IPv6 fragmentation support
[helenos.git] / uspace / srv / net / inetsrv / pdu.c
blob89fa3ccb58121224abba869b18c2d98e2bbe65ce
1 /*
2 * Copyright (c) 2012 Jiri Svoboda
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 /** @addtogroup inet
30 * @{
32 /**
33 * @file
34 * @brief
37 #include <align.h>
38 #include <bitops.h>
39 #include <byteorder.h>
40 #include <errno.h>
41 #include <fibril_synch.h>
42 #include <io/log.h>
43 #include <macros.h>
44 #include <mem.h>
45 #include <stdlib.h>
46 #include <net/socket_codes.h>
47 #include "inetsrv.h"
48 #include "inet_std.h"
49 #include "pdu.h"
51 /** One's complement addition.
53 * Result is a + b + carry.
55 static uint16_t inet_ocadd16(uint16_t a, uint16_t b)
57 uint32_t s;
59 s = (uint32_t)a + (uint32_t)b;
60 return (s & 0xffff) + (s >> 16);
63 uint16_t inet_checksum_calc(uint16_t ivalue, void *data, size_t size)
65 uint16_t sum;
66 uint16_t w;
67 size_t words, i;
68 uint8_t *bdata;
70 sum = ~ivalue;
71 words = size / 2;
72 bdata = (uint8_t *)data;
74 for (i = 0; i < words; i++) {
75 w = ((uint16_t)bdata[2*i] << 8) | bdata[2*i + 1];
76 sum = inet_ocadd16(sum, w);
79 if (size % 2 != 0) {
80 w = ((uint16_t)bdata[2*words] << 8);
81 sum = inet_ocadd16(sum, w);
84 return ~sum;
87 /** Encode IPv4 PDU.
89 * Encode internet packet into PDU (serialized form). Will encode a
90 * fragment of the payload starting at offset @a offs. The resulting
91 * PDU will have at most @a mtu bytes. @a *roffs will be set to the offset
92 * of remaining payload. If some data is remaining, the MF flag will
93 * be set in the header, otherwise the offset will equal @a packet->size.
95 * @param packet Packet to encode
96 * @param src Source address
97 * @param dest Destination address
98 * @param offs Offset into packet payload (in bytes)
99 * @param mtu MTU (Maximum Transmission Unit) in bytes
100 * @param rdata Place to store pointer to allocated data buffer
101 * @param rsize Place to store size of allocated data buffer
102 * @param roffs Place to store offset of remaning data
105 int inet_pdu_encode(inet_packet_t *packet, addr32_t src, addr32_t dest,
106 size_t offs, size_t mtu, void **rdata, size_t *rsize, size_t *roffs)
108 /* Upper bound for fragment offset field */
109 size_t fragoff_limit = 1 << (FF_FRAGOFF_h - FF_FRAGOFF_l);
111 /* Verify that total size of datagram is within reasonable bounds */
112 if (offs + packet->size > FRAG_OFFS_UNIT * fragoff_limit)
113 return ELIMIT;
115 size_t hdr_size = sizeof(ip_header_t);
116 if (hdr_size >= mtu)
117 return EINVAL;
119 assert(hdr_size % 4 == 0);
120 assert(offs % FRAG_OFFS_UNIT == 0);
121 assert(offs / FRAG_OFFS_UNIT < fragoff_limit);
123 /* Value for the fragment offset field */
124 uint16_t foff = offs / FRAG_OFFS_UNIT;
126 /* Amount of space in the PDU available for payload */
127 size_t spc_avail = mtu - hdr_size;
128 spc_avail -= (spc_avail % FRAG_OFFS_UNIT);
130 /* Amount of data (payload) to transfer */
131 size_t xfer_size = min(packet->size - offs, spc_avail);
133 /* Total PDU size */
134 size_t size = hdr_size + xfer_size;
136 /* Offset of remaining payload */
137 size_t rem_offs = offs + xfer_size;
139 /* Flags */
140 uint16_t flags_foff =
141 (packet->df ? BIT_V(uint16_t, FF_FLAG_DF) : 0) +
142 (rem_offs < packet->size ? BIT_V(uint16_t, FF_FLAG_MF) : 0) +
143 (foff << FF_FRAGOFF_l);
145 void *data = calloc(size, 1);
146 if (data == NULL)
147 return ENOMEM;
149 /* Encode header fields */
150 ip_header_t *hdr = (ip_header_t *) data;
152 hdr->ver_ihl =
153 (4 << VI_VERSION_l) | (hdr_size / sizeof(uint32_t));
154 hdr->tos = packet->tos;
155 hdr->tot_len = host2uint16_t_be(size);
156 hdr->id = host2uint16_t_be(packet->ident);
157 hdr->flags_foff = host2uint16_t_be(flags_foff);
158 hdr->ttl = packet->ttl;
159 hdr->proto = packet->proto;
160 hdr->chksum = 0;
161 hdr->src_addr = host2uint32_t_be(src);
162 hdr->dest_addr = host2uint32_t_be(dest);
164 /* Compute checksum */
165 uint16_t chksum = inet_checksum_calc(INET_CHECKSUM_INIT,
166 (void *) hdr, hdr_size);
167 hdr->chksum = host2uint16_t_be(chksum);
169 /* Copy payload */
170 memcpy((uint8_t *) data + hdr_size, packet->data + offs, xfer_size);
172 *rdata = data;
173 *rsize = size;
174 *roffs = rem_offs;
176 return EOK;
179 /** Encode IPv6 PDU.
181 * Encode internet packet into PDU (serialized form). Will encode a
182 * fragment of the payload starting at offset @a offs. The resulting
183 * PDU will have at most @a mtu bytes. @a *roffs will be set to the offset
184 * of remaining payload. If some data is remaining, the MF flag will
185 * be set in the header, otherwise the offset will equal @a packet->size.
187 * @param packet Packet to encode
188 * @param src Source address
189 * @param dest Destination address
190 * @param offs Offset into packet payload (in bytes)
191 * @param mtu MTU (Maximum Transmission Unit) in bytes
192 * @param rdata Place to store pointer to allocated data buffer
193 * @param rsize Place to store size of allocated data buffer
194 * @param roffs Place to store offset of remaning data
197 int inet_pdu_encode6(inet_packet_t *packet, addr128_t src, addr128_t dest,
198 size_t offs, size_t mtu, void **rdata, size_t *rsize, size_t *roffs)
200 /* IPv6 mandates a minimal MTU of 1280 bytes */
201 if (mtu < 1280)
202 return ELIMIT;
204 /* Upper bound for fragment offset field */
205 size_t fragoff_limit = 1 << (OF_FRAGOFF_h - OF_FRAGOFF_l);
207 /* Verify that total size of datagram is within reasonable bounds */
208 if (offs + packet->size > FRAG_OFFS_UNIT * fragoff_limit)
209 return ELIMIT;
211 /* Determine whether we need the Fragment extension header */
212 bool fragment;
213 if (offs == 0)
214 fragment = (packet->size + sizeof(ip6_header_t) > mtu);
215 else
216 fragment = true;
218 size_t hdr_size;
219 if (fragment)
220 hdr_size = sizeof(ip6_header_t) + sizeof(ip6_header_fragment_t);
221 else
222 hdr_size = sizeof(ip6_header_t);
224 if (hdr_size >= mtu)
225 return EINVAL;
227 assert(sizeof(ip6_header_t) % 8 == 0);
228 assert(hdr_size % 8 == 0);
229 assert(offs % FRAG_OFFS_UNIT == 0);
230 assert(offs / FRAG_OFFS_UNIT < fragoff_limit);
232 /* Value for the fragment offset field */
233 uint16_t foff = offs / FRAG_OFFS_UNIT;
235 /* Amount of space in the PDU available for payload */
236 size_t spc_avail = mtu - hdr_size;
237 spc_avail -= (spc_avail % FRAG_OFFS_UNIT);
239 /* Amount of data (payload) to transfer */
240 size_t xfer_size = min(packet->size - offs, spc_avail);
242 /* Total PDU size */
243 size_t size = hdr_size + xfer_size;
245 /* Offset of remaining payload */
246 size_t rem_offs = offs + xfer_size;
248 /* Flags */
249 uint16_t offsmf =
250 (rem_offs < packet->size ? BIT_V(uint16_t, OF_FLAG_M) : 0) +
251 (foff << OF_FRAGOFF_l);
253 void *data = calloc(size, 1);
254 if (data == NULL)
255 return ENOMEM;
257 /* Encode header fields */
258 ip6_header_t *hdr6 = (ip6_header_t *) data;
260 hdr6->ver_tc = (6 << (VI_VERSION_l));
261 memset(hdr6->tc_fl, 0, 3);
262 hdr6->hop_limit = packet->ttl;
264 host2addr128_t_be(src, hdr6->src_addr);
265 host2addr128_t_be(dest, hdr6->dest_addr);
267 /* Optionally encode Fragment extension header fields */
268 if (fragment) {
269 assert(offsmf != 0);
271 hdr6->payload_len = host2uint16_t_be(packet->size +
272 sizeof(ip6_header_fragment_t));
273 hdr6->next = IP6_NEXT_FRAGMENT;
275 ip6_header_fragment_t *hdr6f = (ip6_header_fragment_t *)
276 (hdr6 + 1);
278 hdr6f->next = packet->proto;
279 hdr6f->reserved = 0;
280 hdr6f->offsmf = host2uint16_t_be(offsmf);
281 hdr6f->id = host2uint32_t_be(packet->ident);
282 } else {
283 assert(offsmf == 0);
285 hdr6->payload_len = host2uint16_t_be(packet->size);
286 hdr6->next = packet->proto;
289 /* Copy payload */
290 memcpy((uint8_t *) data + hdr_size, packet->data + offs, xfer_size);
292 *rdata = data;
293 *rsize = size;
294 *roffs = rem_offs;
296 return EOK;
299 /** Decode IPv4 datagram
301 * @param data Serialized IPv4 datagram
302 * @param size Length of serialized IPv4 datagram
303 * @param packet IP datagram structure to be filled
305 * @return EOK on success
306 * @return EINVAL if the datagram is invalid or damaged
307 * @return ENOMEM if not enough memory
310 int inet_pdu_decode(void *data, size_t size, inet_packet_t *packet)
312 log_msg(LOG_DEFAULT, LVL_DEBUG, "inet_pdu_decode()");
314 if (size < sizeof(ip_header_t)) {
315 log_msg(LOG_DEFAULT, LVL_DEBUG, "PDU too short (%zu)", size);
316 return EINVAL;
319 ip_header_t *hdr = (ip_header_t *) data;
321 uint8_t version = BIT_RANGE_EXTRACT(uint8_t, VI_VERSION_h,
322 VI_VERSION_l, hdr->ver_ihl);
323 if (version != 4) {
324 log_msg(LOG_DEFAULT, LVL_DEBUG, "Version (%d) != 4", version);
325 return EINVAL;
328 size_t tot_len = uint16_t_be2host(hdr->tot_len);
329 if (tot_len < sizeof(ip_header_t)) {
330 log_msg(LOG_DEFAULT, LVL_DEBUG, "Total Length too small (%zu)", tot_len);
331 return EINVAL;
334 if (tot_len > size) {
335 log_msg(LOG_DEFAULT, LVL_DEBUG, "Total Length = %zu > PDU size = %zu",
336 tot_len, size);
337 return EINVAL;
340 uint16_t ident = uint16_t_be2host(hdr->id);
341 uint16_t flags_foff = uint16_t_be2host(hdr->flags_foff);
342 uint16_t foff = BIT_RANGE_EXTRACT(uint16_t, FF_FRAGOFF_h, FF_FRAGOFF_l,
343 flags_foff);
344 /* XXX Checksum */
346 inet_addr_set(uint32_t_be2host(hdr->src_addr), &packet->src);
347 inet_addr_set(uint32_t_be2host(hdr->dest_addr), &packet->dest);
348 packet->tos = hdr->tos;
349 packet->proto = hdr->proto;
350 packet->ttl = hdr->ttl;
351 packet->ident = ident;
353 packet->df = (flags_foff & BIT_V(uint16_t, FF_FLAG_DF)) != 0;
354 packet->mf = (flags_foff & BIT_V(uint16_t, FF_FLAG_MF)) != 0;
355 packet->offs = foff * FRAG_OFFS_UNIT;
357 /* XXX IP options */
358 size_t data_offs = sizeof(uint32_t) *
359 BIT_RANGE_EXTRACT(uint8_t, VI_IHL_h, VI_IHL_l, hdr->ver_ihl);
361 packet->size = tot_len - data_offs;
362 packet->data = calloc(packet->size, 1);
363 if (packet->data == NULL) {
364 log_msg(LOG_DEFAULT, LVL_WARN, "Out of memory.");
365 return ENOMEM;
368 memcpy(packet->data, (uint8_t *) data + data_offs, packet->size);
370 return EOK;
373 /** Decode IPv6 datagram
375 * @param data Serialized IPv6 datagram
376 * @param size Length of serialized IPv6 datagram
377 * @param packet IP datagram structure to be filled
379 * @return EOK on success
380 * @return EINVAL if the datagram is invalid or damaged
381 * @return ENOMEM if not enough memory
384 int inet_pdu_decode6(void *data, size_t size, inet_packet_t *packet)
386 log_msg(LOG_DEFAULT, LVL_DEBUG, "inet_pdu_decode6()");
388 if (size < sizeof(ip6_header_t)) {
389 log_msg(LOG_DEFAULT, LVL_DEBUG, "PDU too short (%zu)", size);
390 return EINVAL;
393 ip6_header_t *hdr6 = (ip6_header_t *) data;
395 uint8_t version = BIT_RANGE_EXTRACT(uint8_t, VI_VERSION_h,
396 VI_VERSION_l, hdr6->ver_tc);
397 if (version != 6) {
398 log_msg(LOG_DEFAULT, LVL_DEBUG, "Version (%d) != 6", version);
399 return EINVAL;
402 size_t payload_len = uint16_t_be2host(hdr6->payload_len);
403 if (payload_len + sizeof(ip6_header_t) > size) {
404 log_msg(LOG_DEFAULT, LVL_DEBUG, "Payload Length = %zu > PDU size = %zu",
405 payload_len + sizeof(ip6_header_t), size);
406 return EINVAL;
409 uint32_t ident;
410 uint16_t offsmf;
411 uint16_t foff;
412 uint16_t next;
413 size_t data_offs = sizeof(ip6_header_t);
415 /* Fragment extension header */
416 if (hdr6->next == IP6_NEXT_FRAGMENT) {
417 ip6_header_fragment_t *hdr6f = (ip6_header_fragment_t *)
418 (hdr6 + 1);
420 ident = uint32_t_be2host(hdr6f->id);
421 offsmf = uint16_t_be2host(hdr6f->offsmf);
422 foff = BIT_RANGE_EXTRACT(uint16_t, OF_FRAGOFF_h, OF_FRAGOFF_l,
423 offsmf);
424 next = hdr6f->next;
425 data_offs += sizeof(ip6_header_fragment_t);
426 payload_len -= sizeof(ip6_header_fragment_t);
427 } else {
428 ident = 0;
429 offsmf = 0;
430 foff = 0;
431 next = hdr6->next;
434 addr128_t src;
435 addr128_t dest;
437 addr128_t_be2host(hdr6->src_addr, src);
438 inet_addr_set6(src, &packet->src);
440 addr128_t_be2host(hdr6->dest_addr, dest);
441 inet_addr_set6(dest, &packet->dest);
443 packet->tos = 0;
444 packet->proto = next;
445 packet->ttl = hdr6->hop_limit;
446 packet->ident = ident;
448 packet->df = 1;
449 packet->mf = (offsmf & BIT_V(uint16_t, OF_FLAG_M)) != 0;
450 packet->offs = foff * FRAG_OFFS_UNIT;
452 packet->size = payload_len;
453 packet->data = calloc(packet->size, 1);
454 if (packet->data == NULL) {
455 log_msg(LOG_DEFAULT, LVL_WARN, "Out of memory.");
456 return ENOMEM;
459 memcpy(packet->data, (uint8_t *) data + data_offs, packet->size);
461 return EOK;
464 /** Encode NDP packet
466 * @param ndp NDP packet structure to be serialized
467 * @param dgram IPv6 datagram structure to be filled
469 * @return EOK on success
472 int ndp_pdu_encode(ndp_packet_t *ndp, inet_dgram_t *dgram)
474 inet_addr_set6(ndp->sender_proto_addr, &dgram->src);
475 inet_addr_set6(ndp->target_proto_addr, &dgram->dest);
476 dgram->tos = 0;
477 dgram->size = sizeof(icmpv6_message_t) + sizeof(ndp_message_t);
479 dgram->data = calloc(1, dgram->size);
480 if (dgram->data == NULL)
481 return ENOMEM;
483 icmpv6_message_t *icmpv6 = (icmpv6_message_t *) dgram->data;
485 icmpv6->type = ndp->opcode;
486 icmpv6->code = 0;
487 memset(icmpv6->un.ndp.reserved, 0, 3);
489 ndp_message_t *message = (ndp_message_t *) (icmpv6 + 1);
491 if (ndp->opcode == ICMPV6_NEIGHBOUR_SOLICITATION) {
492 host2addr128_t_be(ndp->solicited_ip, message->target_address);
493 message->option = 1;
494 icmpv6->un.ndp.flags = 0;
495 } else {
496 host2addr128_t_be(ndp->sender_proto_addr, message->target_address);
497 message->option = 2;
498 icmpv6->un.ndp.flags = NDP_FLAG_OVERRIDE | NDP_FLAG_SOLICITED;
501 message->length = 1;
502 addr48(ndp->sender_hw_addr, message->mac);
504 icmpv6_phdr_t phdr;
506 host2addr128_t_be(ndp->sender_proto_addr, phdr.src_addr);
507 host2addr128_t_be(ndp->target_proto_addr, phdr.dest_addr);
508 phdr.length = host2uint32_t_be(dgram->size);
509 memset(phdr.zeroes, 0, 3);
510 phdr.next = IP_PROTO_ICMPV6;
512 uint16_t cs_phdr =
513 inet_checksum_calc(INET_CHECKSUM_INIT, &phdr,
514 sizeof(icmpv6_phdr_t));
516 uint16_t cs_all = inet_checksum_calc(cs_phdr, dgram->data,
517 dgram->size);
519 icmpv6->checksum = host2uint16_t_be(cs_all);
521 return EOK;
524 /** Decode NDP packet
526 * @param dgram Incoming IPv6 datagram encapsulating NDP packet
527 * @param ndp NDP packet structure to be filled
529 * @return EOK on success
530 * @return EINVAL if the Datagram is invalid
533 int ndp_pdu_decode(inet_dgram_t *dgram, ndp_packet_t *ndp)
535 uint16_t src_af = inet_addr_get(&dgram->src, NULL,
536 &ndp->sender_proto_addr);
537 if (src_af != AF_INET6)
538 return EINVAL;
540 if (dgram->size < sizeof(icmpv6_message_t) + sizeof(ndp_message_t))
541 return EINVAL;
543 icmpv6_message_t *icmpv6 = (icmpv6_message_t *) dgram->data;
545 ndp->opcode = icmpv6->type;
547 ndp_message_t *message = (ndp_message_t *) (icmpv6 + 1);
549 addr128_t_be2host(message->target_address, ndp->target_proto_addr);
550 addr48(message->mac, ndp->sender_hw_addr);
552 return EOK;
555 /** @}