /* The interval intersects with the right interval. */
1812 return false;
1813 } else if (page + P2SZ(count) == right_pg) {
1815 * The interval can be added by moving the base of the
1816 * right interval down and increasing its size
1817 * accordingly.
1819 leaf->key[0] = page;
1820 leaf->value[0] += count;
1821 goto success;
1822 } else {
1824 * The interval doesn't adjoin with the right interval.
1825 * It must be added individually.
1827 btree_insert(&area->used_space, page, (void *) count,
1828 leaf);
1829 goto success;
1833 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1834 if (node) {
1835 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1836 uintptr_t right_pg = node->key[0];
1837 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1838 size_t right_cnt = (size_t) node->value[0];
1841 * Examine the possibility that the interval fits
1842 * somewhere between the leftmost interval of
1843 * the right neigbour and the last interval of the leaf.
1846 if (page < left_pg) {
1847 /* Do nothing. */
1848 } else if (overlaps(page, P2SZ(count), left_pg,
1849 P2SZ(left_cnt))) {
1850 /* The interval intersects with the left interval. */
1851 return false;
1852 } else if (overlaps(page, P2SZ(count), right_pg,
1853 P2SZ(right_cnt))) {
1854 /* The interval intersects with the right interval. */
1855 return false;
1856 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1857 (page + P2SZ(count) == right_pg)) {
1859 * The interval can be added by merging the two already
1860 * present intervals.
1862 leaf->value[leaf->keys - 1] += count + right_cnt;
1863 btree_remove(&area->used_space, right_pg, node);
1864 goto success;
1865 } else if (page == left_pg + P2SZ(left_cnt)) {
1867 * The interval can be added by simply growing the left
1868 * interval.
1870 leaf->value[leaf->keys - 1] += count;
1871 goto success;
1872 } else if (page + P2SZ(count) == right_pg) {
1874 * The interval can be addded by simply moving base of
1875 * the right interval down and increasing its size
1876 * accordingly.
1878 node->value[0] += count;
1879 node->key[0] = page;
1880 goto success;
1881 } else {
1883 * The interval is between both neigbouring intervals,
1884 * but cannot be merged with any of them.
1886 btree_insert(&area->used_space, page, (void *) count,
1887 leaf);
1888 goto success;
1890 } else if (page >= leaf->key[leaf->keys - 1]) {
1891 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1892 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1895 * Investigate the border case in which the right neighbour
1896 * does not exist but the interval fits from the right.
1899 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1900 /* The interval intersects with the left interval. */
1901 return false;
1902 } else if (left_pg + P2SZ(left_cnt) == page) {
1904 * The interval can be added by growing the left
1905 * interval.
1907 leaf->value[leaf->keys - 1] += count;
1908 goto success;
1909 } else {
1911 * The interval doesn't adjoin with the left interval.
1912 * It must be added individually.
1914 btree_insert(&area->used_space, page, (void *) count,
1915 leaf);
1916 goto success;
1921 * Note that if the algorithm made it thus far, the interval can fit
1922 * only between two other intervals of the leaf. The two border cases
1923 * were already resolved.
1925 btree_key_t i;
1926 for (i = 1; i < leaf->keys; i++) {
1927 if (page < leaf->key[i]) {
1928 uintptr_t left_pg = leaf->key[i - 1];
1929 uintptr_t right_pg = leaf->key[i];
1930 size_t left_cnt = (size_t) leaf->value[i - 1];
1931 size_t right_cnt = (size_t) leaf->value[i];
1934 * The interval fits between left_pg and right_pg.
1937 if (overlaps(page, P2SZ(count), left_pg,
1938 P2SZ(left_cnt))) {
1940 * The interval intersects with the left
1941 * interval.
1943 return false;
1944 } else if (overlaps(page, P2SZ(count), right_pg,
1945 P2SZ(right_cnt))) {
1947 * The interval intersects with the right
1948 * interval.
1950 return false;
1951 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1952 (page + P2SZ(count) == right_pg)) {
1954 * The interval can be added by merging the two
1955 * already present intervals.
1957 leaf->value[i - 1] += count + right_cnt;
1958 btree_remove(&area->used_space, right_pg, leaf);
1959 goto success;
1960 } else if (page == left_pg + P2SZ(left_cnt)) {
1962 * The interval can be added by simply growing
1963 * the left interval.
1965 leaf->value[i - 1] += count;
1966 goto success;
1967 } else if (page + P2SZ(count) == right_pg) {
1969 * The interval can be addded by simply moving
1970 * base of the right interval down and
1971 * increasing its size accordingly.
1973 leaf->value[i] += count;
1974 leaf->key[i] = page;
1975 goto success;
1976 } else {
1978 * The interval is between both neigbouring
1979 * intervals, but cannot be merged with any of
1980 * them.
1982 btree_insert(&area->used_space, page,
1983 (void *) count, leaf);
1984 goto success;
1989 panic("Inconsistency detected while adding %zu pages of used "
1990 "space at %p.", count, (void *) page);
1992 success:
1993 area->resident += count;
1994 return true;
1997 /** Mark portion of address space area as unused.
1999 * The address space area must be already locked.
2001 * @param area Address space area.
2002 * @param page First page to be marked.
2003 * @param count Number of page to be marked.
2005 * @return False on failure or true on success.
2008 bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
2010 ASSERT(mutex_locked(&area->lock));
2011 ASSERT(IS_ALIGNED(page, PAGE_SIZE));
2012 ASSERT(count);
2014 btree_node_t *leaf;
2015 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
2016 if (pages) {
2018 * We are lucky, page is the beginning of some interval.
2020 if (count > pages) {
2021 return false;
2022 } else if (count == pages) {
2023 btree_remove(&area->used_space, page, leaf);
2024 goto success;
2025 } else {
2027 * Find the respective interval.
2028 * Decrease its size and relocate its start address.
2030 btree_key_t i;
2031 for (i = 0; i < leaf->keys; i++) {
2032 if (leaf->key[i] == page) {
2033 leaf->key[i] += P2SZ(count);
2034 leaf->value[i] -= count;
2035 goto success;
2039 goto error;
2043 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
2044 leaf);
2045 if ((node) && (page < leaf->key[0])) {
2046 uintptr_t left_pg = node->key[node->keys - 1];
2047 size_t left_cnt = (size_t) node->value[node->keys - 1];
2049 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2050 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2052 * The interval is contained in the rightmost
2053 * interval of the left neighbour and can be
2054 * removed by updating the size of the bigger
2055 * interval.
2057 node->value[node->keys - 1] -= count;
2058 goto success;
2059 } else if (page + P2SZ(count) <
2060 left_pg + P2SZ(left_cnt)) {
2061 size_t new_cnt;
2064 * The interval is contained in the rightmost
2065 * interval of the left neighbour but its
2066 * removal requires both updating the size of
2067 * the original interval and also inserting a
2068 * new interval.
2070 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2071 (page + P2SZ(count))) >> PAGE_WIDTH;
2072 node->value[node->keys - 1] -= count + new_cnt;
2073 btree_insert(&area->used_space, page +
2074 P2SZ(count), (void *) new_cnt, leaf);
2075 goto success;
2079 return false;
2080 } else if (page < leaf->key[0])
2081 return false;
2083 if (page > leaf->key[leaf->keys - 1]) {
2084 uintptr_t left_pg = leaf->key[leaf->keys - 1];
2085 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
2087 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2088 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2090 * The interval is contained in the rightmost
2091 * interval of the leaf and can be removed by
2092 * updating the size of the bigger interval.
2094 leaf->value[leaf->keys - 1] -= count;
2095 goto success;
2096 } else if (page + P2SZ(count) < left_pg +
2097 P2SZ(left_cnt)) {
2098 size_t new_cnt;
2101 * The interval is contained in the rightmost
2102 * interval of the leaf but its removal
2103 * requires both updating the size of the
2104 * original interval and also inserting a new
2105 * interval.
2107 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2108 (page + P2SZ(count))) >> PAGE_WIDTH;
2109 leaf->value[leaf->keys - 1] -= count + new_cnt;
2110 btree_insert(&area->used_space, page +
2111 P2SZ(count), (void *) new_cnt, leaf);
2112 goto success;
2116 return false;
2120 * The border cases have been already resolved.
2121 * Now the interval can be only between intervals of the leaf.
2123 btree_key_t i;
2124 for (i = 1; i < leaf->keys - 1; i++) {
2125 if (page < leaf->key[i]) {
2126 uintptr_t left_pg = leaf->key[i - 1];
2127 size_t left_cnt = (size_t) leaf->value[i - 1];
2130 * Now the interval is between intervals corresponding
2131 * to (i - 1) and i.
2133 if (overlaps(left_pg, P2SZ(left_cnt), page,
2134 P2SZ(count))) {
2135 if (page + P2SZ(count) ==
2136 left_pg + P2SZ(left_cnt)) {
2138 * The interval is contained in the
2139 * interval (i - 1) of the leaf and can
2140 * be removed by updating the size of
2141 * the bigger interval.
2143 leaf->value[i - 1] -= count;
2144 goto success;
2145 } else if (page + P2SZ(count) <
2146 left_pg + P2SZ(left_cnt)) {
2147 size_t new_cnt;
2150 * The interval is contained in the
2151 * interval (i - 1) of the leaf but its
2152 * removal requires both updating the
2153 * size of the original interval and
2154 * also inserting a new interval.
2156 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2157 (page + P2SZ(count))) >>
2158 PAGE_WIDTH;
2159 leaf->value[i - 1] -= count + new_cnt;
2160 btree_insert(&area->used_space, page +
2161 P2SZ(count), (void *) new_cnt,
2162 leaf);
2163 goto success;
2167 return false;
2171 error:
2172 panic("Inconsistency detected while removing %zu pages of used "
2173 "space from %p.", count, (void *) page);
2175 success:
2176 area->resident -= count;
2177 return true;
2181 * Address space related syscalls.
2184 sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2185 uintptr_t bound, int pager)
2187 uintptr_t virt = base;
2188 mem_backend_t *backend;
2189 mem_backend_data_t backend_data;
2191 if (pager == AS_AREA_UNPAGED)
2192 backend = &anon_backend;
2193 else {
2194 backend = &user_backend;
2195 backend_data.pager = pager;
2197 as_area_t *area = as_area_create(AS, flags, size,
2198 AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
2199 if (area == NULL)
2200 return (sysarg_t) AS_MAP_FAILED;
2202 return (sysarg_t) virt;
2205 sysarg_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2207 return (sysarg_t) as_area_resize(AS, address, size, 0);
2210 sysarg_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2212 return (sysarg_t) as_area_change_flags(AS, flags, address);
2215 sysarg_t sys_as_area_destroy(uintptr_t address)
2217 return (sysarg_t) as_area_destroy(AS, address);
2220 /** Get list of adress space areas.
2222 * @param as Address space.
2223 * @param obuf Place to save pointer to returned buffer.
2224 * @param osize Place to save size of returned buffer.
2227 void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2229 mutex_lock(&as->lock);
2231 /* First pass, count number of areas. */
2233 size_t area_cnt = 0;
2235 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2236 node) {
2237 area_cnt += node->keys;
2240 size_t isize = area_cnt * sizeof(as_area_info_t);
2241 as_area_info_t *info = malloc(isize, 0);
2243 /* Second pass, record data. */
2245 size_t area_idx = 0;
2247 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2248 node) {
2249 btree_key_t i;
2251 for (i = 0; i < node->keys; i++) {
2252 as_area_t *area = node->value[i];
2254 ASSERT(area_idx < area_cnt);
2255 mutex_lock(&area->lock);
2257 info[area_idx].start_addr = area->base;
2258 info[area_idx].size = P2SZ(area->pages);
2259 info[area_idx].flags = area->flags;
2260 ++area_idx;
2262 mutex_unlock(&area->lock);
2266 mutex_unlock(&as->lock);
2268 *obuf = info;
2269 *osize = isize;
2272 /** Print out information about address space.
2274 * @param as Address space.
2277 void as_print(as_t *as)
2279 mutex_lock(&as->lock);
2281 /* Print out info about address space areas */
2282 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2283 node) {
2284 btree_key_t i;
2286 for (i = 0; i < node->keys; i++) {
2287 as_area_t *area = node->value[i];
2289 mutex_lock(&area->lock);
2290 printf("as_area: %p, base=%p, pages=%zu"
2291 " (%p - %p)\n", area, (void *) area->base,
2292 area->pages, (void *) area->base,
2293 (void *) (area->base + P2SZ(area->pages)));
2294 mutex_unlock(&area->lock);
2298 mutex_unlock(&as->lock);
2301 /** @}