Replace _Noreturn with C++-friendly __noreturn. Remove unnecessary _Atomic.
[helenos.git] / uspace / lib / c / generic / async / server.c
blobf675f5db2b9d8201ef8e4ff1a455897853b9acc4
1 /*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 /** @addtogroup libc
30 * @{
32 /** @file
35 /**
36 * Asynchronous library
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
46 * Example of use (pseudo C):
48 * 1) Multithreaded client application
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
72 * 2) Multithreaded server application
74 * main()
75 * {
76 * async_manager();
77 * }
79 * port_handler(ichandle, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(ichandle, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(ichandle, EOK);
87 * chandle = async_get_call(&call);
88 * somehow_handle_the_call(chandle, call);
89 * async_answer_2(chandle, 1, 2, 3);
91 * chandle = async_get_call(&call);
92 * ...
93 * }
97 #define LIBC_ASYNC_C_
98 #include <ipc/ipc.h>
99 #include <async.h>
100 #include "../private/async.h"
101 #undef LIBC_ASYNC_C_
103 #include <ipc/irq.h>
104 #include <ipc/event.h>
105 #include <futex.h>
106 #include <fibril.h>
107 #include <adt/hash_table.h>
108 #include <adt/hash.h>
109 #include <adt/list.h>
110 #include <assert.h>
111 #include <errno.h>
112 #include <sys/time.h>
113 #include <libarch/barrier.h>
114 #include <stdbool.h>
115 #include <stdlib.h>
116 #include <mem.h>
117 #include <stdlib.h>
118 #include <macros.h>
119 #include <as.h>
120 #include <abi/mm/as.h>
121 #include "../private/libc.h"
122 #include "../private/fibril.h"
124 /** Async framework global futex */
125 futex_t async_futex = FUTEX_INITIALIZER;
127 /** Number of threads waiting for IPC in the kernel. */
128 static atomic_t threads_in_ipc_wait = { 0 };
130 /** Call data */
131 typedef struct {
132 link_t link;
134 cap_call_handle_t chandle;
135 ipc_call_t call;
136 } msg_t;
138 /* Client connection data */
139 typedef struct {
140 ht_link_t link;
142 task_id_t in_task_id;
143 atomic_t refcnt;
144 void *data;
145 } client_t;
147 /* Server connection data */
148 typedef struct {
149 awaiter_t wdata;
151 /** Hash table link. */
152 ht_link_t link;
154 /** Incoming client task ID. */
155 task_id_t in_task_id;
157 /** Incoming phone hash. */
158 sysarg_t in_phone_hash;
160 /** Link to the client tracking structure. */
161 client_t *client;
163 /** Messages that should be delivered to this fibril. */
164 list_t msg_queue;
166 /** Identification of the opening call. */
167 cap_call_handle_t chandle;
169 /** Call data of the opening call. */
170 ipc_call_t call;
172 /** Identification of the closing call. */
173 cap_call_handle_t close_chandle;
175 /** Fibril function that will be used to handle the connection. */
176 async_port_handler_t handler;
178 /** Client data */
179 void *data;
180 } connection_t;
182 /* Notification data */
183 typedef struct {
184 /** notification_hash_table link */
185 ht_link_t htlink;
187 /** notification_queue link */
188 link_t qlink;
190 /** Notification method */
191 sysarg_t imethod;
193 /** Notification handler */
194 async_notification_handler_t handler;
196 /** Notification handler argument */
197 void *arg;
199 /** Data of the most recent notification. */
200 ipc_call_t calldata;
203 * How many notifications with this `imethod` arrived since it was last
204 * handled. If `count` > 1, `calldata` only holds the data for the most
205 * recent such notification, all the older data being lost.
207 * `async_spawn_notification_handler()` can be used to increase the
208 * number of notifications that can be processed simultaneously,
209 * reducing the likelihood of losing them when the handler blocks.
211 long count;
212 } notification_t;
214 /** Identifier of the incoming connection handled by the current fibril. */
215 static fibril_local connection_t *fibril_connection;
217 static void *default_client_data_constructor(void)
219 return NULL;
222 static void default_client_data_destructor(void *data)
226 static async_client_data_ctor_t async_client_data_create =
227 default_client_data_constructor;
228 static async_client_data_dtor_t async_client_data_destroy =
229 default_client_data_destructor;
231 void async_set_client_data_constructor(async_client_data_ctor_t ctor)
233 assert(async_client_data_create == default_client_data_constructor);
234 async_client_data_create = ctor;
237 void async_set_client_data_destructor(async_client_data_dtor_t dtor)
239 assert(async_client_data_destroy == default_client_data_destructor);
240 async_client_data_destroy = dtor;
243 static futex_t client_futex = FUTEX_INITIALIZER;
244 static hash_table_t client_hash_table;
246 // TODO: lockfree notification_queue?
247 static futex_t notification_futex = FUTEX_INITIALIZER;
248 static hash_table_t notification_hash_table;
249 static LIST_INITIALIZE(notification_queue);
250 static FIBRIL_SEMAPHORE_INITIALIZE(notification_semaphore, 0);
252 static sysarg_t notification_avail = 0;
254 /* The remaining structures are guarded by async_futex. */
255 static hash_table_t conn_hash_table;
256 static LIST_INITIALIZE(timeout_list);
258 static size_t client_key_hash(void *key)
260 task_id_t in_task_id = *(task_id_t *) key;
261 return in_task_id;
264 static size_t client_hash(const ht_link_t *item)
266 client_t *client = hash_table_get_inst(item, client_t, link);
267 return client_key_hash(&client->in_task_id);
270 static bool client_key_equal(void *key, const ht_link_t *item)
272 task_id_t in_task_id = *(task_id_t *) key;
273 client_t *client = hash_table_get_inst(item, client_t, link);
274 return in_task_id == client->in_task_id;
277 /** Operations for the client hash table. */
278 static hash_table_ops_t client_hash_table_ops = {
279 .hash = client_hash,
280 .key_hash = client_key_hash,
281 .key_equal = client_key_equal,
282 .equal = NULL,
283 .remove_callback = NULL
286 typedef struct {
287 task_id_t task_id;
288 sysarg_t phone_hash;
289 } conn_key_t;
291 /** Compute hash into the connection hash table
293 * The hash is based on the source task ID and the source phone hash. The task
294 * ID is included in the hash because a phone hash alone might not be unique
295 * while we still track connections for killed tasks due to kernel's recycling
296 * of phone structures.
298 * @param key Pointer to the connection key structure.
300 * @return Index into the connection hash table.
303 static size_t conn_key_hash(void *key)
305 conn_key_t *ck = (conn_key_t *) key;
307 size_t hash = 0;
308 hash = hash_combine(hash, LOWER32(ck->task_id));
309 hash = hash_combine(hash, UPPER32(ck->task_id));
310 hash = hash_combine(hash, ck->phone_hash);
311 return hash;
314 static size_t conn_hash(const ht_link_t *item)
316 connection_t *conn = hash_table_get_inst(item, connection_t, link);
317 return conn_key_hash(&(conn_key_t){
318 .task_id = conn->in_task_id,
319 .phone_hash = conn->in_phone_hash
323 static bool conn_key_equal(void *key, const ht_link_t *item)
325 conn_key_t *ck = (conn_key_t *) key;
326 connection_t *conn = hash_table_get_inst(item, connection_t, link);
327 return ((ck->task_id == conn->in_task_id) &&
328 (ck->phone_hash == conn->in_phone_hash));
331 /** Operations for the connection hash table. */
332 static hash_table_ops_t conn_hash_table_ops = {
333 .hash = conn_hash,
334 .key_hash = conn_key_hash,
335 .key_equal = conn_key_equal,
336 .equal = NULL,
337 .remove_callback = NULL
340 static client_t *async_client_get(task_id_t client_id, bool create)
342 client_t *client = NULL;
344 futex_lock(&client_futex);
345 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
346 if (link) {
347 client = hash_table_get_inst(link, client_t, link);
348 atomic_inc(&client->refcnt);
349 } else if (create) {
350 // TODO: move the malloc out of critical section
351 client = malloc(sizeof(client_t));
352 if (client) {
353 client->in_task_id = client_id;
354 client->data = async_client_data_create();
356 atomic_set(&client->refcnt, 1);
357 hash_table_insert(&client_hash_table, &client->link);
361 futex_unlock(&client_futex);
362 return client;
365 static void async_client_put(client_t *client)
367 bool destroy;
369 futex_lock(&client_futex);
371 if (atomic_predec(&client->refcnt) == 0) {
372 hash_table_remove(&client_hash_table, &client->in_task_id);
373 destroy = true;
374 } else
375 destroy = false;
377 futex_unlock(&client_futex);
379 if (destroy) {
380 if (client->data)
381 async_client_data_destroy(client->data);
383 free(client);
387 /** Wrapper for client connection fibril.
389 * When a new connection arrives, a fibril with this implementing
390 * function is created.
392 * @param arg Connection structure pointer.
394 * @return Always zero.
397 static errno_t connection_fibril(void *arg)
399 assert(arg);
402 * Setup fibril-local connection pointer.
404 fibril_connection = (connection_t *) arg;
407 * Add our reference for the current connection in the client task
408 * tracking structure. If this is the first reference, create and
409 * hash in a new tracking structure.
412 client_t *client = async_client_get(fibril_connection->in_task_id, true);
413 if (!client) {
414 ipc_answer_0(fibril_connection->chandle, ENOMEM);
415 return 0;
418 fibril_connection->client = client;
421 * Call the connection handler function.
423 fibril_connection->handler(fibril_connection->chandle,
424 &fibril_connection->call, fibril_connection->data);
427 * Remove the reference for this client task connection.
429 async_client_put(client);
432 * Remove myself from the connection hash table.
434 futex_lock(&async_futex);
435 hash_table_remove(&conn_hash_table, &(conn_key_t){
436 .task_id = fibril_connection->in_task_id,
437 .phone_hash = fibril_connection->in_phone_hash
439 futex_unlock(&async_futex);
442 * Answer all remaining messages with EHANGUP.
444 while (!list_empty(&fibril_connection->msg_queue)) {
445 msg_t *msg =
446 list_get_instance(list_first(&fibril_connection->msg_queue),
447 msg_t, link);
449 list_remove(&msg->link);
450 ipc_answer_0(msg->chandle, EHANGUP);
451 free(msg);
455 * If the connection was hung-up, answer the last call,
456 * i.e. IPC_M_PHONE_HUNGUP.
458 if (fibril_connection->close_chandle)
459 ipc_answer_0(fibril_connection->close_chandle, EOK);
461 free(fibril_connection);
462 return EOK;
465 /** Create a new fibril for a new connection.
467 * Create new fibril for connection, fill in connection structures and insert it
468 * into the hash table, so that later we can easily do routing of messages to
469 * particular fibrils.
471 * @param in_task_id Identification of the incoming connection.
472 * @param in_phone_hash Identification of the incoming connection.
473 * @param chandle Handle of the opening IPC_M_CONNECT_ME_TO call.
474 * If chandle is CAP_NIL, the connection was opened by
475 * accepting the IPC_M_CONNECT_TO_ME call and this
476 * function is called directly by the server.
477 * @param call Call data of the opening call.
478 * @param handler Connection handler.
479 * @param data Client argument to pass to the connection handler.
481 * @return New fibril id or NULL on failure.
484 static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
485 cap_call_handle_t chandle, ipc_call_t *call, async_port_handler_t handler,
486 void *data)
488 connection_t *conn = malloc(sizeof(*conn));
489 if (!conn) {
490 if (chandle != CAP_NIL)
491 ipc_answer_0(chandle, ENOMEM);
493 return (uintptr_t) NULL;
496 conn->in_task_id = in_task_id;
497 conn->in_phone_hash = in_phone_hash;
498 list_initialize(&conn->msg_queue);
499 conn->chandle = chandle;
500 conn->close_chandle = CAP_NIL;
501 conn->handler = handler;
502 conn->data = data;
504 if (call)
505 conn->call = *call;
507 /* We will activate the fibril ASAP */
508 conn->wdata.active = true;
509 conn->wdata.fid = fibril_create(connection_fibril, conn);
511 if (conn->wdata.fid == 0) {
512 free(conn);
514 if (chandle != CAP_NIL)
515 ipc_answer_0(chandle, ENOMEM);
517 return (uintptr_t) NULL;
520 /* Add connection to the connection hash table */
522 futex_lock(&async_futex);
523 hash_table_insert(&conn_hash_table, &conn->link);
524 futex_unlock(&async_futex);
526 fibril_add_ready(conn->wdata.fid);
528 return conn->wdata.fid;
531 /** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
533 * Ask through phone for a new connection to some service.
535 * @param exch Exchange for sending the message.
536 * @param iface Callback interface.
537 * @param arg1 User defined argument.
538 * @param arg2 User defined argument.
539 * @param handler Callback handler.
540 * @param data Handler data.
541 * @param port_id ID of the newly created port.
543 * @return Zero on success or an error code.
546 errno_t async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
547 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
549 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
550 return EINVAL;
552 if (exch == NULL)
553 return ENOENT;
555 ipc_call_t answer;
556 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
557 &answer);
559 errno_t rc;
560 async_wait_for(req, &rc);
561 if (rc != EOK)
562 return rc;
564 rc = async_create_port_internal(iface, handler, data, port_id);
565 if (rc != EOK)
566 return rc;
568 sysarg_t phone_hash = IPC_GET_ARG5(answer);
569 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
570 CAP_NIL, NULL, handler, data);
571 if (fid == (uintptr_t) NULL)
572 return ENOMEM;
574 return EOK;
577 static size_t notification_key_hash(void *key)
579 sysarg_t id = *(sysarg_t *) key;
580 return id;
583 static size_t notification_hash(const ht_link_t *item)
585 notification_t *notification =
586 hash_table_get_inst(item, notification_t, htlink);
587 return notification_key_hash(&notification->imethod);
590 static bool notification_key_equal(void *key, const ht_link_t *item)
592 sysarg_t id = *(sysarg_t *) key;
593 notification_t *notification =
594 hash_table_get_inst(item, notification_t, htlink);
595 return id == notification->imethod;
598 /** Operations for the notification hash table. */
599 static hash_table_ops_t notification_hash_table_ops = {
600 .hash = notification_hash,
601 .key_hash = notification_key_hash,
602 .key_equal = notification_key_equal,
603 .equal = NULL,
604 .remove_callback = NULL
607 /** Sort in current fibril's timeout request.
609 * @param wd Wait data of the current fibril.
612 void async_insert_timeout(awaiter_t *wd)
614 assert(wd);
616 wd->to_event.occurred = false;
617 wd->to_event.inlist = true;
619 link_t *tmp = timeout_list.head.next;
620 while (tmp != &timeout_list.head) {
621 awaiter_t *cur =
622 list_get_instance(tmp, awaiter_t, to_event.link);
624 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
625 break;
627 tmp = tmp->next;
630 list_insert_before(&wd->to_event.link, tmp);
633 /** Try to route a call to an appropriate connection fibril.
635 * If the proper connection fibril is found, a message with the call is added to
636 * its message queue. If the fibril was not active, it is activated and all
637 * timeouts are unregistered.
639 * @param chandle Handle of the incoming call.
640 * @param call Data of the incoming call.
642 * @return False if the call doesn't match any connection.
643 * @return True if the call was passed to the respective connection fibril.
646 static bool route_call(cap_call_handle_t chandle, ipc_call_t *call)
648 assert(call);
650 futex_lock(&async_futex);
652 ht_link_t *link = hash_table_find(&conn_hash_table, &(conn_key_t){
653 .task_id = call->in_task_id,
654 .phone_hash = call->in_phone_hash
656 if (!link) {
657 futex_unlock(&async_futex);
658 return false;
661 connection_t *conn = hash_table_get_inst(link, connection_t, link);
663 msg_t *msg = malloc(sizeof(*msg));
664 if (!msg) {
665 futex_unlock(&async_futex);
666 return false;
669 msg->chandle = chandle;
670 msg->call = *call;
671 list_append(&msg->link, &conn->msg_queue);
673 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
674 conn->close_chandle = chandle;
676 /* If the connection fibril is waiting for an event, activate it */
677 if (!conn->wdata.active) {
679 /* If in timeout list, remove it */
680 if (conn->wdata.to_event.inlist) {
681 conn->wdata.to_event.inlist = false;
682 list_remove(&conn->wdata.to_event.link);
685 conn->wdata.active = true;
686 fibril_add_ready(conn->wdata.fid);
689 futex_unlock(&async_futex);
690 return true;
693 /** Function implementing the notification handler fibril. Never returns. */
694 static errno_t notification_fibril_func(void *arg)
696 (void) arg;
698 while (true) {
699 fibril_semaphore_down(&notification_semaphore);
701 futex_lock(&notification_futex);
704 * The semaphore ensures that if we get this far,
705 * the queue must be non-empty.
707 assert(!list_empty(&notification_queue));
709 notification_t *notification = list_get_instance(
710 list_first(&notification_queue), notification_t, qlink);
711 list_remove(&notification->qlink);
713 async_notification_handler_t handler = notification->handler;
714 void *arg = notification->arg;
715 ipc_call_t calldata = notification->calldata;
716 long count = notification->count;
718 notification->count = 0;
720 futex_unlock(&notification_futex);
722 // FIXME: Pass count to the handler. It might be important.
723 (void) count;
725 if (handler)
726 handler(&calldata, arg);
729 /* Not reached. */
730 return EOK;
734 * Creates a new dedicated fibril for handling notifications.
735 * By default, there is one such fibril. This function can be used to
736 * create more in order to increase the number of notification that can
737 * be processed concurrently.
739 * Currently, there is no way to destroy those fibrils after they are created.
741 errno_t async_spawn_notification_handler(void)
743 fid_t f = fibril_create(notification_fibril_func, NULL);
744 if (f == 0)
745 return ENOMEM;
747 fibril_add_ready(f);
748 return EOK;
751 /** Queue notification.
753 * @param call Data of the incoming call.
756 static void queue_notification(ipc_call_t *call)
758 assert(call);
760 futex_lock(&notification_futex);
762 ht_link_t *link = hash_table_find(&notification_hash_table,
763 &IPC_GET_IMETHOD(*call));
764 if (!link) {
765 /* Invalid notification. */
766 // TODO: Make sure this can't happen and turn it into assert.
767 futex_unlock(&notification_futex);
768 return;
771 notification_t *notification =
772 hash_table_get_inst(link, notification_t, htlink);
774 notification->count++;
775 notification->calldata = *call;
777 if (link_in_use(&notification->qlink)) {
778 /* Notification already queued. */
779 futex_unlock(&notification_futex);
780 return;
783 list_append(&notification->qlink, &notification_queue);
784 futex_unlock(&notification_futex);
786 fibril_semaphore_up(&notification_semaphore);
790 * Creates a new notification structure and inserts it into the hash table.
792 * @param handler Function to call when notification is received.
793 * @param arg Argument for the handler function.
794 * @return The newly created notification structure.
796 static notification_t *notification_create(async_notification_handler_t handler, void *arg)
798 notification_t *notification = calloc(1, sizeof(notification_t));
799 if (!notification)
800 return NULL;
802 notification->handler = handler;
803 notification->arg = arg;
805 fid_t fib = 0;
807 futex_lock(&notification_futex);
809 if (notification_avail == 0) {
810 /* Attempt to create the first handler fibril. */
811 fib = fibril_create(notification_fibril_func, NULL);
812 if (fib == 0) {
813 futex_unlock(&notification_futex);
814 free(notification);
815 return NULL;
819 sysarg_t imethod = notification_avail;
820 notification_avail++;
822 notification->imethod = imethod;
823 hash_table_insert(&notification_hash_table, &notification->htlink);
825 futex_unlock(&notification_futex);
827 if (imethod == 0) {
828 assert(fib);
829 fibril_add_ready(fib);
832 return notification;
835 /** Subscribe to IRQ notification.
837 * @param inr IRQ number.
838 * @param handler Notification handler.
839 * @param data Notification handler client data.
840 * @param ucode Top-half pseudocode handler.
842 * @param[out] handle IRQ capability handle on success.
844 * @return An error code.
847 errno_t async_irq_subscribe(int inr, async_notification_handler_t handler,
848 void *data, const irq_code_t *ucode, cap_irq_handle_t *handle)
850 notification_t *notification = notification_create(handler, data);
851 if (!notification)
852 return ENOMEM;
854 cap_irq_handle_t ihandle;
855 errno_t rc = ipc_irq_subscribe(inr, notification->imethod, ucode,
856 &ihandle);
857 if (rc == EOK && handle != NULL) {
858 *handle = ihandle;
860 return rc;
863 /** Unsubscribe from IRQ notification.
865 * @param handle IRQ capability handle.
867 * @return Zero on success or an error code.
870 errno_t async_irq_unsubscribe(cap_irq_handle_t ihandle)
872 // TODO: Remove entry from hash table
873 // to avoid memory leak
875 return ipc_irq_unsubscribe(ihandle);
878 /** Subscribe to event notifications.
880 * @param evno Event type to subscribe.
881 * @param handler Notification handler.
882 * @param data Notification handler client data.
884 * @return Zero on success or an error code.
887 errno_t async_event_subscribe(event_type_t evno,
888 async_notification_handler_t handler, void *data)
890 notification_t *notification = notification_create(handler, data);
891 if (!notification)
892 return ENOMEM;
894 return ipc_event_subscribe(evno, notification->imethod);
897 /** Subscribe to task event notifications.
899 * @param evno Event type to subscribe.
900 * @param handler Notification handler.
901 * @param data Notification handler client data.
903 * @return Zero on success or an error code.
906 errno_t async_event_task_subscribe(event_task_type_t evno,
907 async_notification_handler_t handler, void *data)
909 notification_t *notification = notification_create(handler, data);
910 if (!notification)
911 return ENOMEM;
913 return ipc_event_task_subscribe(evno, notification->imethod);
916 /** Unmask event notifications.
918 * @param evno Event type to unmask.
920 * @return Value returned by the kernel.
923 errno_t async_event_unmask(event_type_t evno)
925 return ipc_event_unmask(evno);
928 /** Unmask task event notifications.
930 * @param evno Event type to unmask.
932 * @return Value returned by the kernel.
935 errno_t async_event_task_unmask(event_task_type_t evno)
937 return ipc_event_task_unmask(evno);
940 /** Return new incoming message for the current (fibril-local) connection.
942 * @param call Storage where the incoming call data will be stored.
943 * @param usecs Timeout in microseconds. Zero denotes no timeout.
945 * @return If no timeout was specified, then a handle of the incoming call is
946 * returned. If a timeout is specified, then a handle of the incoming
947 * call is returned unless the timeout expires prior to receiving a
948 * message. In that case zero CAP_NIL is returned.
950 cap_call_handle_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
952 assert(call);
953 assert(fibril_connection);
956 * Why doing this?
957 * GCC 4.1.0 coughs on fibril_connection-> dereference.
958 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
959 * I would never expect to find so many errors in
960 * a compiler.
962 connection_t *conn = fibril_connection;
964 futex_lock(&async_futex);
966 if (usecs) {
967 getuptime(&conn->wdata.to_event.expires);
968 tv_add_diff(&conn->wdata.to_event.expires, usecs);
969 } else
970 conn->wdata.to_event.inlist = false;
972 /* If nothing in queue, wait until something arrives */
973 while (list_empty(&conn->msg_queue)) {
974 if (conn->close_chandle) {
976 * Handle the case when the connection was already
977 * closed by the client but the server did not notice
978 * the first IPC_M_PHONE_HUNGUP call and continues to
979 * call async_get_call_timeout(). Repeat
980 * IPC_M_PHONE_HUNGUP until the caller notices.
982 memset(call, 0, sizeof(ipc_call_t));
983 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
984 futex_unlock(&async_futex);
985 return conn->close_chandle;
988 if (usecs)
989 async_insert_timeout(&conn->wdata);
991 conn->wdata.active = false;
994 * Note: the current fibril will be rescheduled either due to a
995 * timeout or due to an arriving message destined to it. In the
996 * former case, handle_expired_timeouts() and, in the latter
997 * case, route_call() will perform the wakeup.
999 fibril_switch(FIBRIL_FROM_BLOCKED);
1001 if ((usecs) && (conn->wdata.to_event.occurred) &&
1002 (list_empty(&conn->msg_queue))) {
1003 /* If we timed out -> exit */
1004 futex_unlock(&async_futex);
1005 return CAP_NIL;
1009 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1010 msg_t, link);
1011 list_remove(&msg->link);
1013 cap_call_handle_t chandle = msg->chandle;
1014 *call = msg->call;
1015 free(msg);
1017 futex_unlock(&async_futex);
1018 return chandle;
1021 void *async_get_client_data(void)
1023 assert(fibril_connection);
1024 return fibril_connection->client->data;
1027 void *async_get_client_data_by_id(task_id_t client_id)
1029 client_t *client = async_client_get(client_id, false);
1030 if (!client)
1031 return NULL;
1033 if (!client->data) {
1034 async_client_put(client);
1035 return NULL;
1038 return client->data;
1041 void async_put_client_data_by_id(task_id_t client_id)
1043 client_t *client = async_client_get(client_id, false);
1045 assert(client);
1046 assert(client->data);
1048 /* Drop the reference we got in async_get_client_data_by_hash(). */
1049 async_client_put(client);
1051 /* Drop our own reference we got at the beginning of this function. */
1052 async_client_put(client);
1055 /** Handle a call that was received.
1057 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1058 * Otherwise the call is routed to its connection fibril.
1060 * @param chandle Handle of the incoming call.
1061 * @param call Data of the incoming call.
1064 static void handle_call(cap_call_handle_t chandle, ipc_call_t *call)
1066 assert(call);
1068 if (call->flags & IPC_CALL_ANSWERED)
1069 return;
1071 if (chandle == CAP_NIL) {
1072 if (call->flags & IPC_CALL_NOTIF) {
1073 /* Kernel notification */
1074 queue_notification(call);
1076 return;
1079 /* New connection */
1080 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1081 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1082 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1084 // TODO: Currently ignores all ports but the first one.
1085 void *data;
1086 async_port_handler_t handler =
1087 async_get_port_handler(iface, 0, &data);
1089 async_new_connection(call->in_task_id, in_phone_hash, chandle,
1090 call, handler, data);
1091 return;
1094 /* Try to route the call through the connection hash table */
1095 if (route_call(chandle, call))
1096 return;
1098 /* Unknown call from unknown phone - hang it up */
1099 ipc_answer_0(chandle, EHANGUP);
1102 /** Fire all timeouts that expired. */
1103 static suseconds_t handle_expired_timeouts(unsigned int *flags)
1105 /* Make sure the async_futex is held. */
1106 futex_assert_is_locked(&async_futex);
1108 struct timeval tv;
1109 getuptime(&tv);
1111 bool fired = false;
1113 link_t *cur = list_first(&timeout_list);
1114 while (cur != NULL) {
1115 awaiter_t *waiter =
1116 list_get_instance(cur, awaiter_t, to_event.link);
1118 if (tv_gt(&waiter->to_event.expires, &tv)) {
1119 if (fired) {
1120 *flags = SYNCH_FLAGS_NON_BLOCKING;
1121 return 0;
1123 *flags = 0;
1124 return tv_sub_diff(&waiter->to_event.expires, &tv);
1127 list_remove(&waiter->to_event.link);
1128 waiter->to_event.inlist = false;
1129 waiter->to_event.occurred = true;
1132 * Redundant condition?
1133 * The fibril should not be active when it gets here.
1135 if (!waiter->active) {
1136 waiter->active = true;
1137 fibril_add_ready(waiter->fid);
1138 fired = true;
1141 cur = list_first(&timeout_list);
1144 if (fired) {
1145 *flags = SYNCH_FLAGS_NON_BLOCKING;
1146 return 0;
1149 return SYNCH_NO_TIMEOUT;
1152 /** Endless loop dispatching incoming calls and answers.
1154 * @return Never returns.
1157 static errno_t async_manager_worker(void)
1159 while (true) {
1160 futex_lock(&async_futex);
1161 fibril_switch(FIBRIL_FROM_MANAGER);
1164 * The switch only returns when there is no non-manager fibril
1165 * it can run.
1168 unsigned int flags = SYNCH_FLAGS_NONE;
1169 suseconds_t next_timeout = handle_expired_timeouts(&flags);
1170 futex_unlock(&async_futex);
1172 atomic_inc(&threads_in_ipc_wait);
1174 ipc_call_t call;
1175 errno_t rc = ipc_wait_cycle(&call, next_timeout, flags);
1177 atomic_dec(&threads_in_ipc_wait);
1179 assert(rc == EOK);
1180 handle_call(call.cap_handle, &call);
1183 return 0;
1186 /** Function to start async_manager as a standalone fibril.
1188 * When more kernel threads are used, one async manager should exist per thread.
1190 * @param arg Unused.
1191 * @return Never returns.
1194 static errno_t async_manager_fibril(void *arg)
1196 async_manager_worker();
1197 return 0;
1200 /** Add one manager to manager list. */
1201 void async_create_manager(void)
1203 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1204 if (fid != 0)
1205 fibril_add_manager(fid);
1208 /** Remove one manager from manager list */
1209 void async_destroy_manager(void)
1211 fibril_remove_manager();
1214 /** Initialize the async framework.
1217 void __async_server_init(void)
1219 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1220 abort();
1222 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1223 abort();
1225 if (!hash_table_create(&notification_hash_table, 0, 0,
1226 &notification_hash_table_ops))
1227 abort();
1230 errno_t async_answer_0(cap_call_handle_t chandle, errno_t retval)
1232 return ipc_answer_0(chandle, retval);
1235 errno_t async_answer_1(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1)
1237 return ipc_answer_1(chandle, retval, arg1);
1240 errno_t async_answer_2(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1241 sysarg_t arg2)
1243 return ipc_answer_2(chandle, retval, arg1, arg2);
1246 errno_t async_answer_3(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1247 sysarg_t arg2, sysarg_t arg3)
1249 return ipc_answer_3(chandle, retval, arg1, arg2, arg3);
1252 errno_t async_answer_4(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1253 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1255 return ipc_answer_4(chandle, retval, arg1, arg2, arg3, arg4);
1258 errno_t async_answer_5(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1259 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1261 return ipc_answer_5(chandle, retval, arg1, arg2, arg3, arg4, arg5);
1264 errno_t async_forward_fast(cap_call_handle_t chandle, async_exch_t *exch,
1265 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1267 if (exch == NULL)
1268 return ENOENT;
1270 return ipc_forward_fast(chandle, exch->phone, imethod, arg1, arg2, mode);
1273 errno_t async_forward_slow(cap_call_handle_t chandle, async_exch_t *exch,
1274 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1275 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1277 if (exch == NULL)
1278 return ENOENT;
1280 return ipc_forward_slow(chandle, exch->phone, imethod, arg1, arg2, arg3,
1281 arg4, arg5, mode);
1284 /** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1286 * Ask through phone for a new connection to some service.
1288 * @param exch Exchange for sending the message.
1289 * @param arg1 User defined argument.
1290 * @param arg2 User defined argument.
1291 * @param arg3 User defined argument.
1293 * @return Zero on success or an error code.
1296 errno_t async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
1297 sysarg_t arg3)
1299 if (exch == NULL)
1300 return ENOENT;
1302 ipc_call_t answer;
1303 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
1304 &answer);
1306 errno_t rc;
1307 async_wait_for(req, &rc);
1308 if (rc != EOK)
1309 return (errno_t) rc;
1311 return EOK;
1314 /** Interrupt one thread of this task from waiting for IPC. */
1315 void async_poke(void)
1317 if (atomic_get(&threads_in_ipc_wait) > 0)
1318 ipc_poke();
1321 /** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1323 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1324 * calls so that the user doesn't have to remember the meaning of each IPC
1325 * argument.
1327 * So far, this wrapper is to be used from within a connection fibril.
1329 * @param chandle Storage for the handle of the IPC_M_SHARE_IN call.
1330 * @param size Destination address space area size.
1332 * @return True on success, false on failure.
1335 bool async_share_in_receive(cap_call_handle_t *chandle, size_t *size)
1337 assert(chandle);
1338 assert(size);
1340 ipc_call_t data;
1341 *chandle = async_get_call(&data);
1343 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
1344 return false;
1346 *size = (size_t) IPC_GET_ARG1(data);
1347 return true;
1350 /** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1352 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
1353 * calls so that the user doesn't have to remember the meaning of each IPC
1354 * argument.
1356 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
1357 * @param src Source address space base.
1358 * @param flags Flags to be used for sharing. Bits can be only cleared.
1360 * @return Zero on success or a value from @ref errno.h on failure.
1363 errno_t async_share_in_finalize(cap_call_handle_t chandle, void *src,
1364 unsigned int flags)
1366 // FIXME: The source has no business deciding destination address.
1367 return ipc_answer_3(chandle, EOK, (sysarg_t) src, (sysarg_t) flags,
1368 (sysarg_t) _end);
1371 /** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1373 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1374 * calls so that the user doesn't have to remember the meaning of each IPC
1375 * argument.
1377 * So far, this wrapper is to be used from within a connection fibril.
1379 * @param chandle Storage for the hash of the IPC_M_SHARE_OUT call.
1380 * @param size Storage for the source address space area size.
1381 * @param flags Storage for the sharing flags.
1383 * @return True on success, false on failure.
1386 bool async_share_out_receive(cap_call_handle_t *chandle, size_t *size,
1387 unsigned int *flags)
1389 assert(chandle);
1390 assert(size);
1391 assert(flags);
1393 ipc_call_t data;
1394 *chandle = async_get_call(&data);
1396 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
1397 return false;
1399 *size = (size_t) IPC_GET_ARG2(data);
1400 *flags = (unsigned int) IPC_GET_ARG3(data);
1401 return true;
1404 /** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1406 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1407 * calls so that the user doesn't have to remember the meaning of each IPC
1408 * argument.
1410 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
1411 * @param dst Address of the storage for the destination address space area
1412 * base address.
1414 * @return Zero on success or a value from @ref errno.h on failure.
1417 errno_t async_share_out_finalize(cap_call_handle_t chandle, void **dst)
1419 return ipc_answer_2(chandle, EOK, (sysarg_t) _end, (sysarg_t) dst);
1422 /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1424 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1425 * calls so that the user doesn't have to remember the meaning of each IPC
1426 * argument.
1428 * So far, this wrapper is to be used from within a connection fibril.
1430 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
1431 * @param size Storage for the maximum size. Can be NULL.
1433 * @return True on success, false on failure.
1436 bool async_data_read_receive(cap_call_handle_t *chandle, size_t *size)
1438 ipc_call_t data;
1439 return async_data_read_receive_call(chandle, &data, size);
1442 /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1444 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1445 * calls so that the user doesn't have to remember the meaning of each IPC
1446 * argument.
1448 * So far, this wrapper is to be used from within a connection fibril.
1450 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
1451 * @param size Storage for the maximum size. Can be NULL.
1453 * @return True on success, false on failure.
1456 bool async_data_read_receive_call(cap_call_handle_t *chandle, ipc_call_t *data,
1457 size_t *size)
1459 assert(chandle);
1460 assert(data);
1462 *chandle = async_get_call(data);
1464 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
1465 return false;
1467 if (size)
1468 *size = (size_t) IPC_GET_ARG2(*data);
1470 return true;
1473 /** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1475 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1476 * calls so that the user doesn't have to remember the meaning of each IPC
1477 * argument.
1479 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
1480 * @param src Source address for the IPC_M_DATA_READ call.
1481 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1482 * the maximum size announced by the sender.
1484 * @return Zero on success or a value from @ref errno.h on failure.
1487 errno_t async_data_read_finalize(cap_call_handle_t chandle, const void *src,
1488 size_t size)
1490 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) size);
1493 /** Wrapper for forwarding any read request
1496 errno_t async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
1497 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1498 ipc_call_t *dataptr)
1500 if (exch == NULL)
1501 return ENOENT;
1503 cap_call_handle_t chandle;
1504 if (!async_data_read_receive(&chandle, NULL)) {
1505 ipc_answer_0(chandle, EINVAL);
1506 return EINVAL;
1509 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1510 dataptr);
1511 if (msg == 0) {
1512 ipc_answer_0(chandle, EINVAL);
1513 return EINVAL;
1516 errno_t retval = ipc_forward_fast(chandle, exch->phone, 0, 0, 0,
1517 IPC_FF_ROUTE_FROM_ME);
1518 if (retval != EOK) {
1519 async_forget(msg);
1520 ipc_answer_0(chandle, retval);
1521 return retval;
1524 errno_t rc;
1525 async_wait_for(msg, &rc);
1527 return (errno_t) rc;
1530 /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1532 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1533 * calls so that the user doesn't have to remember the meaning of each IPC
1534 * argument.
1536 * So far, this wrapper is to be used from within a connection fibril.
1538 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
1539 * @param size Storage for the suggested size. May be NULL.
1541 * @return True on success, false on failure.
1544 bool async_data_write_receive(cap_call_handle_t *chandle, size_t *size)
1546 ipc_call_t data;
1547 return async_data_write_receive_call(chandle, &data, size);
1550 /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1552 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1553 * calls so that the user doesn't have to remember the meaning of each IPC
1554 * argument.
1556 * So far, this wrapper is to be used from within a connection fibril.
1558 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
1559 * @param data Storage for the ipc call data.
1560 * @param size Storage for the suggested size. May be NULL.
1562 * @return True on success, false on failure.
1565 bool async_data_write_receive_call(cap_call_handle_t *chandle, ipc_call_t *data,
1566 size_t *size)
1568 assert(chandle);
1569 assert(data);
1571 *chandle = async_get_call(data);
1573 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
1574 return false;
1576 if (size)
1577 *size = (size_t) IPC_GET_ARG2(*data);
1579 return true;
1582 /** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1584 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1585 * calls so that the user doesn't have to remember the meaning of each IPC
1586 * argument.
1588 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
1589 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1590 * @param size Final size for the IPC_M_DATA_WRITE call.
1592 * @return Zero on success or a value from @ref errno.h on failure.
1595 errno_t async_data_write_finalize(cap_call_handle_t chandle, void *dst,
1596 size_t size)
1598 return ipc_answer_2(chandle, EOK, (sysarg_t) dst, (sysarg_t) size);
1601 /** Wrapper for receiving binary data or strings
1603 * This wrapper only makes it more comfortable to use async_data_write_*
1604 * functions to receive binary data or strings.
1606 * @param data Pointer to data pointer (which should be later disposed
1607 * by free()). If the operation fails, the pointer is not
1608 * touched.
1609 * @param nullterm If true then the received data is always zero terminated.
1610 * This also causes to allocate one extra byte beyond the
1611 * raw transmitted data.
1612 * @param min_size Minimum size (in bytes) of the data to receive.
1613 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1614 * no limit.
1615 * @param granulariy If non-zero then the size of the received data has to
1616 * be divisible by this value.
1617 * @param received If not NULL, the size of the received data is stored here.
1619 * @return Zero on success or a value from @ref errno.h on failure.
1622 errno_t async_data_write_accept(void **data, const bool nullterm,
1623 const size_t min_size, const size_t max_size, const size_t granularity,
1624 size_t *received)
1626 assert(data);
1628 cap_call_handle_t chandle;
1629 size_t size;
1630 if (!async_data_write_receive(&chandle, &size)) {
1631 ipc_answer_0(chandle, EINVAL);
1632 return EINVAL;
1635 if (size < min_size) {
1636 ipc_answer_0(chandle, EINVAL);
1637 return EINVAL;
1640 if ((max_size > 0) && (size > max_size)) {
1641 ipc_answer_0(chandle, EINVAL);
1642 return EINVAL;
1645 if ((granularity > 0) && ((size % granularity) != 0)) {
1646 ipc_answer_0(chandle, EINVAL);
1647 return EINVAL;
1650 void *arg_data;
1652 if (nullterm)
1653 arg_data = malloc(size + 1);
1654 else
1655 arg_data = malloc(size);
1657 if (arg_data == NULL) {
1658 ipc_answer_0(chandle, ENOMEM);
1659 return ENOMEM;
1662 errno_t rc = async_data_write_finalize(chandle, arg_data, size);
1663 if (rc != EOK) {
1664 free(arg_data);
1665 return rc;
1668 if (nullterm)
1669 ((char *) arg_data)[size] = 0;
1671 *data = arg_data;
1672 if (received != NULL)
1673 *received = size;
1675 return EOK;
1678 /** Wrapper for voiding any data that is about to be received
1680 * This wrapper can be used to void any pending data
1682 * @param retval Error value from @ref errno.h to be returned to the caller.
1685 void async_data_write_void(errno_t retval)
1687 cap_call_handle_t chandle;
1688 async_data_write_receive(&chandle, NULL);
1689 ipc_answer_0(chandle, retval);
1692 /** Wrapper for forwarding any data that is about to be received
1695 errno_t async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
1696 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1697 ipc_call_t *dataptr)
1699 if (exch == NULL)
1700 return ENOENT;
1702 cap_call_handle_t chandle;
1703 if (!async_data_write_receive(&chandle, NULL)) {
1704 ipc_answer_0(chandle, EINVAL);
1705 return EINVAL;
1708 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1709 dataptr);
1710 if (msg == 0) {
1711 ipc_answer_0(chandle, EINVAL);
1712 return EINVAL;
1715 errno_t retval = ipc_forward_fast(chandle, exch->phone, 0, 0, 0,
1716 IPC_FF_ROUTE_FROM_ME);
1717 if (retval != EOK) {
1718 async_forget(msg);
1719 ipc_answer_0(chandle, retval);
1720 return retval;
1723 errno_t rc;
1724 async_wait_for(msg, &rc);
1726 return (errno_t) rc;
1729 /** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1731 * If the current call is IPC_M_CONNECT_TO_ME then a new
1732 * async session is created for the accepted phone.
1734 * @param mgmt Exchange management style.
1736 * @return New async session.
1737 * @return NULL on failure.
1740 async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
1742 /* Accept the phone */
1743 ipc_call_t call;
1744 cap_call_handle_t chandle = async_get_call(&call);
1745 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(call);
1747 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
1748 !CAP_HANDLE_VALID((phandle))) {
1749 async_answer_0(chandle, EINVAL);
1750 return NULL;
1753 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1754 if (sess == NULL) {
1755 async_answer_0(chandle, ENOMEM);
1756 return NULL;
1759 sess->iface = 0;
1760 sess->mgmt = mgmt;
1761 sess->phone = phandle;
1762 sess->arg1 = 0;
1763 sess->arg2 = 0;
1764 sess->arg3 = 0;
1766 fibril_mutex_initialize(&sess->remote_state_mtx);
1767 sess->remote_state_data = NULL;
1769 list_initialize(&sess->exch_list);
1770 fibril_mutex_initialize(&sess->mutex);
1771 atomic_set(&sess->refcnt, 0);
1773 /* Acknowledge the connected phone */
1774 async_answer_0(chandle, EOK);
1776 return sess;
1779 /** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1781 * If the call is IPC_M_CONNECT_TO_ME then a new
1782 * async session is created. However, the phone is
1783 * not accepted automatically.
1785 * @param mgmt Exchange management style.
1786 * @param call Call data.
1788 * @return New async session.
1789 * @return NULL on failure.
1790 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
1793 async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
1795 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(*call);
1797 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
1798 !CAP_HANDLE_VALID((phandle)))
1799 return NULL;
1801 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1802 if (sess == NULL)
1803 return NULL;
1805 sess->iface = 0;
1806 sess->mgmt = mgmt;
1807 sess->phone = phandle;
1808 sess->arg1 = 0;
1809 sess->arg2 = 0;
1810 sess->arg3 = 0;
1812 fibril_mutex_initialize(&sess->remote_state_mtx);
1813 sess->remote_state_data = NULL;
1815 list_initialize(&sess->exch_list);
1816 fibril_mutex_initialize(&sess->mutex);
1817 atomic_set(&sess->refcnt, 0);
1819 return sess;
1822 bool async_state_change_receive(cap_call_handle_t *chandle, sysarg_t *arg1,
1823 sysarg_t *arg2, sysarg_t *arg3)
1825 assert(chandle);
1827 ipc_call_t call;
1828 *chandle = async_get_call(&call);
1830 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
1831 return false;
1833 if (arg1)
1834 *arg1 = IPC_GET_ARG1(call);
1835 if (arg2)
1836 *arg2 = IPC_GET_ARG2(call);
1837 if (arg3)
1838 *arg3 = IPC_GET_ARG3(call);
1840 return true;
1843 errno_t async_state_change_finalize(cap_call_handle_t chandle,
1844 async_exch_t *other_exch)
1846 return ipc_answer_1(chandle, EOK, CAP_HANDLE_RAW(other_exch->phone));
1849 __noreturn void async_manager(void)
1851 futex_lock(&async_futex);
1852 fibril_switch(FIBRIL_FROM_DEAD);
1853 __builtin_unreachable();
1856 /** @}