2 * Copyright (c) 2006 Ondrej Palkovsky
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 * Asynchronous library
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
46 * Example of use (pseudo C):
48 * 1) Multithreaded client application
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
54 * int fibril1(void *arg)
56 * conn = async_connect_me_to(...);
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
72 * 2) Multithreaded server application
79 * port_handler(ichandle, *icall)
82 * async_answer_0(ichandle, ELIMIT);
85 * async_answer_0(ichandle, EOK);
87 * chandle = async_get_call(&call);
88 * somehow_handle_the_call(chandle, call);
89 * async_answer_2(chandle, 1, 2, 3);
91 * chandle = async_get_call(&call);
100 #include "private/async.h"
104 #include <ipc/event.h>
107 #include <adt/hash_table.h>
108 #include <adt/hash.h>
109 #include <adt/list.h>
112 #include <sys/time.h>
113 #include <libarch/barrier.h>
120 #include <abi/mm/as.h>
121 #include "private/libc.h"
125 /** List of inactive exchanges */
128 /** Session interface */
131 /** Exchange management style */
134 /** Session identification */
137 /** First clone connection argument */
140 /** Second clone connection argument */
143 /** Third clone connection argument */
146 /** Exchange mutex */
147 fibril_mutex_t mutex
;
149 /** Number of opened exchanges */
152 /** Mutex for stateful connections */
153 fibril_mutex_t remote_state_mtx
;
155 /** Data for stateful connections */
156 void *remote_state_data
;
161 /** Link into list of inactive exchanges */
164 /** Link into global list of inactive exchanges */
167 /** Session pointer */
170 /** Exchange identification */
174 /** Async framework global futex */
175 futex_t async_futex
= FUTEX_INITIALIZER
;
177 /** Number of threads waiting for IPC in the kernel. */
178 atomic_t threads_in_ipc_wait
= { 0 };
180 /** Naming service session */
181 async_sess_t
*session_ns
;
187 cap_handle_t chandle
;
195 /** If reply was received. */
198 /** If the message / reply should be discarded on arrival. */
201 /** If already destroyed. */
204 /** Pointer to where the answer data is stored. */
210 /* Client connection data */
214 task_id_t in_task_id
;
219 /* Server connection data */
223 /** Hash table link. */
226 /** Incoming client task ID. */
227 task_id_t in_task_id
;
229 /** Incoming phone hash. */
230 sysarg_t in_phone_hash
;
232 /** Link to the client tracking structure. */
235 /** Messages that should be delivered to this fibril. */
238 /** Identification of the opening call. */
239 cap_handle_t chandle
;
241 /** Call data of the opening call. */
244 /** Identification of the closing call. */
245 cap_handle_t close_chandle
;
247 /** Fibril function that will be used to handle the connection. */
248 async_port_handler_t handler
;
254 /** Interface data */
261 /** Futex protecting the hash table */
264 /** Interface ports */
265 hash_table_t port_hash_table
;
267 /** Next available port ID */
268 port_id_t port_id_avail
;
278 /** Port connection handler */
279 async_port_handler_t handler
;
285 /* Notification data */
289 /** Notification method */
292 /** Notification handler */
293 async_notification_handler_t handler
;
295 /** Notification data */
299 /** Identifier of the incoming connection handled by the current fibril. */
300 static fibril_local connection_t
*fibril_connection
;
302 static void to_event_initialize(to_event_t
*to
)
304 struct timeval tv
= { 0, 0 };
307 to
->occurred
= false;
308 link_initialize(&to
->link
);
312 static void wu_event_initialize(wu_event_t
*wu
)
315 link_initialize(&wu
->link
);
318 void awaiter_initialize(awaiter_t
*aw
)
322 to_event_initialize(&aw
->to_event
);
323 wu_event_initialize(&aw
->wu_event
);
326 static amsg_t
*amsg_create(void)
328 amsg_t
*msg
= malloc(sizeof(amsg_t
));
332 msg
->destroyed
= false;
334 msg
->retval
= (sysarg_t
) EINVAL
;
335 awaiter_initialize(&msg
->wdata
);
341 static void amsg_destroy(amsg_t
*msg
)
343 assert(!msg
->destroyed
);
344 msg
->destroyed
= true;
348 static void *default_client_data_constructor(void)
353 static void default_client_data_destructor(void *data
)
357 static async_client_data_ctor_t async_client_data_create
=
358 default_client_data_constructor
;
359 static async_client_data_dtor_t async_client_data_destroy
=
360 default_client_data_destructor
;
362 void async_set_client_data_constructor(async_client_data_ctor_t ctor
)
364 assert(async_client_data_create
== default_client_data_constructor
);
365 async_client_data_create
= ctor
;
368 void async_set_client_data_destructor(async_client_data_dtor_t dtor
)
370 assert(async_client_data_destroy
== default_client_data_destructor
);
371 async_client_data_destroy
= dtor
;
374 /** Default fallback fibril function.
376 * This fallback fibril function gets called on incomming connections that do
377 * not have a specific handler defined.
379 * @param chandle Handle of the incoming call.
380 * @param call Data of the incoming call.
381 * @param arg Local argument
384 static void default_fallback_port_handler(cap_handle_t chandle
,
385 ipc_call_t
*call
, void *arg
)
387 ipc_answer_0(chandle
, ENOENT
);
390 static async_port_handler_t fallback_port_handler
=
391 default_fallback_port_handler
;
392 static void *fallback_port_data
= NULL
;
394 static hash_table_t interface_hash_table
;
396 static size_t interface_key_hash(void *key
)
398 iface_t iface
= *(iface_t
*) key
;
402 static size_t interface_hash(const ht_link_t
*item
)
404 interface_t
*interface
= hash_table_get_inst(item
, interface_t
, link
);
405 return interface_key_hash(&interface
->iface
);
408 static bool interface_key_equal(void *key
, const ht_link_t
*item
)
410 iface_t iface
= *(iface_t
*) key
;
411 interface_t
*interface
= hash_table_get_inst(item
, interface_t
, link
);
412 return iface
== interface
->iface
;
415 /** Operations for the port hash table. */
416 static hash_table_ops_t interface_hash_table_ops
= {
417 .hash
= interface_hash
,
418 .key_hash
= interface_key_hash
,
419 .key_equal
= interface_key_equal
,
421 .remove_callback
= NULL
424 static size_t port_key_hash(void *key
)
426 port_id_t port_id
= *(port_id_t
*) key
;
430 static size_t port_hash(const ht_link_t
*item
)
432 port_t
*port
= hash_table_get_inst(item
, port_t
, link
);
433 return port_key_hash(&port
->id
);
436 static bool port_key_equal(void *key
, const ht_link_t
*item
)
438 port_id_t port_id
= *(port_id_t
*) key
;
439 port_t
*port
= hash_table_get_inst(item
, port_t
, link
);
440 return port_id
== port
->id
;
443 /** Operations for the port hash table. */
444 static hash_table_ops_t port_hash_table_ops
= {
446 .key_hash
= port_key_hash
,
447 .key_equal
= port_key_equal
,
449 .remove_callback
= NULL
452 static interface_t
*async_new_interface(iface_t iface
)
454 interface_t
*interface
=
455 (interface_t
*) malloc(sizeof(interface_t
));
459 bool ret
= hash_table_create(&interface
->port_hash_table
, 0, 0,
460 &port_hash_table_ops
);
466 interface
->iface
= iface
;
467 futex_initialize(&interface
->futex
, 1);
468 interface
->port_id_avail
= 0;
470 hash_table_insert(&interface_hash_table
, &interface
->link
);
475 static port_t
*async_new_port(interface_t
*interface
,
476 async_port_handler_t handler
, void *data
)
478 port_t
*port
= (port_t
*) malloc(sizeof(port_t
));
482 futex_down(&interface
->futex
);
484 port_id_t id
= interface
->port_id_avail
;
485 interface
->port_id_avail
++;
488 port
->handler
= handler
;
491 hash_table_insert(&interface
->port_hash_table
, &port
->link
);
493 futex_up(&interface
->futex
);
498 /** Mutex protecting inactive_exch_list and avail_phone_cv.
501 static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex
);
503 /** List of all currently inactive exchanges.
506 static LIST_INITIALIZE(inactive_exch_list
);
508 /** Condition variable to wait for a phone to become available.
511 static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv
);
513 int async_create_port(iface_t iface
, async_port_handler_t handler
,
514 void *data
, port_id_t
*port_id
)
516 if ((iface
& IFACE_MOD_MASK
) == IFACE_MOD_CALLBACK
)
519 interface_t
*interface
;
521 futex_down(&async_futex
);
523 ht_link_t
*link
= hash_table_find(&interface_hash_table
, &iface
);
525 interface
= hash_table_get_inst(link
, interface_t
, link
);
527 interface
= async_new_interface(iface
);
530 futex_up(&async_futex
);
534 port_t
*port
= async_new_port(interface
, handler
, data
);
536 futex_up(&async_futex
);
542 futex_up(&async_futex
);
547 void async_set_fallback_port_handler(async_port_handler_t handler
, void *data
)
549 assert(handler
!= NULL
);
551 fallback_port_handler
= handler
;
552 fallback_port_data
= data
;
555 static hash_table_t client_hash_table
;
556 static hash_table_t conn_hash_table
;
557 static hash_table_t notification_hash_table
;
558 static LIST_INITIALIZE(timeout_list
);
560 static sysarg_t notification_avail
= 0;
562 static size_t client_key_hash(void *key
)
564 task_id_t in_task_id
= *(task_id_t
*) key
;
568 static size_t client_hash(const ht_link_t
*item
)
570 client_t
*client
= hash_table_get_inst(item
, client_t
, link
);
571 return client_key_hash(&client
->in_task_id
);
574 static bool client_key_equal(void *key
, const ht_link_t
*item
)
576 task_id_t in_task_id
= *(task_id_t
*) key
;
577 client_t
*client
= hash_table_get_inst(item
, client_t
, link
);
578 return in_task_id
== client
->in_task_id
;
581 /** Operations for the client hash table. */
582 static hash_table_ops_t client_hash_table_ops
= {
584 .key_hash
= client_key_hash
,
585 .key_equal
= client_key_equal
,
587 .remove_callback
= NULL
595 /** Compute hash into the connection hash table
597 * The hash is based on the source task ID and the source phone hash. The task
598 * ID is included in the hash because a phone hash alone might not be unique
599 * while we still track connections for killed tasks due to kernel's recycling
600 * of phone structures.
602 * @param key Pointer to the connection key structure.
604 * @return Index into the connection hash table.
607 static size_t conn_key_hash(void *key
)
609 conn_key_t
*ck
= (conn_key_t
*) key
;
612 hash
= hash_combine(hash
, LOWER32(ck
->task_id
));
613 hash
= hash_combine(hash
, UPPER32(ck
->task_id
));
614 hash
= hash_combine(hash
, ck
->phone_hash
);
618 static size_t conn_hash(const ht_link_t
*item
)
620 connection_t
*conn
= hash_table_get_inst(item
, connection_t
, link
);
621 return conn_key_hash(&(conn_key_t
){
622 .task_id
= conn
->in_task_id
,
623 .phone_hash
= conn
->in_phone_hash
627 static bool conn_key_equal(void *key
, const ht_link_t
*item
)
629 conn_key_t
*ck
= (conn_key_t
*) key
;
630 connection_t
*conn
= hash_table_get_inst(item
, connection_t
, link
);
631 return ((ck
->task_id
== conn
->in_task_id
) &&
632 (ck
->phone_hash
== conn
->in_phone_hash
));
635 /** Operations for the connection hash table. */
636 static hash_table_ops_t conn_hash_table_ops
= {
638 .key_hash
= conn_key_hash
,
639 .key_equal
= conn_key_equal
,
641 .remove_callback
= NULL
644 static client_t
*async_client_get(task_id_t client_id
, bool create
)
646 client_t
*client
= NULL
;
648 futex_down(&async_futex
);
649 ht_link_t
*link
= hash_table_find(&client_hash_table
, &client_id
);
651 client
= hash_table_get_inst(link
, client_t
, link
);
652 atomic_inc(&client
->refcnt
);
654 client
= malloc(sizeof(client_t
));
656 client
->in_task_id
= client_id
;
657 client
->data
= async_client_data_create();
659 atomic_set(&client
->refcnt
, 1);
660 hash_table_insert(&client_hash_table
, &client
->link
);
664 futex_up(&async_futex
);
668 static void async_client_put(client_t
*client
)
672 futex_down(&async_futex
);
674 if (atomic_predec(&client
->refcnt
) == 0) {
675 hash_table_remove(&client_hash_table
, &client
->in_task_id
);
680 futex_up(&async_futex
);
684 async_client_data_destroy(client
->data
);
690 /** Wrapper for client connection fibril.
692 * When a new connection arrives, a fibril with this implementing
693 * function is created.
695 * @param arg Connection structure pointer.
697 * @return Always zero.
700 static int connection_fibril(void *arg
)
705 * Setup fibril-local connection pointer.
707 fibril_connection
= (connection_t
*) arg
;
710 * Add our reference for the current connection in the client task
711 * tracking structure. If this is the first reference, create and
712 * hash in a new tracking structure.
715 client_t
*client
= async_client_get(fibril_connection
->in_task_id
, true);
717 ipc_answer_0(fibril_connection
->chandle
, ENOMEM
);
721 fibril_connection
->client
= client
;
724 * Call the connection handler function.
726 fibril_connection
->handler(fibril_connection
->chandle
,
727 &fibril_connection
->call
, fibril_connection
->data
);
730 * Remove the reference for this client task connection.
732 async_client_put(client
);
735 * Remove myself from the connection hash table.
737 futex_down(&async_futex
);
738 hash_table_remove(&conn_hash_table
, &(conn_key_t
){
739 .task_id
= fibril_connection
->in_task_id
,
740 .phone_hash
= fibril_connection
->in_phone_hash
742 futex_up(&async_futex
);
745 * Answer all remaining messages with EHANGUP.
747 while (!list_empty(&fibril_connection
->msg_queue
)) {
749 list_get_instance(list_first(&fibril_connection
->msg_queue
),
752 list_remove(&msg
->link
);
753 ipc_answer_0(msg
->chandle
, EHANGUP
);
758 * If the connection was hung-up, answer the last call,
759 * i.e. IPC_M_PHONE_HUNGUP.
761 if (fibril_connection
->close_chandle
)
762 ipc_answer_0(fibril_connection
->close_chandle
, EOK
);
764 free(fibril_connection
);
768 /** Create a new fibril for a new connection.
770 * Create new fibril for connection, fill in connection structures and insert it
771 * into the hash table, so that later we can easily do routing of messages to
772 * particular fibrils.
774 * @param in_task_id Identification of the incoming connection.
775 * @param in_phone_hash Identification of the incoming connection.
776 * @param chandle Handle of the opening IPC_M_CONNECT_ME_TO call.
777 * If chandle is CAP_NIL, the connection was opened by
778 * accepting the IPC_M_CONNECT_TO_ME call and this
779 * function is called directly by the server.
780 * @param call Call data of the opening call.
781 * @param handler Connection handler.
782 * @param data Client argument to pass to the connection handler.
784 * @return New fibril id or NULL on failure.
787 static fid_t
async_new_connection(task_id_t in_task_id
, sysarg_t in_phone_hash
,
788 cap_handle_t chandle
, ipc_call_t
*call
, async_port_handler_t handler
,
791 connection_t
*conn
= malloc(sizeof(*conn
));
793 if (chandle
!= CAP_NIL
)
794 ipc_answer_0(chandle
, ENOMEM
);
796 return (uintptr_t) NULL
;
799 conn
->in_task_id
= in_task_id
;
800 conn
->in_phone_hash
= in_phone_hash
;
801 list_initialize(&conn
->msg_queue
);
802 conn
->chandle
= chandle
;
803 conn
->close_chandle
= CAP_NIL
;
804 conn
->handler
= handler
;
810 /* We will activate the fibril ASAP */
811 conn
->wdata
.active
= true;
812 conn
->wdata
.fid
= fibril_create(connection_fibril
, conn
);
814 if (conn
->wdata
.fid
== 0) {
817 if (chandle
!= CAP_NIL
)
818 ipc_answer_0(chandle
, ENOMEM
);
820 return (uintptr_t) NULL
;
823 /* Add connection to the connection hash table */
825 futex_down(&async_futex
);
826 hash_table_insert(&conn_hash_table
, &conn
->link
);
827 futex_up(&async_futex
);
829 fibril_add_ready(conn
->wdata
.fid
);
831 return conn
->wdata
.fid
;
834 /** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
836 * Ask through phone for a new connection to some service.
838 * @param exch Exchange for sending the message.
839 * @param iface Callback interface.
840 * @param arg1 User defined argument.
841 * @param arg2 User defined argument.
842 * @param handler Callback handler.
843 * @param data Handler data.
844 * @param port_id ID of the newly created port.
846 * @return Zero on success or a negative error code.
849 int async_create_callback_port(async_exch_t
*exch
, iface_t iface
, sysarg_t arg1
,
850 sysarg_t arg2
, async_port_handler_t handler
, void *data
, port_id_t
*port_id
)
852 if ((iface
& IFACE_MOD_CALLBACK
) != IFACE_MOD_CALLBACK
)
859 aid_t req
= async_send_3(exch
, IPC_M_CONNECT_TO_ME
, iface
, arg1
, arg2
,
863 async_wait_for(req
, &ret
);
867 sysarg_t phone_hash
= IPC_GET_ARG5(answer
);
868 interface_t
*interface
;
870 futex_down(&async_futex
);
872 ht_link_t
*link
= hash_table_find(&interface_hash_table
, &iface
);
874 interface
= hash_table_get_inst(link
, interface_t
, link
);
876 interface
= async_new_interface(iface
);
879 futex_up(&async_futex
);
883 port_t
*port
= async_new_port(interface
, handler
, data
);
885 futex_up(&async_futex
);
891 futex_up(&async_futex
);
893 fid_t fid
= async_new_connection(answer
.in_task_id
, phone_hash
,
894 CAP_NIL
, NULL
, handler
, data
);
895 if (fid
== (uintptr_t) NULL
)
901 static size_t notification_key_hash(void *key
)
903 sysarg_t id
= *(sysarg_t
*) key
;
907 static size_t notification_hash(const ht_link_t
*item
)
909 notification_t
*notification
=
910 hash_table_get_inst(item
, notification_t
, link
);
911 return notification_key_hash(¬ification
->imethod
);
914 static bool notification_key_equal(void *key
, const ht_link_t
*item
)
916 sysarg_t id
= *(sysarg_t
*) key
;
917 notification_t
*notification
=
918 hash_table_get_inst(item
, notification_t
, link
);
919 return id
== notification
->imethod
;
922 /** Operations for the notification hash table. */
923 static hash_table_ops_t notification_hash_table_ops
= {
924 .hash
= notification_hash
,
925 .key_hash
= notification_key_hash
,
926 .key_equal
= notification_key_equal
,
928 .remove_callback
= NULL
931 /** Sort in current fibril's timeout request.
933 * @param wd Wait data of the current fibril.
936 void async_insert_timeout(awaiter_t
*wd
)
940 wd
->to_event
.occurred
= false;
941 wd
->to_event
.inlist
= true;
943 link_t
*tmp
= timeout_list
.head
.next
;
944 while (tmp
!= &timeout_list
.head
) {
946 = list_get_instance(tmp
, awaiter_t
, to_event
.link
);
948 if (tv_gteq(&cur
->to_event
.expires
, &wd
->to_event
.expires
))
954 list_insert_before(&wd
->to_event
.link
, tmp
);
957 /** Try to route a call to an appropriate connection fibril.
959 * If the proper connection fibril is found, a message with the call is added to
960 * its message queue. If the fibril was not active, it is activated and all
961 * timeouts are unregistered.
963 * @param chandle Handle of the incoming call.
964 * @param call Data of the incoming call.
966 * @return False if the call doesn't match any connection.
967 * @return True if the call was passed to the respective connection fibril.
970 static bool route_call(cap_handle_t chandle
, ipc_call_t
*call
)
974 futex_down(&async_futex
);
976 ht_link_t
*link
= hash_table_find(&conn_hash_table
, &(conn_key_t
){
977 .task_id
= call
->in_task_id
,
978 .phone_hash
= call
->in_phone_hash
981 futex_up(&async_futex
);
985 connection_t
*conn
= hash_table_get_inst(link
, connection_t
, link
);
987 msg_t
*msg
= malloc(sizeof(*msg
));
989 futex_up(&async_futex
);
993 msg
->chandle
= chandle
;
995 list_append(&msg
->link
, &conn
->msg_queue
);
997 if (IPC_GET_IMETHOD(*call
) == IPC_M_PHONE_HUNGUP
)
998 conn
->close_chandle
= chandle
;
1000 /* If the connection fibril is waiting for an event, activate it */
1001 if (!conn
->wdata
.active
) {
1003 /* If in timeout list, remove it */
1004 if (conn
->wdata
.to_event
.inlist
) {
1005 conn
->wdata
.to_event
.inlist
= false;
1006 list_remove(&conn
->wdata
.to_event
.link
);
1009 conn
->wdata
.active
= true;
1010 fibril_add_ready(conn
->wdata
.fid
);
1013 futex_up(&async_futex
);
1017 /** Process notification.
1019 * @param call Data of the incoming call.
1022 static void process_notification(ipc_call_t
*call
)
1024 async_notification_handler_t handler
= NULL
;
1029 futex_down(&async_futex
);
1031 ht_link_t
*link
= hash_table_find(¬ification_hash_table
,
1032 &IPC_GET_IMETHOD(*call
));
1034 notification_t
*notification
=
1035 hash_table_get_inst(link
, notification_t
, link
);
1036 handler
= notification
->handler
;
1037 data
= notification
->data
;
1040 futex_up(&async_futex
);
1043 handler(call
, data
);
1046 /** Subscribe to IRQ notification.
1048 * @param inr IRQ number.
1049 * @param handler Notification handler.
1050 * @param data Notification handler client data.
1051 * @param ucode Top-half pseudocode handler.
1053 * @return IRQ capability handle on success.
1054 * @return Negative error code.
1057 int async_irq_subscribe(int inr
, async_notification_handler_t handler
,
1058 void *data
, const irq_code_t
*ucode
)
1060 notification_t
*notification
=
1061 (notification_t
*) malloc(sizeof(notification_t
));
1065 futex_down(&async_futex
);
1067 sysarg_t imethod
= notification_avail
;
1068 notification_avail
++;
1070 notification
->imethod
= imethod
;
1071 notification
->handler
= handler
;
1072 notification
->data
= data
;
1074 hash_table_insert(¬ification_hash_table
, ¬ification
->link
);
1076 futex_up(&async_futex
);
1078 return ipc_irq_subscribe(inr
, imethod
, ucode
);
1081 /** Unsubscribe from IRQ notification.
1083 * @param cap IRQ capability handle.
1085 * @return Zero on success or a negative error code.
1088 int async_irq_unsubscribe(int cap
)
1090 // TODO: Remove entry from hash table
1091 // to avoid memory leak
1093 return ipc_irq_unsubscribe(cap
);
1096 /** Subscribe to event notifications.
1098 * @param evno Event type to subscribe.
1099 * @param handler Notification handler.
1100 * @param data Notification handler client data.
1102 * @return Zero on success or a negative error code.
1105 int async_event_subscribe(event_type_t evno
,
1106 async_notification_handler_t handler
, void *data
)
1108 notification_t
*notification
=
1109 (notification_t
*) malloc(sizeof(notification_t
));
1113 futex_down(&async_futex
);
1115 sysarg_t imethod
= notification_avail
;
1116 notification_avail
++;
1118 notification
->imethod
= imethod
;
1119 notification
->handler
= handler
;
1120 notification
->data
= data
;
1122 hash_table_insert(¬ification_hash_table
, ¬ification
->link
);
1124 futex_up(&async_futex
);
1126 return ipc_event_subscribe(evno
, imethod
);
1129 /** Subscribe to task event notifications.
1131 * @param evno Event type to subscribe.
1132 * @param handler Notification handler.
1133 * @param data Notification handler client data.
1135 * @return Zero on success or a negative error code.
1138 int async_event_task_subscribe(event_task_type_t evno
,
1139 async_notification_handler_t handler
, void *data
)
1141 notification_t
*notification
=
1142 (notification_t
*) malloc(sizeof(notification_t
));
1146 futex_down(&async_futex
);
1148 sysarg_t imethod
= notification_avail
;
1149 notification_avail
++;
1151 notification
->imethod
= imethod
;
1152 notification
->handler
= handler
;
1153 notification
->data
= data
;
1155 hash_table_insert(¬ification_hash_table
, ¬ification
->link
);
1157 futex_up(&async_futex
);
1159 return ipc_event_task_subscribe(evno
, imethod
);
1162 /** Unmask event notifications.
1164 * @param evno Event type to unmask.
1166 * @return Value returned by the kernel.
1169 int async_event_unmask(event_type_t evno
)
1171 return ipc_event_unmask(evno
);
1174 /** Unmask task event notifications.
1176 * @param evno Event type to unmask.
1178 * @return Value returned by the kernel.
1181 int async_event_task_unmask(event_task_type_t evno
)
1183 return ipc_event_task_unmask(evno
);
1186 /** Return new incoming message for the current (fibril-local) connection.
1188 * @param call Storage where the incoming call data will be stored.
1189 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1191 * @return If no timeout was specified, then a handle of the incoming call is
1192 * returned. If a timeout is specified, then a handle of the incoming
1193 * call is returned unless the timeout expires prior to receiving a
1194 * message. In that case zero CAP_NIL is returned.
1196 cap_handle_t
async_get_call_timeout(ipc_call_t
*call
, suseconds_t usecs
)
1199 assert(fibril_connection
);
1202 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1203 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1204 * I would never expect to find so many errors in
1207 connection_t
*conn
= fibril_connection
;
1209 futex_down(&async_futex
);
1212 getuptime(&conn
->wdata
.to_event
.expires
);
1213 tv_add_diff(&conn
->wdata
.to_event
.expires
, usecs
);
1215 conn
->wdata
.to_event
.inlist
= false;
1217 /* If nothing in queue, wait until something arrives */
1218 while (list_empty(&conn
->msg_queue
)) {
1219 if (conn
->close_chandle
) {
1221 * Handle the case when the connection was already
1222 * closed by the client but the server did not notice
1223 * the first IPC_M_PHONE_HUNGUP call and continues to
1224 * call async_get_call_timeout(). Repeat
1225 * IPC_M_PHONE_HUNGUP until the caller notices.
1227 memset(call
, 0, sizeof(ipc_call_t
));
1228 IPC_SET_IMETHOD(*call
, IPC_M_PHONE_HUNGUP
);
1229 futex_up(&async_futex
);
1230 return conn
->close_chandle
;
1234 async_insert_timeout(&conn
->wdata
);
1236 conn
->wdata
.active
= false;
1239 * Note: the current fibril will be rescheduled either due to a
1240 * timeout or due to an arriving message destined to it. In the
1241 * former case, handle_expired_timeouts() and, in the latter
1242 * case, route_call() will perform the wakeup.
1244 fibril_switch(FIBRIL_TO_MANAGER
);
1247 * Futex is up after getting back from async_manager.
1250 futex_down(&async_futex
);
1251 if ((usecs
) && (conn
->wdata
.to_event
.occurred
)
1252 && (list_empty(&conn
->msg_queue
))) {
1253 /* If we timed out -> exit */
1254 futex_up(&async_futex
);
1259 msg_t
*msg
= list_get_instance(list_first(&conn
->msg_queue
),
1261 list_remove(&msg
->link
);
1263 cap_handle_t chandle
= msg
->chandle
;
1267 futex_up(&async_futex
);
1271 void *async_get_client_data(void)
1273 assert(fibril_connection
);
1274 return fibril_connection
->client
->data
;
1277 void *async_get_client_data_by_id(task_id_t client_id
)
1279 client_t
*client
= async_client_get(client_id
, false);
1283 if (!client
->data
) {
1284 async_client_put(client
);
1288 return client
->data
;
1291 void async_put_client_data_by_id(task_id_t client_id
)
1293 client_t
*client
= async_client_get(client_id
, false);
1296 assert(client
->data
);
1298 /* Drop the reference we got in async_get_client_data_by_hash(). */
1299 async_client_put(client
);
1301 /* Drop our own reference we got at the beginning of this function. */
1302 async_client_put(client
);
1305 static port_t
*async_find_port(iface_t iface
, port_id_t port_id
)
1307 port_t
*port
= NULL
;
1309 futex_down(&async_futex
);
1311 ht_link_t
*link
= hash_table_find(&interface_hash_table
, &iface
);
1313 interface_t
*interface
=
1314 hash_table_get_inst(link
, interface_t
, link
);
1316 link
= hash_table_find(&interface
->port_hash_table
, &port_id
);
1318 port
= hash_table_get_inst(link
, port_t
, link
);
1321 futex_up(&async_futex
);
1326 /** Handle a call that was received.
1328 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1329 * Otherwise the call is routed to its connection fibril.
1331 * @param chandle Handle of the incoming call.
1332 * @param call Data of the incoming call.
1335 static void handle_call(cap_handle_t chandle
, ipc_call_t
*call
)
1339 /* Kernel notification */
1340 if ((chandle
== CAP_NIL
) && (call
->flags
& IPC_CALLID_NOTIFICATION
)) {
1341 fibril_t
*fibril
= (fibril_t
*) __tcb_get()->fibril_data
;
1342 unsigned oldsw
= fibril
->switches
;
1344 process_notification(call
);
1346 if (oldsw
!= fibril
->switches
) {
1348 * The notification handler did not execute atomically
1349 * and so the current manager fibril assumed the role of
1350 * a notification fibril. While waiting for its
1351 * resources, it switched to another manager fibril that
1352 * had already existed or it created a new one. We
1353 * therefore know there is at least yet another
1354 * manager fibril that can take over. We now kill the
1355 * current 'notification' fibril to prevent fibril
1356 * population explosion.
1358 futex_down(&async_futex
);
1359 fibril_switch(FIBRIL_FROM_DEAD
);
1365 /* New connection */
1366 if (IPC_GET_IMETHOD(*call
) == IPC_M_CONNECT_ME_TO
) {
1367 iface_t iface
= (iface_t
) IPC_GET_ARG1(*call
);
1368 sysarg_t in_phone_hash
= IPC_GET_ARG5(*call
);
1370 async_port_handler_t handler
= fallback_port_handler
;
1371 void *data
= fallback_port_data
;
1373 // TODO: Currently ignores all ports but the first one
1374 port_t
*port
= async_find_port(iface
, 0);
1376 handler
= port
->handler
;
1380 async_new_connection(call
->in_task_id
, in_phone_hash
, chandle
,
1381 call
, handler
, data
);
1385 /* Try to route the call through the connection hash table */
1386 if (route_call(chandle
, call
))
1389 /* Unknown call from unknown phone - hang it up */
1390 ipc_answer_0(chandle
, EHANGUP
);
1393 /** Fire all timeouts that expired. */
1394 static void handle_expired_timeouts(void)
1399 futex_down(&async_futex
);
1401 link_t
*cur
= list_first(&timeout_list
);
1402 while (cur
!= NULL
) {
1404 list_get_instance(cur
, awaiter_t
, to_event
.link
);
1406 if (tv_gt(&waiter
->to_event
.expires
, &tv
))
1409 list_remove(&waiter
->to_event
.link
);
1410 waiter
->to_event
.inlist
= false;
1411 waiter
->to_event
.occurred
= true;
1414 * Redundant condition?
1415 * The fibril should not be active when it gets here.
1417 if (!waiter
->active
) {
1418 waiter
->active
= true;
1419 fibril_add_ready(waiter
->fid
);
1422 cur
= list_first(&timeout_list
);
1425 futex_up(&async_futex
);
1428 /** Endless loop dispatching incoming calls and answers.
1430 * @return Never returns.
1433 static int async_manager_worker(void)
1436 if (fibril_switch(FIBRIL_FROM_MANAGER
)) {
1437 futex_up(&async_futex
);
1439 * async_futex is always held when entering a manager
1445 futex_down(&async_futex
);
1447 suseconds_t timeout
;
1448 unsigned int flags
= SYNCH_FLAGS_NONE
;
1449 if (!list_empty(&timeout_list
)) {
1450 awaiter_t
*waiter
= list_get_instance(
1451 list_first(&timeout_list
), awaiter_t
, to_event
.link
);
1456 if (tv_gteq(&tv
, &waiter
->to_event
.expires
)) {
1457 futex_up(&async_futex
);
1458 handle_expired_timeouts();
1460 * Notice that even if the event(s) already
1461 * expired (and thus the other fibril was
1462 * supposed to be running already),
1463 * we check for incoming IPC.
1465 * Otherwise, a fibril that continuously
1466 * creates (almost) expired events could
1467 * prevent IPC retrieval from the kernel.
1470 flags
= SYNCH_FLAGS_NON_BLOCKING
;
1473 timeout
= tv_sub_diff(&waiter
->to_event
.expires
,
1475 futex_up(&async_futex
);
1478 futex_up(&async_futex
);
1479 timeout
= SYNCH_NO_TIMEOUT
;
1482 atomic_inc(&threads_in_ipc_wait
);
1485 cap_handle_t chandle
= ipc_wait_cycle(&call
, timeout
, flags
);
1487 atomic_dec(&threads_in_ipc_wait
);
1489 assert(chandle
>= 0);
1491 if (chandle
== CAP_NIL
) {
1492 if (call
.flags
== 0) {
1493 /* This neither a notification nor an answer. */
1494 handle_expired_timeouts();
1499 if (call
.flags
& IPC_CALLID_ANSWERED
)
1502 handle_call(chandle
, &call
);
1508 /** Function to start async_manager as a standalone fibril.
1510 * When more kernel threads are used, one async manager should exist per thread.
1512 * @param arg Unused.
1513 * @return Never returns.
1516 static int async_manager_fibril(void *arg
)
1518 futex_up(&async_futex
);
1521 * async_futex is always locked when entering manager
1523 async_manager_worker();
1528 /** Add one manager to manager list. */
1529 void async_create_manager(void)
1531 fid_t fid
= fibril_create_generic(async_manager_fibril
, NULL
, PAGE_SIZE
);
1533 fibril_add_manager(fid
);
1536 /** Remove one manager from manager list */
1537 void async_destroy_manager(void)
1539 fibril_remove_manager();
1542 /** Initialize the async framework.
1545 void __async_init(void)
1547 if (!hash_table_create(&interface_hash_table
, 0, 0,
1548 &interface_hash_table_ops
))
1551 if (!hash_table_create(&client_hash_table
, 0, 0, &client_hash_table_ops
))
1554 if (!hash_table_create(&conn_hash_table
, 0, 0, &conn_hash_table_ops
))
1557 if (!hash_table_create(¬ification_hash_table
, 0, 0,
1558 ¬ification_hash_table_ops
))
1561 session_ns
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
1562 if (session_ns
== NULL
)
1565 session_ns
->iface
= 0;
1566 session_ns
->mgmt
= EXCHANGE_ATOMIC
;
1567 session_ns
->phone
= PHONE_NS
;
1568 session_ns
->arg1
= 0;
1569 session_ns
->arg2
= 0;
1570 session_ns
->arg3
= 0;
1572 fibril_mutex_initialize(&session_ns
->remote_state_mtx
);
1573 session_ns
->remote_state_data
= NULL
;
1575 list_initialize(&session_ns
->exch_list
);
1576 fibril_mutex_initialize(&session_ns
->mutex
);
1577 atomic_set(&session_ns
->refcnt
, 0);
1580 /** Reply received callback.
1582 * This function is called whenever a reply for an asynchronous message sent out
1583 * by the asynchronous framework is received.
1585 * Notify the fibril which is waiting for this message that it has arrived.
1587 * @param arg Pointer to the asynchronous message record.
1588 * @param retval Value returned in the answer.
1589 * @param data Call data of the answer.
1592 void reply_received(void *arg
, int retval
, ipc_call_t
*data
)
1596 futex_down(&async_futex
);
1598 amsg_t
*msg
= (amsg_t
*) arg
;
1599 msg
->retval
= retval
;
1601 /* Copy data after futex_down, just in case the call was detached */
1602 if ((msg
->dataptr
) && (data
))
1603 *msg
->dataptr
= *data
;
1607 /* Remove message from timeout list */
1608 if (msg
->wdata
.to_event
.inlist
)
1609 list_remove(&msg
->wdata
.to_event
.link
);
1614 assert(msg
->wdata
.active
);
1616 } else if (!msg
->wdata
.active
) {
1617 msg
->wdata
.active
= true;
1618 fibril_add_ready(msg
->wdata
.fid
);
1621 futex_up(&async_futex
);
1624 /** Send message and return id of the sent message.
1626 * The return value can be used as input for async_wait() to wait for
1629 * @param exch Exchange for sending the message.
1630 * @param imethod Service-defined interface and method.
1631 * @param arg1 Service-defined payload argument.
1632 * @param arg2 Service-defined payload argument.
1633 * @param arg3 Service-defined payload argument.
1634 * @param arg4 Service-defined payload argument.
1635 * @param dataptr If non-NULL, storage where the reply data will be stored.
1637 * @return Hash of the sent message or 0 on error.
1640 aid_t
async_send_fast(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
1641 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
, ipc_call_t
*dataptr
)
1646 amsg_t
*msg
= amsg_create();
1650 msg
->dataptr
= dataptr
;
1651 msg
->wdata
.active
= true;
1653 ipc_call_async_4(exch
->phone
, imethod
, arg1
, arg2
, arg3
, arg4
, msg
,
1659 /** Send message and return id of the sent message
1661 * The return value can be used as input for async_wait() to wait for
1664 * @param exch Exchange for sending the message.
1665 * @param imethod Service-defined interface and method.
1666 * @param arg1 Service-defined payload argument.
1667 * @param arg2 Service-defined payload argument.
1668 * @param arg3 Service-defined payload argument.
1669 * @param arg4 Service-defined payload argument.
1670 * @param arg5 Service-defined payload argument.
1671 * @param dataptr If non-NULL, storage where the reply data will be
1674 * @return Hash of the sent message or 0 on error.
1677 aid_t
async_send_slow(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
1678 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
, sysarg_t arg5
,
1679 ipc_call_t
*dataptr
)
1684 amsg_t
*msg
= amsg_create();
1688 msg
->dataptr
= dataptr
;
1689 msg
->wdata
.active
= true;
1691 ipc_call_async_5(exch
->phone
, imethod
, arg1
, arg2
, arg3
, arg4
, arg5
,
1692 msg
, reply_received
);
1697 /** Wait for a message sent by the async framework.
1699 * @param amsgid Hash of the message to wait for.
1700 * @param retval Pointer to storage where the retval of the answer will
1704 void async_wait_for(aid_t amsgid
, sysarg_t
*retval
)
1708 amsg_t
*msg
= (amsg_t
*) amsgid
;
1710 futex_down(&async_futex
);
1712 assert(!msg
->forget
);
1713 assert(!msg
->destroyed
);
1716 futex_up(&async_futex
);
1720 msg
->wdata
.fid
= fibril_get_id();
1721 msg
->wdata
.active
= false;
1722 msg
->wdata
.to_event
.inlist
= false;
1724 /* Leave the async_futex locked when entering this function */
1725 fibril_switch(FIBRIL_TO_MANAGER
);
1727 /* Futex is up automatically after fibril_switch */
1731 *retval
= msg
->retval
;
1736 /** Wait for a message sent by the async framework, timeout variant.
1738 * If the wait times out, the caller may choose to either wait again by calling
1739 * async_wait_for() or async_wait_timeout(), or forget the message via
1742 * @param amsgid Hash of the message to wait for.
1743 * @param retval Pointer to storage where the retval of the answer will
1745 * @param timeout Timeout in microseconds.
1747 * @return Zero on success, ETIMEOUT if the timeout has expired.
1750 int async_wait_timeout(aid_t amsgid
, sysarg_t
*retval
, suseconds_t timeout
)
1754 amsg_t
*msg
= (amsg_t
*) amsgid
;
1756 futex_down(&async_futex
);
1758 assert(!msg
->forget
);
1759 assert(!msg
->destroyed
);
1762 futex_up(&async_futex
);
1767 * Negative timeout is converted to zero timeout to avoid
1768 * using tv_add with negative augmenter.
1773 getuptime(&msg
->wdata
.to_event
.expires
);
1774 tv_add_diff(&msg
->wdata
.to_event
.expires
, timeout
);
1777 * Current fibril is inserted as waiting regardless of the
1778 * "size" of the timeout.
1780 * Checking for msg->done and immediately bailing out when
1781 * timeout == 0 would mean that the manager fibril would never
1782 * run (consider single threaded program).
1783 * Thus the IPC answer would be never retrieved from the kernel.
1785 * Notice that the actual delay would be very small because we
1786 * - switch to manager fibril
1787 * - the manager sees expired timeout
1788 * - and thus adds us back to ready queue
1789 * - manager switches back to some ready fibril
1790 * (prior it, it checks for incoming IPC).
1793 msg
->wdata
.fid
= fibril_get_id();
1794 msg
->wdata
.active
= false;
1795 async_insert_timeout(&msg
->wdata
);
1797 /* Leave the async_futex locked when entering this function */
1798 fibril_switch(FIBRIL_TO_MANAGER
);
1800 /* Futex is up automatically after fibril_switch */
1807 *retval
= msg
->retval
;
1814 /** Discard the message / reply on arrival.
1816 * The message will be marked to be discarded once the reply arrives in
1817 * reply_received(). It is not allowed to call async_wait_for() or
1818 * async_wait_timeout() on this message after a call to this function.
1820 * @param amsgid Hash of the message to forget.
1822 void async_forget(aid_t amsgid
)
1824 amsg_t
*msg
= (amsg_t
*) amsgid
;
1827 assert(!msg
->forget
);
1828 assert(!msg
->destroyed
);
1830 futex_down(&async_futex
);
1835 msg
->dataptr
= NULL
;
1839 futex_up(&async_futex
);
1842 /** Wait for specified time.
1844 * The current fibril is suspended but the thread continues to execute.
1846 * @param timeout Duration of the wait in microseconds.
1849 void async_usleep(suseconds_t timeout
)
1851 amsg_t
*msg
= amsg_create();
1855 msg
->wdata
.fid
= fibril_get_id();
1857 getuptime(&msg
->wdata
.to_event
.expires
);
1858 tv_add_diff(&msg
->wdata
.to_event
.expires
, timeout
);
1860 futex_down(&async_futex
);
1862 async_insert_timeout(&msg
->wdata
);
1864 /* Leave the async_futex locked when entering this function */
1865 fibril_switch(FIBRIL_TO_MANAGER
);
1867 /* Futex is up automatically after fibril_switch() */
1872 /** Pseudo-synchronous message sending - fast version.
1874 * Send message asynchronously and return only after the reply arrives.
1876 * This function can only transfer 4 register payload arguments. For
1877 * transferring more arguments, see the slower async_req_slow().
1879 * @param exch Exchange for sending the message.
1880 * @param imethod Interface and method of the call.
1881 * @param arg1 Service-defined payload argument.
1882 * @param arg2 Service-defined payload argument.
1883 * @param arg3 Service-defined payload argument.
1884 * @param arg4 Service-defined payload argument.
1885 * @param r1 If non-NULL, storage for the 1st reply argument.
1886 * @param r2 If non-NULL, storage for the 2nd reply argument.
1887 * @param r3 If non-NULL, storage for the 3rd reply argument.
1888 * @param r4 If non-NULL, storage for the 4th reply argument.
1889 * @param r5 If non-NULL, storage for the 5th reply argument.
1891 * @return Return code of the reply or a negative error code.
1894 sysarg_t
async_req_fast(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
1895 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
, sysarg_t
*r1
, sysarg_t
*r2
,
1896 sysarg_t
*r3
, sysarg_t
*r4
, sysarg_t
*r5
)
1902 aid_t aid
= async_send_4(exch
, imethod
, arg1
, arg2
, arg3
, arg4
,
1906 async_wait_for(aid
, &rc
);
1909 *r1
= IPC_GET_ARG1(result
);
1912 *r2
= IPC_GET_ARG2(result
);
1915 *r3
= IPC_GET_ARG3(result
);
1918 *r4
= IPC_GET_ARG4(result
);
1921 *r5
= IPC_GET_ARG5(result
);
1926 /** Pseudo-synchronous message sending - slow version.
1928 * Send message asynchronously and return only after the reply arrives.
1930 * @param exch Exchange for sending the message.
1931 * @param imethod Interface and method of the call.
1932 * @param arg1 Service-defined payload argument.
1933 * @param arg2 Service-defined payload argument.
1934 * @param arg3 Service-defined payload argument.
1935 * @param arg4 Service-defined payload argument.
1936 * @param arg5 Service-defined payload argument.
1937 * @param r1 If non-NULL, storage for the 1st reply argument.
1938 * @param r2 If non-NULL, storage for the 2nd reply argument.
1939 * @param r3 If non-NULL, storage for the 3rd reply argument.
1940 * @param r4 If non-NULL, storage for the 4th reply argument.
1941 * @param r5 If non-NULL, storage for the 5th reply argument.
1943 * @return Return code of the reply or a negative error code.
1946 sysarg_t
async_req_slow(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
1947 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
, sysarg_t arg5
, sysarg_t
*r1
,
1948 sysarg_t
*r2
, sysarg_t
*r3
, sysarg_t
*r4
, sysarg_t
*r5
)
1954 aid_t aid
= async_send_5(exch
, imethod
, arg1
, arg2
, arg3
, arg4
, arg5
,
1958 async_wait_for(aid
, &rc
);
1961 *r1
= IPC_GET_ARG1(result
);
1964 *r2
= IPC_GET_ARG2(result
);
1967 *r3
= IPC_GET_ARG3(result
);
1970 *r4
= IPC_GET_ARG4(result
);
1973 *r5
= IPC_GET_ARG5(result
);
1978 void async_msg_0(async_exch_t
*exch
, sysarg_t imethod
)
1981 ipc_call_async_0(exch
->phone
, imethod
, NULL
, NULL
);
1984 void async_msg_1(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
)
1987 ipc_call_async_1(exch
->phone
, imethod
, arg1
, NULL
, NULL
);
1990 void async_msg_2(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
1994 ipc_call_async_2(exch
->phone
, imethod
, arg1
, arg2
, NULL
, NULL
);
1997 void async_msg_3(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
1998 sysarg_t arg2
, sysarg_t arg3
)
2001 ipc_call_async_3(exch
->phone
, imethod
, arg1
, arg2
, arg3
, NULL
,
2005 void async_msg_4(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
2006 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
)
2009 ipc_call_async_4(exch
->phone
, imethod
, arg1
, arg2
, arg3
, arg4
,
2013 void async_msg_5(async_exch_t
*exch
, sysarg_t imethod
, sysarg_t arg1
,
2014 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
, sysarg_t arg5
)
2017 ipc_call_async_5(exch
->phone
, imethod
, arg1
, arg2
, arg3
, arg4
,
2021 sysarg_t
async_answer_0(cap_handle_t chandle
, sysarg_t retval
)
2023 return ipc_answer_0(chandle
, retval
);
2026 sysarg_t
async_answer_1(cap_handle_t chandle
, sysarg_t retval
, sysarg_t arg1
)
2028 return ipc_answer_1(chandle
, retval
, arg1
);
2031 sysarg_t
async_answer_2(cap_handle_t chandle
, sysarg_t retval
, sysarg_t arg1
,
2034 return ipc_answer_2(chandle
, retval
, arg1
, arg2
);
2037 sysarg_t
async_answer_3(cap_handle_t chandle
, sysarg_t retval
, sysarg_t arg1
,
2038 sysarg_t arg2
, sysarg_t arg3
)
2040 return ipc_answer_3(chandle
, retval
, arg1
, arg2
, arg3
);
2043 sysarg_t
async_answer_4(cap_handle_t chandle
, sysarg_t retval
, sysarg_t arg1
,
2044 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
)
2046 return ipc_answer_4(chandle
, retval
, arg1
, arg2
, arg3
, arg4
);
2049 sysarg_t
async_answer_5(cap_handle_t chandle
, sysarg_t retval
, sysarg_t arg1
,
2050 sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
, sysarg_t arg5
)
2052 return ipc_answer_5(chandle
, retval
, arg1
, arg2
, arg3
, arg4
, arg5
);
2055 int async_forward_fast(cap_handle_t chandle
, async_exch_t
*exch
,
2056 sysarg_t imethod
, sysarg_t arg1
, sysarg_t arg2
, unsigned int mode
)
2061 return ipc_forward_fast(chandle
, exch
->phone
, imethod
, arg1
, arg2
, mode
);
2064 int async_forward_slow(cap_handle_t chandle
, async_exch_t
*exch
,
2065 sysarg_t imethod
, sysarg_t arg1
, sysarg_t arg2
, sysarg_t arg3
,
2066 sysarg_t arg4
, sysarg_t arg5
, unsigned int mode
)
2071 return ipc_forward_slow(chandle
, exch
->phone
, imethod
, arg1
, arg2
, arg3
,
2075 /** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2077 * Ask through phone for a new connection to some service.
2079 * @param exch Exchange for sending the message.
2080 * @param arg1 User defined argument.
2081 * @param arg2 User defined argument.
2082 * @param arg3 User defined argument.
2084 * @return Zero on success or a negative error code.
2087 int async_connect_to_me(async_exch_t
*exch
, sysarg_t arg1
, sysarg_t arg2
,
2094 aid_t req
= async_send_3(exch
, IPC_M_CONNECT_TO_ME
, arg1
, arg2
, arg3
,
2098 async_wait_for(req
, &rc
);
2105 static int async_connect_me_to_internal(int phone
, sysarg_t arg1
, sysarg_t arg2
,
2106 sysarg_t arg3
, sysarg_t arg4
)
2110 amsg_t
*msg
= amsg_create();
2114 msg
->dataptr
= &result
;
2115 msg
->wdata
.active
= true;
2117 ipc_call_async_4(phone
, IPC_M_CONNECT_ME_TO
, arg1
, arg2
, arg3
, arg4
,
2118 msg
, reply_received
);
2121 async_wait_for((aid_t
) msg
, &rc
);
2126 return (int) IPC_GET_ARG5(result
);
2129 /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2131 * Ask through for a new connection to some service.
2133 * @param mgmt Exchange management style.
2134 * @param exch Exchange for sending the message.
2135 * @param arg1 User defined argument.
2136 * @param arg2 User defined argument.
2137 * @param arg3 User defined argument.
2139 * @return New session on success or NULL on error.
2142 async_sess_t
*async_connect_me_to(exch_mgmt_t mgmt
, async_exch_t
*exch
,
2143 sysarg_t arg1
, sysarg_t arg2
, sysarg_t arg3
)
2150 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
2156 int phone
= async_connect_me_to_internal(exch
->phone
, arg1
, arg2
, arg3
,
2166 sess
->phone
= phone
;
2171 fibril_mutex_initialize(&sess
->remote_state_mtx
);
2172 sess
->remote_state_data
= NULL
;
2174 list_initialize(&sess
->exch_list
);
2175 fibril_mutex_initialize(&sess
->mutex
);
2176 atomic_set(&sess
->refcnt
, 0);
2181 /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2183 * Ask through phone for a new connection to some service and block until
2186 * @param exch Exchange for sending the message.
2187 * @param iface Connection interface.
2188 * @param arg2 User defined argument.
2189 * @param arg3 User defined argument.
2191 * @return New session on success or NULL on error.
2194 async_sess_t
*async_connect_me_to_iface(async_exch_t
*exch
, iface_t iface
,
2195 sysarg_t arg2
, sysarg_t arg3
)
2202 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
2208 int phone
= async_connect_me_to_internal(exch
->phone
, iface
, arg2
,
2216 sess
->iface
= iface
;
2217 sess
->phone
= phone
;
2222 fibril_mutex_initialize(&sess
->remote_state_mtx
);
2223 sess
->remote_state_data
= NULL
;
2225 list_initialize(&sess
->exch_list
);
2226 fibril_mutex_initialize(&sess
->mutex
);
2227 atomic_set(&sess
->refcnt
, 0);
2232 /** Set arguments for new connections.
2234 * FIXME This is an ugly hack to work around the problem that parallel
2235 * exchanges are implemented using parallel connections. When we create
2236 * a callback session, the framework does not know arguments for the new
2239 * The proper solution seems to be to implement parallel exchanges using
2242 void async_sess_args_set(async_sess_t
*sess
, sysarg_t arg1
, sysarg_t arg2
,
2250 /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2252 * Ask through phone for a new connection to some service and block until
2255 * @param mgmt Exchange management style.
2256 * @param exch Exchange for sending the message.
2257 * @param arg1 User defined argument.
2258 * @param arg2 User defined argument.
2259 * @param arg3 User defined argument.
2261 * @return New session on success or NULL on error.
2264 async_sess_t
*async_connect_me_to_blocking(exch_mgmt_t mgmt
, async_exch_t
*exch
,
2265 sysarg_t arg1
, sysarg_t arg2
, sysarg_t arg3
)
2272 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
2278 int phone
= async_connect_me_to_internal(exch
->phone
, arg1
, arg2
, arg3
,
2289 sess
->phone
= phone
;
2294 fibril_mutex_initialize(&sess
->remote_state_mtx
);
2295 sess
->remote_state_data
= NULL
;
2297 list_initialize(&sess
->exch_list
);
2298 fibril_mutex_initialize(&sess
->mutex
);
2299 atomic_set(&sess
->refcnt
, 0);
2304 /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2306 * Ask through phone for a new connection to some service and block until
2309 * @param exch Exchange for sending the message.
2310 * @param iface Connection interface.
2311 * @param arg2 User defined argument.
2312 * @param arg3 User defined argument.
2314 * @return New session on success or NULL on error.
2317 async_sess_t
*async_connect_me_to_blocking_iface(async_exch_t
*exch
, iface_t iface
,
2318 sysarg_t arg2
, sysarg_t arg3
)
2325 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
2331 int phone
= async_connect_me_to_internal(exch
->phone
, iface
, arg2
,
2332 arg3
, IPC_FLAG_BLOCKING
);
2339 sess
->iface
= iface
;
2340 sess
->phone
= phone
;
2345 fibril_mutex_initialize(&sess
->remote_state_mtx
);
2346 sess
->remote_state_data
= NULL
;
2348 list_initialize(&sess
->exch_list
);
2349 fibril_mutex_initialize(&sess
->mutex
);
2350 atomic_set(&sess
->refcnt
, 0);
2355 /** Connect to a task specified by id.
2358 async_sess_t
*async_connect_kbox(task_id_t id
)
2360 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
2366 int phone
= ipc_connect_kbox(id
);
2374 sess
->mgmt
= EXCHANGE_ATOMIC
;
2375 sess
->phone
= phone
;
2380 fibril_mutex_initialize(&sess
->remote_state_mtx
);
2381 sess
->remote_state_data
= NULL
;
2383 list_initialize(&sess
->exch_list
);
2384 fibril_mutex_initialize(&sess
->mutex
);
2385 atomic_set(&sess
->refcnt
, 0);
2390 static int async_hangup_internal(int phone
)
2392 return ipc_hangup(phone
);
2395 /** Wrapper for ipc_hangup.
2397 * @param sess Session to hung up.
2399 * @return Zero on success or a negative error code.
2402 int async_hangup(async_sess_t
*sess
)
2408 if (atomic_get(&sess
->refcnt
) > 0)
2411 fibril_mutex_lock(&async_sess_mutex
);
2413 int rc
= async_hangup_internal(sess
->phone
);
2415 while (!list_empty(&sess
->exch_list
)) {
2416 exch
= (async_exch_t
*)
2417 list_get_instance(list_first(&sess
->exch_list
),
2418 async_exch_t
, sess_link
);
2420 list_remove(&exch
->sess_link
);
2421 list_remove(&exch
->global_link
);
2422 async_hangup_internal(exch
->phone
);
2428 fibril_mutex_unlock(&async_sess_mutex
);
2433 /** Interrupt one thread of this task from waiting for IPC. */
2434 void async_poke(void)
2439 /** Start new exchange in a session.
2441 * @param session Session.
2443 * @return New exchange or NULL on error.
2446 async_exch_t
*async_exchange_begin(async_sess_t
*sess
)
2451 exch_mgmt_t mgmt
= sess
->mgmt
;
2452 if (sess
->iface
!= 0)
2453 mgmt
= sess
->iface
& IFACE_EXCHANGE_MASK
;
2455 async_exch_t
*exch
= NULL
;
2457 fibril_mutex_lock(&async_sess_mutex
);
2459 if (!list_empty(&sess
->exch_list
)) {
2461 * There are inactive exchanges in the session.
2463 exch
= (async_exch_t
*)
2464 list_get_instance(list_first(&sess
->exch_list
),
2465 async_exch_t
, sess_link
);
2467 list_remove(&exch
->sess_link
);
2468 list_remove(&exch
->global_link
);
2471 * There are no available exchanges in the session.
2474 if ((mgmt
== EXCHANGE_ATOMIC
) ||
2475 (mgmt
== EXCHANGE_SERIALIZE
)) {
2476 exch
= (async_exch_t
*) malloc(sizeof(async_exch_t
));
2478 link_initialize(&exch
->sess_link
);
2479 link_initialize(&exch
->global_link
);
2481 exch
->phone
= sess
->phone
;
2483 } else if (mgmt
== EXCHANGE_PARALLEL
) {
2488 * Make a one-time attempt to connect a new data phone.
2490 phone
= async_connect_me_to_internal(sess
->phone
, sess
->arg1
,
2491 sess
->arg2
, sess
->arg3
, 0);
2493 exch
= (async_exch_t
*) malloc(sizeof(async_exch_t
));
2495 link_initialize(&exch
->sess_link
);
2496 link_initialize(&exch
->global_link
);
2498 exch
->phone
= phone
;
2500 async_hangup_internal(phone
);
2501 } else if (!list_empty(&inactive_exch_list
)) {
2503 * We did not manage to connect a new phone. But we
2504 * can try to close some of the currently inactive
2505 * connections in other sessions and try again.
2507 exch
= (async_exch_t
*)
2508 list_get_instance(list_first(&inactive_exch_list
),
2509 async_exch_t
, global_link
);
2511 list_remove(&exch
->sess_link
);
2512 list_remove(&exch
->global_link
);
2513 async_hangup_internal(exch
->phone
);
2518 * Wait for a phone to become available.
2520 fibril_condvar_wait(&avail_phone_cv
, &async_sess_mutex
);
2526 fibril_mutex_unlock(&async_sess_mutex
);
2529 atomic_inc(&sess
->refcnt
);
2531 if (mgmt
== EXCHANGE_SERIALIZE
)
2532 fibril_mutex_lock(&sess
->mutex
);
2538 /** Finish an exchange.
2540 * @param exch Exchange to finish.
2543 void async_exchange_end(async_exch_t
*exch
)
2548 async_sess_t
*sess
= exch
->sess
;
2549 assert(sess
!= NULL
);
2551 exch_mgmt_t mgmt
= sess
->mgmt
;
2552 if (sess
->iface
!= 0)
2553 mgmt
= sess
->iface
& IFACE_EXCHANGE_MASK
;
2555 atomic_dec(&sess
->refcnt
);
2557 if (mgmt
== EXCHANGE_SERIALIZE
)
2558 fibril_mutex_unlock(&sess
->mutex
);
2560 fibril_mutex_lock(&async_sess_mutex
);
2562 list_append(&exch
->sess_link
, &sess
->exch_list
);
2563 list_append(&exch
->global_link
, &inactive_exch_list
);
2564 fibril_condvar_signal(&avail_phone_cv
);
2566 fibril_mutex_unlock(&async_sess_mutex
);
2569 /** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2571 * @param exch Exchange for sending the message.
2572 * @param size Size of the destination address space area.
2573 * @param arg User defined argument.
2574 * @param flags Storage for the received flags. Can be NULL.
2575 * @param dst Address of the storage for the destination address space area
2576 * base address. Cannot be NULL.
2578 * @return Zero on success or a negative error code from errno.h.
2581 int async_share_in_start(async_exch_t
*exch
, size_t size
, sysarg_t arg
,
2582 unsigned int *flags
, void **dst
)
2587 sysarg_t _flags
= 0;
2588 sysarg_t _dst
= (sysarg_t
) -1;
2589 int res
= async_req_2_4(exch
, IPC_M_SHARE_IN
, (sysarg_t
) size
,
2590 arg
, NULL
, &_flags
, NULL
, &_dst
);
2593 *flags
= (unsigned int) _flags
;
2595 *dst
= (void *) _dst
;
2599 /** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2601 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2602 * calls so that the user doesn't have to remember the meaning of each IPC
2605 * So far, this wrapper is to be used from within a connection fibril.
2607 * @param chandle Storage for the handle of the IPC_M_SHARE_IN call.
2608 * @param size Destination address space area size.
2610 * @return True on success, false on failure.
2613 bool async_share_in_receive(cap_handle_t
*chandle
, size_t *size
)
2619 *chandle
= async_get_call(&data
);
2621 if (IPC_GET_IMETHOD(data
) != IPC_M_SHARE_IN
)
2624 *size
= (size_t) IPC_GET_ARG1(data
);
2628 /** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2630 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2631 * calls so that the user doesn't have to remember the meaning of each IPC
2634 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
2635 * @param src Source address space base.
2636 * @param flags Flags to be used for sharing. Bits can be only cleared.
2638 * @return Zero on success or a value from @ref errno.h on failure.
2641 int async_share_in_finalize(cap_handle_t chandle
, void *src
, unsigned int flags
)
2643 return ipc_answer_3(chandle
, EOK
, (sysarg_t
) src
, (sysarg_t
) flags
,
2644 (sysarg_t
) __entry
);
2647 /** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2649 * @param exch Exchange for sending the message.
2650 * @param src Source address space area base address.
2651 * @param flags Flags to be used for sharing. Bits can be only cleared.
2653 * @return Zero on success or a negative error code from errno.h.
2656 int async_share_out_start(async_exch_t
*exch
, void *src
, unsigned int flags
)
2661 return async_req_3_0(exch
, IPC_M_SHARE_OUT
, (sysarg_t
) src
, 0,
2665 /** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2667 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2668 * calls so that the user doesn't have to remember the meaning of each IPC
2671 * So far, this wrapper is to be used from within a connection fibril.
2673 * @param chandle Storage for the hash of the IPC_M_SHARE_OUT call.
2674 * @param size Storage for the source address space area size.
2675 * @param flags Storage for the sharing flags.
2677 * @return True on success, false on failure.
2680 bool async_share_out_receive(cap_handle_t
*chandle
, size_t *size
,
2681 unsigned int *flags
)
2688 *chandle
= async_get_call(&data
);
2690 if (IPC_GET_IMETHOD(data
) != IPC_M_SHARE_OUT
)
2693 *size
= (size_t) IPC_GET_ARG2(data
);
2694 *flags
= (unsigned int) IPC_GET_ARG3(data
);
2698 /** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2700 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2701 * calls so that the user doesn't have to remember the meaning of each IPC
2704 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
2705 * @param dst Address of the storage for the destination address space area
2708 * @return Zero on success or a value from @ref errno.h on failure.
2711 int async_share_out_finalize(cap_handle_t chandle
, void **dst
)
2713 return ipc_answer_2(chandle
, EOK
, (sysarg_t
) __entry
, (sysarg_t
) dst
);
2716 /** Start IPC_M_DATA_READ using the async framework.
2718 * @param exch Exchange for sending the message.
2719 * @param dst Address of the beginning of the destination buffer.
2720 * @param size Size of the destination buffer (in bytes).
2721 * @param dataptr Storage of call data (arg 2 holds actual data size).
2723 * @return Hash of the sent message or 0 on error.
2726 aid_t
async_data_read(async_exch_t
*exch
, void *dst
, size_t size
,
2727 ipc_call_t
*dataptr
)
2729 return async_send_2(exch
, IPC_M_DATA_READ
, (sysarg_t
) dst
,
2730 (sysarg_t
) size
, dataptr
);
2733 /** Wrapper for IPC_M_DATA_READ calls using the async framework.
2735 * @param exch Exchange for sending the message.
2736 * @param dst Address of the beginning of the destination buffer.
2737 * @param size Size of the destination buffer.
2739 * @return Zero on success or a negative error code from errno.h.
2742 int async_data_read_start(async_exch_t
*exch
, void *dst
, size_t size
)
2747 return async_req_2_0(exch
, IPC_M_DATA_READ
, (sysarg_t
) dst
,
2751 /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2753 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2754 * calls so that the user doesn't have to remember the meaning of each IPC
2757 * So far, this wrapper is to be used from within a connection fibril.
2759 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
2760 * @param size Storage for the maximum size. Can be NULL.
2762 * @return True on success, false on failure.
2765 bool async_data_read_receive(cap_handle_t
*chandle
, size_t *size
)
2768 return async_data_read_receive_call(chandle
, &data
, size
);
2771 /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2773 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2774 * calls so that the user doesn't have to remember the meaning of each IPC
2777 * So far, this wrapper is to be used from within a connection fibril.
2779 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
2780 * @param size Storage for the maximum size. Can be NULL.
2782 * @return True on success, false on failure.
2785 bool async_data_read_receive_call(cap_handle_t
*chandle
, ipc_call_t
*data
,
2791 *chandle
= async_get_call(data
);
2793 if (IPC_GET_IMETHOD(*data
) != IPC_M_DATA_READ
)
2797 *size
= (size_t) IPC_GET_ARG2(*data
);
2802 /** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2804 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2805 * calls so that the user doesn't have to remember the meaning of each IPC
2808 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
2809 * @param src Source address for the IPC_M_DATA_READ call.
2810 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2811 * the maximum size announced by the sender.
2813 * @return Zero on success or a value from @ref errno.h on failure.
2816 int async_data_read_finalize(cap_handle_t chandle
, const void *src
, size_t size
)
2818 return ipc_answer_2(chandle
, EOK
, (sysarg_t
) src
, (sysarg_t
) size
);
2821 /** Wrapper for forwarding any read request
2824 int async_data_read_forward_fast(async_exch_t
*exch
, sysarg_t imethod
,
2825 sysarg_t arg1
, sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
,
2826 ipc_call_t
*dataptr
)
2831 cap_handle_t chandle
;
2832 if (!async_data_read_receive(&chandle
, NULL
)) {
2833 ipc_answer_0(chandle
, EINVAL
);
2837 aid_t msg
= async_send_fast(exch
, imethod
, arg1
, arg2
, arg3
, arg4
,
2840 ipc_answer_0(chandle
, EINVAL
);
2844 int retval
= ipc_forward_fast(chandle
, exch
->phone
, 0, 0, 0,
2845 IPC_FF_ROUTE_FROM_ME
);
2846 if (retval
!= EOK
) {
2848 ipc_answer_0(chandle
, retval
);
2853 async_wait_for(msg
, &rc
);
2858 /** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2860 * @param exch Exchange for sending the message.
2861 * @param src Address of the beginning of the source buffer.
2862 * @param size Size of the source buffer.
2864 * @return Zero on success or a negative error code from errno.h.
2867 int async_data_write_start(async_exch_t
*exch
, const void *src
, size_t size
)
2872 return async_req_2_0(exch
, IPC_M_DATA_WRITE
, (sysarg_t
) src
,
2876 /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2878 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2879 * calls so that the user doesn't have to remember the meaning of each IPC
2882 * So far, this wrapper is to be used from within a connection fibril.
2884 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
2885 * @param size Storage for the suggested size. May be NULL.
2887 * @return True on success, false on failure.
2890 bool async_data_write_receive(cap_handle_t
*chandle
, size_t *size
)
2893 return async_data_write_receive_call(chandle
, &data
, size
);
2896 /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2898 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2899 * calls so that the user doesn't have to remember the meaning of each IPC
2902 * So far, this wrapper is to be used from within a connection fibril.
2904 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
2905 * @param data Storage for the ipc call data.
2906 * @param size Storage for the suggested size. May be NULL.
2908 * @return True on success, false on failure.
2911 bool async_data_write_receive_call(cap_handle_t
*chandle
, ipc_call_t
*data
,
2917 *chandle
= async_get_call(data
);
2919 if (IPC_GET_IMETHOD(*data
) != IPC_M_DATA_WRITE
)
2923 *size
= (size_t) IPC_GET_ARG2(*data
);
2928 /** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2930 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2931 * calls so that the user doesn't have to remember the meaning of each IPC
2934 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
2935 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2936 * @param size Final size for the IPC_M_DATA_WRITE call.
2938 * @return Zero on success or a value from @ref errno.h on failure.
2941 int async_data_write_finalize(cap_handle_t chandle
, void *dst
, size_t size
)
2943 return ipc_answer_2(chandle
, EOK
, (sysarg_t
) dst
, (sysarg_t
) size
);
2946 /** Wrapper for receiving binary data or strings
2948 * This wrapper only makes it more comfortable to use async_data_write_*
2949 * functions to receive binary data or strings.
2951 * @param data Pointer to data pointer (which should be later disposed
2952 * by free()). If the operation fails, the pointer is not
2954 * @param nullterm If true then the received data is always zero terminated.
2955 * This also causes to allocate one extra byte beyond the
2956 * raw transmitted data.
2957 * @param min_size Minimum size (in bytes) of the data to receive.
2958 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
2960 * @param granulariy If non-zero then the size of the received data has to
2961 * be divisible by this value.
2962 * @param received If not NULL, the size of the received data is stored here.
2964 * @return Zero on success or a value from @ref errno.h on failure.
2967 int async_data_write_accept(void **data
, const bool nullterm
,
2968 const size_t min_size
, const size_t max_size
, const size_t granularity
,
2973 cap_handle_t chandle
;
2975 if (!async_data_write_receive(&chandle
, &size
)) {
2976 ipc_answer_0(chandle
, EINVAL
);
2980 if (size
< min_size
) {
2981 ipc_answer_0(chandle
, EINVAL
);
2985 if ((max_size
> 0) && (size
> max_size
)) {
2986 ipc_answer_0(chandle
, EINVAL
);
2990 if ((granularity
> 0) && ((size
% granularity
) != 0)) {
2991 ipc_answer_0(chandle
, EINVAL
);
2998 arg_data
= malloc(size
+ 1);
3000 arg_data
= malloc(size
);
3002 if (arg_data
== NULL
) {
3003 ipc_answer_0(chandle
, ENOMEM
);
3007 int rc
= async_data_write_finalize(chandle
, arg_data
, size
);
3014 ((char *) arg_data
)[size
] = 0;
3017 if (received
!= NULL
)
3023 /** Wrapper for voiding any data that is about to be received
3025 * This wrapper can be used to void any pending data
3027 * @param retval Error value from @ref errno.h to be returned to the caller.
3030 void async_data_write_void(sysarg_t retval
)
3032 cap_handle_t chandle
;
3033 async_data_write_receive(&chandle
, NULL
);
3034 ipc_answer_0(chandle
, retval
);
3037 /** Wrapper for forwarding any data that is about to be received
3040 int async_data_write_forward_fast(async_exch_t
*exch
, sysarg_t imethod
,
3041 sysarg_t arg1
, sysarg_t arg2
, sysarg_t arg3
, sysarg_t arg4
,
3042 ipc_call_t
*dataptr
)
3047 cap_handle_t chandle
;
3048 if (!async_data_write_receive(&chandle
, NULL
)) {
3049 ipc_answer_0(chandle
, EINVAL
);
3053 aid_t msg
= async_send_fast(exch
, imethod
, arg1
, arg2
, arg3
, arg4
,
3056 ipc_answer_0(chandle
, EINVAL
);
3060 int retval
= ipc_forward_fast(chandle
, exch
->phone
, 0, 0, 0,
3061 IPC_FF_ROUTE_FROM_ME
);
3062 if (retval
!= EOK
) {
3064 ipc_answer_0(chandle
, retval
);
3069 async_wait_for(msg
, &rc
);
3074 /** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3076 * If the current call is IPC_M_CONNECT_TO_ME then a new
3077 * async session is created for the accepted phone.
3079 * @param mgmt Exchange management style.
3081 * @return New async session.
3082 * @return NULL on failure.
3085 async_sess_t
*async_callback_receive(exch_mgmt_t mgmt
)
3087 /* Accept the phone */
3089 cap_handle_t chandle
= async_get_call(&call
);
3090 cap_handle_t phandle
= (cap_handle_t
) IPC_GET_ARG5(call
);
3092 if ((IPC_GET_IMETHOD(call
) != IPC_M_CONNECT_TO_ME
) || (phandle
< 0)) {
3093 async_answer_0(chandle
, EINVAL
);
3097 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
3099 async_answer_0(chandle
, ENOMEM
);
3105 sess
->phone
= phandle
;
3110 fibril_mutex_initialize(&sess
->remote_state_mtx
);
3111 sess
->remote_state_data
= NULL
;
3113 list_initialize(&sess
->exch_list
);
3114 fibril_mutex_initialize(&sess
->mutex
);
3115 atomic_set(&sess
->refcnt
, 0);
3117 /* Acknowledge the connected phone */
3118 async_answer_0(chandle
, EOK
);
3123 /** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3125 * If the call is IPC_M_CONNECT_TO_ME then a new
3126 * async session is created. However, the phone is
3127 * not accepted automatically.
3129 * @param mgmt Exchange management style.
3130 * @param call Call data.
3132 * @return New async session.
3133 * @return NULL on failure.
3134 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3137 async_sess_t
*async_callback_receive_start(exch_mgmt_t mgmt
, ipc_call_t
*call
)
3139 cap_handle_t phandle
= (cap_handle_t
) IPC_GET_ARG5(*call
);
3141 if ((IPC_GET_IMETHOD(*call
) != IPC_M_CONNECT_TO_ME
) || (phandle
< 0))
3144 async_sess_t
*sess
= (async_sess_t
*) malloc(sizeof(async_sess_t
));
3150 sess
->phone
= phandle
;
3155 fibril_mutex_initialize(&sess
->remote_state_mtx
);
3156 sess
->remote_state_data
= NULL
;
3158 list_initialize(&sess
->exch_list
);
3159 fibril_mutex_initialize(&sess
->mutex
);
3160 atomic_set(&sess
->refcnt
, 0);
3165 int async_state_change_start(async_exch_t
*exch
, sysarg_t arg1
, sysarg_t arg2
,
3166 sysarg_t arg3
, async_exch_t
*other_exch
)
3168 return async_req_5_0(exch
, IPC_M_STATE_CHANGE_AUTHORIZE
,
3169 arg1
, arg2
, arg3
, 0, other_exch
->phone
);
3172 bool async_state_change_receive(cap_handle_t
*chandle
, sysarg_t
*arg1
,
3173 sysarg_t
*arg2
, sysarg_t
*arg3
)
3178 *chandle
= async_get_call(&call
);
3180 if (IPC_GET_IMETHOD(call
) != IPC_M_STATE_CHANGE_AUTHORIZE
)
3184 *arg1
= IPC_GET_ARG1(call
);
3186 *arg2
= IPC_GET_ARG2(call
);
3188 *arg3
= IPC_GET_ARG3(call
);
3193 int async_state_change_finalize(cap_handle_t chandle
, async_exch_t
*other_exch
)
3195 return ipc_answer_1(chandle
, EOK
, other_exch
->phone
);
3198 /** Lock and get session remote state
3200 * Lock and get the local replica of the remote state
3201 * in stateful sessions. The call should be paired
3202 * with async_remote_state_release*().
3204 * @param[in] sess Stateful session.
3206 * @return Local replica of the remote state.
3209 void *async_remote_state_acquire(async_sess_t
*sess
)
3211 fibril_mutex_lock(&sess
->remote_state_mtx
);
3212 return sess
->remote_state_data
;
3215 /** Update the session remote state
3217 * Update the local replica of the remote state
3218 * in stateful sessions. The remote state must
3219 * be already locked.
3221 * @param[in] sess Stateful session.
3222 * @param[in] state New local replica of the remote state.
3225 void async_remote_state_update(async_sess_t
*sess
, void *state
)
3227 assert(fibril_mutex_is_locked(&sess
->remote_state_mtx
));
3228 sess
->remote_state_data
= state
;
3231 /** Release the session remote state
3233 * Unlock the local replica of the remote state
3234 * in stateful sessions.
3236 * @param[in] sess Stateful session.
3239 void async_remote_state_release(async_sess_t
*sess
)
3241 assert(fibril_mutex_is_locked(&sess
->remote_state_mtx
));
3243 fibril_mutex_unlock(&sess
->remote_state_mtx
);
3246 /** Release the session remote state and end an exchange
3248 * Unlock the local replica of the remote state
3249 * in stateful sessions. This is convenience function
3250 * which gets the session pointer from the exchange
3251 * and also ends the exchange.
3253 * @param[in] exch Stateful session's exchange.
3256 void async_remote_state_release_exchange(async_exch_t
*exch
)
3261 async_sess_t
*sess
= exch
->sess
;
3262 assert(fibril_mutex_is_locked(&sess
->remote_state_mtx
));
3264 async_exchange_end(exch
);
3265 fibril_mutex_unlock(&sess
->remote_state_mtx
);
3268 void *async_as_area_create(void *base
, size_t size
, unsigned int flags
,
3269 async_sess_t
*pager
, sysarg_t id1
, sysarg_t id2
, sysarg_t id3
)
3271 as_area_pager_info_t pager_info
= {
3272 .pager
= pager
->phone
,
3277 return as_area_create(base
, size
, flags
, &pager_info
);